高中数学必修一必修四综合测试题
全国通用2023高中数学必修一第四章指数函数与对数函数必考考点训练
全国通用2023高中数学必修一第四章指数函数与对数函数必考考点训练单选题1、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A2、中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN ),它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN 叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计,按照香农公式,若不改变带宽W ,而将信噪比SN 从1000提升至5000,则C 大约增加了( )(附:lg2≈0.3010) A .20%B .23%C .28%D .50% 答案:B分析:根据题意写出算式,再利用对数的换底公式及题中的数据可求解. 将信噪比SN 从1000提升至5000时,C 大约增加了Wlog 2(1+5000)−Wlog 2(1+1000)Wlog 2(1+1000)=log 25001−log 21001log 21001≈lg5000lg2−lg1000lg2lg1000lg2=lg53=1−lg23≈0.23=23%.故选:B.3、设函数f (x )=lg (x 2+1),则使得f (3x −2)>f (x −4)成立的x 的取值范围为( )A.(13,1)B.(−1,32)C.(−∞,32)D.(−∞,−1)∪(32,+∞)答案:D分析:方法一 :求出f(3x−2),f(x−4)的解析式,直接带入求解.方法二 : 设t=x2+1,则y=lgt,判断出f(x)=lg(x2+1)在[0,+∞)上为增函数,由f(3x−2)>f(x−4)得|3x−2|>|x−4|,解不等式即可求出答案.方法一 :∵f(x)=lg(x2+1)∴由f(3x−2)>f(x−4)得lg[(3x−2)2+1]>lg[(x−4)2+1],则(3x−2)2+1>(x−4)2+1,解得x<−1或x>32.方法二 :根据题意,函数f(x)=lg(x2+1),其定义域为R,有f(−x)=lg(x2+1)=f(x),即函数f(x)为偶函数,设t=x2+1,则y=lgt,在区间[0,+∞)上,t=x2+1为增函数且t≥1,y=lgt在区间[1,+∞)上为增函数,则f(x)=lg(x2+1)在[0,+∞)上为增函数,f(3x−2)>f(x−4)⇒f(|3x−2|)>f(|x−4|)⇒|3x−2|>|x−4|,解得x<−1或x>32,故选:D.4、Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=K1+e−0.23(t−53),其中K为最大确诊病例数.当I(t∗)=0.95K 时,标志着已初步遏制疫情,则t∗约为()(ln19≈3)A.60B.63C.66D.69答案:C分析:将t=t∗代入函数I(t)=K1+e−0.23(t−53)结合I(t∗)=0.95K求得t∗即可得解.∵I(t)=K1+e−0.23(t−53),所以I(t∗)=K1+e−0.23(t∗−53)=0.95K,则e0.23(t∗−53)=19,所以,0.23(t∗−53)=ln19≈3,解得t∗≈30.23+53≈66.小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5、若2a +log 2a =4b +2log 4b ,则( ) A .a >2b B .a <2b C .a >b 2D .a <b 2 答案:B分析:设f(x)=2x +log 2x ,利用作差法结合f(x)的单调性即可得到答案.设f(x)=2x +log 2x ,则f(x)为增函数,因为2a +log 2a =4b +2log 4b =22b +log 2b所以f(a)−f(2b)= 2a +log 2a −(22b +log 22b)= 22b +log 2b −(22b +log 22b) =log 212=−1<0,所以f(a)<f(2b),所以a <2b .f(a)−f(b 2)= 2a +log 2a −(2b 2+log 2b 2)= 22b +log 2b −(2b 2+log 2b 2)= 22b −2b 2−log 2b , 当b =1时,f(a)−f(b 2)=2>0,此时f(a)>f(b 2),有a >b 2当b =2时,f(a)−f(b 2)=−1<0,此时f(a)<f(b 2),有a <b 2,所以C 、D 错误. 故选:B.【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题. 6、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞)答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x 2+2=f(x),则f(x)为偶函数,当x ⩾0时,f(x)=3x +x 2+2,又y =3x ,y =x 2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x −1)>f(3−x),即|2x −1|>|3−x|,解得x <−2或x >43, 所以f(2x −1)>f(3−x)的解集为(−∞,−2)∪(43,+∞).7、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a−(14)b=(12)a−(12)b,即[(12)a−(12)b][(12)a+(12)b]=(12)a−(12)b≠0, 所以(12)a+(12)b=1,故选:B .8、若2x =3,2y =4,则2x+y 的值为( ) A .7B .10C .12D .34 答案:C分析:根据指数幂的运算性质直接进行求解即可. 因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12, 故选:C9、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,90050=18,故至少需要志愿者18名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.10、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1 x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.填空题11、已知a=lg5,用a表示lg20=__________.答案:2−a分析:直接利用对数的运算性质求解因为a=lg5,所以lg20=lg1005=lg100−lg5=2−a,所以答案是:2−a12、函数y=a x+1(a>0,a≠1)恒过定点___________.答案:(−1,1)分析:利用指数型函数的特征,求解函数恒过的定点坐标.当x+1=0,即x=−1时,y=a0=1,所以y=a x+1(a>0,a≠1)恒过定点(−1,1).所以答案是:(−1,1)13、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题14、已知a 12+a−12=3,求下列各式的值.(1)a+a−1;(2)a2+a−2;(3)a 32+a−32+2a2+a−2+3.答案:(1)7(2)47(3)25分析:(1)将所给的等式两边平方,整理即可求得a+a−1的值;(2)将(1)中所得的结果两边平方,整理即可求得a2+a−2的值;(3)首先利用立方差公式可得a 32+a−32=(a12+a−12)(a−1+a−1),然后结合(1)(2)的结果即可求得代数式的值.(1)将a 12+a−12=3两边平方,得a +a −1+2=9,所以a +a −1=7. (2)将a +a −1=7两边平方,得a 2+a −2+2=49, 所以a 2+a 2=47. (3)∵a 12+a −12=3,a +a −1=7,a 2+a 2=47, ∴a 32+a−32=(a 12)3+(a −12)3=(a 12+a −12)(a −1+a −1)=3×(7−1)=18,∴a 32+a−32+2a 2+a −2+3=18+247+3=25.15、已知函数f (x )=log a (a x −1)(a >0,a ≠1) (1)当a =12时,求函数f (x )的定义域;(2)当a =2时,存在x ∈[1,3]使得不等式f (x )−log 2(1+2x )>m 成立,求实数m 的取值范围. 答案:(1)(−∞,0);(2)m <log 279,.分析:(1)利用真数大于0,即可求解定义域;(2)令g (x )=f (x )−log 2(1+2x )=log 2(2x −12x +1),由题意可知m <g (x )max ,令t =2x −12x +1,求解t 的取值范围,然后可求g (x )max ,从而求出m 的取值范围.(1)当a =12时,f (x )=log 12(12x −1),故:12x −1>0,解得:x <0,故函数f (x )的定义域为(−∞,0);(2)由题意知,f (x )=log 2(2x −1)(a >1),定义域为x ∈(0,+∞),易知f (x )为x ∈(0,+∞)上的增函数, 设g (x )=f (x )−log 2(1+2x )=log 2(2x −12x +1),x ∈[1,3],设t =2x −12x +1=1−22x +1,x ∈[1,3],故2x +1∈[3,9],t =1−22x +1∈[13,79],因为g (x )=log 2t 单调递增,则g (x )∈[log 213,log 279].因为存在x ∈[1,3]使得不等式f (x )−log 2(1+2x )>m 成立故:m <g (x )max ,即m <log 279.。
高中数学必修一第四章专项训练
第四章专项训练1一.选择题(共40小题)1.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定2.由7个相同的棱长为1的小立方块搭成的几何体如图所示,它的表面积为()1题3题7题A.23B.24C.26D.283.如图,在△ABC中,∠BAC=90°,点D,E分别在BC,CA边的延长线上,EH⊥BC于点H,EH与AB交于点F.则∠1与∠2的数量关系是()A.∠1=∠2B.∠1与∠2互余C.∠1与∠2互补D.∠1+∠2=100°4.∠1、∠2互为补角,且∠1>∠2,则∠2的余角是()A.∠1+∠2B.∠1﹣∠2C.∠1﹣90°D.90°﹣∠15.用平面去截正方体,在所得的截面中,不可能出现的是()A.七边形B.六边形C.平行四边形D.等边三角形6.如图,AD=AB,BC=AB且AF=CD,则DF为AB长的()A.B.C.D.7.将正方形纸片按如图所示折叠,M为折痕,点B落在对角线AC上的点E处,则∠CME=()A.22.5°B.30°C.45°D.60°8.如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是()A.文B.明C.诚D.信9.下列图形折叠后能得到如图的是()A.B. C D.10.下列说法中正确的有()个.①一根绳子,用去它的,还剩米;②自然数a的倒数是;③如果a:b=3:5,那么a=3,b=5;④圆的直径越长,圆周率越大;⑤若大圆和小圆半径的比是3:1,则大圆和小圆周长的比是3:1,面积的比是9:1.A.1个B.2个C.3个D.4个11.如图,是一个正方体的表面展开图,则原正方体中“爱”字所对应的面相对的面上标的字是()A.我B.的C.祖D.国12题14题A.2B.3C.4D.513.已知点P是CD中点,则下列等式中正确的个数是()①PC=PD②PC=CD③CD=2PD④PC+PD=CDA.1个B.2个C.3个D.4个14.王老师在庆祝中华人民共和国成立70周年的节目中,看到游行的第26号“立德树人”方阵中,“打开的书本”生长出硕果累累的“知识树”,数据链组成的树干上耸立着“教育云”,立刻把如图图形折叠成一个正方体的盒子,折叠后与“育”相对的字是()A.知B.识C.树D.教16.时钟的时针和分针垂直的时刻()A.12:15 B.3:00 C.3:30D.11:4517.如图,是某住宅小区平面图,点B是某小区“菜鸟驿站”的位置,其余各点为居民楼,图中各条线为小区内的小路,从居民楼点A到“菜鸟驿站”点B的最短路径是()A.A﹣C﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B18.下列说法正确的有()①|a|=a;②x+5一定比x大;③单项式的系数是,次数是3;④<;⑤长方体的截面中,边数最多的多边形是七边形A.2个B.3个C.4个D.5个19.如图,在一个正方形盒子的六面上写有“祝、母、校、更、美、丽”六个汉字,其中“祝”与“更”,“母”与“美”在相对的面上,则这个盒子的展开图(不考虑文字方向)不可能的是()A.B.C.D.20.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个21.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.4个B.3个22.用一个平面去截一个正方体,截面图形的形状不可能是下列图形()A.B.C.D.25题23.若大圆的半径是小圆半径的2倍,则大圆的面积是小圆面积的()A.2倍B.3倍C.4倍D.6倍24.已知线段AC=4,BC=1,则线段AB的长度()A.一定是5B.一定是3C.一定是5或3D.以上都不对25.如图,∠AOB=90°,把∠AOB顺时针旋转后得到∠COD,已知∠COB=35°,则∠AOD的度数为()A.125°B.135°C.145°D.155°26.下列说法中,正确的个数是()①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤正棱柱的侧面一定是长方形.A.2个B.3个C.4个D.5个27.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角是()A.30°B.35°C.40°D.45°28.下列说法正确的是()A.如果一个角有补角,那么这个角必是钝角B.一个锐角的余角比这个角的补角小90°C.若∠1+∠2+∠3=180°,则∠1+∠2+∠3互补D.如果∠a、∠β互余,∠β、∠γ互余,那么∠α与∠γ也互为余角29.如图线段AB和线段CD,在平面内找一点P,使得它到四端点的距离和P A+PB+PC+PD最小,则点P()A.线段AB的中点B.线段CD的中点C.线段AB和线段CD的交点D.线段AD和线段BC的交点30.下列说法:①物体的形状、大小和位置关系是几何中研究的内容;②数轴上,离原点越远的点表示的数就越小;③正数的任何次幂都是正数,负数的任何次幂都是负数;④除以一个数等于乘这个数的倒数;⑤两点之间的距离就是两点之间所连线段的长度.正确的有()A.2个B.3个C.4个D.5个31.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的有()①用两颗钉子就可以把木条固定在墙上②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.1个B.2个C.3个D.4个32.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定33.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b35.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM 等于线段BM,则点M是线段AB的中点;⑤连接两点的线段叫做这两点之间的距离.其中正确的个数为()A.1个B.2个C.3个D.4个36.下列说法正确的是()A.两点之间的所有连线中,直线最短B.若点P是线段AB的中点,则AP=BPC.若AP=BP,则点P是线段AB的中点D.若CA=3AB,则CA=CB37.下列说法:①平方等于本身的数有0,±1;②3πxy3是4次单项式;③将方程﹣=1.2中的分母化为整数,得﹣=12;④平面内有4个点,过每两点直线可画6条.其中说法正确的有()A.1个B.2个C.3个D.4个38.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN39.如图,观察图形,下列结论中不正确的是()A.直线BA和直线AB是同一条直线B.图中有5条线段C.AB+BD>AD D.射线AC和射线AD是同一条射线40.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个第四章专项训练2一.选择题(共40小题)1.如图,已知线段AB=10cm,点C在线段AB上,点M是线段AC的中点,点N是线段BC的中点,那么线段MN的长为()A.6cm B.5cm C.4cm D.不能确定3.下列说法正确的是()A.两点之间直线最短B.线段MN就是M、N两点间的距离C.射线AB和射线BA是同一条射线D.将一根木条固定在墙上需要两枚钉子,其原理是两点确定一条直线5.同一直线上有A、B、C三点,已知线段AB=5cm,线段AC=4cm,则线段BC的长度为()A.9cm B.1cm C.9cm或1cm D.无法确定6.下列四种说法中,正确的是()A.两点间的距离是连接两点的线段的长度B.连结两点的线段,叫做两点间的距离C.两点间的距离就是两点间的线段D.两点间的线段长度,叫做两点间的距离8.已知线段AB=12cm.C是AB的中点.在线段AB上有一点D,且CD=2cm.则AD的长是()A.8cm B.8cm或2cm C.8cm或4cm D.2cm或4cm9.如图,点C是AB的中点,点D是BC的中点,现给出下列等式:①CD=AC﹣DB,②CD=AB,③CD=AD ﹣BC,④BD=2AD﹣AB.其中正确的等式编号是()10.如图,线段AB表示一条对折的绳子,现从P点将绳子剪断.剪断后的各段绳子中最长的一段为30cm.若AP =BP,则原来绳长为()cm.A.55cm B.75cm C.55或75cm D.50或75cm14.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①③B.②④C.①④D.②③15.把一条弯曲的道路改成直道,可以缩短路程,其道理是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.以上都不正确16.有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从A地到B地架设电线,总是尽可能沿着线段AB架设.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④17.如图所示,C、D是线段AB上两点,若AC=3cm,C为AD中点且AB=10cm,则DB=()A.4cm B.5cm C.6cm D.7cm18.如图,线段AB=20,C为AB的中点,D为CB上一点,E为DB的中点,且EB=3,则CD等于()A.10B.6C.4D.219.如图,已知线段AB=18cm,M为AB的中点,点C在线段A上且CB=AB,则线段MC的长为()A.1cm B.2cm C.3cm D.4cm20.如图,点C是线段AB上一点,D为BC的中点,且AB=12cm,BD=5cm.若点E在直线AB上,且AE=3cm,则DE的长为()A.4cm B.15cm C.3cm或15cm D.4cm或10cm21.如图,一条线段AB:BC:CD=3:2:4,点E、F分别是AB、CD的中点,且EF=22cm,则线段BC的长为()cm.A.8B.9C.11D.1222.如图,点C是线段AB上的一点,M、N分别是AC、BC的中点.若AB=10cm,NB=2cm,则线段AM的长为()A.3cm B.3.5cm C.4cm D.4.5cm23.如图,点C在线段AB上,点D是AC的中点,如果CD=4,AB=14,那么BC长度为()24.如图,C、D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AB的长等于()A.9cm B.10cm C.12cm D.14cm25.下列说法正确的是()A..连接两点的线段叫做两点间的距离B..射线AB和射线BA是同一条射线C..若点C是线段AB的中点,则AB=2AC.D..角的两边越长角越大26.下列叙述:①最小的正整数是0;②单项式3x3y的次数是3;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤若x表示有理数,且|x|=x,则x>0.其中正确的个数有()A.0个B.1个C.2个D.3个28.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm或4cm C.2cm D.2cm或8cm30.已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段AC的中点,则AM的长()A.7cm B.3cm C.3cm或7cm D.7cm或9cm31.已知线段AC,点D为AC的中点,B是直线AC上的一点,且BC=AB,BD=1cm,则线段AC的长为()A.B.C.6cm或D.6cm或33.已知线段MN=10cm,现有一点P满足PM+PN=20cm,有下列说法:①点P必在线段MN上;②点P必在直线MN上;③点P必在直线MN外;④点P可能在直线MN外,也可能在直线MN上.其中正确的说法是()A.①②B.②③C.③④D.④34.如图,已知点C是线段AD的中点,AB=10cm,BD=4cm,则BC的长为()A.5cm B.6cm C.7cm D.8cm第四章专项训练3一.解答题(共40小题)3.如图,已知B是线段AC的中点,D是线段CE的中点,若AB=4,CE=AC,求线段BD的长.4.已知线段AB=14,在线段AB上有点C,D,M,N四个点,且满足AC:CD:DB=1:2:4,AM=AC,且DN=BD,求MN的长.5.已知:如图,在直线l上顺次有A、B、C三点,AB=4cm,AB>BC,点O是线段AC的中点,且OB=cm,求:B、C两点之间的距离.6.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由7.已知,点C是线段AB的中点,AC=6.点D在直线AB上,且AD=BD.请画出相应的示意图,并求线段CD的长.8.如图,M为线段AB的中点,点C在线段AB上,且AC=4cm,N为AC的中点,MN=3cm,求线段CM和线段AB的长.9.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,若CD=6,求:线段MC的长.11.如图,已知B,C是线段AD上两点,且AB:BC:CD=2:4:3,AD=18,M是AD的中点,求线段MC的长.10.P是线段AB上一点,AB=12cm,C,D两点分别从P,B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)如图若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明线段AC和线段CD的数量关系;(2)如果t=2s时,CD=1.5cm,试探索AP的值.14.点A、B、C所表示的数如图所示,回答下列问题:(1)A、B两点间的距离是多少?(2)若将线段BC向右移动,使B点和A点重合,此时C点表示的数是多少?17.如图,点E、B、C、F在同一线段上,且AD=6cm,AC=BD=4cm,点E、F分别是线段AB、CD的中点,求线段EF的长.18.已知:点C在直线AB上.(1)若AB=2,AC=3,求BC的长;(2)若点C在射线AB上,且BC=2AB,取AC的中点D,已知线段BD的长为1.5,求线段AB的长.(要求:在备用图上补全图形)19.已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.21.如图,已知AC=16cm,AB=BC,点C是BD的中点,求AD的长.22.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若BD=6cm,求AB的长.23.如图,点A、M、B、N、C在同一直线上顺次排列,点M是线段AB的中点,点N是线段MC的中点,点N在点B的右边.(1)填空:图中共有线段条;(2)若AB=6,MC=7,求线段BN的长;(3)若AB=a,MC=7,将线段BN的长用含a的代数式表示出来.25.如图,AB=9,延长AB到C,使BC=4AB,D是线段BC的中点,求:(1)线段AC的长度:(2)线段AD的长度.26.如图,P是线段AB上的一点,M、N分别是线段AB、AP的中点,若BP=4cm,求线段MN的长.27.如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.(1)求线段BC、MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=6cm,M、N分别是线段AC、BC的中点,求MN的长度.29.