第三讲 lingo入门
第三章LINGO软件的使用
第三章 LINGO软件使用入门LINGO是美国LINDO系统公司开发的一套专门用于求解最优化问题的软件.它为求解最优化问题提供了一个平台,主要用于求解线性规划、非线性规划、整数规划、二次规划、线性及非线性方程组等问题.它是最优化问题的一种建模语言,包含有许多常用的函数供使用者编写程序时调用,并提供了与其他数据文件的接口,易于方便地输入,求解和分析大规模最优化问题,且执行速度快.由于它的功能较强,所以在教学、科研、工业、商业、服务等许多领域得到了广泛的应用.§3.1 LINGO操作界面简介在Windows操作系统下启动LINGO软件,屏幕上首先显示如图1.1所示的窗口.图1.1图1.1中最外层的窗口是LINGO软件的主窗口(LINGO软件的用户界面),所有其他窗口都在这个窗口之内.主窗口有:标题栏、菜单栏、工具栏和状态栏.目前,状态栏最左边显示的是“Ready”,表示准备就绪,右下角显示的是当前时间,时间前面是当前光标的位置“Ln 1,Col 1”(即1行1列).将来用户可以用选项命令(LINGO|Options|Interface菜单命令)决定是否需要显示工具栏和状态栏.LINGO有5个主菜单:●File(文件)●Edit(编辑)●LINGO(LINGO系统)●Windows(窗口)●Help(帮助)这些菜单的用法与Windows下其他应用程序的标准用法类似,下面只对主菜单中LINGO系统的主要命令进行简要介绍.LINGO系统(LINGO)的主菜单●LINGO|Solve(Ctrl-S)LINGO|Solve(Ctrl-S)(求解)命令对当前模型进行编译并求解.如果当前模型输入有错误,编译时将报告错误.求解时会显示一个求解器运行状态窗口.●LINGO|Solution(Ctrl-O)LINGO|Solution(Ctrl-O)(解答)命令显示当前解.●LINGO|Range(Ctrl-R)LINGO|Range(Ctrl-R)(灵敏度分析)命令显示当前解的灵敏度分析结果.(你必须在此之前求解过当前模型)●LINGO|Options(Ctrl-I)LINGO|Options(Ctrl-I)(选项)命令将打开一个含有7个选项卡的对话框窗口,你可以通过它修改LINGO系统的各种控制参数和选项.修改完以后,你如果单击“应用”按钮,则新的设置马上生效;如果单击“OK”按钮,则新的设置马上生效,并且同时关闭该窗口;如果单击“Save”按钮,则将当前设置变为默认设置,下次启动LINGO时这些设置仍然有效;如果单击“Default”按钮,则恢复LINGO系统定义的原始默认设置;如果单击“Cancel”按钮将废弃本次操作,退出对话框;单击“Help”按钮将显示本对话框的帮助信息.●LINGO|Generate和LINGO|PictureLINGO|Generate和LINGO|Picture命令都是在模型窗口下才能使用,他们的功能是按照LINGO模型的完整形式分别以代数表达式形式和矩阵图形形式显示目标函数和约束.●LINGO|Debug(Ctrl+D)LINGO|Debug(Ctrl+D)命令分析线性规划无解或无界的原因,建议如何修改●LINGO|Model Statistics(Ctrl+E)LINGO|Model Statistics(Ctrl+E)命令显示当前模型的统计信息.●LINGO|Look(Ctrl+L)LINGO|Look(Ctrl+L)命令显示当前模型的文本形式,显示时对所有行按顺序编号.图1.2给出了工具栏的简要功能说明.图1.2当前光标所在的窗口(窗口标题栏上标有“LINGO Model-LINGO1”),就是模型窗口(model windows),也就是用于输入LINGO优化模型(即LINGO程序)的窗口.§3.2 LINGO模型的基本特征LINGO模型(程序)从LINGO模型窗口输入,它以语句“MODEL:”开始,以语句“END”结束.它是由一系列语句组成,每个语句都是以分号“;”结束,语句是组成LINGO模型的基本单位.每行可以写多个语句,为了保持模型的可读性,最好一行只写一个语句,并且按照语句之间的嵌套关系对语句安排适当的缩进,增强层次感.以感叹号“!”开始的语句是注释语句(注释语句也需要以分号“;”结束).LINGO模型(程序)一般由5个部分(或称5段)组成:(1)集合段(SETS):这部分要以“SETS:”开始,以“ENDSETS”结束,作用在于定义必要的集合变量(SET)及其元素(member,含义类似于数组的下标)和属性(attribute,含义类似于数组).格式有基本集和派生集两种.基本集:Setname(集合变量名)[/member_list(元素列表)/][:attribute_list(属性列表)];元素列表可以全部一一列出,也可以用格式“/元素1..元素N/”列出,例如SETS:STUDENTS/1,2,3,4,5/:NAME,AGE;ENDSETSSETS:STUDENTS/1..5/:NAME,AGE;ENDSETS派生集:Setname(parent_set_list(源集列表))[/member_list/][:attribute_list];例如SETS:PRODUCT/A B/;MACHINE/M N/;WEEK/1..2/;ALLOWED( PRODUCT,MACHINE,WEEK);ENDSETS列表可以用逗号“,”分开,也可以用空格分开.(2)数据段(DATA):这部分要以“DATA:”开始,以“ENDDATA”结束,作用在于对集合的属性(数组)输入必要的常数数据.格式为:attribute_list(属性列表)=value_list(常数列表);例如SETS:SET1 /A, B, C/: X, Y;ENDSETSDATA:X = 1 2 3;Y = 4 5 6;ENDDATA(3)初始化段(INIT):这部分要以“INIT:”开始,以“ENDINIT”结束,作用在于对集合的属性(数组)给出初值.格式为:attribute_list(属性列表)=value_list(常数列表);与数据段的用法类似.(4)计算段(CALC):这部分要以“CALC:”开始,以“ENDCALC”结束,作用在于对一些原始数据进行计算处理.因为在实际问题中,输入的数据往往是原始数据,不一定能在模型中直接使用,可以在这个段对这些原始数据进行一定的“预处理”,得到模型中真正需要的数据.在计算段中语句是顺序执行的.(5)目标与约束段:这部分没有段的开始和结束标记,作用在于给定目标函数与约束条件.可见除这一段外,其他4个段都有明确的段标记.这一段是模型的主要部分,其他段是为这一段服务的.其他四段可以没有,这一段必须要有.否则不称其为模型.这一段一般要用到LINGO的运算符和各种函数.§3.3 LINGO的运算符和函数LINGO包含有大量的运算符和函数,供程序(建立优化模型)调用,其功能很强.充分利用这些函数,对解决问题将是非常方便的.下面给出部分函数及简要功能介绍,全部函数及详细功能说明可进一步参考LINGO的使用手册.一、运算符及其优先级LINGO的运算符有三类:算数运算符、逻辑运算符和关系运算符.1.算术运算符:LINGO中的算术运算符有以下5种:+(加法),-(减法或负号),*(乘法),/(除法),∧(求幂).算术运算是数与数之间的运算,运算结果仍是数.2.逻辑运算符:LINGO中的逻辑运算符有以下9种,可以分成两类:(1)#AND#(与),#OR#(或),#NOT#(非):这三个运算是逻辑值之间的运算,也就是它们操作的对象本身必须已经是逻辑值或逻辑表达式,计算结果也是逻辑值.(2)#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于):这6个操作实际上是“数与数之间”的比较,也就是它们操作的对象本身必须是两个数,而逻辑表达式计算的结果是逻辑值.3.关系运算符:LINGO中的关系运算符有以下3种:<(即<=,小于等于),=(等于),>(即>=,大于等于)这三个运算符虽然也是“数与数之间”的比较,但在LINGO中只用来表示优化模型的约束条件,所以不是真正意义上的运算.这些运算符的优先级如表3.1所示(同一优先级按左到右的顺序执行;如果有括号“()”,则括号内的表达式优先进行计算)表3.1二、基本的数学函数在LINGO中写程序时可以调用大量的内部函数,这些函数以“@”符号打头(类似调用命令).LINGO中数学函数的用法与其它语言中的数学函数的用法类似,主要有以下函数:@ABS(X):绝对值函数,返回X的绝对值.@COS(X):余弦函数,返回X的余弦值(X的单位是弧度).@EXP(X):指数函数,返回e x的值.@FLOOR(X):取整函数,返回X的整数部分(向最靠近0的方向取整).@LGM(X):返回X的伽马(Gamma)函数的自然对数值.@LOG(X):自然对数函数,返回X的自然对数值.@MOD(X,Y):模函数,返回X对Y取模的结果.@POW(X,Y):指数函数,返回X Y的值.@SIGN(X):符号函数,返回X的符号值(X<0时返回-1,X>=0返回1).@SIN(X):正弦函数,返回X的正弦值.@SMAX(list):最大值函数,返回列表(list)中的最大值.@SMIN(list):最小值函数,返回列表(list)中的最小值.@SQR(X):平方函数,返回X的平方值.@SQRT(X):平方根函数,返回X的正的平方根的值.@TAN(X):正切函数,返回X的正切值.三、集合循环函数集合循环函数是指对集合上的元素(下标)进行循环操作的函数,主要有@FOR,@MAX,@MIN,@SUM,@PROD五种,其用法如下:@function(setname[(set_index_list)[|conditional_qualifier]]:expression_list);其中:Function是集合函数名;Setname是集合名;set_index_list是集合索引列表(不需要使用索引时可以省略);|conditional_qualifier是用逻辑表达式给出的过滤条件(无条件时可以省略);:expression_list是一个表达式(对@FOR函数,可以是一组表达式).下面简要介绍其作用.@FOR(setname[(set_index_list)[|cond_qualifier]]:exp_list):对集合setname中的每个元素独立地生成由exp_list描述的表达式(通常是优化问题的约束).@MAX(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的最大值.@MIN(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的最小值.@SUM(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的和.@PROD(setname[(set_index_list)[|cond_qualifier]]:exp):返回集合setname上的表达式exp的积.