数学论文_英文翻译
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)附录
(翻译)
课题名称一些周期性的二阶线性微分方程解的方法
学生姓名万益
目录
1.毕业设计(论文)附录(翻译)英文
2.毕业设计(论文)附录(翻译)中文
2014年5月25日
Some Properties of Solutions of Periodic Second Order
Linear Differential Equations
1. Introduction and main results
In this paper, we shall assume that the reader is familiar with the fundamental results and the stardard notations of the Nevanlinna's value distribution theory of meromorphic functions [12, 14, 16]. In addition, we will use the notation )(f σ,)(f μand )(f λto denote respectively the order of growth, the lower order of growth and the exponent of convergence of the zeros of a meromorphic function f ,)(f e σ([see 8]),the e-type order of f(z), is defined to be
r
f r T f r e ),(lo
g lim )(+∞→=σ Similarly, )(f e λ,the e-type exponent of convergence of the zeros of meromorphic function f , is defined to be
r
f r N f r e )/1,(lo
g lim )(++∞→=λ We say that )(z f has regular order of growt
h if a meromorphic function )(z f satisfies
r
f r T f r lo
g ),(log lim )(+∞→=σ We consider the second order linear differential equation
0=+''Af f
Where )()(z e B z A α=is a periodic entire function with period απω/2i =. The complex oscillation theory of (1.1) was first investigated by Bank and Laine [6]. Studies concerning (1.1) have een carried on and various oscillation theorems have been obtained [2{11, 13, 17{19].
When )(z A is rational in z e α,Bank and Laine [6] proved the following theorem
Theorem A Let )()(z e B z A α=be a periodic entire function with period απω/2i = and rational in z e α.If )(ζB has poles of odd order at both ∞=ζ and 0=ζ, then for every solution )0)((≠z f of (1.1), +∞=)(f λ
Bank [5] generalized this result: The above conclusion still holds if we just suppose that both ∞=ζ and 0=ζare poles of )(ζB , and at least one is of odd order. In addition, the stronger conclusion
)()/1,(log r o f r N ≠+ (1.2)
holds. When )(z A is transcendental in z e α, Gao [10] proved the following theorem
Theorem B Let ∑=+=p j j j b g B 1)/1()(ζζζ,where )(t g is a transcendental entire function
with 1)(<g σ, p is an odd positive integer and 0≠p b ,Let )()(z e B z A =.Then any
non-trivia solution f of (1.1) must have +∞=)(f λ. In fact, the stronger conclusion (1.2) holds.
An example was given in [10] showing that Theorem B does not hold when )(g σis any positive integer. If the order 1)(>g σ , but is not a positive integer, what can we say? Chiang and Gao [8] obtained the following theorems
Theorem C Let )()(z e B z A α=,where )()/1()(21ζζζg g B +=,1g and 2g are entire
functions 2g transcendental and )(2g σnot equal to a positive integer or infinity, and 1g arbitrary. (i) Suppose
1)(2>g σ. (a) If f is a non-trivial solution of (1.1) with )()(2g f e σλ<;
then )(z f and )2(i z f π+are linearly dependent. (b) If 1f and 2f are any two linearly independent solutions of (1.1), then )()(2g f e σλ<.
(ii) Suppose
1)(2<g σ (a) If f is a non-trivial solution of (1.1)
with 1)(<f e λ,)(z f and )2(i z f π+are linearly dependent. If 1f and 2f are any two linearly independent solutions of (1.1),then 1)(21≥f f e λ.
Theorem D Let )(ζg be a transcendental entire function and its order be not a positive integer or infinity. Let )()(z e B z A α=; where ∑=+=p j j j b g B 1
)/1()(ζζζand p is an odd positive integer. Then +∞=)(f λor each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2) holds.
Examples were also given in [8] showing that Theorem D is no longer valid when )(g σis infinity.
The main purpose of this paper is to improve above results in the case when )(ζB is transcendental. Specially, we find a condition under which Theorem D still holds in the case when )(g σis a positive integer or infinity. We will prove the following results in Section 3.
