人教版数学九年级下册 第二十七章 相似 全章测试 含答案
人教版数学九年级下册 第二十七章 相似 单元检测附答案
人教版数学九年级下册 第二十七章 相似 单元检测附答案一、选择题。
1.下列图形中,△ABC ~△DEF .则这两个三角形不是位似图形的是 ( )A .B .C .D .2.在比例尺是1:40000的地图上,若某条道路长约为5 cm ,则它的实际长度约为( )A .0.2 kmB .2 kmC .20 kmD .200 km3.若△ABC 的每条边长增加各自的10%得△A ′B ′C ′,则∠B ′的度数与其对应角∠B 的度数相比 ( )A .增加了10%B .减少了10%C .增加了(1+10%)D .没有改变4.如图,在△ABC 中,DE ∥BC ,若32 DB AD ,则ECAE = ( )A .31 B .52C .32D .53 5.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3 OC ,OB=3 OD ),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,那么当CD=1.8 cm 时,AB 的长为 ( )A .7.2 cmB .5.4 cmC .3.6 cmD .0.6 cm6.如图,在四边形ABCD 中,BD 平分∠ABC ,∠BAD=∠BDC=90º,E 为BC 的中点,AE 与BD 相交于点F 若BC=4,∠CBD=30º,则DF 的长为 ( )A .532 B .332 C .433 D .534 7.在平面直角坐标系中,线段AB 两个端点的坐标分别为A(6,8),B(10,2),若以原点O 为位似中心,在第一象限内将线段AB 缩短为原来的21后得到线段CD ,则点A 的对应点C 的坐标为( )A .(5,1)B .(4,3)C .(3,4)D .(l ,5)8.当下,户外广告已对我们的生活产生直接的影响.图中的AD 是安装在广告架AB 上的一块广告牌,AC 和DE 分别表示太阳光线,若某一时刻广告牌AD 在地面上的影长CE=1 m ,BD 在地面上的影长BE=3 m ,广告牌的顶端A 到地面的距离AB=20 m ,则广告牌AD 的高为 ( )A .5 mB .320mC .15 mD .760m 9.如图,△ABC 中,AC=6,AB=4,点D 与点A 在直线BC 的同侧,且∠ACD=∠ABC ,CD=2,点E 是线段BC 延长线上的动点,当△DCE 和△ABC 相似时,线段CE 的长为 ( )A .3B .34 C .3或34 D .4或43 10.在平面直角坐标系中,已知点O(0,0)、A(0,2)、B(l ,0),点P 是反比例函数y=-x 1图象上的一个动点,过点P 作PQ ⊥x 轴,垂足为点Q ,若以点O 、P 、Q 为顶点的三角形与△OAB 相似,则相应的点P 共有 ( )A .l 个B .2个C .3个D .4个二、填空题。
2022年人教版九年级数学下册第二十七章-相似专题测评试题(含答案解析)
人教版九年级数学下册第二十七章-相似专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在▱ABCD中,对角线AC,BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,若AB=4,BC=6,CE=1,则CF的长为()A B.1.5 C D.12、如图,已知矩形ABCD中,AB=3,BE=2,EF⊥B C.若四边形EFDC与四边形BEFA相似而不全等,则CE的值为()A.92B.6 C.152D.93、在ABC中,D,E分别是边AB,AC上的两个点,并且DE∥BC,AD:BD=3:2,则ADE与四边形BCED的面积之比为()A .3:5B .4:25C .9:16D .9:254、如图,点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,3S :2S 的值为( )A .12 B .23C D 3525、若578a b ck ===且323a b c -+=,则243a b c +-的值是( ) A .14 B .42 C .7 D .1436、下列图形中,不是位似图形的是( )A .B .C .D .7、已知32a b =,那么下列等式中正确的是( )A .53a b b += B .13a b b -= C .23a b = D .23ab =8、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则BEEC的值为( )A .13B .14C .15D .1259、如果两个相似多边形的周长比是2:3,那么它们的面积比为( )A .2:3B .4:9C D .16:8110、如图,DE ∥BC ,则下列式子正确的是( )A .=AB BDEC AEB .AD DEAB BC= C .=AE ABEC ADD .AD DEAB BC=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AB=6,BC275=,点N在边AD上,ND=2,点M在边BC上,BM=1,点E在DC的延长线上,连接AE,过点E作EF⊥AE交直线MN于点F,当AE=EF时,DE的长为 _____.2、如果5a=4b,那么ba=____.3、如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且54OEEA=,则FGBC=________.4、如图,在矩形ABCD中,AB=30,BC=40,对角线AC与BD相交于点O,点P为边AD上一动点,连接OP,将△OPA沿OP折叠,点A的对应点为点E,线段PE交线段OD于点F.若△PDF为直角三角形,则PD的长为______.5、如图,在ABCD □中,E 为CD 上一点,连结BE 并延长交AD 延长线于点F .如果:2:3DE EC =,那么:DEF ABF S S =△△____________.三、解答题(5小题,每小题10分,共计50分)1、如图,O 为坐标原点,B ,C 两点坐标分别为()3,1-,()2,1.(1)以O 为位似中心在y 轴左侧将OBC 放大两倍,并画出图形; (2)分别写出B ,C 两点的对应点B ',C '的坐标;(3)已知(),M x y 为OBC 内部一点,写出M 的对应点M '的坐标. 2、如图,在平面直角坐标系中,点A 、点B 的坐标分别为()1,3,()3,2.(1)画出OAB绕点B顺时针旋转90︒后的O A B''△;'''';(2)以点B为位似中心,相似比为2:1,在x轴的上方画出O A B''△放大后的O A B3、在等边三角形ABC中,点D是边AB的中点,过点D作DE∥BC交AC于点E,点F在BC边上,连接DF,EF.(1)如图1,当DF是∠BDE的平分线时,若AE=2,求EF的长;(2)如图2,当DF⊥DE时,设AE=a,则EF的长为(用含a的式子表示).4、如图,在Rt△ABC中,∠C=90°,BC=A=60°,四边形DEFG是△ABC的内接矩形,顶点D、G分别在边AC、BC上,点E、F在边AB上,设AE=x,DG=y.(1)求y与x之间的函数关系式;(2)当矩形DEFG 的面积S 取得最大值时,求△CDG 与△BFG 的相似比.5、如图,在带有网格的平面直角坐标系中,网格边长为一个单位长度,给出了三角形ABC . (1)作出ABC 关于x 轴对称的A B C ''';(2)以坐标原点为位似中心在图中的网格中作出A B C '''的位似图形A B C ''''''△,使A B C '''与A B C ''''''△的位似比为1:2;(3)若ABC 的面积为3.5平方单位,求出A B C ''''''△的面积.---------参考答案----------- 一、单选题 1、D 【解析】 【分析】过O 作OM ∥BC 交CD 于M ,根据平行四边形的性质得到BO =DO ,CD =AB =4,AD =BC =6,根据三角形的中位线的性质得到CM =12CD =2,OM =12BC =3,通过△CFE ∽△MOE ,根据相似三角形的性质得到CF CEOM EM=,代入数据即可得到结论.【详解】解:过O作OM∥BC交CD于M,在▱ABCD中,BO=DO,CD=AB=4,AD=BC=6,∴CM=12CD=2,OM=12BC=3,∵OM∥CF,∴△CFE∽△MOE,∴CFOM=CEEM,即1 33 CF,∴CF=1.故选:D.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.2、A【解析】【分析】设CE=x,由四边形EFDC与四边形BEFA相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】解:设CE =x ,∵四边形EFDC 与四边形BEFA 相似, ∴AB CEBE EF=, ∵AB =3,BE =2,EF =AB , ∴323x =, 解得:x =4.5, 故选:A . 【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC 与四边形BEFA 相似得到比例式. 3、C 【解析】 【分析】根据题意先判断△ADE ∽△ABC ,再根据相似三角形的面积之比等于相似比的平方进行分析计算即可得到结论. 【详解】 解:∵DE ∥BC , ∴△ADE ∽△ABC , ∵AD :BD =3:2, ∴:3:5AD AB =, ∴22:3:59:25ADE ABCSS==,∴ADE 与四边形BCED 的面积之比为9:16.故选:C. 【点睛】本题考查相似三角形的判定和性质,注意掌握相似三角形的面积之比等于相似比的平方. 4、C 【解析】 【分析】设正方形ABCD 的边长为a ,关键黄金分割点的性质得到512AEAB 和BE AE =,用a 表示出1S 、2S 和3S 的面积,再求比例. 【详解】解:设正方形ABCD 的边长为a , ∵点E 是AB 上的黄金分割点,∴512AE AB,BE AE =∴AE AB ==,∴2BE a ==⎝⎭,∵2221S AE ⎫===⎪⎪⎝⎭,22S BE BC =⋅=,∴)222232S a a ==,∴)2232:2S S a ==. 故选C .【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质.5、D【解析】【分析】将,,a b c 用k 表示出来,得到5,7,8a k b k c k ===,再将求出,,a b c 的结果与323a b c -+=联立求出,,a b c 的值 ,最后把所求的,,a b c 代入所求的代数式即可求解.【详解】 解:578a b c k ===, 5,7,8a k b k c k ∴===,323a b c -+=,352783k k k ∴⨯-⨯+=, 解,得13k =,578,333a b c ∴==,= 578142432433333a b c ∴+-=⨯+⨯-⨯=, 故选:D .【点睛】本题考查了比例的性质,解一元一次方程,求代数式的值,由比例系数表示,,a b c 是解题的关键.6、D【解析】【分析】对应顶点的连线相交于一点的两个相似多边形叫位似图形.【详解】解:根据位似图形的概念,A 、B 、C 三个图形中的两个图形都是位似图形;D 中的两个图形不符合位似图形的概念,两个三角形不相似,故不是位似图形.故选D .【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.7、C【解析】【分析】由题意设()30,a k k =≠ 则2,b k = 再逐一代入各选项进行计算与检验即可得到答案.