四、集合操作函数集合操作函数是指对集合进行操作的函数,主要有@INDEX,@IN,@WRAP,@SIZE四种,下面简要介绍其作用.@INDEX([set_name,]primitive_set_element):返回元素primitive_set_element在集合set_name中的索引值(即按定义集合时元素出现顺序的位置编号).如果省略集合名set_name,LINGO按程序定义的集合顺序找到第一个含有元素primitive_set_element的集合,并返回索引值.如果在所有集合中均没有找到该元素,会给出出错信息.@IN(set_name,primitive_index_1[,primitive_index_2 ...]):判断一个集合中是否含有索引值.集合set_name 中包含由索引primitive_index_1[,primitive_index_2...]所表示的对应元素,则返回1(逻辑值“真”),否则返回0(逻辑值“假”).@WRAP(INDEX,LIMIT):返回J=INDEX-K*LIMIT,其中J 位于区间[1,LIMIT],K 为整数.当INDEX 位于区间[1,LIMIT]内时直接返回INDEX .相当于数学上用INDEX 对LIMIT 取模函数的值+1,即@WRAP(INDEX,LIMIT)=@MOD(INDEX,LIMIT)+1.此函数对LIMIT <1无定义.可以想到,此函数的目得之一是防止集合的索引值越界.@SIZE(set_name):返回集合set_name 的模,即元素的个数.五、变量定界函数变量定界函数是对变量的取值范围加以限制的函数.主要有@BIN, @BND, @FREE, @GIN 四种,下面简要介绍其作用.@BIN(variable):限制变量variable 为0或1.@BND(lower_bound, variable, upper_bound):限制lower_bound <=variable <=upper_bound@FREE(variable):取消对变量variable 的符号限制(即可取负数、0或正数). @GIN(variable):限制变量variable 为整数.六、财务会计函数财务会计函数是用于计算净现值的函数.主要有@FPA, @FPL 两种,下面简要介绍其作用. @FPA(I,N):返回若干时段单位等额回收净现值.其中单位时段利率为I,时段N 个,即∑=+=Nn n I N I FPA 1)1(1),(@ @FPL(I,N):返回一个时段单位回收净现值.其中单位时段利率为I,时段N ,即N I N I FPL )1(1),(@+=七、概率中的相关函数概率中的相关函数是涉及到概率论和随机过程中的一些函数.主要有以下函数: @PSN(X):返回标准正态分布的分布函数在X 点的取值.@PSL(X):标准正态的线性损失函数,即返回MAX(0,Z-X)的期望值,其中Z 为均值为A的Poisson随机变量.@PPS(A,X):返回均值为A的Poisson分布的分布函数在X点的取值.@PPL(A,X):Poisson分布的线性损失函数,即返回MAX(0,Z-X)的期望值,其中Z为标准正态随机变量.@PBN(P,N,X):返回参数为(N,P)的二项分布的分布函数在X点的取值.@PHG(POP,G,N,X):返回总共有POP个球,其中G个是白球,随机地从中取出N个球,白球不超过X的概率.@PFD(N,D,X):返回自由度为N和D的F分布的分布函数在X点的取值.分布的分布函数在X点的取值.@PCX(N,X):返回自由度为N的2@PTD(N,X):返回自由度为N的t分布的分布函数在X点的取值.@PEB(A,X):返回当到达负荷(强度)为A,服务系统有X个服务器且允许无穷排队时的Erlang繁忙概率.@PEL(A,X):返回当到达负荷(强度)为A,服务系统有X个服务器且不允许排队时的Erlang繁忙概率.@PFS(A,X,C):返回当负荷上限为A,顾客数为C,并行服务器数量为X时,有限源的Poisson服务系统得等待顾客数的期望值.@QRAND(SEED):返回0与1之间的多个拟均匀随机数,其中SEED为种子,默认时取当前计算机时间为种子.该函数只能用在数据段(DATA-ENDDATA).@RAND(SEED):返回0与1之间的一个伪均匀随机数,其中SEED为种子.八、文件输入输出函数文件输入输出函数是指通过文件输入数据和输出结果的函数.主要有以下函数:@FILE('filename'):这个函数提供LINGO与文本文件的接口,用于引用其它ASCII码或文本文件中的数据,其中filename为存放数据的文件名(包括路径,没有指定路径时表示当前目录),该文件中记录之间必须用符号“~”分开.主要用在集合段和数据段,通过文本文件输入数据.@TEXT(['filename']):用于数据段中将解答结果送到文本文件filename中.@ODBC(['data_source'[,'table_name'[,'col_1'[, 'col_2'...]]]]):这个函数提供LINGO与ODBC(open data base connection,开放式数据库连接)的接口,用于集合段和数据段中引用其它数据库数据或将解答结果送到数据库中.其中data_source是数据库名,table_name是数据表名,col_i是数据列名(数据域名).@OLE('spreadsheet_file'[,range_name_list]):这个函数提供LINGO与OLE(object linking and embedding,对象链接与嵌入)的借口,用于集合段、数据段和初始段中输入和输出数据库.其中spreadsheet_file是文件名,range_name_list是文件中包含数据的单元范围.@POINTER(N):在Windows下使用LINGO的动态链接库(dynamic link library ,DLL),直接从共享的内存中传送数据.§3.4 LINGO软件求解案例一、生产管理问题1.问题实例某厂有5种设备A1,A2,…,A5,用来加工7种零部件B1,B2,…,B7,每种设备的数量、每种零部件的单位成本及所需各设备的加工工时(以小时计)见表1表1在其后的半年中,工厂有设备检修计划(停工检修时间一个月)见表2表2工厂在半年中有订单(必须按时交货)见表3表3每种零部件库存最多可到100件,现每种零部件有库存80件,库存费用每件每月为0.5元,,要求到六月底每种零部件有存货50件,每种零部件生产至少50件.工厂每周工作5天,每天2班,每班8小时.试回答如下问题:(1) 工厂如何安排各月份各种零部件的加工数量?(2) 单位成本有10%的变化,对计划有什么影响?(3) 设备各增加1台对计划有什么的影响.2.模型建立设: ij a 为第j 种零部件在第i 种设备上的单位加工工时)7,,2,1,5,,2,1( ==j i ;ik b 为第i 种设备在第k 月的数量)6,,2,1,5,,2,1( ==k i ; kj d 为第k 月第j 种零部件的顶单数量)7,,2,1,6,,2,1( ==j k ; j c 为第j 种零部件的单位收益)7,,2,1( =j ; kj x 为第k 月第j 种零部件的生产数量)7,,2,1,6,,2,1( ==j k ; kj s 为第k 月末第j 种零部件的库存数量)7,,2,1,6,,2,1( ==j k ; 800=j s 为初始库存)7,,2,1( =j假设每月以20天计,有以下模型:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥≥==≥=≤====-+===≤+-=====∑∑∑∑∑)(7,,2,1,6,,2,1,0,07,,2,1,6,,2,1,50)(7,,2,1,100)(7,,2,1,50)(7,,2,1,6,,2,1,)(6,,2,1,5,,2,13205.0min 6(617161617171非负约束生产要求个月末的库存第种零部件的库存月第第种设备的有效工时月第第费用目标))(,库存约束 j k s x j k x j s j s j k d x s s k i b x a s x c kj kj kj kjjkj kj j k kj ik j kj ij k k j kj j kj j j k i k 3.模型求解利用LINGO 软件计算,输入model:sets:cp/1..7/:c;yf/1..6/:;sb/1..5/:;sl1(yf,cp):x,d,s;sl2(sb,cp):a;sl3(sb,yf):b;endsetsdata:a=0.5 0.7 0.0 0.0 0.3 0.2 0.50.1 0.2 0.0 0.3 0.0 0.6 0.00.2 0.0 0.8 0.0 0.0 0.0 0.60.05 0.03 0 0.07 0.1 0 0.080 0 0.01 0 0.05 0 0.05;b=3 4 4 4 3 42 2 1 1 1 23 1 3 3 3 21 1 1 1 1 11 1 1 1 1 1;d=250 500 150 150 400 100 100300 250 100 0 200 150 100150 300 0 0 250 200 100100 150 200 250 100 0 1000 100 250 100 500 150 0250 250 100 300 550 250 100;c=100 60 80 40 110 90 30;enddatamin=@sum(sl1(k,j):c(j)*x(k,j)+0.5*s(k,j));@for(yf(k):@for(sb(i):@sum(cp(j):a(i,j)*x(k,j))<=320*b(i,k))); @for(yf(k)|k#gt#1:@for(cp(j):s(k,j)=s(k-1,j)+x(k,j)-d(k,j))); @for(cp(j):s(1,j)=80+x(1,j)-d(1,j));@for(cp(j):s(6,j)=50);@for(sl1(k,j):s(k,j)<=100);@for(sl1(k,j):x(k,j)>=50);end(1)计算结果有:目标函数:590580 z(2)目标的灵敏度分析:Objective Coefficient Ranges(目标系数的灵敏度分析)Current Allowable AllowableVariable Coefficient Increase Decrease变量目前系数允许增加范围允许减少范围X( 1, 1) 100.0000 INFINITY0.5000000X( 1, 2) 60.00000 INFINITY 0.5000000X( 1, 3) 80.00000 INFINITY 0.5000000X( 1, 4) 40.00000 INFINITY 1.500000X( 1, 5) 110.0000 INFINITY 0.5000000X( 