如图,已知点O在线段AB上,点C、D分别是AO、BO的中点(1)AO=CO;BO=DO;(2)若CO=3cm,DO=2cm,求线段AB的长度;(3)若线段AB=10,小明很轻松地求得CD=5.他在反思过程中突发奇想:若点O在线段AB的延长线上,原有的结论“CD=5”是否仍然成立呢?请帮小明画出图形分析,并说明理由.30.如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有条.31.如图,已知线段AB和CD的公共部分BD=CD=AB,点E,F分别是AB,CD的中点,且EF=14,求AB,CD的长.33.如图,线段AB=9cm,BC=6cm,点M是AC的中点.(1)则线段AC=cm,AM=cm;(2)在CB上取一点N,使得CN:NB=1:2.求MN的长.34.已知AB=10cm,CD=1cm,AM=AC,DN=DB,如图,求MN的长度.36.如图,已知A、B、C是数轴上的三点,点B表示的数是﹣2,BC=6,AC=18,点P从A点出发沿数轴向右运动,速度为每秒2个单位.(1)数轴上点A表示的数为;点C表示的数为.(2)经过t秒P到B点的距离等于P点到C点距离的2倍,求此时t的值.(3)当点Q以每秒1个单位长度的速度从C点出发,沿数轴向终点A运动,N为BQ中点.P、Q同时出发,当一点停止运动时另一点也随之停止运动.用含t的代数式表示线段PN的长.37.操作:如图1,直线l上有A、B两点,线段AB=10cm,C是线段AB上一点,取AC中点M与BC中点N.探究:(1)图1中的MN长度是cm;(2)小明作了进一步思考:若C沿直线l向线段AB外运动,仍然取AC中点M与BC中点N,MN的长度有没有变化呢?你能帮助小明解决这个问题吗,试试看.(请选择图2或图3中一种情况进行求解)39.已知,线段AB及点C,点D是线段AC的中点,点E是线段CB的中点.探究在图1中,若点C在线段AB上,则DE=AB成立吗?请选择一种情况画出图形,并说明理由;拓展在图2中,若点C在线段AB或者线段BA的延长线上,DE=AB成立吗?请选择一种情况画出图形,并说明理由;猜想若点C在线段AB外,DE=AB成立吗?(填“成立”或“不成立”).角的运算专题一.解答题(共31小题)1.几何计算:如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:因为∠BOC=3∠AOB,∠AOB=40°所以∠BOC=°所以∠AOC=+=°+°=°因为OD平分∠AOC31.已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠COE=40°时,求∠AOB的度数.解:∵OE是∠COB的平分线,∴∠COB=(理由:).∵∠COE=40°,∴.∵∠AOC=,∴∠AOB=∠AOC+=110°.7.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC.因为OE是∠BOC的平分线,所以∠COE=.所以∠DOE=∠COD+=(∠AOC+∠BOC)=∠AOB=°.(2)由(1)可知∠BOE=∠COE=﹣∠COD=°.所以∠AOE=﹣∠BOE=°.13.补全下列解题过程如图,OD是∠AOC的平分线,且∠BOC﹣∠AOB=40°,若∠AOC=120°,求∠BOD的度数.解:∵OD是∠AOC的平分线,∠AOC=120°,∴∠DOC=∠=°.∵∠BOC+∠=120°,∠BOC﹣∠AOB=40°,∴∠BOC=80°.∴∠BOD=∠BOC﹣∠=°.23.一个角的余角比它的补角的还少40°,求这个角.2.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.3.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明OE是否平分∠BOC.4.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.5.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.6.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)试判断∠BOE和∠COE有怎样的数量关系,说说你的理由.14.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.15.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.16.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.17.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.18.如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°,OD平分∠COE,求∠COB的度数.24.已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)(1)如图1摆放,点O、A、C在一直线上,则∠BOD的度数是多少?(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.26.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.27.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,则∠AOC=;若∠AOC=135°,则∠BOD=;(2)如图(2)若∠AOC=140°,则∠BOD=;(3)猜想∠AOC与∠BOD的大小关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.。
高中数学必修一、必修四、必修二综合练习(含答案)
高中数学必修一、必修四、必修二综合练习一. 选择题:1.函数()12x f x =-的定义域是 ( )A .(,0]-∞B .[0,)+∞C .(,0)-∞D .(,)-∞+∞2.下列四个命题中正确的是( )A .lg 2lg3lg5⋅=B .mn n m a a a =⋅C .a a n n =D .yxy x aa a log log log =- 3. cos300︒= ( )(A)32-(B)-12 (C)12(D) 32 4.正三角形ABC 的边长为1,设=u u u rAB c ,=u u u r BC a ,=u u u r CA b ,那么a b b c c a ++g g g 的值是( ) A .32 B .12 C .32- D .12- 5.在正项等比数列{}n a 中,若232a a +=,458a a +=,则56a a += ( )A.16B. 32C. 36D. 646. 程序框图如下:如果上述程序运行的结果为S =40,那么判断框中应填入 A .6k ≤ B .5k ≤ C .6k ≥ D .5k ≥ 7.已知1x > ,则11y x x =+-的最小值为 ( ) A.1 B. 2 C. 22 D. 38.已知图1是函数()y f x =的图象,则图2中的图象对应的函数可能是 ( )A .(||)y f x =B .|()|y f x =C .(||)y f x =-D .(||)y f x =--9.已知全集{}0,1,2U =,且{}2U C A =,则集合A 的子集共有( ) A .2个B .3个C .4个D .5个10.为了得到函数cos(2)3y x π=-的图象,可以将函数sin 2y x =的图象( )A .向右平移6π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度D .向左平移12π个单位长度二、填空题(每小题5分,共20分)11.已知向量(3,1)a =r ,(1,3)b =r ,(,7)c k =r ,若()a c -r r∥b r ,则k = .12. 满足约束条件|x |+2|y |≤2的目标函数z =y -x 的最小值是________. 13.已知3cos()25πα-=,则cos2α= 14.对定义域是f D 、g D 的函数)(x f y =、)(x g y =,规定:函数⎪⎩⎪⎨⎧∈∉∉∈∈∈=g f gf g f Dx D x x g D x D x x f D x D x x g x f x h 且当且当且当),(),(),()()(,若函数11)(-=x x f ,2)(x x g =,则=+)2()1(h h 。
四川省部分中学2023高中数学必修一第四章指数函数与对数函数真题
四川省部分中学2023高中数学必修一第四章指数函数与对数函数真题单选题1、已知f(x)=a−x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是()A.a>0B.a>1C.a<1D.0<a<1答案:D分析:把f(-2),f(-3)代入解不等式,即可求得.因为f(-2)=a2,f(-3)=a3,f(-2)>f(-3),即a2>a3,解得:0<a<1.故选:D2、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375= 0.0625<0.1,所以满足精确度0.1;所以方程x3+x2−2x−2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B .故选:B3、已知函数f(x)=9+x2,g(x)=log2x+a,若存在x1∈[3,4],对任意x2∈[4,8],使得f(x1)≥g(x2),则实数xa 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4)答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可. 当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a , 所以254≥3+a ,可得a ≤134.故选:A4、已知函f (x )=log 2(√1+4x 2+2x)+3,且f (m )=−5,则f (−m )=( ) A .−1B .−5C .11D .13 答案:C分析:令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,则先判断函数g (−x )+g (x )=0,进而可得f (−x )+f (x )=6,即f (m )+f (−m )=6,结合已知条件即可求f (−m )的值. 令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,因为g (x )+g (−x )=log 2(√1+4x 2+2x)+log 2(√1+4x 2−2x) =log 2(1+4x 2−4x 2)=0,所以f (−x )+f (x )=g (−x )+3+g (x )+3=6,则f (m )+f (−m )=6,又因为f (m )=−5,则f (−m )=11, 故选:C.5、我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量c (t )(单位:mg/L )随着时间t (单位:h )的变化用指数模型c (t )=c 0e −kt 描述,假定某药物的消除速率常数k =0.1(单位:h −1),刚注射这种新药后的初始血药含量c 0=2000mg/L ,且这种新药在病人体内的血药含量不低于1000mg/L 时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,则该新药对病人有疗效的时长大约为( )(参考数据:ln2≈0.693,ln3≈1.099)A .5.32hB .6.23hC .6.93hD .7.52h 答案:C分析:利用已知条件c (t )=c 0e −kt =2000e −0.1t ,该药在机体内的血药浓度变为1000mg/L 时需要的时间为t 1,转化求解即可. 解:由题意得:c (t )=c 0e −kt =2000e −0.1t设该要在机体内的血药浓度变为1000mg/L 需要的时间为t 1c (t 1)=2000e −0.1t 1≥1000e −0.1t 1≥12故−0.1t ≥−ln2,t ≤ln20.1≈6.93故该新药对病人有疗效的时长大约为6.93ℎ 故选:C6、函数f (x )={|2x −1|,x ≤2−x +5,x >2,若函数g (x )=f (x )−t (t ∈R )有3个不同的零点a ,b ,c ,则2a +2b +2c 的取值范围是( )A .[16,32)B .[16,34)C .(18,32]D .(18,34) 答案:D分析:作出函数y =f(x)的图象和直线y =t ,它们的交点的横坐标即为g(x)的零点,利用图象得出a,b,c 的性质、范围,从而可求得结论.作出函数y =f(x)的图象和直线y =t ,它们的交点的横坐标即为g(x)的零点,如图, 则1−2a =2b −1,4<c <5,2a +2b =2,2c ∈(16,32),所以18<2a +2b +2c <34. 故选:D .小提示:关键点点睛:本题考查函数零点问题,解题关键是把函数零点转化为函数图象与直线的交点的横坐标,从而可通过作出函数图象与直线,得出零点的性质与范围. 7、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m=10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0. 又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b , 又因为f(9)=9log 910−10=0 ,所以a >0>b . 故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.8、设alog 34=2,则4−a =( ) A .116B .19C .18D .16答案:B分析:根据已知等式,利用指数对数运算性质即可得解 由alog 34=2可得log 34a =2,所以4a =9, 所以有4−a =19,故选:B.小提示:本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.9、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3]. 故选:C.10、已知函数y =a x 、y =b x 、y =c x 、y =d x 的大致图象如下图所示,则下列不等式一定成立的是( )A .b +d >a +cB .b +d <a +cC .a +d >b +cD .a +d <b +c 答案:B分析:如图,作出直线x =1,得到c >d >1>a >b ,即得解.如图,作出直线x =1,得到c >d >1>a >b , 所以b +d <a +c . 故选:B 填空题11、已知√(a −1)44+1=a ,化简(√a −1)2+√(1−a)2+√(1−a)33=_________.答案:a −1分析:根据已知条件判断a 的范围,再结合根式的运算性质,即可求得结果. 由已知√(a −1)44+1=a ,即|a −1|=a −1,即a ⩾1,所以(√a −1)2+√(1−a)2+√(1−a)33=(a −1)+(a −1)+(1−a)=a −1, 所以答案是:a −1小提示:本题考查根式的运算性质,属简单题;注意公式的熟练应用即可.12、函数f (x )={x 2+2x, x ⩽0ln x, x >0,则f (f (1e ))=_____.答案:−1解析:先计算出f (1e )=−1,再计算f (−1)得值,由此得出结果.解:依题意得f(f(1e))=f(−1)=−1.所以答案是:−1.小提示:本题主要考查分段函数求值,考查对数运算,考查运算求解能力,属于基础题.13、已知5a=2,5b=3,则log2594=___________(用a、b表示).答案:b−a##−a+b分析:根据对数的运算性质可得log2594=log53−log52,再由指对数关系有a=log52,b=log53,即可得答案.由log2594=log532=log53−log52,又5a=2,5b=3,∴a=log52,b=log53,故log2594=b−a.所以答案是:b−a.解答题14、吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x万盒,需投入成本ℎ(x)万元,当产量小于或等于50万盒时ℎ(x)=180x+100;当产量大于50万盒时ℎ(x)=x2+60x+3500,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y(万元)关于产量x(万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?答案:(1)y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N(2)70万盒分析:(1)根据题意分0≤x≤50和x>50两种情况求解即可;(2)根据分段函数中一次与二次函数的最值求解即可.(1)当产量小于或等于50万盒时,y=200x−200−180x−100=20x−300,当产量大于50万盒时,y=200x−200−x2−60x−3500=−x2+140x−3700,故销售利润y(万元)关于产量x(万盒)的函数关系式为y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N (2)当0≤x≤50时,y≤20×50−300=700;当x >50时,y =−x 2+140x −3700, 当x =1402=70时,y =−x 2+140x −3700取到最大值,为1200.因为700<1200,所以当产量为70万盒时,该企业所获利润最大. 15、(1)已知lg2=m ,lg3=n ,试用m,n 表示log 512; (2)已知x +x−1=3(0<x <1),求x 2+x −2x 12+x−12.答案:(1)log 512=2m+n1−m;(2)7√55. 分析:(1)利用换底公式即可求解. (2)利用指数的运算即可求解. (1)由换底公式得log 512=lg12lg5=2lg2+lg31−lg2=2m+n 1−m.(2)由于(x 12+x −12)2=x +x−1+2=5,且0<x <1,所以x 12+x−12=√5;又x 2+x −2=(x +x −1)2−2=32−2=7; 所以x 2+x −2x 12+x −12=√5=7√55.。
人教A版(2019)高中数学必修第一册第四章指数函数与对数函数单元测试卷
《第四章 指数函数与对数函数》测试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f (x )=log 2 (x 2-3x -4)的单调递减区间为( ) A .(-∞,-1)B .(-∞,-1.5)C .(1.5,+∞)D .(4,+∞)2.若函数(是自变量)是指数函数,则的取值范围是( ) A .且 B .且 C .且 D . 3.函数为增函数的区间是( ) A .B .C .D .4.已知函数y =log a (3-ax )在[0,1]上单调递减,则a 的取值范围是( ) A .(0,1) B .(1,3) C .(0,3)D .[3,+∞]5.若实数满足,则( ) A .B .C .D .6.已知定义域为R 的偶函数f (x )在(-∞,0]上单调递减,且f ( ) = 2,则不等式f (log 4x )>2的解集为( )A .(0, )∪(2,+∞)B .(2,+∞)C .(0, )∪( , + ∞ )D .(0, )7.三个数,,之间的大小关系是( )A .B .C .D .()21xy a =-x a 0a >1a ≠0a ≥1a ≠12a >1a ≠12a ≥2213x xy -+⎛⎫= ⎪⎝⎭[)1,-+∞(],1-∞-[)1,+∞(],1-∞,a b 3412a b ==11a b+=121516120.3a =0.32b =2log 0.3c =a c b <<c a b <<c b a <<b c a <<2121222228.已知函数,给出下述论述,其中正确的是( )A .当时,的定义域为B .一定有最小值C .当时,的值域为D .若在区间上单调递增,则实数的取值范围是二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.下列运算结果中,一定正确的是( ) A . B .CD10.已知函数,下面说法正确的有( )A .的图像关于原点对称B .的图像关于轴对称C .的值域为D .对于任意的,且,恒成立11.若,,则( ) A . B . C .D .12.已知函数f (x )=x 2-2x+a 有两个零点x 1,x 2,以下结论正确的是( ) A .a <1 B .若x 1≠x 2,则= C .f (-1)=f (3) D .函数y=f (∣x ∣)有四个零点三、填空题:本大题共4小题,每小题5分.()()2lg 1f x x ax a =+--0a =()f x R ()f x 0a =()f x R ()f x [)2,+∞a {}4|a a ≥-347a a a ⋅=()326a a -=a =π=-()2121x x f x -=+()f x ()f x y ()f x ()1,1-12,x x ∈R 12x x ≠()()12120f x f x x x -<-104a =1025b =2a b +=1b a -=281g 2ab >lg 6b a ->2x 11x 1+a213.当_________. 14.函数的值域是________.15.若,则________.16.函数的定义域为______,最小值为______.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)解下列方程.(1); (2(3).18.(12分)求下列函数的定义域、值域.(1); (2).19.(12分)(1)求函数的单调区间;(2)求函数的单调区间.2x <3=23x y -=1232494log 7log 9log log a ⋅⋅=a =()()212log 23f x x x =--+32381x -=256550x x -⨯+=313x xy =+421x xy =-+261712x x y -+⎛⎫=⎪⎝⎭21181722xxy ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭20. 已知函数.(1)当时,求函数的零点;(2)若有零点,求的取值范围。
高中数学必修四总复习测试题