【详解】 解: 32a b =, 设()30,a k k =≠ 则2,b k =∴55,22a b k b k +==故A 不符合题意; 321,22a b k k b k --==故B 不符合题意; 263,a k b ==故C 符合题意;32,,2233a k b k ==则,23a b ≠故D 不符合题意; 故选C【点睛】本题考查的是比例的基本性质,掌握“设参数的方法解决比例问题”是解本题的关键.8、B【解析】【分析】根据∥DE AC 可得BED BCA ∽△△,DOE COA ∽,再根据相似三角形的性质可得BE DE BC AC=和DOE △与COA 的相似比为1:5,进而可得15BE BC =,最后用BC 表示EC 即可求出BE EC . 【详解】解:∵∥DE AC ,∴BED BCA ∠=∠,ODE OCA ∠=∠.∵DBE ABC ∠=∠,DOE COA ∠=∠,∴BED BCA ∽△△,DOE COA ∽. ∴BE DE BC AC=. ∵:1:25DOE COA S S =△△,∴DOE △与COA 的相似比为1:5. ∴15DE CA =. ∴15BE BC =. ∴15BE BC =. ∴45EC BC BE BC =-=. ∴14BE EC =.故选:B .【点睛】本题考查相似三角形的判定定理和性质,综合应用这些知识点是解题关键.9、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案.【详解】解:∵两个相似多边形的周长比是2:3,∴这两个相似多边形的相似比是2:3,∴它们的面积比是4:9,故选B .【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键.10、B【解析】【分析】由题意直接根据平行线所截线段成比例进行分析判断即可.【详解】解:∵DE ∥BC ,∴,ADE ABC AED ACB ==∠∠∠∠,∴ADE ABC , ∴AD DE AE AB BC AC==. 故选:B.【点睛】本题考查平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.二、填空题1、10415【解析】【分析】过点F 作FG ⊥DG 交DC 延长线于G ,过点N 作NL ⊥FG 交BC 于H ,交FG 于L ,先证明四边形NLGD 是矩形,得到LG =ND =2,∠DNL =90°,NL =DG ,再证明四边形NHCD 是矩形,得到HH =CD =6,CH =ND =2,则125MH BC BM CH =--=;然后证明△EFG ≌△AEF 得到FG =DE ,275GE AD BC ===,则275NL DG DE EG DE ==+=+,设=DE FG x =,则2FL FG LG x =-=-,275NL x =+,证明△NMH ∽△NFL ,的MH NH FL NL=,即12652725x x =-+,由此求解即可. 【详解】解:如图所示,过点F 作FG ⊥DG 交DC 延长线于G ,过点N 作NL ⊥FG 交BC 于H ,交FG 于L , ∴∠NLG =∠G =90°,∵四边形ABCD 是矩形,∴CD =AB =6,∠D =∠BCD =90°,AD BC =,∴四边形NLGD 是矩形,∴LG =ND =2,∠DNL =90°,NL =DG ,∴四边形NHCD是矩形,∴HH=CD=6,CH=ND=2,∴125 MH BC BM CH=--=;∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEG=90°,又∵∠FEG+∠EFG=90°,∴∠EFG=∠AED,又∵AE=EF,∠D=∠G=90°,∴△EFG≌△AEF(AAS),∴FG=DE,275 GE AD BC===,∴275 NL DG DE EG DE==+=+,设=DE FG x=,则2FL FG LG x=-=-,275 NL x=+,∵∠NHM=∠NLF=90°,∠MNH=∠FNL,∴△NMH∽△NFL,∴MH NHFL NL=,即12652725x x=-+,解得10415x=,∴10415 DE=,故答案为:104 15.【点睛】本题主要考查了矩形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定,解题的关键在于能够正确作出辅助线求解.2、5 4【解析】【分析】由5a=4b,结合比例的基本性质即可求出ba的值.【详解】解:∵5a=4b,∴54ba.故答案为:54.【点睛】本题考查的是比例的基本性质,掌握比例的基本性质是解题的关键.3、59【解析】【分析】 利用位似的性质得到FG OF OE BC OB OA ==,然后根据比例的性质求解. 【详解】解:∵四边形ABCD 与四边形EFGH 位似,其位似中心为点O , ∴FG OF OE BC OB OA ==, ∵54OE EA =, ∴55549FG BC ==+, 故答案为:59.【点睛】本题考查了位似变换:位似的两个图形必须是相似形,对应点的连线都经过同一点;对应边平行或共线.4、5或252 【解析】【分析】分情况进行讨论,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,先证△DHO ∽△DAB ,得到1=2OH HD OD AB AD BD ==,求出1152OH AB ==,1202HD AD ==,证明∠HOP =∠HPO =45°,得到OH =PH =15,则PD =HD -PH =5;当∠PFD =90°时,先求出50BD =,得到11=2522OA OB OC OD AC BD =====,从而得到∠DAO =∠ODA ;证明△OFE ∽△BAD ,推出1152OF AB ==,则10DF OD OF =-=,最后证明△PDF ∽△BDA ,则12542PD BD ==. 【详解】解:如图1所示,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,∴∠HPF =90°,∵四边形ABCD 是矩形,∴BD =2OD ,∠BAD =∠OHD =90°,AD =BC =40,∴OH ∥AB ,∴△DHO ∽△DAB , ∴1=2OH HD OD AB AD BD ==, ∴1152OH AB ==,1202HD AD ==, 由折叠的性质可得:1==452HPO FPO HPF ∠=∠︒∠,∴∠HOP =45°,∴∠HOP =∠HPO =45°,∴OH =PH =15,∴PD =HD -PH =5;如图2所示,当∠PFD =90°时,∴∠OFE=90°,∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=30,∴50BD=,∴11=2522OA OB OC OD AC BD=====,∴∠DAO=∠ODA,由折叠的性质可知:AO=EO=25,∠PEO=∠DAO=∠ODA,又∵∠OFE=∠BAD=90°,∴△OFE∽△BAD,∴12 OF OEAB BD==,∴1152OF AB==,∴10DF OD OF=-=,∵∠PFD=∠BAD,∠PDF=∠BDA,∴△PDF∽△BDA,∴14 PD DFBD DA==,∴12542 PD BD==,∴综上所述,当△PDF为直角三角形,则PD的长为5或252,故答案为:5或252.【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件.5、4:25##425 【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【详解】解:如图,∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD =AB .∴△DFE ∽△AFB , ∴2()DEF ABF S DE S AB=. ∵DE :EC =2:3,∴DE :DC =DE :AB =2:5,∴:425DEF ABF S S =:△△ 故答案为:4:25或425 . 【点睛】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.三、解答题1、(1)画图见解析;(2)点B'的坐标为(-6,2),点C'的坐标为(-4,-2);(3)点M'的坐标为(-2x,-2y)【解析】【分析】(1)利用位似变换的性质分别作出B、C的对应点B',C',然后顺次连接O,B',C'即可;(2)根据(1)中所作图形即可得到B',C'两点的坐标;(3)根据位似图形上对应点的坐标的横纵坐标对应比相同进行求解即可.【详解】解:(1)如图所示,△OO′O′即为所求;(2)如图所示,点B'的坐标为(-6,2),点C'的坐标为(-4,-2);(3)∵△OO′O′是△OBC以O为位似中心,位似比为2的对应图形,点M(x,y)为△OBC内部一点,∴点M的对应点M'的坐标为(-2x,-2y).【点睛】本题主要考查了画位似图形和求位似图形上的对应点的坐标,解题的关键在于能够熟练掌握位似图形的相关知识.2、(1)见解析;(2)见解析【解析】【分析】(1)找到O,O绕点B顺时针旋转90︒后的对应点O′,O′,顺次连接O′,O′,O,则O A B''△即为所求;(2)延长OO′至O″,OO′至O″,使得OO″=2OO′,OO″=2OO′,连接O″O″,则''''即为所求O A B【详解】(1)如图,找到O,O绕点B顺时针旋转90︒后的对应点O′,O′,顺次连接O′,O′,O,则O A B''△即为所求;(2)如图,延长OO ′至O ″,OO ′至O ″,使得OO ″=2OO ′,OO ″=2OO ′,连接O ″O ″,则O A B ''''【点睛】本题考查了画旋转图形,在平面直角坐标系中画位似图形,掌握旋转的性质和位似图形的性质是解题的关键.3、(1)EF =2(2)72【解析】【分析】(1)根据DE ∥BC 证明ADE 是等边三角形,再根据D 是AB 中点,可证明BFD 是等边三角形,在证明DEF 是等边三角形,从而求得EF =2,(2)过点A 作AM 垂直BC 于点M ,可证DBF ∽ABM ,由相似可求出DF ,在利用勾股定理即可求出EF .【详解】解:(1)∵ABC 是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠ABC=60°,∴∠A=∠ADE=60°,∴ADE是等边三角形,∴AD=DE=2,∵D是AB中点,∴BD=AD=2,∵DF平分∠BDE,∴∠BDF=∠EDF=12∠BDE=12(180°-60°)=60°,又∵∠B=60°,∴BFD是等边三角形,∴DF=BD=2,∵DF=DE=2,∠EDF=60°,∴DEF是等边三角形,∴EF=DE=DF=2;(2)过点A作AM垂直BC于点M,∵DE∥BC,DF⊥DE,∴∠BFD=∠FDE=90°,∵∠DFB=∠AMB=90°,又∵∠B=∠B,∴DBF∽ABM,∵D为AB中点,∴1=2 DB DFAB AM,∴DF=12AM,∵AM是等边三角形BC边上的高,∴M是BC的中点,∴BM=12BC=a,∴AM,∴DF=12AM,∴在Rt DEF △中,EF 32a a (). 【点睛】本题主要考查等边三角形的性质和判定,三角形的相似和勾股定理,熟练掌握三角形的相似是解决本题的关键.4、(1)y =8﹣4x ;(2)2√33 【解析】【分析】(1)依据Rt △ABC 中,∠O =90°,OO =4√3,∠O =60°,即可得到AC =4,AD =2AE =2x ,OO =12OO =12O ,再根据CD =AC -AD ,可得12O =4−2O ,进而得出y 与x 之间的函数关系式; (2)依据S =DE ×DG =√3O ×(8−4O )=−4√3(O −1)2+4√3,可得当x =1时,S 最大=4√3,再根据△DCG ∽△GFB ,即可得到OO OO =2√3=2√33,进而得出△CDG 与△BFG 的相似比. 