1, 6) 90.00000 INFINITY 0.5000000X( 1, 7) 30.00000 INFINITY 0.5000000X( 2, 1) 100.0000 0.5000000 0.5000000X( 2, 2) 60.00000 0.5000000 0.5000000X( 2, 3) 80.00000 0.5000000 1.000000X( 2, 4) 40.00000 INFINITY 1.000000X( 2, 5) 110.0000 0.5000000 0.5000000X( 2, 6) 90.00000 0.5000000 0.5000000X( 2, 7) 30.00000 0.5000000 0.5000000X( 3, 1) 100.0000 0.5000000 0.5000000X( 3, 2) 60.00000 0.5000000 0.5000000X( 3, 3) 80.00000 INFINITY 0.5000000X( 3, 4) 40.00000 INFINITY 0.5000000X( 3, 5) 110.0000 0.5000000 0.5000000X( 3, 6) 90.00000 0.5000000 1.000000X( 3, 7) 30.00000 0.5000000 0.5000000X( 4, 1) 100.0000 0.5000000 1.000000X( 4, 2) 60.00000 0.5000000 0.5000000X( 4, 3) 80.00000 0.50000000.5000000X( 4, 4) 40.00000 0.5000000 0.5000000X( 4, 5) 110.0000 0.5000000 0.5000000X( 4, 6) 90.00000 INFINITY 0.5000000X( 4, 7) 30.00000 0.5000000 1.000000X( 5, 1) 100.0000 INFINITY 0.5000000X( 5, 2) 60.00000 0.5000000 0.5000000X( 5, 3) 80.00000 0.5000000 0.5000000X( 5, 4) 40.00000 0.5000000 0.5000000X( 5, 5) 110.0000 0.5000000 0.5000000X( 5, 6) 90.00000 0.5000000 0.5000000X( 5, 7) 30.00000 INFINITY 0.5000000X( 6, 1) 100.0000 0.5000000 INFINITYX( 6, 2) 60.00000 0.5000000 INFINITYX( 6, 3) 80.00000 0.5000000 INFINITYX( 6, 4) 40.00000 0.5000000 INFINITYX( 6, 5) 110.0000 0.5000000 INFINITYX( 6, 6) 90.00000 0.5000000 INFINITYX( 6, 7) 30.00000 0.5000000 INFINITY其中INFINITY是无穷.从以上灵敏度分析可见,提高10%,有超出允许范围的,所以对计划有影响.(3)约束条件的灵敏度分析:Righthand Side Ranges(右边常数项的灵敏度分析) Row Current Allowable AllowableRHS Increase Decrease行目前常数项允许增加范围允许减少范围2 960.0000 INFINITY450.00003 640.0000 INFINITY488.00004 960.0000 INFINITY840.00005 320.0000 INFINITY258.00006 320.0000 INFINITY300.80007 1280.000 INFINITY836.00008 640.0000 INFINITY473.00009 320.0000 INFINITY138.000010 320.0000 INFINITY268.400011 320.0000 INFINITY305.500012 1280.000 INFINITY830.000013 320.0000 INFINITY110.000014 960.0000 INFINITY 830.000015 320.0000 INFINITY 267.000016 320.0000 INFINITY 302.000017 1280.000 INFINITY 1035.00018 320.0000 INFINITY 205.000019 960.0000 INFINITY 760.000020 320.0000 INFINITY 282.000021 320.0000 INFINITY 308.500022 960.0000 INFINITY 670.000023 640.0000 INFINITY 525.000024 960.0000 INFINITY 720.000025 320.0000 INFINITY 253.500026 320.0000 INFINITY 290.000027 1280.000 INFINITY 655.000028 640.0000 INFINITY 270.000029 640.0000 INFINITY 410.000030 320.0000 INFINITY 206.000031 320.0000 INFINITY 283.5000从以上灵敏度分析可见,提高1台,没有超出允许范围的,所以对计划没有影响.也可以将数据与模型分离,先准备数据文件exam01.ldt:!单耗;0.5 0.7 0.0 0.0 0.3 0.2 0.50.1 0.2 0.0 0.3 0.0 0.6 0.00.2 0.0 0.8 0.0 0.0 0.0 0.60.05 0.03 0 0.07 0.1 0 0.080 0 0.01 0 0.05 0 0.05~!设备数量;3 4 4 4 3 42 2 1 1 1 23 1 3 3 3 21 1 1 1 1 11 1 1 1 1 1~!需求;250 500 150 150 400 100 100300 250 100 0 200 150 100150 300 0 0 250 200 100100 150 200 250 100 0 1000 100 250 100 500 150 0250 250 100 300 550 250 100~!单位成本;100 60 80 40 110 90 30~再写程序如下:model:sets:cp/1..7/:c;yf/1..6/:;sb/1..5/:;sl1(yf,cp):x,d,s;sl2(sb,cp):a;sl3(sb,yf):b;endsetsdata :a=@file ('exam01.ldt');b=@file ('exam01.ldt');d=@file ('exam01.ldt');c=@file ('exam01.ldt');enddatamin =@sum (sl1(k,j):c(j)*x(k,j)+0.5*s(k,j));@for (yf(k):@for (sb(i):@sum (cp(j):a(i,j)*x(k,j))<=320*b(i,k))); @for (yf(k)|k#gt#1:@for (cp(j):s(k,j)=s(k-1,j)+x(k,j)-d(k,j))); @for (cp(j):s(1,j)=80+x(1,j)-d(1,j));@for (cp(j):s(6,j)=50);@for (sl1(k,j):s(k,j)<=100);@for (sl1(k,j):x(k,j)>=50);end二、下料问题1.问题实例有某种材料一根长19米.现需用其切割4米长毛坯50根、5米长毛坯10根、6米长毛坯20根、8米长毛坯15根.如何切割使其用料最省?要求切割模式不能超过3种.2.模型建立设:4,3,2,1=i 分别表示4米长,5米长,6米长,8米长的毛坯;i a 为第i 种毛坯的长度)4,3,2,1(=i ;i b 为第i 种毛坯的需要量)4,3,2,1(=i ;j x 为第j 种切割模式所用的材料数量)3,2,1(=j ;ij r 为第j 种切割模式切割第i 种毛坯的数量)3,2,1,4,3,2,1(==j i .一种合理的切割模式应满足:其余料长度不应该大于或等于需要切割毛坯的最小长度.于是有模型如下⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥≥=≥=≤=≥=∑∑∑∑====3,2,1,4,3,2,1,0,0(3,2,1,16(3,2,1,19(4,3,2,1,(min 41413131j i r x j r a j r a i b x r x z ij ji ij i i ij i i j j ij j j 且整数合理的下料模式所下毛坯的总长所下毛坯的需要量用料目标))))3.模型求解为了便于运算,我们先来缩小可行域.由于3种切割模式的排列顺序是无关紧要的,所以不妨增加以下约束:321x x x ≥≥又注意到用料的总量有明显的上界和下界.首先,无论如何,用料总量不可能少于2619158206105504=⎥⎥⎤⎢⎢⎡⨯+⨯+⨯+⨯ 其次,考虑一种特殊的下料计划:模式1:切割成4根4米钢管,需13根;模式2:切割成1根5米和2根6米钢管,需10根;模式3:切割成2根8米钢管,需8根.这样需要13+10+8=31于是可得到解的一个上界.所以又可增加约束:3126321≤++≤x x x利用LINGO 软件计算,输入model:sets:needs/1..4/:a,b;cuts/1..3/:x;patterns(needs,cuts):r;endsetsdata:a=4 5 6 8;b=50 10 20 15;enddatamin=@sum(cuts(j):x(j));!用料目标;@for(needs(i):@sum(cuts(j):x(j)*r(i,j))>b(i));!需要量要求;@for(cuts(j):@sum(needs(i):a(i)*r(i,j))<19);!材料总长;@for(cuts(j):@sum(needs(i):a(i)*r(i,j))>16);!合理模式;@sum(cuts(j):x(j))>26;!用料下限;@sum(cuts(j):x(j))<31;!用料上限;@for(cuts(j)|j#lt#@size(cuts):x(j)>x(j+1));!人为约束;@for(cuts(j):@gin(x(j)));!整数约束;@for(patterns(i,j):@gin(r(i,j)));!