清江外校2017年七年级下册压轴题训练
数学七年级下学期数学期末复习压轴题 解答题模拟试卷及答案-百度文库
数学七年级下学期数学期末复习压轴题 解答题模拟试卷及答案-百度文库一、解答题1.如图,直线AC ∥BD ,BC 平分∠ABD ,DE ⊥BC ,垂足为点E ,∠BAC =100°,求∠EDB 的度数.2.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式.(1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是(知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.3.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值.解:2222690a ab b b ++-+=222222690()(3)003033a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值;(2)已知2254210a b ab b +--+=,求a b 、的值;(3)若248200m n mn t t =++-+=,,求2m t n -的值.4.如图,点F 在线段AB 上,点E ,G 在线段CD 上,FG ∥AE ,∠1=∠2.(1)求证:AB ∥CD ;(2)若FG ⊥BC 于点H ,BC 平分∠ABD ,∠D =112°,求∠1的度数.5.如图,AB ∥CD ,点E 、F 在直线AB 上,G 在直线CD 上,且∠EGF =90°,∠BFG =140°,求∠CGE 的度数.6.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助网格). (1)画出△ABC 中BC 边上的高线AH .(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(3)画一个锐角△ABP (要求各顶点在格点上),使其面积等于△ABC 的面积的2倍.7.已知a +a 1-=3, 求(1)a 2+21a (2)a 4+41a 8.如图,已知AB ∥CD ,∠1=∠2,求证:AE ∥DF .9.因式分解:(1)3a x y y x ;(2)()222416x x +-.10.如图1,在△ABC 的AB 边的异侧作△ABD ,并使∠C =∠D ,点E 在射线CA 上. (1)如图,若AC ∥BD ,求证:AD ∥BC ;(2)若BD ⊥BC ,试解决下面两个问题:①如图2,∠DAE =20°,求∠C 的度数;②如图3,若∠BAC =∠BAD ,过点B 作BF ∥AD 交射线CA 于点F ,当∠EFB =7∠DBF 时,求∠BAD 的度数.11.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).12.如图,在方格纸内将△ABC 经过一次平移得到A B C ''',图中标出了点B 的对应点B '.(1)在给定的方格纸中画出平移后的A B C ''';(2)画出BC 边上的高AE ;(3)如果P 点在格点上,且满足S △PAB =S △ABC (点P 与点C 不重合),满足这样条件的P点有 个.13.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.14.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?15.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )16.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:15162401 6 8080 0 2221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆ 得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.17.因式分解:(1)a 3﹣a ;(2)4ab 2﹣4a 2b ﹣b 3;(3)a 2(x ﹣y )﹣9b 2(x ﹣y );(4)(y 2﹣1)2+6 (1﹣y 2)+9.18.已知a+b=2,ab=-1,求下面代数式的值:(1)a 2+b 2;(2)(a-b )2.19.解不等式(组)(1)解不等式 114136x x x +-+≤-,并把解集在数轴上....表示出来. (2)解不等式835113x x x x ->⎧⎪+⎨≥-⎪⎩,并写出它的所有整数解. 20.因式分解:(1)12abc ﹣9a 2b ;(2)a 2﹣25;(3)x 3﹣2x 2y +xy 2;(4)m 2(x ﹣y )﹣(x ﹣y ).【参考答案】***试卷处理标记,请不要删除一、解答题1.50°【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD =12∠ABD =40°,进而得出答案.【详解】解:∵AC //BD ,∠BAC =100°,∴∠ABD =180°﹣∠BAC =180°-100°=80°,∵BC 平分∠ABD ,∴∠CBD =12∠ABD =40°, ∵DE ⊥BC ,∴∠BED =90°,∴∠EDB =90°﹣∠CBD =90°-40°=50°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD 的度数是解题关键.2.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键.3.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.【分析】(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的性质求得x y 、代入求得数值;(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)(2)题.【详解】解:(1)2222210x xy y y -+-+=2222210x xy y y y ∴-++-+=22()(1)0x y y ∴-+-=010x y y ∴-=-=,,11x y ∴==,,23x y ∴+=;(2)2254210a b ab b +--+=22244210a b ab b b ∴+-+-+=22(2)(1)0a b b ∴-+-=2010a b b ∴-=-=,21a b ∴==,;(3)4m n =+,2(4)8200n n t t ∴++-+=22448160n n t t ∴+++-+=22(2)(4)0n t ∴++-=2040n t ∴+=-=,24n t ∴=-=,42m n ∴=+=20(2)1m t n -∴=-=【点睛】本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.4.(1)见解析;(2)56°【分析】(1)先证∠1=∠CGF 即可,然后根据平行线的判定定理证明即可;(2)先根据平行线的性质、角平分线的性质以及垂直的性质得到∠1+∠4=90°,再求出∠4即可.【详解】(1)证明:∵FG ∥AE ,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB ∥CD .(2)解:∵AB ∥CD ,∴∠ABD +∠D =180°,∵∠D =112°,∴∠ABD =180°﹣∠D =68°,∵BC 平分∠ABD ,∴∠4=12∠ABD =34°, ∵FG ⊥BC ,∴∠1+∠4=90°,∴∠1=90°﹣34°=56°.【点睛】本题考查三角形内角和定理、平行线的性质、角平分线的定义等知识,解题的关键是熟练应用相关性质和定理.5.50︒.【分析】先根据平行线的性质得出BFG FGC ∠=∠,再根据CGE FGC EGF ∠=∠-∠结合已知角度即可求解.【详解】证明://AB CD ,∠BFG =140°,BFG FGC ∴∠=∠=140°,又∵CGE FGC EGF ∠=∠-∠,∠EGF =90°,1409050CGE ∴∠=︒-︒=︒. 【点睛】本题考查的是平行线的性质,熟知平行线及角平分线的性质是解答此题的关键.解题时注意:两直线平行,内错角相等.6.(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据三角形高的定义求解可得;(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;(3)计算得出格点△ABC 的面积是3,得出格点△ABP 的面积为6,据此画出格点△ABP 即可.【详解】解:(1)如图所示,(2)如图所示;(3)S △ABC =13232⨯⨯= S △ABP =2S △ABC =6 画格点△ABP 如图所示,(答案不唯一).【点睛】本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.7.(1)7;(2)47.【分析】(1)根据13a a -+=得出13a a +=,进而得出219a a ⎛⎫+= ⎪⎝⎭,从而可得出结论; (2)根据(1)中的结论可知2217a a +=,故2221()49a a +=,从而得出441a a +的值. 【详解】解:(1)∵13a a -+=, ∴13a a+=, ∴21()9a a +=,即:22129a a++=, ∴2217a a +=; (2)由(1)知:2217a a +=, ∴2221()49a a +=,即:441249a a ++=, ∴44147a a +=. 【点睛】本题主要考查的是负整数指数幂和分式的运算,解题的关键是熟练掌握完全平方公式的灵活应用.8.见解析.【分析】首先根据直线平行得到∠CDA=∠DAB ,结合题干条件得到∠FDA=∠DAE ,进而得到结论.【详解】证明:∵AB ∥CD ,∴∠CDA =∠DAB ,∵∠1=∠2,∴∠CDA ﹣∠1=∠DAB ﹣∠2,∴∠FDA =∠DAE ,∴AE ∥DF .【点睛】本题主要考查了平行线的判断与性质,解题的关键是掌握两直线平行,内错角相等,此题比较简单.9.(1)3xy a ;(2)()()2222x x -+. 【分析】(1)原式先提取负号,再按提取公因式分解即可;(2)原式利用平方差公式分解因式,再利用完全平方分解因式即可;【详解】(1)3a xy y x 3a xy x y 3x y a ;(2)()222416x x +-()()224444x x x x =+-++2222x x .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.(1)见解析;(2)35°;(3)117°【分析】(1)由AC ∥BD 得∠D =∠DAE ,角的等量关系证明∠DAE 与∠C 相等,根据同位角得AD ∥BC ;(2)由BD ⊥BC 得∠HBC =90°,余角的性质和三角形外角性质解得∠C 的度数为35°; (3)由BF ∥AD 得∠D =∠DBF ,垂直的定义得∠DBC =90°,三角形的内角和定理,角的和差求得∠DBA =∠CBA =45°,由已知条件∠EFB =7∠DBF ,角的和差得出∠BAD 的度数为117°.【详解】解:(1)如图1所示:∵AC ∥BD ,∴∠D =∠DAE ,又∵∠C =∠D ,∴∠DAE =∠C ,∴AD ∥BC ;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C=∠D,∴∠C=∠D=∠DBF,又∵BD⊥BC,∴∠DBC=90°,又∵∠D+∠DBA+∠BAD=180°,∠C+∠CBA+∠BAC=180°.∠BAC=∠BAD,∴∠DBA=∠CBA=45°,又∵∠EFB=7∠DBF,∠EFB=∠FBC+∠C,∴7∠DBF=2∠DBF+∠DBC,解得:∠DBF=18°,∴∠BAD=180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.11.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠,EN ,FN 分别平分MEB ∠和DFM ∠,112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.12.(1)见解析;(2)见解析;(3)8【分析】(1)由点B 及其对应点B′的位置得出平移的方向和距离,据此作出点A 、C 平移后的对应点,再首尾顺次连接即可得;(2)根据三角形高线的概念作图即可;(3)由S △PAB =S △ABC 知两个三角形共底、等高,据此可知点P 在如图所示的直线m 、n 上,再结合图形可得答案.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,垂线段AE 即为所求;(3)如图所示,满足这样条件的点P 有8个,故答案为:8.【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,据此得出变换后的对应点及三角形高线的概念、共底等高的三角形面积问题.13.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PE AB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.14.(1)24,21x xy y==⎧⎧⎨⎨==⎩⎩(2)-136(3)2.5xy=⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m的值;(3)方程整理后,根据无论m如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21 x xy y==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260 x yx y+=⎧⎨+-=⎩和解得66 xy=-⎧⎨=⎩把66xy=-⎧⎨=⎩代入x-2y+mx+5=0,解得m=13 6 -(3)∵无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,∴x=0时,m的值与题目无关∴y=2.5∴2.5 xy=⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键. 15.(1)见解析;(2)见解析;(3)4.【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A 作BC 的平行线,这条平行线上的格点数除点A 外有4个,所以能使S △ABC =S △PBC 的格点P 的个数有4个,故答案为4.16.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----, ∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.17.(1)a (a+1)(a ﹣1);(2)﹣b (2a ﹣b )2;(3)(x ﹣y )(a+3b )(a ﹣3b );(4)(y+2)2(y﹣2)2【分析】(1)直接提取公因式a,进而利用平方差公式分解因式得出答案;(2)直接提取公因式﹣b,进而利用完全平方公式分解因式即可;(3)直接提取公因式(x﹣y),进而利用平方差公式分解因式得出答案;(4)直接利用完全平方公式分解因式,再利用平方差公式分解因式即可.【详解】解:(1)a3﹣a=a(a2﹣1)=a(a+1)(a﹣1);(2)4ab2﹣4a2b﹣b3=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2;(3)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(4)(y2﹣1)2+6(1﹣y2)+9=(y2﹣1)2﹣6 (y2﹣1)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.【点睛】此题主要考查因式分解的几种方法:提公因式法,公式法等,能熟练运用是解题关键.18.(1)6;(2)8.【分析】(1)先将原式转化为(a+b)2-2ab,再将已知代入计算可得;(2)先将原式转化为(a+b)2-4ab,再将已知代入计算计算可得.【详解】解:(1)当a+b=2,ab=-1时,原式=(a+b)2-2ab=22-2×(-1)=4+2=6;(2)当a+b=2,ab=-1时,原式=(a+b)2-4ab=22-4×(-1)=4+4=8.【点睛】本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形.19.(1)x ≤2,图见详解;(2)22x -≤<;-2、-1、0、1.【分析】(1)由题意直接根据解不等式的步骤逐步进行计算求解,并把解集在数轴上表示出来即可.(2)根据题意分别解出两个不等式,取公共部分得出其解集从而写出它的所有整数解即可.【详解】解:(1)去分母,得 6x+2(x+1)≤6-(x-14),去括号,得 6x+2x+2≤6-x+14,移项,合并同类项,得 9x ≤18,两边都除以9,得 x ≤2.解集在数轴上表示如下:(2)835113x x x x ->⎧⎪⎨+≥-⎪⎩①②解①得:2x <,解②得:2x ≥-,则不等式组的解集是:22x -≤<.它的所有整数解有:-2、-1、0、1.【点睛】本题考查的是一元一次不等式(组)的解法,注意掌握求不等式(组)的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.(1)3ab (4c ﹣3a );(2)(a +5)(a ﹣5);(3)x (x ﹣y )2;(4)(x ﹣y )(m +1)(m ﹣1)【分析】(1)由题意原式直接提取公因式即可;(2)根据题意原式利用平方差公式分解即可;(3)由题意原式提取公因式,再利用完全平方公式分解即可;(4)根据题意原式提取公因式,再利用平方差公式分解即可.【详解】解:(1)12abc ﹣9a 2b =3ab (4c ﹣3a );(2)a 2﹣25=(a +5)(a ﹣5);(3)x 3﹣2x 2y +xy 2=x (x 2﹣2xy +y 2)=x (x ﹣y )2;(4)m 2(x ﹣y )﹣(x ﹣y )=(x﹣y)(m2﹣1)=(x﹣y)(m+1)(m﹣1).【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.。
初一下学期期末压轴题考试数学试卷培优试题
一、解答题1.在平面直角坐标系中,已知长方形,点,. (1)如图,有一动点在第二象限的角平分线上,若,求的度数; (2)若把长方形向上平移,得到长方形. ①在运动过程中,求的面积与的面积之间的数量关系; ②若,求的面积与的面积之比.2.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒.(1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).3.已知:AB ∥CD ,截线MN 分别交AB 、CD 于点M 、N .(1)如图①,点B 在线段MN 上,设∠EBM =α°,∠DNM =β°30-a (β﹣60)2=0,求∠BEM 的度数;(2)如图②,在(1)的条件下,射线DF 平分∠CDE ,且交线段BE 的延长线于点F ;请写出∠DEF 与∠CDF 之间的数量关系,并说明理由;(3)如图③,当点P 在射线NT 上运动时,∠DCP 与∠BMT 的平分线交于点Q ,则∠Q 与∠CPM 的比值为 (直接写出答案).4.已知:如图(1)直线AB 、CD 被直线MN 所截,∠1=∠2.(1)求证:AB //CD ;(2)如图(2),点E 在AB ,CD 之间的直线MN 上,P 、Q 分别在直线AB 、CD 上,连接PE 、EQ ,PF 平分∠BPE ,QF 平分∠EQD ,则∠PEQ 和∠PFQ 之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P 点作PH //EQ 交CD 于点H ,连接PQ ,若PQ 平分∠EPH ,∠QPF :∠EQF =1:5,求∠PHQ 的度数.5.已知,//AE BD ,A D ∠=∠.(1)如图1,求证://AB CD ;(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.6.已知:AB //CD .点E 在CD 上,点F ,H 在AB 上,点G 在AB ,CD 之间,连接FG ,EH ,GE ,∠GFB =∠CEH .(1)如图1,求证:GF //EH ;(2)如图2,若∠GEH =α,FM 平分∠AFG ,EM 平分∠GEC ,试问∠M 与α之间有怎样的数量关系(用含α的式子表示∠M )?请写出你的猜想,并加以证明.7.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解,并规定:()=n f x m.例如:18可分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f == (1)填空:()6f = ;()16=f ;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值;(3)填空:①()22357f ⨯⨯⨯= ;②()42357f ⨯⨯⨯= ; 8.规定两数a ,b 之间的一种运算,记作(a ,b ):如果c a b =,那么(a ,b )=c . 例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2, 14)=_______. (2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n所以3x =4,即(3,4)=x ,所以(3n ,4n )=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30) 9.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭;(2)已知(),3L x y x by =+,31,222L ⎛⎫= ⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 10.阅读理解:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a 代表这个整数分出来的左边数,b 代表的这个整数分出来的中间数,c 代表这个整数分出来的右边数,其中a ,b ,c 数位相同,若b ﹣a =c ﹣b ,我们称这个多位数为等差数. 例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5;413223分成三个数41,32,23,并且满足:32﹣41=23﹣32;所以:357和413223都是等差数.(1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空)(2)若一个三位数是等差数,试说明它一定能被3整除;(3)若一个三位数T 是等差数,且T 是24的倍数,求该等差数T .11.观察下列各式:21131222-=⨯;21241333-=⨯;21351444-=⨯;……根据上面的等式所反映的规律,(1)填空:21150-=______;2112019-=______; (2)计算:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12.已知,在计算:()()12++++N N N 的过程中,如果存在正整数N ,使得各个数位均不产生进位,那么称这样的正整数N 为“本位数”.例如:2和30都是“本位数”,因为2349++=没有进位,30313293++=没有进位;15和91都不是“本位数”,因为15161748++=,个位产生进位,919293276++=,十位产生进位.则根据上面给出的材料:(1)下列数中,如果是“本位数”请在后面的括号内打“√”,如果不是“本位数”请在后面的括号内画“×”.106( );111( );400( );2015( ).(2)在所有的四位数中,最大的“本位数”是 ,最小的“本位数”是 .(3)在所有三位数中,“本位数”一共有多少个?13.如图,已知点()0,0O ,()2,0A ,()1,2B -.(1)求OAB 的面积;(2)点C 是在坐标轴上异于点A 的一点,且OBC 的面积等于OAB 的面积,求满足条件的点C 的坐标;(3)若点D 的坐标为()m,2,且1m <-,连接AD 交OB 于点E ,在x 轴上有一点F ,使BDE 的面积等于BEF 的面积,请直接写出点F 的坐标__________(用含m 的式子表示).14.如图1,AB //CD ,点E 、F 分别在AB 、CD 上,点O 在直线AB 、CD 之间,且100EOF ∠=︒.(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值;(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且50FMN ENM ∠-∠=︒,直接写出m 的值.15.如图,在平面直角坐标系中,已知△ABC,点A 的坐标是(4,0),点B 的坐标是(2,3),点C 在x 轴的负半轴上,且AC=6.(1)直接写出点C 的坐标.(2)在y 轴上是否存在点P ,使得S △POB =23S △ABC 若存在,求出点P 的坐标;若不存在,请说明理由.(3)把点C 往上平移3个单位得到点H ,作射线CH,连接BH ,点M 在射线CH 上运动(不与点C 、H 重合).试探究∠HBM ,∠BMA ,∠MAC 之间的数量关系,并证明你的结论.16.我们定义,关于同一个未知数的不等式A 和B ,若A 的解都是B 的解,则称A 与B 存在“雅含”关系,且A 不等式称为B 不等式的“子式”.如:0A x <,:1B x <,满足A 的解都是B 的解,所以A 与B 存在“雅含”关系,A 是B 的“子式”.(1)若关于x 的不等式:21A x +>,:3B x >,请问A 与B 是否存在“雅含”关系,若存在,请说明谁是谁的“子式”;(2)已知关于x 的不等式11:23x a C -+<,():233D x x --<,若C 与D 存在“雅含”关系,且C 是D 的“子式”,求a 的取值范围; (3)已知2m n k +=,3m n -=,12m ≥,1n <-,且k 为整数,关于x 的不等式:64P kx x +>+,():62142Q x x -≤+,请分析是否存在k ,使得P 与Q 存在“雅含”关系,且Q 是P 的“子式”,若存在,请求出k 的值,若不存在,请说明理由.17.在如图所示的平面直角坐标系中,A (1,3),B (3,1),将线段A 平移至CD ,C (m ,-1),D (1,n )(1)m=_____,n=______(2)点P 的坐标是(c ,0)①设∠ABP=α,请写出∠BPD 和∠PDC 之间的数量关系(用含α的式子表示,若有多种数量关系,选择一种加以说明)②当三角形PAB 的面积不小于3且不大于10,求点p 的横坐标C 的取值范围(直接写出答案即可)18.在平面直角坐标系中,(,1)A a ,(,3)B b 满足()2120a b +-=.(1)直接写出a 、b 的值:a = ;b = ;(2)如图1,若点(3,)P n 满足ABP △的面积等于6,求n 的值;(3)设线段AB 交y 轴于C ,动点E 从点C 出发,在y 轴上以每秒1个单位长度的速度向下运动,动点F 从点(8,0)-出发,在x 轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为t 秒,问t 为何值时,有2ABE ABF S S =?请求出t 的值.19.五一节前,某商店拟购进A 、B 两种品牌的电风扇进行销售,已知购进3台A 种品牌电风扇所需费用与购进2台B 种品牌电风扇所需费用相同,购进1台A 种品牌电风扇与2台B 种品牌电风扇共需费用400元.(1)求A 、B 两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A 种品牌电风扇定价为180元/台,B 种品牌电风扇定价为250元/台,商店拟用1000元购进这两种风扇(1000元刚好全部用完),为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?20.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用20两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.21.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由;(3)求C ∠的度数.22.对于不为0的一位数m 和一个两位数n ,将数m 放置于两位数之前,或者将数m 放置于两位数的十位数字与个位数字之间就可以得到两个新的三位数,将较大三位数减去较小三位数的差与15的商记为(),F m n .例如:当1m =,68n =时,可以得到168,618.较大三位数减去较小三位数的差为618168450-=,而4501530÷=,所以()1,6830F =. (1)计算:()2,17F .