【详解】解:(1)∵Rt △ABC 中,∠C =90°,BC =A =60°,∴AC =4,AD =2AE =2x ,OO =12OO =12O ,∵CD =AC ﹣AD ,∴12O =4−2O ,即y 与x 之间的函数关系式为y =8﹣4x ;(2)∵DE ,∴S =DE ×DG ×(8﹣4x )=﹣x ﹣1)2∴当x =1时,S 最大=此时,GF =DE∴BG =2GF =DG =8﹣4=4,∵∠C =∠BFG =90°,∠DGC =∠B ,∴△DCG ∽△GFB ,∴OO OO =2√3=2√33, ∴△CDG 与△BFG 的相似比为2√33. 【点睛】 本题考查的是相似三角形的判定与性质以及矩形的性质,熟知相似三角形的对应边成比例是解答此题的关键.5、(1)见解析;(2)见解析;(3)14平方单位.【解析】【分析】(1)根据轴对称性质即可画出△ABC 关于x 轴对称的A B C '''; (2)根据位似图形的性质即可画出A B C '''以点O 为位似中心的位似图形A B C ''''''△,A B C '''与A B C ''''''△的位似比为1:2;(3)利用相似三角形的性质计算即可.【详解】解:(1)如图,A B C ''',即为所求作; (2)如图,A B C ''''''△,即为所求作;(3)∵A B C '''与A B C ''''''△的位似比为1:2, ∴A B C '''∽A B C ''''''△,O ′O ′O ″O ″=12, ∴O △O ′O ′O ′O △O ″O ″O ″=(O ′O ′O ″O ″)2=14,∵ABC 的面积为3.5平方单位,即A B C '''的面积为3.5平方单位,∴A B C ''''''△的面积为:2O △O ′O ′O ′=4×3.5=14平方单位.【点睛】本题考查了作图-轴对称变换,位似变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
人教版九年级下册数学第二十七章 相似含答案
人教版九年级下册数学第二十七章相似含答案一、单选题(共15题,共计45分)1、如图,△ABC中,AD是中线,BC=4,∠B=∠DAC,则线段AC的长为( )A. B.2 C.3 D.2、如图,在平行四边形ABCD中,点E,F线上且,,BE,BF的延长线分别交AD,CD于H,G两点,则()A. B.2 C. D.33、如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF :S△ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:24、身高1.8米的人在阳光下的影长是1.2米,同一时刻一根旗杆的影长是6米,则它的高度是()A.10米B.9米C.8米D.10.8米5、已知线段a=4,b=16,线段c是a、b的比例中项,那么c等于()A.10B.8C.﹣8D.±86、若两个相似三角形对应边上的高线之比为3:1,则对应角的平分线之比为()A.9:1B.6:1C.3:1D. :17、如图,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是()A.1B.2C.3D.48、如图所示,一般书本的纸张是原纸张多次对开得到矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,以此类推,若各种开本的矩形都相似,那么等于()A.0.618B.C.D.29、如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5B.8C.10.5D.1410、如图,在△ABC中,点D,E分别在边AB,AC上,DE//BC,若BD=2AD,则()A. B. C. D.11、如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF =4,则下列结论:①= ;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③12、如图,△ABO与△A′B′O是位似图形,其中AB∥A′B′,那么A′B′的长y与AB的长x之间函数关系的图象大致是()A. B. C. D.13、如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=()A. B. C. D.14、如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A. B. C. D.15、如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF :S四边形EFBC为()A.2:5B.4:25C.4:31D.4:35二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出△AOB的位似△CDE,则位似中心的坐标为________.17、已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF的周长是________.18、如图,E是▱ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,,则CF的长为________ .19、如图,在中,点E为上的任意一点,连接,将沿BE折叠,使点A落在点D处,连接,若是直角三角形,则的长为________.20、如图,小明同学站在离墙(BC)5米的A处,发现小强同学在离墙(BC)20米远且与墙平行的一条公路l上骑车,已知墙BC长为24米,小强骑车速度10米/秒,则小明看不见小强的时间为________ 秒.21、如图,在等腰直角△ABC中,AB=4,点D在边AC上一点且AD=1,点E是AB边上一点,连接DE,以线段DE为直角边作等腰直角△DEF( D、E、F三点依次呈逆时针方向),当点F恰好落在BC边上时,则AE的长是________.22、如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A,B,C和点D,E,F.如果AB=6,BC=10,那么的值是________.23、如图,四边形是三个正方形、________24、如图,的面积为,,,连接和交于点,连接,则的面积为________.若,,则的面积为________.25、的三边长分别为,,,与它相似的的最小边长为,则的周长为________.三、解答题(共5题,共计25分)26、已知xyz≠0且,求k的值.27、附加题:如图,在中,,,垂足为,、分别为、的中点,,垂足为,求证:.28、如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.29、《铁血红安》在中央一台热播后,吸引了众多游客前往影视基地游玩. 某天小明站在地面上给站在城楼上的小亮照相时发现:他的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图). 已知小明的眼睛离地面1. 65米,凉亭顶端离地面2米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为40米,小亮身高1. 7米. 请根据以上数据求出城楼的高度..30、已知线段c是线段a,b的比例中项,若,,求线段c的长.参考答案一、单选题(共15题,共计45分)1、A2、C3、B4、B5、B6、C7、B8、C9、B10、B11、D12、C13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、28、29、30、。
人教版九年级下册数学第二十七章 相似 含答案
人教版九年级下册数学第二十七章相似含答案一、单选题(共15题,共计45分)1、如图,△ABC中,若DE∥BC,EF∥AB,则下列等式①②③④其中正确的是()A.①③④B.②③④C.①②④D.①②③④2、如图,在反比例函数的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足,当点A运动时,点C 始终在函数的图象上运动,若,则的值为()A. B. C. D.3、如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下的矩形面积是()A.2 cm 2B.4 cm 2C.8 cm 2D.16 cm 24、如图,以点O为位似中心,把放大为原图形的2倍得到,以下说法中错误的是()A. B.点C,点O、点C′三点在同一直线上 C.D.5、在同一时刻,身高1.6m的小强,在太阳光线下影长是1.2m,旗杆的影长是15m,则旗杆高为()A.22mB.20mC.18mD.16m6、如图,小东用长为3.2 m的竹竿做测量工具测量学校旗杆的高度(竹竿与地面垂直),移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点距离8 m、与旗杆相距22 m,则旗杆的高为()A.12mB.10mC.8mD.7m7、下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A. B. C. D.8、如图,在菱形ABCD中,AC=8,BD=6,DE⊥AB,垂足为E,DE与AC交于点F,则sin∠DFC的值为()A. B. C. D.9、如图,已知第一象限内的点A在反比例函数上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为()A.-3B.-6C.-4D.10、如图,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和10米.已知小华的身高为1.6米,那么他所住楼房的高度 ( )A.8米B.16米C.32米D.48米11、如图所示的两个四边形相似,则α的度数是( )A.60°B.75°C.87°D.120°12、如图,内接于,垂直于过点的切线,垂足为.已知的半径为,,那么的值是()A. B. C. D.13、如图,在平面直角坐标系中,已知点E(−4,2),F(−1,−1).以原点O为位似中心,把△EFO扩大到原来的2倍,则点E的对应点E′的坐标为()A.(−8,4)B.(8,−4)C.(8,4)或(−8,−4)D.(−8,4)或(8,−4)14、如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边中线,点D,E分别在边AC和BC上,DB=DE,EF⊥AC于点F,以下结论:①△BMD≌△DFE;②△NBE∽△DBC;③AC=2DF;④EF AB=CF BC,其中正确结论的个数是()A.1B.2C.3D.415、某一时刻,身高1.6m 的小明在阳光下的影长是0.4m.同一时刻同一地点,测得某旗杆的影长是5m,则该旗杆的高度是()A.1.25mB.10mC.20mD.8m二、填空题(共10题,共计30分)16、如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与四边形A'B'C'D'的面积比为________17、如图所示,,AC、BD相交于点E,若面积为3,的面积为5,则梯形的面积为________.18、如图,在平面直角坐标系中,点C是y轴正半轴上的一个动点,抛物线y =ax2-6ax+5a(a是常数,且a>0)过点C,与x轴交于点A、B,点A在点B 的左边.连接AC,以AC为边作等边三角形ACD,点D与点O在直线AC两侧,连接BD,则BD的最小值是________.19、如果四条线段m,n,x,y成比例,若m=2 , n=8 , y=4.则线段x的长是________.20、已知△ABC∽△DEF,且BC=5cm,EF=3cm,若S△ABC =25cm2,则S△DEF=________。
人教版九年级数学下第二十七章 相似单元练习题(含答案)含答案