Theorem 1 Let )()(z
e B z A α=,where )()/1()(21ζζζg g B +=,1g and 2g are entire functions with 2g transcendental and )(2g μnot equal to a positive integer or infinity, and 1g arbitrary. I
f Some properties of solutions of periodic second order linear differential equations )(z f and )2(i z f π+are two linearly independent solutions of (1.1), then +∞=)(f e λ
Or
2)()(121≤+--g f e μλ
We remark that the conclusion of Theorem 1 remains valid if we assume )(1g μ
is not equal to a positive integer or infinity, and 2g arbitrary and still assume )()/1()(21ζζζg g B +=,In the case when 1g is transcendental with its lower order not equal to an integer or infinity and 2g is arbitrary, we need only to consider )/1()()/1()(*21ηηηηg g B B +==in +∞<<η0,ζη/1<.
Corollary 1 Let )()(z
e B z A α=,where )()/1()(21ζζζg g B +=,1g and 2g are
entire functions with 2g transcendental and )(2g μno more than 1/2, and 1g arbitrary.
(a) If f is a non-trivial solution of (1.1) with +∞<)(f e λ,then )(z f and )2(i z f π+are linearly dependent.
(b) If 1f and 2f are any two linearly independent solutions of (1.1),
then +∞=)(21f f e λ.
Theorem 2 Let )(ζg be a transcendental entire function and its lower order be no more than 1/2.
Let )()(z e B z A =,where ∑=+=p j j j b g B 1)/1()(ζζζand p is an odd positive integer,
then +∞=)(f λ for each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2) holds.
We remark that the above conclusion remains valid if
∑=--+=p
j j j b g B 1)()(ζζζ
We note that Theorem 2 generalizes Theorem D when )(g σis a positive integer or infinity but 2/1)(≤g μ. Combining Theorem D with Theorem 2, we have
Corollary 2 Let )(ζg be a transcendental entire function. Let )()(z e B z A = where
∑=+=p j j j b g B 1)/1()(ζζζand p is an odd positive integer. Suppose that either (i) or (ii) below holds:
(i) )(g σ is not a positive integer or infinity;
(ii) 2/1)(≤g μ;
then +∞=)(f λfor each non-trivial solution f to (1.1). In fact, the stronger conclusion (1.2) holds.
2. Lemmas for the proofs of Theorems
Lemma 1 ([7]) Suppose that 2≥k and that 20,.....-k A A are entire functions of period i π2,and that f is a non-trivial solution of
0)()()(2
)(=+∑-=k i j j z y z A k y
Suppose further that f satisfies )()/1,(log r o f r N =+; that 0A is non-constant and rational in z e ,and that if 3≥k ,then 21,.....-k A A are constants. Then there exists an integer q with k q ≤≤1 such that )(z f and )2(i q z f π+are linearly dependent. The same conclusion
holds if 0A is transcendental in z e ,and f satisfies )()/1,(log r o f r N =+
,and if 3≥k ,then as
∞→r through a set
1L of infinite measure, we have )),((),(j j A r T o A r T =for 2,.....1-=k j . Lemma 2 ([10]) Let )()(z e B z A α=be a periodic entire function with period 12-=απωi and be
transcendental in z e α, )(ζB is transcendental and analytic on +∞<<ζ0.If )(ζB has a pole of
odd order at ∞=ζ or 0=ζ(including those which can be changed into this case by varying the period of )(z A and Eq . (1.1) has a solution 0)(≠z f which satisfies )()/1,(log r o f r N =+,
then )(z f and )(ω+z f are linearly independent.
3. Proofs of main results
The proof of main results are based on [8] and [15].