高中数学必修四总复习测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.化简sin()2απ+等于( ). A.cos α B.sin α C.cos α- D.sin α-2.已知M 是ABC ∆的BC 边上的一个三等分点,且BM MC <,若AB = a ,AC =b ,则AM 等于( ).A.1()3-a bB.1()3+a bC.1(2)3+b aD.1(2)3+a b3.已知3tan =α,则αααα22cos 9cos sin 4sin 2-+的值为( ). A.3 B.1021 C.31 D.301 4.化简=--+( ). A. B.0 C. D. 5.函数x x y 2cos 2sin =是( ). A.周期为4π的奇函数 B.周期为2π的奇函数 C.周期为2π的偶函数 D.周期为4π的偶函数 6.已知)7,2(-M ,)2,10(-N ,点P 是线段MN 上的点,且−→−PN −→−-=PM 2,则P 点的坐标为( ). A.)16,14(- B.)11,22(- C.)1,6( D.)4,2( 7.已知函数sin()y A x B ωφ=++(0,0,||2A ωφπ>><)的周期为T ,在一个周期内的图象如图所示,则正确的结论是( ). A.3,2A T ==π B.2,1=-=ωBC.4,6T φπ=π=-D.3,6A φπ== 8.将函数sin()3y x =-π的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移3π个单位,则所得函数图像对应的解析式为( ). A.1sin(26y x =-π B.1sin()23y x =-π C.1sin 2y x = D.sin(2)6y x =-π9.若平面四边形ABCD 满足0,()0AB CD AB AD AC +=-⋅=,则该四边形一定是( ).A.直角梯形B.矩形C.菱形D.正方形10.函数()sin 2cos2f x x x =-的最小正周期是( ).A.π2B.πC.2πD.4π11.设单位向量1e ,2e 的夹角为︒60,则向量1234e e +与向量1e 的夹角的余弦值是( ). A.43 B.375 C.3725 D.375 12.定义运算⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡df ce bf ae f e d c b a ,如⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡1514543021,已知αβ+=π,2αβπ-=,则=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡ββααααsin cos sin cos cos sin ( ). A.00⎡⎤⎢⎥⎣⎦ B.01⎡⎤⎢⎥⎣⎦ C.10⎡⎤⎢⎥⎣⎦D.11⎡⎤⎢⎥⎣⎦第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13.︒75sin 的值为 .14.已知向量(2,4)=a ,(1,1)=b ,若向量()⊥+λb a b ,则实数λ的值是.15.︒︒︒80cos 40cos 20cos 的值为_____________________________. 16.在下列四个命题中:①函数tan()4y x π=+的定义域是{,}4x x k k π≠+π∈Z ; ②已知1sin 2α=,且[0,2]α∈π,则α的取值集合是{}6π;③函数x a x x f 2cos 2sin )(+=的图象关于直线8x π=-对称,则a 的值等于1-;④函数2cos sin y x x =+的最小值为1-.把你认为正确的命题的序号都填在横线上____________________.三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.) 17.(本小题满分10分)已知4cos()45x π+=,(,)24x ππ∈--,求xxx tan 1sin 22sin 2+-的值.18.(本小题满分12分)已知函数()sin sin()2f x x x π=++,x ∈R . (1)求)(x f 的最小正周期;(2)求)(x f 的的最大值和最小值; (3)若43)(=αf ,求α2sin 的值.19.(本小题满分12分)(1)已知函数1()sin()24f x x π=+,求函数在区间[2,2]-ππ上的单调增区间; (2)计算:)120tan 3(10cos 70tan -︒︒︒.20.(本小题满分13分)已知函数()sin()f x x ωφ=+(0>ω,0φ≤≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(1)求)(x f 的解析式; (2)若(,)32αππ∈-,1()33f απ+=,求5sin(2)3απ+的值.21.(本小题满分13分)已知a ,b ,c 是同一平面内的三个向量,其中)2,1(=a .(1)若||=c ,且//c a ,求c 的坐标;(2)若||=b ,且2+a b 与2-a b 垂直,求a 与b 的夹角θ.22.(本小题满分14分)已知向量33(cos ,sin )22x x =a ,(cos ,sin )22x x =-b ,且[0,]2x π∈,()2||f x =⋅-λ+a b a b (λ为常数),求:(1)⋅a b 及||+a b ; (2)若)(x f 的最小值是23-,求实数λ的值.参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.A 由诱导公式易得A 正确.2.C BC =- b a ,11()33BM BC ==- b a ,11()(2)33AM AB BM =+=+-=+ a b a b a .3.B αααααααααα222222cos sin cos 9cos sin 4sin 2cos 9cos sin 4sin 2+-+=-+10211tan 9tan 4tan 222=+-+=ααα. 4.B )()(=-=+-+=--+. 5.B x x x y 4sin 212cos 2sin ==,故是周期为2π的奇函数. 6.D 设),(y x P ,则)2,10(y x ---=,)7,2(y x ---=, −→−PN ⎩⎨⎧==⇒⎩⎨⎧--=-----=-⇒-=−→−.4,2),7(22),2(2102y x y y x x PM 7.C ⎩⎨⎧-==⇒⎩⎨⎧-=+-=+,1,3,4,2B A B A B A ππππ42)32(342=⇒=--=T T ,21422===πππωT ,623421πϕπϕπ-=⇒=+⨯. 8.A sin()sin()sin[(]sin(3336111))2232y x y y x x x πππππ=-→=→==-+--.9.C 0AB CD AB CD +=⇒=-⇒四边形ABCD 为平行四边形,()0AB AD AC DB AC DB AC -⋅=⋅=⇒⊥,对角线互相垂直的平行四边形为菱形.10.B ()sin 2cos 2)4f x x x x π=-=-,ππ==22T .11.D 1||1=e ,1||2=e ,2160cos ||||2121=︒⋅=⋅e e e e ,543)43(2121121=⋅+=⋅+e e e e e e ,37|43|21===+e e ,375|||43|cos 121121=⋅+=e e e θ.12.A ⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡002cos sin )cos()sin(sin sin cos cos sin cos cos sin sin cos sin cos cos sin ππβαβαβαβαβαβαββαααα.二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13.426+ ︒︒+︒︒=︒+︒=︒30sin 45cos 30cos 45sin )3045sin(75sin 42621222322+=⨯+⨯=. 14.3- 30)4(2)4,2()1,1()()(-=⇒=+++=++⋅=+⋅⇒+⊥λλλλλλλ. 15.818120sin 8160sin 20sin 880cos 40cos 20cos 20sin 880cos 40cos 20cos =︒︒=︒︒︒︒︒=︒︒︒. 16.①③④ )(424Z k k x k x ∈+≠⇒+≠+πππππ,故①正确;1sin 2α=,且[0,2]6παπα∈⇒=或65πα=,故②不正确;函数)(x f 的图象关于直线8π-=x 对称1)4()0(-=⇒-=⇒a f f π,故③正确;22215cos sin 1sin sin (sin )24y x x x x x =+=-+=--+,451≤≤-y ,故④正确. 三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.) 17.解:∵)4,2(ππ--∈x , ∴)0,4(4ππ-∈+x ,∵54)4cos(=+x π, ∴53)4sin(-=+x π,4sin)4cos(4cos)4sin(]4)4sin[(sin ππππππx x x x +-+=-+=102722542253-=⋅-⋅-=, ∴102cos =x , ∴7528sin cos )sin (cos cos sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 22=+-=+-=+-x x x x x x xx x x x x x x .18.解:)4sin(2cos sin )2sin(sin )(ππ+=+=++=x x x x x x f ,(1))(x f 的最小正周期为ππ212==T ; (2))(x f 的最大值为2和最小值2-;(3)因为43)(=αf ,即167cos sin 2169)cos (sin 43cos sin 2-=⇒=+⇒=+αααααα,即1672sin -=α. 19.解:(1)由πππππk x k 2242122+≤+≤+-(Z k ∈)得ππππk x k 42423+≤≤+-(Z k ∈),当0=k 时,得223ππ≤≤-x , ]2,2[]2,23[ππππ-⊂-,且仅当0=k 时符合题意,∴函数)421sin()(π+=x x f 在区间]2,2[ππ-上的单调增区间是]2,23[ππ-. (2)︒︒-︒⋅︒⋅︒︒=-︒︒︒20cos 20cos 20sin 310cos 70cos 70sin )120tan 3(10cos 70tan ︒︒⋅︒︒-=︒︒-⋅︒⋅︒︒=20cos 20sin 70cos 70sin 20cos 10sin 210cos 70cos 70sin120cos 20sin 20sin 20cos -=︒︒⋅︒︒-=. 20.解:(1)∵图象上相邻的两个最高点之间的距离为π2,∴π2=T , 则12==Tπω, ∴)sin()(ϕ+=x x f ,∵)(x f 是偶函数, ∴)(2Z k k ∈+=ππϕ,又πϕ≤≤0, ∴2πϕ=, 则x x f cos )(=.(2)由已知得31)3cos(=+πα, ∵)2,3(ππα-∈, ∴)65,0(3ππα∈+, 则322)3sin(=+πα, ∴924)3cos()3sin(2)322sin()352sin(-=++-=+-=+παπαπαπα. 21.解:(1)设),(y x c =, ∵a c //,)2,1(=a , ∴02=-y x , ∴x y 2=,∵52||=, ∴5222=+y x , ∴2022=+y x , 即20422=+x x ,∴⎩⎨⎧==,4,2y x 或⎩⎨⎧-=-=,4,2y x∴)4,2(=或)4,2(--=(2)∵⊥+2-2, ∴)2(+0)2(=-⋅,∴023222=-⋅+b b a a , 即0||23||222=-⋅+b b a a , 又∵5||2=,45)25(||22==, ∴0452352=⨯-⋅+⨯b a , ∴25-=⋅b a , ∵5||=a ,25||=b , ∴125525||||cos -=⋅-=⋅=b a θ,∵],0[πθ∈, ∴πθ=. 22.解:(1)x xx x x 2cos 2sin 23sin 2cos 23cos=-=⋅, x x xx x x 222cos 22cos 22)2sin 23(sin )2cos 23(cos||=+=-++=+, ∵]2,0[π∈x , ∴0cos ≥x , x cos 2||=+.(2)2221)(cos 2cos 42cos )(λλλ---=-=x x x x f ,∵]2,0[π∈x , ∴1cos 0≤≤x ,①当0<λ时,当且仅当0cos =x 时,)(x f 取得最小值1-,这与已知矛盾;②当10≤≤λ,当且仅当λ=x cos 时,)(x f 取得最小值221λ--,由已知得23212-=--λ,解得21=λ; ③当1>λ时,当且仅当1cos =x 时,)(x f 取得最小值λ41-, 由已知得2341-=-λ,解得85=λ,这与1>λ相矛盾. 综上所述,21=λ为所求.。
高中数学必修1综合测试卷(三套+含答案)
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。
已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。
5D .6 4。
下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。
设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。
2 B .3 C .9 D 。
187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。
人教版高中数学选择性必修第一册-综合检测卷(含解析)
人教版高中数学选择性必修第一册综合检测卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,3),(4,3+3),则此直线的倾斜角是()A.π6B.π4C.π3D.2π32.(2019·北京,理)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则()A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b3.如图,在三棱锥O -ABC 中,D 是棱AC 的中点,若OA →=a ,OB →=b ,OC →=c ,则BD →=()A.12a -b +12c B .a +b -c C .a -b +cD .-12a +b -12c4.直线y =x -1被抛物线y 2=4x 截得的线段AB 的中点坐标是()A .(2,6)B .(3,2)C .(6,4)D .(4,6)5.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为()A .a 2 B.14a 2C.12a 2 D.34a 26.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为()A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =07.四棱锥P -ABCD 中,底面ABCD 为直角梯形,AB ⊥AD ,BC ∥AD ,且AB =BC =2,AD =3,PA ⊥平面ABCD 且PA =2,则PB 与平面PCD 所成角的正弦值为()A.427B.77C.33D.638.(2019·课标全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为()A.2B.3C .2 D.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在两坐标轴上截距相等的直线可以用方程x a +ya=1表示B .存在实数m ,使得方程x +my -2=0能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .点(0,2)关于直线y =x +1的对称点为(1,1)10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是()A .A 1C 1∥平面CEFB .B 1D ⊥平面CEF C.CE →=12DA →+DD 1→-DC→D .若正方体ABCD -A 1B 1C 1D 1边长为2,点B 1到平面CEF 的距离为111.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x +1)2+y 2=15上的动点,则()A .C 的焦距为5B .C 的离心率为306C .圆D 在C 的内部D .|PQ |的最小值为25512.已知动点P 到两定点M (-2,0),N (2,0)的距离乘积为常数16,其轨迹为C ,则()A .C 一定经过原点B .C 关于x 轴、y 轴对称C .△MPN 的面积的最大值为43D .C 在一个面积为64的矩形内三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,PA →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.14.已知点P 是圆C :x 2+y 2=4上的动点,点A (4,2),则线段AP 中点M 的轨迹方程是________________;点M 的轨迹与圆C 相交,则过交点的直线方程是________.(本题第一空2分,第二空3分)15.已知点F2为双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点,直线y=kx交双曲线C于A,B两点,若∠AF2B=2π3,S△AF2B=23,则双曲线C的虚轴长为________.16.已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.设直线AB的斜率为k,若0<k≤3,则e的取值范围为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知三角形的顶点A(2,3),B(0,-1),C(-2,1).(1)求直线AC的方程;(2)从①,②这两个问题中选择一个作答.①求点B关于直线AC的对称点D的坐标.②若直线l过点B且与直线AC交于点E,|BE|=3,求直线l的方程.18.(12分)已知圆C经过三点O(0,0),A(1,3),B(4,0).(1)求圆C的方程;(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.19.(12分)(2019·课标全国Ⅱ,文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>0,b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.20.(12分)如图,在四棱锥P-ABCD中,平面PCD⊥平面ABCD,且△PCD是边长为2的等边三角形,四边形ABCD是矩形,BC=22,M为BC的中点.(1)求证:AM⊥PM;(2)求二面角P-AM-D的大小;(3)求点D到平面AMP的距离.21.(12分)如图,三棱柱ABC-A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.(1)求证:BD⊥平面AA1C1;(2)设点E是直线B1C1上一点,且DE∥平面AA1B1B,求平面EBD与平面ABC1夹角的余弦值.22.(12分)已知定点F(1,0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP 到点N ,且PM →·PF →=0,|PM →|=|PN →|.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A ,B 两点,若OA →·OB →=-4,且46≤|AB →|≤430,求直线l 的斜率k 的取值范围.1.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为()A.54B.52C.32D.542.已知四面体顶点A (2,3,1),B (4,1,-2),C (6,3,7)和D (-5,-4,8),则顶点D 到平面ABC 的距离为()A .8B .9C .10D .113.如图,在四棱锥S -ABCD 中,底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2.下列结论中正确的是()A.SA →+SB →+SC →+SD →=0B.SA →-SB →+SC →-SD →=0C.SA →·SB →+SC →·SD →=0D.SA →·SC →=04.已知A 是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,F 是抛物线C :y 2=-8ax 的焦点.若在双曲线的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是()A .(1,2),324D .(2,+∞)5.如图,在正四棱锥P -ABCD 中,PA =AB ,点M 为PA 的中点,BD →=λBN →.若MN ⊥AD ,则实数λ为()A .2B .3C .4D .56.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与椭圆C 的焦点不重合.若M 关于椭圆C 的左、右焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=()A .4B .8C .12D .167.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点(异于点B ),则|PB ||PA |的最大值是()A .2B .4C.2D .228.【多选题】若{a ,b ,c }为空间的一个基底,则()A .b +c ,b -c ,a 共面B .b +c ,b -c ,2b 共面C .b +c ,a ,a +b +c 共面D .a +c ,a -2c ,c 共面9.【多选题】如图,在长方体ABCD -A 1B 1C 1D 中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点,则下列结论正确的是()A .当A 1C →=2A 1P →时,B 1,P ,D 三点共线B .当AP →⊥A 1C →时,AP →⊥D 1P→C .当A 1C →=3A 1P →时,D 1P ∥平面BDC 1D .当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP10.【多选题】已知抛物线E :y 2=4x 的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,且|AF |=3|BF |,M 为AB 中点,则下列结论正确的是()A .∠CFD =90°B .△CMD 为等腰直角三角形C .直线AB 的斜率为±3D .△AOB 的面积为411.【多选题】a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,则下列结论正确的是()A .直线AB 与a 所成角的最小值为π4B .直线AB 与a 所成角的最大值为π3C .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π6D .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π312.【多选题】古希腊著名数学家阿波罗尼奥斯发现:平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy中,A(-2,0),B(4,0),点P满足|PA||PB|=12.设点P的轨迹为C,下列结论正确的是()A.轨迹C的方程为(x+4)2+y2=9B.在x轴上存在异于A,B的两点D,E使得|PD||PE|=1 2C.当A,B,P三点不共线时,射线PO是∠APB的平分线D.在C上存在点M,使得|MO|=2|MA|13.已知直线l:mx-y=1,若直线l与直线x-my-1=0平行,则实数m的值为________,动直线l被圆C:x2+y2+2x-24=0截得弦长的最小值为________.14.已知M(-2,0),N(2,0),点P(x,y)为坐标平面内的动点,满足|MN→|·|MP→|+MN→·NP→=0,则动点P的轨迹方程为________.15.已知直线l:4x-3y+6=0,抛物线C:y2=4x上一动点P到直线l与到y轴距离之和的最小值为________,P到直线l距离的最小值为________.16.已知直线l:y=-x+1与椭圆x2a2+y2b2=1(a>b>0)相交于A,B两点,且线段AB的中点为(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l的对称点在圆x2+y2=5上,求此椭圆的方程.17.如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成的,AD⊥AF,AE=AD=2.(1)证明:平面PAD⊥平面ABFE;(2)求正四棱锥P-ABCD的高h,使得二面角C-AF-P的余弦值是22318.如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=3,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的正切值大小.19.如图,直四棱柱ABCD-A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC ∩BD=O,A1C1∩B1D1=O1,E是O1A的中点.(1)求二面角O1-BC-D的大小;(2)求点E到平面O1BC的距离.20.已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,若|PM|=|PO|,求|PM|的最小值及使得|PM|取得最小值的点P的坐标.21.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OM→·ON→=12,其中O为坐标原点,求△OMN的面积.22.如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的短轴长为2,椭圆C上的点到右焦点距离的最大值为2+ 3.过点P(m,0)作斜率为k的直线l交椭圆C于A,B两点,其中m>0,k>0,D是线段AB的中点,直线OD交椭圆C于M,N两点.(1)求椭圆C的标准方程;(2)若m=1,OM→+3OD→=0,求k的值;(3)若存在直线l,使得四边形OANB为平行四边形,求m的取值范围.人教版高中数学选择性必修第一册综合检测卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,3),(4,3+3),则此直线的倾斜角是()A.