人教版九年级数学下第二十七章相似单元练习题(含答案)含答案一、选择题1.如图,AD∥BE∥CF,直线m,n与这三条平行线分别交于点A、B、C和点D、E、F,已知AB=5,BC=10,DE=4,则EF的长为()A.12.5B.12C.8D.42.一个数与3、4、6能组成比例,这个数是()A.2或8B.8 或4.5C.4.5 或2D.2,8或4.53.如图,已知△OAB与△OA′B′是相似比为1∶2 的位似图形,点O为位似中心,若△OAB 内一点P(x,y)与△OA′B′内一点P′是一对对应点,则点P′的坐标为()A.(-x,-y)B.(-2x,-2y)C.(-2x,2y)D.(2x,-2y)4.在下列图形中,不是位似图形的是()A.B.C.D.5.如果两个相似三角形的周长比为1∶4,那么这两个三角形的相似比为()A.1∶2B.1∶4C.1∶8D.1∶166.已知图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于O点,对于各图中的两个三角形而言,下列说法正确的是()A.只有(1)相似B.只有(2)相似C.都相似D.都不相似7.如图,在直角坐标系xOy中,A(-4,0),B(0,2),连接AB并延长到C,连接CO,若△COB∽△CAO,则点C的坐标为()A.(1,)B.(,)C.(,2)D.(,2)8.已知△ABC∽△DEF,△ABC的面积为1,△DEF的面积为4,则△ABC与△DEF的周长之比为()A.1∶2B.1∶4C.2∶1D.4∶19.如图,直角坐标系中,线段AB两端点坐标分别为A(4,2)、B(8,0),以原点O为位似中心,将线段AB缩小后得到对应线段A1B1,若B1的坐标为(-4,0),则A1的坐标为()A.(2,1)B.(-2,-1)C.(-1,2)D.(-4,-2)10.两个相似三角形的最短边分别是5 cm和3 cm,它们的周长之差为12 cm,那么小三角形的周长为()A.14 cmB.16 cmC.18 cmD.30 cm二、填空题11.如图,△ABC中,BC=1.若AD1=AB,且D1E1∥BC,则D1E1=;照这样继续下去,D1D2=D1B,且D2E2∥BC;D2D3=D2B,且D3E3∥BC;…;Dn-1Dn=Dn-1B,且DnEn∥BC,则DnEn =____________(用含n的式子表示).12.小红家的阳台上放置了一个晒衣架如图1.图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136 cm,OA=OC=51 cm,OE=OF=34 cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32 cm.垂挂在衣架上的连衣裙总长度小于__________ cm时,连衣裙才不会拖落到地面上.图1图213.如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE=________.14.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是______________.15.若==,且a+b+c=6,则a-b+c=________.16.如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:________________,可以使得△FDB与△ADE相似.(只需写出一个)17.已知△ABC与△A1B1C1的相似比为2∶3,△A1B1C1与△A2B2C2的相似比为3∶5,那么△ABC 与△A2B2C2的相似比为__________.18.如图,点A1,A2在射线OA上,B1在射线OB上,依次作A2B2∥A1B1,A3B2∥A2B1,A3B3∥A2B2,A4B3∥A3B2,….若△A2B1B2和△A3B2B3的面积分别为1,9,则△A1007B1007A1008的面积是__________.19.如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连接CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE·CO,其中正确结论的序号是________.20.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知=,则=__________.三、解答题21.如图,点C为线段AB上任意一点(不与A、B两点重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.(1)求证:△ACE≌△DCB;(2)请你判断△AMC与△DPM的形状有何关系,并说明理由.22.课本中有一道作业题:有一块三角形余料ABC,它的边BC=120 mm,高AD=80 mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)加工成的正方形零件的边长是多少mm?(2)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少?请你计算.(3)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.23.如图,延长△ABC的边BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.求EC∶AC 的值.24.已知:△ABC∽△A′B′C′,它们的周长之差为20,面积比为4∶1,求△ABC和△A′B′C′的周长.25.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5,求BC、BF的长.26.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF∶S△EFC =2∶3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.27.如图,在△ABC中,D、E分别是边AB、AC的中点,F为CA延长线上一点,∠F=∠C.(1)若BC=8,求FD的长;(2)若AB=AC,求证:△ADE∽△DFE.28.如图,在△ABC中,BC的垂直平分线分别交BC,AC于点D,E,BE交AD于点F,AB=A D.(1)判断△FDB与△ABC是否相似,并说明理由.(2)AF与DF相等吗?为什么?答案解析1.【答案】C【解析】∵AD∥BE∥CF,∴=,即=,解得EF=8,故选C.2.【答案】D【解析】设这个数是x,则3x=4×6或4x=3×6或6x=3×4,解得x=8或x=4.5或x=2,所以,这个数是2,8或4.5.故选D.3.【答案】B【解析】∵P(x,y),相似比为1∶2,点O为位似中心,∴P′的坐标是(-2x,-2y).故选B.4.【答案】D【解析】对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,A、B、C三个图形中的两个图形都是位似图形;D中的两个图形不符合位似图形的概念,对应顶点不能相交于一点,故不是位似图形.故选D.5.【答案】B【解析】∵两个相似三角形的周长比为1∶4,∴这两个三角形的相似比为1∶4,故选B.6.【答案】C【解析】对于图(1):180°-75°-35°=70°,则两个三角形中有两组角对应相等,所以(1)图中的两个三角形相似;对于(2)图:由于=,∠AOC=∠DOB,所以△AOC∽△DOB.故选C.7.【答案】B【解析】∵A(-4,0),B(0,2),∴OA=4,OB=2,∵△COB∽△CAO,∴====,∴CO=2CB,AC=2CO,∴AC=4CB,∴=,过点C作CD⊥y轴于点D,∵AO⊥y轴,∴AO∥CD,∴△AOB∽△CDB,∴===,∴CD=AO=,BD=OB=,∴OD=OB+BD=2+=,∴点C的坐标为.故选B.8.【答案】A【解析】∵△ABC∽△DEF,∴△ABC的面积:△DEF的面积=△ABC与△DEF的周长之比的平方,而△ABC的面积为1,△DEF的面积为4,∴△ABC与△DEF的周长之比=1∶2.故选A.9.【答案】B【解析】∵线段AB两端点坐标分别为A(4,2)、B(8,0),以原点O为位似中心,将线段AB缩小后得到对应线段A1B1,若B1的坐标为(-4,0),∴对应点在原点的两侧,且位似比为2∶1,则A1的坐标为(-2,-1).故选B.10.【答案】C【解析】根据题意,得两三角形的周长的比为5∶3,设两三角形的周长分别为5x cm,3x cm,则5x-3x=12,解得x=6,所以3x=18,即小三角形的周长为18 cm.故选C.11.【答案】1-【解析】∵D1E1∥BC,∴△AD1E1∽△ABC,∴=,∵BC=1,AD1=AB,∴D1E1=;∵D1D2=D1B,∴AD2=AB,同理可得:D2E2==1-=1-,D3E3==1-,∴DnEn=1-.12.【答案】120【解析】∵AB、CD相交于点O,∴∠AOC=∠BOD∵OA=OC,∴∠OAC=∠OCA=(180°-∠BOD),同理可证:∠OBD=∠ODB=(180°-∠BOD),∴∠OAC=∠OBD,∴AC∥BD,在Rt△OEM中,OM==30(cm),过点A作AH⊥BD于点H,同理可证:EF∥BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴=,AH===120(cm),所以垂挂在衣架上的连衣裙总长度小于120 cm时,连衣裙才不会拖落到地面上.13.【答案】【解析】如图,连接EF.∵四边形ABCD是正方形,∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,∴AM=BM=1,在Rt△ADM中,DM===,∵AM∥CD,∴==,∴DP=DM=,∵PF=,∴DF=DP=PF=,∵∠EDF=∠PDC,∠DFE=∠DCP,∴△DEF∽△DPC,∴=,∴=,∴DE=,∴CE=CD-DE=2-=.故答案为.14.【答案】(a+3)【解析】设点B的横坐标为x,则B、C间的横坐标的长度为-1-x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(-1-x)=a+1,解得x=(a+3).15.【答案】3【解析】设===k,则a=2k,b=3k,c=7k,∵a+b+c=6,∴2k+3k+7k=6,解得k=,所以,a=2×=1,b=3×=,c=7×=,所以,a-b+c=1-+=3.16.【答案】DF∥AC(或∠BFD=∠A)【解析】DF∥AC,或∠BFD=∠A.理由:∵∠A=∠A,==,∴△ADE∽△ACB,∴①当DF∥AC时,△BDF∽△BAC,∴△BDF∽△EAD.②当∠BFD=∠A时,∵∠B=∠AED,∴△FBD∽△AED.17.【答案】2∶5【解析】∵△ABC与△A1B1C1的相似比为2∶3,△A1B1C1与△A2B2C2的相似比为3∶5,∴AB∶A1B1=2∶3,A1B1∶A2B2=3∶5,设AB=2x,则A1B1=3x,A2B2=5x,∴AB∶A2B2=2∶5,∴△ABC与△A2B2C2的相似比为2∶5.18.【答案】34 031【解析】∵△A2B1B2和△A3B2B3的面积分别为1,9,A3B3∥A2B2,A3B2∥A2B1,∴∠B1B2A2=∠B2B3A3,∠A2B1B2=∠A3B2B3,∴△A2B1B2∽△A3B2B3,∴====,∵A3B2∥A2B1,∴△OA2B1∽△OA3B2,∴===,∴△OB1A2的面积为,△A1B1A2的面积为,△A2B2A3的面积为3,△A3B3A4的面积为27,…∴△A1 007B1 007A1 008的面积为×3(2 017-1)=34 031,故答案为34 031.19.