整数约束;end经过LINGO求解,得到输出如下:Objective value: 28.00000Variable Value Reduced CostX( 1 ) 10.00000 0.000000X( 2 ) 10.00000 2.000000X( 3 ) 8.000000 1.000000R( 1, 1) 3.000000 0.000000R( 1, 2) 2.000000 0.000000R( 1, 3) 0.000000 0.000000R( 2, 1) 0.000000 0.000000R( 2, 2) 1.000000 0.000000R( 2, 3) 0.000000 0.000000R( 3, 1) 1.000000 0.000000R( 3, 2) 1.000000 0.000000R( 3, 3) 0.000000 0.000000R( 4, 1) 0.000000 0.000000R( 4, 2) 0.000000 0.000000R( 4, 3) 2.000000 0.000000即按照模式1、2、3分别切割10、10、8根材料,使用材料总根数为28根.第一种切割模式下1根材料切割3根4米的和1根6米的;第二种切割模式下1根材料切割2根4米的、1根5米的和1根6米的;第三种切割模式下1根材料切割2根8米的.三、投资组合问题1.问题实例有三种股票A,B,C,其前12年的价值每年的增长情况如表所示表中还给出了相应年份的500种股票的价格指数的增长情况.假设目前你有一笔资金准备投资这三种股票,并期望年收益率达到15%,那么你应如何投资? 2.模型建立设:3,2,1=i 分别表示表示A,B,C 三种股票;i R 为第i 种股票的价值)3,2,1(=i ;ij R 为第i 种股票第j 年的价值)12,,2,1,3,2,1( ==j i ;M 为指数;j M 为第j 年的指数)12,,2,1( =j ;i x 为投资第i 种股票比例)3,2,1(=i .股票指数反映的是股票市场的大势信息,对每只股票的涨跌是有影响的.假设每只股票的收益与股票指数成线性关系.即i i i i e M b a R ++=或12,,2,1,3,2,1, ==++=j i e M b a R ij j ij ij ij其中ij ij b a ,是待定系数,ij e 是一个随机误差,其均值为0)(=ij e E ,方差为)(2ij ij e D s =,此外假设随机误差ij e 与其他股票和股票指数都是独立的,所以0)()(==j ij kj ij M e E e e E .先根据所给数据回归计算ij ij b a ,,即使误差的平方和最小:3,2,1,||min12121212=-+=∑∑==i R M b a ej ij j ij ij j ij可用Matlab 软件做该回归计算,也可用LINGO 软件分别来做每只股票的回归计算,输入 model: sets:year/1..12/:M,R,a,b,e; endsets data:R=1.300 1.103 1.216 0.954 0.929 1.056 1.038 1.089 1.090 1.083 1.035 1.176;M=1.258997 1.197526 1.364361 0.919287 1.057080 1.055012 1.187925 1.317130 1.240164 1.183675 0.990108 1.526236; enddata calc:mean0=@sum(year(j):M(j))/@size(year);s20=@sum(year(j):@sqr(M(j)-mean0))/(@size(year)-1); s0=@sqrt(s20); endcalc min=s2;s2=@sum(year(j):@sqr(e(j)))/(@size(year)-2); s=@sqrt(s2);@for(year(j):e(j)=R(j)-a-b*M(j)); @for(year(j):@free(e(j))); @free(a);@free(b);End对上面的程序,注意以下几点: (1)只给了一种股票的价值R ;(2)在CALC 段直接计算了M 的均值mean0和方差s20以及标准差s0(为了使这个估计是无偏估计,分母是11而不是12);(3)程序中用到平方函数@sqr 和平方根函数@sqrt ;(4)除了计算回归系数外,同时估计了回归误差s2和标准差s ,为了使这个估计是无偏估计,分母是10而不是11和12,这是因为此时已经假设保持误差的均值为0,所以自由度又少了一个;(5)@free(a),@free(b),@free(e)三个语句不能少,因为它们不一定是非负的; 运行这个LINGO 模型,结果为:Objective value: 0.5748320E-02Variable Value Reduced CostMEAN0 1.191458 0.000000 S20 0.2873661E-01 0.000000 S0 0.1695188 0.000000 S2 0.5748320E-02 0.000000 S 0.7581767E-01 0.000000 A 0.5639761 0.000000 B 0.4407264 0.000000也就是说:M 的均值191458.10=m ,方差02873661.020=s ,标准差1695188.00=s ,对股票A ,回归系数5639761.01=a ,4407264.01=b ,误差的方差005748320.021=s ,误差的标准差07581767.01=s .同理,可以得到:对股票B ,回归系数239802.1,2635059.022=-=b a ,误差的方差01564263.022=s ,误差的标准差1250705.02=s .对股票C ,回归系数523798.1,5809590.033=-=b a ,误差的方差03025165.023=s ,误差的标准差1739300.03=s .于是,年投资收益为∑∑==++==3131)(i i i i i i i i e M b a x R x R收益的期望为∑∑==+=++=31031)()(i i i i i i i i i m b a x e M b a E x ER收益的方差为∑∑==+=++=3122202312])[()(i i i i i i i i i i s x s b x e M b a D x DR进一步,令∑=ii b x y ,则模型应该为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥+==+=∑∑∑∑====015.1)(1 ..)(min 31031313122202ii i i i i ii ii i i i x m b a x x b x y t s s x s y z 3.模型求解利用LINGO 软件计算,输入 model: sets:stocks/1..3/:u,b,s2,x; endsets data:mean0=1.191458; s20=0.02873661;s2=0.005748320,0.01564263,0.03025165; u=0.5639761,-0.2635059,-0.5809590; b=0.4407264,1.239802,1.523798; enddatamin=s20*@sqr(y)+@sum(stocks(i):s2(i)*@sqr(x(i))); @sum(stocks(i):b(i)*x(i))=y; @sum(stocks(i):x(i))=1;@sum(stocks(i):(u(i)+b(i)*mean0)*x(i))>1.15; end运算这个LINGO 模型,输出结果如下Objective value: 0.2465621E-01 Y 0.8453449 0.000000 X( 1) 0.5266052 0.000000 X( 2) 0.3806461 0.000000 X( 3) 0.9274874E-01 0.000000根据运算结果可知:A 大约占初始时刻总资产的53%,B 占38%,C 占9%.四、最小费用最大流问题1.问题实例需要将某地s 的天然气通过管道输送到另一地t ,中间有4个中转站4321,,,v v v v .由于输气管道的长短粗细不一或地质等原因,使得每条管道上的运输量及费用不同.下图给出了这两地与中转站的连接以及管道的容量、费用:图中括号里第一个数字是管道容量,第二个数字是管道单位运费.考虑s 地到t 地如何输送天然气,使得费用最小流量最大. 2.模型建立设:V 为网络顶点集,A 为网络的弧集;ij f 为弧),(j i 上的流量; ij b 为弧),(j i 上的单位运费; ij c 为弧),(j i 上的容量;)(f v 为发点处的净流量.根据最大流的定义,我们有模型如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧∈≤≤⎪⎩⎪⎨⎧≠=-==-∑∑∑∈∈∈∈∈Aj i c f t s i ti f v s i f v f f t s f v t s f bij ij A i j V j ji A j i V j ij Aj i ijij),(,0, 0 )( ),(..)(max ..min),(),(),( 3.模型求解先考虑最大流模型,LINGO 软件输入如下 model: sets:nodes/s,1,2,3,4,t/;arcs(nodes,nodes)/s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:c,f;endsetsdata:c=8 7 5 9 9 2 5 6 10;enddatamax=flow;@for(nodes(i)|i#ne#1 #and# i#ne#@size(nodes):@sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=0);@sum(arcs(i,j)|i#eq#1:f(i,j))=flow;@for(arcs(i,j):@bnd(0,f(i,j),c(i,j)));end计算结果如下:Objective value: 14.00000Variable Value Reduced Cost FLOW 14.00000 0.000000F( S, 1) 7.000000 0.000000F( S, 2) 7.000000 0.000000 F( 1, 2) 2.000000 0.000000 F( 1, 3) 5.000000 0.000000 F( 2, 4) 9.000000 -1.000000 F( 3, 2) 0.000000 0.000000 F( 3, T) 5.000000 -1.000000 F( 4, 3) 0.000000 1.000000 F( 4, T) 9.000000 0.000000 其次考虑最小费用最大流模型,LINGO软件输入如下model:sets:nodes/s,1,2,3,4,t/;arcs(nodes,nodes)/s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:b,c,f;endsetsdata:b=2 8 5 2 3 1 6 4 7;c=8 7 5 9 9 2 5 6 10;flow=14;enddatamin=@sum(arcs(i,j):b(i,j)*f(i,j));@for(nodes(i)|i#ne#1 #and# i#ne#@size(nodes):@sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=0);@sum(arcs(i,j)|i#eq#1:f(i,j))=flow;@for(arcs(i,j):@bnd(0,f(i,j),c(i,j)));end计算结果如下:Objective value: 205.0000Variable Value Reduced CostF( S, 1) 8.000000 -1.000000F( S, 2) 6.000000 0.000000F( 1, 2) 1.000000 0.000000F( 1, 3) 7.000000 0.000000F( 2, 4) 9.000000 0.000000F( 3, 2) 2.000000 -3.000000F( 3, T) 5.000000 -8.000000F( 4, 3) 0.000000 11.00000F( 4, T) 9.000000 0.000000附录 LINGO出错信息在LINGO程序求解时,系统首先会对程序进行编译.