Proof of Theorem 1 Let us assume +∞<)(f e λ.Since )(z f and )2(i z f π+are linearly independent, Lemma 1 implies that )(z f and )4(i z f π+must be linearly dependent. Let )2()()(i z f z f z E π+=,Then )(z E satisfies the differential equation
2
2
2)()()(2))()(()(4z E c z E z E z E z E z A -''-'=, (2.1) Where 0≠c is the Wronskian of 1f and 2f (see [12, p. 5] or [1, p. 354]), and )()2(1z E c i z E =+πor some non-zero constant 1c .Clearly, E E /'
and E E /''are both periodic functions with period i π2,while )(z A is periodic by definition. Hence (2.1) shows that 2)(z E is also periodic with period i π2.Thus we can find an analytic function )(ζΦin +∞<<
ζ0,so that )()(2z e z E Φ=Substituting this expression into (2.1) yields Φ
Φ''+ΦΦ'-ΦΦ'+Φ=-2222)(43)(4ζζζζc B (2.2) Since both )(ζB and )(ζΦare analytic in }{+∞<<=ζζ1:*C ,the Valiron theory [21, p. 15] gives their representations as
)()()(ζζζζb R B n =,)()()(11ζφζζζR n =Φ, (2.3)
where n ,
1n are some integers, )(ζR and )(1ζR are functions that are analytic and non-vanishing
on }{*∞⋃C ,)(ζb and )(ζφ are entire functions. Following the same arguments as used in [8], we have
),(),()/1,(),(φρρφρφρS b T N T ++=, (2.4)
where )),((),(φρφρT o S =.Furthermore, the following properties hold [8]
)}(),(max {)()()(222E E E E f eL eR e e e λλλλλ===,
)()()(12φλλλ=Φ=E eR ,
Where )(2E eR λ(resp, )(2E eL λ) is defined to be
r
E r N R r )/1,(log lim 2++∞→(resp, r E r N R r )/1,(log lim 2++∞→), Some properties of solutions of periodic second order linear differential equations where )/1,(2E r N R (resp. )/1,(2E r N L denotes a counting function that only counts the zeros
of
2)(z E in the right-half plane (resp. in the left-half plane), )(1Φλis the exponent of convergence of the zeros of Φ in *C , which is defined to be
ρ
ρλρlog )/1,(log lim )(1Φ=Φ++∞→N Recall the condition +∞<)(f e λ,we obtain +∞<)(φλ. Now substituting (2.3) into (2.2) yields
+'+'+-'+'++=-21112111112
)(43)()
()()()(4φφζζφφζζζφζζζζζR R n R R n R c b R n n
)222)1((1111111112112φφφφζφφζφφζζζ''+''+'''+''+'+'+-R R R R R n R R n n n (2.5) Proof of Corollary 1 We can easily deduce Corollary 1 (a) from Theorem 1 .
Proof of Corollary 1 (b). Suppose 1f and 2f are linearly independent and +∞<)(21f f e λ,then +∞<)(1f e λ,and
+∞<)(2f e λ.We deduce from the conclusion of Corollary 1 (a) that )(z f j and
)2(i z f j π+are linearly dependent, j = 1; 2. Let )()()(21z f z f z E =.Then we can find a non-zero constant 2c such that )()2(2z E c i z E =+π.Repeating the same arguments as used in Theorem 1 by using the fact
that 2)(z E is also periodic, we obtain
2)()(121≤+--g E e μλ,a contradiction since 2/1)(2≤g μ.Hence +∞=)(21f f e λ.
Proof of Theorem 2 Suppose there exists a non-trivial solution f of (1.1) that satisfies )()/1,(log r o f r N =+. We deduce 0)(=f e λ, so )(z f and )2(i z f π+ are linearly dependent by Corollary 1 (a). However, Lemma 2 implies that )(z f and )2(i z f π+are linearly independent. This is a contradiction. Hence )()/1,(log r o f r N ≠+
holds for each non-trivial solution f of (1.1). This completes the proof of Theorem 2.
Acknowledgments The authors would like to thank the referees for helpful suggestions to improve this paper.
References
[1] ARSCOTT F M. Periodic Di®erential Equations [M]. The Macmillan Co., New York, 1964.
[2] BAESCH A. On the explicit determination of certain solutions of periodic differential
equations of higher order [J]. Results Math., 1996, 29(1-2): 42{55.
[3] BAESCH A, STEINMETZ N. Exceptional solutions of nth order periodic linear differential
equations [J].Complex Variables Theory Appl., 1997, 34(1-2): 7{17.
[4] BANK S B. On the explicit determination of certain solutions of periodic differential equations
[J]. Complex Variables Theory Appl., 1993, 23(1-2): 101{121.
[5] BANK S B. Three results in the value-distribution theory of solutions of linear differential
equations [J].Kodai Math. J., 1986, 9(2): 225{240.
[6] BANK S B, LAINE I. Representations of solutions of periodic second order linear differential
equations [J]. J. Reine Angew. Math., 1983, 344: 1{21.