【答案】①②③【解析】①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴=,∴CD2=CE·CO.故③正确.故答案为①②③.20.【答案】【解析】∵l1∥l2∥l3,∴=,∵=,∴=.21.【答案】(1)证明∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,∴△ACE≌△DCB(SAS).(2)解△AMC∽△DMP.理由:∵△ACE≌△DCB,∴∠CAE=∠CDB,又∵∠AMC=∠DMP,∴△AMC∽△DMP.【解析】(1)证明∠ACE=∠DCB,根据“SAS”证明全等;(2)由(1)得∠CAM=∠PDM,又∠AMC=∠DMP,所以两个三角形相似.22.【答案】解(1)如图1,设正方形的边长为x mm,则PN=PQ=ED=x,∴AE=AD-ED=80-x,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得x=48.∴加工成的正方形零件的边长是48 mm;(2)如图2,设PQ=x,则PN=2x,AE=80-x,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得x=,∴2x=,∴这个矩形零件的两条边长分别为mm,mm;(3)如图3,设PN=x(mm),矩形PQMN的面积为S(mm2),由条件可得△APN∽△ABC,∴=,即=,解得PQ=80-x.则S=PN·PQ=x(80-x)=-x2+80x=-(x-60)2+2 400,故S的最大值为2 400 mm2,此时PN=60 mm,PQ=80-×60=40(mm).【解析】(1)设正方形的边长为x mm,则PN=PQ=ED=x,AE=AD-ED=80-x,通过证明△APN∽△ABC,利用相似比可得到=,然后根据比例性质求出x即可;(2)由于矩形是由两个并排放置的正方形所组成,则可设PQ=x,则PN=2x,AE=80-x,然后与(1)的方法一样求解;(3)设PN=x,用PQ表示出AE的长度,然后根据相似三角形对应高的比等于相似比列出比例式并用x表示出PN,然后根据矩形的面积公式列式计算,再根据二次函数的最值问题解答.23.【答案】解取BC中点G,则CG=BC,连接GF,如图所示:又∵F为AB中点,∴FG∥AC,且FG=AC,∴EC∥FG,∴=,∵CG=BC,DC=BC,设CG=k,那么DC=BC=2k,DG=3k,∴==即EC=FG,∵FG=AC∴EC=AC,∴EC∶AC=1∶3.【解析】取BC中点G,则CG=BC,连接GF,得出FG∥AC,FG=AC,证出EC=FG,进而得出答案.24.【答案】解∵△ABC∽△A′B′C′,面积比为4∶1,∴相似比为2∶1,周长比为2∶1.∵周长比相差1,而周长之差为20,∴每份周长为20,∴△ABC的周长是2×20=40,△A′B′C′的周长是1×20=20.【解析】根据面积的比等于相似比的平方可求出相似比的值,相似三角形周长的比等于相似比可分别求出周长.25.【答案】解∵l1∥l2∥l3,∴=,∵AB=3,AD=2,DE=4,∴=,解得BC=6,∵l1∥l2∥l3,∴=,∴=,解得BF=2.5.【解析】由平行线分线段成比例解答即可.26.【答案】解(1)∵AC∥BD,∴=,∵AC=6,BD=4,∴==.∵△BEF和△CEF同高,且S△BEF∶S△CEF=2∶3,∴=,∴=.∴EF∥BD,∴=,∴=,∴EF=.(2)∵AC∥BD,EF∥BD,∴EF∥AC,∴△BEF∽△ABC,∴=.∵=,∴=.∵S△BEF=4,∵=,∴S△ABC=25.【解析】27.【答案】解(1)∵D、E分别是边AB、AC的中点,∴DE=BC,DE∥BC.∴∠AED=∠C.∵∠F=∠C,∴∠AED=∠F,∴FD=DE=BC=4;(2)∵AB=AC,DE∥BC.∴∠B=∠C=∠AED=∠ADE,∵∠AED=∠F,∴∠ADE=∠F,又∵∠AED=∠AED,∴△ADE∽△DFE.【解析】(1)利用三角形中位线的性质得出DE∥BC,进而得出∠AED=∠F,即可得出FD=DE,即可得出答案;(2)利用等腰三角形的性质和平行线的性质得出∠B=∠C=∠AED=∠ADE,即可得出∠ADE =∠F,即可得出△ADE∽△DFE.28.【答案】解(1)∵DE是BC垂直平分线,∴BE=CE,∴∠EBC=∠ECB,∵AB=AD,∴∠ABC=∠ADB,∴△FDB∽△ABC;(2)∵△FDB∽△ABC,∴==,∴AB=2FD,∵AB=AD,∴AD=2FD,∴DF=AF.【解析】(1)易证∠EBC=∠ECB和∠ABC=∠ADB,即可判定△FDB与△ABC相似;(2)根据相似三角形对应边比例相等的性质即可求得DF=AB,即可解题.九年级数学第27章《相似》同步提高测试(有答案)一、选择题:1、观察下列每组图形,相似图形是()2、(2018•玉林)两三角形的相似比是2:3,则其面积之比是()A.:B.2:3 C.4:9 D.8:273、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()4、(2018•内江)已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为()A.1:1 B.1:3 C.1:6 D.1:95、如果五边形ABCDE∽五边形POGMN且对应高之比为3:2,那么五边形ABCDE和五边形POGMN的面积之比是()A.2:3 B.3:2 C.6:4 D.9:46、已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A.32 B.8 C.4 D.167、如图,路灯OP距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B处时,人影的长度()A.变长了1.5米B.变短了2.5米C.变长了3.5米D.变短了3.5米8、(2018•重庆)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm9、如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB 于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=10、如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S211、如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.1612、如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1二、填空题:13、已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为14、(2018•邵阳)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.15、已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为16、(2018•北京)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.17、学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD 为18、如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=19、《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为。
人教版数学九年级下册第二十七章相似试卷(含答案)
人教版数学九年级第二十七章相似一、选择题1.如果xy=32,则x+yy=( )A.12B.32C.52D.252.如图,直线l1∥l2∥l3,直线AC依次交l1,l2,l3于点A,B,C,直线DF依次交l1,l2,l3于点D、E,F,若ABBC =34,DE=6,则EF的长为( )A.8B.5C.4D.23.如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定的比例伸长或缩短.它是由长度相等的两脚AD和BC交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A,B两个尖端分别在线段l的两个端点上,若量得CD的长度,便可知AB的长度.本题依据的主要数学原理是( )A.三边成比例的两个三角形相似B.两边及其夹角分别对应相等的两个三角形全等C.两边成比例且夹角相等的两个三角形相似D.平行线分线段成比例4.如图,小强自制了一个小孔成像装置,其中纸筒的长度为15cm,他准备了一支长为20cm的蜡烛,想要得到高度为4cm的像,蜡烛与纸筒的距离为( )A .65cmB .70cmC .75cmD .80cm5.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )A .平移B .旋转C .轴对称D .黄金分割6.如图,有一批直角三角形形状且大小相同的不锈钢片,∠C =90°,AB =5米,BC =3米,用这批不锈钢片裁出面积最大的正方形不锈钢片,则面积最大的正方形不锈钢片的边长为( )A .6037B .6017C .127D .1587.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,连接AD ,DE ,DB ,∠ABD =2∠BDE ,过点E 作⊙O 的切线EC ,交AB 的延长线于点C ,若⊙O 的直径为4,CE =4,则AD 的长为( )A .25B .455C .352D .8558.将四个边长均为1的小正方形拼成“L”型模具如图摆放,其中两个顶点位于x 轴正半轴上,一个顶点位于y 轴正半轴上,一个顶点在函数 y =k x(k >0,x >0)的图象上,则k 的值为( ).A .5B .6C .7D .89.如图,在△ABC 中,D 为线段AC 上一点,点E 在AC 的延长线上,过点D 作DF ∥AB 交BC 于点F ,连结BE,EF ,若A C 2+D E 2=A E 2,则△BEF 与△DCF 的面积比为( )A .1:2B .1:3C .2:3D .2:510.如图,已知正方形ABCD,E 为AB 的中点,F 是AD 边上的一个动点,连接EF 将△AEF 沿EF 折叠得△HEF ,延长FH 交BC 于M ,现在有如下5个结论:①△EFM 定是直角三角形;②△BEM≌△HEM ;③当M 与C 重合时,有DF =3AF ;④MF 平分正方形ABCD 的面积.在以上结论中,正确的有( )A .①②B .②③④C .①②③D .①③④二、填空题11.如图,已知 AB//CD//EF ,AD AF =35,BE=12,那么 CE 的长为 .12.如图,CA 、CB 分别切⊙O 于点A 、B ,AC 与OB 的延长线相交于点P .若AC =3,CP =5,则⊙O 的半径长为 .13.如图,小杰同学跳起来把一个排球打在离他2米(即CO=2米)远的地上,排球反弹碰到墙上,如果他跳起击球时的高度是1.8米(即AC=1.8米),排球落地点离墙的距离是6米(即OD=6米),假设排球一直沿直线运动,那么排球能碰到墙面离地的高度BD的长是 米.14.如图,把△ABC沿AB边平移到△DEF的位置,边BC与DF交于点H,设△HDB的面积为S1,四边形ADHC的面积为S2,若S1:S2=4:5,AB=4,则此三角形移动的距离AD为 .15.如图,在△ABC中,AB=AC=6,BC=4.已知点D是边AC的中点,将△ABC沿直线BD翻折,点C落在点E处,联结AE,那么AE的长是 .16.如图,边长为6的菱形ABCD中,∠A=60°,E是AB边上的一点,CF=2,将四边形AEFD沿着EF折叠得到四边形A′D′FE,当A′、B、D′点在同一条直线上时,∠A′BE+∠D′BC= ,此时D′F交BC边于点G,BG的长为 .