八年级数学下册第十六章二次根式16.1二次根式16.1.2二次根式的性质拓展练习(pdf,含解析)(新版)新人教

合集下载

2014年新人教版八年级下16.1二次根式(2)

2014年新人教版八年级下16.1二次根式(2)

4 2
2
= 4 = 2
1 3 =
2
1 3
2
0
2
2
=
0
一般地,
a
a(a 0)
例2:计算
2
1.5 =1.5 解: ab (2) 2 5 ; 积的乘方运算性质: 解: 2 5 =2 5 =4 ( 1) 3 2 2 3 (2) 2 11 3 5
2、在实数范围内进行因式分解: (1)x -5
2
(2)2a -6
2
3、 (1)已知 18 n是整数,求自然数n的 所有可能的值。
(2)已知 24n是整数,求正整数n的最小值。
2 (4)把5 根号外的因数移到根号里边。 5 2 2 2 2 2 2 解: 5 =5 = 5 = 5 = 10 5 5 5 5 依据上面的例子,将根号外的因数移 到根号里边。 1 (1) 3 3 (2)-2 2
16.1
二次根式(2)
一、知识回顾 1、二次根式的定义: 一般地,代数式形如 a (a 0 ) 的 式子做叫二次根式。 2、二次根式的性质:
a (a 0)是一个非负数,即 a 0.
3、算术平方根的定义: 若对于正数x有x2=a,则x叫做a的 算术平方根,记作 a
二、探究(1):
根据算术平方根的意义填空:
2 2 2 2 2
(1) 1.5 ;
2
a b
2 2
练习:(1) 3