[7] BANK S B, LANGLEY J K. Oscillation theorems for higher order linear differential equations
with entire periodic coe±cients [J]. Comment. Math. Univ. St. Paul., 1992, 41(1): 65{85. [8] CHIANG Y M, GAO Shi'an. On a problem in complex oscillation theory of periodic second
order lineardifferential equations and some related perturbation results [J]. Ann. Acad. Sci.
Fenn. Math., 2002, 27(2):273{290.
一些周期性的二阶线性微分方程解的方法
1. 简介和主要成果
在本文中,我们假设读者熟悉的函数的数值分布理论[12,14,16]的基本成果和数学符号。
此外,我们将使用的符号)(f σ,)(f μand )(f λ,表示的顺序分别增长,低增长的一个纯函数的零点收敛指数,f ,)(f e σ([8]),E 型的f(z),被定义为
r
f r T f r e ),(lo
g lim )(+∞→=σ 同样,)(f e λ,E 型的亚纯函数f 的零点收敛指数,被定义为
r
f r N f r e )/1,(lo
g lim )(++∞→=λ 我们说,如果一个亚纯函数)(z f 满足增长的正常秩序
r
f r T f r lo
g ),(log lim )(+∞→=σ 我们考虑的二阶线性微分方程
0=+''Af f
在)()(z e B z A α=是一个整函数在απω/2i =。
在(1.1)的反复波动理论的第一次探讨中由银行和莱恩[6]。
已经进行了研究在(1.1)中,并已取得各种波动定理在[2{11,13,17{19]。
在z e α函数中)(z A 正确的,银行和莱恩[6]证明了如下定理
定理A 设)()(z e B z A α=这函数是一个周期性函数,周期为απω/2i =在整个函数z e α存在。
如果)(ζB 有奇数阶极点在∞=ζ和0=ζ,然后对于任何一个结果答案)0)((≠z f 在(1.1)中+∞=)(f λ
广义这样的结果:上述结论仍然认为,如果我们只是假设,∞=ζ既0=ζ和)(ζB 的极点,并且至少有一个是奇数阶。
此外,较强的结论
)()/1,(log r o f r N ≠+
(1.2) 认为。
当)(z A 是超越在z e α,高[10]证明了如下定理
定理B
设∑=+=p j j j
b g B 1)/1()(ζζζ,其中)(t g 是一个超越整函数与1)(<g σ,p 是奇正整并且0≠p b ,设)()(z e B z A =,那么任何微分解在(1.1)的函数f 必须有+∞=)(f λ。
事实上,在(1.2)已经有证明的结论。
是在[10] 一个例子表明当定理B 不成立时,)(g σ是任意正整数。
如果在另一方面1)(>g σ,但如果没有一个正整数,我们可以说些什么呢?蒋和高[8]得到以下定理 定理C
设)()(z e B z A α=,其中)()/1()(21ζζζg g B +=,函数1g 和函数2g 是整函数2g 先验和)(2g σ不等于一个正整数或无穷大,并函数1g 任意。
(一) 假设1)(2>g σ(a )如果函数f 是一个非平凡解)()(2g f e σλ<在(1.1),那么)
(z f 和)2(i z f π+是线性相关。
(b )如果函数1f 和函数2f 在(1.1)是两个线性无关函数,则存在这样一个条件)()(2g f e σλ<。
(二) 假设1)(2<g σ(a )如果函数f 有一个非平凡解在(1.1)且1)(<f e λ,)(z f 和
)2(i z f π+是线性相关的。
如果函数1f 和函数2f 在(1.1)在(1.1)是两个线性无关函数,则存在这样一个条件1)(21≥f f e λ。
定理 D
让)(ζg 是一个超越整函数和它的秩序是正整数或无穷大。
设)()(z e B z A α=,∑=+=p
j j j b g B 1)/1()(ζζζ和p 是一个奇正整数。
然后+∞=)(f λ或F 得到每一个非平凡解在(1.1)。
事实上,在(1.2)中已经有证明的结论。
例子表明在高[8]定理D 不再成立,当)(g σ是无穷的。