三、解答题17.如图,D、E分别是AC、AB上的点,连接DE,且∠ADE=∠B,若DE=8,AB=18,AD=6,求BC 的长.18.如图,在△ABC中,D、E、F分别是AB、BC上的点,且DE∥AC,AE∥DF,BDAD =32,BF=6cm,求EF和FC的长.19.“参天三柏倚高峰,武帝曾经驻六龙”讲的是嵩阳书院内的三棵古柏(现存两棵,分别名为“大将军柏”和“二将军柏”),林学专家测定,古柏的树龄不低于4000~4500年,是我国现存最古老和最大的柏树.某中学数学课题学习小组欲测量“二将军柏”的高度,他们利用太阳光照射下的影长进行测量.小西先在大树影子端点F处竖立了一根长为1米的木棒CF,并测得木棒的影长EF=1.5米,然后小乐在AF的延长线上找到点D,使得点B,C,D在同一直线上,并测得DF=1.58米,已知图中所有点均在同一平面内,且CF⊥AD,AB⊥AD,根据以上测量过程及测量数据,请你帮助该课题学习小组求出“二将军柏”AB的高度(结果精确到1米).20.如图,D是△ABC边AB上点,已知∠BCD=∠A,AD=5,BD=4.(1)求边BC的长;(2)如果△ACD∽△CBD(点A、C、D对应点C、B、D),求∠ACB的度数.21.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,DEBC=15.(1)若AB=15,求线段BD的长.(2)若△ADE的面积为3,求平行四边形BFED的面积.22.在四边形ABCD中,E是边BC上一点,在AE的右侧作EF=AE,且∠AEF=∠ABC=α(α≥90°),连接CF.(1)如图,当四边形ABCD是正方形时,∠DCF=..(2)如图,当四边形ABCD是菱形时,求∠DCF(用含α的式子表示).(3)在(2)的条件下,且AB=6,α=120°,如图,连接AF交CD于点G;若G为边CD的三等分点,请直接写出BE的长.23.在平面直角坐标系中,抛物线y=−x2+bx+c(b、c为常数)的对称轴为直线x=1,且此抛物线经过点(−1,−1),点A、B均在此抛物线上,点A、B的横坐标分别为m、m+1,过点B作y轴的垂线交此抛物线于点C,连结AC,以AC、BC为边作▱ACBD.(1)求此抛物线对应的函数表达式;(2)当线段BC长为2时,求点A的坐标;(3)当平行四边形ACBD的顶点落在抛物线y=−x2+bx+c的对称轴上时,求▱ACBD的面积;(4)设抛物线y=−x2+bx+c的对称轴交▱ACBD的边于M、N两点,若此抛物线与▱ACBD的边有交点(不包括▱ACBD的顶点),交点记为点H,作△MNH.当△MNH的面积是▱ACBD面积的18时,直接写出m的值.答案解析部分1.【答案】C2.【答案】A3.【答案】C4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】A10.【答案】C11.【答案】24512.【答案】613.【答案】5.414.【答案】4315.【答案】10171716.【答案】60°;14517.【答案】2418.【答案】EF=4cm,CF=323cm19.【答案】20米20.【答案】(1)6(2)90°21.【答案】(1)BD=12(2)2422.【答案】(1)45°(2)∠DCF=32α−90°(3)125或6723.【答案】(1)y=−x2+2x+2;(2)A(−1,−1)或A(1,3);(3)2或2 9;(4)12或2。
人教版九年级数学下册《第二十七章相似》单元检测卷-含答案
人教版九年级数学下册《第二十七章相似》单元检测卷-含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,中线BE,CD相交于点O,连线DE,下列结论:① ;② ;③ ;④ 其中正确的个数有()A.1个B.2个C.3个D.4个2、如图,D,E分别是△ABC的边AB,AC上的点,且DE∥BC,如果AD=2cm,DB=4cm,△ADE 的周长是10cm,那么△ABC的周长等于()A.15cmB.20cmC.30cmD.36cm3、如图的两个四边形相似,则∠α的度数是()A.87°B.60°C.75°D.120°4、如图,点A、B、C、D都在上,为上的一点的延长线交于,若,则的值为()A.2B.C.D.45、如图,在△ABC中,点D,E分别在边AB,AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠BB.∠ADE=∠CC.D.6、如图,在中是边的中点,于点E,交边于点F,连接,则图中与相似的三角形共有()A.2个B.3个C.4个D.5个7、如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5B.5C.5.5D.68、如图,中是斜边上的高,那么等于()A. B. C. D.9、两个相似三角形面积比是,其中一个三角形的周长为18,则另一个三角形的周长是()A.12B.12或24C.27D.12或2710、如图,矩形OABC的顶点O是坐标原点,边OA在x轴上,边OC在y轴上.若矩形OA1B 1 C1与矩形OABC关于点O位似,且矩形OA1B1C1的面积等于矩形OABC面积的,则点B1的坐标是()A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)11、如图,在中分别是边上的中点,则()A.1B.C.D.12、下列各组线段(单位:cm)中,成比例线段的是( )A.1、2、3、4B.1、2、2、4C.3、5、9、13D.1、2、2、313、两个相似多边形的一组对应边分别为3cm和4cm,如果它们的周长和为84cm,那么较大多边形的周长为()A.36cmB.42cmC.48cmD.54cm14、如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM= MF.其中正确结论的是()A. B. C. D.15、如图,用放大镜将图形放大,这种图形的改变是()A.相似B.平移C.轴对称D.旋转二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足= ,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:=4 .①△ADF∽△AED;②FG=2;③tan∠E= ;④S△DEF其中正确的是________(写出所有正确结论的序号).17、如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH的长为________.18、如图,有两个形状相同的星星图案,则x的值为________.19、如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为________米.20、矩形在平面直角坐标系中的位置如图所示,已知,点A在x轴上,点C在y轴上,P是对角线上一动点(不与原点重合),连接,过点P作,交x轴于点D.则下列结论正确的是________.(写出所有正确结论的序号)① ;②当点D运动到的中点处时;③当时,点D的坐标为;④在运动过程中,是一个定值.21、如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么=________.22、如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F.在AF上取点M,使得AM= AF,连接CM并延长交直线DE于点H.若AC=2,△AMH 的面积是,则的值是________.23、如图,正方形ABCD中,AB=2,E为BC中点,两个动点M和N分别在边CD和AD上运动且MN=1,若△ABE与以D、M、N为顶点的三角形相似,则DM=________.24、有一个多边形的边长分别是4cm,5cm,6cm,4cm,5cm,和它相似的一个多边形最长边为8cm,那么这个多边形的周长是________.25、如果将一个三角形绕着它一个角的顶点旋转后使这个角的一边与另一边重叠,再将旋转后的三角形相似缩放,使重叠的两边互相重合,我们称这样的图形为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形.如图,在△ABC中,AB=5,BC=6,AC=4,△A1B1C是△ABC以点C为转似中心的其中一个转似三角形,此时A1B1的长度为________ ;那么以点C为转似中心的另一个转似三角形△An BnCn(点An, Bn分别与A、B对应)的边An Bn的长为________三、解答题(共5题,共计25分)26、已知x:y:z=2:3:4,求的值.27、已知线段a、b,求作线段x,使a:b=b:x.28、如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.29、如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,每个小正方形的边长都为1. (1)在图上标出位似中心D的位置,并写出该位似中心D的坐标是;(2)求△ABC与△A′B′C′的面积比.30、如图,在△ABC中,已知AB=AC,D、E、B、C在同一条直线上,且AB2=BD•CE,求证:△ABD∽△ECA.参考答案一、单选题(共15题,共计45分)1、A2、C3、A4、B5、D6、B7、A8、C9、D10、D11、C12、B13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、第11 页共11 页。
人教版九年级下册数学第二十七章 相似含答案A4版打印
人教版九年级下册数学第二十七章相似含答案一、单选题(共15题,共计45分)1、如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为( )A.(﹣a,﹣2b)B.(﹣2a,﹣b)C.(﹣2a,﹣2b)D.(﹣b,﹣2a)2、下列说法中正确的是()A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等 C.位似图形的位似中心不只有一个 D.位似中心到对应点的距离之比都相等3、如图,已知矩形ABCD∽矩形ECDF,且AB=BE,那么BC与AB的比值是()A. B. C. D.4、在一张比例尺为1:5000000的地图上,甲、乙两地相距70毫米,此两地的实际距离为()A.3.5千米B.35千米C.350千米D.3500千米5、以下图形中一定属于互相放缩关系的是()A.斜边长分别是10和5的两直角三角形B.腰长分别是10和5的两等腰三角形C.边长分别是10和5的两个菱形D.边长分别是10和5的两个正方形6、如图,l1∥l2∥l3,直线a,b与l1, l2, l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C.10 D.67、如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是()A.AB 2=BC•BCB.AB2=AC•BD C.AB•AD=BC•BD D.AB•AC=AD•BC8、如图,在矩形中,,分别为边,的中点,线段,与对角线分别交于点,.设矩形的面积为,则以下4个结论中:① ;② ;③;④ .正确的结论有()A.1个B.2个C.3个D.4个9、如图,在中,点D、E分别在的边AB、AC上,如果添加下列其中之一的条件,不一定能使与相似,那么这个条件是()A. B. C.D.10、如图1,在三角形纸片ABC中,∠A=78°,AB=4,AC=6.将△AB C沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有()A.