系统在编译或执行其他命令时,会因程序中的错误或运行错误,弹出一个出错报告窗口,显示其错误代码,并简要指出错误的原因.这些错误报告信息能够提示用户发现程序中的错误,以便能尽快修改.下面我们给出出错信息的一个简要说明,仅供参考.LINGO错误编号及原因对照表习题1.用LINGO 软件求解线性规划问题并作灵敏度分析(1) ⎪⎩⎪⎨⎧≥≤++≤++-++-=0,,9010412203..1355max 321221321321x x x x x x x x x t s x x x (2) ⎪⎩⎪⎨⎧≥≤≤+--≤+---+-=0,,,1035.0125.009825.0..65.02075.0max 3213432143214321x x x x x x x x x x x x t s x x x x z 2.用LINGO 软件求解0-1规划问题⎪⎪⎩⎪⎪⎨⎧=≥+-+≥+++-≥+++-+++=10,,,11424204..4352min 43214321432143214321或x x x x x x x x x x x x x x x x t s x x x x 3.用LINGO 软件求解整数规划问题⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤≤≤≤=+=-+=-+=-++++++=且整数0,,,,,,20,45,40,3025352515..2.02.02.05.54.51.50.5min 3214321432134323212113214321y y y x x x x x x x x y x y y x y y x y x t s y y y x x x x4.用LINGO 软件求解非线性规划问题 ⎪⎪⎩⎪⎪⎨⎧=≤≤--=+-+=++-+-+-+-+-=5,4,3,2,1,55222223..)()()()()1(min 4232332215544433322211i x x x x x x x t s x x x x x x x x x z i5.用LINGO 软件求解⎪⎩⎪⎨⎧-∈≤+++≤-≤+≤-+=}1,1{,,,2311..21max 432143214321T T x x x x x x x x x x x x t s z Qx x x c 其中T )2,4,8,6(-=c ,Q 是三对角线矩阵,主对角线上元素全为-1,两条次对角线上元素全为2.。
lingo入门教程(共55张)
3 3
A2
8 67
A3 4
7
B2
8 9
5 C2 6
T
第18页,共55页。
分析
(fēnxī)
6 A1 5 6
B1 6 C1
S
3 3
A2
8 67
A3 4
7
B2
8 9
5 C2 6
T
假设从S到T的最优行驶路线 P 经过城市C1, 则P中从S到C1的子路也一定 是从S到C1的最优行驶路线; 假设 P 经过城市C2, 则P中从S到C2的子路也一定是从S到C2的最优行驶路线. 因此, 为得到从S到T的最优行驶路线, 只需要先求出从S到Ck(k=1,2)的最 优行驶路线, 就可以方便地得到从S到T的最优行驶路线.
第19页,共55页。
分析
(fēnxī)
6 A1 5 6
B1 6 C1
S
3 3
A2
8 67
A3 4
7
B2
8 9
5 C2 6
T
此例中可把从S到T的行驶过程分成4个阶段,即 S→Ai (i=1,2 或3), Ai → Bj(j=1或2), Bj → Ck(k=1或2), Ck → T. 记d(Y,X)为城 市Y与城市X之间的直接距离(若这两个城市之间没有道路直 接相连,则可以认为直接距离为∞),用L(X)表示城市S到城市
L B2 minL A1 5, L A2 6, L A3 4 7 L A3 4; L C1 minL B1 6, L B2 8 15 L B2 8;
略2去),最小运量136.2275(吨公里)。
1
3
5
0
0
1
2
3
4
5
6
第3讲LINGO基本使用方法
新余学院 建模组
目前为止找到的可行 解的最佳目标函数值
有效步数
目标函数值的界
特殊求解程序当前运行步数: 分枝数(对B-and-B程序); 子问题数(对Global程序); 初始点数(对Multistart程序)
上一页
下一页
Xinyu University MCM
优优优化化化建建建模模模
(2) min z 3x1 2x2 x3
s.t. 2x1 x2 x3 5, 4x1 3x2 x3 3 x1 x2 x3 2 x1, x2 , x3 0
2020/1/15
新余学院 建模组
上一页
下一页
Xinyu University MCM
二、在LINGO中使用集合
注意:用“[]”表示该部分内容可选。下同,不再赘述。
2020/1/15
新余学院 建模组
上一页
下一页
Xinyu University MCM
优优优化化化建建建模模模
例语1法可:以定se义tn一a个m名e[为/mstuedmenbts的er原_l始is集t/,][它:a具tt有ri成bu员tJeo_hlni、stJ]i;ll、Rose和Mike
MonthM..MonthN Jill 0 Oc1t4..Ja按n 列赋值 Oct,Nov,Dec,Jan
Rose 0 17 MonthYearM..MonthYeMariNkeOc1t201031.;.Jan2002
Oct2001,Nov2001,Dec2001 ,Jan2002
enddata
③ 集成员不放在集定义中,而在随后的数据部分来定义。
2020/1/15
新余学院 建模组
《Lingo教程》课件
学习面向对象编程的基本概念和Lingo中的类、对象和继承。
2
继承和多态
掌握继承和多态的概念,以及如何使用它们设计灵活可扩展的程序。
3
使用Lingo进行网络编程
了解如何使用Lingo进行网络通信和数据交换。
4
错误处理
学习如何处理异常和错误,以确保程序的稳定性和利用Lingo开发图形用户界面, 创建直观、互动和易于使用的应 用程序。
游戏制作
使用Lingo创建令人兴奋的游戏, 实现各种令人惊叹的游戏效果。
多媒体应用
探索Lingo在音频、视频和动画 等多媒体应用领域的应用。
Lingo开源社区
Lingo开源社区介绍
了解Lingo开源社区,与其他开发者交流经验和分享资源。
Lingo社区资源分享
探索Lingo社区分享的各种资源,如代码库、教程和文档。
Lingo的应用领域
Lingo常用于游戏开发、动画制作、多媒体交互和图形用户界面设计等领域。
Lingo环境配置
安装Lingo
下载并安装Lingo以开始您的编 程之旅。
Lingo开发环境介绍
了解Lingo的开发环境,掌握各 种工具和功能。
Lingo常用工具
收集有用的Lingo工具,以加快 您的开发效率。
总结
通过本次《Lingo教程》PPT课件,您应该对Lingo的概述、环境配置、基础和高级语法、实例应用、开源社区 以及Lingo的现状和未来有了更深入的了解。希望这些知识能够对您的Lingo开发之旅起到帮助和指导作用。
基础语法
1 变量和常量
2 数据类型
学习如何声明和使用变量和常量以存储数据。
掌握Lingo的不同数据类型,如字符串、数字 和布尔值。
Lingo 入门
1 在Lingo中使用Lindo模型 Lingo中使用Lindo模型
Lingo 9.0完全支持Lindo模型程序的书写 9.0完全支持Lindo模型程序的书写 格式。在Lingo 9.0模型窗口中选择菜单命 格式。在Lingo 9.0模型窗口中选择菜单命 令“File|Open (F3)” (F3)” 9.0以前的版本中(如Lingo 注意 在Lingo 9.0以前的版本中(如Lingo 8.0), 8.0), “File|Import LINDO File (F12)”命令可以将Lindo模型文件转化成 (F12)”命令可以将Lindo模型文件转化成 Lingo模型。这个菜单命令的意思是“ Lingo模型。这个菜单命令的意思是“导入 Lindo文件”(在LINGO 9.0中已无必要, Lindo文件”(在LINGO 9.0中已无必要, 所以该命令已经被取消了)。
修改运行时的 内存限制
激活敏感 性分析
例3.1 一奶制品加工厂用牛奶生产A1,A2两种奶制品,1 一奶制品加工厂用牛奶生产A 两种奶制品,1 桶牛奶可以在甲车间用12h加工成3kgA 桶牛奶可以在甲车间用12h加工成3kgA1,或者在乙车间 用8h加工成4kg A2。根据市场需求,生产出的A1,A2全 8h加工成4kg 。根据市场需求,生产出的A 部能售出,且每千克A 获利24元,每千克A 获利16元。 部能售出,且每千克A1获利24元,每千克A2获利16元。 现在加工厂每天能得到50桶牛奶的供应,每天正式工人总 现在加工厂每天能得到50桶牛奶的供应,每天正式工人总 的劳动时间为480h,并且甲车间的设备每天至多能加工 的劳动时间为480h,并且甲车间的设备每天至多能加工 100kg A1,乙车间的设备的加工能力可以认为没有上限 限制(即加工能力足够大)。试为该厂制定一个生产计划, 使每天获利最大,并进一步讨论以下3 使每天获利最大,并进一步讨论以下3个附加问题: (1)若用35元可以买到1桶牛奶,是否作这项投资?若 )若用35元可以买到1 投资,每天最多购买多少桶牛奶? (2)若可以聘用临时工人以增加劳动时间,付给临时工 人的工资最多是每小时几元? (3)由于市场需求变化,每千克A1的获利增加到30元, )由于市场需求变化,每千克A 的获利增加到30元, 是否应该改变生产计划?