本文的主要目的是改善上述结果的情况下,当)(ζB 是超越。
特别地,我们找到的条件下定理D 仍然成立的情况下,当)(g σ是一个正整数或无穷大。
我们将证明在第3节的结果如下:
定理1
设)()(z e B z A α=,其中)()/1()(21ζζζg g B +=,1g 和2g 2g 先验和)(2g μ不等于一个正整数或无穷,1g 任意整函数。
如果定期二阶线性微分方程)(z f 和)2(i z f π+的解不是一些属性是两个线性无关的解在(1.1),然后 +∞=)(f e λ
或者
2)()(121≤+--g f e μλ
我们的说法,定理1的结论仍然有效,如果我们假设函数)(1g μ不等于一个正整数或无穷大,任意和承担的情况下)()/1()(21ζζζg g B +=,当其低阶不等于一个整数或无穷超然是任意的,我们只需要考虑)/1()()/1()(*21ηηηηg g B B +==在+∞<<η0,ζη/1<。
推论1
设)()(z
e B z A α=,其中)()/1()(21ζζζg g B +=,函数1g 和函数2g 是整个2g 先验和)(2g μ不超过1 / 2,并且1g 任意的。
(一) 如果函数f 是一个非平凡解+∞<)(f e λ在(1.1)中,那么)(z f 和)2(i z f π+是线
性相关。
(二) 如果1f 和2f 是两个线性无关解在(1.1)中,那么+∞=)(21f f e λ。
定理2
设)(ζg 是一个超越整函数及其低阶不超过 1 / 2。
设)()(z e B z A =,其中
∑=+=p
j j j b g B 1)/1()(ζζζ和p 是一个奇正整数,则+∞=)(f λ为每个非平凡解F 到在(1.1)中。
事实上,在(1.2)中证明正确的结论。
我们注意到,上述结论仍然有效的假设 ∑=--+=p
j j j b g B 1)()(ζζζ
我们注意到,我们得出定理2推广定理D ,当是一个正整数或无穷,但2/1)(≤g μ结合定理2定理的研究。
推论2
设)(ζg 是一个超越整函数。
设)()(z e B z A =,其中∑=+=p j j j b g B 1
)/1()(ζζζ和 p 是一个奇正整数。
假设要么(一)或(二)中认为:
(一))(g σ不是正整数或无穷;
(二)2/1)(≤g μ
然后为每一个非平凡解在(1.1)中函数f 对于+∞=)(f λ。
事实上,在(1.2)中已经有证明的结论。
2. 引理为定理的证明
引理1
([7]),2≥k 和的假设20,.....-k A A 是整个周期i π2,并且函数f 是有一个非平凡解
0)()()(2
0)(=+∑-=k i j j z y z A k y
进一步假设函数f 满足)()/1,(log r o f r N =+
;,0A 是在z e 非恒定和理性的,而且,如果3≥k ,且21,.....-k A A 是常数。
则存在一个整数q 与k q ≤≤1 ,)(z f 和)2(i q z f π+是线
性相关。
相同的结论认为,如果0A 是超越z e ,和f 满足)()/1,(log r o f r N =+
,如果3≥k ,然后通过一个无限措施的集合1L 为∞→r ,)),((),(j j A r T o A r T =且2,.....1-=k j 引理2
([10]) 设)()(z
e B z A α=是一个周期为12-=απωi 在z e α(包括那些可以改变这种情况下极奇数阶设)(ζB 是定期与整函数周期12-=α
πωi 在+∞<<ζ0的先验。
在(1.1)中由不同的时期0)(≠z f ,)()/1,(log r o f r N =+有一个满足,那么)(z f 和)(ω+z f 是线性
无关的解。
3.主要结果的证明
主要结果的证明的基础上[8]和[15]。
定理1的证明
让我们假设+∞<)(f e λ。
正弦)(z f 和)2(i z f π+是线性无关的,引理1意味着)(z f 和)4(i z f π+必须是线性相关的。
设)2()()(i z f z f z E π+=,则)(z E 满足微分方程
22
2)
()()(2))()(()(4z E c z E z E z E z E z A -''-'=, (2.1) 其中0≠c 是1f 和2f (见[12, p. 5] or [1, p. 354]),且)()2(1z E c i z E =+π或某些非零的常数1c 。
显然,E E /'和E E /''是两个周期i π2,而)(z A 是定义函数。