①②③B.①②④C.①③④D.②③④11、若两个相似多边形的面积之比为1:4,则它们的周长之比为()A.1:4B.1:2C.2:1D.4:112、如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠CB.∠APB=∠ABCC.D.13、下列多边形一定相似的为()A.两个三角形B.两个四边形C.两个正方形D.两个平行四边形14、如图,点为正方形内部两点,,若,则的长为()A. B. C.9 D.15、如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=BE,则有( )A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD二、填空题(共10题,共计30分)16、如图,在中,对角线与相交于点,在的延长线上取一点,连接交于点,已知,,,则的长等于________.17、如图把一张3×4的方格纸放在平面直角坐标系内,每个方格的边长为1个单位,△ABC的顶点都在方格的格点位置,即点A的坐标是(1,0).若点D 也在格点位置(与点A不重合),且使△DBC与△ABC相似,则符合条件的点D 的坐标是________.18、如图,在中,,点、分别在、上,连接并延长交的延长线于点,若,,,,则的长为________.19、如图,在平面直角坐标系中,直线AB⊥y轴,且A(0,16),AB=12,过点B,连结作直线l与y轴负半轴交于点D.已知点A关于直线l的对称点为A1BA,并延长交x轴于点C.当BC=20时,则点D的坐标为________.120、如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G,如果正方形ABCD的边长为1,则△CHG的周长为________21、如图,在平面直角坐标系中,已知点A(2,4),B(4,1),以原点O为位似中心,在点O的异侧将△OAB缩小为原来的,则点B的对应点的坐标是________.22、如图,点E是正方形ABCD的AB的中点,点F在CE上,将FB绕点F顺时针旋转90°至FG位置,则tan∠BDG=________.23、如图,△ABC中,AE交BC于点D,∠CAE=∠CBE,AD:DE=3:5,AE=16,BD=8,则DC的长等于________.24、如图,有一张矩形纸片ABCD,AB=8,AD=6。
人教版九年级数学下册第二十七章相似全章测试含答案
第二十七章 相似 全章测试班级_____________姓名_____________学号_____________分数_____________一、选择题1. 如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则 CD 的长为( )A .163B .8C .10D .162. 如图,∠ACB=∠ADC=90°,BC=a ,AC=b ,AB=c ,要使△ABC ∽△CAD ,只要CD 等于( )A.c b 2B.ab 2C.cab D.c a23. 在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F,若EC =2BE ,则FDBF的值是( )A.21B.31C.41D.514. 已知:如图,DE ∥BC ,AD:DB=1:2,则下列结论不正确的是() A 、12DE BC = B 、19ADE ABC ∆=∆的面积的面积 C 、13ADE ABC ∆=∆的周长的周长 D 、18ADE ∆=的面积四边形BCED 的面积DCBAA B CDFE5. 如图,铁路道口的栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m 时,•长臂端点升高(杆的宽度忽略不计)( ).A .4mB .6mC .8mD .12m6. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(4,2) 7. 平面直角坐标系中,有一条“鱼”,它有六个顶点,则( ) A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似 B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似 C.将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似D.将各点横坐标乘以2,纵坐标乘以21,得到的鱼与原来的鱼位似8. 对于平面图形上的任意两点P ,Q ,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( ) A .平移 B .旋转 C .轴对称 D .位似9. 已知:如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1).若以C ,D ,E (E 在格点上)为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( ) A .(6,0) B .(4,2)C .(6,5) D .(6,3)10. 小明在暗室做小孔成像实验.如图1,固定光源(线段MN )发出的光经过小孔(动点K )成像(线段M'N')于足够长的固定挡板(直线l )上,其中MN// l .已知点K 匀速运动,其运动路径由AB ,BC ,CD ,DA ,AC ,BD 组成.记它的运动时间为x ,M'N'的长度为y ,若y 关于x 的函数图象大致如图2所示,则点K 的运动路径可能为( ) A .A→B→C→D→A B .B→C→D→A→B C .B→C→A→D→B D .D→A→B→C→D图1 图2二、填空题11. 如果两个相似三角形的面积比是1:2,那么它们的相似比是. 12. 如图,小伟在打网球时,击球点距离球网的水平距离是8米,已知网高是0.8米,要使球恰好能打过网,且落在离网4米的位置,则球拍击球的高度h 为米.13. 如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段AC 的长为.14. 如图,点D 为△ABC 外一点,AD 与BC 边的交点为E ,AE=3,DE=5,BE =4,要使△BDE 与△ACE 相似,那么线段CE 的长等于.15. 如图,ABC △与AEF△中,AB AE BC EF B E AB==∠=∠,,,交EF 于D .给出下列结论: ①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠. 其中正确的结论是(填写所有正确结论的序号).三、解答题16. 如图,△ABC 在方格纸中,A BC(1) 请在方格纸上建立平面直角坐标系,使 A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A′B′C′; (3)计算△A′B′C′的面积S .交BC 、BD 于点E 、F ,求证:BE ABAD DH. 17. 如图,点H 在 ABCD 的边DC 延长线上,连结AH 分别18. 如图,花丛中有一路灯杆AB. 在灯光下, 小明在D 点处的影长DE=3米,沿BD 方向行 走到达G 点,DG=5米,这时小明的影长GH =5米. 如果小明的身高为1.7米,求路灯杆 AB 的高度(精确到0.1米).19. 如图,AB 是⊙O 的直径,C 是弧AB 的中点,⊙O 的切线BD 交AC 的延长线于点D ,E 是OB 的中点,CE 的延长线交切线DB 于点F ,AF交⊙O 于点H ,连结BH . (1)求证:AC=CD ; (2)若OB=2,求BH 的长.ABCDEF H20.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求APPD的值.小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).请回答:APPD的值为.参考小昊思考问题的方法,解决问题:图1 图2 图3如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .(1)求APPD的值;(2)若CD=2,则BP=.参考答案:1-10. CABAC ACDDB 11.1:12. 2.4 13.14.151245或15.①③④16.(1)(2,1)(2)略(3)16 17.分析:BE BF ABAD DF DH==18.5.95m≈6.0m19.(1)略(24520.解:PD AP 的值为23. …………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2,∴BC =2k . ∴DB =DC +BC =3k . ∵E 是AC 中点,∴AE =CE . ∵AF ∥DB ,∴∠F =∠1.又∵∠2=∠3,∴△AEF ≌△CEB . ………………………………3分 ∴AF =BC =2k .∵AF ∥DB ,∴△AFP ∽△DBP .∴DBAFPD AP =. ∴32=PD AP . …………………………………………………………………4分(2) 6 ……………………………………………………………………………5分专项训练二 概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A .通常加热到100℃时,水沸腾B .抛掷2枚正方体骰子,都是6点朝上C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:事件A 必然事件 随机事件(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
人教版数学九年级下册第二十七章 相似 测试题 含答案
初三数学人教版九年级下册(新)第二十七章相似测试题一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知:线段a=5cm,b=2cm,则ab=()A .14B.4C.52D.252.把mn=pq(mn≠0)写成比例式,写错的是()A.m qp n=B.p nm q=C.q nm p=D.m pn q=3.某班某同学要测量学校升旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5m,影长是1m,旗杆的影长是8m,则旗村的高度是()A.12m B.11m C.10m D.9m4.下列说法正确的是()A.矩形都是相似图形;B.菱形都是相似图形C.各边对应成比例的多边形是相似多边形;D.等边三角形都是相似三角形5.要做甲、乙两个形状相同(相似)的三角形框架,•已知三角形框架甲的三边分别为50cm,60cm,80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架乙共有()种A.1 B.2 C.3 D.46.如图(1),△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是()A.1:2B.1:4C.1:5D.1:67.如图(2),△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD的长是()A.83B.23C.43D.538.如图(3),若∠1=∠2=∠3,则图中相似的三角形有()A.1对B.2对C.3对D.4对图(1)图(3)图(2)二、填空题(本大题共6小题,每小题5分,共30分)9.若235a b c ==(abc ≠0),则a b c a b c++-+=_________. 10.把长为20cm 的线段进行黄金分割,则较短线段长约是________cm .(精确到0.01 cm )11.