2
(2)3 2


2
(3) 5

2
2 (4) 0.2 (5) 7


2
2
(6)5 5

2022-2023学年八年级数学下册《二次根式》精讲与精练高分突破含答案解析

2022-2023学年八年级数学下册《二次根式》精讲与精练高分突破含答案解析

题型二:二次根式有意义的条件4.(2023春·八年级单元测试)代数式56x x --有意义,则x 的取值范围是( )A .5x ≤B .5x ≥C .5x >且6x ≠D .5x ≥且6x ≠5.(2022春·河南三门峡·八年级统考阶段练习)若式子1a b-+有意义,则点(,)P a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限6.(2022·全国·八年级专题练习)已知()2117932x x x y ---+-=-,则2218x y -的值为( ).A .22B .20C .18D .16题型三:二次根式的参数问题7.(2022春·四川凉山·八年级校考期中)如果174a +是一个正整数,则整数a 的最小值是( )A .-4B .-2C .2D .88.(2021秋·八年级单元测试)若最简二次根式343a b a b -+和26a b -+能合并,则a 、b 的值分别是( )A .2和1B .1和2C .2和2D .1和19.(2019春·山东聊城·八年级校考期末)若(2)(3)23x x x x --=-⋅-()()2323x x x x --=-⋅-成立,则x的取值范围为( )A .x ≤3B .x ≥2C .2<x <3D .2≤x ≤3题型四:复合二次根式的性质化简10.(2022春·辽宁葫芦岛·八年级统考期中)若3222a a a a +=-+,则a 的取值范围是( )A .20a -≤≤B .0a ≤C .a<0D .2a ≥-11.(2022春·湖北武汉·八年级校考阶段练习)化简二次根式31-x x的正确结果是( )A .x-B .xC .x-D .x--12.(2022·全国·八年级专题练习)当4x =时,22232343124312x x x x x x -+--+++的值为( )A .1B .3C .2D .3题型五:利用二次根式的性质化简13.(2023秋·上海·八年级专题练习)化简:A .2b c -B .2b a -A .2a b +B .2a b --C .b①526-③4102541025+②7210-++++.43.(2023春·全国·八年级专题练习)观察下列各式及其化简过程:2223222221222112121()()(),+=++=+⨯+=+=+222()()().5263262323223232-=-+=-⨯+=-=-(1)按照上述两个根式的化简过程的基本思路,将31106-化简;(2)化简358743-+;(3)针对上述各式反映的规律,请你写出()±=±>中,m,n与a,b之间的关系.2m n a b a b故D 正确.故选:D .【点睛】本题主要考查了二次根式和分式有意义的条件,解题的关键是根据二次根式和分式有意义的条件列出不等式组5060x x -≥⎧⎨-≠⎩.5.B【分析】先根据二次根式有意义的条件求出a 、b 的值,然后根据平面直角坐标系内各象限点的坐标特征直接判断即可.【详解】解:由题意得,0a -≥,0b >,∴a<0,∴点(,)P a b 在第二象限.故选:B .【点睛】本题考查平面直角坐标系内各象限点的坐标特征以及二次根式有意义的条件,解题关键是根据二次根式有意义的条件求出a 、b 的值.6.A【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:解:∵11x -一定有意义,∴11x ≥,∴()2117932x x x y ---+-=-,117932x x x y -+-+-=-,整理得:113x y -=,∴2119x y -=,则()2222182112x x x y =--=-.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,解题的关键是正确化简二次根式.7.A【分析】根据174a +是一个正整数,得出174a ->,根据a 为整数,得出a 的最小值为4-,最后代入4a =-验证174a +是一个正整数符合题意,得出答案即可.【详解】解:∵174a +是一个正整数,∴1740a +>,∴174a ->,∵a 为整数,∴a 的最小值为4-,且4a =-时,17417161a +=-=符合题意,故A 正确.故选:A .【点睛】本题主要考查了二次根式的性质,根据题意求出174a ->,是解题的关键.8.D【分析】由二次根式的定义可知32a b -=,由最简二次根式343a b a b -+和26a b -+能合并,可得4326a b a b +=-+,由此即可求解.【详解】解:∵最简二次根式343a b a b -+和26a b -+能合并,∴324326a b a b a b -=⎧⎨+=-+⎩,∴3223a b a b -=⎧⎨+=⎩,解得11a b =⎧⎨=⎩,故选D .【点睛】本题主要考查了二次根式的定义和最简二次根式的定义,熟知定义是解题的关键.9.D【分析】利用二次根式的定义和二次根式的乘除,即可解答.【详解】根据二次根式根号下被开方的数是非负数,得2030x x --⎧⎨⎩…… ,所以2⩽x ⩽3.故选D.【点睛】此题考查二次根式的乘除法,二次根式的定义,解题关键在于利用其定义.10.A【分析】根据二次根式的性质列出不等式,解不等式即可解答.【详解】∵32222 ()2a a a a a a +=+=-+,∴020a a ≤+≥,,∴-20a ≤≤.故选A .【点睛】本题考查二次根式的性质,根据二次根式的性质列出不等式是解题的关键.【分析】根据二次根式成立的条件确定x 的取值,从而利用二次根式的性质进行化简.【详解】解:由题意可得:x <0∴()11x x x x x x x⋅-=⋅--=--故选:D .【点睛】本题考查二次根式的化简,理解二次根式成立的条件及二次根式的性质正确化简计算是解题关键.12.A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式=()()2223232323x x x x -+--+112323x x =--+将4x =代入得,原式11423423=--+()()22111313=--+113113=--+()()13313113+-+=-+1=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.13.(1)52-(2)222(++1++1)2a a a a -【分析】(1)根据完全平方差公式,将二次根式恒等变形后,利用二次根式性质化简,再结合去绝对值运算即可得到结论;(2)根据完全平方和公式,将二次根式恒等变形后,利用二次根式性质化简,再结合去绝对值运算即可得到结论.解:945-=9220-22=(5)254+(4)⋅⋅-()2=54-=52-=52-;(2)解:2241++1++a a a 2242+2+21++=2a a a 2222(++1)+2(++1)(+1)+(+1)2a a a a a a a a --=222(++1++1)2a a a a -=222++1++12a a a a =-222(++1++1)2a a a a =-.【点睛】本题主要考查复合二次根式的化简,注意观察,被开方式可转化为一个完全平方式,即()2+2==a b ab a b a b ±±±,同时根据二次根式性质及去绝对值运算进行相关化简是解决问题的关键.14.1【分析】先由数轴上a ,b 两点的位置,判断出a ,b 的符号,再化简二次根式,立方根,进行运算解答.【详解】根据数轴可知,20a <<-,12b <<,则20a +>,10-<b ,∴()()2232321a a b b ++-+-()2(1)a ab b =++--+-21a ab b =+--+-1=.【点睛】本题考查了二次根式、立方根的性质与化简以及实数与数轴,解题的关键是熟练掌握运算法则.15.(1)3±2,7±5(2)6±3(3)106222+-【分析】(1)仿照阅读材料,把被开方数变形成完全平方式,即可得答案;(2)把62变形成218,仿照阅读材料的方法可得答案;(3)将5变形成524,3变形成324,再把被开方数变形成完全平方式,即可算得答案.【详解】(1)解:2526(32)32±=±=±,212235(75)75±=±=±,故答案为:32±,75±;(2)29629218(63)63±=±=±=±;(3)3523-++53322244=-++225131()()2222=-++51312222=-++1062+=,同理可得1062235232+--+-=.【点睛】本题考查二次根式的运算,解题的关键是读懂题意,能仿照阅读材料将被开方数变形乘完全平方.16.B【分析】根据题意,利用二次根式性质可判断30x -≥,由此即可求出x 的范围.【详解】解:2(3)3x x -=-,可得30x -≥,解得:3x ≥,故选:B .【点睛】此题考查了二次根式的性质与化简,熟练掌握2a a =是解本题的关键.17.A【分析】根据二次根式有意义的条件及二次根式的性质与化简进行计算即可得.【详解】解:由题意得,0x <,1x x x x x x---=-=--g ,故选:A .【点睛】本题考查了二次根式的性质和化简,解题的关键是掌握二次根式的性质和化简.18.B【分析】根据二次根式的定义,逐项判断即可求解.【详解】解:A 、x ,x 有可能小于0,故不一定是二次根式,不合题意;B 、21x +,210x +>,故21x +一定是二次根式,符合题意;C 、21x -,若11x -<<时,21x -无意义,不合题意;D 、35是三次根式,故此选项不合题意;故选:B .【点睛】本题考查了二次根式的定义,形如()0a a ≥的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键.19.B【分析】直接利用二次根式的定义,进行分析得出答案.【详解】解:∵||0a ≥,20a ≥,210a +>,2(1)0a -≥,∴||a 、2a 、21a +、2(1)a -四个是二次根式,因为a 是实数时,10a +、21a -不能保证是非负数,因此10a +与21a -不一定是二次根式,故选:B.【点睛】此题主要考查了二次根式的定义,形如(0)a a >的代数式是二次根式,正确把握定义是解题关键.20.C【分析】根据a 、b 、c 在数轴上的位置得出0c a b <<<,c b >,从而得出0a c b ++<,0c a -<,再根据绝对值的意义和二次根式性质,进行化简即可.【详解】解:根据a 、b 、c 在数轴上的位置可知,0c a b <<<,c b >,∴0a c b ++<,0c a -<,∴2||()a c b c a ++--()()a c b c a =-++---⎡⎤⎣⎦()a cbc a =---+-a cbc a=---+-2a b =--.故选:C .【点睛】本题主要考查了绝对值的意义,二次根式的性质,数轴上点的特点,解题的关键是根据点a 、b 、c 在数轴上的位置确定0a c b ++<,0c a -<.21.23x ≤且12x ≠-【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:由题意得,210x +≠,且230x -≥,解得23x ≤且12x ≠-,故答案为:23x ≤且12x ≠-.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.22.0【分析】根据三角形三边关系得到0,0a b c b a c --<-+>,再化简二次根式及绝对值即可.【详解】解:∵a ,b ,c 是三角形的三边长,∴0,0a b c b a c --<-+>,∴2()a b c b a c----+a b c b a c=----+b c a b a c=+--+-0=,故答案为:0.【点睛】此题考查了三角形的三边关系,二次根式的化简,化简绝对值,正确理解三角形的三边关系:两边和大于第三边是解题的关键.23.(1)53(2)0.7(3)9(4)45【分析】(1)首先把带分数化为假分数,再根据二次根式的性质化简,即可求得结果;(2)首先根据二次根式的性质化简,再进行有理数的减法运算,即可求得结果;(3)首先根据平方差公式进行运算,再根据二次根式的性质化简,即可求得结果;(4)首先进行有理数的减法运算,再根据二次根式的性质化简,即可求得结果.【详解】(1)解:729259=53=;(2)解:0.810.04-0.90.2=-0.7=;(3)解:224140-()()41404140=+⨯-81=9=;(4)解:9125-1625=45=.【点睛】本题考查了利用利用二次根式的性质化简运算,熟练掌握和运用各运算法则是解决本题的关键.24.2x +【分析】先根据第四象限的点横坐标为正,纵坐标为负,得到210390x x ->⎧⎨-<⎩,进而推出30210x x -<->,,据此利用二次根式的性质化简即可.【详解】解:∵点()2139P x x --,在第四象限,∴210390x x ->⎧⎨-<⎩,解得132x <<,∴30210x x -<->,,∴2269441x x x x -++-+()()22321x x =-+-321x x =-+-2x =+.【点睛】本题主要考查了化简二次根式,解一元一次不等式组,已知点所在的象限求参数,正确得到30210x x -<->,是解题的关键.25.C【分析】变形26=24,525=,比较24,25,27的大小即可.【详解】因为26=24,525=,且24<25<27,所以262527<<即26527<<,故选:C .【点睛】本题考查了二次根式的大小比较,化成二次根式比较被开方数的大小是解题的关键.26.D【分析】先判断a 和b 的符号,然后根据二次根式的符号化简即可.【详解】解:20b a -≥ 0b ∴≤0ab > 所以a 和b 同号,0,0a b ∴<<,22b b b a a a b a a a---===---故选:D .【点睛】本题考查了二次根式的性质;熟练掌握性质是解答本题的关键.27.A【分析】先根据三角形的三边关系求出n 的取值范围,然后对二次根式进行化简求值即可.【详解】解:由三角形三边关系可知:37n <<,∴30n -<,81n ->,38n n=-+-原式()()38n n =--+-38n n=-++-5=故选:A .【点睛】本题考查了二次根式的化简和求值,解题的关键是熟练运用二次根式的性质.28.A【分析】由题意可得:0ab <,再根据二次根式的性质进行化简即可.【详解】解:由题意可得:0ab <,22222211333933ab a b a b a b ab ab ab ab--=⨯=⨯--⨯-ab ab=--故选:A .【点睛】本题考查二次根式的化简,注意二次根式的结果为非负数.29.C【分析】根据点的坐标,可得a 、b 的关系,根据二次根式的性质,可化简二次根式,根据整式的加减,可得答案.【详解】解:由数轴上点的位置关系,得0,||||a b a b <<>.22()()a a b a a b a a b b -+=----=-++=.故选:C .【点睛】本题考查了实数与数轴,以及二次根式的性质,利用点的坐标得出a 、b 的关系是解题关键.30.A【分析】根据二次根式有意义的条件得出130x -≥,进而可得320x -<,然后根据二次根式的性质化简即可求解.【详解】解:∵130x -≥∴31x ≤∴320x -<229124(13)x x x -+--()()23213x x =---2313x x=--+21=-1=,故选:A.【点睛】本题考查了二次根式的性质,二次根式有意义的条件,掌握二次根式的性质是解题的关键.31.A【分析】利用因式分解和平方差公式和完全平方公式进行简便运算即可.【详解】解:()59120212020591x =⨯-=,()()220202*********y =-+-22202020201=-+1=,22588225882z =+⨯⨯+()25882=+2600=600=,∵1591600<<,∴y x z <<,故选:A .【点睛】本题考查因式分解、二次根式的性质、有理数的混合运算,会利用平方差公式和完全平方公式简便运算是解答的关键.32.2532-【分析】根据2a a =化简即可.【详解】∵2532=2018>0--,∴原式=|2532|=2532--.故答案为:2532-.【点睛】本题考查二次根式的性质,熟记2a a =是解题的关键.33.2a b -##-2b+a【分析】根据题意可得:0b a <<,从而可得0b a -<,然后利用二次根式的性质,绝对值的意义进行化简计算即可解答.【详解】解:由图可知0b a <<,0b a ∴-<,()2b a b ∴-+()()b a b =--+-a b b =--2a b =-.故答案为:2a b -.【点睛】本题考查了二次根式的性质与化简,实数与数轴,整式的加减,准确熟练地进行计算是解题的关键.34. 5x x 3 3.14π-## 3.14π-+【分析】根据二次根式性质进行的化简即可得解.【详解】解:3225255x x x x x =⋅=,()()22333-==,2(3.14π)π 3.14-=-,故答案为:5x x ,3,π 3.14-.【点睛】考查二次根式的性质和化简,掌握被开方数化为因式积的形式,正确开方化简是解题关键.35.1【分析】根据三角形的三边关系得到24k <<,再判断得到23>0k -,290k -<,再化简代数式即可.【详解】解:∵ABC V 的三边长分别为1、k 、3,∴24k <<,∴23>0k -,290k -<,∴274368123k k k --+--()()272923k k =----()79223k k =---+10292k k =--+1=.故答案为:1.【点睛】本题考查的是三角形的三边关系的应用,绝对值的化简,二次根式的化简,掌握“二次根式的化简方法”是解本题的关键.36.8或2##2或8【分析】根据二次根式有意义的条件可求出x 与y 的值,然后代入原式即可求出答案.【详解】解:由题意可知:50y -≥且50y -≥,5y ∴=,3x ∴=±,当3x =时,358x y +=+=;当3x =-时,352x y +=-+=.故答案为:8或2.【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.37.m【分析】根据二次根式性质化简,再利用绝对值意义去绝对值即可得到答案.【详解】解:由数轴可知:0,,m m n m n <<>,∴0,0m n m n -+<<,∴22()||m m n m n ---+||m m n m n---+=m m n m n =-+-++()()m m n m n=-+-++m =,故答案为:m .【点睛】本题考查代数式化简,涉及二次根式性质、去绝对值运算等知识,熟练掌握相关性质是解决问题的关键.38.26【分析】图形可知,第n 行最后一个数为123n +++⋯+=()12n n +,据此可得答案.【详解】解:由图形可知,第n 行最后一个数为123n +++⋯+=()12n n +,∴第6行最后一个数为67212⨯=,则第7行从左至右第3个数是2132426+==,故答案为:26.【点睛】本题主要考查数字的变化类,二次根式的性质化简,解题的关键是根据题意得出第n 行最后一个数为()12n n +.39.c 【分析】根据数轴、绝对值、二次根式的性质,分别进行绝对值、二次根式化简即可得解.【详解】解:由数轴可知:+=0a b ,0c a ->,0c <,0a <原式02a c a c=-+---2a c a c=--++=c【点睛】本题考查数轴、相反数、绝对值、二次根式的综合运用,熟练掌握相应的定义性质是关键.40.1.【分析】先根据二次根式被开方数为非负数得出3x ≥,即可得到24>0x -,原式可变为()2+2+3=0y x y -,再根据非负数的性质得到二元一次方程组,求解得到x 和y 的值,代入即可求出+x y 的值.【详解】∵()230x y ≥-,∴30x -≥,即3x ≥,∴24>0x -,∴()224++2+3=24x y x y x ---,即()2+2+3=0y x y -,∴2+2=0(3)=0y x y ⎧⎨-⎩,解得:=3=2x y ⎧⎨-⎩.∴()+321x y =+-=.【点睛】本题考查二次根式有意义的条件,绝对值的非负性,解二元一次方程组,另一方面考查了非负数和为零的基本模型.41.(1)1±;(2)94.【分析】(1)根据二次根式有意义的条件列出不等式,解不等式求出x ,进而求出y ,根据平方根的概念解答;(2)根据平方根的概念列出方程,解方程求出a ,根据有理数的平方法则计算即可.【详解】(1)解∶由题意得,20200x -≥,20200x -≥,解得,2020x =,∴2019y =-,∴202020191x y +=-=,∵1的平方根是1±,∴x y +的平方根1±;(2)解:∵正数x 的两个平方根分别是2a +和5a +,∴250a a +++=,解得,72a =-,∴732222a +=-+=-,∴23924x ⎛⎫=-= ⎪⎝⎭.【点睛】本题考查的是二次根式有意义的条件、平方根的概念,掌握二次根式的被开方数是非负数是解题的关键.42.(1)227m n +,2mn(2)12或28(3)①32+,②52-,③51+【分析】(1)利用完全平方公式展开可得到用m 、n 表示出a 、b ;(2)利用(1)中结论得到62mn =,利用a 、m 、n 均为正整数得到1m =,3n =或3m =,1n =,然后利用223a m n =+计算对应a 的值;(3)设41025+41025t -+++=,两边平方得到2410254t =-++1025++216(1025)+-+,然后利用(1)中的结论化简得到2625t =+,最后把625+写成完全平方形式可得到t 的值.【详解】(1)设()22277727a b m n m n mn +=+=++(其中a 、b 、m 、n 均为整数),则有227a m n =+,2b mn =;故答案为:227m n +,2mn ;(2)∵62mn =,∴3mn =,∵a 、m 、n 均为正整数,∴1m =,3n =或3m =,1n =,当1m =,3n =时,2222313328a m n =+=+⨯=;当3m =,1n =时,2222333112a m n =+=+⨯=;即a 的值为12或28;(3)①526+32232=++⨯()232=+32=+②7210-52252=+-⨯()252=-52=-③设41025+41025t -+++=,则2410254t =-++1025++216(1025)+-+282(51)=+-()8251=+-625=+()251=+,∴51t =+.【点睛】本题考查根据二次根式的性质进行化简,解题的关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.43.(1)56-;(2)43-;(3)m a b =+,n ab =.【分析】(1)将31分解成256+,再利用完全平方公式即可求出答案;(2)先将7分解成43+,计算第二层根式,再将35分解成163+,利用完全平方公式即可求出答案;(3)将等式两边同时平方即可求出答案.【详解】(1)31106-251066=-+2(56)=-56=-(2)358743-+3584433=-++2(23583)-+=358(23)=-⨯+351663=--1963=-16633=-+43=-(3)()2m n a b a b ±=±>两边平方可得:22m n a b ab±=+±∴m a b =+,n ab=【点睛】本题考查了二次根式的化简与性质及配方法的应用,读懂题中的配方法并明确二次根式的化简方法是解题关键.。