lingo入门 谢金星, 薛毅编著, 清华大学出版社祥解
0-1规划 -混合泳接力队的选拔
5名候选人的百米成绩
甲
乙
丙
丁
戊
蝶泳
1’06” 57”2 1’18” 1’10” 1’07”
仰泳
1’815” 1’06” 1’07” 1’14” 1’411”
蛙泳
6
8
2
1’27” 1’06” 1’24” 1’09” 1’23”
自由泳
58”6
4 53”
6 59”4
6 57”2
i 1 2 3 45 6
a 1.25 8.75 0.5 5.75 3 7.25
b 1.25 0.75 4.75 5 6.5 7.75
d3
5
4
7
6
11
假设:料场 和工地之间 有直线道路
1)现有 2 料场,位于 A (5, 1), B (2, 7), 记(xj,yj),j=1,2, 日储量 ej 各有 20 吨。
外层是主框架窗口,包含了所有菜单命令和工具条,其它所 有的窗口将被包含在主窗口之下。在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型 都都要在该窗口内编码实现。
File|Open (F3) 打开文件
File|Print (F7) 打印文件
工具栏
LINGO编程的几点注意事项 :
•用LINGO解优化模型时已假定所有变量非负(除非用限定变量取 值范围的函数@free或@sub或@slb另行说明)。
•语句是组成LINGO模型的基本单位,每个语句都以分号结尾,编 写程序时应注意模型的可读性。在英文输入法下输入程序和结尾 的分号 。乘号用*表示。
•以感叹号开始的是说明语句(说明语句也需要以分号结束))。
LINGO教程(PDF)
2.3 模型的集部分 集部分是 LINGO 模型的一个可选部分。在 LINGO 模型中使用集之前,必须在集部分事先 定义。集部分以关键字“sets:”开始,以“endsets”结束。一个模型可以没有集部分,或 有一个简单的集部分,或有多个集部分。一个集部分可以放置于模型的任何地方,但是一个 集及其属性在模型约束中被引用之前必须定义了它们。 2.3.1 定义原始集 为了定义一个原始集,必须详细声明: ·集的名字
外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。 在主窗口内的标题为 LINGO Model – LINGO1 的窗口是 LINGO 的默认模型窗口,建立的模型 都都要在该窗口内编码实现。下面举两个例子。
例 1.1 如何在 LINGO 中求解如下的 LP 问题:
min 2x1 + 3x2 s.t.
现在我们将深入介绍如何创建集,并用数据初始化集的属性。学完本节后,你对基于建 模技术的集如何引入模型会有一个基本的理解。
2.1 为什么使用集 集是 LINGO 建模语言的基础,是程序设计最强有力的基本构件。借助于集,能够用一个
共 53 页 2
LINGO 教程
单一的、长的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大 的模型。
2.2 什么是集 集是一群相联系的对象,这些对象也称为集的成员。一个集可能是一系列产品、卡车或 雇员。每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。属性值 可以预先给定,也可以是未知的,有待于 LINGO 求解。例如,产品集中的每个产品可以有一 个价格属性;卡车集中的每辆卡车可以有一个牵引力属性;雇员集中的每位雇员可以有一个 薪水属性,也可以有一个生日属性等等。 LINGO 有两种类型的集:原始集(primitive set)和派生集(derived set)。 一个原始集是由一些最基本的对象组成的。 一个派生集是用一个或多个其它集来定义的,也就是说,它的成员来自于其它已存在的 集。
lingo入门教程
运送量为cij 。
2 6
2
2
MIN f
cij x j ai y j bi
1
j1 i1
2
s.t.
cij di , i 1, 2,L , 6
2
j 1
6
cij ej , j 1, 2
3
i 1
使用现有临时料场时,决策变量只有 c(ij 非负),所以这是LP模型;当为新
建料场选址时决策变量为
c ij
和
x j , y j,由于目标函数
f对
x ,y
j
j
是非线性的,
所以在新建料场时是NLP模型。先解NLP模型,而把现有临时料场的位置作
为初始解告诉LINGO。
本例中集合的概念
利用集合的概念,可以定义需求点DEMAND和供应点 SUPPLY两个集合,分别有6个和2个元素(下标)。但决 策变量(运送量) cij 与集合DEMAND和集合SUPPLY都 有关系的。该如何定义这样的属性?