(2)若a 是一位数,b 是两位数,b 的十位数字为x (18x ≤≤,x 为自然数),个位数字为8,当()()11,509,862F a F b +=时,求出所有可能的a ,b 的值. 23.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数.①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?24.用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( )A.2019 B.2020 C.2021 D.2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒?25.对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若关于m的不等式组(2m,54)4(32)?T mT m m p⎩-≤->⎧⎨,恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?26.在平面直角坐标系xOy中.点A,B,P不在同一条直线上.对于点P和线段AB给出如下定义:过点P向线段AB所在直线作垂线,若垂足Q落在线段AB上,则称点P为线段AB的内垂点.若垂足Q满足|AQ-BQ|最小,则称点P为线段AB的最佳内垂点.已知点A (﹣2,1),B(1,1),C(﹣4,3).(1)在点P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣12,4)中,线段AB的内垂点为;(2)点M是线段AB的最佳内垂点且到线段AB的距离是2,则点M的坐标为;(3)点N在y轴上且为线段AC的内垂点,则点N的纵坐标n的取值范围是;(4)已知点D(m,0),E(m+4,0),F(2m,3).若线段CF上存在线段DE的最佳内垂点,求m的取值范围.27.对于三个数a ,b ,c ,{},,M a b c 表示a ,b ,c 这三个数的平均数,{}min ,,a b c 表示a ,b ,c 这三个数中最小的数,如:{}12341,2,333M -++-==,{}min 1,2,31-=-; {}1211,2,33a a M a -+++-==,{}()()1min 1,2,11a a a a ⎧≤-⎪-=⎨->-⎪⎩. 解决下列问题:(1)填空:{}220min 2,2,2013--=______;(2)若{}min 2,22,422x x +-=,求x 的取值范围;(3)①若{}{}2,1,2min 2,1,2M x x x x +=+,那么x =______;②根据①,你发现结论“若{}{},,min ,,M a b c a b c =,那么______”(填a ,b ,c 大小关系);③运用②解决问题:若{}{}22,2,2min 22,2,2M x y x y x y x y x y x y +++-=+++-,求x y +的值.28.已知关于x 、y 的二元一次方程23,3 3.x y a x y a +=-⎧⎨-=-⎩①②(1)若方程组的解x 、y 满足0,1x y ≤<,求a 的取值范围;(2)求代数式638x y +-的值.29.如图,数轴上两点A 、B 对应的数分别是-1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)在-2.5,0,2,3.5四个数中,连动数有 ;(直接写出结果)(2)若k 使得方程组321431x y k x y k +=+⎧⎨+=-⎩中的x ,y 均为连动数,求k 所有可能的取值; (3)若关于x 的不等式组263332x x x x a -⎧>-⎪⎪⎨+⎪≤-⎪⎩的解集中恰好有4个连动整数,求这4个连动整数的值及a 的取值范围.30.如图,在平面直角坐标系中,点A B 、的坐标分别为(1,0)、(-2,0),现同时将点A B 、分别向上平移2个单位,再向左平移1个单位,分别得到点AB 、的对应点CD 、,连接AC 、BD 、CD .(1)若在y 轴上存在点M ,连接MA MB 、,使S △ABM =S □ABDC ,求出点M 的坐标; (2)若点P 在线段BD 上运动,连接PC PO 、,求S =S △PCD +S △POB 的取值范围; (3)若P 在直线BD 上运动,请直接写出CPO DCP BOP ∠∠∠、、的数量关系.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)55°或35°;(2)①;②.【解析】【分析】(1)分两种情况:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根据点在第二象限的角平分线上,得出∠POE=45°,对顶角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知条件,得出∠CEO=45°,又根据∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先设长方形向上平移个单位长,得到长方形,然后列出和的面积,即可得出两者的数量关系;②首先根据已知条件判定四边形是平行四边形,经过等量转化,即可得出和的面积,进而得出其面积之比.【详解】(1)分两种情况:①令PC交x轴于点E,延长CB至x轴,交于点F,如图所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵点在第二象限的角平分线上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延长CB,交直线l于点E,由已知得,,∵点在第二象限的角平分线上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案为55°或35°.(2)如图,①设长方形向上平移个单位长,得到长方形∴②∵长方形,∴∵,令交于E,则四边形是平行四边形,∴∴又∵由①得知,∴∴.【点睛】 此题主要考查等量转换和平行四边形的判定以及性质,熟练掌握,即可解题.2.(1)见解析;(2)10°;(3)18015α︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠.【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD ,∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠∵180DEB ABE CDE ∠+∠-∠=︒,∴180,FEB ABE ∠+∠=︒∴EF ∥AB ,∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图,设,,GEF x FEB EFB y ∠=∠=∠=由(1)得AB ∥CD ,则AB ∥CD ∥HE ,∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠=∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠=∴PND CDM DMQ α∠=∠=∠=,又∵14CDM CDE ∠=∠, ∴33,MDE CDM α∠=∠=∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+=又∵PN ∥AB ,∴4,PNB NBA α∠=∠= ∵14ABN ABE ∠=∠, ∴44416,ABM ABN αα∠=∠=⨯=又∵AB ∥QM ,∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.3.(1)30°;(2)∠DEF +2∠CDF =150°,理由见解析;(3)12【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E 作直线EH ∥AB ,由角平分线的性质和平行线的性质可求∠DEF =180°﹣30°﹣2x °=150°﹣2x °,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB =2∠Q +∠PCD ,∠CPM =2∠Q ,即可求解.【详解】解:(1)∵30α-+(β﹣60)2=0, ∴α=30,β=60,∵AB ∥CD ,∴∠AMN =∠MND =60°,∵∠AMN =∠B +∠BEM =60°,∴∠BEM =60°﹣30°=30°;(2)∠DEF +2∠CDF =150°.理由如下:过点E 作直线EH ∥AB ,∵DF 平分∠CDE ,∴设∠CDF =∠EDF =x °;∵EH ∥AB ,∴∠DEH =∠EDC =2x °,∴∠DEF =180°﹣30°﹣2x °=150°﹣2x °;∴∠DEF =150°﹣2∠CDF ,即∠DEF +2∠CDF =150°;(3)如图3,设MQ 与CD 交于点E ,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q与∠CPM的比值为1,2.故答案为:12【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.4.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明;(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题;【详解】(1)如图1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)结论:如图2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB //CD ,EH //AB ,∴EH //CD ,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ =∠1+∠4,同法可证:∠PFQ =∠BPF +∠FQD ,∵∠BPE =2∠BPF ,∠EQD =2∠FQD ,∠1+∠BPE =180°,∠4+∠EQD =180°,∴∠1+∠4+∠EQD +∠BPE =2×180°,即∠PEQ +2(∠FQD +∠BPF )=360°,∴∠PEQ +2∠PFQ =360°.(3)如图3中,设∠QPF =y ,∠PHQ =x .∠EPQ =z ,则∠EQF =∠FQH =5y ,∵EQ //PH ,∴∠EQC =∠PHQ =x ,∴x +10y =180°,∵AB //CD ,∴∠BPH =∠PHQ =x ,∵PF 平分∠BPE ,∴∠EPQ +∠FPQ =∠FPH +∠BPH ,∴∠FPH =y +z ﹣x ,∵PQ 平分∠EPH ,∴Z =y +y +z ﹣x ,∴x =2y ,∴12y =180°,∴y =15°,∴x =30°,∴∠PHQ =30°.【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键. 5.(1)见解析;(2)72︒【分析】(1)根据平行线的性质得出180A B ∠+∠=︒,再根据等量代换可得180B D ∠+∠=︒,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG ∠=∠=∠,再根据平角的含义得出ECF CFG ∠=∠,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB ∠=∠∠=∠;设,FAB CFH αβ∠=∠=,根据角的和差可得出2AEC AFH ∠=∠,结合已知条件35180AEC AFH ∠-∠=︒可求得18AFH ∠=︒,最后根据垂线的含义及平行线的性质,即可得出答案.【详解】(1)证明://AE BD180A B ∴∠+∠=︒A D ∠=∠180B D ∴∠+∠=︒//AB CD ∴;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB//AB CDQCA CAB ∴∠=∠,BGM DFG ∠=∠,CFH BHF ∠=∠,CFA FAG ∠=ACE BAC BGM ∠=∠+∠ECQ QCA BAC BGM ∴∠+∠=∠+∠ECQ BGM DFG ∴∠=∠=∠180,180ECQ ECD DFG CFG ∠+=︒∠+=︒ECF CFG ∴∠=∠//AB CD//AB EP ∴,PEA EAB PEC ECF ∴∠=∠∠=∠AEC PEC PEA ∠=∠-∠AEC ECF EAB ∴∠=∠-∠ECF AEC EAB ∴∠=∠+∠AF 平分BAE ∠12EAF FAB EAB ∴∠=∠=∠ FH 平分CFG ∠12CFH HFG CFG ∴∠=∠=∠ //CD AB,BHF CFH CFA FAB ∴∠=∠∠=∠设,FAB CFH αβ∠=∠=AFH CFH CFA CFH FAB ∠=∠-∠=∠-∠AFH βα∴∠=-,BHF CFH β∠=∠=222ECF AFH AEC EAB AFH AEC β∴∠+∠=∠+∠+∠=∠+22ECF AFH E BHF ∴∠+∠=∠+∠2AEC AFH ∴∠=∠35180AEC AFH ∠-∠=︒18AFH ∴∠=︒FH HM ⊥90FHM ∴∠=︒90GHM β∴∠=︒-180CFM NMF ∠+∠=︒90HMB HMN β∴∠=∠=︒-EAF FAB ∠=∠18EAF CFA CFH AFH β∴∠=∠=∠-∠=-︒189072EAF GMH ββ∴∠+∠=-︒+︒-=︒72EAF GMH ∴∠+∠=︒.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.6.(1)见解析;(2)902FME α∠=︒-,证明见解析. 【分析】(1)由平行线的性质得到CEH EHB ∠=∠,等量代换得出GFB EHB ∠=∠,即可根据“同位角相等,两直线平行”得解;(2)过点M 作//MQ AB ,过点G 作//GP AB ,根据平行线的性质及角平分线的定义求解即可.【详解】(1)证明://AB CD ,CEH EHB ∴∠=∠,GFB CEH ∠=∠,GFB EHB ∴∠=∠,//GF EH ∴;(2)解:902FME α∠=︒-,理由如下:如图2,过点M 作//MQ AB ,过点G 作//GP AB ,//AB CD ,//MQ CD ∴,AFM FMQ ∴∠=∠,QME MEC ∠=∠,FME FMQ QME AFM MEC ∴∠=∠+∠=∠+∠,同理,FGE FGP PGE AFG GEC ∠=∠+∠=∠+∠,FM 平分AFG ∠,EM 平分GEC ∠,2AFG AFM ∴∠=∠,2GEC MEC ∠=∠,2FGE FME ∴∠=∠,由(1)知,//GF EH ,180FGE GEH ∴∠+∠=︒,GEH α∠=,180FGE α∴∠=︒-,2180FME α∴∠=︒-,902FME α∴∠=︒-.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.7.(1)23,1;(2)两位正整数为39,28,17,()f t 的最大值为47;(3)①2021;②2021【分析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a ,个位上数字为b ,则原数可以表示为10a+b ,交换后十位上数字为b ,个位上数字为a ,则交换后数字可以表示为10b+a ,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a 与b 的关系式,进而求出所有的两位数,然后求解确定出()f t 的最大值即可;(3)根据样例分解计算即可.【详解】解:(1)61623=⨯=⨯, ∵6132->-, ∴()263f =; 161162844=⨯=⨯=⨯∵1618244->->-, ∴()161f =, 故答案为:23;1;(2)由题意可得:交换后的数减去交换前的数的差为: 10109()54b a a b b a +--=-=,∴6b a -=, ∵19a b ≤≤≤,∴93b a ==,或82b a ==,或71b a ==,, ∴t 为39,28,17; ∵39=1×39=3×13, ∴()33913f =; 28=1×28=2×14=4×7, ∴()28f =47;17=1×17, ∴()11717f =; ∴()f t 的最大值47.(3)①∵223572021⨯⨯⨯=⨯ ∴()220235721f ⨯⨯⨯=; ②423574042⨯⨯⨯=⨯ ∴()4402023574221f ⨯⨯⨯==; 故答案为:2021;2021【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键.8.(1)3,0,-2 (2) (4,30) 【解析】分析:(1)根据阅读材料,应用规定的运算方式计算即可; (2)应用规定和同底数幂相乘的性质逆用变形计算即可.详解:(1)∵33=27 ∴(3,27)=3 ∵50=1 ∴(5,1)=1∵2-2=14∴(2,14)=-2(2)设(4,5)=x ,(4,6)=y 则x 45=,y 4=6 ∴x y x y 44430+=⋅= ∴(4,30)=x+y ∴(4,5)+(4,6)=(4,30)点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质.9.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+ ∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3故答案为:5,3; (2)有正格数对.将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+,得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,,解得,2b =, ∴()32L x y x y =+,, 则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数 ∴329k +=,3k =,2x =,∴正格数对为:()26L ,.【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键. 10.(1)不是,是;(2)见解析;(3)432或456或840或864或888 【分析】(1)根据等差数的定义判定即可;(2)设这个三位数是M ,10010M a b c =++,根据等差数的定义可知2a cb +=,进而得出()3352M ac =+即可.(3)根据等差数的定义以及24的倍数的数的特征可先求出a 的值,再根据是8的倍数可确定c 的值,又因为2a cb +=,所以可确定a 、c 为偶数时b 才可取整数有意义,排除不符合条件的a 、c 值,再将符合条件的a 、c 代入2a cb +=求出b 的值,即可求解. 【详解】解:(1)∵4184-≠- , ∴148不是等差数, ∵435135438-=-=- , ∴514335是等差数;(2)设这个三位数是M ,10010M a b c =++, ∵b a c b -=- , ∴2a cb +=, ∵()10010105633522a cM a c a c a c +=+⨯+=+=+ , ∴这个等差数是3的倍数; (3)由(2)知()3352,2a cT a c b +=+= , ∵T 是24的倍数, ∴352a c + 是8的倍数, ∵2c 是偶数,∴只有当35a 也是偶数时352a c +才有可能是8的倍数, ∴2a =或4或6或8,当2a =时,3570a = ,此时若1c =,则35272a c += ,若5c = ,则35+280a c = ,若9c = ,则35+288a c =,大于70又是8的倍数的最小数是72,之后是80,88当35+296a c =时10c > 不符合题意;当4a =时,35140a =,此时若2c =,则352144a c +=,若6c =,则352152a c +=,(144、152是8的倍数),当6a =时,35210a =,此时若3c =,则352216a c +=,若7c =,则352224a c +=, (216、244是8的倍数),当8a =时,35280a =,此时若0c ,则352280a c +=,若4c =,则352288a c +=,若8c =,则352296a c +=,(280,288,296是8的倍数), ∵2a cb +=, ∴若a 是偶数,则c 也是偶数时b 才有意义, ∴2a =和6a =是c 是奇数均不符合题意, 当4,2a c ==时,423,4322b T +=== , 当4,6ac ==时,465,4562b T +===, 当8,0ac ==时,804,8402b T +===, 当8,4ac ==时,846,8642b T +===, 当8,8ac ==时,888,8882b T +===, 综上,T 为432或456或840或864或888. 【点睛】本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键. 11.(1)49515050⨯;2018202020192019⨯;(2)10102019. 【分析】(1)根据已知数据得出规律,2111111n n n ⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,进而求出即可; (2)利用规律拆分,再进一步交错约分得出答案即可. 【详解】 解:(1)21150-=49515050⨯; 2112019-=2018202020192019⨯;(2)2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1324352018202022334420192019⨯⨯⨯⨯⨯⨯⨯⨯……=1202022019⨯ =10102019. 【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键.12.(1)×,√,×,×;(2)3332;1000;(3)36(个).【分析】(1)根据“本位数”的定义即可判断;(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000;(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有34336⨯⨯=(个). 【详解】解:(1)106107108321++=有进位; 111112113336++=没有进位;4004014021203++=有进位; 2015201620176048++=有进位;故答案为:×,√,×,×.(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000, 故答案为:3332,1000.(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有34336⨯⨯=(个). 【点睛】本题考查了新定义计算题,准确理解新定义的内涵是解题的关键. 13.(1)2;(2)(0,4),(0,4),(2,0)--;(3)1(1,0)F m +或2(1,0)F m -- 【分析】(1)直接利用以OA 为底,进行求面积;(2)OBC 的面积等于OAB 的面积,需要分三种情况进行分类讨论; (3)根据BDEBEFS S=推导出OBDOBFSS=,然后分两种情况进行讨论,即当F 位于x 轴负半轴上时与F 位于x 轴正半轴上时.【详解】 解:(1)1122222OAB B SOA y =⋅⋅=⨯⨯=. (2)作如下图形,进行分类讨论:①当点C 在y 轴正半轴上时,111||22OBC B SOC x =⋅⋅=, 114,(0,4)OC C ∴=;②当点C 在y 轴负半轴上时,221||22OBC B SOC x =⋅⋅=, 224,(0,4)OC C ∴=-;③当点C 在x 轴负半轴上时, 33122OBC B SOC y =⋅⋅=, 332,(2,0)OC C ∴=-;因此符合条件的C 点坐标有3个,分别是(0,4),(0,4),(2,0)--. (3)BDEBEFSS=,1122D F BE h BE h ∴⋅⋅=⋅⋅, D F h h ∴=,即D 与F 点到OB 的距离相等,12OBDD S OB h =⋅⋅, 12OBFF SOB h =⋅⋅, OBDOBFSS∴=, ∴由BDEBEFSS=可推出OBDOBFSS=,①F 位于x 轴负半轴上时,11(1)2122OBDB SBD y m m =⋅⋅=⨯--⨯=--, 11111122BOF B B SOF y OF y OF =⋅⋅=⋅⋅=, 11OF m ∴=--, 1(1,0)F m ∴+;②F 位于x 轴正半轴上时,222112BOF B SOF y OF m =⋅⋅==--, 2(1,0)F m ∴--,综上:点F 的坐标为1(1,0)F m +或2(1,0)F m --. 【点睛】本题考查了坐标与图形、三角形的面积、动点问题,解题的关键是要作适当辅助线,进行分类讨论求解.14.(1)260BEO DFO ∠+∠=︒ ;(2)EMN FNM ∠-∠的值为40°;(3)53.【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解;(2)过点M 作MK ∥A B ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM =∠OEM =x ,∠CFN =∠OFN =y ,由∠BEO +∠DFO =260°可求x -y =40°,进而求解;(3)设直线FK 与EG 交于点H ,FK 与AB 交于点K ,根据平行线的性质即三角形外角的性质及50FMN ENM ∠-∠=︒,可得50KFD AEG ∠-∠=︒,结合260AEG n OEG DFK n OFK BEO DFO ∠=∠=∠∠+∠=︒,,,可得11180100AEG AEG KFD KFD n n ∠+∠+︒-∠-∠=︒,即可得关于n 的方程,计算可求解n 值. 【详解】证明:过点O 作OG ∥AB ,∵AB ∥CD , ∴AB ∥OG ∥CD ,∴180180BEO EOG DFO FOG ∠+∠=︒∠+∠=︒,,∴360BEO EOG DFO FOG ∠+∠+∠+∠=︒, 即360BEO EOF DFO ∠+∠+∠=︒, ∵∠EOF =100°,∴∠260BEO DFO +∠=︒;(2)解:过点M 作MK ∥AB ,过点N 作NH ∥CD ,∵EM 平分∠BEO ,FN 平分∠CFO , 设BEM OEM x CFN OFN y ∠=∠=∠=∠=,, ∵260BEO DFO ∠+∠=︒∴21802260BEO DFO x y ∠+∠=+︒-=︒, ∴x -y =40°,∵MK ∥AB ,NH ∥CD ,AB ∥CD , ∴AB ∥MK ∥NH ∥CD ,∴EMK BEM x HNF CFN y KMN HNM ∠=∠=∠=∠=∠=∠,,, ∴EMN FNM EMK KMN HNM HNF ∠+∠=∠+∠-∠+∠() x KMN HNM y =+∠-∠-=x -y =40°,EMN FNM ∠-∠的值为40°;(3)如图,设直线FK 与EG 交于点H ,FK 与AB 交于点K ,∵AB ∥CD ,∴AKF KFD ∠=∠,∵AKF EHK HEK EHK AEG ∠=∠+∠=∠+∠, ∴KFD EHK AEG ∠=∠+∠, ∵50EHK NMF ENM ∠=∠-∠=︒, ∴50KFD AEG ∠=︒+∠, 即50KFD AEG ∠-∠=︒,∵AEG n OEG ∠=∠,FK 在∠DFO 内,DFK n OFK ∠=∠.∴1180180CFO DFK OFK KFD KFD n∠=︒-∠-∠=︒-∠-∠ ,1AEO AEG OEG AEG AEG n ∠=∠+∠=∠+∠,∵260BEO DFO ∠+∠=︒, ∴100AEO CFO ∠+∠=︒,∴11180100AEG AEG KFD KFD n n ∠+∠+︒-∠-∠=︒,即(180)1KFD AEG n ⎛⎫⎪⎝∠⎭+-∠︒=, ∴115080n ⎛⎫⎪⨯⎭︒︒⎝+=, 解得53n = . 经检验,符合题意, 故答案为:53.【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 15.(1)C(-2,0);(2)点P 坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM ,证明见解析. 【分析】(1)由点A 坐标可得OA=4,再根据C 点x 轴负半轴上,AC=6即可求得答案; (2)先求出S △ABC =9,S △BOP =OP ,再根据S △POB =23S △ABC ,可得OP=6,即可写出点P 的坐标; (3)先得到点H 的坐标,再结合点B 的坐标可得到BH//AC ,然后根据点M 在射线CH 上,分点M 在线段CH 上与不在线段CH 上两种情况分别进行讨论即可得. 【详解】 (1)∵A(4,0), ∴OA=4,∵C 点x 轴负半轴上,AC=6, ∴OC=AC-OA=2, ∴C(-2,0); (2)∵B(2,3),∴S △ABC =12×6×3=9,S △BOP =12OP×2=OP ,又∵S △POB =23S △ABC , ∴OP=23×9=6,∴点P 坐标为(0,6)或(0,-6); (3)∠BMA=∠MAC±∠HBM ,证明如下: ∵把点C 往上平移3个单位得到点H ,C(-2,0), ∴H(-2,3), 又∵B(2,3), ∴BH//AC ;如图1,当点M 在线段HC 上时,过点M 作MN//AC , ∴∠MAC=∠AMN ,MN//HB , ∴∠HBM=∠BMN , ∵∠BMA=∠BMN+∠AMN , ∴∠BMA=∠HBM+∠MAC ;如图2,当点M 在射线CH 上但不在线段HC 上时,过点M 作MN//AC , ∴∠MAC=∠AMN ,MN//HB , ∴∠HBM=∠BMN , ∵∠BMA=∠AMN-∠BMN , ∴∠BMA=∠MAC-∠HBM ; 综上,∠BMA=∠MAC±∠HBM.【点睛】本题考查了点的坐标,三角形的面积,点的平移,平行线的判定与性质等知识,综合性较强,正确进行分类并准确画出图形是解题的关键.16.(1)A 与B 存在“雅含”关系,B 是A 的“子式”;(2)12a ≤;(3)存在,0k =. 【分析】(1)根据“雅含”关系的定义即可判断;(2)先求出C D ,解集,根据“雅含”关系的定义得出2423a +≤,解不等式即可; (3)首先解关于m n ,的方程组即可求得m n ,的值,然后根据12m ≥,1n <-,且k 为整数即可得到一个关于k 的范围,从而求得k 的整数值.。