新人教版八年级数学下册《十六章 二次根式 16.1 二次根式 章前引言及二次根式》教案_27

新人教版八年级数学下册《十六章 二次根式  16.1 二次根式  章前引言及二次根式》教案_27

16.1.1二次根式教学内容二次根式的概念及其运用教学目标知识与技能目标:a ≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:发展学生观察、分析、发现问题的能力. 教学重难点1.重点:理解二次根式的概念;2.难点:确定二次根式中字母的取值范围教法:讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

媒体设计:PPT 课件,展台。

学习过程一、展示学习目标:1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性二.设置问题情境,引入新课:1求下列各数的平方根和算术平方根(1)9(2)0.64(3)0总结:a (a ≥0)的平方根是a (a ≥02.解决问题(1) 面积为 S 的正方形边长为________。

(2).面积为 b -5 的正方形边长为________。

(3). 圆桌的面积为 S ,则半径为________(4).若圆桌的面积为 S +3,则半径为________(5)关系式 h = 5t 2 (t > 0)中,用含有 h 的式子表示 t ,则 t = ________。

总结以上式子有何特征二次根式的概念:a像这样一些正数的算术平方根的式子,我们就把它称二次根式。

因此,一般地,我们把形如(a≥0三.探究新课1.指出二次根式有意义的条件被开方数大于等于零。

提问:二次根式在什么情况下无意义学生讨论后得出:被开方数小于零2.指出下列哪些是二次根式?学生自主完成小练习:辨别下列式子,哪些是二次根式?三.练习四.小结1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性五.作业课本第5页第一题。

新人教版八年级数学下册《十六章 二次根式 16.1 二次根式 二次根式化简》教案_7

新人教版八年级数学下册《十六章 二次根式  16.1 二次根式  二次根式化简》教案_7

二次根式的化简教学目标:1、掌握最简二次根式概念及分母有理化。

2、利用二次根式的性质和乘除法化简二次根式。

3、通过对本节课的学习,提高学生的合作探究能力,培养学生的数学学习兴趣。

教学重点:最简二次根式教学难点:二次根式的性质的应用和分母有理化课时安排:1课时教学工具:多媒体设备教学过程:一、复习1、二次根式的性质: 当a ≥0时,a 2= a 当a <0时,a 2= -a 也就是说:a 2 = |a|即 2、二次根式的乘除法:二、创设情境、引入新课 1、提问:(1分别等于多少?学生讨论并回答。

(22、新课引入:(1)根据以上问题的回答,有些二次根式的被开方数不能开的尽方,例如32不是某个有理数的平方。

(2)教师讲解:对于有些二次根式虽然不能直接开方但是我们可以化简,使得最终的被开方数最简。

三、新课探究⎪⎪⎩⎪⎪⎨⎧<-=>)0a (a )0a (00a (a a a 2,,),==0,0)a b =≥≥0,0)a b =≥>1、概念引入-----最简二次根式:①被开方数中不能含有能开的尽方的因数或因式②分母里不能有根号③被开方数的因数是整数,因式是整式-----分母有理化:把分母中的根号化去,使分母变成有理数的过程叫做分母有理化2、典例分析例1解:(1(2注:(1)根号下是一个正整数时:将该数字拆分成一个完全平方数和某一个数的乘积,然后将完全平方数开平方放到根号外面。

例2、化简:解:10(15(2 注:分母含有一个单独根式时:①先将分子、分母化成最简二次根式,能约分的进行约分②将分子、分母都乘以分母的有理化因式(分母有理化)③最后结果化成最简二次根式例3、化简解:1=====注:分母含有两项时:①先将分子、分母化成最简二次根式,能约分的进行约分。

②借助平方差公式 进行分母有理化 。

22))((b a b a b a -=-+最后结果化成最简二次根式。

有理化因式:如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式。

八年级数学下册目录

八年级数学下册目录

八年级数学下册目录教材是开展八年级数学教学活动的主要凭借,那么教材目录是哪些知识呢?小编整理了关于八年级数学下册目录,希望对大家有帮助!八年级数学下册课本目录第十六章二次根式16.1 二次根式16.2 二次根式的乘除16.3 二次根式的加减数学活动小结复习题16第十七章勾股定理17.1 勾股定理阅读与思考勾股定理的证明17.2 勾股定理的逆定理阅读与思考费马大定理数学活动小结复习题17第十八章平行四边形18.1 平行四边形18.2 特殊的平行四边形实验与探究丰富多彩的正方形数学活动小结复习题18第十九章一次函数19.1 函数阅读与思考科学家如何测算岩石的年龄19.2 一次函数信息技术应用用计算机画函数图象14.3 课题学习选择方案数学活动小结复习题19第二十章数据的分析20.1 数据的集中趋势20.2 数据的波动程度阅读与思考数据波动程度的几种度量20.3 课题学习体质健康测试中的数据分析数学活动小结复习题20部分中英文词汇索引八年级数学证明知识点一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子。