π6B.π4C.π3D.2π3答案A解析设直线的倾斜角为α,则tan α=3+3-34-1=33,∴α=π6.故选A.2.(2019·北京,理)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则()A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b答案B 解析椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2.故选B.3.如图,在三棱锥O -ABC 中,D 是棱AC 的中点,若OA →=a ,OB →=b ,OC →=c ,则BD →=()A.12a -b +12c B .a +b -c C .a -b +c D .-12a +b -12c答案A解析OD →=OA →+AD →=OA →+12AC →=OA →+12(OC →-OA →)=12OA →+12OC →,因此BD →=OD →-OB →=12OA→-OB →+12OC →=12a -b +12c .4.直线y =x -1被抛物线y 2=4x 截得的线段AB 的中点坐标是()A .(2,6)B .(3,2)C .(6,4)D .(4,6)答案B解析设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).将y =x -1代入y 2=4x ,整理得x 2-6x +1=0.由根与系数的关系得x 1+x 2=6,则x 1+x 22=3,y 1+y 22=x 1+x 2-22=6-22=2,所以所求点的坐标为(3,2).故选B.5.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为()A .a 2 B.14a 2C.12a 2 D.34a 2答案B解析在正四面体ABCD 中,点E ,F 分别是BC ,AD 的中点,AE →=AB →+BE →,AF →=12AD →,所以AE →·AF →=(AB →+BE →)·12→=12AB →·AD →+12BE →·AD →.因为ABCD 是正四面体,所以BE ⊥AD ,∠BAD =π3,即BE →·AD →=0,AB →·AD →=|AB →|·|AD →|cos π3=12a 2,所以AE →·AF →=14a 2.故选B.6.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为()A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =0答案D解析由题意设圆心坐标为C (a ,0)(a >0),∵圆C 与直线3x +4y +4=0相切,∴|3a +0+4|9+16=2,解得a =2.∴圆心为C (2,0),∴圆C 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0.故选D.7.四棱锥P -ABCD 中,底面ABCD 为直角梯形,AB ⊥AD ,BC ∥AD ,且AB =BC =2,AD =3,PA ⊥平面ABCD 且PA =2,则PB 与平面PCD 所成角的正弦值为()A.427 B.77C.33D.63答案B解析建立如图所示的空间直角坐标系,则P (0,0,2),B (2,0,0),C (2,2,0),D (0,3,0).PB →=(2,0,-2),CD →=(-2,1,0),PD →=(0,3,-2).设平面PCD 的一个法向量为n =(x ,y ,z ),2x +y =0,y -2z =0.取x =1得n =(1,2,3).cos 〈PB →,n 〉=PB →·n |PB →||n |=-422×14=-77,可得PB 与平面PCD 所成角的正弦值为77.故选B.8.(2019·课标全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为()A.2B.3C .2 D.5答案A解析如图,由题意知以OF +y 2=c 24①,将x 2+y 2=a 2记为②式,①-②得x =a 2c ,则以OF 为直径的圆与圆x 2+y 2=a 2的相交弦所在直线的方程为x =a 2c,所以|PQ |=由|PQ |=|OF |,得c ,整理得c 4-4a 2c 2+4a 4=0,即e 4-4e 2+4=0,解得e = 2.故选A.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在两坐标轴上截距相等的直线可以用方程x a +ya =1表示B .存在实数m ,使得方程x +my -2=0能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .点(0,2)关于直线y =x +1的对称点为(1,1)答案BD 解析对于A ,若直线过原点,则在两坐标轴上的截距都为零,故不能用方程x a +ya=1表示,所以A 错误;对于B ,当m =0时,平行于y 轴的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,故不能用y -1=tan θ(x -1)表示,所以C 错误;对于D y =x +1上,且(0,2),(1,1)连线的斜率为-1,所以D 正确.故选BD.10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是()A .A 1C 1∥平面CEFB .B 1D ⊥平面CEF C.CE →=12DA →+DD 1→-DC→D .若正方体ABCD -A 1B 1C 1D 1边长为2,点B 1到平面CEF 的距离为1答案AC解析对于A ,因为E ,F 分别是A 1D 1和C 1D 1的中点,所以EF ∥A 1C 1,且EF ⊂平面CEF ,故A 1C 1∥平面CEF 成立,A 正确;对于B ,以点D 为坐标原点,DA →,DC →,DD 1→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),设正方形ABCD -A 1B 1C 1D 1的棱长为2,则D (0,0,0),C (0,2,0),A (2,0,0,),B 1(2,2,2),D 1(0,0,2),E (1,0,2),F (0,1,2),B 1D →=(-2,-2,-2),FC →=(0,1,-2),因为B 1D →·FC →=0-2+4=2≠0,所以B 1D →与FC →不垂直,又CF ⊂平面CEF ,所以B 1D 与平面CEF 不垂直,B 错误;对于C ,12DA →+DD 1→-DC →=12(2,0,0)+(0,0,2)-(0,2,0)=(1,-2,2),又CE →=(1,-2,2),所以CE →=12DA→+DD 1→-DC →成立,C 正确;对于D ,连接B 1E ,EF →=(-1,1,0),EC →=(-1,2,-2),设平面EFC 的法向量为n =(x ,y ,z )·n =0,·n =0,x +y =0,x +2y -2z =0,令x =2,得n =(2,2,1),又B 1E →=(-1,-2,0),所以点B 1到平面CEF 的距离d =|B 1E →·n ||n |=63=2,D 错误.故选AC.11.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x +1)2+y 2=15上的动点,则()A .C 的焦距为5B .C 的离心率为306C .圆D 在C 的内部D .|PQ |的最小值为255答案BC解析∵x 26+y 2=1,∴a =6,b =1,∴c =a 2-b 2=6-1=5,则C 的焦距为25,e =ca=56=306.设P (x ,y )(-6≤x ≤6),则|PD |2=(x +1)2+y 2=(x +1)2+1-x 26=+45≥45>15,可知圆D 在C 的内部,且|PQ |的最小值为45-15=55.故选BC.12.已知动点P 到两定点M (-2,0),N (2,0)的距离乘积为常数16,其轨迹为C ,则()A .C 一定经过原点B .C 关于x 轴、y 轴对称C .△MPN 的面积的最大值为43D .C 在一个面积为64的矩形内答案BCD解析设点P 的坐标为(x ,y ),由题意可得(x +2)2+y 2·(x -2)2+y 2=16.对于A ,将原点坐标(0,0)代入方程得2×2=4≠16,故A 错误;对于B ,设点P 关于x 轴、y 轴的对称点分别为P 1(x ,-y ),P 2(-x ,y ),因为(x +2)2+(-y )2·(x -2)2+(-y )2=(x +2)2+y 2·(x -2)2+y 2=16,(-x +2)2+y 2·(-x -2)2+y 2=(x -2)2+y 2·(x +2)2+y 2=16,所以点P 1,P 2都在曲线C 上,所以曲线C 关于x 轴、y 轴对称,故B 正确;对于C ,设|PM |=a ,|PN |=b ,∠MPN =θ(0<θ<π),则ab =16,由余弦定理得cos θ=a 2+b 2-162ab =a 2+b 2-1632≥2ab -1632=12,当且仅当a =b =4时等号成立,则θ,π3,所以sin θ≤32,则△MPN 的面积S △MPN =12ab sin θ≤12×16×32=43,故C正确;对于D ,由16=(x +2)2+y 2·(x -2)2+y 2≥(x +2)2·(x -2)2=|x 2-4|,可得-16≤x 2-4≤16,得0≤x 2≤20,解得-25≤x ≤25,由C 知,S △MPN =12|MN |·|y |=12×4×|y |≤43,得|y |≤23,因为45×43=1615<64,所以曲线C 在一个面积为64的矩形内,故D 正确.故选BCD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,PA →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.答案23a -13b +23c 解析PG →=PB →+BG→=PB →+23BD→=PB →+23(BA →+BC →)=PB →+23[(PA →-PB →)+(PC →-PB →)]=PB →+23(PA →-2PB →+PC →)=23PA →-13PB →+23PC →=23a -13b +23c .14.已知点P 是圆C :x 2+y 2=4上的动点,点A (4,2),则线段AP 中点M 的轨迹方程是________________;点M 的轨迹与圆C 相交,则过交点的直线方程是________.(本题第一空2分,第二空3分)答案(x -2)2+(y -1)2=12x +y -4=0解析设M (x ,y ),P (x 1,y 1),=x 1+42,=y 1+22,1=2x -4,1=2y -2.因为x 12+y 12=4,所以(2x -4)2+(2y -2)2=4.整理得(x -2)2+(y -1)2=1.①又圆C :x 2+y 2=4,②由①-②得2x +y -4=0,即为所求直线方程.15.已知点F 2为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx 交双曲线C 于A ,B两点,若∠AF 2B =2π3,S △AF 2B =23,则双曲线C 的虚轴长为________.答案22解析由题意知点B 与点A 关于原点对称,设双曲线的左焦点为F 1,连接AF 1,BF 1,由对称性可知四边形AF 1BF 2是平行四边形,所以∠F 1AF 2=π3,设|AF 2|=m ,不妨设点A 在点B 右侧,则|AF 1|=2a +m .在△AF 1F 2中,由余弦定理可得4c 2=m 2+(m +2a )2-m (m +2a ),化简得4c 2-4a 2=m 2+2ma ,即4b 2=m (m +2a ).又S △AF 2B =12m (m +2a )·32=23,所以b 2=2,所以2b =2 2.16.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 1(1,0),离心率为e .设A ,B 为椭圆上关于原点对称的两点,AF 1的中点为M ,BF 1的中点为N ,原点O 在以线段MN 为直径的圆上.设直线AB 的斜率为k ,若0<k ≤3,则e 的取值范围为________.答案[3-1,1)解析设A (m ,n ),则B (-m ,-n ),则k =nm,因为原点O 在以线段MN 为直径的圆上,所以OM ⊥ON ,又因为M 为AF 1的中点,所以OM ∥BF 1,同理ON ∥AF 1,所以四边形OMF 1N 是矩形,即AF 1⊥BF 1,而AF 1→=(1-m ,-n ),BF 1→=(1+m ,n ),所以(1-m )(1+m )-n 2=0,即m 2+n 2=1,又m 2a 2+n 2b 2=1,于是有m 2a 2+n 2b 2=m 2+n 2,从而1a 2-11-1b 2=n 2m 2=k 2≤3,即1a 2+3b2≥4,将b 2=a 2-1代入上式,整理得4a 4-8a 2+1≤0,解得2-32≤a 2≤2+32,又a >c =1,所以4-23≤1a2<1,即3-1≤e <1.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知三角形的顶点A (2,3),B (0,-1),C (-2,1).(1)求直线AC 的方程;(2)从①,②这两个问题中选择一个作答.①求点B 关于直线AC 的对称点D 的坐标.②若直线l 过点B 且与直线AC 交于点E ,|BE |=3,求直线l 的方程.思路分析(1)由A (2,3),C (-2,1),可求出直线AC 的斜率,由点斜式即可写出直线的方程;(2)选①由对称点的性质即可求出;选②设出E ,12t +t 的值,根据B ,E 两点的坐标即可求出直线的方程.解析(1)因为直线AC 的斜率为k AC =12,所以直线AC 的方程为y -3=12(x -2),即直线AC 的方程为x -2y +4=0.(2)选择问题①:设D 的坐标为(m ,n ),·12=-1,2·n -12+4=0,=-125,=195.所以点D -125,选择问题②:设E,12t +|BE |=33,解得t =0或t =-125.所以E 的坐标为(0,2)-125,所以直线l 的方程为x =0或3x +4y +4=0.18.(12分)已知圆C 经过三点O (0,0),A (1,3),B (4,0).(1)求圆C 的方程;(2)求过点P (3,6)且被圆C 截得弦长为4的直线的方程.解析(1)由题意,设圆C 的方程为x 2+y 2+Dx +Ey +F =0,=0,+9+D +3E +F =0+4D +F =0,=-4,=-2,=0.所以圆C 的方程为x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.(2)由(1)知圆心坐标为C (2,1),半径为5,弦长为4时,圆心C 到直线的距离为1.①若直线斜率不存在,则直线方程为x =3,经检验符合题意;②若直线斜率存在,设直线斜率为k ,则直线方程为y -6=k (x -3),即kx -y -3k +6=0,则|5-k |1+k 2=1,解得k =125,所以直线方程为y -6=125(x -3),即12x -5y -6=0.综上可知,直线方程为x =3或12x -5y -6=0.19.(12分)(2019·课标全国Ⅱ,文)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >0,b >0)的两个焦点,P 为C 上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.解析(1)若△POF 2为等边三角形,则P ,±32c ,代入方程x 2a 2+y 2b 2=1,可得c 24a2+3c 24b2=1,解得e 2=4±23,所以e =3-1(3+1已舍去).(2)由题意可得|PF 1→|+|PF 2→|=2a ,因为PF 1⊥PF 2,所以|PF 1→|2+|PF 2→|2=4c 2,所以(|PF 1→|+|PF 2→|)2-2|PF 1→|·|PF 2→|=4c 2,所以2|PF 1→|·|PF 2→|=4a 2-4c 2=4b 2,所以|PF 1→|·|PF 2→|=2b 2,所以S △PF 1F 2=12|PF 1→|·|PF 2→|=b 2=16,解得b =4.因为(|PF 1→|+|PF 2→|)2≥4|PF 1→|·|PF 2→|,即(2a )2≥4|PF 1→|·|PF 2→|,即a 2≥|PF 1→|·|PF 2→|,所以a 2≥32,所以a ≥42,即a 的取值范围为[42,+∞).20.(12分)如图,在四棱锥P -ABCD 中,平面PCD ⊥平面ABCD ,且△PCD 是边长为2的等边三角形,四边形ABCD 是矩形,BC =22,M 为BC 的中点.(1)求证:AM ⊥PM ;(2)求二面角P -AM -D 的大小;(3)求点D 到平面AMP 的距离.解析以点D 为原点,分别以直线DA ,DC 为x 轴、y 轴,建立如图所示的空间直角坐标系,依题意,可得D (0,0,0),P (0,1,3),A (22,0,0),M (2,2,0),PM →=(2,1,-3),AM →=(-2,2,0).(1)证明:∵PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .(2)设n =(x ,y ,z )为平面PAM 的法向量,·PM →=0,·AM →=0,y -3z =0,+2y =0,取y =1,得n =(2,1,3).取p =(0,0,1),显然p 为平面ABCD 的一个法向量,∵cos 〈n ,p 〉=n ·p |n ||p |=36=22,∴二面角P -AM -D 的大小为45°.(3)设点D 到平面AMP 的距离为d ,由(2)可知n =(2,1,3)为平面AMP 的一个法向量,∴d =|DA →·n ||n |=|22×2|2+1+3=263,即点D 到平面AMP 的距离为263.21.(12分)如图,三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=BC 1=2,∠AA 1C 1=60°,平面ABC 1⊥平面AA 1C 1C ,AC 1与A 1C 相交于点D .(1)求证:BD ⊥平面AA 1C 1;(2)设点E 是直线B 1C 1上一点,且DE ∥平面AA 1B 1B ,求平面EBD 与平面ABC 1夹角的余弦值.解析(1)证明:由已知得侧面AA 1C 1C 是菱形,D 是AC 1的中点.∵BA =BC 1,∴BD ⊥AC 1.∵平面ABC 1⊥平面AA 1C 1C ,且BD ⊂平面ABC 1,平面ABC 1∩平面AA 1C 1C =AC 1,∴BD ⊥平面AA 1C 1C .(2)设点F 是A 1C 1的中点,连接DF ,EF ,∵点D 是AC 1的中点,∴DF ∥平面AA 1B 1B .又∵DE ∥平面AA 1B 1B ,∴平面DEF ∥平面AA 1B 1B .又∵平面DEF ∩平面A 1B 1C 1=EF ,平面AA 1B 1B ∩平面A 1B 1C 1=A 1B 1,∴EF ∥A 1B 1.∴点E 是B 1C 1的中点.如图,以D 为原点,以DA 1,DA ,DB 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得AC 1=2,AD =1,BD =A 1D =DC =3,BC =6,∴D (0,0,0),A (0,1,0),A 1(3,0,0),B (0,0,3),C 1(0,-1,0).设平面EBD 的法向量是m =(x ,y ,z ),由m ⊥DB →,得3z =0⇒z =0.又DE →=12(DC 1→+DB 1→)=12(DC 1→+DB →+AA 1→)1由m ⊥DE →,得(x ,y ,z10⇒32x -y =0.令x =1,得y =32,∴m ,32,∵平面ABC 1⊥平面AA 1C 1C ,DA 1⊥AC 1,∴DA 1⊥平面ABC 1.∴DA 1→是平面ABC 1的一个法向量,DA 1→=(3,0,0).∴cos 〈m ,DA 1→〉=31+34×3=277,∴平面EBD 与平面ABC 1夹角的余弦值是277.22.(12分)已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且PM →·PF →=0,|PM →|=|PN →|.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A ,B 两点,若OA →·OB →=-4,且46≤|AB →|≤430,求直线l 的斜率k 的取值范围.解析(1)由题意知P 为线段MN 的中点,设N (x ,y ),则M (-x ,0),由PM →·PF →=0x,∴(-x )·10,∴y 2=4x (x >0),∴点N 的轨迹方程为y 2=4x (x >0).(2)设l 与抛物线交于点A (x 1,y 1),B (x 2,y 2).当l 与x 轴垂直时,则由OA →·OB →=-4,得y 1=22,y 2=-22,|AB |=42<46,不合题意.故l 与x 轴不垂直.可设直线l 的方程为y =kx +b (k ≠0),则由OA →·OB →=-4,得x 1x 2+y 1y 2=-4.由点A ,B 在抛物线y 2=4x (x >0)上有y 12=4x 1,y 22=4x 2,故y 1y 2=-8.又2=4x ,=kx +b ,联立消x ,得ky 2-4y +4b =0.∴4bk =-8,b =-2k.∴Δ=16(1+2k 2),|AB |2y1-y 2)2∵46≤|AB |≤430,∴96480.解得直线l的斜率取值范围为-1,-12∪12,1.1.若椭圆x2a2+y2b2=1(a>b>0)的离心率为32,则双曲线x2a2-y2b2=1的离心率为()A.54B.52C.32D.54答案B2.已知四面体顶点A(2,3,1),B(4,1,-2),C(6,3,7)和D(-5,-4,8),则顶点D 到平面ABC的距离为()A.8B.9C.10D.11答案D解析设平面ABC的一个法向量为n=(x,y,z),则·AB→=0,·AC→=0,x,y,z)·(2,-2,-3)=0,x,y,z)·(4,0,6)=0.x-2y-3z=0,x+6z=0=2x,=-23x,令x=1,则n,2AD→=(-7,-7,7),故所求距离为|AD→·n||n|=|-7-14-143|1+4+49=11.3.如图,在四棱锥S-ABCD中,底面ABCD是边长为1的正方形,SA=SB=SC=SD=2.下列结论中正确的是()A.SA→+SB→+SC→+SD→=0B.SA→-SB→+SC→-SD→=0C.SA→·SB→+SC→·SD→=0D.SA→·SC→=0答案B解析本题考查空间向量的加减运算和数量积.由题意易知A错误;因为SA→-SB→+SC→-SD→=BA→+DC→=0,所以B正确;因为底面ABCD是边长为1的正方形,SA=SB=SC=SD=2,所以SA →·SB →=2×2×cos ∠ASB ,SC →·SD →=2×2×cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →≠0,所以C 错误;连接AC ,在△SAC 中,SA =SC =2,AC =2,所以∠ASC ≠90°,所以cos ∠ASC ≠0,又SA →·SC →=2×2×cos ∠ASC ,所以SA →·SC →≠0,所以D 错误.故选B.4.已知A 是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,F 是抛物线C :y 2=-8ax 的焦点.若在双曲线的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是()A .(1,2),324D .(2,+∞)答案B解析由题意得,A (-a ,0),F (-2a ,0),不妨设0,ba x AP →⊥FP →,得AP →·FP →=0⇒0+a ,b a x 0+2a ,ba x 0⇒c 2a 2x 02+3ax 0+2a 2=0.因为在双曲线E 的渐近线上存在点P ,所以Δ≥0,即9a 2-4×2a 2×c 2a 2≥0,9a 2≥8c 2⇒e 2≤98⇒-324≤e ≤324,又因为E 为双曲线,所以1<e ≤324.故选B.5.如图,在正四棱锥P -ABCD 中,PA =AB ,点M 为PA 的中点,BD →=λBN →.若MN ⊥AD ,则实数λ为()A .2B .3C .4D .5答案C解析连接AC 交BD 于点O ,以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系.设PA =AB =2,则A (2,0,0),D (0,-2,0),P (0,0,2),0B (0,2,0),∴BD →=(0,-22,0),设N (0,b ,0),则BN →=(0,b -2,0).∵BD=λBN →,∴-22=λ(b -2),∴b =2λ-22λ,∴N,2λ-22λ,,→-22,2λ-22λ,-AD →=(-2,-2,0),∵AD ⊥MN ,∴AD →·MN →=1-2λ-4λ=0,解得λ=4.