七年级下册数学压轴题集锦
1、2a b m b a-+b+3=0=14.ABC A S V 如图,已知(0,),B (0,),C (,)且(4),(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQECA ∠∠的大小是否发生变化,若不变,求出其值。
2、如图1,AB(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。
(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
6.(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。
(2)如图,点E 在CD 的延长线上,∠BAD 与∠ADE的平分线交于点F ,试问∠F 、∠B 和∠C 之间有何数量关系?为什么?7.已知∠ABC 与∠ADC 的平分线交于点E 。
(1)如图,试探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。
(2)如图,是探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。
8.(1)如图,点E 是AB 上方一点,MF 平分∠AME ,若点G 恰好在MF 的反向延长线上,且NE 平分∠CNG ,2∠E 与∠G 互余,求∠AME 的大小。
(2)如图,在(1)的条件下,若点P 是EM 上一动点,PQ 平分∠MPN ,NH 平分∠PNC ,交AB 于点H ,PJ 图,已知MA 图,AB 图,在平面直角坐标系中,已知点A (-5,0),B (),D (2,7),(1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
七年级下册数学期末压轴难题模拟试卷-百度文库
七年级下册数学期末压轴难题模拟试卷-百度文库一、选择题1.如图,直线 a 、b 被直线 c 所截,下列说法不正确的是 ( )A .∠1 和∠4 是内错角B .∠2 和∠3 是同旁内角C .∠1 和∠3 是同位角D .∠3 和∠4 互为邻补角2.在以下现象中,属于平移的是( )①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程. A .①②B .②④C .②③D .③④ 3.点()P m n ,在第二象限内,则点(),Q m m n --在第______象限. A .一B .二C .三D .四4.下列四个命题是真命题的是( ) A .两条直线被第三条直线所截,同位角相等 B .互补的两个角一定是邻补角C .在同一平面内,垂直于同一条直线的两条直线互相平行D .相等的角是对顶角5.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70°6.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( )A .①②③B .①②④C .①③④D .②③④7.如图,将直尺与含45°角的三角尺叠放在一起,其两边与直尺相交,若∠1=25°,则∠2的度数为( )A .120°B .135°C .150°D .160°8.如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2021次,点P 依次落在点P 1、P 2、P 3……P 2021的位置,由图可知P 1(1,1),P 2(2,0),P 3(2,0),P 4(3,1),则P 2021的坐标( )A .(2020,0)B .(2020,1)C .(2021,0)D .(2021,1)二、填空题9.已知非零实数a.b 满足|2a-4|+|b+2|+()23a b -+4=2a ,则2a+b=_______.10.点A ()2,4-关于x 轴的对称点1A 的坐标为____________.11.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠BFD =45°;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是______(填序号).12.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =40°,则∠DAC 的度数为____.13.如图所示是一张长方形形状的纸条,1105∠=︒,则2∠的度数为__________.14.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 15.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为()2,3,则()12,7对应的正整数是_______.第1列 第2列 第3列 第4列 ...... 第1行 1 2 5 10 ...... 第2行 4 3 6 11 ...... 第3行 9 8 7 12 ...... 第4行 16 15 14 13 (5)…………………………16.如图,一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点()0,0运动到()0,1,然后接着按图中箭头所示方向运动,即()()()()0,00,11,11,0→→→,…,且每秒运动一个单位,到()1,1点用时2秒,到()2,2点用时6秒,到()3,3点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.三、解答题17.计算下列各式的值: (1)|–2|3–8–1)2021; (2()233+3––618.求下列各式中的x 值:(1)16(x +1)2=25; (2)8(1﹣x )3=125 19.完成下列证明过程,并在括号内填上依据.如图,点E 在AB 上,点F 在CD 上,∠1=∠2,∠B =∠C ,求证AB ∥CD .证明:∵∠1=∠2(已知),∠1=∠4∴∠2=(等量代换),∴∥BF(),∴∠3=∠().又∵∠B=∠C(已知),∴∠3=∠B∴AB∥CD().20.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+2,y0+4),将△ABC作同样的平移得到△A1B1C1.(1)请画出△A1B1C1并写出点A1,B1,C1的坐标;(2)求△A1B1C1的面积;21.阅读下面的文字,解答问题:22的小数部分我们不可能全212的小数部分,你同意小明的表示方法吗?21,将这个数减去其整数部分,差是小数部分.479273<<72,小数部分为72.请解答:(183的整数部分为;小数部分为;(235a35b,求2235-+a b二十二、解答题22.如图,用两个面积为2200cm的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?二十三、解答题23.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.24.已知直线//AB CD ,M ,N 分别为直线AB ,CD 上的两点且70MND ∠=︒,P 为直线CD 上的一个动点.类似于平面镜成像,点N 关于镜面MP 所成的镜像为点Q ,此时,,NMP QMP NPM QPM MNP MQP ∠=∠∠=∠∠=∠.(1)当点P 在N 右侧时:①若镜像Q 点刚好落在直线AB 上(如图1),判断直线MN 与直线PQ 的位置关系,并说明理由;②若镜像Q 点落在直线AB 与CD 之间(如图2),直接写出BMQ ∠与DPQ ∠之间的数量关系;(2)若镜像PQ CD ⊥,求BMQ ∠的度数.25.如图,在ABC 中,AD 是高,AE 是角平分线,20B ∠=︒,60C ∠=°.(1)求CAD ∠、AEC ∠和EAD ∠的度数.(2)若图形发生了变化,已知的两个角度数改为:当30B ∠=︒,60C ∠=°,则EAD ∠=__________︒.当50B ∠=︒,C 60∠=︒时,则EAD ∠=__________︒. 当60B ∠=︒,60C ∠=°时,则EAD ∠=__________︒. 当70B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.(3)若B 和C ∠的度数改为用字母α和β来表示,你能找到EAD ∠与α和β之间的关系吗?请直接写出你发现的结论.26.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒; (2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.【参考答案】一、选择题1.A 解析:A 【分析】同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角. 【详解】解:A 、1∠和4∠不是内错角,此选项符合题意; B 、2∠和3∠是同旁内角,此选项不符合题意; C 、1∠和3∠是同位角,此选项不符合题意; D 、3∠和4∠是邻补角,此选项不符合题意; 故选A . 【点睛】本题主要考查了同位角,同旁内角,内错角,邻补角,理解同位角,内错角和同旁内角和邻补角的定义是关键.2.B 【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答. 【详解】解析:B 【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答. 【详解】①在荡秋千的小朋友的运动,不是平移; ②坐观光电梯上升的过程,是平移; ③钟面上秒针的运动,不是平移;④生产过程中传送带上的电视机的移动过程.是平移; 故选:B . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选. 3.D 【分析】先根据第二象限内点的横坐标是负数,纵坐标是正数判断出m、n的正负情况,再根据各象限内点的坐标特征求解.【详解】解:∵点P(m,n)在第二象限,∴m<0,n>0,∴-m>0,m-n<0,∴点Q(-m,m-n)在第四象限.故选D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据平行线的性质、邻补角和对顶角的概念以及平行线的判定定理判断即可.【详解】解:A、两条平行的直线被第三条直线所截,同位角相等,原命题错误,是假命题,不符合题意;B、互补的两个角不一定是邻补角,原命题错误,是假命题,不符合题意;C、在同一平面内,垂直于同一条直线的两条直线互相平行,原命题正确,是真命题,符合题意;D、相等的角不一定是对顶角,原命题错误,是假命题,不符合题意;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是要熟悉课本中的性质定理.5.C【分析】由平行线的性质可得∠ADC=∠BAD=35°,再由垂线的定义可得△ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD的度数.【详解】∵AB∥CD,∠BAD=35°,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°﹣35°=55°,故选:C.【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.6.D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可.【详解】∵1的立方根为1,∴①错误;∵4的平方根为±2,∴②正确;∵−8的立方根是−2,∴③正确;∵116的算术平方根是14,∴④正确;正确的是②③④,故选:D.【点睛】本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.7.D【分析】如图,利用三角形的外角的性质求出∠3,再利用平行线的性质可得结论.【详解】解:如图,∵∠4=45°,∠1=25°,∠4=∠1+∠3,∴∠3=45°-25°=20°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°-20°=160°,故选:D.【点睛】本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题.8.D【分析】观察规律可知,每4次翻折为一个循环,若的余数为0,则;若的余数为1,则;若的余数为2,则;若的余数为3,则;由此进行判断是在第505次循环完成后再翻折一次,那么横坐标即为.【详解】解析:D 【分析】观察规律可知,每4次翻折为一个循环,若4n 的余数为0,则1n x n =-;若4n的余数为1,则n x n =;若4n 的余数为2,则n x n =;若4n的余数为3,则1n x n =-;由此进行判断2021P 是在第505次循环完成后再翻折一次,那么横坐标即为20212021x =. 【详解】解:由题意得:P 1(1,1),P 2(2,0),P 3(2,0),P 4(3,1) P 5(5,1),P 6(6,0),P 7(6,0),P 8(7,1),……由此可以得出规律:每4次翻折为一个循环,若4n的余数为0,则1n x n =-,n P (n -1,1);若4n 的余数为1,则n x n =,n P (n ,1);若4n的余数为2,则n x n =,n P (n ,0);若4n的余数为3,则1n x n =-,n P (n -1,0);∵2021÷4=505余1,∴横坐标即为20212021x =,2021P (2021,1), 故选D. 【点睛】本题主要考查了坐标的规律,解题的关键在于能够准确地根据图形找到坐标的规律进行求解.二、填空题 9.4 【分析】首先根据算术平方根的被开方数≥0,求出a 的范围,进而得出|2a-4|等于原值,代入原式得出|b 十2|+=0.根据非负数的性质可分别求出a 和b 的值,即可求出2a+b 的值. 【详解】 解:解析:4 【分析】首先根据算术平方根的被开方数≥0,求出a 的范围,进而得出|2a-4|等于原值,代入原式得出|b 十=0.根据非负数的性质可分别求出a 和b 的值,即可求出2a+b 的值. 【详解】解:由题意可得a≥3, ∴2a-4>0,已知等式整理得:,∴a=3,b=-2,∴2a+b=2×3-2=4.故答案为4.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键.10.(2,4)【分析】直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案.【详解】解:点A(2,-4)关于x轴解析:(2,4)【分析】直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案.【详解】解:点A(2,-4)关于x轴对称点A1的坐标为:(2,4).故答案为:(2,4).【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.11.①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠B解析:①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA =2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠BFD=∠BCF+∠CBF=45°,可判定②;根据同角的余角性质可得∠GCE=∠ABC,由角的和差∠GCD=∠ABC+∠ACD=∠ADC,可判定③;由∠GCE+∠ACB=90°,可得∠GCE与∠ACB互余,可得CA平分∠BCG不正确,可判定④.【详解】解:∵EG∥BC,且CG⊥EG于G,∴∠BCG+∠G=180°,∵∠G=90°,∴∠BCG=180°﹣∠G=90°,∵GE∥BC,∴∠GEC=∠BCA,∵CD平分∠BCA,∴∠GEC=∠BCA=2∠DCB,∴①正确.∵CD,BE平分∠BCA,∠ABC∴∠BFD=∠BCF+∠CBF=1(∠BCA+∠ABC)=45°,2∴②正确.∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°,∴∠GCE=∠ABC,∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD,∴∠ADC=∠GCD,∴③正确.∵∠GCE+∠ACB=90°,∴∠GCE与∠ACB互余,∴CA平分∠BCG不正确,∴④错误.故答案为:①②③.【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.12.40°【分析】根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.【详解】∵AD∥BC,∠B=40°,∴∠EAD=∠B=40°,∵AD是∠EAC的平解析:40°【分析】根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.【详解】∵AD∥BC,∠B=40°,∴∠EAD=∠B=40°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.13.5°【分析】根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.【详解】解:∵AB∥CD,∴∠1+∠3=180°,∵∠1=105°,∴∠3=解析:5°【分析】根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.【详解】解:∵AB∥CD,∴∠1+∠3=180°,∵∠1=105°,∴∠3=180°-105°=75°,∴∠2=(180°-75°)÷2=52.5°,故答案为:52.5°.【点睛】此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的.14.3;.【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知:4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.15.138【分析】根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n 行n 列数的特点为(n2-n解析:138【分析】根据表格中的数据,以及正整数6对应的位置记为()2,3,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n 行n 列数的特点为(n 2-n +1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题.【详解】解:∵正整数6对应的位置记为()2,3,即表示第2行第3列的数,12,7表示第12行第7列的数,∴()由1行1列的数字是12-0=12-(1-1)=1,2行2列的数字是22-1=22-(2-1)=3,3行3列的数字是32-2=32-(3-1)=7,…n行n列的数字是n2-(n-1)=n2-n+1,∴第12行12列的数字是122-12+1=133,∴第12行第7列的数字是138,故答案为:138.【点睛】此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度.16.【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,19,20解析:()【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,∵20×20=400∴第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.三、解答题17.(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=,=3.(2)原式,=解析:(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=()()221--+-,=3.(2)原式= =3+1-6,=–2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键. 18.(1)或;(2)【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答.【详解】解:(1)等式两边都除以16,得.等式两边开平方,得.所以,得.所以,解析:(1)14x =或94x =-;(2)3.2x =- 【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答.【详解】解:(1)等式两边都除以16,得()225116x +=. 等式两边开平方,得514x +=±. 所以,得5511-44x x +=+=或. 所以,19-44x =或 (2)等式两边都除以8,得()31251-8x =. 等式两边开立方,得51-2x =. 所以,3.2x =- 【点睛】本题考查平方根、立方根,解题关键是熟记平方根、立方根..19.∠4;CE ;同位角相等,两直线平行;C ;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=解析:∠4;CE ;同位角相等,两直线平行;C ;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE ∥BF (同位角相等,两直线平行),∴∠3=∠C (两直线平行,同位角相等).又∵∠B =∠C (已知),∴∠3=∠B (等量代换),∴AB ∥CD (内错角相等,两直线平行).故答案为:对顶角相等;CE ∥BF ;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.20.(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.(2)利用分割法求解即可.【详解】解:(1解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)7 2【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.(2)利用分割法求解即可.【详解】解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3).(2)△A1B1C1的面积=3×3-12×3×2-12×1×2-12×1×3=72.【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(1)9,;(2)15【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可.【详解】解:(1)∵,即∴的整数部分为9,小数部分为(2)∵,即∴的整数部解析:(1)99;(2)15【分析】(1(2)求出a ,b 然后代入代数式即可.【详解】解:(1)∵910<< ∴99(2)∵56<< ∴55∴5a =,5b =255)15a b -+=-+=【点睛】此题主要考查了二次根式的大小,熟练掌握二次根式的有关性质是解题的关键. 二十二、解答题22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.二十三、解答题23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK +∠DCK =12∠BAP +12∠DCP =12(∠BAP +∠DCP )=12∠APC ,∴∠AKC =12∠APC ;(3)∠AKC =23∠APC 理由:如图3,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠BAK =∠AKE ,∠DCK =∠CKE ,∴∠AKC =∠AKE ﹣∠CKE =∠BAK ﹣∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP ﹣∠DCP ,∵∠BAK =23∠BAP ,∠DCK =23∠DCP , ∴∠BAK ﹣∠DCK =23∠BAP ﹣23∠DCP =23(∠BAP ﹣∠DCP )=23∠APC , ∴∠AKC =23∠APC .【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.24.(1)①,证明见解析,②,(2)或.【分析】(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,解析:(1)①//MN PQ ,证明见解析,②70DPQ BMQ ∠∠+=︒,(2)160︒或20︒.【分析】(1) ①根据//AB CD 和镜像证出NMP QPM ∠=∠,即可判断直线MN 与直线PQ 的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证DPQ BM MQP Q ∠=∠∠+即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,分类讨论,依据平行线的性质求解即可.【详解】(1)①//MN PQ ,证明:∵//AB CD ,∴NPM QMP ∠=∠,∵,NMP QMP NPM QPM ∠=∠∠=∠,∴NMP QPM ∠=∠,∴//MN PQ ;②过点Q 作QF ∥CD ,∵//AB CD ,∴////AB CD QF ,∴1BMQ ∠=∠,2QPD ∠=∠,∴DPQ BM MQP Q ∠=∠∠+,∵70MNP MQP ∠=∠=︒,∴70DPQ BMQ ∠∠+=︒;(2)如图,当点P 在N 右侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,∴180NP FQP Q ∠=∠+︒,FQM BMQ ∠=∠,∵PQ CD ⊥,∴90NPQ ∠=︒,∴90FQP ∠=︒,∵70MND PQM ∠=∠=︒,∴20FQM ∠=︒,∴20BMQ ∠=︒,如图,当点P 在N 左侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,同理可得,90FQP ∠=︒,∵70MND ∠=︒,∴110MNP PQM ∠=∠=︒,∴20FQM ∠=︒,∵//AB QF ,∴180BM FQM Q ∠=∠+︒,∴160BMQ ∠=︒;综上,BMQ ∠的度数为160︒或20︒.【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.25.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【分析】(1)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,进而可求AEC ∠和EAD ∠的度数;(2)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,则前三问利用EAD EAC DAC ∠=∠-∠即可得出答案,第4问利用EAD DAC EAC ∠=∠-∠即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵20B ∠=︒,60C ∠=°,∴180100BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1502EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ADE ∴∠=∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,20EAD EAC CAD ∴∠=∠-∠=︒ ,9070AEC EAD ∴∠=︒-∠=︒ .(2)当30B ∠=︒,60C ∠=°时,∵30B ∠=︒,60C ∠=°,∴18090BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1452EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,15EAD EAC CAD ∴∠=∠-∠=︒ ;当50B ∠=︒,60C ∠=°时,∵50B ∠=︒,60C ∠=°,∴18070BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1352EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD EAC CAD ∴∠=∠-∠=︒ ;当60B ∠=︒,60C ∠=°时,∵60B ∠=︒,60C ∠=°,∴18060BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1302EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,0EAD EAC CAD ∴∠=∠-∠=︒ ;当70B ∠=︒,60C ∠=°时,∵70B ∠=︒,60C ∠=°,∴18050BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1252EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD DAC EAC ∴∠=∠-∠=︒ .(3)当B C ∠<∠ 时,即αβ<时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD EAC CAD βα∴∠=∠-∠=- ; 当B C ∠>∠ 时,即αβ>时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD DAC EAC αβ∴∠=∠-∠=- ; 综上所述,当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.26.(1)110(2)(90 +n )(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO 、CO 分别是∠ABC 与∠ACB 的角平解析:(1)110(2)(90 +12n )(3)201712×90°+20182018212-n ° 【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO 、CO 分别是∠ABC 与∠ACB 的角平分线,用n °的代数式表示出∠OBC 与∠OCB 的和,再根据三角形的内角和定理求出∠BOC 的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O 是∠AB 故答案为:110°;C 与∠ACB 的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO 、CO 分别是∠ABC 与∠ACB 的角平分线,∴∠OBC +∠OCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =12(180°﹣n °)=90°﹣12n °,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12n °.故答案为:(90+12n );(3)由(2)得∠O =90°+12n °,∵∠ABO 的平分线与∠ACO 的平分线交于点O 1, ∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB , ∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °, 同理,∠O 2=18×180°+78n °, ∴∠O n =112n +×180°+11212n n ++- n °, ∴∠O 2017=201812×180°+20182018212-n °, 故答案为:201712×90°+20182018212-n °. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.。