两个相似三角形的一对对应边长分别为20cm ,25cm ,它们的周长差为63cm ,则这两个三角形的周长分别是________.12.如图(4),点D 是Rt △ABC 的斜边AB 上一点,DE ⊥BC 于E ,DF ⊥AC 于F ,若AF=•15,BE=10,则四边形DECF 的面积是__________.(4) (5)13.如图(5),BD 平分∠ABC ,且AB=4,BC=6,则当BD=_______时,△ABD ∽△DBC .14.在梯形ABCD 中,AB ∥CD ,AB=60,CD=15,E 、F 分别为AD 、BC 上一点,且EF ∥AB ,•若梯形DEFC ∽梯形EABF ,那么EF=_________.三、解答题(本大题共30分,每题10分.解答题应写出文字说明、证明过程或演算步骤)15.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点. △ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F .(1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB .16.如图 ,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G .(1)求证:CDF BGF △∽△;(2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.17.如图①,四边形ABCD 是正方形, 点G 是BC 上任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F .(1) 求证:DE -BF = EF .(2) 当点G 为BC 边中点时, 试探究线段EF 与GF 之间的数量关系, 并说明理由.(3) 若点G 为CB 延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE 、BF 、EF 之间的数量关系(不需要证明).DC F EAB G答案:一、选择题1.C 2.D 3.A 4.D 5.C 6.C 7.D 8. D二、填空题9.5210.7.64 11.252cm ,315cm 12.150 13.6 14.30三、解答题15.证明:(1)∵ 3,2AC DC = 63,42BC CE ==∴ .AC BC DC CE =又 ∠ACB =∠DCE =90°,∴ △ACB ∽△DCE .(2)∵ △ACB ∽△DCE ,∴ ∠ABC =∠DEC .又 ∠ABC +∠A =90°,∴ ∠DEC +∠A =90°.∴ ∠EFA =90°. ∴ EF ⊥AB .16.(1)证明:∵梯形ABCD ,AB CD ∥,∴CDF FGB DCF GBF ∠=∠∠=∠,,∴CDF BGF △∽△.(2) 由(1)CDF BGF △∽△,又F 是BC 的中点,BF FC =∴CDF BGF △≌△,∴DF FG CD BG ==,又∵EF CD ∥,AB CD ∥,∴EF AG ∥,得2EF BG AB BG ==+.∴22462BG EF AB =-=⨯-=,∴2cm CD BG ==.17.(1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥AG∴ DA =AB , ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90° ∴ ∠BAF = ∠ADE∴ △ABF ≌ △DAE∴ BF = AE , AF = DE∴ DE -BF = AF -AE = EF(2)EF = 2FG 理由如下:∵ AB ⊥BC , BF ⊥AG , AB =2 BG∴ △AFB ∽△BFG ∽△ABG ∴2===FGBF BF AF BF AB ∴ AF = 2BF , BF = 2 FG由(1)知, AE = BF ,∴ EF = BF = 2 FG (3) 如图DE + BF = EF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十七章 相似 全章测试
班级_____________姓名_____________学号_____________分数_____________ 一、选择题
1. 如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则 CD 的长为( )
A .163
B .8
C .10
D .16
2. 如图,∠ACB=∠ADC=90°,BC=a ,AC=b ,AB=c ,要使
△ABC ∽△CAD ,只要CD 等于( )
A.c b 2
B.a
b 2
C.c ab
D.c
a
2
3. 在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F, 若EC =2BE ,则
FD
BF
的值是( ) A.21 B.31 C.41 D.5
1
4. 已知:如图,DE ∥BC ,AD:DB=1:2,则下列结论不正确的是() A 、
1
2DE BC = B 、19ADE ABC ∆=∆的面积的面积 C 、13ADE ABC ∆=∆的周长的周长 D 、1
8
ADE ∆=的面积四边形BCED 的面积
5. 如图,铁路道口的栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m 时,•长臂端点升高(杆的宽度忽略不计)( ).
A .4m
B .6m
C .8m
D .12m
6. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG
是以原点O 为位似中心的位似图形,且相似比
为
,点A ,
B ,E 在x 轴上,若正方形BEFG 的边长为6,则
C 点坐标为( ) A .(3,2) B .(3,1) C .(2,2)
D .(4,2) 7. 平面直角坐标系中,有一条“鱼”,它有六个顶点,则( ) A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似 B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似 C.将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似
D.将各点横坐标乘以2,纵坐标乘以2
1
,得到的鱼与原来的鱼位似
D
C
B
A
A C
D
F E
8. 对于平面图形上的任意两点P ,Q ,如果经过某种变换得到新图形上的对
应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( ) A .平移 B .旋转 C .轴对称 D .位似
9. 已知:如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),
(6,1).若以C ,D ,E (E 在格点上)为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( ) A .(6,0) B .(4,2)C .(6,5) D .(6,3)
10. 小明在暗室做小孔成像实验.如图1,固定光源(线段MN )发出的光经过小孔(动点K )
成像(线段M'N')于足够长的固定挡板(直线l )上,其中MN// l .已知点K 匀速运动,其运动路径由AB ,BC ,CD ,DA ,AC ,BD 组成.记它的运动时间为x ,M'N'的长度为y ,若y 关于x 的函数图象大致如图2所示,则点K 的运动路径可能为( ) A .A→B→C→D→A B .B→C→D→A→B C .B→C→A→D→B D .D→A→B→C→D
图1 图2
二、填空题
11. 如果两个相似三角形的面积比是1:2,那么它们的相似比是.
12. 如图,小伟在打网球时,击球点距离球网的水平距离是8米,
已知网高是0.8米,要使球恰好能打过网,且落在离网4米的位置,则球拍击球的高度h 为米.
13. 如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,
则线段AC 的长为. 14. 如图,点D 为△ABC 外一点,AD 与BC 边的交点为E ,AE=3,
DE=5,BE =4,要使△BDE 与△ACE 相似,那么线段CE 的长等于.
15. 如
图
,
ABC △与
AEF △中,
A B A
E B C ==∠=∠,
,,交EF 于D .给出下列
结论:
①AFC C ∠=∠;②DF CF =;
③ADE FDB △∽△;④BFD CAF ∠=∠. 其中正确的结论是(填写所有正确结论的序号).
三、解答题
16. 如图,△ABC 在方格纸中,
(1) 请在方格纸上建立平面直角坐标系,使 A (2,3),C (6,2),并求出B 点坐标;
(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A′B′C′; (3)计算△A′B′C′的面积S .
17. 如图,点H 在ψABCD 的边DC 延长线上,连结AH 分别
交BC 、BD 于点E 、F ,求证:BE AB
AD DH
=.
18. 如图,花丛中有一路灯杆AB. 在灯光下, 小明在D 点处的影长DE=3米,沿BD 方向行 走到达G 点,DG=5米,这时小明的影长GH =5米. 如果小明的身高为1.7米,求路灯杆 AB 的高度(精确到0.1米).
19. 如图,AB 是⊙O 的直径,C 是弧AB 的中点,⊙O 的切线BD 交AC 的延长线于点D ,
E 是OB 的中点,CE 的延长线交切线DB 于点
F ,AF 交⊙O 于点H ,连结BH . (1)求证:AC=CD ; (2)若OB=2,求BH 的长.
A B
C
A
B
C
D
E
F
H
20. 阅读下面材料:
小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°,BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求
AP
PD
的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和计算能够使问题得到解决(如图2).请回答:AP
PD
的值为 .
参考小昊思考问题的方法,解决问题:
如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求
AP
PD
的值; (2)若CD=2,则BP =.
图1
图2
图3
参考答案:
1-10. CABAC ACDDB 11.1: 12. 2.4 13. 14.1512
45
或 15.①③④ 16.(1)(2,1)(2)略(3)16 17.分析:BE BF AB
AD DF DH
== 18.5.95m ≈6.0m
19.(1)略(2 20.解:
PD AP 的值为2
3
. …………………………………………………………1分 解决问题:
(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分
设DC =k ,
∵DC ︰BC =1︰2,∴BC =2k . ∴DB =DC +BC =3k . ∵E 是AC 中点,∴AE =CE . ∵AF ∥DB ,∴∠F =∠1.
又∵∠2=∠3,∴△AEF ≌△CEB . ………………………………3分 ∴AF =BC =2k .
∵AF ∥DB ,∴△AFP ∽△DBP .∴DB
AF
PD AP =. ∴3
2
=PD AP . …………………………………………………………………4分
(2) 6. ……………………………………………………………………………5分。