输出结果: 运行菜单命令“LINGO|Solve”
最大利润=11077.5
最优整数解 X=(35,65)
一个简单的LINGO程序
LINGO的基本用法的几点注意事项
•LINGO中不区分大小写字母;变量和行名可以超过8个字符,但 不能超过32个字符,且必须以字母开头。 •用LINGO解优化模型时已假定所有变量非负(除非用限定变量取 值范围的函数@free或@sub或@slb另行说明)。 •变量可以放在约束条件的右端(同时数字也可放在约束条件的左 端)。但为了提高LINGO求解时的效率,应尽可能采用线性表达 式定义目标和约束(如果可能的话)。 •语句是组成LINGO模型的基本单位,每个语句都以分号结尾,编 写程序时应注意模型的可读性。例如:一行只写一个语句,按照 语句之间的嵌套关系对语句安排适当的缩进,增强层次感。 •以感叹号开始的是说明语句(说明语句也需要以分号结束))。
lingo入门
lingo入门lingo入门教程之一--- 初识lingoingo对于一些线性或者非线性的规划,优化问题非常有效首先介绍一下,在lingo中运行程序时出现的页面(在工具栏点击类似靶子一样的图标便可运行)Solver status:求解器(求解程序)状态框Model Class:当前模型的类型:LP,QP,ILP,IQP,PILP,PIQP,NLP,INLP,PINLP(以I开头表示IP,以PI 开头表示PIP)State:当前解的状态:"Global Optimum", "LocalOptimum", "Feasible", "Infeasible“(不可行), "Unbounded “(无界), "Interrupted“(中断), "Undetermined“(未确定)Object:解的目标函数值Infeasibility:当前约束不满足的总量(不是不满足的约束的个数):实数(即使该值=0,当前解也可能不可行,因为这个量中没有考虑用上下界命令形式给出的约束)Iteration:目前为止的迭代次数Extend solverstatus:扩展的求解器(求解程序)状态框Solver type:使用的特殊求解程序:Bestobj :目前为止找到的可行解的最佳目标函数值Objbound:目标函数值的界Steps:特殊求解程序当前运行步数:Active:有效步数Variables(变量数量):变量总数(T otal)、非线性变量数(Nonlinear)、整数变量数(Integer)。
Constraints(约束数量):约束总数(T otal)、非线性约束个数(Nonlinear)。
Nonzeros(非零系数数量):总数(Total)、非线性项系数个数(Nonlinear)。
GeneratorMemory Used (K) (内存使用量)ElapsedRuntime (hh:mm:ss)(求解花费的时间)运行之后页面介绍(这里的运行界面并不是与上面的运行过程中出现界面一致,即并非来自于同一个程序运行出现)第一行表示在经过457次迭代后得到局部最优解第二行给出该局部最优解的具体值下面给出取局部最优值时,x1 x2的具体取值这里求解的是局部最优解,如果想求出全局最优解,可以进行页面设置:lingo --> option --> global solver --> 勾选use globalsolver对于运行结果也可以另存为,格式一般为ldt,因为有时候对于求解一个问题,或许需要运行很久才可以得出结果,所以没必要每次为了看结果都运行,而是运行成功一次后便把结果保存下来注意事项LINGO总是根据“MAX=”或“MIN=”寻找目标函数;程序语句的顺序一般不重要,既可以随意调换;程序运用函数时都是以@开头;程序中的变量默认为非负数,想要改变变量类型必须有相应函数调整程序中变量不区分大小写;语句必须以分号结尾;注释以!开始,且注释语句后面必须也有分号,注释默认注释到第一个分号处,意思是分号前面会全部被注释掉。
Lingo教程
L i n g o教程-CAL-FENGHAI.-(YICAI)-Company One1LINGO教程LINGO是用来求解线性和非线性优化问题的简易工具。
LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。
?§1 LINGO快速入门安装:实验室的所有电脑都已经事先安装好了Lingo 8(或者9, 10,11)。
如果要在自己的电脑上安装这个软件,建议从网上下载一个破解版的,按照提示一步一步地安装完毕。
简单例子:当你在windows系统下开始运行LINGO时,会得到类似于下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都要在该窗口内编码实现。
下面举两个例子。
例 1某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示。
产品I产品II设备 1 28台时原材料A 4 016kg原材料B 0 412kg该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应该如何安排生产计划使该厂获利最多我们用下面的数学模型来描述这个问题。
设x_1、x_2分别表示在计划期内产品I、II的产量。
因为设备的有效台时是8,这是一个限制产量的条件,所以在确定产品I、II的产量时,要考虑不超过设备的有效台时数,即可用不等式表示为x_1 + 2x_2 <=8同理,因原材料A、B的限量,可以得到以下不等式4x_1 <=164x_2 <=12该工厂的目标是在不超过所有资源限量的条件下,如何确定产量x_1、x_2以得到最大的利润。
若用z表示利润,这时z=2x_1+3x_2.综合上述,该计划问题可用数学模型表示为:目标函数 max z=2x_1+3x_2约束条件 x_1 + 2x_2 <=84x_1 <=164x_2 <=12x_1、x_2 >=0一般来说,一个优化模型将由以下三部分组成:1.目标函数(Objective Function):要达到的目标。
lingo中文手册
§1 LINGO快速入门LINGO是用来求解线性和非线性优化问题的简易工具。
LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。
当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例如何在LINGO中求解如下的LP问题:在模型窗口中输入如下代码:min=2*x1+3*x2;x1+x2>=350;x1>=100;2*x1+x2<=600;然后点击工具条上的按钮即可。
例使用LINGO软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如下表。
单位销地运价产地B1B2B3B4B5B6B7B8产量A1 6 2 6 7 4 2 5 9 60A2 4 9 5 3 8 5 8 2 55A3 5 2 1 9 7 4 3 3 51A4 7 6 7 3 9 2 7 1 43A5 2 3 9 5 7 2 6 5 41A6 5 5 2 2 8 1 4 3 52 销量35 37 22 32 41 32 43 38使用LINGO软件,编制程序如下:model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。
Lingo软件入门
38~
4
4 5 7 2 5
9 2 6 3 5
5 1 7 9 2
3 9 3 5 2
8 7 9 7 8
5 4 2 2 1
8 3 7 6 4
2 3 1 5 3
!最后一个记录是单位运价;
(3)用 Lingo 编程,要求数据文件放在 Excel 文件中。
Lingo 通过@OLE 函数实现与 Excel 文件传递数据,使用@OLE 函数既可以从 Excel 文 件中导入数据,也能把计算结果写入 Excel 文件。 从 Excel 文件中导入数据的格式如下 属性名 1=@OLE(‘Excel 文件名 ’, ‘数据块名称 1’) ; 使用@OLE 函数也能把计算结果写入 Excel 文件,使用格式如下 @OLE(‘Excel 文件名’, ‘数据块名称 2’)=属性名 2; 如数据块名称与属性名相同时,可以省略数据块名称。 计算的 Lingo 程序如下 model: sets: warehouses/1.. 6/: e; vendors/1..8/: d; links(warehouses,vendors): c, x; endsets min=@sum(links: c*x); @for(vendors(J):@sum(warehouses(I): x(I,J))=d(J)); @for(warehouses(I):@sum(vendors(J): x(I,J))<=e(I)); data: e=@ole(sdata3.xls); d=@ole(sdata3.xls); c=@ole(sdata3.xls,cc); !Excel 中不允许使用域名“ c” ,对应的数据块定义成“ cc”; @ole(sdata.xls)=x; enddata end 例2 Lingo 中的子模型
lingo入门-PPT课件
Global optimal solution found at iteration:
(8)在Lingo中,以“”开头的都是调用函数,这在 后面专门叙述。
3、计算
摁这个按钮就可以开始计算,如果有错误,根据提示
Lingo程逐序步修常改见。错最误终:得乘到一号个“计*”算状漏态掉文;档分(号如“下所;示”)漏掉; 变量名没有定义;函数标示“”漏掉;括号不配对; sets,endsets,data,enddata(不是enddate!)后加分号。
6
Objective value:
244.0000
Variable X11 X12 X13 X14 X21 X22 X23 X24 X31 X32 X33 X34
Value 4.000000 0.000000 12.00000 0.000000 4.000000 0.000000 0.000000 6.000000 0.000000 14.00000 0.000000 8.000000
Reduced Cost 0.000000 2.000000 0.000000 0.000000 0.000000 2.000000 1.000000 0.000000 9.000000 0.000000 12.00000 0.000000
四、Lingo运算符 1、算术运算符
lingo入门教程
lingo入门教程Lingo是一种广泛应用于计算机编程和计算机科学领域的编程语言。
它是用于Adobe Director(一种多媒体应用程序)中的脚本语言,用于控制多媒体元素和动画。
Lingo的语法比较简单易懂,有助于创建交互式和多媒体项目。
下面是一些Lingo的基本概念和用法。
1. 变量(Variables): 在Lingo中,变量用于存储数据值。
变量可以是数字、文本或其他数据类型。
要创建变量,可以使用关键字`global`或`local`,后跟变量名和初始值(可选)。
例如:```global myVariable = 10local myText = "Hello World"```2. 条件语句(Conditional statements): 条件语句用于根据条件执行特定的代码块。
常用的条件语句有`if-then`和`if-then-else`。
例如:```if myVariable > 5 thenalert "Value is greater than 5"elsealert "Value is less than or equal to 5"end if```3. 循环(Loops): 循环用于重复执行一段代码块,直到满足指定条件为止。
Lingo提供了`repeat`和`repeat while`循环语句。
例如:```repeat with i = 1 to 5put iend repeat```4. 函数(Functions): 函数是一组预定义的代码,用于执行特定的任务。
Lingo提供了许多内置函数,如`alert`、`put`等。
您还可以创建自己的函数。
例如:```on multiplyNumbers(a, b)return a * bend multiplyNumbersput multiplyNumbers(2, 4) -- 输出8```这些只是Lingo的一些基本概念和用法。
精品-优秀PPT课件--LINGO的基本知识共17页文档
55、 为 中 华 之 崛起而 读书。 ——周 恩来
精品-优秀PPT课件--LINGO的基本知 识
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
LINGO入门
LINGO 软件培训LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:0,6002100350..32min212112121≥≤+≥≥++x x x x x x x t s x x§2 LINGO中的集集是一群相联系的对象,这些对象也称为集的成员。
一个集可能是一系列产品、卡车或雇员。
每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。
属性值可以预先给定,也可以是未知的,有待于LINGO求解。
例如,产品集中的每个产品可以有一个价格属性;卡车集中的每辆卡车可以有一个牵引力属性;雇员集中的每位雇员可以有一个薪水属性,也可以有一个生日属性等等。
LINGO有两种类型的集:原始集(primitive set)和派生集(derived set)。
一个原始集是由一些最基本的对象组成的。
一个派生集是用一个或多个其它集来定义的,也就是说,它的成员来自于其它已存在的集。
1.定义原始集集部分以关键字“sets:”开始,以“endsets”结束。
定义一个原始集,用下面的语法:setname[/member_list/][:attribute_list];注意:用“[]”表示该部分内容可选。
下同,不再赘述。
Setname是你选择的来标记集的名字,Member_list是集成员列表,attribute_list集的属性。
LINGO教程
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、Lindo/Lingo软件内部有以下4个求解程序用于求解 不同类型的优化模型
(1)r Solver); (3)非线性优化求解程序(Nonlinear Solver); (4)分支定界管理程序(Branch and Bound Manager)。
同理,有
| x 2 | y 2 y 2 ' , x 2 y 2 ' y 2 ; | x 3 | y3 y3 ' , x 3 y3 ' y3 .