七年级下学期数学期末压轴难题试卷及答案-百度文库
七年级下学期数学期末压轴难题试卷及答案-百度文库 一、选择题 1.16的平方根是()A .4B .4±C .2D .2± 2.下列现象属于平移的是() A .投篮时的篮球运动B .随风飘动的树叶在空中的运动C .刹车时汽车在地面上的滑动D .冷水加热过程中小气泡变成大气泡3.如图,小手盖住的点的坐标可能为( )A .()2,3B .()2,3-C .()2,3--D .()2,3- 4.下列四个命题,①连接两点的线段叫做两点间的距离;②经过两点有一条直线,并且只有一条直线;③两点之间,线段最短;④线段AB 的延长线与射线BA 是同一条射线.其中说法正确的有( )A .1个B .2个C .3个D .4个5.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当15BAD ∠=︒时,//BC DE ,则BAD ∠(0180BAD ︒<∠<︒)其它所有可能符合条件的度数为( )A .60°和135°B .60°和105°C .105°和45°D .以上都有可能 6.若33=0x y +,则x 和y 的关系是( ).A .x =y =0B .x 和y 互为相反数C .x 和y 相等D .不能确定7.如图,直线a ∥b ,∠1=74°,∠2=34°,则∠3的度数是( )A .75°B .55°C .40°D .35°8.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点A (2,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A .(﹣1,﹣1)B .(﹣1,1)C .(﹣2,1)D .(2,0)二、填空题9.如果1x +和2y -互为相反数,那么xy =________.10.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____. 11.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和38,则△EDF 的面积为_____.12.如下图,C 岛在A 岛的北偏东65°方向,在B 岛的北偏西35°方向,则ACB =∠______度.13.如图,将ABC 沿着AC 边翻折得到AB 1C ,连接BB 1交AC 于点E ,过点B 1作B 1D //AC 交BC 延长线于点D ,交BA 延长线于点F ,连接DA ,若∠CBE =45°,BD =6cm ,则ADB 1的面积为_________.14.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 15.若点P(2-m ,m+1)在x 轴上,则P 点坐标为_____.16.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O 为顶点,边长为正整数的正方形的顶点,A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,2),A 6(0,2),A 7(0,3),A 8(3,3)……依此规律A 100坐标为________.三、解答题17.计算:(1)利用平方根意义求x 值:()2136x -=(2)()235832-----18.求下列各式中x 的值(1)81x 2 =16(2)3(1)64x -=19.完成下面的证明:已知:如图,130∠=︒,60B ∠=︒,AB AC ⊥.求证://AD BC .证明:AB AC ⊥(已知),∵∠______90=︒(____________________).∴130∠=︒,60B ∠=︒(已知),∵1BAC B ∠+∠+∠=__________.即∠______180B +∠=︒∴//AD BC (______________________________).20.已知:如图,ΔABC 的位置如图所示:(每个方格都是边长为1个单位长度的正方形,ΔABC 的顶点都在格点上),点A ,B ,C 的坐标分别为(−1,0),(5,0),(1,5).(1)请在图中画出坐标轴,建立直角坐标系;(2)点P (m ,n )是ΔABC 内部一点,平移ΔABC ,点P 随ΔABC 一起平移,点A 落在A ′(0,4),点P 落在P ′(n ,6),求点P 的坐标并直接写出平移过程中线段PC 扫过的面积. 21.任意无理数都是由整数部分和小数部分构成的.已知一个无理数a ,它的整数部分是b ,则它的小数部分可以表示为-a b .例如:469<<,即263<<,显然6的整数部分是2,小数部分是62-.根据上面的材料,解决下列问题:(1)若11的整数部分是m ,5的整数部分是n ,求5m n -+的值.(2)若714+的整数部分是2x ,小数部分是y ,求142x y -+的值. 二十二、解答题22.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm 2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、解答题23.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 24.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系. 25.模型与应用.(模型)(1)如图①,已知AB ∥CD ,求证∠1+∠MEN +∠2=360°.(应用)(2)如图②,已知AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .如图③,已知AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n 的度数为 .(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)26.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1)(图2)【参考答案】一、选择题1.D解析:D【分析】16“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根”即可进行解答.【详解】=,164∵()224±=,∴4的平方根是2±,故选D.【点睛】16方根和算术平方根.2.C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象;D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象. 故选:C .【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.3.C【分析】根据平面直角坐标系的象限内点的特点判断即可;【详解】∵盖住的点在第三象限,∴()2,3--符合条件;故答案选C .【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键. 4.B【分析】利用直线和射线的定义、以及线段的性质和两点之间距离意义,分别分析得出答案.【详解】解:①连接两点的线段长度叫做两点间的距离,故此选项错误.②经过两点有一条直线,并且只有一条直线,故此选项正确.③两点之间,线段最短,故此选项正确.④线段AB 的延长线是以B 为端点延长出去的延长线部分,与射线BA 不是同一条射线故此选项错误.综上,②③正确.故选:B .【点睛】本题考查了直线、射线、线段的性质和两点之间距离意义,解题的关键是准确理解定义. 5.D【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图当AC ∥DE 时,45BAD DAE ∠=∠=︒;当BC ∥AD 时,60DAB B ∠=∠=︒;当BC ∥ AE 时,∵60EAB B ∠=∠=︒,∴4560105BAD DAE EAB ∠=∠+∠=︒+︒=︒;当AB ∥DE 时,∵ 90E EAB ∠=∠=︒,∴4590135BAD DAE EAB ∠=∠+∠=︒+︒=︒.故选:D .【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.6.B【解析】分析:先移项,再两边立方,即可得出x=-y ,得出选项即可.详解: ∵33=0x y +, ∴33x y =-,∴x=-y ,即x 、y 互为相反数,故选B .点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y .7.C【分析】根据平行线的性质得出∠4=∠1=74°,然后根据三角形外角的性质即可求得∠3的度数.【详解】解:∵直线a ∥b ,∠1=74°,∴∠4=∠1=74°,∵∠2+∠3=∠4,∴∠3=∠4-∠2=74°-34°=40°.故选:C .【点睛】本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键. 8.A【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第解析:A【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解.【详解】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,由题意知:第一次相遇物体甲与物体乙运动的路程和为12112⨯=,物体甲运动的路程为11243⨯=,物体乙运动的路程为21283⨯=,此时在BC边相遇,即第一次相遇点为(-1,1);第二次相遇物体甲与物体乙运动的路程和为12224⨯=,物体甲运动的路程为12483⨯=,物体乙运动的路程为224163⨯=,在DE边相遇,即第二次相遇点为(-1,-1);第三次相遇物体甲与物体乙运动的路程和为12336⨯=,物体甲运动的路程为136123⨯=,物体乙运动的路程为236243⨯=,在A点相遇,即第三次相遇点为(2,0);此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵202136732÷=,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1).故选:A.【点睛】本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点.二、填空题9.-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.【详解】解:∵和|y-2|互为相反数,∴,∴x+1=0,y-2=0,解得:x=-1,y=2,∴xy解析:-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x 与y 的值,进而得出答案.【详解】解:∵|y-2|互为相反数, ∴20y +=,∴x+1=0,y-2=0,解得:x=-1,y=2,∴xy=-1×2=-2故答案为:-2.【点睛】本题考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0和|y-2|都是非负数,所以这个数都是0.10.-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:∵点,点关于x 轴对称,∴;解得:,∴,故答案为-6.【点睛】本题考查平面直解析:-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,∴3654150x y y x -=⎧⎨++=⎩; 解得:33x y =-⎧⎨=-⎩, ∴=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.11.6【详解】如图,过点D作DH⊥AC于点H,又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,∴DF=DH,∠AFD=∠ADH=∠DHG=90°,又∵AD=AD,DE=DG,∴△ADF≌解析:6【详解】如图,过点D作DH⊥AC于点H,又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,∴DF=DH,∠AFD=∠ADH=∠DHG=90°,又∵AD=AD,DE=DG,∴△ADF≌△ADH,△DEF≌△DGH,设S△DEF=x,则S△AED+x=S△ADG-x,即38+x=50-x,解得:x=6.∴△EDF的面积为6.12.100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE∥AD,则CE∥BF.∵CE∥AD,∴=65°.∵CE∥BF,∴=35°.解析:100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE∥AD,则CE∥BF.∵CE ∥AD ,∴DAC ACE ∠=∠=65°.∵CE ∥BF ,∴B CBF E C =∠∠=35°.∴C C A B A E C B E =+∠∠∠=65°+35°=100°.故答案为:100.【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.13.cm²【分析】根据翻折变换的性质可知AC 垂直平分BB1,且B1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB1,∵B1D ∥AC ,∴ 解析:92cm ²【分析】根据翻折变换的性质可知AC 垂直平分BB 1,且B 1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB 1,∵B 1D ∥AC ,∴AC 为三角形ADB 中位线,∴BC =CD =12BD =3cm , 在Rt △BCE 中,∠CBE =45°,BC =3cm ,∴CE 2+BE 2=BC 2,解得BE =CE 322. ∴EB 1=BE 322∵CE 为△BDB 1中位线,∴DB1=2CE ,△ADB 1的高与EB 1相等,∴S△ADB 1=12×DB 1×EB 1=1292cm ², 故答案为:92cm ². 【点睛】本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC 为△ADB 的中位线从而得出答案.14.8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.(3,0)【分析】根据x 轴上的点的坐标纵坐标为0列方程可求出m 的值,即可得出点P 坐标.【详解】∵点P(2-m ,m+1)在x 轴上,∴m+1=0,解得:m=-1,∴2-m=3,∴P 点坐标解析:(3,0)【分析】根据x 轴上的点的坐标纵坐标为0列方程可求出m 的值,即可得出点P 坐标.【详解】∵点P(2-m ,m+1)在x 轴上,∴m+1=0,解得:m=-1,∴2-m=3,∴P点坐标为(3,0),故答案为:(3,0)【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.16.(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3)…,∴数据每隔三个增加一次,100÷3得33余1,则点A在x轴上,故A100坐标为(34,0),故答案为:(34,0)【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A的脚标数之间的联系寻找规律.三、解答题17.(1)或(2)【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.【详解】解:(1),是的平方根,或(2)【点睛解析:(1)7x =或 5.x =- (2)5【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.【详解】解:(1) ()2136x -=, 1x ∴-是36的平方根,16,16,x x ∴-=-=-7x ∴=或 5.x =-(225(2)2=--522=+-5=【点睛】本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键.18.(1);(2)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解.【详解】解:(1)方程变形得:,解得:;(2)开立方得:,解得:.解析:(1)94x =±;(2)5x =【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解.【详解】解:(1)方程变形得:21681x =, 解得:94x =±;(2)开立方得:14x -=,解得:5x =.【点睛】本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法.19.BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD ,即,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵(已知),∴∠BAC (解析:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD 180B +∠=︒,即1180BAC B ∠+∠+∠=︒,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵AB AC ⊥(已知),∴∠BAC 90=︒(垂直的定义).∵130∠=︒,60B ∠=︒(已知),∴1BAC B ∠+∠+∠=180°即∠BAD 180B +∠=︒∴//AD BC (同旁内角互补,两直线平行)故答案为:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【点睛】本题主要考查了垂直定义和平行线的判定,证明∠BAD 180B +∠=︒是解题关键. 20.(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质解析:(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为3.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质可求得线段PC 扫过的面积.【详解】解:(1)平面直角坐标系如图所示:(2)因为点A (−1,0)落在A ′(0,4),同时点P (m ,n )落在P ′(n ,6),∴146m n n +=⎧⎨+=⎩,解得12m n =⎧⎨=⎩, ∴点P 的坐标为(1,2);如图,线段PC 扫过的面积即为平行四边形PCC ′P ′的面积,∴线段PC 扫过的面积为313⨯=.【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.【详解】解:(1)∵,∴,∴的整数部分是解析:(1)0;(2)112 【分析】(1(27【详解】解:(1)∵∴34<, ∴3,即m=3, ∵∴23<<,∴2,即n=2,∴;(2)∵< ∴10711<, ∴710,即2x=10,∴x=5, ∴77103,即3,∴2x y -)532-112. 【点睛】本题考查了二次根式的整数和小数部分.看懂题例并熟练运用是解决本题的关键. 二十二、解答题22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m =2x +2y ,∴x +y =12m , ∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 24.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M 作MN ∥AB ,由平行线的性质即可求得∠M 的值.(2)延长BA ,DC 交于E ,解析:(1)50°;(2)∠A +∠C =30°+α,理由见解析;(3)∠A -∠DCM =30°+α或30°-α【分析】(1)过M 作MN ∥AB ,由平行线的性质即可求得∠M 的值.(2)延长BA ,DC 交于E ,应用四边形的内角和定理与平角的定义即可解决问题. (3)分两种情形分别求解即可;【详解】解:(1)过M 作MN ∥AB ,∵AB ∥CD ,∴AB ∥MN ∥CD ,∴∠1=∠A ,∠2=∠C ,∴∠AMC =∠1+∠2=∠A +∠C =50°;故答案为:50°;(2)∠A +∠C =30°+α,延长BA ,DC 交于E ,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如图所示,210-∠A=(180°-∠D CM)+α,即∠A-∠DCM=30°-α.综上所述,∠A-∠DCM=30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数.25.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.26.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2) (2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β。
七年级下册数学压轴题集锦
1、2a b m b a-+b+3=0=14.ABC A S V 如图,已知(0,),B (0,),C (,)且(4),(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQECA ∠∠的大小是否发生变化,若不变,求出其值。
2、如图1,AB(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。
(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
6.(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。
(2)如图,点E 在CD 的延长线上,∠BAD 与∠ADE 的平分线交于点F ,试问∠F 、∠B 和∠C 之间有何数量关系?为什么?7.已知∠ABC 与∠ADC 的平分线交于点E 。
(1)如图,试探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。
(2)如图,是探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。
8.(1)如图,点E 是AB 上方一点,MF 平分∠AME ,若点G 恰好在MF 的反向延长线上,且NE 平分∠CNG ,2∠E 与∠G 互余,求∠AME 的大小。
(2)如图,在(1)的条件下,若点P 是EM 上一动点,PQ 平分∠MPN ,NH 平分∠PNC ,交AB 于点H ,PJ 图,已知MA 图,AB 图,在平面直角坐标系中,已知点A (-5,0),B (),D (2,7),(1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
期末难点特训(四)和相交线平行线有关的压轴题-【微专题】七年级数学下册常考点微专题提分精练(人教版)