一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。

二、三角形内角和定理:三角形三个内角的和等于180度。

1、证明三角形内角和定理的思路是将原三角形中的三个角“凑”到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角.三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

16.1.1二次根式的概念与性质

16.1.1二次根式的概念与性质

3 想一想: 10 、 -5 、 8
5 3 、 (-2)2
a (a<0﹚、
a2+0.1 、 -a (a<0﹚是不是二次根式?
例题学习 1
例1、求下列二次根式中字母a的取值范围:
(1) a 1
(2) 1 1 2a
(3) 3 2a a1
(4) a2 1 (5) 1 3x (6) (1 a)2
想一想: a2 等于什么呢?
性质 3:当 a≥0 时, a2 = a ; 当 a<0 时, a2 = -a 。
也就是说: a2 = |a| 。
算一算:(1) (-9)2 (2)
(
1 3
)2
(3) 64
(4) (x2+1)2
a (a 0)
a (a 0)
例2 计算:
(1) (10)2 ( 15)2
53 53
5:已知:x<0,化简: 16x2
解: 16x2 (4x)2 4x
∵x<0 , ∴4x<0, ∴原式 = -4x
补充:分别说出下列各式成立 的a的取值范围:
(1) ( a )2 a
(2) (a)2 a
(3) (a 2)2 2 a
化简:
(1) 210 (2) a4
a b (3) 2 2 (a<0,b>0)
(2) [ 2 (2)2 ] 2 2 2
a ( a >0 )
a2 a 0 ( a =0 )
-a ( a <0 )
归 纳
由 a2 aa 0,可以得 a a2 a 0。
利用这个式子,可以把任何一个非负数写成 带有“ ”的形式,例: 5 25 ,
0.9 0.81
试一试
1.计算下列各题:

八年级下册数学目录

八年级下册数学目录

⼋年级下册数学⽬录 教材是⼋年级数学教师和学⽣进⾏交流的重要媒介,其中⽬录有哪些知识呢?⼩编整理了关于⼋年级下册数学⽬录,希望对⼤家有帮助! ⼋年级下册数学课本⽬录 第⼗六章⼆次根式 16.1 ⼆次根式 16.2 ⼆次根式的乘除 16.3 ⼆次根式的加减 数学活动 ⼩结 复习题16 第⼗七章 勾股定理 17.1 勾股定理 阅读与思考勾股定理的证明 17.2 勾股定理的逆定理 阅读与思考费马⼤定理 数学活动 ⼩结 复习题17 第⼗⼋章 平⾏四边形 18.1 平⾏四边形 18.2 特殊的平⾏四边形 实验与探究丰富多彩的正⽅形 数学活动 ⼩结 复习题18 第⼗九章 ⼀次函数 19.1 函数 阅读与思考科学家如何测算岩⽯的年龄 19.2 ⼀次函数 信息技术应⽤⽤计算机画函数图象 14.3 课题学习选择⽅案 数学活动 ⼩结 复习题19 第⼆⼗章 数据的分析 20.1 数据的集中趋势 20.2 数据的波动程度 阅读与思考数据波动程度的⼏种度量 20.3 课题学习体质健康测试中的数据分析 数学活动 ⼩结 复习题20 部分中英⽂词汇索引 ⼋年级数学数据的收集与处理知识归纳 (1)普查的定义:这种为了⼀定⽬的⽽对考察对象进⾏的全⾯调查,称为普查. (2)总体:其中所要考察对象的全体称为总体。

(3)个体:组成总体的每个考察对象称为个体 (4)抽样调查:(sampling investigation):从总体中抽取部分个体进⾏调查,这种调查称为抽样调查. (5)样本(sample):其中从总体中抽取的⼀部分个体叫做总体的⼀个样本。

(6) 当总体中的个体数⽬较多时,为了节省时间、⼈⼒、物⼒,可采⽤抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和⼴泛性.还要注意关注样本的⼤⼩. (7)我们称每个对象出现的次数为频数。

⽽每个对象出现的次数与总次数的⽐值为频率。

数据波动的统计量:极差:指⼀组数据中最⼤数据与最⼩数据的差。

16.1.2 二次根式的性质

16.1.2 二次根式的性质
课题:二次根式(2)课型:自学互学展示课
学习目标:1、掌握二次根式的基本性质:
2、能利用上述性质对二次根式进行化简.
重点:二次根式的性质
难点:综合运用性质 进行化简和计算。
学习环节
一.前置作业:
1、什么是二次根式,它有哪些性质?
2、二次根式 有意义,则x。
3、在实数范围内因式分解:
( )2=(x+)(y-)
主备人:郭海ቤተ መጻሕፍቲ ባይዱ审核人:姜瑞风时间:编号1602
(四)拓展提升
1、化简下列各式
(1) (2)
2、化简下列各式
(1)
(2) (x<-2)
(五)达标测试:
A组
1、填空
(1)、 - =_________.
(2)、 =
(3)a、b、c为三角形的三条边,则
________.
2、已知2<x<3,化简:
B组
3 已知0<x<1,化简: -
(二)自主学习
1、计算: ,



观察其结果与根号内幂底数的关系,归纳得到:



(三)合作交流
归纳总结:将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:
巩固训练:1、化简下列各式:
(1)、 (2)、
(3)、 (4)、 =( )
2、教材P4练习2、P5复习巩固2
3、总结你在计算过程中需要提醒大家注意的事项:
4 边长为a的正方形桌面,正中间有一个边长为 的正方形方孔.若沿图中虚线锯开,可以拼成一个新的正方形桌面.你会拼吗?试求出新的正方形边长.
5、把 的根号外的 适当变形后移入根号内,得( )
A、 B、
C、 D、