故选C.6.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与椭圆C 的焦点不重合.若M 关于椭圆C 的左、右焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=()A .4B .8C .12D .16答案B解析设MN 的中点为D ,椭圆C 的左、右焦点分别为F 1,F 2,如图,连接DF 1,DF 2.∵F 1是MA 的中点,D 是MN 的中点,∴F 1D 是△MAN 的中位线,∴|DF 1|=12|AN |,同理|DF 2|=12|BN |,∴|AN |+|BN |=2(|DF 1|+|DF 2|).∵点D 在椭圆上,根据椭圆的标准方程及椭圆的定义知,|DF 1|+|DF 2|=4,∴|AN |+|BN |=8.故选B.7.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点(异于点B ),则|PB ||PA |的最大值是()A .2B .4C.2D .22答案A解析设点P (x 0,y 0),则x 02+y 02=2,所以|PB |2|PA |2=(x 0-1)2+(y 0+1)2x 02+(y 0+2)2=x 02+y 02-2x 0+2y 0+2x 02+y 02+4y 0+4=-2x 0+2y 0+44y 0+6=-x 0+y 0+22y 0+3,令λ=-x 0+y 0+22y 0+3,则λ≠0,x 0+(2λ-1)y 0+3λ-2=0,由题意,知直线x +(2λ-1)y +3λ-2=0与圆x 2+y 2=2有公共点,所以|3λ-2|1+(2λ-1)2≤2,得λ2-4λ≤0,得0<λ≤4,所以|PB ||PA |的最大值为2.8.【多选题】若{a ,b ,c }为空间的一个基底,则()A .b +c ,b -c ,a 共面B .b +c ,b -c ,2b 共面C .b +c ,a ,a +b +c 共面D .a +c ,a -2c ,c 共面答案BCD解析易知b +c ,b -c ,a 不共面;因为2b =(b +c )+(b -c ),所以b +c ,b -c ,2b 共面;因为a +b +c =(b +c )+a ,所以b +c ,a ,a +b +c 共面;因为a +c =(a -2c )+3c ,所以a +c ,a -2c ,c 共面.故选BCD.9.【多选题】如图,在长方体ABCD -A 1B 1C 1D 中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点,则下列结论正确的是()A .当A 1C →=2A 1P →时,B 1,P ,D 三点共线B .当AP →⊥A 1C →时,AP →⊥D 1P→C .当A 1C →=3A 1P →时,D 1P ∥平面BDC 1D .当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP答案ACD解析在长方体ABCD -A 1B 1C 1D 1中,连接AC ,以点D 为坐标原点,建立如图所示的空间直角坐标系,因为AB =3AD =3AA 1=3,所以AD =AA 1=1,则A (1,0,0),A 1(1,0,1),C (0,3,0),C 1(0,3,1),D 1(0,0,1),D (0,0,0),B (1,3,0),则A 1C →=(-1,3,-1),D 1A →=(1,0,-1),DC 1→=(0,3,1),DB →=(1,3,0),A 1D 1→=(-1,0,0).当A 1C →=2A 1P →时,P 为A 1C 的中点,根据长方体结构特征,可知P 为体对角线的中点,因此P 也为B 1D 的中点,所以B 1,P ,D 三点共线,故A 正确;当AP →⊥A 1C →时,AP ⊥A 1C ,由题意可得A 1C =1+1+3=5,AC =1+3=2,因为S △A 1AC =12AA 1·AC =12A 1C ·AP ,所以AP =255,所以A 1P =55,即点P 为靠近点A 1的五等分点,所以,35,D 1P →,35,-AP →=-15,35,D 1P →·AP →=-425+325-425=-15≠0,所以AP →与D 1P →不垂直,故B 错误;当A 1C →=3A 1P →时,A 1P →=13A 1C →-13,33,-BDC 1的一个法向量为n =(x ,y ,z ),·DC 1→=0,·DB →=0,+z =0,+3y =0,令y =1,可得n =(-3,1,-3),又D 1P →=A 1P →-A 1D 1→=,33,-D 1P →·n =0,因此D 1P →⊥n ,所以D 1P →∥平面BDC 1,故C 正确;当A 1C →=5A 1P →时,A 1P →=15A 1C →-15,35,-所以D 1P →=A 1P →-A 1D 1→,35,-所以A 1C →·D 1P →=0,A 1C →·D 1A →=0,因此A 1C ⊥D 1P ,A 1C ⊥D 1A ,又D 1P ∩D 1A =D 1,所以A 1C ⊥平面D 1AP ,故D 正确.故选ACD.10.【多选题】已知抛物线E :y 2=4x 的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,且|AF |=3|BF |,M 为AB 中点,则下列结论正确的是()A .∠CFD =90°B .△CMD 为等腰直角三角形C .直线AB 的斜率为±3D .△AOB 的面积为4答案AC解析如图,过点M 向准线l 作垂线,垂足为N ,F (1,0),设A (x 1,y 1),B (x 2,y 2),因为|AF |=|AC |,所以∠AFC =∠ACF ,又因为∠OFC =∠ACF ,所以∠OFC =∠AFC ,所以FC 平分∠OFA ,同理可知FD 平分∠OFB ,所以∠CFD =90°,故A 正确;假设△CMD 为等腰直角三角形,则∠CFD =∠CMD =90°,则C ,D ,F ,M 四点共圆且圆的半径为12|CD |=|MN |,又因为|AF |=3|BF |,所以|AB |=|AF |+|BF |=|AC |+|BD |=2|MN |=4|BF |,所以|MN |=2|BF |,所以|CD |=2|MN |=4|BF |,所以|CD |=|AB |,显然不成立,故B 错误;设直线AB的方程为x =my +12=4x ,+1,所以y 2-4my -4=01+y 2=4m ,1y 2=-4,又因为|AF |=3|BF |,所以y 1=-3y 22y 2=4m ,3y 22=-4,所以m 2=13,所以1m =±3,所以直线AB 的斜率为±3,故C 正确;取m =331+y 2=433,1y 2=-4,所以|y 1-y 2|=833,所以S △AOB =12·|OF |·|y 1-y 2|=12×1×833=433D 错误.故选AC.11.【多选题】a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,则下列结论正确的是()A .直线AB 与a 所成角的最小值为π4B .直线AB 与a 所成角的最大值为π3C .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π6D .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π3答案AD解析由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体的棱长为1,则AC =1,AB =2,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,BC 长为半径的圆,设CB 旋转到直线a 上时为CE ,旋转到直线b 上时为CD ,以C 为坐标原点,以CD 所在直线为x 轴,CE 所在直线为y 轴,CA 所在直线为z 轴,建立空间直角坐标系,则D (1,0,0),A (0,0,1),设B 点在运动过程中的坐标为(cos θ,sin θ,0),其中θ为射线CD 绕端点C 旋转到CB 形成的角,θ∈[0,2π),∴AB 在运动过程中对应的向量AB →=(cos θ,sin θ,-1),|AB →|=2,设AB 与a 所成的角为α,α∈0,π2,则cos α=22|sin θ|∈0,22,∴α∈π4,π2,故A 正确,B错误;设AB 与b 所成的角为β,β∈0,π2,则cos β=22|cos θ|,当AB 与a 所成的角为π3,即α=π3时,|sin θ|=2cos α=2cos π3=22,∵cos 2θ+sin 2θ=1,∴cos β=22|cos θ|=12,∵β∈0,π2,∴β=π3,此时AB 与b所成的角为π3,故D 正确,C 错误.故选AD.12.【多选题】古希腊著名数学家阿波罗尼奥斯发现:平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足|PA ||PB |=12.设点P 的轨迹为C ,下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得|PD ||PE |=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得|MO |=2|MA |答案BC解析设P (x ,y ),则(x +2)2+y 2(x -4)2+y 2=12,化简得(x +4)2+y 2=16,所以A 错误;假设在x轴上存在异于A ,B 的两点D ,E 使得|PD ||PE |=12,设D (m ,0),E (n ,0),则(x -n )2+y 2=2(x -m )2+y 2,化简得3x 2+3y 2-(8m -2n )x +4m 2-n 2=0,由轨迹C 的方程为x 2+y 2+8x =0,可得8m -2n =-24,4m 2-n 2=0,解得m =-6,n =-12或m =-2,n =4(舍去),即在x 轴上存在异于A ,B 的两点D ,E 使|PD ||PE |=12,所以B 正确;当A ,B ,P 三点不共线时,由|OA ||OB |=12=|PA ||PB |,可得射线PO 是∠APB 的平分线,所以C 正确;假设在C 上存在点M ,使得|MO |=2|MA |,可设M (x ,y ),则有x 2+y 2=2(x +2)2+y 2,化简得x 2+y 2+163x +163=0,与x 2+y 2+8x =0联立,得x =2,不合题意,故不存在点M ,所以D 错误.故选BC.13.已知直线l :mx -y =1,若直线l 与直线x -my -1=0平行,则实数m 的值为________,动直线l 被圆C :x 2+y 2+2x -24=0截得弦长的最小值为________.答案-1223解析由题得m ×(-m )-(-1)×1=0,所以m =±1.当m =1时,两直线重合,舍去,故m =-1.因为圆C 的方程x 2+y 2+2x -24=0可化为(x +1)2+y 2=25,所以圆心为C (-1,0),半径为5.由于直线l :mx -y -1=0过定点P (0,-1),所以过点P 且与PC 垂直的弦的弦长最短,且最短弦长为2×52-(2)2=223.14.已知M (-2,0),N (2,0),点P (x ,y )为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P 的轨迹方程为________.答案y 2=-8x 解析由题意,知MN →=(4,0),|MN →|=4,MP →=(x +2,y ),NP →=(x -2,y ).由|MN →|·|MP →|+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,化简整理,得y 2=-8x .15.已知直线l :4x -3y +6=0,抛物线C :y 2=4x 上一动点P 到直线l 与到y 轴距离之和的最小值为________,P 到直线l 距离的最小值为________.答案134解析设抛物线C :y 2=4x 上的点P 到直线4x -3y +6=0的距离为d 1,到准线的距离为d 2,到y 轴的距离为d 3,由抛物线方程可得焦点坐标为F (1,0),准线方程为x =-1,则d 3=d 2-1,|PF |=d 2,因此d 1+d 3=d 1+d 2-1=d 1+|PF |-1,因为d 1+|PF |的最小值是焦点F 到直线4x -3y +6=0的距离,即|4+6|42+(-3)2=2,所以d 1+d 3=d 1+|PF |-1的最小值为2-1=1;设平行于直线l 且与抛物线C :y 2=4x 相切的直线方程为4x -3y +m =0,由x -3y +m =0,2=4x ,得y 2-3y +m =0,因为直线4x -3y +m =0与抛物线C :y 2=4x 相切,所以Δ=(-3)2-4m =0,解得m =94,因此该切线方程为4x -3y +94=0,所以两平行线间的距离为6-9442+(-3)2=34,即P 到直线l 距离的最小值为34.16.已知直线l :y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,且线段AB 的中点为(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l 的对称点在圆x 2+y 2=5上,求此椭圆的方程.解析(1)x +1,+y 2b 2=1,得(b 2+a 2)x 2-2a 2x +a 2-a 2b 2=0,∴Δ=4a 4-4(a 2+b 2)(a 2-a 2b 2)>0⇒a 2+b 2>1.设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2a 2b 2+a 2.∵线段AB ,∴2a 2b 2+a 2=43,得a 2=2b 2.又a 2=b 2+c 2,∴a 2=2c 2,∴e =22.(2)设椭圆的右焦点为F (c ,0),则点F 关于直线l :y =-x +1的对称点为P (1,1-c ).∵点P 在圆x 2+y 2=5上,∴1+(1-c )2=5,即c 2-2c -3=0.∵c >0,∴c =3,又a 2=2c 2且a 2=b 2+c 2,∴a =32,b =3,∴椭圆的方程为x 218+y 29=1.17.如图所示,该几何体是由一个直三棱柱ADE -BCF 和一个正四棱锥P -ABCD 组合而成的,AD ⊥AF ,AE =AD =2.(1)证明:平面PAD ⊥平面ABFE ;(2)求正四棱锥P -ABCD 的高h ,使得二面角C -AF -P 的余弦值是223解析(1)证明:在直三棱柱ADE -BCF 中,AB ⊥平面ADE ,AD ⊂平面ADE ,所以AB ⊥AD .又AD ⊥AF ,AB ∩AF =A ,AB ⊂平面ABFE ,AF ⊂平面ABFE ,所以AD ⊥平面ABFE .因为AD ⊂平面PAD ,所以平面PAD ⊥平面ABFE .(2)由(1)知AD ⊥平面ABFE ,以A 为原点,AB ,AE ,AD 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图,则A (0,0,0),F (2,2,0),C (2,0,2),P (1,-h ,1),AF →=(2,2,0),AC →=(2,0,2),AP →=(1,-h ,1).设平面AFC 的一个法向量为m =(x 1,y 1,z 1),·AF →=2x 1+2y 1=0,·AC →=2x 1+2z 1=0,取x 1=1,则y 1=z 1=-1,所以m =(1,-1,-1).设平面AFP 的一个法向量为n =(x 2,y 2,z 2),·AF →=2x 2+2y 2=0,·AP →=x 2-hy 2+z 2=0,取x 2=1,则y 2=-1,z 2=-1-h ,所以n =(1,-1,-1-h ).因为二面角C -AF -P 的余弦值为223,所以|cos 〈m ·n 〉|=|m ·n ||m |·|n |=|1+1+1+h |3×2+(h +1)2=223,解得h =1或h =-35(舍),所以正四棱锥P -ABCD 的高h =1.18.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =AA 1=3,∠ABC =60°.。
重庆市高中数学必修一必修四综合试题二(含答案)
高一数学必修一必修四综合测试二一、选择题(每小题4分)1.已知集合{}1,0,1-=A ,{}11<≤-=x x B 则AB 等于( )A .{}0B .{}1-C .{}0,1-D .{}1,0,1-2. 已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A .322B .3152C .-322D .-31523.若,54cos ,53sin -==αα则在角α终边上的点是( ) A .)3,4(- B .)4,3(- C .)3,4(- D .)4,3(- 4.为得到函数)32sin(π-=x y 的图象,只需将函数)62sin(π+=x y 的图像( )A .向左平移4π个单位长度 B .向右平移4π个单位长度 C .向左平移2π个单位长度D .向右平移2π个单位长度5.若平面向量b 与a =(1,-2)的夹角为180°,且|b |=35,则b 等于( )A .(-3,6)B .(3,-6)C .(6,-3)D .(-6,3)6.已知)(x f 是偶函数,且0>x 时,ax x x f +=2)(,若2)1(=-f ,则)2(f 的值是( )A .1-B . 1C . 3D . 67.设平面上有4个互异的点,,,A B C D 已知(2)()0DB DC DA AB AC +-⋅-=,则ABC ∆的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形8.若函数)1(log )(++=x a x f a x在[]1,0上的最大值和最小值之和为a ,则a 的值是( )A .4B .41C .2D .219.如图,在ABC ∆中,点O 是BC 的中点.过点O 的直线分别交直线,AB AC于不同的两点,M N ,若,,AB mAM AC nAN ==则m n +的值为( ). A .1 B .2C .2-D .9410.已知函数xxm x f sin 3sin log )(2+-=在R 上的值域为[]1,1-,则实数m 的值为( )A .1B .2C .3D .4二、填空题(每小题4分) 11.对于函数()m f x x =,若21)41(=f ,则m =________. 12.已知向量2411a b ()(),,,==.若向量()b a b λ⊥+,则实数λ的值是.13.已知31)4cos(-=-απ,则)43cos(απ+的值为____ ____. 14.在下列结论中:①函数)sin(x k y -=π()k Z ∈为奇函数; ②函数44sin cos y x x =-的最小正周期是2π; ③函数cos(2)3y x π=+的图象的一条对称轴为23x π=-;④函数1sin(+)23y x π=在[22]ππ-,上单调减区间是52[2][2]33ππππ--,,. 其中正确结论的序号为 (把所有正确结论的序号都.填上)。
人教版高中数学必修四(全一本)模块检测题试题+答案(精较版)
人教版高中数学 必修四(全)模块检测试题(满分150分,时间120分钟)一、单选题(共12题,每题5分)。
1. 0sin 45cos15cos 45sin15o o o -等于.A - 1.2B - 1.2C.D 2. 已知角A 同时满足sin 0A >且tan 0A <,则角A 的终边一定落在 .A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限 3. 函数cos tan y x x =的大致图象是4. 若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=.A.B - 5.3C 5.3D - 5. 下列函数中最小正周期为π,且图象关于直线3x π=对称的是().s i n A y x π=- ().sin B y x π=+ ().s i n 2C y x π=- ().s i n 2D y x π=-6. 已知点O 为ABC ∆所在平面内一点,若0OA OB OC ++=,则点O 是ABC ∆的 .A 重心 .B 垂心 .C 内心 .D 外心7. 设a 与b 是两个不共线的向量,且a b λ+与()2b a --共线,则实数λ的值为 1.A - 1.B .2C - .2D8. 已知6a =,3b =,12a b ⋅=-,则向量a 在向量b 方向上的投影是 .4A - .4B .2C - .2D9. 已知a 与b 不共线,5AB a b =+,28BC a b =-+,33CD a b =-,下列说法错误的是 .A AB 、BD 可以作为一组基底 .B BC 、BD 可以作为一组基底 .C AB 、CD 可以作为一组基底 .D BD 、CD 可以作为一组基底 10. 已知1,2a b ==,且a b +与a 垂直,则a 与b 的夹角θ等于.60oA .30o B .45o C .135o Dyππ2B11. 设1cos 662o o a =,202tan131tan 13ob =+,c =,则有 .A a b c >> .B a b c << .C a c b << .D b c a <<12. 若O 为ABC ∆所在平面内的一点,且满足()()20OB OCOB OC OA -+-=,则ABC ∆的形状为.A 正三角形 .B 直角三角形 .C 等腰三角形 .D 以上答案均错误 二、填空题(共4小题,每小题5分)13. 在直角坐标系中,终边落在一、三象限的角平分线上的角的集合为 .14. 已知点()P y 为角β终边上的一点,且sin β=,则y = .15. 函数y =+的定义域为 .16. 若函数sin log a y x x =-有5个零点,则实数a 的取值范围为 . 三、解答题17.(10分)用“五点法”列表并作出函数sin 21y x =+在[]0,x π∈内的简图。
高中数学习题必修4及答案
高中数学习题必修4及答案篇一:人教版高一数学必修四测试题(含详细答案)高一数学考试(必修4)(特别适合按14523顺序的省份)必修4第1章三角函数(1)一、选择题:1.如果a={第一象限角},B={锐角},C={角度小于90°},那么a,B和C之间的关系是()a.b=a∩cb.b∪c=cc.acd.a=b=c2sin21200等于()?133c?d22223.已知sin??2cos?3sin??5cos5,那么tan?的值为b.2c.()16164.在下列函数中,最小正周期为π的偶数函数为()A.-223D.-23x1?tan2xa.y=sin2xb.y=cosc.sin2x+cos2xd.y=21?tan2x5.转角600的端边是否有点??4,a那么a的值是()04b?43c?43d6.得到函数y=cos(a.向左平移x?x?)的图象,只需将y=sin的图象()242??个单位b.同右平移个单位22c、将装置向左移动D.将装置向右移动447.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移?1个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象22Y=f(x)是()a.y=1?1?sin(2x?)?1b.y=sin(2x?)?122221.1.c、 y=sin(2x?)?1d。
罪(2x?)?一万二千四百二十四8.函数y=sin(2x+5?)的图像的一条对轴方程是()25.a、 x=-b.x=-c.x=d.x=42481,则下列结论中一定成立的是229.如果罪??余弦??()罪恶??2b.罪22罪??余弦??1d.罪??余弦??0c。
()10.函数y?2sin(2x??3)形象a.关于原点对称b.关于点(-11.功能y?罪(x?a.[,0)对称c.关于y轴对称d.关于直线x=对称66?2x?r是()??,]上是增函数b.[0,?]上是减函数22c、 [?,0]是减法函数D.[?,?]上限是一个减法函数12.功能y?()3,2k??a、 2k b、 2k??,2k??(k?z)(k?z)3.66??2??3.c、 2k3,2k(k?Z)d?2k23,2k2(kz)3二、填空:13.函数y?cos(x2)(x?[,?])的最小值是.863和2002年相同端边的最小正角度为_________015.已知sin??cos??1??,且,则cos??sin??.842如果设置一个??x | kx?k???,k?z?,b??x|?2?x?2?,3?然后是a?b=_______________________________________三、解答题:17.认识辛克斯吗?Coxx?1和0?x??。
人教版A版(2019)高中数学必修第一册: 第四章 指数函数与对数函数 综合测试(附答案与解析)
第四章综合测试
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目 要求的)
1.已知集合 M = x | x <3 , N = x | log3 x<1 ,则 M N 等于( )
A.