七下期末难点特训(四)和相交线平行线有关的压轴题1. 直线AB //CD ,点M 、N 分别在直线AB 、CD 上.(1)如图1,AMP ∠、DNP ∠、MPN ∠的数量关系为:________;(2)如图2,直线EF 与AB 、CD 分别交于点E 、F ,连接MN ,EMN ∠的平分线MH 交CD 于点H .①当MH //EF ,PN //EF 时,请判断EFD ∠与PNM ∠的数量关系,并说明理由;②如图3,当PN 保持PN //EF 并向左平移,在平移的过程中猜想EFD ∠、PNM ∠与MHN ∠的数量关系,请直接写出结论.2. 如图1,直线EF 与直线AB CD ,分别交于点E 、F ,EM 平分AEF ∠交CD 于点M ,且FEM FME ∠=∠.(1)求证:AB CD ∥;(2)如图2,点G 是射线MD 上一动点(不与点M 、F 重合),EH 平分FEG ∠交CD 于点H ,HN EM ⊥于点N ,设EHN EGF ∠=α∠=β,.①当点G 在点F 的右侧时,若50β=︒,求α的大小;②点G 在整个运动过程中,直接写出α和β之间的数量关系.3. 已知△ABC 与△ADE 共顶点A ,90BAC DAE == ∠∠,顶点B 和C 在直线1l 上(点B 在点C 的左侧),顶点D 和E 在直线2l 上(点D 在点E 的左侧),且直线12l l ∥.(1)如图1,顶点A 在1l 与2l 之间,判断∠BAD 与ABC ADE ∠+∠是否相等,并说明理由.(2)如图2,顶点A 在1l 与2l 之间,∠ABC 的外角平分线与∠AED 的角平分线交于点F ,若70BAD ∠= ,求∠BFE 的度数.(3)若顶点A 在直线2l 的下方,且顶点B 、A 、D 不在一条直线上,∠ABC 的外角平分线与∠AED 的角平分线交于点F ,记BAD ∠=α,BFE β∠=,请探究α与β的数量关系,并直接写出结论.4. 如下图,点E 、C 分别在直线GN 、BM 上,点A 为平面内BM 、GN 之间的一点,若CAE BCA AEG ∠=∠+∠.(1)证明:BM ∥GN ;(2)如下图,若60CAE ∠=︒,AC ∥EF ,点D 在线段AC 上,连接DE ,且2FED BCA ∠=∠,试判断DEA ∠与GEA ∠的数量关系,并说明理由;(3)如下图,若85CAE ∠=︒,35BCA ∠=︒,且EF 、EP 分别平分AEQ ∠、NEQ ∠,求FEP ∠的度数.5. 如图,直线AB CD ,点E 在直线AB 上,点F 在直线CD 上,点P 在直线AB ,CD 之间,连接PE ,PF ,EF ,50PFE ∠=︒,直线l 与直线,AB CD 分别交于点M ,N ,()090MNC αα∠=︒<<︒,EO 是MEF ∠的平分线,交直线CD 于点O .(1)求证:AEP PFC EPF ∠+∠=∠;(2)若PF MN OE MN ,∥∥时,求α;(3)将直线l 向左平移,并保持PF MN ,在平移的过程中(除点M 与点E 重合时),求EOF ∠的度数(用含α的式子表示).6. 已知:如图1,直线AB CD ∥,EF 分别交AB ,CD 于E ,F 两点,AEF CFE ∠∠,的平分线相交于点M .(1)求M ∠的度数;(2)如图2,AEM ∠,CFM 的平分线相交于点1M ,请写出M ∠1与M ∠之间的等量关系,并说明理由;(3)在图2中作11,AEM CFM ∠∠的平分线相交于点2M ,作22,AEM CFM ∠∠的平分线相交于点3M ,依此类推,作20212021,AEM CFM ∠∠的平分线相交于点2022M ,请直接写出2022M ∠的度数.7. 如图1,已知直线m n ∥,AB 是一块平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q ,我们称OP 为入射光线,PQ 为反射光线.已知镜面反射有如下性质:入射光线与平面镜所成的夹角等于反射光线与平面镜所成的夹角,即OPA QPB ∠=∠.(1)如图1,若82OPQ ∠=︒,求OPA ∠的度数;(2)如图2,若43AOP ∠=︒,49BQP ∠=︒,求OPA ∠的度数;(3)如图3,再放置3块平面镜,其中两块平面镜分别放在直线m 和n 上,另一块放在两直线之间,四块平面镜构成四边形ABCD .已知光线从点O 以适当的角度射出,其传播路径为O P Q R O P →→→→→,直接写出OPQ ∠和ORQ ∠的数量关系.8. 已知点C 在射线OA 上.(1)如图①,CD //OE ,若∠AOB =90°,∠OCD =120°,求∠BOE 的度数;(2)在①中,将射线OE 沿射线OB 平移得O ′E '(如图②),若∠AOB =α,探究∠OCD 与∠BO ′E ′的关系(用含α的代数式表示)(3)在②中,过点O ′作OB 的垂线,与∠OCD 的平分线交于点P (如图③),若∠CPO ′=90°,探究∠AOB 与∠BO ′E ′的关系.9. 已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________;(2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论.10. 在综合与实践课上,老师让同学们以“三条平行线m ,n ,l (即始终满足m ∥n ∥l )和一副直角三角尺ABC ,DEF (∠BAC =∠EDF =90°,∠FED =60°,∠DFE=30°,∠ABC=∠ACB=45°)”为主题开展数学活动.操作发现(1)如图1,展翅组把三角尺ABC的边BC放在l上,三角尺DEF的顶点F与顶点B重合,边EF经过AB,顶点E恰好落在m上,顶点D恰好落在n上,边ED 与n相交所成的一个角记为∠1,求∠1的度数;(2)如图2,受到展翅组的启发,高远组把直线m向下平移后使得两个三角尺的两个直角顶点A、D分别落在m和l上,顶点C恰好落在n上,边AC与l相交所成的一个角记为∠2,边DF与m相交所成的一个角记为∠3,请你说明∠2﹣∠3=15°;结论应用(3)老师在点评高远组的探究操作时提出,在(2)的条件下,若点N是直线n上一点,CN恰好平分∠ACB时,∠2与∠3之间存在一个特殊的倍数关系,请你直接写出它们之间的倍数关系,不需要说明理由.11. 已知,直线AB与直线CD平行,在这两条直线的内侧有一点E,连接BE、ED,∠ABE的平分线与∠CDE的平分线交于点F.(1)如图1:当点E 在直线BD 的左侧时,补全图形并且直接写出∠BFD 与∠E 的关系.(思路提示:过点E 、点F 分别做出AB 或CD 的平行线,通过∠ABE 和∠CDE 即可建立∠BFD 与∠E 的关系)(2)当点E 在直线BD 的右侧时,在图2中补全图形,请问:(1)中的结论是否发生变化,如果变化了请写出变化后的结论,并说明理由.12. 已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论;(3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数.13. 问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,DE GF .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.14. 如图1,已知∠A +∠E +∠F +∠C =540°.(1)试判断直线AB 与CD 的位置关系,并说明理由;(2)如图2,∠PAB =3∠PAQ ,∠PCD =3∠PCQ ,试判断∠APC 与∠AQC 的数量关系,并说明理由.15. 问题情境:如图1,AB ∥CD ,∠PAB =128°,∠PCD =124°,求∠APC 的度数.小明的思路是过点P 作PE ∥AB ,通过平行线性质来求∠APC .(1)按照小明的思路,写出推算过程,求∠APC的度数.(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P在线段OB上时,请直接写出∠APC与α、β之间的数量关系.七下期末难点特训(四)和相交线平行线有关的压轴题【1题答案】【答案】(1)∠AMP+∠MPN-∠PND=180°(2)①∠EFD=∠PNM;②当点P在M N的右侧时,2∠MHN =∠EFD+∠PNM;当点P值MN的左侧时,2∠MHN十∠PNM =∠EFD【解析】【分析】(1)结论:∠AMP +∠MPN-∠PND= 180°,如图1中,过点P作PT∥AB,利用平行线的性质证明即可;(2)①结论:∠EFD =∠PN M,利用平行线的性质角平分线的定义证明即可;②分两种情形:当点P在M N的右侧时,2∠MHN =∠EFD+∠PNM;当点P值MN的左侧时,2∠MHN十∠PNM =∠EFD.【小问1详解】如图1中,过点P作PT∥AB,∵AB∥CD,PT∥АВ,∴AB∥PT∥CD,∴∠AMP+ ∠MPT= 180°,∠PND =∠TPN,∴∠AMP + ∠MPN - ∠PND=∠AMP+∠MPT+∠TPN-∠PND= 180°,故答案为:∠AMP+∠MPN-∠PND=180°;【小问2详解】①∠EFD=∠PNM,理由如下:∵MH∥EF,∴∠EFD=∠MHN,∵AB∥CD,∴∠MHN=∠AMH,∵MH平分∠AMN,∴∠AMH=∠HMN,∴∠EFD=∠HMN,∵MH∥PN,∴∠HMN =∠PNM,∴∠EFD =∠PNM,故答案为∠EFD =∠PNM;②如图,当点P在MN的右侧时,∵AB∥CD,∴∠MHD=∠AMH,∵MH平分∠AMN,∴∠AMH=∠HMN,∴∠MHD=∠HMN,∵PN∥EF,∴∠EFD=∠PND,∵∠MHN+∠HMN=∠PND+∠PNM,∴2∠MHN =∠EFD+∠PNM,当点P在MN的左侧时,∵AB∥CD,∴∠MHD=∠AMH,∵MH平分∠AMN,∴∠AMH=∠HMN,∴∠MHD=∠HMN,∵PN∥EF,∴∠EFD=∠PND,∵∠MHN +∠HMN =∠PND -∠PNM ,∴2∠MHN +∠PNM =∠EFD .【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.【2题答案】【答案】(1)证明见解析(2)①25︒;②当点G 在点F 的右侧时,12αβ=;当点G 在点F 的左侧时,1902βα︒=-【解析】【分析】(1)由角平分线的定义即得出AEM FEM ∠=∠,结合题意可证明AEM FME ∠=∠,即得出AB CD ;(2)①由平行线的性质可得出50EGF BEG β∠=∠==︒,从而可求出180130AEG BEG ∠=-∠=︒︒.再根据角平分线的定义可得出1122HEF FEG MEF AEF ∠=∠∠=∠,,从而可求出1652MEH AEG ∠=∠=︒.过点N 作NK GH ∥,即得出ENK AEM HNK MHN ∠=∠∠=∠,.由90ENK HNK ∠+∠=︒,可得出90AEM MHN ∠+∠=︒.最后由180AEM MEH MHN α∠+∠+∠+=︒,即可求出α的大小;②分类讨论:当点G 在点F 的右侧时和当点G 在点F 的左侧时,根据平行线的性质,角平分线的定义结合图形即可解答.【小问1详解】证明:∵EM 平分AEF ∠,∴AEM FEM ∠=∠.又∵FEM FME ∠=∠,∴AEM FME ∠=∠,∴AB CD ;【小问2详解】①∵AB CD ,∴50EGF BEG β∠=∠==︒,∴180130AEG BEG ∠=-∠=︒︒.又∵EH 平分FEG EM ∠,平分AEF ∠,∴1122HEF FEG MEF AEF ∠=∠∠=∠,,∴1652MEH AEG ∠=∠=︒.又∵HN EM ⊥,∴90MNH ∠=︒.如图,过点N 作NK GH ∥,∴ENK AEM HNK MHN ∠=∠∠=∠,.∵90ENK HNK ∠+∠=︒,∴90AEM MHN ∠+∠=︒.∵AB CD ,∴180AEM MEH MHN α∠+∠+∠+=︒,∴180906525α=︒-︒=︒-︒;②分两种情况讨论:如图,当点G 在点F 的右侧时,∵AB CD ,∴180AEG β∠=︒-.又∵EH 平分FEG ∠,EM 平分AEF ∠, ∴1122HEF FEG MEF AEF ∠=∠∠=∠,,∴119022MEH AEG β∠=∠=︒-.∵HN ME ⊥,∴119090(90)22EHN MEH ββ∠=︒-∠=︒-︒-=,即12αβ=;如图,当点G 在点F 的左侧时,∵AB CD ,∴AEG EGF β∠=∠=.又∵EH 平分FEG ∠,EM 平分AEF ∠, ∴1122HEF FEG MEF AEF ∠=∠∠=∠,,∴111()222MEH MEF HEF AEF FEG AEG β∠=∠-∠=∠-∠=∠=.∵HN ME ⊥,∴190902EHN MEH β∠=︒-∠=︒-,即1902αβ-= .【点睛】本题考查角平分线的定义,平行线的判定和性质.利用数形结合和分类讨论的思想是解题关键.【3题答案】【答案】(1)BAD ABC ADE ∠=∠+∠,理由见解析(2)100° (3)902βα︒=+或902βα︒=-【解析】【分析】(1)过点A 作1AG l ∥,根据平行线的性质直接求解即可得到结论;(2)根据(1)中的方法可知70BAD ABC ADE ∠=∠+∠= ,12BFE ∠=∠+∠,根据角平分线的性质及邻补角的定义等量代换即可得到结论;(3)令,ABF x AEF y ∠=∠=,根据角平分线定义得FBH x ∠=,FED y ∠=,过F 作1FG l ∥,过A 作1AJ l ∥,得到12FG AJ l l ∥∥∥,从而根据点D 与ABF ∠的关系分五种情况求解,由角度和差关系得到x y β=-,()902x y α︒=+-或()902x y α︒=--,联立方程组得到902βα︒=+或者902βα︒=-.【小问1详解】解:BAD ABC ADE ∠=∠+∠.过点A 作1AG l ∥,如图所示:12l l ∥,∴12AG l l ∥∥,∴1ABC ∠=∠,2ADE ∠=∠,∴12BAD ∠=∠+∠,∴BAD ABC ADE ∠=∠+∠;【小问2详解】解:如图所示:由(1)可知70BAD ABC ADE ∠=∠+∠= ,同(1)理可得12BFE ∠=∠+∠,∵BF 平分∠ABH ,EF 平分∠AED ,∴111,222ABH DEA ∠=∠∠=∠,∵90,90BAC DAE ∠=∠= ,∴()112904522ADE ADE ∠=-∠=-∠ ,()1111809022ABC ABC ∠=-∠=-∠ ,∴111245901353510022BFE ADE ABC ∠=∠+∠=-∠+-∠=-= ;【小问3详解】解:根据点D 与ABF ∠的关系分五种情况求解:1..点D 在ABF ∠的边BF 左侧,如图所示:令,ABF x AEF y ∠=∠=,则根据角平分线定义得FBH x ∠=,FED y ∠=,过F 作1FG l ∥,过A 作1AJ l ∥,则12FG AJ l l ∥∥∥,,1802EFG DEF y BAJ ABC x ∴∠=∠=∠=∠=︒-,DAJ ADE ∠=∠,BFG HBF x BFE EFG y β∴∠=∠==∠+∠=+①,在ADE ∆中,=90DAE ∠︒,90ADE AED ∴∠+∠=︒,902DAJ ADE y ∴∠=∠=︒-,()1802902BAJ ABC x DAJ BAD y α∴∠=∠=︒-=∠+∠=︒-+②,由①得x y β=-,由②得()902x y α︒=+-,将①代入②得902βα︒=+;2.点D 在ABF ∠的边BF 上,如图所示:令,ABF x AEF y ∠=∠=,则根据角平分线定义得FBH x ∠=,FED y ∠=,过F 作1FG l ∥,过A 作1AJ l ∥,则12FG AJ l l ∥∥∥,,1802EFG DEF y BAJ ABC x ∴∠=∠=∠=∠=︒-,DAJ ADE ∠=∠,BFG HBF x BFE EFG y β∴∠=∠==∠+∠=+①,在ADE ∆中,=90DAE ∠︒,90ADE AED ∴∠+∠=︒,902DAJ ADE y ∴∠=∠=︒-,()1802902BAJ ABC x DAJ BAD y α∴∠=∠=︒-=∠+∠=︒-+②,由①得x y β=-,由②得()902x y α︒=+-,将①代入②得902βα︒=+;3.点D 在ABF ∠内,如图所示:令,ABF x AEF y ∠=∠=,则根据角平分线定义得FBH x ∠=,FED y ∠=,过F 作1FG l ∥,过A 作1AJ l ∥,则12FG AJ l l ∥∥∥,,1802EFG DEF y BAJ ABC x ∴∠=∠=∠=∠=︒-,DAJ ADE ∠=∠,BFG HBF x BFE EFG y β∴∠=∠==∠+∠=+①,在ADE ∆中,=90DAE ∠︒,90ADE AED ∴∠+∠=︒,902DAJ ADE y ∴∠=∠=︒-,()1802902BAJ ABC x DAJ BAD y α∴∠=∠=︒-=∠+∠=︒-+②,由①得x y β=-,由②得()902x y α︒=+-,将①代入②得902βα︒=+;4.点D 在ABF ∠的边AB 上,0BAD α∠==︒,如图所示:令,ABF x AEF y ∠=∠=,则根据角平分线定义得FBH x ∠=,FED y ∠=,过F 作1FG l ∥,过A 作1AJ l ∥,则12FG AJ l l ∥∥∥,,1802EFG DEF y BAJ ABC x ∴∠=∠=∠=∠=︒-,DAJ ADE ∠=∠,BFG HBF x BFE EFG y β∴∠=∠==∠+∠=+①,在ADE ∆中,=90DAE ∠︒,90ADE AED ∴∠+∠=︒,902DAJ ADE y ∴∠=∠=︒-,()1802902BAJ ABC x DAJ BAD y ∴∠=∠=︒-=∠+∠=︒-②,由①得x y β=-,由②得()902x y ︒=-,将①代入②得45β=︒,∴0α=︒,45β=︒,满足902βα︒=+;5.点D 在ABF ∠的边AB 右侧,如图所示:令,ABF x AEF y ∠=∠=,则根据角平分线定义得FBH x ∠=,FED y ∠=,过F 作1FG l ∥,过A 作1AJ l ∥,则12FG AJ l l ∥∥∥,,1802EFG DEF y BAJ ABC x ∴∠=∠=∠=∠=︒-,DAJ ADE ∠=∠,BFG HBF x BFE EFG y β∴∠=∠==∠+∠=+①,在ADE ∆中,=90DAE ∠︒,90ADE AED ∴∠+∠=︒,902DAJ ADE y ∴∠=∠=︒-,()1802902BAJ ABC x DAJ BAD y α∴∠=∠=︒-=∠-∠=︒--②,由①得x y β=-,由②得()902x y α︒=--,将①代入②得902βα︒=-;综合上述1、2、3、4、5可得902βα︒=+或902βα︒=-.【点睛】本题考查平行线的性质,涉及到角平分线的性质、邻补角定义、直角三角形锐角互余等性质,根据题意作出辅助线,分类讨论并根据图形恰当表示出各角之间的关系是解决问题的关键.【4题答案】【答案】(1)证明见解析(2)2DEA GEA ∠=∠,证明见解析(3)65.FEP ︒∠=【解析】【分析】(1)如图,过A 作,AR BM ∥ 证明,BCA CAR ∠=∠再结合CAE BCA AEG ∠=∠+∠,证明RAE AEG ∠=∠,从而可得结论;(2)如图,设,,BCA DEA GEA αβγ∠=∠=∠=先证明60αγ︒=-,再证明180CAE DEA FED ︒∠+∠+∠=,即602180βα︒︒++=,整理再把60αγ︒=-代入可得答案;(3)如图,设,PEQ x FEN y ∠=∠=,证明2FEQ FEA y x ∠=∠=+,结合85,35,CAE BCA AEG BCA ∠=∠+∠=︒∠=︒可得502180y x y ︒︒+++=,可得65x y ︒+=,从而可得结论.【小问1详解】证明:如图,过A 作,AR BM ∥∴,BCA CAR ∠=∠CAE BCA AEG ∠=∠+∠ ,CAR RAE BCA AEG ∴∠+∠=∠+∠,RAE AEG ∴∠=∠,∴AR GN ∥,.BM GN ∥【小问2详解】2,DEA GEA ∠=∠理由如下:如图,设,,BCA DEA GEA αβγ∠=∠=∠=2FED BCA ∠=∠ ,2FED α∴∠=,,60CAE BCA AEG CAE ︒∠=∠+∠∠= ,60αγ︒∴=+,60αγ︒∴=-,∵,AC EF ∥180CAE FEA ︒∴∠+∠=,180CAE DEA FED ︒∴∠+∠+∠=,602180βα︒︒∴++=,2120βα︒∴+=,2(60)120βγ︒︒∴+-=,化简得:2βγ=,即2.DEA GEA ∠=∠【小问3详解】如图,设,PEQ x FEN y ∠=∠=,∵EP 平分,NEQPEQ PEN x ∴∠=∠=,+2FEQ FEN PEN PEQ y x ∴∠=∠+∠+∠=,∵EF 平分,AEQ2FEQ FEA y x ∴∠=∠=+,∵85,35,CAE BCA AEG BCA ∠=∠+∠=︒∠=︒8535AEG ︒︒∴=+∠,50AEG ︒∴∠=,180GEN ︒∠= ,180AEG FEA FEN ︒∴∠+∠+∠=,502180y x y ︒︒∴+++=,22130x y ︒∴+=,65x y ︒∴+=,FEP FEN PEN x y ∠=∠+∠=+ ,65.FEP ︒∴∠=【点睛】本题考查的是平行线的判定与性质,角平分线的定义,邻补角的含义,设出合适的参数,再利用整体思想与方程思想进行证明与求解角度的大小是解本题的关键.【5题答案】【答案】(1)见解析 (2)50α=︒(3)EOF ∠的度数为1252α+︒或1652α︒-【解析】【分析】(1)根据AB CD ,得到180AEF CFE ∠+∠=︒,进而得到180AEP PEF PFE PFC ∠+∠+∠+∠=︒,根据三角形内角和定理180PEF PFE EPF ∠+∠+∠=︒,即可得证;(2)根据平行线的性质,以及角平分线平分角,进行角的转化,求解即可;(3)分点M 在点E 右侧和点M 在点E 左侧,两种情况进行讨论求解.【小问1详解】解:∵AB CD ,∴180AEF CFE ∠+∠=︒,∴180AEP PEF PFE PFC ∠+∠+∠+∠=︒,∵180PEF PFE EPF ∠+∠+∠=︒,∴AEP PFC EPF ∠+∠=∠.【小问2详解】∵PF EO ∥,∴50FEO PFE ∠=∠=︒,∵EO 是MEF ∠的平分线,∴50MEO FEO ∠=∠=︒,∵AB CD ,∴50EOF MEO ∠=∠=︒,∵OE MN ,∴50MNC EOF ∠=∠=︒,∴50α=︒.【小问3详解】当点M 在点E 右侧时,∵PF MN ,∴PFC MNC α∠=∠=,∵AB CD ,∴50BEF CFE α∠=∠=+︒,∵EO 是MEF ∠的平分线,∴112522BEO BEF a ∠=∠=+︒,∵AB CD ,∴1252EOF BEO a ∠=∠=+︒;当点M 在点E 左侧时,如图,∵PF MN ,∴PFC MNC α∠=∠=,∴50CFE α∠=+︒,∵AB CD ,∴180130AEF CFE α∠=︒-∠=︒-,∵EO 是MEF ∠的平分线,∴116522AEO BEF a ∠=∠=︒-, ∵AB CD ,∴1652EOF AEO a ∠=∠=︒-, ∴EOF ∠的度数为1252α+︒或1652α︒-.【点睛】本题考查利用平行线的性质,三角形的内角和定理.熟练掌握平行线的性质,是解题的关键.【6题答案】【答案】(1)90︒(2)112M M ∠=∠;理由见解析 (3)20221902⎛⎫⨯︒⎪⎝⎭【解析】【分析】(1)利用平行线的性质以及角平分线的定义解决问题即可;(2)结论:∠M1=12∠M.如图2中,过点M1作M1J∥AB.利用平行线的性质解决问题;(3)探究规律,利用规律解决问题即可.【小问1详解】解:∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠AEF,∠CFE的平分线相交于点M,∴∠MEF=12∠AEF,∠EFM=12∠CFE,∴∠MEF+∠MFE=12(∠AEF+∠CFE)=90°,∴∠M=180°-90°=90°;【小问2详解】结论:∠M1=12∠M;理由:过点M1作M1J∥AB,如图所示:∵AB∥CD,M1J∥AB,∴M1J∥CD,∵∠AEM,∠CFM的平分线相交于点M1,∴∠AEM1=12∠AEM,∠CFM1=12∠CFM,∵∠EM1J=∠AEM1,∠JM1F=∠CFM1,∴∠EM1F=∠AEM1+∠CFM1=12(∠AEM+∠CFM)=12×90°=45°;∴∠EM1F=12∠M;【小问3详解】由(2)可知,∠M1=12×90°,同法可知,∠M2=12∠M1=14∠M,•••,∠M n=(12)n×90°,当n=2022时,∠M2022=(12)2022×90°.【点睛】本题考查平行线的性质,角平分线的性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.【7题答案】【答案】(1)49° (2)44°(3)∠OPQ=∠ORQ【解析】【分析】(1)根据∠OPA=∠QPB,可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【小问1详解】解:∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°;【小问2详解】作PC∥m,m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12一(180°-92°)×12=44°;【小问3详解】∠OPQ=∠ORQ,理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光钱与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC.∴∠OPQ=∠ORQ.【点睛】本题考查了平行线的性质,平行公理的推论及跨学科知识入射角等于反射角,解题关键是了解入射角等于反射角.【8题答案】【答案】(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【解析】【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.【详解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.证明:如图②,过O点作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.【9题答案】【答案】(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【解析】【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.【10题答案】【答案】(1)75°;(2)见解析;(3)∠2=3∠3【解析】【分析】(1)利用三角板的度数,求出∠DBC的度数,再利用平行线的性质得到∠BDN的度数,由此得到∠1的度数;(2)过B点作BG∥直线m,利用平行线的性质可得到∠3=DBG和∠LAB=∠ABG,再利用等量代换得到∠3+∠LAB=75°,利用余角性质得到∠LAB=90°-∠2,由此证明结论;(3)结论:∠2=3∠3.利用(2)中结论,结合平行线的性质得到∠2和∠3的度数由此证明结论.【详解】(1)∵直线n∥直线l,∴∠DBC=∠BDN,又∵∠DBC=∠ABC﹣∠ABD=45°﹣30°=15°,∴∠BDN=15°,∴∠1=90°﹣15°=75°.(2)如图所示,过B点作BG∥直线m,∵BG∥m,l∥m,∴BG∥l(平行于同一直线的两直线互相平行),∵BG∥m,∴∠3=DBG,又∵BG∥l,∴∠LAB=∠ABG,∴∠3+∠LAB=∠DBA=30°+45°=75°,又∵∠2和∠LAB互为余角,∴∠LAB=90°﹣∠2,∴∠3+90°﹣∠2=75°,∴∠2﹣∠3=15°.(3)结论:∠2=3∠3.理由:在(2)的条件下,∠2﹣∠3=15°,又∵CN平分∠BCA,∴∠BCN=∠CAN=22.5°,又∵直线n∥直线l,∴∠2=22.5°,∴∠3=7.5°,∴∠2=3∠3.【点睛】考查平行线的性质并结合了三角板中的特殊角度,学生需要作辅助线利用平行线的传递性将特殊的角的关系联系起来,熟悉掌握平行线之间角的关系是解题的关键.【11题答案】【答案】(1)∠BED=2∠BFD,理由见解析(2)2∠BFD+∠BED=360°,理由见解析【解析】【分析】(1)过点E、点F分别作AB∥FG、AB∥HE,依据平行线的性质,即可得到∠E=∠ABE+∠CDE,∠F=∠ABF+∠CDF,依据角平分线的定义,即可得到∠BED=2∠BFD;(2)过点E、点F分别作AB∥FG、AB∥HE,依据平行线的性质,即可得到∠BFG=∠ABF,∠ABE+∠HEB=180°,∠DFG=∠FGC、∠CDE+∠HED=180°,依据角平分线的定义,即可得到2∠BFD+∠BED=360°.【详解】(1)补全图形如图所示,∠BED=2∠BFD过点E、点F分别作AB∥FG、AB∥HE,∴AB∥FG∥CD,AB∥HE∥CD,∴∠ABE=∠BEH,∠CDE=∠HED,∠ABF=∠BFG, ∠CDF=∠DFG∴∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,又∵∠ABE的平分线与∠CDE的平分线交于点F.∴∠ABE=2∠ ABF,∠CDE =2∠ CDF,∴∠BED =∠ABE +∠CDE =2∠ ABF+2∠ CDF=2(∠ABF +∠CDF )=2∠BFD ;故结论∠BED =2∠BFD ;(2)如图所示,2∠BFD +∠BED =360°.理由:过点E 、点F 分别作AB ∥FG 、AB ∥HE ,∴∠BFG =∠ABF ,∠ABE +∠HEB =180°,∵AB ∥FG 、AB ∥HE ,AB ∥CD ,∴FG ∥CD 、HE ∥CD ,同理可得:∠DFG =∠FGC 、∠CDE +∠HED =180°,∵BF 平分∠ABE ,FD 平分∠CDE ,∴∠ABF =12∠ABE ,∠CDF =12∠CDE ,∴∠ABE +∠CDE =2∠BFD ,∴2∠BFD +∠BED =360°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,作辅助线构造内错角以及同旁内角.【12题答案】【答案】(1)详见解析;(2)118034∠+︒=∠+∠,详见解析;(3)230∠=︒【解析】【分析】(1)如下图,延长AC ,DE 相交于点G ,利用∠G 作为过渡角可证;(2)如下图,作//CP AB ,可得//CP DE ,推导得出118034∠+︒=∠+∠;(3)如下图,过Q 作1//AD l ∠,利用平行可得出70x y +=︒,再利用////QR AB DE 得到22110x y z +-=︒,从而得出z 的值.【详解】(1)延长,AC DE 相交于点G .∵//AB DE ,//AC DF∴1G ∠=∠,2G∠=∠∴12∠=∠.(2)作//CP AB ,则//CP DE∵//CP AB ,//CP DE .∴1ACP ∠=∠,4180ECP ∠+∠=︒∴11804ACP ECP ∠+︒=∠+∠+∠即118034∠+︒=∠+∠.(3)过Q 作1//ADl ∠则5D ∠=.6y∠=∵56110180∠+∠+︒=︒∴110180x y ++︒=︒即70x y +=︒旁证:过Q 作//QR AB ,则//QR DE .设DAQ x ∠=,APQ y ∠=,2z ∠=.则2BAQ x ∠=,2FDQ y ∠=,1z ∠=.∵////QR AB DE∴2AQR BAQ x ∠=∠=,2EDQ DQR y z ∠=∠=-.∴22110x y z +-=︒又∵70x y +=︒∴22140x y +=︒∵(2)(22)30x y x y z z +-+-==︒∴230∠=︒【点睛】本题考查角度的推导,第(3)问的解题关键是通过方程思想和整体思想,计算得出∠2的大小.【13题答案】【答案】(1)30°,60°;(2)∠CAF+∠EMC=90°,理由见解析【解析】【分析】(1)利用∠CAF=∠BAF-∠BAC求出∠CAF度数,求∠EMC度数转化到∠MCH度数;(2)过点C作CH∥GF,得到CH∥DE,∠CAF与∠EMC转化到∠ACH和∠MCH 中,从而发现∠CAF、∠EMC与∠ACB的数量关系.【详解】(1)过点C作CH∥GF,则有CH∥DE,所以∠CAF=∠HCA,∠EMC=∠MCH,∵∠BAF=90°,∴∠CAF=90°-60°=30°.∠MCH=90°-∠HCA=60°,∴∠EMC=60°.故答案为30°,60°.(2)∠CAF+∠EMC=90°,理由如下:过点C作CH∥GF,则∠CAF=∠ACH.∵DE∥GF,CH∥GF,∴CH∥DE.∴∠EMC=∠HCM.∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°.【点睛】考查了平行线的判定和性质,解题关键是熟记并灵活运用其性质和判定.【14题答案】【答案】(1)AB∥CD.理由见解析;(2)∠AQC=23∠APC.理由见解析.【解析】【分析】(1)分别过点E、F作EM∥AB,FN∥AB,求出EM∥FN∥AB,根据平行线的性质和已知推出∠2+∠C=180°,根据平行线的判定得出即可;(2)设∠PAQ=x,∠PCD=y,求出∠PAB=3x,∠BAQ=2x,∠PCD=3y,∠QCD=2y,过P作PG∥AB,过Q作QH∥AB,根据平行线的性质求出∠AQC=2x+2y=2(x+y),∠APC=3x+3y=3(x+y),即可得出答案.【详解】解:(1)AB∥CD.理由如下:分别过点E、F作EM∥AB,FN∥AB,∵EM∥AB,FN∥AB,∴EM∥FN∥AB,∴∠1+∠A=180°,∠3+∠4=180°,∵∠A+∠E+∠F+∠C=540°,∴∠2+∠C=540°﹣180°﹣180°=180°,∴FN∥CD,∵FN∥AB,∴AB∥CD;(2)设∠PAQ=x,∠PCD=y,∵∠PAB=3∠PAQ,∠PCD=3∠PCQ,∴∠PAB=3x,∠BAQ=2x,∠PCD=3y,∠QCD=2y,过P作PG∥AB,过Q作QH∥AB,∵AB∥CD,∴AB∥CD∥PG∥GH,∴∠AQH=∠BAQ=2x,∠QCD=∠CQH=2y,∴∠AQC=2x+2y=2(x+y),同理可得:∠APC=3x+3y=3(x+y),∴23 AQCAPC∠=∠,即∠AQC=23∠APC.【点睛】本题考查了平行线的性质和判定,能够正确作出辅助线是解此题的关键,注意:求解过程类似.【15题答案】【答案】(1)∠APC=108°;(2)∠APC=α+β,理由见解析;(3)∠A PC=β﹣α.【解析】【分析】(1)根据平行线的性质进行计算即可得到;(2)过P作PE∥AB交AC于E,然后根据平行线的性质得到α=∠APE,β=∠CPE,即可得到答案;(3)过P作PE∥AB交AC于E,然后根据平行线的性质得到α=∠APE,β=∠CPE,即可得到答案;【详解】(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°.(2)∠APC=α+β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)如图所示,过P作PE∥AB交AC于E∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∠CPA=β﹣α.【点睛】本题主要考查了平行线的性质,解题的关键在于能够正确的作出辅助线.。