人教版八年级数学下册 第十六章 二次根式 教学设计及教学反思

人教版八年级数学下册 第十六章 二次根式  教学设计及教学反思

第十六章二次根式16.1二次根式第1课时学习目标【知识与技能】是一个非负数.【过程与方法】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法,进而体验成功的喜悦,并通过合作学习增进终身学习的信念.教学重难点0的基本性质【教学难点】经历知识产生的过程,探索新知识.课前准备无教学过程一、情境导入,初步认识问题(1)一个长方形的围栏,长是宽的3倍,面积为39m2,则它的宽为_______m;(2)面积为S的正方形的边长为_______;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2,如果用含h的式子表示t,则t=.______【教学说明】设置上述问题的目的是让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密.教师提出问题后,让学生独立思考,然后相互交流,获得对二次根式的感性认识.二、思考探究,获取新知思考的式子,这些式子有什么特点?【教学说明】教师提出问题,同学生一道分析,体会这些式子的特征,从而引出二次根式的定义.二次根式:一般地,a≥0)形式的式子称为二次根式,其中”称为二次根号.针对上述定义,教师可强调以下几点:(1a必须是大于等于0的数或式子,否则它就没有意义了;(2,是一个整数,但4仍应称为一个二次根式;(3)当a≥0表示a的算术平方根,而一个非负数的算术平方根必然也是非负0(a≥0)三、典例精析,掌握新知例1 下列各式中,一定是二次根式的有_______分析:判断二次根式应关注两点:(1;(2)被开方数必须是非负数.因而在所给出四个式子中,只有②③中的式子同时符合两个要求,故应填②③.例2 当x为何值时,下列各式在实数范围内有意义.解:(1)中,由x-2≥0,得x≥2;(2)中,由得2≤x≤3;(3)中,由2x-1>0,得x>1/2.【教学说明】对于例3,教师应引导学生分析题目特征,抓住解决问题的突破口,选择中a≥0及a≥0的双重非负性特征.四、运用新知,深化理解1.填空题:(1)形如_______的式子叫二次根式;(2)负数算术平方根________(填“有”或者“没有”)2.当a是怎样的实数时,下列各式在实数范围内有意义:【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,你获得哪些解决二次根式问题的方法?你还有哪些问题?请与同伴交流.【教学说明】学生相互交流,回顾知识,反思问题,共同发展提高.课后作业1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.教学反思1.教师创设情境,给出实例.学生积极主动探索,教师引导与启发,师生互动.体现教师的组织者、引导者与合作者地位.2.注意知识之间的衔接,在温故知新的过程中引导出新知,讲练结合旨在巩固学生对新知的理解.16.1二次根式第2课时学习目标【知识与技能】≥0)2a(a≥0),并利理解并掌握二次根式的性质,正确区分=a(a用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.教学重难点【教学重点】2a=a(a≥0)2a(a≥0)及其应用.【教学难点】用探究的方法探索2a=a(a≥02a(a≥0)的结论.课前准备无教学过程一、情境导入,初步认识试一试:请根据算术平方根填空,猜一猜:通过对上述问题的思考,你能猜想出2a(a≥0)的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:2a=a(a≥0).进一步地,引导学生探究新的问题.探究(1)填空:(2)通过(1a≥0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.(a≥0).最后,教师给出代数式的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1 计算:(1)2;(2)( 2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.四、运用新知,深化理解【教学说明】以上1~3题可试着让学生自主完成,第4题稍有难度,教师适时点拨.(2)进行化简.然后再根据x>2的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.∵x>2,∴x-2>0,1-2x<0.3.(1)原式=5-5+1=1(2)原式=7+49×2/7=7+14=21(2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符号.五、师生互动,课堂小结1.本节知识可这样归纳:2.通过这节课的学习,你有哪些收获和体会?与同伴交流.课后作业1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.教学反思1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生在交流中体会成功.3.几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.16.2 二次根式的乘除第1课时学习目标【知识与技能】a≥0,b≥0)a≥0,b≥0),并能运用它们进行化简计算.【过程与方法】经历探索二次根式乘法法则的过程,发展观察、归纳猜想、验证等能力.【情感态度】培养学生主动探索知识的能力以及分析问题和解决问题的能力,增强学好数学的信心. 教学重难点【教学重点】a≥0,b≥0)(a≥0,b≥0).【教学难点】a≥0,b≥0).课前准备无教学过程一、情境导入,初步认识问题1 计算下列各式,观察计算结果,你发现什么规律?问题2用你发现的规律填空,并用计算器进行验算.【教学说明】问题1通过被开方数都是完全平方数,让学生容易获取结果,发现规律.通过问题2的验证加深对规律的认识,为本节学习作好铺垫.上述两个问题均应由学生自主完成,相互交流,感受新知.二、思考探究,获取新知选几名学生口述所发现的规律,然后师生共同归纳:一般地,对二次根式的乘法规定:.【教学说明】对上述二次根式的乘法公式,教学时应引导学生关注其后面的附加条件a≥0,b≥0.三、典例精析,掌握新知【教学说明】让学生自主探究,独立完成,加深对二次根式乘法运算和化简方法的理解.教师巡视,对有困难的同学适时给予指导,最后可选派四名学生上黑板完成解答,师生共同评析,巩固所学新知识.【教学说明】在学生探索本题解答过程中,教师可补充说明,在本章中,如果没有特别说明,所有的字母都表示正数.四、运用新知,深化理解4.一个矩形的长和宽分别是10cm和22cm,求这个矩形的面积.5.一个底面为30cm×30cm的长方体容器中装满了水.现将一部分水倒入一个底面为正方形,高为10cm的铁桶中.当铁桶装满水时,容器内水面下降了20cm.铁桶的底面边长是多少厘米?【教学说明】学生自主完成,教师巡视,对学生解题过程中出现的问题及时予以指正,帮助学生加深理解,对优秀者应予以表扬鼓舞,让学生体验成功的快乐.【答案】1.A2.(1)原式五、师生互动,课堂小结通过这节课的学习你有哪些收获和体会?谈谈你的想法,并与同伴相互交流.课后作业1.布置作业:从教材“习题16.2”中选取.2.完成练习册中本课时练习.教学反思1.创设情境,给出实例.学生积极主动探索,教师引导启发,按照由特殊到一般的规律,降低学生理解的难度.2.二次根式乘法法则的形成过程中,由学生大胆猜测,经过思考、分析、讨论的过程,让学生在交流中体会成功.3.前面的讲练能帮助学生理解二次根式乘法法则,培养学生利用概念解题的能力.16.2 二次根式的乘除第2课时学习目标【知识与技能】a≥0,b>0(a≥0,b>0),能用它们进行化简计算,能将二次根式化为最简二次根式.【过程与方法】通过具体实例的探究活动,发现二次根式除法的规律,归纳出二次根式除法法则及其逆向等式,能用它们进行化简计算.【情感态度】让学生在独立思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,增强合作交流意识和能力.教学重难点【教学重点】a≥0,b>0(a≥0,b>0)的理解和应用.【教学难点】探索二次根式的除法法则.课前准备无教学过程一、情境导入,初步认识问题1 计算下列各式,观察计算结果,你能发现其中的规律吗?问题2 用你发现的规律填空,并用计算器进行验算:【教学说明】让学生自主探究,感受二次根式除法运算中所蕴含的规律性特征,获得二次根式相除的感性认识,导入新课.二、思考探究,获取新知想一想通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你.师生共同回顾思考,总结出二次根式a≥0,b>0a≥0,b>0)【教学说明】在师生共同探索出上述二次根式的除法公式后,教师应引导学的类似错误.三、典例精析,掌握新知【教学说明】教师给出例题后,让学生独立作业,同时分别选派四名同学上黑板演算.教师巡视,对学生演算过程中的失误及时予以指正,最后师生共同评析,让学生加深对二次根式除法的理解和掌握,并保留每道题的最后结果.议一议观察上述各题的最后结果,它们有什么特点?在学生相互交流过程中可感受到所有结果中的二次根式有如下两个特征:(1)被开方数中不含分母(或分母中不含二次根式);(2)被开方数中不含能开得尽方的因数或因式.我们把具有上述两个条件的二次根式,叫做最简二次根式.小练习:1.下列二次根式中,是最简二次根式的有_______(填序号).【教学说明】感受二次根式乘除在数学问题和实际生活中的应用,体会二次根式的乘除法在二次根式的化简中的重要作用.四、运用新知,深化理解【教学说明】让学生自主完成,加深对已学知识的复习,并检查对新学知识的掌握情况,对学生的困惑,教师应及时予以指导,并进行必要的反思.五、师生互动,课堂小结师生共同回顾:a≥0,b>0a≥0,b>0)及其应用;(1【教学说明】教师应让学生自由交流,总结本节课的知识要点,同时进行自我反思,提高认知,加深对所学知识的理解.课后作业1.布置作业:从教材“习题16.2”中选取.2.完成练习册中本课时练习.教学反思1.创设情境,复习二次根式的乘积,旨在类比学习二次根式的除法,培养学生继续探究的兴趣.2.二次根式除法的学习过程,按照由特殊到一般的规律,由学生经历思考、讨论、分析的过程,让学生大胆猜测,使学生在交流中体会成功.16.3 二次根式的加减第1课时学习目标【知识与技能】会进行二次根式的加减运算,利用二次根式的加减法解决生活实际问题.【过程与方法】经历由实际问题引入数学问题的过程,提高学生的抽象概括能力,进而掌握二次根式的加减运算方法.【情感态度】培养学生认真观察、思考的习惯,锻炼严谨细致、一丝不苟的科学精神.教学重难点【教学重点】二次根式的加减法运算方法.【教学难点】二次根式的加减法的实际应用.课前准备无教学过程一、情境导入,初步认识问题现有一块长7.5dm,宽5dm的木板,能否采用如图所示的方式,在这块木板上截出两个面积分别是8dm2和18dm2的正方形木板?【教学说明】可借助多媒体(或幻灯片)展示木板,尝试截取两个正方形木块,并引导学生思考.解决问题的关键在哪里?如何解决?激发学生的学习兴趣和求知欲望.二、思考探究,获取新知让学生相互讨论,共同探究,寻求解决问题的方案.与此同时,教师可设置如下问题帮助学生进行理解和分析:1.两个正方形木块的边长分别是多少?2.最大正方形木板的边长与原长方形木板的宽5dm的大小如何?3.两个正方形木板的边长之和与长方形木板的长7.5dm的大小关系如何?你认为用什么办法来得出结论的?4.谈谈你获得结论的过程中的想法,你有哪些新的认识?在学生充分交流,二次根式的和,我们可以这样来计算:【教学说明】本环节教师要放手让学生自主探究,自主发现问题,并尝试解决问题,并能总结规律,形成认知.同时,教师应关注学生的完成情况,能否正确进行二次根式的化简,能否运用分配律将二次根式合并.【归纳结论】二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.三、典例精析,掌握新知【教学说明】以上两例,应让学生先独立完成,并分别选派两名中等成绩同学上黑板进行演算.教师巡视,了解全班学生的掌握情况,并对有困难的同学及时予以点拨,帮助他们加深对新知的理解.最后,师生共同评析黑板上的作业,教师还可适时将巡视中发现的问题展示给全班同学,达到理解新知的目的.例3 如图,实验中学计划在校园内修建一个正方形的花坛,在花坛中央还要修一个正方形的小喷水池,设计者需要考虑有关的周长,如果小喷水池的面积为8m2,花坛的绿化面积为10m2,则花坛的外周与小喷水池的周长一共是多少米?分析:利用正方形的面积公式求出边长,再根据周长公式即可得解..【教学说明】本例展示了二次根式的加减在实际问题中的应用,在实际教学过程中,教师应引导学生进行合理分析,理清解题思路与步骤,再让学生自主完成解答过程.最后教师可以给出示范性解题过程,也可以用幻灯片展示学生的优秀作业及有代表性问题作业,让学生通过观察与反思,加深对知识的理解.四、运用新知,深化理解1.下列计算是否正确?为什么?5.先化简,再求值:【教学说明】学生自主完成上面前3个题,教师巡视,后两个题稍难,教师适当予以点拨.【答案】1.(1)不正确,两边不相等;(2)不正确,两边不相等;(3)正确.2.①和④;五、师生互动,课堂小结师生共同回顾本节主要知识点及需要注意的问题.(1)知识要点:二次根式加减的一般思路,①不是最简二次根式的,应化成最简二次根式;②相同的二次根式一定要进行合并.(2)需注意的问题:①应能将化简的二次根式化简后再进行计算,不要出是最后结果的类似错误;②相同的二次根式合并时,只需把它们的系数相加减,根式不变,不相同的二次根式不能进行加减,防止出现=(3-2))的错误.课后作业1.布置作业:从教材“习题16.3”中选取.2.完成练习册中本课时练习.教学反思1.创设情境,给出实例.由学生主动参与,经过思考、讨论、分析的过程,老师加以启发和引导,类比得出二次根式的加减运算法则.2.三个例题,旨在帮助学生理解二次根式的加减运算.尤其是例2,要按照两个步骤进行计算,培养了学生利用概念、法则进行计算和化简的严谨态度和科学精神,此外,例3还展示了二次根式的加减在实际问题中的应用.16.3 二次根式的加减第2课时学习目标【知识与技能】1.会进行二次根式的乘、除、加、减混合运算;2.能用多项式的乘法公式进行二次根式的化简计算.【过程与方法】通过具体问题进一步体会有理数运算、二次根式的运算以及整式的运算之间的联系,掌握二次根式混合运算方法.【情感态度】通过多项式乘除法则及乘法公式在二次根式运算中的应用,体验迁移、化归思想,使学生进一步形成符号感,提高数学应用意识.教学重难点【教学重点】二次根式的混合运算.【教学难点】多项式的乘除法则及乘法公式在二次根式运算中的应用方法.课前准备无教学过程一、情境导入,初步认识问题我们知道:(x+y)·xy=x·xy+y·xy=x2y+xy2,(2x2y+3xy2)÷xy=2x2y÷xy+3xy2÷xy=2x+3y,(x+y)(x-y)=x2-y2及(x+y)2=x2+2xy+y2,……试问:如果上述各式中的x,y分别代表着一个二次根式,我们会有哪些新的收获呢?【教学说明】引入上述关于多项式的乘除算式及乘法公式,进而提出新的问题的目的在于暗示二次根式的运算与多项式的运算之间的联系,激发学生的求知欲望和探究意识. 二、思考探究,获取新知探究1由(x+y)·z=x·z+y·z=xz+yz,你能求出的值吗?你是怎样做的?探究2由,你能求出的值吗?由此你有何发现?类似地,请解决以下几个小题.【教学说明】让全班同学共同参与探究,相互交流,在类比的过程中尝试给出问题的答案.教师巡视,予以点拨,肯定学生的成绩,并引导学生完善对二次根式混合运算的初步认识,最后师生共同给出问题的结果.【归纳结论】1.二次根式的混合运算与整式的运算方法完全相同,即先算乘方,再算乘除,最后算加减,有括号先算括号.2.在二次根式的运算中,多项式的乘法法则和乘法公式仍然适用.三、典例精析,掌握新知例1 计算下列各题:分析:对算式的结构进行观察分析,运用二次根式加、减、乘、除的法则进行运算,需注意乘法公式(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2的灵活运用.解:(1)原式=()÷=(÷÷;例2 已知,,求下列代数式的值.(1)x2+2xy+y2;(2)x2-y2.分析:由条件易知x-y=2,而需求代数式中的(1)可化为(x+y)2,(2)可化为(x+y)(x-y),因而整体代入更简洁些,当然直接代入求值也是可行的,只不过要复杂多了.解:∵,,∴x-y=2.(1)原式=(x+y)2=()2=12;(2)原式=(x+y)·(x-y)×【教学说明】第1题可让学生自主完成,并选派三名代表上黑板进行演算.教师巡视,了解学生对二次根式混合运算的掌握情况,及时予以帮助,帮助学生更好地掌握新知识.最后全班同学分析三位代表的解答过程及结果,深化理解.第2题仍可让学生先自主探究,如果大部分学生选用直接代入求值时,教师仍应肯定他们的成绩,但需展示本例的最佳解题思路,达到融会贯通的目的.四、运用新知,深化理解3.(1)若,,求a2b-ab2的值;(2)若-1,求x2+2x+2011的值.【教学说明】第1、2两题可让学生自主完成,然后相互交流,教师根据反馈情况,及时查漏补缺,优化课堂教学.第3题即可让学生尝试解决,也可由师生共同分析,形成解题思路后再由学生自主完善解题过程.3.(1)由,a·b=1得a2b-ab2=ab(a-b)=1×;(2)∵,∴,两边平方,得x2+2x+1=2.∴x2+2x=1.故x2+2x+2011=1+2011=2012.五、师生互动,课堂小结通过这节课的学习,你有哪些收获?你还有哪些疑惑?谈谈你的看法,并与同伴交流.【教学说明】教师以设问的形式和学生一道回顾本节主要知识及所涉及到的解题方法、技巧和数学思想方法,既是对知识的一次梳理,也是一次必要的提炼升华,完善认知.课后作业1.布置作业:从教材“习题16.3”中选取.2.完成练习册中本课时练习.教学反思1.情境引入,复习整式运算的知识,旨在迁移到利用乘法公式进行含二次根式式子的运算,培养学生继续探究的兴趣.2.例题的设计,旨在帮助学生理解乘法公式在二次根式运算中的应用.。