B.x | 0<x<3
在
R
上有最大值,则
a
的
取值范围为( )
A.
−
2 2
,
−
1 2
B.
−1,
−
1 2
C.
−
2 2
,
−
1 2
D.
−
2 2
,
0
0,
1 2
11.某公司为激励创新,计划逐年加大研发资金投入,若该公司 2015 年全年投入研发资金 130 万元,在此基 础上,每年投入的研发资金比上一年增加 12%,则该公司全年投入的研发资金开始超过 200 万元的年份是 (参考数据: lg1.12 0.05,lg1.3 0.11,lg 2 0.30 )( )
【解析】 Q f (x) = log2 (ax −1) 在 (−3, −2) 上为减函数,
a<0 且 ax −1>0 在 (−3, −2) 上恒成立,−2a −1≥0 ,
a≤ − 1 . 2
又
g(
x)
在
R
上有最大值,且
g
(x)
在
−,
1 2
上单调递增,
g
(
x)
在
1 2
,
+
上单调递减,且
log
,当
log z
x
=
2020-2021学年高中数学必修第一册第四章《指数函数与对数函数》测试卷及答案解析
③b>a>1
④0<a<b<1
⑤a=b
其中不可能成立的关系有( )
A.1 个
B.2 个
C.3 个
D.4 个
【解答】解:∵实数 a,b 满足 th a th b,
hh 即
h
hᵎ
hh
,∴
h
h
hᵎ
hh
,∴
h
h
hᵎ ;
h
h 对于①,当 a=3,b=2 时, h
h h ,即 th 3
th 2,∴①不成立;
对于②,当 a ,b 时, th
∴
;
使
∴使
使
使
x=y=3 时取等号.
故选:B.
使 使
使
,当且仅当
,即
使
6.已知 3m=2n=k 且
,则 k 的值为( )
A.15
B.
C.
【解答】解:∵3m=2n=k,∴m=log3k,n=log2k,
D.6
∴
th
th
th
th logk6=2,
∴k2=6,∴
,
故选:C.
7.设 a=30.7,b=( )﹣0.8,c=log0.70.8,则 a,b,c 的大小关系为( )
第6页共9页
∴ thh
,
∴f(6t)﹣f(3t)=loga6t﹣loga3t=loga2 .
故答案为: . 四.解答题(共 6 小题)
14.(1)计算: ୠ
⺁
ୠ;
(2)已知 x+x﹣1=4,求 x2﹣x﹣2 的值.
【解答】解:(1) ୠ
⺁
ୠ
ୠ
⺁
;
ୠ
(2)由 x+x﹣1=4,两边平方并整理得 x2+x﹣2=14,
最新人教A版高中数学必修一第四章指数函数与对数函数质量检测试卷及解析
章末质量检测(四) 指数函数与对数函数考试时间:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a>0,则a 14·34a-等于( )A .12a - B .316a - C .a 13D .a2.方程2x -1+x =5的解所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,4 3.函数y =lg x +lg (5-3x)的定义域是( )A .⎣⎡⎭⎫0,53B .⎣⎡⎦⎤0,53C .⎣⎡⎭⎫1,53D .⎣⎡⎦⎤1,53 4.设a =log 20.3,b =30.2,c =0.30.2,则a ,b ,c 的大小关系是( ) A .a>c>b B .a>b>c C .c>a>b D .b>c>a5.函数f(x)=211()2x -的单调递增区间为( )A .(]-∞,0B .[)0,+∞C .()-1,+∞D .()-∞,-16.函数f(x)=e x +1|x|(e x -1)(其中e 为自然对数的底数)的图象大致为( )7.1614年纳皮尔在研究天文学的过程中为了简化计算而发明对数;1637年笛卡尔开始使用指数运算;1770年,欧拉发现了指数与对数的互逆关系,指出:对数源于指数,对数的发明先于指数,称为历史上的珍闻.若2x =52,lg 2=0.301 0,则x 的值约为( )A .1.322B .1.410C .1.507D .1.6698.已知函数f(x)=⎩⎨⎧-x 2+2x ,x ≤0ln ()x +1,x>0 ,若|f(x)|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.若a>b>0,0<c<1,则( )A .log c a<log c bB .c a >c bC .a c >b cD .log c (a +b)>0 10.下列说法正确的是( )A .函数f ()x =1x在定义域上是减函数B .函数f ()x =2x -x 2有且只有两个零点C .函数y =2|x|的最小值是1D .在同一坐标系中函数y =2x 与y =2-x 的图象关于y 轴对称11.已知函数f ()x =log a x ()a>0,a ≠1 图象经过点(4,2),则下列命题正确的有( ) A .函数为增函数 B .函数为偶函数 C .若x>1,则f(x)>0D .若0<x 1<x 2,则f (x 1)+f (x 2)2 <f⎝⎛⎭⎫x 1+x 22 .12.已知函数f(x)=2x +log 2x ,且实数a>b>c>0,满足f(a)f(b)f(c)<0,若实数x 0是函数y =f(x)的一个零点,那么下列不等式中可能成立的是( )A .x 0<aB .x 0>aC .x 0<bD .x 0<c三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,2x ,x ≤0, 则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14 =________. 14.已知3a =5b =A ,且b +a =2ab ,则A 的值是________.15.已知函数f(x)=log a (-x +1)(a>0且a ≠1)在[-2,0]上的值域是[-1,0].若函数g(x)=a x +m -3的图象不经过第一象限,则m 的取值范围为________.16.已知函数f(x)=3|x +a|(a ∈R )满足f (x )=f (2-x ),则实数a 的值为________;若f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________.(本题第一空2分,第二空3分)四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)求下列各式的值:(1) 31log 43+2log 92-log 329(2)⎝⎛⎭⎫278 -23 +π0+log 223 -log 416918.(本小题满分12分)已知函数f (x )=log 2(x +3)-2x 3+4x 的图象在[-2,5]内是连续不(2)从上述对应填表中,可以发现函数f (x )在哪几个区间内有零点?说明理由.19.(本小题满分12分)已知函数f (x )=2x ,x ∈R .(1)若函数f (x )在区间[a ,2a ]上的最大值与最小值之和为6,求实数a 的值;(2)若f ⎝⎛⎭⎫1x =3,求3x+3-x 的值.20.(本小题满分12分)已知函数f (x )=log 4(4x -1). (1)求函数f (x )的定义域;(2)若x ∈⎣⎡⎦⎤12,2 ,求f (x )的值域. 21.(本小题满分12分)科技创新在经济发展中的作用日益凸显.某科技公司为实现9 000万元的投资收益目标,准备制定一个激励研发人员的奖励方案:当投资收益达到3 000万元时,按投资收益进行奖励,要求奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金总数不低于100万元,且奖金总数不超过投资收益的20%.(1)现有三个奖励函数模型:①f (x )=0.03x +8,②f (x )=0.8x +200,③f (x )=100log 20x +50,x ∈[3 000,9 000].试分析这三个函数模型是否符合公司要求?(2)根据(1)中符合公司要求的函数模型,要使奖金额达到350万元,公司的投资收益至少要达到多少万元?22.(本小题满分12分)已知函数f (x )=a x (a >0,且a ≠1)的图象经过点⎝⎛⎭⎫12,3 . (1)若函数F (x )=-3f (x )+10-m 在区间(0,2)内存在零点,求实数m 的取值范围; (2)若函数f (x )=g (x )+h (x ),其中g (x )为奇函数,h (x )为偶函数,若x ∈(0,1]时,2ln h (x )-ln g (x )-t ≥0恒成立,求实数t 的取值范围.章末质量检测(四) 指数函数与对数函数1.解析:14a ·34a -=1344a -=12a -. 故选A. 答案:A2.解析: 设f (x )=2x -1+x -5,则由指数函数与一次函数的性质可知,函数y =2x -1与y =x 在R 上都是递增函数,所以f (x )在R 上单调递增,故函数f (x )=2x -1+x -5最多有一个零点,而f (2)=22-1+2-5=-1<0,f (3)=23-1+3-5=2>0,根据零点存在定理可知,f (x )=2x -1+x -5有一个零点,且该零点处在区间(2,3)内.故选C. 答案:C3.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧lg x ≥05-3x >0,解得1≤x <53,则函数的定义域为⎣⎡⎭⎫1,53. 故选C. 答案:C4.解析:a =log 20.3<log 21=0,b =30.2>30=1,c =0.30.2<0.30=1,且0.30.2>0,∴b >c >a . 故选D. 答案:D5.解析:令t =x 2-1,则y =⎝⎛⎭⎫12t,因为y =⎝⎛⎭⎫12t 为单调递减函数,且函数t =x 2-1在(]-∞,0上递减,所以函数f (x )=211()2x -的单调递增区间为(]-∞,0.故选A.答案:A6.解析:由题意,函数f (x )的定义域为(-∞,0)∪(0,+∞),且f (-x )=e -x +1|-x |(e -x -1)=e x (e -x +1)|-x |(e -x -1)e x =e x +1|x |(1-e x )=-f (x ),即f (x )为奇函数,排除A ,B ;当x →+∞时,e x +1e x -1→1,1|x |→0,即x →+∞时,e x +1|x |(e x -1)→0,可排除D , 故选C. 答案:C7.解析:∵2x =52,∴x =log 252=lg 5-lg 2lg 2=1-2lg 2lg 2=1-2×0.301 00.301 0≈1.322.故选A. 答案:A8.解析:作出y =||f (x )的图象如图, 由对数函数图象的变化趋势可知,要使ax ≤|f (x )|,则a ≤0,且ax ≤x 2-2x (x <0),即a ≥x -2对任意x <0恒成立,所以a ≥-2,综上-2≤a ≤0.故选D. 答案:D9.解析:A 中,因为0<c <1,所以y =log c x 为单调递减函数,由a >b >0得log c a <log c b ,故A 正确;B 中,因为0<c <1,所以y =c x 为单调递减函数,由a >b >0,得c a <c b ,故B 错误;C 中,因为a >b >0,0<c <1,所以⎝⎛⎭⎫a b c >1,所以a c >b c,故C 正确;D 项,取c =12,a +b =2,则log c (a +b )=12log 2=-1<0,D 错误.故选AC. 答案:AC10.解析:对于A ,f ()x =1x在定义域上不具有单调性,故命题错误;对于B ,函数f ()x =2x -x 2有三个零点,一个负值,两个正值,故命题错误; 对于C ,∵|x |≥0,∴2|x |≥20=1,∴函数y =2|x |的最小值是1,故命题正确;对于D ,在同一坐标系中,函数y =2x 与y =2-x 的图象关于y 轴对称,命题正确. 故选CD.答案:CD11.解析:由题2=log a 4,a =2,故f (x )=log 2x . 对A ,函数为增函数正确. 对B, f (x )=log 2x 不为偶函数.对C ,当x >1时, f (x )=log 2x >log 21=0成立.对D ,因为f (x )=log 2x 往上凸,故若0<x 1<x 2,则f (x 1)+f (x 2)2<f⎝⎛⎭⎫x 1+x 22成立.故选ACD. 答案:ACD12.解析:易知函数f (x )=2x +log 2x 在(0,+∞)为增函数,由f (a )f (b )f (c )<0, 则f (a ),f (b ),f (c )中为负数的个数为奇数,对于选项A ,B ,C 可能成立.故选ABC. 答案:ABC13.解析:f ⎝⎛⎭⎫14=log 214=-2,又f (-2)=2-2=14, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=14. 答案:1414.解析:由 3a =5b =A ,得a =log 3A ,b =log 5A . 当a =b =0时,A =1,满足条件.当ab ≠0时,由b +a =2ab ,即1a +1b=2,将a ,b 代入得:1log 3A +1log 5A=2,即log A 3+log A 5=log A 15=2,得A =15, 所以A =15或1. 答案:15或115.解析:函数f (x )=log a (-x +1)(a >0且a ≠1)在[-2,0]上的值域是[-1,0]. 当a >1时,f (x )=log a (-x +1)单调递减,∴⎩⎪⎨⎪⎧f (-2)=log a 3=0,f (0)=log a 1=-1,无解; 当0<a <1时,f (x )=log a (-x +1)单调递增, ∴⎩⎪⎨⎪⎧f (-2)=log a 3=-1,f (0)=log a 1=0,解得a =13.∵g (x )=⎝⎛⎭⎫13x +m-3的图象不经过第一象限,∴g (0)=⎝⎛⎭⎫13m -3≤0,解得m ≥-1,即m 的取值范围是[-1,+∞).答案:[-1,+∞)16.解析:(1)∵f (x )=f (2-x ),取x =0得,f (0)=f (2),∴3|a |=3|2+a |,即|a |=|2+a |,解得a =-1;(2)由(1)知f (x )=3|x -1|=⎩⎪⎨⎪⎧3x -1,x ≥1,31-x ,x <1,f (x )在(-∞,1)上单调递减, 在[1,+∞)上单调递增.∵f (x )在[m ,+∞)上单调递增, ∴m ≥1,m 的最小值为1. 答案:-1 117.解析:(1)原式=14+(log 32-log 329)=14+2=94;(2)原式=⎝⎛⎭⎫232+1+log 223-log 243 =49+1+log 212 =49. 18.解析:(1)由题意可知a =f (-2)=log 2(-2+3)-2·(-2)3+4·(-2)=0+16-8=8, b =f (1)=log 24-2+4=4.(2)∵f (-2)·f (-1)<0,f (-1)·f (0)<0,f (1)·f (2)<0,∴函数f (x )分别在区间(-2,-1),(-1,0),(1,2)内有零点.19.解析:(1)f (x )=2x 为R 上的增函数,则f (x )在区间[a,2a ]上为增函数, ∴f (x )min =2a ,f (x )max =22a ,由22a +2a =6,得22a +2a -6=0,即2a =-3(舍去),或2a =2,即a =1;(2)若f ⎝⎛⎭⎫1x =3,则21x =3,即1x =log 23=lg 3lg 2=1lg 2lg 3=1log 32,则x =log 32, ∴3x +3-x =3log 32+3-log 32=2+12=52.20.解析:(1)∵f (x )=log 4(4x -1), ∴4x -1>0解得x >0,故函数f (x )的定义域为(0,+∞). (2)令t =4x -1,∵x ∈⎣⎡⎦⎤12,2,∴t ∈[1,15], ∴y =log 4t ∈[0,log 415], ∴f (x )∈[0,log 415],即函数f (x )的值域为[0,log 415].21.解析:(1)由题意符合公司要求的函数f (x )在[3 000,9 000]为增函数,且对∀x ∈[3 000,9 000],恒有f (x )≥100且f (x )≤x5.①对于函数f (x )=0.03x +8,当x =3 000时,f (3 000)=98<100,不符合要求; ②对于函数f (x )=0.8x +200为减函数,不符合要求; ③对于函数f (x )=100log 20x +50在[3 000,10 000 ],显然f (x )为增函数,且当x =3 000时,f (3 000)>100log 2020+50≥100; 又因为f (x )≤f (9 000)=100log 209 000+50<100log 20160 000+50=450;而x 5≥3 0005=600,所以当x ∈[3 000,9 000]时,f (x )max ≤⎝⎛⎭⎫x 5min . 所以f (x )≤x5恒成立;因此,f (x )=100log 20x +50为满足条件的函数模型.(2)由100log 20x +50≥350得:log 20x ≥3,所以x ≥8 000, 所以公司的投资收益至少要达到8 000万元.22.解析:(1)因为函数f (x )=a x (a >0,且a ≠1)的图象经过点⎝⎛⎭⎫12,3, 所以a 12=3,解得a =3,则f (x )=3x ,因为x ∈(0,2),故1<3x <9, 令t =3x ,则1<t <9,函数F (x )=-3f (x )+10-m 在区间(0,2)内存在零点, 即函数G (t )=-3t +10-m 在区间(1,9)内有零点,所以G (1)·G (9)<0,即(7-m )(-17-m )<0,解得-17<m <7, 所以实数m 的取值范围为(-17,7);(2)由题意可得,函数f (x )=g (x )+h (x ),其中g (x )为奇函数,h (x )为偶函数,可得⎩⎪⎨⎪⎧f (x )=g (x )+h (x )=3x f (-x )=g (-x )+h (-x )=3-x ,即⎩⎪⎨⎪⎧g (x )+h (x )=3x -g (x )+h (x )=3-x ,解得⎩⎪⎨⎪⎧g (x )=3x -3-x2h (x )=3x+3-x2,因为2ln h (x )-ln g (x )-t ≥0,所以t ≤ln h 2(x )g (x )=ln ⎝⎛⎭⎫3x+3-x 223x -3-x2=ln (3x -3-x )2+42(3x -3-x ), 设a =3x -3-x ,因为0<x ≤1,且a =3x -3-x 在R 上为单调递增函数,所以0<a ≤83,所以t ≤ln a 2+42a =ln ⎣⎡⎦⎤12⎝⎛⎭⎫a +4a , 因为a +4a ≥2a ·4a=4,当且仅当a =4a,即a =2时取等号,所以t ≤ln 2,故实数t 的取值范围为(-∞,ln 2].。
(人教版A版)高中数学必修第一册 第四章综合测试试卷03及答案
第四章综合测试一、单项选择题1.式子 )A B C .D .2.函数()lg 3f x x x =+-的零点所在区间为( )A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( )A .12a a b-+B .12a a b -+C .12a a b++D .12a a b++4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .b c a<<C .c a b<<D .a c b<<5.函数1()(0,1)x f x a a a a=-¹>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ì-£=í->î,a R Î,若函数()f x 在R 上有两个零点,则a 的取值范围是( )A .(,1)-¥-B .(,1]-¥-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-¥上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+¥D .[2,)+¥8.已知函数()|lg |f x x =。