初一下学期数学期末压轴难题试卷带答案
初一下学期数学期末压轴难题试卷带答案一、选择题1.下列四个图形中,1∠和2∠是内错角的是()A. B.C.D.2.在以下现象中,属于平移的是()①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.A.①②B.②④C.②③D.③④3.在下列所给出坐标的点中,在第二象限的是()A.(0,3)B.(-2,1)C.(1,-2)D.(-1,-2)4.下列命题:①过直线外一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.其中真命题为()A.①②B.①④C.①②③D.①②④5.如图,点E在BA的延长线上,能证明BE∥CD是()A.∠EAD=∠B B.∠BAD=∠BCD C.∠EAD=∠ADC D.∠BCD+∠D=180°6.下列命题正确的是()A.若a>b,b<c,则a>c B.若a∥b,b∥c,则a∥cC.49的平方根是7 D.负数没有立方根7.如图,AB//CD,∠EBF=2∠ABE,∠ECF=3∠DCE,设∠ABE=α,∠E=β,∠F=γ,则α,β,γ的数量关系是()A .4β﹣α+γ=360°B .3β﹣α+γ=360°C .4β﹣α﹣γ=360°D .3β﹣2α﹣γ=360°8.如图,已知在平面直角坐标系中,点A 坐标是(1,1).若记点A 坐标为(a 1,a 2),则一个点从点A 出发沿图中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,每个点的横纵坐标都是整数,按此规律一直运动下去,则a 2016+a 2017+a 2018的值为( )A .1009B .1010C .1513D .2521二、填空题9.计算:36的结果为_____.10.已知点()12P m -,与点()1,2Q 关于y 轴对称,那么m =________. 11.已知100AOB ∠=︒,射线OC 在同一平面内绕点O 旋转,射线,OE OF 分别是AOC ∠和COB ∠的角平分线.则EOF ∠的度数为______________.12.如图,把一把直尺放在含30度角的直角三角板上,量得154∠=︒,则2∠的度数是_______.13.如图,在ABC ∆中,若将ABC ∆沿DE 折叠,使点A 与点C 重合,若BCD ∆的周长为25,ABC ∆的周长为35,则AE =_______.14.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 15.()2260a b ++-=,则(),a b 在第_____象限. 16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________.三、解答题17.(1310.0484-(2)计算:2231(3)0.125(4)64--- 18.求下列各式中的x 值:(1)()3101250x ++=(2)()22360x --=19.完成下面的证明. 如图,AB ∥CD ,∠B +∠D =180°,求证:BE ∥DF .分析:要证BE ∥DF ,只需证∠1=∠D .证明:∵AB ∥CD (已知)∴∠B +∠1=180°( )∵∠B +∠D =180°(已知)∴∠1=∠D ( )∴BE ∥DF ( )20.如图所示正方形网格中,每个小正方形的边长均为1个单位,ABC的三个顶点都在格点上.(1)分别写出点A、B、C的坐标;(2)将ABC向右平移6个单位长度,再向下平移4个单位长度,得到A 1B1C1,其中点A的对应点是A 1,点B的对应点是B1,点C的对应点是C1,请画出A1B1C1,并分别写出点A1、B1、C1的坐标;(3)求ABC的面积.21.222﹣12的小数部分,214 792737272)请解答:(110的整数部分是,小数部分是;(25a13b,求a+b5二十二、解答题22.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.(1)阴影正方形的面积是________?(可利用割补法求面积)(2)阴影正方形的边长是________?(3)阴影正方形的边长介于哪两个整数之间?请说明理由.二十三、解答题23.已知,AB ∥CD ,点E 在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E .(1)如图1,求证:HG ⊥HE ;(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K ,若∠KFE :∠MGH =13:5,求∠HED 的度数.24.如图1,点O 在MN 上,90,,AOB AOM m OCQ n ∠=︒∠=︒∠=︒,射线OB 交PQ 于点C ,已知m ,n 满足:220(70)0m n -+-=.(1)试说明MN //PQ 的理由;(2)如图2,OD 平分AON ∠,CF 平分OCQ ∠,直线OD 、CF 交于点E ,则OEF ∠=______︒;(3)若将AOB ∠绕点O 逆时针旋转()090αα<<︒,其余条件都不变,在旋转过程中,OEF的度数是否发生变化?请说明你的结论.25.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;①若∠B=90°则∠F=;②若∠B=a,求∠F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.26.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的32倍,求∠ABO的度数.【参考答案】一、选择题1.C解析:C【分析】根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可.【详解】解:A、∠1与∠2不是内错角,选项错误,不符合题意;B、∠1与∠2不是内错角,选项错误,不符合题意;C、∠1与∠2是内错角,选项正确,符合题意;D、∠1和∠2不是内错角,选项错误,不符合题意;故选:C.【点睛】本题考查了内错角,关键是根据内错角的概念解答.注意:内错角的边构成“Z”形.2.B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】解析:B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】①在荡秋千的小朋友的运动,不是平移;②坐观光电梯上升的过程,是平移;③钟面上秒针的运动,不是平移;④生产过程中传送带上的电视机的移动过程.是平移;故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.B【分析】根据平面直角坐标系中点的坐标特征逐项分析即可.【详解】解:A.(0,3)在y轴上,故不符合题意;B.(-2,1)在第二象限,故符合题意;C.(1,-2) 在第四象限,故不符合题意;D.(-1,-2) 在第三象限,故不符合题意;故选B.【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.4.A【分析】根据两直线的位置关系即可判断.【详解】①过直线外一点有且只有一条直线与已知直线平行,正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③图形平移的方向不一定是水平的,故错误;④两直线平行,内错角才相等,故错误.故①②正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5.C【分析】根据平行线的判定定理对四个选项进行逐一判断即可.【详解】解:A、若∠EAD=∠B,则AD∥BC,故此选项错误;B、若∠BAD=∠BCD,不可能得到BE∥CD,故此选项错误;C、若∠EAD=∠ADC,可得到BE∥CD,故此选项正确;D、若∠BCD+∠D=180°,则BC∥AD,故此选项错误.故选:C.【点睛】本题考查了平行线的判定定理,熟练掌握平行线的判定方法是解题的关键.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A,由a>b,b>c,则a>c,可得选项A错误;选项B,若a∥b,b∥c,则a∥c,正确;选项C,由49的平方根是±7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B.【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.A【分析】由∠EBF =2∠ABE ,可得∠EBF =2α.由∠EBF +∠BEC +∠F +∠ECF =360°,可得∠ECF =360°﹣(2α+β+γ),那么∠DCE =13ECF ∠.由∠BEC =∠M +∠DCE ,可得∠M =∠BEC ﹣∠DCE .根据AB //CD ,得∠ABE =∠M ,进而推断出4β﹣α+γ=360°.【详解】解:如图,分别延长BE 、CD 并交于点M .∵AB //CD ,∴∠ABE =∠M .∵∠EBF =2∠ABE ,∠ABE =α,∴∠EBF =2α.∵∠EBF +∠BEC +∠F +∠ECF =360°,∴∠ECF =360°﹣(2α+β+γ).又∵∠ECF =3∠DCE ,∴∠DCE =11(3602)33ECF a βγ︒∠=---. 又∵∠BEC =∠M +∠DCE ,∴∠M =∠BEC ﹣∠DCE =β﹣1(3602)3a βγ︒---. ∴β﹣1(3602)3a βγ︒---=α. ∴4β﹣α+γ=360°.故选:A .【点睛】本题考查了平行线的性质,三角形的外角性质,角度的计算,构造辅助线转化角度是解题的关键.8.B【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数解析:B【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,进而可得结果.【详解】解:由直角坐标系可知A(1,1),B(2,﹣1),C(3,2),D(4,﹣2),……,即a1=1,a2=1,a3=2,a4=﹣1,a5=3,a6=2,a7=4,a8=﹣2,……,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,∴a2016=﹣504,2018÷4=504……2,∴a2018=505,故a2016+a2017+a2018=1010,故选:B.【点睛】本题主要考查了规律型:点的坐标,探索数字与字母规律是解题关键.二、填空题9.6【分析】根据算术平方根的定义即可求解.【详解】解:的结果为6.故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数解析:6【分析】根据算术平方根的定义即可求解.【详解】6.故答案为6【点睛】考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数.10.0;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.【详解】解:根据对称的性质,得,解得.故答案为:0.【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点(,)P x y ,关于y 轴的对称点的坐标是(,)x y -,依此列出关于m 的方程求解即可.【详解】解:根据对称的性质,得11m -=-,解得0m =.故答案为:0.【点睛】考查了关于x 轴、y 轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.11.50°【分析】分射线OC 在∠AOB 的内部和射线OC 在∠AOB 的外部,分别画出图形,结合根据角平分线定义求解.【详解】解:若射线OC 在∠AOB 的内部,∵OE ,OF 分别是∠AOC 和∠COB 的解析:50°【分析】分射线OC 在∠AOB 的内部和射线OC 在∠AOB 的外部,分别画出图形,结合根据角平分线定义求解.【详解】解:若射线OC在∠AOB的内部,∵OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=12∠AOC,∠FOC=12∠BOC,∴∠EOF=∠EOC+∠FOC=12∠AOC+12∠BOC=50°;若射线OC在∠AOB的外部,①射线OE,OF只有1个在∠AOB外面,如图,∠EOF=∠FOC-∠COE=12∠BOC-12∠AOC=12(∠BOC-∠AOC)=12∠AOB=50°;②射线OE,OF都在∠AOB外面,如图,∠EOF=∠EOC+∠COF=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12(360°-∠AOB)=130°;综上:∠EOF的度数为50°或130°,故答案为:50°或130°.【点睛】本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用.12.【分析】由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.【详解】已知可知直尺的两边平行故答案为:114°【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三解析:114︒【分析】由已知可知460∠=︒,由平行可知13∠=∠,根据三角形外角的性质可知234∠=∠+∠从而求得的答案.【详解】已知可知460∠=︒直尺的两边平行∴13∠=∠∴234145460114∠=∠+∠=∠+∠=︒+︒=︒故答案为:114°【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键. 13.【分析】根据翻折得到,根据,即可求出AC,再根据E 是中点即可求解.【详解】沿翻折使与重合故答案为:.【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性 解析:5【分析】根据翻折得到DEA DEC ∆≅∆,根据35ABC C AB BC AC ∆=++=,10ABC BCD C C AC ∆∆-==即可求出AC,再根据E 是中点即可求解.【详解】ABC ∆沿DE 翻折使A 与C 重合DEA DEC ∴∆≅∆,AD CD AE CE ∴==∴+=+=DB CD BD AD AB35ABC C AB BC AC ∆=++=25∆=++=DBC C DB BC DC10ABC BCD C C AC ∆∆-==152AE AC ∴== 故答案为:5.【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质.14.①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c 2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.15.二【分析】根据非负数的性质列方程求出a 、b 的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(10,44)【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4解析:(10,44)【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…A n时所用的间分别为a1,a2,…a n,则a1=2,a2=6,a3=12,a4=20,…,【详解】解:由题意,粒子运动到点(3,0)时经过了15秒,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,各式相加得:a n-a1=2(2+3+4+…+n)=n2+n-2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动34秒到达点(10,44),即运动了2014秒.所求点应为(10,44).故答案为:(10,44).故答案为:15,(10,44).【点睛】本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式a n-a n-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…A n中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键.三、解答题17.(1);(2)【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解解析:(1) 2.3;(2)1【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解:(11=+--0.2(2)2=-;2.3(6-(2)2113()46=---+-221= .【点睛】本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则.18.(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1),∴,∴,解得:x=-15;(2),∴,∴解析:(1)x =-15;(2)x =8或x =-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1)()3101250x ++=,∴()310125x +=-, ∴105x +=-,解得:x =-15;(2)()22360x --=,∴()2236x -=, ∴26x -=±,解得:x =8或x =-4.【点睛】本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B+∠1=180°,又有∠B+∠D =180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得.【详解】证明:∵AB∥CD(已知)∴∠B+∠1=180°(两直线平行,同旁内角互补)∵∠B+∠D=180°(已知)∴∠1=∠D(同角的补角相等),∴BE∥DF(同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标解析:(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积.【详解】解:(1)由题意得:A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)如图,△A1B1C1为所作,∵A1是经过点A(-3,4)右平移6个单位长度,再向下平移4个单位长度得到的,∴A1(-3+6,4-4)即(3,0)同理得到B1(1,﹣2),C1(4,﹣4);(3)△ABC的面积=3×4﹣12×2×3﹣12×4×1﹣12×2×2=5.【点睛】本题主要考查了平移作图,坐标与图形,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)3,﹣3;(2)1.【分析】(1)根据解答即可;(2)根据2<<3得出a,根据3<<4得出b,再把a,b的值代入计算即可.【详解】(1)∵,∴的整数部分是3,小数部分是﹣3,解析:(1)3,103;(2)1.【分析】(1)根据3104解答即可;(2)根据253得出a,根据3134得出b,再把a,b的值代入计算即可.【详解】(1)∵3104<<,∴10310﹣3,故答案为:310﹣3;(2)∵253,a52,∵3134,∴b=3,a+b552+351.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.二十二、解答题22.(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的解析:(1)5;(23)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的面积是3×3-4×121 2⨯⨯=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5∴x(3)∵∴23<<∴阴影正方形的边长介于2与3两个整数之间.【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小.二十三、解答题23.(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.解析:(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∠BGH,∴∠BGM=∠HGM=12∵EM平分∠HED,∠HED,∴∠HEM=∠DEM=12∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∠KFE :∠MGH =13:5,设∠KFE =13x ,∠MGH =5x ,由(2)可知:∠BGH =2∠MGH =10x ,∵∠AFE +∠BFE =180°,∴∠AFE =180°﹣10x ,∵FK 平分∠AFE ,∴∠AFK =∠KFE =12 ∠AFE , 即1(18010)132x x ︒-=, 解得:x =5°,∴∠BGH =10x =50°,∵HP ∥AB ,HP ∥CD ,∴∠BGH =∠GHP =50°,∠PHE =∠HED ,∵∠GHE =90°,∴∠PHE =∠GHE ﹣∠GHP =90°﹣50°=40°,∴∠HED =40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.24.(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m 及n ,从而可求得∠MOC=∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由220(70)0m n -+-=可求得m 及n ,从而可求得∠MOC =∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也易得∠COE 的度数,由三角形外角的性质即可求得∠OEF 的度数;(3)不变,分三种情况讨论即可.【详解】(1)∵200m -≥,2(70)0n -≥,且220(70)0m n -+-= ∴200m -=,2(70)0n -=∴m =20,n =70∴∠MOC =90゜-∠AOM =70゜∴∠MOC =∠OCQ =70゜∴MN ∥PQ(2)∵∠AON =180゜-∠AOM =160゜又∵OD 平分AON ∠,CF 平分OCQ ∠ ∴1802DON AON ∠=∠=︒,1352OCF OCQ ∠=∠=︒∵80MOE DON ∠=∠=︒∴10COE MOE MOC ∠=∠-∠=︒∴∠OEF =∠OCF +∠COE =35゜+10゜=45゜故答案为:45.(3)不变,理由如下:如图,当0゜<α<20゜时,∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠MOC =∠OCQ =2x∵∠AON =360゜-90゜—(180゜-2x )=90゜+2x ,OD 平分∠AON∴∠DON =45゜+x∵∠MOE =∠DON =45゜+x∴∠COE =∠MOE -∠MOC =45゜+x -2x =45゜-x∴∠OEF =∠COE +∠OCF =45゜-x +x =45゜当α=20゜时,OD 与OB 共线,则∠OCQ =90゜,由CF 平分∠OCQ 知,∠OEF =45゜ 当20゜<α<90゜时,如图∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠NOC =180゜-∠OCQ =180゜-2x∵∠AON =90゜+(180゜-2x )=270゜-2x ,OD 平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜综上所述,∠EOF的度数不变.【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.25.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=12a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=12∠CAE,∠ACF=12∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=12∠CAE-12∠ACB=12(∠CAE-∠ACB)=12∠B;(2)由(1)可得,∠F=12∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+12∠ABG,进而得到∠F+∠H=90°+12∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=12a;(2)由(1)可得,∠F=12∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=12∠AGB,∠GAH=12∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣12(∠AGB+∠GAB)=180°﹣12(180°﹣∠ABG)=90°+12∠ABG,∴∠F+∠H=12∠ABC+90°+12∠ABG=90°+12∠CBG=180°,∴∠F+∠H的值不变,是定值180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.26.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB,∠ABC=12∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF=32∠F,∠E=30°,∠ABO=60°;②∠F=32∠E,∠E=36°,∠ABO=72°;③∠EAF=32∠E,∠E=60°,∠ABO=120°(舍去);④∠E=32∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.。