在(2.1),2)(z E 也定期与周期i π2。
因此,我们可以找到一个解析函数)(ζΦ在+∞<<ζ0,使)()(2z e z E Φ=代入(2.1)得这种表达
Φ
Φ''+ΦΦ'-ΦΦ'+Φ=-2222)(43)(4ζζζζc B (2.2) 由于)(ζB 和)(ζΦ在}{+∞<<=ζζ1:*C ,理论[21,p.15]给出了他们的结论
)()()(ζζζζb R B n =,)()()(11ζφζζζR n =Φ, (2.3)
其中n ,1n 是一些整数,)(ζR 和)(1ζR 函数分析和}{*∞⋃C 上非零,)(ζb 和)(ζφ是整函数。
按照相同的 [8]中,我们得出
),(),()/1,(),(φρρφρφρS b T N T ++=, (2.4)
其中)),((),(φρφρT o S =,此外,下列结论由[8]得
)}(),(max {)()()(222E E E E f eL eR e e e λλλλλ===,
)()()(12φλλλ=Φ=E eR ,
其中)(2
E eR λ是定义为
r
E r N R r )/1,(log lim 2++∞→(resp, r E r N R r )/1,(log lim 2++∞→), 定期二阶线性微分方程解的一些性质
其中,)/1,(2E r N R (resp. )/1,(2E r N L 表示一个计数功能,只计算在右半平面的2)(z E 零点(在左半平面),)(1Φλ是在Φ 的*C 零点收敛指数,它的定义为
ρ
ρλρlog )/1,(log lim )(1Φ=Φ++∞→N 由条件+∞<)(f e λ,我们得到+∞<)(φλ。
现在(2.3)代入(2.2)中
+'+'+-'+'++=-21112111112)(43)()
()()()(4φφζζφφζζζφζζζζζR R n R R n R c b R n n )222)1((1111111112
112φφφφζφφζφφζζζ''+''+'''+''+'+'+-R R R R R n R R n n n (2.5) 推论1的证明
我们可以很容易地推导出定理1的推论1(一)推论1的证明(B )。
假设1f 和2f 与+∞<)(21f f e λ线性无关,那么+∞<)(1f e λ,我们证明推论1的结论(一),)(z f j 与)2(i z f j π+线性相关,J =1;2。
假设)()()(21z f z f z E =,然后我们可以找到
)()2(2z E c i z E =+π的一个非零的常数2c ,重复同样的论点定理1中使用的事实,2)
(z E 也是能找到,我们得到2)()(121≤+--g E e μλ与2/1)(2≤g μ自矛盾,因此
+∞=)(21f f e λ。
定理2的证明
假设存在一个非平凡解的f 在(1.1)中,满足)()/1,(log r o f r N =+。
我们推断0)(=f e λ,)(z f 和)2(i z f π+的线性依赖推论1(a )。
然而,引理2意味着)(z f 和)2(i z f π+是线
性无关的。
这是一对矛盾。
因此)()/1,(log r o f r N ≠+,认为都有非平凡解的F 在(1.1)
中,这就完成了定理2的证明。
参考文献
[1]ARSCOTT F M .周期性Di 为方程[M]。
麦克米伦有限公司,纽约,1964年。
[2]BAESCH a .明确确定的特定解决方案的周期性的高阶微分方程的研究[J]。
结果数学。
,1996年。
[3]BAESCH,斯坦梅茨n ×n 阶周期线性微分方程的特殊解决方案[J]。
复杂的变量理论达成协议。
,1997年。
[4]银行S b .明确确定的周期微分方程的某些解决方案[J]。
复杂的变量理论达成协议。
,1993年。
[5]银行S b . value-distribution 理论三个结果线性微分方程解的研究[J]。
恒大数学。
J 。
,1986年。
[6]银行sb,莱恩即表示周期性的二阶线性微分方程解的研究[J]。
j . angew。
数学。
1983年。
[7]银行sb,兰利J k .高阶线性微分方程振动性定理与整个公司ray white[J].定期coe±客户发表评论。
数学。
大学,圣保罗。
,1992,年。
[8]蒋介石Y,高师国安。
在复杂的周期性振荡理论问题二阶lineardifferential方程和一些相关的扰动结果[J]。
安。
学会科学。
芬。
数学。
,2002,年。