若0a b <<,且()()f a f b =,则2a b +的取值范围是( )A .)+¥B .)+¥C .(3,)+¥D .[3,)+¥二、多项选择题9.(多选)下列计算正确的是()A .=B .21log 3223-=C =D .233log (4)4log 2-=10.对于函数()f x 定义域内的任意()1212,x x x x ¹,当()lg f x x =时,下述结论中正确的是( )A .(0)1f =B .()()()1212f x x f x f x +=×C .()()()1212f x x f x f x -=+D .()()1212f x f x x x --E .()()121222f x f x x x f ++æöç÷èø<11.下列函数中,能用二分法求函数零点的有( )A .() 3 1f x x =-B .2()21f x x x =-+C .4()log f x x=D .()2x f x e =-12.在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量y (单位:千克)与时间x (单位:小时)的函数图像,则以下关于该产品生产状况的正确判断是( )A .在前三小时内,每小时的产量逐步增加B .在前三小时内,每小时的产量逐步减少C .最后一小时内的产量与第三小时内的产量相同D .最后两小时内,该车间没有生产该产品三、填空题13.已知函数6()log (1)f x x =+,则(1)(2)f f +=________,()0f x >的解集为________。
22版新教材高中数学A版必修第一册练习--全书综合测评
全书综合测评(满分:150分;时间:120分钟)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“∃x∈R,使得x2+2x<0”的否定是()A.∃x∈R,使得x2+2x≥0B.∃x∈R,使得x2+2x>0C.∀x∈R,都有x2+2x≥0D.∀x∈R,都有x2+2x<02.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|1<2x<4},Q={y|y=2+sin x,x ∈R},那么P-Q= ()A.{x|0<x≤1}B.{x|0≤x<2}C.{x|1≤x<2}D.{x|0<x<1}3.有一组试验数据如下表所示:t1.9 3.0 4.0 5.1 6.1v1.5 4.0 7.5 12.0 18.0现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是()A.v=2t-2B.v=t 2-1 2C.v=log0.5tD.v=log3t4.已知角θ的终边经过点(-35,45),则sin2θ2的值为()A.110B.15C.45 D.9105.若函数y=f(x)的定义域是(0,4],则函数g(x)=f(x)+f(x2)的定义域是()A.(0,2]B.(0,4]C.(0,16]D.[-16,0)∪(0,16]6.设函数f(x)={|2x-1|,x≤2,-x+7,x>2,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(8,9)B.(65,129)C.(64,128)D.(66,130)7.若不等式1x +11-4x-m ≥0对x ∈(0,14)恒成立,则实数m 的最大值为( )A.7B.8C.9D.108.将函数y =sin x 的图象向右平移π6个单位长度,再将横坐标缩短为原来的1ω(ω>0)得到函数y =f (x )的图象,若y =f (x )在[0,π6]上的最大值为ω5,则ω的取值个数为 ( )A.1B.2C.3D.4二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题是真命题的是 ( )A.若幂函数f (x )=x α的图象过点(12,4),则α=-12 B.∃x ∈(0,1),(12)x>lo g 12xC.∀x ∈(0,+∞),lo g 12x >lo g 13xD.命题“∃x ∈R,sin x +cos x <1”的否定是“∀x ∈R,sin x +cos x ≥1” 10.已知函数f (x )=√3sin x +cos x ,下列说法正确的是 ( ) A. f (x )的最小正周期为2π B. f (x )的最大值为√3+1 C. f (x )在区间[π3,2π3]上为减函数D.5π6为f (x )的一个零点11.设0<a <b ,a +b =1,则下列结论正确的是 ( )A.a 2+b 2<bB.a <a 2+b 2C.a <2ab <12 D.14<a 2+b 2<1212.若函数f (x )满足:在定义域D 内存在实数x 0,使得f (x 0+1)=f (x 0)+f (1)成立,则称函数f (x )为“1阶马格丁香小花花”函数.给出下列4个函数,其中是“1阶马格丁香小花花”函数的有( )A. f (x )=1xB. f (x )=e xC. f (x )=lg(x 2+2)D. f (x )=cos πx三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知函数g (x )=f (x )+x 2是奇函数,当x >0时,函数f (x )的图象与函数y =log 2x 的部分图象关于直线y =x 对称,则g (-1)+g (-2)= . 14.sin 50°(1+√3tan 10°)= . 15.若不等式5-4x+x 22-x≥a 对x <2恒成立,则a 的最大值为 .16.当生物死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),大约每经过 5 730年衰减为原来的一半,这个时间称为“半衰期”.若生物体内原有的碳14含量为A ,按照上述变化规律,生物体内碳14含量y 与死亡年数x 的函数关系式是 ,x ∈[0,+∞);考古学家在对考古活动时挖掘到的某生物标本进行研究,发现该生物体内碳14的含量是原来的62.5%,则可以推测该生物的死亡时间距今约 年.(参考数据:lg 2≈0.3) (本小题第一空2分,第二空3分)四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)(1)计算:(2+1027)-23+2log 32-log 349-5log 259; (2)已知角α的终边经过点M (1,-2),求sin(π2+α)·cos(5π2-α)cos (π+α)的值.18.(本小题满分12分)现有三个条件:①对任意的x∈R都有f(x+1)-f(x)=2x-2;②不等式f(x)<0的解集为{x|1<x<2};③函数y=f(x)的图象过点(3,2).请你在上述三个条件中任选两个补充到下面的问题中,并求解.已知二次函数f(x)=ax2+bx+c,且满足(填所选条件的序号).(1)求函数f(x)的解析式;(2)设g(x)=f(x)-mx,若函数g(x)在区间[1,2]上的最小值为3,求实数m的值.19.(本小题满分12分)已知函数f(x)=2sin x cos x+2√3cos2x-√3.(1)求函数f(x)的单调递减区间;(2)将函数y=f(x)的图象向左平移π6个单位长度,再将所得的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数y=g(x)的图象,求y=g(x)在(-π12,π8)上的值域.20.(本小题满分12分)某工厂进行废气回收再利用,把二氧化硫转化为一种可利用的化工产品.已知该工厂每月的处理量最少为200吨,最多为500吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =14x 2-50x +40 000,且每处理一吨二氧化硫得到可利用的化工产品价值为100元.(1)该工厂每月处理量为多少吨时,才能使每吨的月平均处理成本最低?(2)该工厂每月进行废气回收再利用能否获利?如果获利,求月最大利润;如果不获利,求月最大亏损额.21.(本小题满分12分)已知定义在R 上的函数f (x )=2x -a ·2-x (a ∈R). (1)当a >0时,试判断f (x )在(1,+∞)上的单调性,并给予证明; (2)当a =1时,试求g (x )=[f (x )]2+4f (x )(1≤x ≤2)的最小值.)的部分图象如图所22.(本小题满分12分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|≤π2示.(1)求函数f(x)的单调递增区间;个单位长度得到曲线C,把C上各点的横坐标伸长到原来的2 (2)将函数y=f(x)的图象向右平移π6倍,纵坐标不变,得到的曲线对应的函数记作y=g(x).)g(x)的最大值;(i)求函数h(x)=f(x2(ii)若函数F(x)=g(π-2x)+mg(x)(m∈R)在(0,nπ)(n∈N+)内恰有2 015个零点,求m、n的值.2答案全解全析一、单项选择题1.C 命题“∃x ∈R,使得x 2+2x <0”的否定是“∀x ∈R,都有x 2+2x ≥0”,故选C .2.D 依题意得,P ={x |0<x <2},Q ={y |1≤y ≤3}, ∴P -Q ={x |0<x <1}.故选D .3.B 由题表中数据可知v 随t 的增大而增大,且增加的速度越来越快,分析选项可知B 符合.故选B .4.C 由题意知cos θ=-35, 则sin 2θ2=1-cosθ2=1-(-35)2=45,故选C .5.A ∵函数f (x )的定义域为(0,4],∴{0<x ≤4,0<x 2≤4,得{0<x ≤4,0<x ≤2或-2≤x <0, 即0<x ≤2,则函数g (x )的定义域为(0,2],故选A .6.D 作出函数f (x )={|2x -1|,x ≤2,-x +7,x >2的图象如图,不妨设a <b <c ,则由f (a )=f (b )=f (c )及图象得a <0,0<b <2,6<c <7. ∴f (a )=|2a -1|=1-2a , f (b )=|2b -1|=2b -1, 由f (a )=f (b ),得1-2a =2b -1,则2a +2b =2. 由c ∈(6,7),得64<2c <128,∴66<2a +2b +2c <130, 即2a +2b +2c 的取值范围是(66,130).故选D . 7.C 根据题意,x ∈(0,14),则1-4x >0,则1x +11-4x =44x +11-4x =[4x +(1-4x )](44x +11-4x ) =5+4(1-4x )4x+4x1-4x≥5+2×√4(1-4x )4x×4x1-4x =9,当且仅当1-4x =2x ,即x =16时等号成立,因此1x +11-4x的最小值为9,若不等式1x +11-4x -m ≥0对x ∈(0,14)恒成立,则必有m ≤9恒成立, 故实数m 的最大值为9.故选C .8.B 将函数y =sin x 的图象向右平移π6个单位长度,可得y =sin (x -π6)的图象. 再将横坐标缩短为原来的1ω(ω>0)得到函数y =f (x )=sin (ωx -π6)的图象, ∵x ∈[0,π6], ∴ωx -π6∈[-π6,ω-16π],当ω-16π≥π2,即ω≥4时,ω5=1,求得ω=5.当ω-16π<π2,即0<ω<4时,y =f (x )在[0,π6]上是增函数,因此sinω-16π=ω5,作出函数y =sin [π6(x -1)]与y =x5的图象如图:由图可知,在(0,4)上,函数y =sin π6(x -1)与y =x5的图象有唯一交点, 则sinω-16π=ω5有唯一解.综上,ω的取值个数为2.故选B . 二、多项选择题9.BD 选项A 中,4=(12)α⇒2-α=22⇒α=-2,A 错误;选项B 中,在同一平面直角坐标系中作出y =(12)x与y =lo g 12x 的图象,设两图象交点的横坐标为x 0,则当x 0<x <1时,(12)x>lo g 12x ,B 正确;选项C 中,取x =2,lo g 122=-1,lo g 132=-log 32>-1,C 错误;选项D显然正确.故选BD.10.ACD f(x)=√3sin x+cos x=2sin(x+π6).对选项A, f(x)的最小正周期为2π,故A正确;对选项B,当sin(x+π6)=1时, f(x)取得最大值,为2,故B错误;对选项C,当x∈[π3,2π3]时,x+π6∈[π2,5π6]⊆[π2,3π2],所以f(x)在区间[π3,2π3]上为减函数,故C正确;对选项D, f(5π6)=2sin(5π6+π6)=2sin π=0,所以5π6为f(x)的一个零点,故D正确.故选ACD.11.ABC∵0<a<b,a+b=1,∴0<a<b<1,易得a<a+b2<b,∴a<12<b,2a<1<2b,∵a2+b2-b=(1-b)2+b2-b=2b2-3b+1=(2b-1)(b-1)<0,∴a2+b2<b,A正确;∵a2+b2-a=a2+(1-a)2-a=2a2-3a+1=(2a-1)(a-1)>0,∴a<a2+b2,B正确;易得ab<(a+b2)2=14,∴a<2ab<12,C正确;易得a2+b2>(a+b)22=12,a2+b2<a+b=1,∴12<a2+b2<1,D不正确.12.BD在选项A中, f(x)=1x ,若f(x)=1x是“1阶马格丁香小花花”函数,则1x+1=1x+1有解,变形可得x2+x+1=0,而该方程无实数解,故f(x)=1x不是“1阶马格丁香小花花”函数;在选项B中, f(x)=e x,其定义域为R,若f(x)是“1阶马格丁香小花花”函数,则方程e x+1=e x+e有解,变形得(e-1)e x=e,解得x=ln ee-1,故函数f(x)=e x是“1阶马格丁香小花花”函数;在选项C中, f(x)=lg(x2+2),若存在x,使f(x+1)=f(x)+f(1),则lg[(x+1)2+2]=lg(x2+2)+lg 3,即2x2-2x+3=0,而Δ=4-24=-20<0,故方程无解,故f(x)=lg(x2+2)不是“1阶马格丁香小花花”函数;在选项D 中, f (x )=cos πx ,存在x =13,使f (x +1)=f (x )+f (1)成立,故f (x )=cos πx 是“1阶马格丁香小花花”函数. 故选BD . 三、填空题 13.答案 -11解析 ∵当x >0时, f (x )的图象与函数y =log 2x 的部分图象关于直线y =x 对称, ∴当x >0时, f (x )=2x , ∴当x >0时,g (x )=2x +x 2, 又g (x )是奇函数,∴g (-1)+g (-2)=-[g (1)+g (2)]=-(2+1+4+4)=-11. 14.答案 1解析 sin 50°(1+√3tan 10°) =sin 50°(1+√3·sin10°cos10°) =sin 50°×cos10°+√3sin10°cos10° =sin 50°×2(12cos10°+√32sin10°)cos10°=2sin50°sin (10°+30°)cos10°=2sin50°·cos50°cos10°=sin100°cos10°=cos10°cos10°=1. 15.答案 2 解析 因为x <2,所以5-4x+x 22-x=12-x +2-x ≥2√12-x ·(2-x )=2,当且仅当12-x =2-x ,即x =1时取等号,所以2≥a ,即a 的最大值为2. 16.答案 y =A ·(12)x5 730;3 820解析由题意知,y =A ·(12)x5 730,当y =62.5%A 时,有62.5%A =A ·(12)x5 730,即58=(12)x5 730, ∴x5 730=lo g 1258=log 285=log 28-log 25=3-lg102lg2=3-1-lg2lg2≈23,∴x ≈3 820,∴可以推测该生物的死亡时间距今约3 820年. 四、解答题 17.解析(1)原式=(6427)-23+2log 32-2log 323-5log 53=(34)2+2-3=-716.(5分)(2)∵角α的终边经过点M (1,-2), ∴sin α=√1+4=-2√55, (7分)∴sin(π2+α)·cos(5π2-α)cos (π+α)=cosα·sinα-cosα=-sin α=2√55. (10分)18.解析 (1)解法一:选择条件①②.由条件①可得f (x +1)-f (x )=a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2ax +a +b =2x -2, 所以{2a =2,a +b =-2,解得{a =1,b =-3.(2分)由条件②可得{a >0,-ba =1+2,ca =1×2,所以{a >0,b =-3a ,c =2a . (4分)故由条件①②可得a =1,b =-3,c =2. (5分) 所以f (x )=x 2-3x +2. (6分) 解法二:选择条件①③.同解法一由条件①得a =1,b =-3. (2分) 由条件③可得f (3)=9a +3b +c =2. (4分) 故由条件①③可得a =1,b =-3,c =2. (5分) 所以f (x )=x 2-3x +2. (6分) 解法三:选择条件②③.同解法一由条件②得{a >0,b =-3a ,c =2a , (2分)同解法二由条件③得9a +3b +c =2, (4分)所以a =1,b =-3,c =2.(5分)所以f (x )=x 2-3x +2. (6分)(2)由(1)知g (x )=x 2-(m +3)x +2,其图象的对称轴为直线x =m+32. (8分)①当m+32≤1,即m ≤-1时,g (x )min =g (1)=3-(m +3)=-m =3,解得m =-3;(9分)②当m+32≥2,即m ≥1时,g (x )min =g (2)=6-(2m +6)=-2m =3,解得m =-32(舍去);(10分)③当1<m+32<2,即-1<m <1时,g (x )min =g (m+32)=-(m+3)24+2=3,无解. (11分)综上所述,所求实数m 的值为-3. (12分)19.解析 (1)f (x )=2sin x cos x +2√3cos 2x -√3=sin 2x +√3cos 2x =2sin (2x +π3), (3分)令2k π+π2≤2x +π3≤2k π+3π2,k ∈Z, 解得k π+π12≤x ≤k π+7π12,k ∈Z,因此,函数f (x )的单调递减区间为[kπ+π12,7π12+kπ](k ∈Z). (6分) (2)由(1)知,将函数y =f (x )的图象向左平移π6个单位长度,可得y =2sin (2x +2π3)的图象,(8分)再将所得图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数y =g (x )=2sin (4x +2π3)的图象, (10分) ∵x ∈(-π12,π8), ∴4x +2π3∈(π3,7π6),∴sin (4x +2π3)∈(-12,1],∴2sin (4x +2π3)∈(-1,2].∴y =g (x )在(-π12,π8)上的值域为(-1,2]. (12分)20.解析 (1)由题意可知,二氧化硫每吨的月平均处理成本为yx ,即y x =14x +40 000x-50≥2√14x ·40 000x -50=150, (3分)当且仅当14x =40 000x,即x =400时,等号成立, (5分)所以该工厂每月处理量为400吨时,才能使每吨的月平均处理成本最低,最低成本为150元.(6分)(2)不获利,理由如下: (7分) 设该工厂每月获利为W 元,则W =100x -y =100x -(14x 2-50x +40 000) (8分)=-14x 2+150x -40 000=-14(x -300)2-17 500, (10分)∵x ∈[200,500],∴W ∈[-27 500,-17 500],故该工厂每月进行废气回收再利用不获利,月最大亏损额为27 500元. (12分) 21.