七年级下册压轴题50道人教版
七年级下册压轴题50道人教版一、相交线与平行线1. 如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE = 4:1,求∠AOF的度数。
解析:设∠BOE = x°,因为OE平分∠BOD,所以∠BOD = 2∠BOE=2x°。
又因为∠AOD + ∠BOD = 180°,且∠AOD:∠BOE = 4:1,所以∠AOD = 4x°。
则4x+2x = 180,6x=180,x = 30。
所以∠BOD = 60°,∠COE=180°∠BOE = 150°。
因为OF平分∠COE,所以∠COF=(1)/(2)∠COE = 75°。
∠AOC=∠BOD = 60°,所以∠AOF=∠AOC+∠COF = 60°+75° = 135°。
2. 已知直线l_1∥ l_2,点A,B分别在l_1,l_2上,点P是l_1,l_2间一点,连接PA,PB。
(1) 如图1,若∠A = 50°,∠B = 70°,求∠APB的度数;(2) 如图2,点C在l_1上方,连接PC,AC,若∠PAC = 150°,∠PBC = 130°,求∠APC + ∠BPC的度数。
解析:(1) 过点P作PD∥ l_1,因为l_1∥ l_2,所以PD∥ l_2。
∠A = ∠APD = 50°(两直线平行,内错角相等),∠B = ∠BPD=70°。
所以∠APB=∠APD + ∠BPD = 50°+70° = 120°。
(2) 过点P作PE∥ l_1,过点C作CF∥ l_1。
因为l_1∥ l_2,所以PE∥ l_2,CF∥ l_2。
∠PAC + ∠APE = 180°,所以∠APE = 180° 150°=30°。
初一下册期末考试几何压轴题大全
平行线的拐点问题1。
如图,已知AB∥CD,点C在点D的右侧,∠ADC=,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB,CD之间。
(1)如图1,点B在点A的左侧,若∠ABC=,求∠BED的度数?(2)如图2,点B在点A的右侧,若∠ABC=,直接写出∠BED的大小。
2.直线,点P在其所在平面上,且不在直线AB,CD,AC上,设(均不大于,且不小于)(1)如图1,当点P在两条平行直线AB,CD之间、直线AC的右边时试确定的数量关系;(2)如图2,当点P在直线AB的上面、直线AC的右边时试确定的数量关系;(3)的数量关系除了上面的两种关系之外,还有其他的数量关系,请直接写出这些.3。
如图1,AB∥CD,EOF是直线AB、CD间的一条折线。
(1)试证明:∠O=∠BEO+∠DFO。
(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论。
(3)如果将折一次改为折三次,如图3,则∠BEO、∠O、∠P、∠Q、∠QFD之间会满足怎样的数量关系(直接写出结果不需证明)4。
如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90∘(1)请判断AB与CD的位置关系并说明理由;(2)如图2,在(1)的结论下,当∠E=90∘保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?(3)如图3,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(点C 除外)∠CPQ+∠CQP与∠BAC有何数量关系?5。
如图1,已知a∥b,点A。
B在直线a上,点C。
D在直线b上,且AD⊥BC于E.(1)求证:∠ABC+∠ADC=90∘;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=12∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是___.中点分面积问题1。
部编数学七年级下册期末难点特训(四)和相交线平行线有关的压轴题(解析版)含答案
七下期末难点特训(四)和相交线平行线有关的压轴题 1.直线AB //CD ,点M 、N 分别在直线AB 、CD 上.(1)如图1,AMP ∠、DNP ∠、MPN ∠的数量关系为:________;(2)如图2,直线EF 与AB 、CD 分别交于点E 、F ,连接MN ,EMN ∠的平分线MH 交CD 于点H .①当MH //EF ,PN //EF 时,请判断EFD ∠与PNM ∠的数量关系,并说明理由;②如图3,当PN 保持PN //EF 并向左平移,在平移的过程中猜想EFD ∠、PNM ∠与MHN ∠的数量关系,请直接写出结论.【答案】(1)∠AMP +∠MPN -∠PND =180°(2)①∠EFD =∠PNM ;②当点P 在M N 的右侧时,2∠MHN =∠EFD +∠PNM ;当点P 值MN 的左侧时,2∠MHN 十∠PNM =∠EFD【分析】(1)结论:∠AMP +∠MPN -∠PND = 180°,如图1中,过点P 作PT ∥AB ,利用平行线的性质证明即可;(2)①结论:∠EFD =∠PN M ,利用平行线的性质角平分线的定义证明即可;②分两种情形:当点P 在M N 的右侧时,2∠MHN =∠EFD +∠PNM ;当点P 值MN 的左侧时,2∠MHN 十∠PNM =∠EFD .(1)如图1中,过点P 作PT ∥AB ,∵AB ∥CD ,PT ∥АВ,∴AB ∥PT ∥CD ,∴∠ AMP + ∠MPT = 180°,∠PND =∠TPN ,∴∠AMP + ∠MPN - ∠PND=∠AMP +∠MPT +∠TPN -∠PND = 180°,故答案为:∠AMP +∠MPN -∠PND =180°;(2)①∠EFD=∠PNM,理由如下:∵MH∥EF,∴∠EFD=∠MHN,∵AB∥CD,∴∠MHN=∠AMH,∵MH平分∠AMN,∴∠AMH=∠HMN,∴∠EFD=∠HMN,∵MH∥PN,∴∠HMN =∠PNM,∴∠EFD =∠PNM,故答案为∠EFD =∠PNM;②如图,当点P在MN的右侧时,∵AB∥CD,∴∠MHD=∠AMH,∵MH平分∠AMN,∴∠AMH=∠HMN,∴∠MHD=∠HMN,∵PN∥EF,∴∠EFD=∠PND,∵∠MHN+∠HMN=∠PND+∠PNM,∴2∠MHN =∠EFD+∠PNM,当点P 在MN 的左侧时,∵AB ∥CD ,∴∠MHD =∠AMH ,∵MH 平分∠AMN ,∴∠AMH =∠HMN ,∴∠MHD =∠HMN ,∵PN ∥EF ,∴∠EFD =∠PND ,∵∠MHN +∠HMN =∠PND -∠PNM ,∴2∠MHN +∠PNM =∠EFD .【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图1,直线EF 与直线AB CD ,分别交于点E 、F ,EM 平分AEF ∠交CD 于点M ,且FEM FME ∠=∠.(1)求证:AB CD ∥;令,ABF x AEF y ∠=∠=,则根据角平分线定义得FBH x ∠=,FED y ∠=,过F 作1FG l ∥,过A 作1AJ l ∥,则12FG AJ l l ∥∥∥,,1802EFG DEF y BAJ ABC x \∠=∠=∠=∠=°-,DAJ ADE ∠=∠,BFG HBF x BFE EFG y b \∠=∠==∠+∠=+①,Q 在ADE D 中,=90DAE ∠°,90ADE AED \∠+∠=°,902DAJ ADE y \∠=∠=°-,()1802902BAJ ABC x DAJ BAD y a \∠=∠=°-=∠+∠=°-+②,由①得x y b =-,由②得()902x y a °=+-,将①代入②得902b a °=+;2.点D 在ABF ∠的边BF 上,如图所示:令,ABF x AEF y ∠=∠=,则根据角平分线定义得FBH x ∠=,FED y ∠=,过F 作1FG l ∥,过A 作1AJ l ∥,则12FG AJ l l ∥∥∥,,1802EFG DEF y BAJ ABC x \∠=∠=∠=∠=°-,DAJ ADE ∠=∠,BFG HBF x BFE EFG y b \∠=∠==∠+∠=+①,Q 在ADE D 中,=90DAE ∠°,90ADE AED \∠+∠=°,902DAJ ADE y \∠=∠=°-,()1802902BAJ ABC x DAJ BAD y a \∠=∠=°-=∠+∠=°-+②,由①得x y b =-,由②得()902x y a °=+-,将①代入②得902b a °=+;3.点D 在ABF ∠内,如图所示:令,ABF x AEF y ∠=∠=,则根据角平分线定义得FBH x ∠=,FED y ∠=,过F 作1FG l ∥,过A 作1AJ l ∥,则12FG AJ l l ∥∥∥,,1802EFG DEF y BAJ ABC x \∠=∠=∠=∠=°-,DAJ ADE ∠=∠,BFG HBF x BFE EFG y b \∠=∠==∠+∠=+①,Q 在ADE D 中,=90DAE ∠°,90ADE AED \∠+∠=°,902DAJ ADE y \∠=∠=°-,()1802902BAJ ABC x DAJ BAD y a \∠=∠=°-=∠+∠=°-+②,由①得x y b =-,由②得()902x y a °=+-,将①代入②得902b a °=+;4.点D 在ABF ∠的边AB 上,0BAD a ∠==°,如图所示:令,ABF x AEF y ∠=∠=,则根据角平分线定义得FBH x ∠=,FED y ∠=,过F 作1FG l ∥,过A 作1AJ l ∥,则12FG AJ l l ∥∥∥,,1802EFG DEF y BAJ ABC x \∠=∠=∠=∠=°-,DAJ ADE ∠=∠,BFG HBF x BFE EFG y b \∠=∠==∠+∠=+①,Q 在ADE D 中,=90DAE ∠°,90ADE AED \∠+∠=°,902DAJ ADE y \∠=∠=°-,()1802902BAJ ABC x DAJ BAD y \∠=∠=°-=∠+∠=°-②,由①得x y b =-,由②得()902x y °=-,将①代入②得45b =°,\0a =°,45b =°,满足902b a °=+;5.点D 在ABF ∠的边AB 右侧,如图所示:令,ABF x AEF y ∠=∠=,则根据角平分线定义得FBH x ∠=,FED y ∠=,过F 作1FG l ∥,过A 作1AJ l ∥,则12FG AJ l l ∥∥∥,,1802EFG DEF y BAJ ABC x \∠=∠=∠=∠=°-,DAJ ADE ∠=∠,BFG HBF x BFE EFG y b \∠=∠==∠+∠=+①,Q 在ADE D 中,=90DAE ∠°,90ADE AED \∠+∠=°,902DAJ ADE y \∠=∠=°-,()1802902BAJ ABC x DAJ BAD y a \∠=∠=°-=∠-∠=°--②,由①得x y b =-,由②得()902x y a °=--,将①代入②得902b a °=-;综合上述1、2、3、4、5可得902b a °=+或902b a °=-.【点睛】本题考查平行线的性质,涉及到角平分线的性质、邻补角定义、直角三角形锐角互余等性质,根据题意作出辅助线,分类讨论并根据图形恰当表示出各角之间的关系是解决问题的关键.4.如下图,点E 、C 分别在直线GN 、BM 上,点A 为平面内BM 、GN 之间的一点,若CAE BCA AEG ∠=∠+∠.(1)证明:BM ∥GN ;(2)如下图,若60CAE ∠=°,AC ∥EF ,点D 在线段AC 上,连接DE ,且2FED BCA ∠=∠,试判断DEA ∠与GEA ∠的数量关系,并说明理由;(3)如下图,若85CAE ∠=°,35BCA ∠=°,且EF 、EP 分别平分AEQ ∠、NEQ ∠,求FEP ∠的度数.【答案】(1)证明见解析(2)2DEA GEA ∠=∠,证明见解析(3)65.FEP °∠=【分析】(1)如图,过A 作,AR BM ∥ 证明,BCA CAR ∠=∠再结合CAE BCA AEG ∠=∠+∠,证明RAE AEG ∠=∠,从而可得结论;(2)如图,设,,BCA DEA GEA a b g ∠=∠=∠=先证明60a g °=-,再证明180CAE DEA FED °∠+∠+∠=,即602180b a °°++=,整理再把60a g °=-代入可得答案;(3)如图,设,PEQ x FEN y ∠=∠=,证明2FEQ FEA y x ∠=∠=+,结合85,35,CAE BCA AEG BCA ∠=∠+∠=°∠=°可得502180y x y °°+++=,可得65x y °+=,从而可得结论.(1)证明:如图,过A 作,AR BM ∥ ∴,BCA CAR ∠=∠CAE BCA AEG ∠=∠+∠Q ,CAR RAE BCA AEG \∠+∠=∠+∠,RAE AEG \∠=∠,∴AR GN ∥,.BM GN \∥(2)2,DEA GEA ∠=∠理由如下:如图,设,,BCA DEA GEA a b g∠=∠=∠=2FED BCA ∠=∠Q ,2FED a \∠=,,60CAE BCA AEG CAE °∠=∠+∠∠=Q ,60a g °\=+,60a g °\=-,∵,AC EF ∥180CAE FEA °\∠+∠=,180CAE DEA FED °\∠+∠+∠=,602180b a °°\++=,2120b a °\+=,2(60)120b g °°\+-=,化简得:2b g =,即2.DEA GEA ∠=∠(3)如图,设,PEQ x FEN y ∠=∠=,∵EP 平分,NEQ Ð PEQ PEN x \∠=∠=,+2FEQ FEN PEN PEQ y x \∠=∠+∠+∠=,∵EF 平分,AEQ Ð 2FEQ FEA y x \∠=∠=+,∵85,35,CAE BCA AEG BCA ∠=∠+∠=°∠=°8535AEG °°\=+∠,50AEG °\∠=,180GEN °∠=Q ,180AEG FEA FEN °\∠+∠+∠=,502180y x y °°\+++=,22130x y °\+=,65x y °\+=,FEP FEN PEN x y ∠=∠+∠=+Q ,65.FEP °\∠=【点睛】本题考查的是平行线的判定与性质,角平分线的定义,邻补角的含义,设出合适的参数,再利用整体思想与方程思想进行证明与求解角度的大小是解本题的关键.5.如图,直线AB CD P ,点E 在直线AB 上,点F 在直线CD 上,点P 在直线AB ,CD 之间,连接PE ,PF ,EF ,50PFE ∠=°,直线l 与直线AB ,CD 分别交于点M ,N ,MNC a ∠=()090a °<<°,EO 是MEF ∠的平分线,交直线CD 于点O .∠OCD =2∠PCO =360°-2∠AOB ,根据(2)∠OCD +∠BO ′E ′=360°-∠AOB ,进而推出∠AOB =∠BO ′E ′.【详解】解:(1)∵CD ∥OE ,∴∠AOE =∠OCD =120°,∴∠BOE =360°-∠AOE -∠AOB =360°-90°-120°=150°;(2)∠OCD +∠BO ′E ′=360°-α.证明:如图②,过O 点作OF ∥CD ,∵CD ∥O ′E ′,∴OF ∥O ′E ′,∴∠AOF =180°-∠OCD ,∠BOF =∠E ′O ′O =180°-∠BO ′E ′,∴∠AOB =∠AOF +∠BOF =180°-∠OCD +180°-∠BO ′E ′=360°-(∠OCD +∠BO ′E ′)=α,∴∠OCD +∠BO ′E ′=360°-α;(3)∠AOB =∠BO ′E ′.证明:∵∠CPO ′=90°,∴PO ′⊥CP ,∵PO ′⊥OB ,∴CP ∥OB ,∴∠PCO +∠AOB =180°,∴2∠PCO =360°-2∠AOB ,∵CP 是∠OCD 的平分线,∴∠OCD =2∠PCO =360°-2∠AOB ,∵由(2)知,∠OCD +∠BO ′E ′=360°-α=360°-∠AOB ,∴360°-2∠AOB +∠BO ′E ′=360°-∠AOB ,∴∠AOB =∠BO ′E ′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.9.已知//a b ,直角ABC V 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F点,且90ACB ∠=°.(1)将直角ABC V 如图1位置摆放,如果56AOG ∠=°,则CEF ∠=________;(2)将直角ABC V 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=°,请写出NEF∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC V 如图3位置摆放,若135GOC ∠=°,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论.【答案】(1)146°;(2)∠AOG +∠NEF =90°;(3)见解析【分析】(1)作CP //a ,则CP //a //b ,根据平行线的性质求解.(2)作CP //a ,由平行线的性质及等量代换得∠AOG +∠NEF =∠ACP +∠PCB =90°.(3)分类讨论点P 在线段GF 上或线段GF 延长线上两种情况,过点P 作a ,b 的平行线求解.【详解】解:(1)如图,作CP //a ,∵a //b ,CP //a ,∴CP //a //b ,∴∠AOG =∠ACP =56°,∠BCP +∠CEF =180°,∴∠BCP =180°-∠CEF ,∵∠ACP +∠BCP =90°,∴∠AOG +180°-∠CEF =90°,∴∠CEF =180°-90°+∠AOG =146°.(2)∠AOG +∠NEF =90°.理由如下:如图,作CP //a ,则CP //a //b ,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.10.在综合与实践课上,老师让同学们以“三条平行线m,n,l(即始终满足m∥n∥l)和一副直角三角尺ABC,DEF(∠BAC=∠EDF=90°,∠FED=60°,∠DFE=30°,∠ABC=∠ACB=45°)”为主题开展数学活动.操作发现(1)如图1,展翅组把三角尺ABC的边BC放在l上,三角尺DEF的顶点F与顶点B重合,边EF经过AB,顶点E恰好落在m上,顶点D恰好落在n上,边ED与n相交所成的一个角记为∠1,求∠1的度数;(2)如图2,受到展翅组的启发,高远组把直线m向下平移后使得两个三角尺的两个直角顶点A、D分别落在m和l上,顶点C恰好落在n上,边AC与l相交所成的一个角记为∠2,边DF与m相交所成的一个角记为∠3,请你说明∠2﹣∠3=15°;结论应用(3)老师在点评高远组的探究操作时提出,在(2)的条件下,若点N是直线n上一点,CN恰好平分∠ACB时,∠2与∠3之间存在一个特殊的倍数关系,请你直接写出它们之间的倍数关系,不需要说明理由.【答案】(1)75°;(2)见解析;(3)∠2=3∠3【分析】(1)利用三角板的度数,求出∠DBC的度数,再利用平行线的性质得到∠BDN的度数,由此得到∠1的度数;(2)过B点作BG∥直线m,利用平行线的性质可得到∠3=DBG和∠LAB=∠ABG,再利用等量代换得到∠3+∠LAB=75°,利用余角性质得到∠LAB=90°-∠2,由此证明结论;(3)结论:∠2=3∠3.利用(2)中结论,结合平行线的性质得到∠2和∠3的度数由此证明结论.【详解】(1)∵直线n∥直线l,∴∠DBC=∠BDN,又∵∠DBC=∠ABC﹣∠ABD=45°﹣30°=15°,∴∠BDN=15°,∴∠1=90°﹣15°=75°.(2)如图所示,过B点作BG∥直线m,∵BG∥m,l∥m,∴BG∥l(平行于同一直线的两直线互相平行),∵BG∥m,∴∠3=DBG,又∵BG∥l,∴∠LAB=∠ABG,∴∠3+∠LAB=∠DBA=30°+45°=75°,又∵∠2和∠LAB互为余角,∴∠LAB=90°﹣∠2,∴∠3+90°﹣∠2=75°,∴∠2﹣∠3=15°.(3)结论:∠2=3∠3.理由:在(2)的条件下,∠2﹣∠3=15°,又∵CN平分∠BCA,∴∠BCN=∠CAN=22.5°,又∵直线n∥直线l,∴∠2=22.5°,∴∠3=7.5°,∴∠2=3∠3.【点睛】考查平行线的性质并结合了三角板中的特殊角度,学生需要作辅助线利用平行线的传递性将特殊的角的关系联系起来,熟悉掌握平行线之间角的关系是解题的关键.11.已知,直线AB与直线CD平行,在这两条直线的内侧有一点E,连接BE、ED,∠ABE的平分线与∠CDE的平分线交于点F.(1)如图1:当点E在直线BD的左侧时,补全图形并且直接写出∠BFD与∠E的关系.(思路提示:过点E、点F分别做出AB或CD的平行线,通过∠ABE和∠CDE即可建立∠BFD与∠E的关系)(2)当点E在直线BD的右侧时,在图2中补全图形,请问:(1)中的结论是否发生变化,如果变化了请写出变化后的结论,并说明理由.【答案】(1)∠BED=2∠BFD,理由见解析(2)2∠BFD+∠BED=360°,理由见解析【分析】(1)过点E、点F分别作AB∥FG、AB∥HE,依据平行线的性质,即可得到∠E=∠ABE +∠CDE,∠F=∠ABF+∠CDF,依据角平分线的定义,即可得到∠BED=2∠BFD;(2)过点E、点F分别作AB∥FG、AB∥HE,依据平行线的性质,即可得到∠BFG=∠ABF,∠ABE +∠HEB=180°,∠DFG=∠FGC、∠CDE+∠HED=180°,依据角平分线的定义,即可得到2∠BFD +∠BED=360°.【详解】(1)补全图形如图所示,∠BED=2∠BFD过点E、点F分别作AB∥FG、AB∥HE,∴AB∥FG∥CD,AB∥HE∥CD,∴∠ABE=∠BEH,∠CDE=∠HED,∠ABF=∠BFG, ∠CDF=∠DFG∴∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,又∵∠ABE的平分线与∠CDE的平分线交于点F.∴∠ABE=2∠ ABF,∠CDE =2∠ CDF,∴∠BED=∠ABE+∠CDE =2∠ ABF+2∠ CDF=2(∠ABF+∠CDF)=2∠BFD;故结论∠BED=2∠BFD;(1)如图1,求证:12∠=∠;∠∠∠这三个角之间有何数量关系?并证明你的结论;(2)如图2,猜想1,3,4【分析】(1)如下图,延长AC ,DE 相交于点G ,利用∠G 作为过渡角可证;(2)如下图,作//CP AB ,可得//CP DE ,推导得出118034∠+°=∠+∠;(3)如下图,过Q 作1//AD l ∠,利用平行可得出70x y +=°,再利用////QR AB DE 得到22110x y z +-=°,从而得出z 的值.【详解】(1)延长,AC DE 相交于点G .∵//AB DE ,//AC DF∴1G ∠=∠,2G∠=∠∴12∠=∠.(2)作//CP AB ,则//CP DE∵//CP AB ,//CP DE .∴1ACP ∠=∠,4180ECP ∠+∠=°∴11804ACP ECP ∠+°=∠+∠+∠即118034∠+°=∠+∠.(3)过Q 作1//ADl ∠则5D ∠=.6y∠=∵56110180∠+∠+°=°∴110180x y ++°=°即70x y +=°旁证:过Q 作//QR AB ,则//QR DE .设DAQ x ∠=,APQ y ∠=,2z ∠=.则2BAQ x ∠=,2FDQ y ∠=,1z ∠=.∵////QR AB DE∴2AQR BAQ x ∠=∠=,2EDQ DQR y z ∠=∠=-.∴22110x y z +-=°又∵70x y +=°∴22140x y +=°∵(2)(22)30x y x y z z +-+-==°∴230∠=°【点睛】本题考查角度的推导,第(3)问的解题关键是通过方程思想和整体思想,计算得出∠2的大小.13.问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=°∠=°°,长方形DEFG 中,DE GF P .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ^于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.【答案】(1)30°,60°;(2)∠CAF+∠EMC=90°,理由见解析【分析】(1)利用∠CAF=∠BAF-∠BAC 求出∠CAF 度数,求∠EMC 度数转化到∠MCH 度数;(2)过点C 作CH ∥GF ,得到CH ∥DE ,∠CAF 与∠EMC 转化到∠ACH 和∠MCH 中,从而发现∠CAF 、∠EMC 与∠ACB 的数量关系.【详解】(1)过点C 作CH ∥GF ,则有CH ∥DE ,所以∠CAF=∠HCA ,∠EMC=∠MCH ,∵∠BAF=90°,∴∠CAF=90°-60°=30°.∠MCH=90°-∠HCA=60°,∴∠EMC=60°.故答案为30°,60°.(2)∠CAF+∠EMC=90°,理由如下:过点C 作CH ∥GF ,则∠CAF=∠ACH .∵DE ∥GF ,CH ∥GF ,∴CH ∥DE .∴∠EMC=∠HCM .∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°.系.【答案】(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【分析】(1)过P作PE∥AB,先推出PE∥AB∥CD,再通过平行线性质可求出∠APC;(2)过P作PE∥AB交AC于E,先推出AB∥PE∥DC,然后根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE,β=∠CPE,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.。
七年级下册数学期末压轴难题模拟试卷-百度文库