沪科版八年级数学下册目录

沪科版八年级数学下册目录

沪科版八年级数学下册目录
数学教材是八年级数学学习的重要组成部分,其中课本目录收录了哪些知识呢?小编整理了关于沪科版八年级数学下册的目录,希望对大家有帮助!
沪科版八年级数学下册课本目录
第16章二次根式
16.1 二次根式
16.2二次根式的运算
第17章一元二次方程
17.1 一元二次方程
17.2一元二次方程的解法
17.3一元二次方程的根的判别式
17.4一元二次方程的根与系数的关系
17.5 一元二次方程的应用
第18章勾股定理
18.1 勾股定理
18.2 勾股定理的逆定理
第19章四边形
19.1 多边形内角和
19.2平行四边形
19.3 矩形菱形正方形
19.4 中心对称图形
19.5梯形
第20章数据的初步分析
20.1数据的频数分布
20.2数据的集中趋势与离散程度
20.3综合与实践体重指数
泸科版八年级数学下册知识点:二次根式的加法和减法
1 同类二次根式
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。

2 合并同类二次根式
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。

二次根式的混合运算
1确定运算顺序
2灵活运用运算定律
3正确使用乘法公式
4大多数分母有理化要及时
5在有些简便运算中也许可以约分,不要盲目有理化。

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿

人教版数学八年级下册16.1《二次根式的性质》(第2课时)说课稿一. 教材分析人教版数学八年级下册16.1《二次根式的性质》(第2课时)是在学生已经掌握了二次根式的概念、性质和运算法则的基础上进行的一节内容。

本节课的主要内容是进一步探讨二次根式的性质,包括二次根式的乘除运算、合并同类二次根式等。

通过本节课的学习,使学生能够灵活运用二次根式的性质进行各种运算,提高他们的数学思维能力和解决问题的能力。

二. 学情分析在进入本节课的学习之前,学生已经对二次根式有了初步的认识和了解,能够进行一些基本的二次根式运算。

但是,对于一些复杂的二次根式运算,学生可能还存在一定的困难。

因此,在教学过程中,教师需要针对学生的实际情况,采取有效的教学方法,引导学生逐步掌握二次根式的性质,提高他们的运算能力。

三. 说教学目标1.知识与技能目标:使学生掌握二次根式的性质,能够熟练地进行二次根式的乘除运算和合并同类二次根式。

2.过程与方法目标:通过观察、分析、归纳等方法,引导学生自主探索二次根式的性质,培养他们的数学思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们克服困难的勇气和自信心,培养他们的团队协作精神。

四. 说教学重难点1.教学重点:使学生掌握二次根式的性质,能够进行二次根式的乘除运算和合并同类二次根式。

2.教学难点:二次根式的乘除运算和合并同类二次根式的方法。

五. 说教学方法与手段在本节课的教学过程中,我将采用自主探索、合作交流的教学方法,引导学生通过观察、分析、归纳等方法自主学习二次根式的性质。

同时,利用多媒体教学手段,展示二次根式的运算过程,帮助学生更好地理解和掌握二次根式的性质。

六. 说教学过程1.导入:通过复习二次根式的概念和性质,为学生进入本节课的学习做好铺垫。

2.自主探索:引导学生观察、分析、归纳二次根式的性质,使学生能够自主掌握二次根式的性质。

3.合作交流:学生进行小组讨论,分享他们在自主探索过程中得到的二次根式的性质,培养学生团队协作精神。

【大单元教学】人教版数学八年级下册 16.1.1 二次根式的概念 教案

【大单元教学】人教版数学八年级下册 16.1.1 二次根式的概念 教案

第十六章内容提要【课标要求】1.了解二次根式、最简二次根式的概念,2.了解二次根式(根号下仅限于数)加,减、乘、除运算法则,会用它们进行有关的简单四则运算。

【内容分析】本章内容“二次根式”是《课程标准》中“数与代数”领域的重要内容。

本章是在之前学习的基础上,进一步研究二次根式的概念和运算。

在本章中,将学习二次根式的概念、性质、运算法则和化简的方法。

通过对二次根式的概念和性质的学习,学生将对实数的概念有更深刻的认识,通过对二次根式的加、减、乘、除运算的学习,学生将对实数的简单四则运算有进一步的了解。

【学情分析】1.认知基础本节内容是学习二次根式的基础,理解二次根式的概念,同时理解二次根式有意义的条件,并熟悉二次根式的性质用来进行有关的计算;二次根式是初中阶段重要的知识点之一,学习好二次根式,为后续的计算打下良好的基础;2.认知障碍(1)能用二次根式表示实际问题中的数量及数量关系,体会研究次根式的必要性;(2)能根据算术平方根的意义了解二次根式的概念及性质,会求二次根式中被开方数中字母的取值范围.(3)经历二次根式的性质的发现过程,体验归纳、猜想的思想方法;(4)了解并掌握二次根式的性质,会运用其进行有关计算.【教学目标】1.了解二次根式的概念,知道被开方数必须是非负数的理由;2.理解二次根式的性质;3.了解二次根式的加、减、乘、除运算法则、会用它们进行四则运算;4.了解代整式的概念,进一步体会代数式在表示数量关系方面的作用;5.先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。