解析 (1)f (x )在(1,+∞)上单调递增,证明如下:任取x 1,x 2∈(1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=(2x 1-a ·2-x 1)-(2x 2-a ·2-x 2) =(2x 1-2x 2)+a (2-x 2-2-x 1)=(2x 1-2x 2)+a ·2x 1-2x 22x 1+x 2=(2x 1-2x 2)(1+a2x 1+x 2). (3分)∵1<x 1<x 2,a >0,∴2x 1-2x 2<0, 1+a2x 1+x 2>0,(5分)∴(2x 1-2x 2)(1+a2x 1+x 2)<0, 即f (x 1)-f (x 2)<0,∴f (x )在区间(1,+∞)上单调递增. (6分) (2)设f (x )=t ,则问题转化为求y =t +4t 在[1,2]上的最小值,由(1)知, 当a =1时, f (x )=2x -2-x 在(1,+∞)上单调递增,∴当1≤x ≤2时,t ∈[32,154]. (9分) ∵y =t +4t 在区间[32,2]上单调递减,在区间[2,154]上单调递增,∴当t =2, 即2x -12x =2,即x =log 2(√2+1)时,g (x )取得最小值,g (x )min =4. (12分) 22.解析 (1)由题图可得A =1, (1分) 最小正周期T =2×(7π12-π12)=π,则ω=2πT =2. 因为f (7π12)=sin (2×7π12+φ)=-1, 所以φ=-5π3+2k π,k ∈Z,又|φ|≤π2,所以易得φ=π3, (2分) 所以f (x )=sin (2x +π3), 由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z, 得-5π12+k π≤x ≤π12+k π,k ∈Z,所以函数f (x )的单调递增区间为[-5π12+kπ,π12+kπ],k ∈Z . (4分) (2)(i)由题意得g (x )=sin x , (5分)h (x )=f (x 2)g (x )=sin (x +π3)sin x =√34sin 2x -14cos 2x +14=12sin (2x -π6)+14,所以h (x )=f (x 2)g (x )的最大值为34. (7分)(ii)令F (x )=0,可得2sin 2x -m sin x -1=0,令t =sin x ∈[-1,1],则2t 2-mt -1=0. 对于方程2t 2-mt -1=0(t ∈R),易知Δ>0,方程必有两个不同的实数根t 1、t 2, 由t 1t 2=-12,知t 1、t 2异号,不妨设t 2<t 1. (8分)①当t 1>1且-1<t 2<0,或0<t 1<1且t 2<-1时,方程sin x =t 1和sin x =t 2在区间(0,n π)共有偶数个根;②当0<|t 1|<1且0<|t 2|<1时,方程sin x =t 1和sin x =t 2在区间(0,n π)共有偶数个根; ③当t 1=1时,t 2=-12,在区间(0,2π)上,方程sin x =t 1只有一个根,sin x =t 2有两个根; ④当t 1=12时,t 2=-1,在区间(0,2π)上,方程sin x =t 2只有一个根,sin x =t 1有两个根. 综上所述,若F (x )在(0,n π)(n ∈N +)内恰有2 015个零点,则F (x )=0在(0,2π)上有三个根.(10分)由于2 015=3×671+2,所以方程2sin 2x -m sin x -1=0在(0,1 342π)上有2 013个根, 所以若F (x )在(0,n π)(n ∈N +)内恰有2 015个零点, 则方程2t 2-mt -1=0(t ∈[-1,1])的根为t =12或t =-1, 因此,n =1 343,2×(12)2-m ×(12)-1=0,解得m =-1. 故m =-1,n =1 343. (12分)。
新教材2021高中人教A版数学必修第一册跟踪训练:第一~第四章综合练
第一~第四章综合练一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6}B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:由补集的定义,得∁U A={2,4,7}.故选C.答案:C2.设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]解析:M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},M∪N=[0,1],故选A.答案:A3.已知a∈R,则“a>2”是“a2>2a”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:因为a>2,则a2>2a成立,反之不成立,所以“a>2”是“a2>2a”成立的充分不必要条件.答案:A4.已知命题p:对任意x>0,总有e x≥1,则綈p为()A.存在x≤0,使得e x<1B.存在x>0,使得e x<1C.对任意x>0,总有e x<1D.对任意x≤0,总有e x<1解析:因为全称量词命题的否定是存在量词命题,所以,命题p:对任意x>0,总有e x≥1的否定綈p为:存在x>0,使得e x<1.故选B.答案:B5.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x3B.y=|x|+1C .y =-x 2+1D .y =2-|x |解析:y =x 3是奇函数,y =-x 2+1和y =2-|x |在(0,+∞)上都是减函数,故选B. 答案:B6.命题p :对∃x ∈R ,log 2(3x +1)≤0,则( ) A .p 是假命题;綈p :∀x ∈R ,log 2(3x +1)≤0 B .p 是假命题;綈p :∀x ∈R ,log 2(3x +1)>0 C .p 是真命题;綈p :∀x ∈R ,log 2(3x +1)≤0 D .p 是真命题;綈p :∀x ∈R ,log 2(3x +1)>0解析:∵∀x ∈R,3x >0,∴3x +1>1,∴log(3x +1)>0.∴p 是假命题,故綈p :∀x ∈R ,log 2(3x+1)>0.答案:B7.已知x ∈R ,则“x 2-3x >0”是“x -4>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:x 2-3x >0⇔x <0或x >3,x -4>0⇔x >4.由x 2-3x >0不能得出x -4>0;反过来,由x -4>0可得出x 2-3x >0,因此“x 2-3x >0”是“x -4>0”的必要不充分条件.故选B.答案:B8.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3 B.1a <1bC .a b >1D .lg(b -a )<a解析:∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 答案:D9.已知a ,b 是正数,且a +b =1,则1a +4b ( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:因为1a +4b =⎝⎛⎭⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取等号,所以1a +4b的最小值为9,故选B.答案:B10.设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=log 12(1-x ),则函数f (x )在(1,2)上( )A .是增函数且f (x )<0B .是增函数且f (x )>0C .是减函数且f (x )<0D .是减函数且f (x )>0解析:设-1<x <0,则0<-x <1,f (-x )=log 12(1+x )=f (x )>0,故函数f (x )在(-1,0)上单调递减.又因为f (x )以2为周期,所以函数f (x )在(1,2)上也单调递减且有f (x )>0.答案:D11.设函数f (x )=2x 1+2x -12,[x ]表示不超过x 的最大整数,则函数y =[f (x )]的值域是( )A .{0,1}B .{-1,0}C .{-1,1}D .{1}解析:f (x )=2x 1+2x -12=12-11+2x ,∵2x >0, ∴1+2x >1,0<11+2x <1,∴-1<-11+2x<0, ∴-12<12-11+2x <12,即-12<f (x )<12,∵[x ]表示不超过x 的最大整数,∴y =[f (x )]的值域为{-1,0},故选B. 答案:B12.若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c 答案:D二、填空题(把答案填在题中横线上,每小题5分,共20分) 13.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________. 解析:∵f (x )=lg x ,f (ab )=1,∴lg(ab )=1,∴f (a 2)+f (b 2)=lg a 2+lg b 2=2lg(ab )=2. 答案:214.已知f (x )=⎩⎪⎨⎪⎧log 2x +3(x >0),x 2+1(x ≤0),若f (a )=5,则a =________.解析:由题意可得⎩⎪⎨⎪⎧ a >0,log 2a +3=5或⎩⎪⎨⎪⎧a ≤0,a 2+1=5,解得a =4或-2.答案:4或-215.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________.解析:由f (1+x )=f (1-x )可知f (x )的图象关于直线x =1对称,所以a =1.结合图象知函数f (x )=2|x -1|在[1,+∞)上单调递增,故实数m 的最小值为1.答案:116.关于函数,给出下列命题:①若函数f (x )是R 上的偶函数,f (x +3)=f (x )且满足f (1)=1,则f (2)-f (-4)=0;②若函数g (x )=⎩⎪⎨⎪⎧x -1,x >0,f (x ),x <0是偶函数,则f (x )=x +1;③函数y =log 13|2x -3|的定义域为⎝⎛⎭⎫32,+∞. 其中正确的命题是________.(写出所有正确命题的序号)解析:①因为f (x +3)=f (x )且f (-x )=f (x ),所以f (2)=f (-1+3)=f (-1)=f (1)=1,f (-4)=f (-1)=f (1)=1,故f (2)-f (-4)=0,①正确.②令x <0,则-x >0,g (-x )=-x -1.又g (x )为偶函数,所以g (x )=g (-x )=-x -1.即f (x )=-x -1,②不正确.③要使函数有意义,需满足⎩⎪⎨⎪⎧log 13|2x -3|≥0,|2x -3|>0,即0<|2x -3|≤1,所以1≤x ≤2,且x ≠32,即函数的定义域为⎣⎡⎭⎫1,32∪⎝⎛⎦⎤32,2,③不正确. 答案:①三、解答题(本大题共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)设全集I=R,已知集合M={x|(x+3)2≤0},N={x|x2+x-6=0}.(1)求(∁R M)∩N;(2)记集合A=(∁R M)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若A∪B=A,求实数a的取值范围.解析:(1)因为M={x|(x+3)2≤0}={-3},N={x|x2+x-6=0}={-3,2},所以∁R M={x|x ∈R且x≠-3},所以(∁R M)∩N={2}.(2)由(1)知A=(∁R M)∩N={2},所以B=∅或B={2},当B=∅时,a-1>5-a,得a>3;当B={2}时,⎩⎪⎨⎪⎧a-1=2,5-a=2,解得a=3.综上所述,所求a的取值范围为{a|a≥3}.18.(12分)如图所示,已知底角为45°的等腰梯形ABCD,底边BC长为7 cm,腰长为2 2 cm,当垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x,试写出左边部分的面积y关于x的函数解析式,并画出大致图象.解析:过点A,D分别作AG⊥BC,DH⊥BC,垂足分别是G,H(图略).因为四边形ABCD是等腰梯形,底角为45°,AB=2 2 cm,所以BG=AG=DH=HC=2 cm.又BC=7 cm,所以AD=GH=3 cm.当点F在BG上时,即x∈[0,2]时,y=12x2;当点F在GH上时,即x∈(2,5]时,y=2+2(x-2)=2x-2;当点F在HC上时,即x∈(5,7]时,y=12×(7+3)×2-12(7-x)2=-12(x-7)2+10.综上,得左边部分的面积y关于x的函数解析式为y=⎩⎨⎧12x2,x∈[0,2]2x-2,x∈(2,5]-12(x-7)2+10,x∈(5,7].其大致图象如图所示.19.(12分)(2019·成都七中调研)已知函数f (x )=a -22x +1.(1)求f (0);(2)探究f (x )的单调性,并证明你的结论;(3)若f (x )为奇函数,求满足f (ax )<f (2)的x 的范围. 解析:(1)f (0)=a -220+1=a -1. (2)∵f (x )的定义域为R , ∴任取x 1,x 2∈R 且x 1<x 2,则f (x 1)-f (x 2)=a -22x 1+1-a +22x 2+1=2·(2x 1-2x 2)(1+2x 1)(1+2x 2),∵y =2x 在R 上单调递增且x 1<x 2, ∴0<2x 1<2x 2,∴2x 1-2x 2<0,2x 1+1>0,2x 2+1>0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在R 上单调递增.(3)∵f (x )是奇函数,∴f (-x )=-f (x ), 即a -22-x +1=-a +22x +1,解得a =1(或用f (0)=0去解). ∴f (ax )<f (2)即为f (x )<f (2), 又∵f (x )在R 上单调递增,∴x <2. ∴不等式的解集为(-∞,2).20.(12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]上的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围.解析:(1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1, 令t =2x ,x ∈[-3,0],则t ∈[18,1].故y =2t 2-t -1=2(t -14)2-98,t ∈[18,1],故值域为[-98,0].(2)关于x 的方程2a (2x )2-2x -1=0有解, 设2x =m >0,等价于方程2am 2-m -1=0在(0,+∞)上有解, 记g (m )=2am 2-m -1,当a =0时,解为m =-1<0,不成立. 当a <0时,开口向下,对称轴m =14a <0,过点(0,-1),不成立.当a >0时,开口向上,对称轴m =14a >0,过点(0,-1),必有一个根为正,综上得a >0.21.(12分)(2019·天津一中月考)设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域; (2)求f (x )在区间[0,32]上的最大值.解析:(1)∵f (1)=2, ∴log a 4=2(a >0,a ≠1), ∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )= log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数,当x ∈(1,3)时,f (x )是减函数,故函数f (x )在[0,32]上的最大值是f (1)=log 24=2.22.(12分)(2019·邯郸模拟)已知函数f (x )=log a (3-ax ). (1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解析:(1)∵a >0,且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,当x ∈[0,2]时,t (x )的最小值为3-2a , ∵当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0,∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪(1,32).(2)由(1)知函数t (x )=3-ax 为减函数. ∵f (x )在区间[1,2]上为减函数, ∴y =log a t 在[1,2]上为增函数, ∴a >1,当x ∈[1,2]时,t (x )的最小值为3-2a ,f (x )的最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎨⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每题5分,共8小题)
1. M={|ln(1)}x y x =-,N=()2|}21{x x x -<,令A={|,}x x N x M ∈∉,那么A 是( )
A. {|1}x x ≥
B. {|12}x x ≤<
C. {|01}x x <≤
D. {|1}x x ≤
2. 设函数sin(2),2y x x R π
=-∈,那么y 是( )
A.最小正周期为π的奇函数
B.最小正周期为π的偶函数
C.最小正周期为π2的奇函数
D.最小正周期为π2的偶函数
3. 已知25a b M ==,且111a b
+=,则M=( ) A.10 B.5 C.2 D.1 4. 要得到cos(2)6
y x π=-的图像,只需将sin 2y x =图像( ) A.向左平移6π个单位 B.向右平移6π个单位 C.向左平移3π个单位 D.向右平移3
π个单位 5. 函数31(01)x y a a a -+>≠=且过定点( )
A.(0,1)
B.(0,2)
C.(3,1)
D.(3,2)
6. sin cos ,[0,2]θθθπ=-∈,那么θ的范围是( ) A.[0,π2] B.[π2,π] C.[π,3π2] D.[3π2,2π]
7. 2tan()5θϕ+= 1tan 44πϕ⎛⎫-= ⎪⎝⎭ 则tan +4πθ⎛⎫ ⎪⎝⎭ =( ) A.16 B.2213 C.322 D.1318
8. 奇函数()f x 在(-∞,0 )上单调递增,f (1)0-= ,则不等式()0f x <的解集
是( )
A.()(),10,1-∞-⋃
B.()(),11,-∞-⋃+∞
C.()()1,00,1-⋃
D.()()1,01,-⋃+∞
二、填空题(每题5分,共2小题)
9. 12sin cos 25
θθ= ,则sin +cos =θθ 10. 函数()2lg 34sin y θ=- 的定义域是
三、解答题(每题10分,共5题)
1. 已知函数()2sin(2)1(||)2f x x πθθ=++<
且()f x 的图像关于直线512x π= 对称
(1) 求函数解析式(2)试分析函数在
[]-ππ, 上的单调性并求出最值
2. 已知集合{}|13A x x =<< 集合{}=|21B x m x m <<-
(1) 若A B ⊆ ,求实数m 的取值范围
(2) 若A B ⋂=∅ ,求实数m 的取值范围
3. 已知函数2()cos 2sin +1226x x f x π⎛⎫=-- ⎪⎝⎭,将函数图像向右平移3π个单位长度,再将图像上的所有点横坐标伸长到原来的2倍(纵坐标不变),得到()g x 图像,求函数()g x 的周期和值域
4. 已知tan A 与tan(
)4A π-是方程20x px q ++=的两个解,3tan A =2tan()4A π-,求p 和q 的值。
5. 已知函数22sin 2sin cos 3cos y x x x x =++ x R ∈ ,求
(1)函数最小正周期 (2)函数的单调增区间。