代入模型,注意增加约束
y1 , y1 ' , y2 , y2 ' , y3 , y3 ' 0
(3) min
max(x 1 , x 2 , x 3 );
最高分越低越好!!
x1 x 2 x 3 10, s.t. x1 3x 2 2 x 3 12.
解 令
y max(x 1, x 2 , x3 )
,则此约束的充分条件是
y x1 , y x 2 , y x 3 .
所以,原模型等价于
min
y;
x1 x 2 x 3 10, s.t.x1 3x 2 2 x 3 12, y x , y x , y x . 1 2 3
x1+x2<100; x1<2*x2; max=98*x1+277*x2-x1^2-0.3*x1*x2-2*x2^2; @gin(x1);@gin(x2);
根据上面的书写格式,归纳如下:
(1)Lingo总是根据‚max=“或‛min=“语句寻找目标函数, 其它语句都是约束条件(注释句除外),即输入时不需要按顺 序输入; (2)Lingo中不区分大小写字母,Lingo中的变量名可以超过8 个字符,但不能超过32个字符,且必须以字母开头,其中不能 含有中文; (3) Lingo中已假设所有变量都是非负的,所以当x>=0时,不 必在输入计算机中,相反,如果有变量x可以取负数,则应规范 @free(x);
Global optimal solution found at iteration: 364 Objective value: 11077.50
Variable X1 X2 Row 1 2 3
Value 35.00000 65.00000
Reduced Cost -1.999947 0.000000
(2) min | x1 | 2 | x 2 | | x 3 | x1 x 2 x 3 10, s.t. x1 3x 2 2 x 3 12.
解
| x1 | x1 | x1 | x1 , y1 ' 设 y1 ,由此解得 2 2
| x1 | y1 y1 ' , x1 y1 'y1
例如:y=sinx-1,数学上y取值于【-2,0】,如果是写在lingo 程序中,就导致y==0!,(必须加上free(y)),为什么?
(4)Lingo中的>=,<=可以用>,<替换,即不区分大于等于和 大于,小于等于和小于;
(5)输入的多余的空格和回车都会被忽略,一个约束 可以分两行或者多行书写;
四、Lingo运算符 1、算术运算符 + 加 减 * 乘 / 除 ^ 幂
算术运算符是数与数之间的运算,结果也是数。 2、逻辑运算符 2.1 逻辑值之间的运算符
#AND#
#OR#
#NOT#
与 或 非 参与运算的是逻辑值,结果也是逻辑值,逻辑值 只有‚真‛(True=1)和‚假‛(False=0)两个值。
2.2 逻辑表达式的比较符 #EQ# #NE# #GT# #GE# #LT# #LE#
等于
不等于
大于
大于等于 小于
小于等于
这6个操作符实际还是‚数与数之间的‛比较, 而逻辑表达式计算的结果是逻辑值。 3、关系运算符 < (<=) >(>=) = 等于
小于(小于等于) 大于(大于等于) 这三个符号表示数与数之间的大小关系
对于已经输入的一个优化模型,一旦发出求解指 令,第一步是对等式约束的直接处理,例如,如果约 束中有三个等式约束
Xyz=30,
X+y=8, Y=5 则Lingo软件能直接确定y=5,x=3,z=2,这三个变量就 变成常数了。这样就尽量减少模型的规模(变量数和 约束数),从而使得求解更加有效快捷。第二步就是 识别模型的类型,根据类型调用不同的处理器来求解。
3、计算
Lingo程序常见错误:乘号‚*‛漏掉;分号‚;‛漏掉; 变量名没有定义;函数标示‚@”漏掉;括号不配对; sets,endsets,data,enddata(不是enddate!)后加分号。
摁这个按钮就可以开始计算,如果有错误,根据提示 逐步修改。最终得到一个计算状态文档(如下所示)
同时也得到一个求解结果的窗口
min=4*x11+12*x12+4*x13+11*x14 +2*x21+10*x22+3*x23+9*x24 +8*x31+5*x32+11*x33+6*x34; x11+x12+x13+x14=16; x21+x22+x23+x24=10; x31+x32+x33+x34=22; x11+x21+x31=8; x12+x22+x32=14; x13+x23+x33=12; x14+x24+x34=14;
Lingo优化软件入门
(商用版) 舒兴明
一、Lindo/Lingo软件简介 1、美国芝加哥大学的Linus Schrage教授于1980年 前后开发的专门用于求解最优化问题的软件包,后经 多年完善与扩充,并成立了LINDO系统公司进行商 业运作取得巨大成功。根据 LINGO公司主页 ()提供的信息,位列《财富》 杂志500强的企业中,有一半以上使用Lingo优化软 件,前25强有23企业使用Lingo优化软件。用户可以 在 主页自由下载各类子包的演示版和应用 例子。演 示版和正式版功能类似,只是求解问题规模受到限制。 各类版本的限制如下表
尽量少用绝对值函数(|x|)、符号函数(当x<0,函数为-1,x=0 时,函数为0,当x>0时,函数为1)、多个变量求最大(或最 小)、四舍五入函数、取整函数等。
3、尽量使用线性优化模型,尽量减少非线性约束和非线 性变量(非线性约束中的变量)的个数; 4、合理设定变量的上下界,避免计算陷入‚大海捞 针‛。 5、模型中使用的单位的数量级要适当
(6)Lingo模型是由一系列语句构成,即语句是组成 Lingo模型的基本单位,每个语句都是以分号‚;‛结 尾,但尽量一个语句用一行来书写;
(7) 以感叹号‚!‛开始的语句是说明语句(注释 语句,以便读者更好理解程序),但计算机在读取模 型时,会忽略这样的语句。
(8)在Lingo中,以‚@”开头的都是调用函数,这在 后面专门叙述。
解
令
y1 x , y2 x ,代入原规划模型,得
2 1 2 2
min y1 y 2 4 x 3 5x 4 ; 4 y1 4 y 2 x 3 x 4 5, s.t. x 3 2 x 4 10, y 0, y 0, x 0, x 0 2 3 4 1
4、运算符的优先级别 优先级 最高 运算符 #not# ^ * / -(负号)
而处理器识别模型会在计算界面给出说明:
LP:线性规划模型 QP:二次规划模型 NLP:非线性规划 ILP:整数线性规划 INLP:整数非线性规划 IQP:整数二次规划
二、建立优化模型应注意的几个问题 1、尽量使用实数优化模型,尽量减少整数约束和整数 变量的个数;
2、尽量使用光滑优化模型,尽量避免使用非光滑函数;
Lingo计算时,最大数尽量不要超过最小数的1000倍,如果 出现100000000与0.1的计算,误差很大!小数湮没于大数!
例1 化下列非线性规划化为线性规划
例1
(1) min x x 4x 3 5x 4 ;
2 1 2 2 2 4x1 4x 2 2 x 3 x 4 5, s.t. x 3 2x 4 10, x 0, x 0, x 0, x 0 2 3 4 1
i 1 j1
3
4
例3
9x 24 8x 31 532 11x 33 6x 34 ;
s.t . x11 x12 x13 x14 16, x 21 x 22 x 23 x 24 10, x 31 x 32 x 33 x 34 22, x11 x 21 x 31 8, x12 x 22 x 32 14, x13 x 23 x 33 12, x14 x 24 x 34 14. x ij 0, i 1,2,3; j 1,2,3,4
Slack or Surplus Dual Price 0.000000 6.500069 95.00000 0.000000 11077.50 1.000000
得到最优解迭代次数为364次,目标值为11077.5,其 中x1=35,x2=65,其余的解读后面再给出。
例3 min cijx ij 4x11 12x12 4x13 11x14 2x 21 10x 22 3x 23
(4) max min(x1 5, x 2 4) x1 x 2 10, s.t. x 1 3x 2 2.
解 设
最低分越高越好!!
,此约束等价于 y min(x 5 , x 4 ) 1 2 y x1 5, y x 2 4, 所以原模型等价于
Global optimal solution found at iteration: 6 Objective value: 244.0000