6.用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算,利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。

7.通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念;利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的。

沪科版数学八年级下册16.1《二次根式》教学设计1

沪科版数学八年级下册16.1《二次根式》教学设计1

沪科版数学八年级下册16.1《二次根式》教学设计1一. 教材分析《二次根式》是沪科版数学八年级下册第16章的第一节内容。

本节内容主要介绍二次根式的概念、性质和运算。

二次根式在数学中占有重要的地位,它是学习更高阶数学的基础。

本节内容的教学目标是使学生理解二次根式的概念,掌握二次根式的性质,能进行二次根式的运算。

二. 学情分析学生在学习本节内容前,已经学习了实数、有理数、无理数等基础知识,对数学中的运算有一定的理解。

但二次根式作为一个新的概念,对学生来说还是较为抽象,需要通过实例和练习来理解和掌握。

三. 教学目标1.了解二次根式的概念,能正确识别二次根式。

2.掌握二次根式的性质,能进行二次根式的运算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

五. 教学方法1.采用实例教学法,通过具体的例子来引导学生理解和掌握二次根式的概念和性质。

2.采用归纳法,让学生通过自主探究和合作交流,总结出二次根式的性质和运算方法。

3.采用练习法,通过大量的练习来巩固学生的知识和提高解题能力。

六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。

2.准备教学工具,如黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念,如“一个正方形的对角线长为8,求正方形的面积。

”让学生思考如何解决这个问题,从而引出二次根式。

2.呈现(10分钟)讲解二次根式的概念和性质,通过PPT展示相关的例子和性质,让学生理解和掌握二次根式。

3.操练(10分钟)让学生进行二次根式的运算练习,如化简二次根式、求二次根式的值等。

教师及时批改和讲解,帮助学生掌握二次根式的运算方法。

4.巩固(10分钟)通过一些综合性的练习题,让学生运用所学的知识和方法解决问题,巩固二次根式的理解和运用。

5.拓展(10分钟)讲解二次根式的一些应用,如在几何、物理等学科中的应用,让学生了解二次根式的实际意义和价值。

(完整版)八年级数学下册电子版教案

(完整版)八年级数学下册电子版教案

老师结合学生的回答 , 强调二次根式的非负性.
当 a> 0 时, a表示 a 的算术平方根 ,因此 a> 0;
当 a= 0 时, a表示 0 的算术平方根 , 因此 a= 0.
也就是说 ,当 a≥ 0 时 , a≥ 0.
三、例题讲解
【例】 当 x 是怎样的实数时 , x- 2在实数范围内有意义? 解:由 x-2≥ 0, 得 x≥ 2.
8= 2a
2 a
a;
(4)
xx23y=
xy y.
教师点评:上面这些式子的结果具有如下两个特点:
1. 被开方数不含分母.
2. 被开方数中不含能开得尽方的因数或因式.
师:我们把满足上述两个条件的二次根式 , 叫做最简二次根式. (教师板书 )
教师强调:在二次根式的运算中 , 一般要把最后结果化为最简二次根式.
重点 最简二次根式的运用. 难点 会判断这个二次根式是否是最简二次根式.
一、复习导入
( 学习活动 )请同学们完成下列各题. ( 请四位同学上台板书 )
计算: (1)
2; (2)2 6;(3)
3
18
8 ; (4) 2a
x3
x2
. y
教师点评:
(1)
2= 3
36;
2 (2)
6= 18
2
3 3; (3)
二、新课教授
所以当 x≥2 时 , x- 2在实数范围内有意义.
四、巩固练习
1. 已知 a- 2+
b+
1= 2
0,
求-
a2b
的值.
【答案】 a- 2≥ 0, b+21≥0, 又∵它们的和为 1
2, b=- 2. ∴- a2b=- 22× (-12)=2.

初中数学:16.1.1二次根式的概念(人教版八年级数学下册第十六章二次根式)

初中数学:16.1.1二次根式的概念(人教版八年级数学下册第十六章二次根式)

第16章二次根式16.1二次根式第1课时二次根式的概念1.能用二次根式表示实际问题中的数量及数量关系,体会研究二次根式的必要性;(难点)2.能根据算术平方根的意义了解二次根式的概念及性质,会求二次根式中被开方数中字母的取值范围.(重点)一、情境导入问题1:你能用带有根号的式子填空吗?(1)面积为3的正方形的边长为________,面积为S 的正方形的边长为________.(2)一个长方形围栏,长是宽的2倍,面积为130m 2,则它的宽为________m.(3)一个物体从高处自由落下,落到地面所用的时间t (单位:s)与落下的高度h (单位:m)满足关系h =5t 2,如果用含有h 的式子表示t ,则t =______.问题2:上面得到的式子3,S ,65,h 5分别表示什么意义?它们有什么共同特征?二、合作探究探究点一:二次根式的定义下列各式中,哪些是二次根式,哪些不是二次根式?(1)11;(2)-5;(3)(-7)2;(4)313;(5)15-16;(6)3-x (x ≤3);(7)-x (x ≥0);(8)(a -1)2;(9)-x 2-5;(10)(a -b )2(ab ≥0).解析:要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.解:因为11,(-7)2,15-16=130,3-x (x ≤3),(a -1)2,(a -b )2(ab ≥0)中的根指数都是2,且被开方数为非负数,所以都是二次根式.313的根指数不是2,-5,-x (x ≥0),-x 2-5的被开方数小于0,所以不是二次根式.方法总结:判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号“”;(2)被开方数是非负数.探究点二:二次根式有意义的条件【类型一】根据二次根式有意义求字母的取值范围求使下列式子有意义的x 的取值范围.(1)14-3x ;(2)3-xx -2;(3)x +5x .解析:根据二次根式的性质和分式的意义,被开方数大于或等于0且分母不等于0,列不等式(组)求解.解:(1)由题意得4-3x >0,解得x <43.当x <43时,14-3x有意义;(2)-x ≥0,-2≠0,解得x ≤3且x ≠2.当x ≤3且x ≠2时,3-x x -2有意义;(3)+5≥0,≠0,解得x ≥-5且x ≠0.当x ≥-5且x ≠0时,x +5x 有意义.方法总结:含二次根式的式子有意义的条件:(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是各个二次根式中的被开方数都必须是非负数;(2)如果所给式子中含有分母,则除了保证二次根式中的被开方数为非负数外,还必须保证分母不为零.【类型二】利用二次根式的非负性求解(1)已知a 、b 满足2a +8+|b -3|=0,解关于x 的方程(a +2)x +b 2=a -1;(2)已知x 、y 都是实数,且y =x -3+3-x +4,求y x 的平方根.解析:(1)根据二次根式的非负性和绝对值的非负性求解即可;(2)根据二次根式的非负性即可求得x 的值,进而求得y 的值,进而可求出y x 的平方根.解:(1)a +8=0,-3=0,=-4,=3.则(a +2)x +b 2=a -1,即-2x +3=-5,解得x =4;(2)-3≥0,-x ≥0,解得x =3.则y =4,故y x =43=64,±64=±8,∴y x 的平方根为±8.方法总结:二次根式和绝对值都具有非负性,几个非负数的和为0,这几个非负数都为0.探究点三:和二次根式有关的规律探究性问题先观察下列等式,再回答下列问题.①1+112+122=1+11-11+1=112;②1+122+132=1+12-12+1=116;③1+132+142=1+13-13+1=1112.(1)请你根据上面三个等式提供的信息,写出1+142+152的结果;(2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).解析:(1)从三个等式中可以发现,等号右边第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n +1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积;(2)根据(1)找的规律写出表示这个规律的式子.解:(1)1+142+152=1+14-14+1=1120;(2)1+1n 2+1(n +1)2=1+1n -1n +1=11n (n +1)(n 为正整数).方法总结:解答规律探究性问题,都要通过仔细观察找出字母和数之间的关系,通过阅读找出题目隐含条件并用关系式表示出来.三、板书设计1.二次根式的定义一般地,我们把形如a (a ≥0)的式子叫做二次根式.2.二次根式有意义的条件被开方数(式)为非负数;a有意义⇔a≥0.通过将新知识与旧知识进行联系与对比,随后由学生熟悉的实际问题出发,用已有的知识进行探究,由此引入二次根式.在教学过程中让学生感受到研究二次根式是实际的需要,体会到数学与实际生活间的紧密联系,以此充分激发学生学习的兴趣.。

学教评一致性八年级数学教学设计16.1二次根式(1)

学教评一致性八年级数学教学设计16.1二次根式(1)
情景一是第一个“思考”,通过三个小问题,感知二次根式的引入的必要性,掌握二次根式的定义.
情景二是第二个“思考”,掌握二次根式在实数范围内有意义的条件.