七年级下册数学期末压轴难题模拟试卷-百度文库一、选择题1.100的算术平方根是()A .100B .10±C .10-D .10 2.如图,△ABC 沿BC 所在直线向右平移得到△DEF ,已知EC =2,BF =8,则平移的距离为( )A .3B .4C .5D .63.在平面直角坐标系中,点A (m ,n )经过平移后得到的对应点A ′(m +3,n ﹣4)在第二象限,则点A 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( )A .1B .2C .3D .45.如图,已知直线AB ,CD 被直线AC 所截,AB ∥CD ,E 是平面内CD 上方的一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β中,∠AEC 的度数可能是( )A .①②③B .①②④⑤C .①②③⑤D .①②③④⑤ 6.若33=0x y +,则x 和y 的关系是( ).A .x =y =0B .x 和y 互为相反数C .x 和y 相等D .不能确定7.如图,//a b ,160∠=︒,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒ 8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2-,…,按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .()2018,0B .()2017,1C .()2021,1D .()2021,0二、填空题9.若8x -+2y -=0,则xy =__________.10.若(),3A m -与()4,3B -关于y 轴对称,则m =______.11.若(,)A a b 在第一、三象限的角平分线上,a 与b 的关系是_________.12.如图,将三角板与两边平行的直尺(//EF HG )贴在一起,使三角板的直角顶点C (90ACB ∠︒=)在直尺的一边上,若255∠︒=,则1∠的度数等于________.13.如图, 把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG=54°,则∠EGB=_______.14.下列命题中,属于真命题的有______(填序号):①互补的角是邻补角;②无理数是无限不循环小数;③同位角相等;④两条平行线的同旁内角的角平分线互相垂直;⑤如果236x =,那么6x =±.15.若点P (2m+4,3m+3)在x 轴上,则点P 的坐标为________.16.如图,一只跳蚤在第一象限及x 轴、y 轴上跳动,第一秒它从原点跳动到点(0,1),第二秒它从点(0,1)跳到点(1,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],每秒跳动一个单位长度,那么43秒后跳蚤所在位置的坐标是________.三、解答题17.计算下列各式的值:(1)23(7)--(2)313(3)83+-18.求下列各式中的x :(1)x 2﹣12149=0. (2)(x ﹣1)3=64.19.请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A =∠D .求证:∠B =∠C .证明:∵∠1=∠2,(已知)又:∵∠1=∠3,( )∴∠2=____________(等量代换)AE FD ∴∥(同位角相等,两直线平行)∴∠A =∠BFD ( )∵∠A =∠D (已知)∴∠D =_____________(等量代换)∴____________∥CD ( )∴∠B =∠C ( )20.在平面直角坐标系中,△ABC 三个顶点的坐标分别是A (﹣2,2)、B (2,0),C (﹣4,﹣2).(1)在平面直角坐标系中画出△ABC ;(2)若将(1)中的△ABC 平移,使点B 的对应点B ′坐标为(6,2),画出平移后的△A ′B ′C ′;(3)求△A ′B ′C ′的面积.21.已知234907a b a a -+-=+(1)求实数,a b 的值;(2)若b 的整数部分为x ,小数部分为y①求2x y +的值;②已知103kx m -=+,其中k 是一个整数,且01m <<,求k m -的值.二十二、解答题22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的边长.二十三、解答题23.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点.(1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ;(2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.24.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.25.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵180BDC DBC BCD ∠+∠+∠=︒,(______)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(______)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.26.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.【参考答案】一、选择题1.D解析:D【分析】根据算术平方根的定义求解即可求得答案.【详解】解:∵102=100,∴100算术平方根是10;故选:D .【点睛】本题考查了算术平方根的定义.注意熟记定义是解此题的关键.2.A【分析】根据平移的性质证明BE=CF即可解决问题.【详解】解:由平移的性质可知,BC=EF,∴BE=CF,∵BF=8,EC=2,∴BE+CF=8﹣2=6,∴CF=BE=3,故选:解析:A【分析】根据平移的性质证明BE=CF即可解决问题.【详解】解:由平移的性质可知,BC=EF,∴BE=CF,∵BF=8,EC=2,∴BE+CF=8﹣2=6,∴CF=BE=3,故选:A.【点睛】本题考查平移的性质,掌握平移的性质是解题的关键.3.B【分析】构建不等式求出m,n的范围可得结论.【详解】解:由题意,3040mn+<⎧⎨->⎩,解得:34mn<-⎧⎨>⎩,∴A(m,n)在第二象限,故选:B.【点睛】此题主要考查坐标与图形变化-平移.解题的关键是理解题意,学会构建不等式解决问题.4.B【分析】①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.【详解】解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,;②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误;④平行于同一直线的两条直线平行,正确.故选:B.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例.5.C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.综上所述,∠AEC的度数可能是β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.6.B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:∵33=0x y,∴33=-x y∴x=-y,即x、y互为相反数,故选B.点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.7.D【分析】根据同位角相等,两直线平行即可求解.【详解】解:如图:因为//a b ,∠1=60°,所以∠3=∠1=60°.因为∠2+∠3=180°,所以∠2=180°-60°=120°.故选:D .【点睛】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键. 8.C【分析】根据第1、5、9、......位置上点的变化规律即可求出第2021个位置的点的坐标.【详解】解:设第n 次运动后的点记为An ,根据变化规律可知,, ......,∴,n 为正整数,解析:C【分析】根据第1、5、9、......位置上点的变化规律即可求出第2021个位置的点的坐标.【详解】解:设第n 次运动后的点记为An ,根据变化规律可知()111A ,,()551A ,,()991A , ......, ∴()43431n A n --,,n 为正整数, 取506n =,则432021n -=,∴()202120211A ,, 故选:C .【点睛】本题主要考查点的坐标的变化规律,关键是要发现第1、5、9、......的位置上的点的变化规律,第2021个点刚好满足此规律.二、填空题9.16【分析】根据算术平方根的性质列式求出x 、y 的值,然后代入代数式进行计算即可求解.【详解】∵+=0,∴x−8=0,y−2=0,∴x=8,y=2,∴xy=.故答案为16.【点睛】解析:16【分析】根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解.【详解】∵,∴x−8=0,y−2=0,∴x=8,y=2,⨯=.∴xy=8216故答案为16.【点睛】性:(1)被开方数a是非负数,即a≥0;(2.10.【分析】根据关于y轴对称的点的坐标特征,即可求出m的值.【详解】解:∵A(m,-3)与B(4,-3)关于y轴对称,∴m=-4,故答案为:-4.【点睛】本题主要考查了关于y轴对称点的坐解析:4-【分析】根据关于y轴对称的点的坐标特征,即可求出m的值.【详解】解:∵A(m,-3)与B(4,-3)关于y轴对称,∴m=-4,故答案为:-4.【点睛】本题主要考查了关于y 轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y 轴对称,那么这两个点的横坐标互为相反数,纵坐标相等.11.a=b .【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.解析:a=b .【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.12.35【分析】根据平行线的性质和直角三角形两锐角互余即可求得【详解】故答案为:35°.【点睛】本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.解析:35【分析】根据平行线的性质和直角三角形两锐角互余即可求得【详解】//EF HG ,255∠︒=255FCD ∴∠=∠=︒190FCD ACB ∠+∠=∠=︒1905535∴∠=︒-︒=︒故答案为:35°.【点睛】本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键. 13.108°【分析】由折叠的性质可得:∠DEF=∠GEF ,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的解析:108°【分析】由折叠的性质可得:∠DEF =∠GEF ,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的性质求得∠EG B.【详解】解:∵AD∥BC,∠EFG=54°,∴∠DEF=∠EFG=54°,∠1+∠2=180°,由折叠的性质可得:∠GEF=∠DEF=54°,∴∠1=180°-∠GEF-∠DEF=180°-54°-54°=72°,∴∠EGB=180°-∠1=108°.故答案为:108°.【点睛】此题主要考查折叠的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出∠GEF的度数.14.②④⑤【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可.【详解】解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;②无理数是无限不循环小数,正确,是真命题;③解析:②④⑤【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可.【详解】解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;②无理数是无限不循环小数,正确,是真命题;③两直线平行,同位角相等,故错误,是假命题;④如图所示,直线a,b被直线c所截,且a//b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.证明:∵a//b,∴∠CAE+∠ACF=180°.又AB平分∠CAE,CD平分∠ACF,所以∠1=12∠CAE,∠2=12∠ACF.所以∠1+∠2=12∠CAE+12∠ACF=1 2(∠CAE+∠ACF)=12×180°=90°.又∵△ACG的内角和为180°,∴∠AGC=180°-(∠1+∠2)=180°-90°=90°,∴AB⊥CD.∴两条平行线的同旁内角的角平分线互相垂直,正确,是真命题;⑤如果236x=,那么6x=±,正确,是真命题.故答案为:②④⑤.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.15.(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P解析:(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).16.(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n 是偶数,即可判断出所在位置的坐标.【详解】解:跳蚤跳到(1,1)位置用时1×2=2秒,下一步向下跳解析:(5,6)【分析】根据题意判断出跳蚤跳到(n ,n )位置用时n (n +1)秒,然后根据43秒时n 是偶数,即可判断出所在位置的坐标.【详解】解:跳蚤跳到(1,1)位置用时1×2=2秒,下一步向下跳动;跳到(2,2)位置用时2×3=6秒,下一步向左跳动;跳到(3,3)位置用时3×4=12秒,下一步向下跳动;跳到(4,4)位置用时4×5=20秒,下一步向左跳动;…由以上规律可知,跳蚤跳到(n ,n )位置用时n (n +1)秒,当n 为奇数时,下一步向下跳动;当n 为偶数时,下一步向左跳动;∴第6×7=42秒时跳蚤位于(6,6)位置,下一步向左跳动,则第43秒时,跳蚤需从(6,6)向左跳动1个单位到(5,6),故答案为:(5,6).【点睛】此题考查了点的坐标问题,解题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键.18.(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵,∴,∴;(2)∵,∴,∴.【点睛】本题主要考查解析:(1)117x =±;(2)5x =【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵2121049x -=, ∴212149x =, ∴117x =±;(2)∵()3164x -=,∴14x -=,∴5x =.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(已知)又:∵∠1=∠3,(对顶角相等)∴∠2=∠3(等量代换)∥(同位角相等,两直线平行)AE FD∴∠A=∠BFD(两直线平行,同位角相等)∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∴AB∥CD(内错角相等,两直线平行)∴∠B=∠C(两直线平行,内错角相等).【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′解析:(1)见解析;(2)见解析;(3)10【分析】(1)根据点A、B、C的坐标描点,从而可得到△ABC;(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.【详解】解:(1)如图,△ABC为所作;(2)如图,△A ′B ′C ′为所作;(3)△A ′B ′C ′的面积=1116426244210222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1);;(2)①;②【分析】(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”型可求得a 和b 的值;(2)根据(1)中b 的值,可得的整数部分和小数部分,①将x 和y 的值代入 解析:(1)7a =;21b =;(2)①2214;3【分析】(1)根据分式的值为0,分子为0且分母不能为023490a b a --=和70a +≠,再依据“0+0”型可求得a 和b 的值;(2)根据(1)中b b 的整数部分和小数部分,①将x 和y 的值代入2x y +即可求值;②估算103k 是一个整数,且01m <<,可得k 和m 的值,由此可得k m -的值.【详解】解:(1)∵23490a b a -+-=, ∴23490a b a --=且70a +≠, ∴30a b -=,2490a -=且70a +≠, 即7,21a b ;(2)∵162125, ∴4215<b 的整数部分为4214,①244)4x y +=+=;②∵12<<, ∴8109<<,又∵104kx m k m =+=+,k 是一个整数,且01m <<, ∴2,10242k m ==⨯=∴2(2k m -=-=【点睛】本题考查分式为0的条件,算术平方根的整数部分和小数部分,不等式的性质,绝对值和算术平方根的非负性.(1)中掌握分式的值为0,分子为0且分母不为0是解题关键;(2)中理解一个数的整数部分+小数部分=这个数是解题关键.二十二、解答题22.(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.解析:(1)棱长为4;(2【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为x ,则364x =,所以4x =,即正方体的棱长为4.(2)因为正方体的棱长为4,所以AB=【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.二十三、解答题23.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P 作PQ ∥AB ,则易得AB ∥PQ ∥CD ,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360解析:(1)∠A +∠C +∠APC =360°;(2)见解析;(3)55°【分析】(1)首先过点P 作PQ ∥AB ,则易得AB ∥PQ ∥CD ,然后由两直线平行,同旁内角互补,即可证得∠A +∠C +∠APC =360°;(2)作PQ ∥AB ,易得AB ∥PQ ∥CD ,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;∠FEG,(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=12∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.∠GEH=12【详解】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF =∠PQB =110°,∵EF ∥BC ,∴∠BEF =∠PQB =110°,∵∠PEG =∠PEF ,∴∠PEG =12∠FEG ,∵EH 平分∠BEG ,∴∠GEH =12∠BEG ,∴∠PEH =∠PEG -∠GEH=12∠FEG -12∠BEG=12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC ∠=∠,理由如下://DE BA ,EDF BFD ∴∠=∠,//DF CA ,BA BFD C ∴∠=∠,EDF BAC ∴∠=∠;(2)//DE BA ,理由如下:如图,延长BA 交DF 于点O ,//DF CA ,BAC BOD ∴∠=∠,EDF BAC ∠=∠,EDF BOD ∴∠=∠,//DE BA ∴;(3)由题意,有以下两种情况:①如图3-1,EDF BAC ∠=∠,理由如下://DE BA ,180E EAF ∴∠+∠=︒,//DF CA ,180E EDF ∴∠+∠=︒,EAF EDF ∴∠=∠,由对顶角相等得:BAC EAF ∠=∠,EDF BAC ∴∠=∠;②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.25.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85A ∠=︒;②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,由三角形外角性质可知,1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,∴12BDC A ∠=∠+∠+∠.(3)①如图①所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=135252585A BDC ABD ACD ∠=∠-∠-∠︒-︒-︒=︒,∴85A ∠=︒;②如图②所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=1406080ABD ACD BDC A ∠+∠=∠-∠︒-︒=︒,∵ABD ∠与ACD ∠的角平分线交于点E , ∴12EBD ABD ∠=∠,12ECD ACD ∠=∠, ∴()11140222EBD ECD ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠=︒, ∵140BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18040DBC DCB BDC ∠+∠=︒-∠=︒,∴80EBC ECB ∠+∠=︒,∵180E EBC ECB ∠+∠+∠=︒,∴100E ∠=︒;③如图③所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∵120BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18060DBC DCB BDC ∠+∠=︒-∠=︒,∵ABD ∠与ACD ∠的十等分线交于点3F , ∴3710DBF ABD ∠=∠,3710DCF ACD ∠=∠, ∴()33777101010DBF DCF ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠, ∴()333371060CBF BCF EBF ECF A DBC D A CB BD CD ∠+∠=+︒∠+∠=∠+∠+∠+∠, ∵333180CBF BCF BF C +∠=︒∠+∠,∴333180=116CBF BC F F B C =︒-∠︒∠+∠,∴80ABD ACD ︒∠+∠=,∴()1208040A BDC ABD ACD ∠=∠-∠+∠=︒-︒=︒,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O ,∵AE 平分BAC ∠,BD 平分BDC ∠, ∴12BAE BAC ∠=∠,12BDE BDC ∠=∠, ∵BOE BAE ABD ∠=∠+∠,BOE E BDE ∠=∠+∠,∴BAE ABD E BDE ∠+∠=∠+∠, ∴()11+22BAC ABD E BAC ABD ACD ∠+∠=∠+∠+∠∠, ∴()1111+2222E BAC ABD ACD BAC ABD ABD ACD ∠=∠+∠∠-∠-∠=∠-∠,即2B C E ∠-∠=∠;⑤∵ABD ∠,BAC ∠的角平分线交于点E , ∴()1502BAE ABE BAC ABD ∠+∠=∠+∠=︒, ∴()180********AEB BAE ABE ∠=︒-∠+∠=︒-︒=︒.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.26.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论;(2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒;(2)由(1)知,60BAN ∠=︒,45EDF ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45EDF ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
清江外校2017年七年级下册压轴题训练
1.如图,数轴上有A、B两点,AB=12,原点O是线段AB上的一点,OA=2OB.
(1)写出A,B两点所表示的实数;
(2)若点C是线段AB上一点,且满足AC=CO+CB,求C点所表示的实数;
(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P、Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P到达点O 时,动点M从点O出发,以每秒3个单位长的速度也向右运动,当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后再立即返回,以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动,求在此过程中,点M行驶的总路程和点M最后位置在数轴上对应的实数.
2.如图1,数轴上,O点与C点对应的数分别是0、60(单位:单位长度),将一根质地均匀的直尺AB放在数轴上(A 在B的左边),若将直尺在数轴上水平移动,当A点移动到B点的位置时,B点与C点重合,当B点移动到A点的位置时,A点与O点重合.
(1)直尺的长为个单位长度(直接写答案)
(2)如图2,直尺AB在数轴上移动,有BC=4OA,求此时A点对应的数;
(3)如图3,以OC为边搭一个横截面为长方形的不透明的篷子,将直尺放入篷内的数轴上的某处(看不到直尺的任何部分,A在B的左边),将直尺AB沿数轴以5个单位/秒的速度分别向左、向右移动,直到完全看到直尺,所经历的时间为t1、t2,若t1﹣t2=2(秒),求直尺放入蓬内,A点对应的数为多少?
3.(2015春•江岸区期末)如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面
直角坐标系,点A(0,a),C(b,0)满足+|b﹣2|=0.
(1)则C点的坐标为;A点的坐标为.
(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.AC的中点D的坐标是(1,2),设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=S△ODQ?若存在,请求出t的值;若不存在,请说明理由
(3)点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA 上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.
4.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°
(1)求a、b的值;
(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
5.(2008•铜仁地区)如图,在直角坐标系中,△ABC满足,∠C=90°,AC=4,BC=2,点A、C分别在x、y轴上,当A点从原点开始在x轴正半轴上运动时,点C随着在y轴正半轴上运动.
(1)当A点在原点时,求原点O到点B的距离OB;
(2)当OA=OC时,求原点O到点B的距离OB.
6.(2014•灌南县模拟)根据国家发改委实施“阶梯电价”的有关文件要求,江西省上饶市决定从2012年7月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:
千瓦时,应缴电费263.5元.求a,b 的值;
(2)实行“阶梯电价”收费以后,该户居民用电多少千瓦时,其当月的平均电价每千瓦时不超过0.62元?
7.(2013•凉山州)根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高cm,放入一个大球水面升高cm;
(2)如果要使水面上升到50cm,应放入大球、小球各多少个?
8.(2013•瑞昌市校级模拟)小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8m,2.5m且粗细相同的钢管分别为100根,32根,并要求这些用料不能是焊接而成的.现钢材市场的这种规格的钢管每根为6m.
(1)试问一根6m长的圆钢管有哪些裁剪方法呢?请填写下空(余料作废).
方法①:当只裁剪长为0.8m的用料时,最多可剪7根;
方法②:当先剪下1根2.5m的用料时,余下部分最多能剪0.8m长的用料4根;
方法③:当先剪下2根2.5m的用料时,余下部分最多能剪0.8m长的用料1根.
(2)分别用(1)中的方法②和方法③各裁剪多少根6m长的钢管,才能刚好得到所需要的相应数量的材料?
(3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要6m长的钢管与(2)中根数相同?
9.(2012•江西)小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸、装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4cm.试求信纸的纸长与信封的口宽.
10.对x,y定义一种新运算T,规定:T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,
例如:T(0,1)==b,已知T(1,1)=2.5,T(4,﹣2)=4.
(1)求a,b的值;
(2)若关于m的不等式组恰好有2个整数解,求实数P的取值范围.
11.(2014•斗门区二模)已知[x]表示不超过x的最大整数,例如[2]=2,[2.9]=2,设f(x)=[x[x]],
(1)当1≤x<2时,则f(x)的值等于,f(x)的值的个数是;
(2)当1≤x<3时,则f(x)的值等于,f(x)的值的个数是;
(3)当1≤x<n时,求f(x)的值的个数.
12.(2013•凉山州)已知x=3是关于x的不等式的解,求a的取值范围.
13.(2013•凤阳县模拟)某养鸡厂计划购买甲、乙两种鸡苗共2000只进行饲养,已知甲种小鸡苗每只二元,乙种小鸡苗每只三元.
(1)若购买不超过4700元,应最少购买甲种小鸡苗多少只?
(2)相关资料表示,甲、乙两种小鸡苗的成活率分虽是94%和99%,若要使这两种小鸡苗成活率不低于96%且购买小鸡苗的总费用最低,应购买甲、乙两种小鸡各多少只?最少费用是多少元?
14.建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?
(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?
19.十字形的路口,东西、南北方向的行人车辆来来往往,车水马龙.为了不让双方挤在一起,红绿灯就应动而生,一个方向先过,另一个方向再过.如在南稍门的十字路口,红灯绿灯的持续时间是不同的,红灯的时间总比绿灯长.即当东西方向的红灯亮时,南北方向的绿灯要经过若干秒后才亮.这样方可确保十字路口的交通安全.
那么,如何根据实际情况设置红绿灯的时间差呢?
如图所示,假设十字路口是对称的,宽窄一致.设十字路口长为m米,宽为n米.当绿灯亮时最后一秒出来的骑车人A,不与另一方向绿灯亮时出来的机动车辆B相撞,即可保证交通安全.根据调查,假设自行车速度为4m/s,机动车速度为8m/s.若红绿灯时间差为t秒.通过上述数据,请求出时间差t要满足什么条件时,才能使车人不相撞.当十字路口长约64米,宽约16米,路口实际时间差t=8s时,骑车人A与机动车B是否会发生交通事故?。