为把握学生学习新知的起点,执教这节课之前,对本班学生进行了相关知识点的复习.复习内容:平方根、算术平方根
学生已经会求平方根、算术平方根,但对于相关概念的理解并不透彻,因此在授课前需要进行相关的复习,八年级的学生已经具备了一定的合作交流与探究能力,所以新知识的接受相对容易,教学中注意把学生的已有经验作为认知基础,在学习过程中,把“理解被开方数是非负数的要求”作为重点,采用让学生观察、思考、探究的方法实现学习目标.
学生怎样学
借助教材中的“思考”,掌握二次根式的定义




“二次根式的定义与性质”是人教版八年级数学下册第十六章“二次根式”的内容,二次根式是初中数学知识体系与结构中不可或缺的部分.
学生理解、掌握数学概念,一般需要经历“感知、抽象、符号表征、应用”等一系列认知过程,为了达成课标要求,遵循学生学习的认知规律,教材设置了两个问题情境.
学习
目标
借助教材中的情景,能理解二次根式的概念,并利用 (a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题
评估
任务
能判断一个式子是否为二次根式,掌握二次根式的定义
课题
16.1二次根式
日期
3.1
节次
第节
来源
人教版八年级数学下册第十六章二次根式16.1二次根式(1)
课型
新授课
授课对象
八年班学生
教师
单位




  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数时, + + =-1.故选 C. 2 22
6.答案 1≤x≤4
解析 因为
1- + -4 = -3( < 1), |1-x|- 2-8x + 16=|1-x|- ( -4)2=|1-x|-|x-4|= -1 + -4 = 2 -5(1 ≤ ≤ 4),所以符
-1- + 4 = 3( > 4),
合题意的 x 的取值范围是 1≤x≤4.
∵2<a<4,∴a-1>0,a-4<0,∴ 1-2 + 2+ 2-8a + 16= ( -1)2+ ( -4)2=|a-1|+|a-4|=a-1
+4-a=3,故选 D.
2.答案 D ∵一个三角形的三边长分别为1、k、
2
7,∴7-1<k<1+7,∴3<k<4,∴
2 22 22
2-12k + 36-|2k-5|= ( -6)2-|2k-5|=6-k-(2k-5)=-3k+11=11
.
4.(2019 江苏南通崇川启秀中学第一次月考,15,★★☆)已知实数 m 满足
(2-m)2+ m-4= m2,则 m=
.
五年中考全练
拓展训练
(2016 浙江金华中考,12,★★☆)能够说明“ x2=x不成立”的 x 的值是
···
个即可).
核心素养全练
拓展训练
1.已知 0<a<1,化简 a + 1 + 2- a + 1 -2=
a2- b2- (a-b)2的结果是( )
A.2b
B.2a
C.2(b-a)
D.0
2.(2017 四川广安岳池期末,7,★★☆)某校研究性学习小组在学习了二次根式 a2=|a|之后, 研究了如下四个问题,其中错误的是( )
A.在 a>1 的条件下化简代数式 a+ a2-2a + 1的结果为 2a-1 B.当 a+ a2-2a + 1的值恒为定值时,字母 a 的取值范围是 a≤1
C.a+
a2-2a
+
1的值随
a
的变化而变化,当
a
取某个数值时,上述代数式的值可以为1
2
D.若 a2-2a + 1=( a-1)2,则字母 a 必须满足 a≥1
3.(2018 四川大学附中西区月考 B 卷,24,★★☆)已知 a、b 满足 (2-a)2=a+3,且
a-b + 1=a-b+1,则 ab 的值为
三年模拟全练
拓展训练
1.答案 A 由数轴可知,a>0,b<0,故 a-b>0,所以原式 =|a|-|b|-|a-b|=a+b-(a-b)=a+b-a+b=2b.
2.答案 C a+ 2-2a + 1=a+ ( -1)2=a+|a-1|.
当 a>1 时,原式=a+a3; 2-2a + 1=1+ 1-2 + 1=1,当 a<1 时,a+ 2-2a + 1=a+1-a=1,所以当 a≤1 时,a+ 2-2a + 1的值恒为 1,当 a>1 时,a+ 2-2a + 1=2a-1>1,故 B 选项正确,C 选项错误;只有当 a≥1 时, -1才有意义,且
-3k,故选 D.
3.答案 C 原式=|2-x|+|x-4|.①当 x<2 时,原式=(2-x)+(4-x)=6-2x;②当 2≤x≤4 时,原式
=(x-2)+(4-x)=2;③当 x>4 时,原式=(x-2)+(x-4)=2x-6.综上所述,x 的取值范围是 2≤x≤4.
4.答案 B ∵ 1
-
2-2ab + 2=-1,
∴ 1 ( - )2=-1,
-
∴ ( - )2=b-a,
∴b-a>0,∴b>a, 则 a 与 b 的大小关系为 b>a.故选 B.
5.答案 C 当 a、b、c 都是正数时, + + =1+1+1=3;当 a、b、c 都是负数时, + + =-3;
2 22
2 22
当 a、b、c 有两个是正数,一个是负数时, + + =1;当 a、b、c 有两个是负数,一个是正 2 22
2
2
k2-12k + 36-|2k-5|的结果是(
)
A.-k-1
B.k+1
C.3k-11
D.11-3k
3.若代数式 (2-x)2+ (x-4)2的值是常数 2,则 x 的取值范围是( )
A.x≥4 C.2≤x≤4
B.x≤2 D.x=2 或 x=4
4.如果 1
a-b
a2-2ab + b2=-1,则 a 与 b 的大小关系为(
(1)请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由; (2)请你利用上面所学的方法化简:① 3 + 2 2;② 6-2 5.
基础闯关全练
拓展训练
1.答案 B 先将带分数化成假分数,再逆用(
)2=a(a≥0).故 41=17=
44
2
17 ,故选 B.
4
2.答案 C 由 2=-a,得 a≤0,故选 C.
.
a
a
2.(2019 广东中山十二校期中联考)阅读下面材料,回答问题:
(写出一
在化简 5-2 6的过程中,小张和小李的化简结果不同. 小张的化简如下:
5-2 6= 2-2 2 × 3 + 3= ( 2- 3)2= 2- 3; 小李的化简如下:
5-2 6= 2-2 3 × 2 + 3= ( 3- 2)2= 3- 2.
A.2-2a 4.当 x=
B.2a-2
C.-2
时, 3x + 1+1 有最小值,这个最小值为
D.2 .
能力提升全练
拓展训练
1.(2019 江苏无锡锡山期末)已知 2<a<4,则化简 1-2a + a2+ a2-8a + 16的结果是( )
A.2a-5
B.5-2a
C.-3
D.3
2.如果一个三角形的三边长分别为1、k、7,则化简
初中数学·人教版·八年级下册——第十六章 二次根式
16.1.2 二次根式的性质
基础闯关全练
拓展训练
1.把 41写成一个正数的平方的形式是(
4
A.
2
1 2
2
2
B. 17
4
2.若 a2=-a,则 a 的取值范围是( )
A.a>0
B.a<0
C.a≤0
D.a 是任意实数
)
C.
±
2
1 2
2
2
D. ±
17 4
3.(2018 内蒙古巴彦淖尔临河模拟)若 a+|a|=0,则 (a-2)2+ a2等于( )
)
A.a>b
B.b>a
C.a≥b
D.b≥a
5.代数式 a + b + c 的所有可能的值有( )
a2 b2 c2
A.2 个
B.3 个
C.4 个
D.无数个
6.若化简|1-x|- x2-8x + 16的结果为 2x-5,则 x 的取值范围是
.
三年模拟全练
拓展训练
1.(2019 安徽芜湖期末,6,★★☆)实数 a,b 对应的点在数轴上的位置如图所示,则化简
3.答案 A ∵a+|a|=0,∴|a|=-a,则 a≤0,∴a-2≤0,∴原式=2-a-a=2-2a.故选 A.
4.答案 -1;1
3
解析

3
+ 1取得最小值时,
3
+
1+1
的值最小,∴3x+1=0,∴x=-1,∴当
3
x=-1时,
3
3
+ 1+1 有最小值,这个最小值为 1.
能力提升全练
拓展训练
1.答案 D
相关文档
最新文档