《集合》知识总结及练习
集合知识点及题型归纳总结(含答案)
集合知识点及题型归纳总结知识点精讲一、集合的有关概念 1.集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关.如{}{},,,,a b c a c b =. 3.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图、数轴)和区间法. 4.常用数集的表示R 一实数集 Q 一有理数集 Z 一整数集 N 一自然数集*N 或N +一正整数集 C 一复数集二、集合间的关系1.元素与集合之间的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 空集:不含有任何元素的集合,记作∅. 2.集合与集合之间的关系 (1)包含关系.子集:如果对任意a A A B ∈⇒∈,则集合A 是集合B 的子集,记为A B ⊆或B A ⊇,显然A A ⊆.规定:A ∅⊆.(2)相等关系.对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (3)真子集关系.对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB 或B A .空集是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算集合的基本运算包括集合的交集、并集和补集运算,如表11-所示.IA{|IA x x =1.交集由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂,即{}|A B x x A x B ⋂=∈∈且.2.并集由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,即{}|A B x x A x B ⋃=∈∈或.3.补集已知全集I ,集合A I ⊆,由I 中所有不属于A 的元素组成的集合,叫做集合A 相对于全集I 的补集,记作IA ,即{}|I A x x I x A =∈∉且.四、集合运算中常用的结论 1.集合中的逻辑关系 (1)交集的运算性质.A B B A ⋂=⋂,A B A ⋂⊆,A B B ⋂⊆ A I A ⋂=,A A A ⋂=,A ⋂∅=∅. (2)并集的运算性质.A B B A ⋃=⋃,A A B ⊆⋃,B A B ⊆⋃ A I I ⋃=,A A A ⋃=,A A ⋃∅=. (3)补集的运算性质.()II A A =,I I ∅=,I I =∅ ()I A A ⋂=∅,()I A A I ⋃.补充性质:II I A B A A B B A B B A A B ⋂=⇔⋃=⇔⊆⇔⊆⇔⋂=∅.(4)结合律与分配律.结合律:()()A B C A B C ⋃⋃=⋃⋃ ()()A B C A B C ⋂⋂=⋂⋂. 分配律:()()()A B C A B A C ⋂⋃=⋂⋃⋂ ()()()A B C A B A C ⋃⋂=⋃⋂⋃. (5)反演律(德摩根定律).()()()II I A B A B ⋂=⋃()()()II I A B A B ⋃=⋂.即“交的补=补的并”,“并的补=补的交”. 2.由*(N )n n ∈个元素组成的集合A 的子集个数A 的子集有2n 个,非空子集有21n -个,真子集有21n -个,非空真子集有22n -个.3.容斥原理()()()()Card A B Card A Card B Card A B ⋃=+-⋂.题型归纳及思路提示I AA题型1 集合的基本概念思路提示:利用集合元素的特征:确定性、无序性、互异性. 例1.1 设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2-解析:由题意知{}01,,a b a ∈+,又0a ≠,故0a b +=,得1ba=-,则集合{}{}1,0,0,1,a b =-,可得1,1,2a b b a =-=-=,故选C 。
集合知识点+练习题
集合知识点+练习题第一章集合§1.1集合基础知识点:⒈集合的定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3.集合相等:构成两个集合的元素完全一样。
4.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;5.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
.如:方程(x-2)(x-1)2=0的解集表示为{1, 2},而不是{1, 1, 2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑴大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷方程x2+1=0的解;⑸徐州艺校校2011级新生;⑹血压很高的人;⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点6.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
例如,(1)A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A,等等。
(2)A={2,4,8,16},则4∈A,8∈A,32∉A.典型例题例1.用“∈”或“∉”符号填空:⑴8 N;⑵0 N;⑶-3Z;2Q;⑸设A为所有亚洲国家组成的集合,则中国A,美国A,印度A,英国A。
高中数学总复习—集合知识点归纳及考点练习
A. 4 C. 6
【答案】C
B. 5 D. 7
1.已知集合 M={1,m+2,m2+4},且 5∈M,则 m 的值为
A.1 或-1
B.1 或 3
C.-1 或 3
D.1,-1 或 3
考向二 集合间的基本关系
典例 2 已知集合 A. C. 【答案】D
,集合 满足
,则集合 的个数为 B. D.
【名师点睛】求集合的子集(真子集)个数问题,当集合的元素个数较少时,也可以利用枚举法解决,枚举 法不失为求集合的子集(真子集)个数的好方法,使用时应做到不重不漏.
高中数学总复习—集合知识点归纳及考点练习
1.了解集合、元素的含义及其关系. 2.理解集合的表示方法. 3.了解集合之间的包含、相等关系. 4.理解全集、空集、子集的含义. 5.会求简单集合间的并集、交集. 6.理解补集的含义并会求补集.
一、集合的基本概念
属于,记为a A
1.元素与集合的关系:
不属于,记为a
4.设集合
A
x|
x x
3 6
0
,
B
{y
|
y
log 1
2
x
1 ,
x
3}
,则
ðR A
B
A. (3, 6)
B. (6, )
C. (3, 2]
D. , 3 6,
考向四 与集合有关的创新题目
与集合有关的创新题目是近几年高考的一个新趋势,试题出现较多的 是在现有运算法则和运算律的基础上 定义一种新的运算,并运用它解决相关的一些问题.解决 以集合为背景的新定义问题,要抓住两点:(1) 紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过 程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.集合的性质(概念、元素的 性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用 集合性质的一些因素,在关键之处用好集合的运算与性质.
集合知识点总结及习题
集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩一、集合有关概念 1. 集合的含义2. 集合的中元素的三个特性: (1)元素确实定性如:世界上最高的山(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.元素与集合的关系——〔不〕属于关系 〔1〕集合用大写的拉丁字母A 、B 、C …表示元素用小写的拉丁字母a 、b 、c …表示〔2〕假设a 是集合A 的元素,就说a 属于集合A,记作a ∈A;假设不是集合A 的元素,就说a 不属于集合A,记作a ∉A;4.集合的表示方法:列举法与描述法。
(完整版)集合经典知识点复习总结与练习综合,推荐文档
知识点一:集合的含义与表示
一、 集合的概念
实例引入:
⑴ 1~20 以内的所有质数; ⑵ 我国从 1991~2003 的 13 年内所发射的所有人造卫星;
⑶ 金星汽车厂 2003 年生产的所有汽车;
⑷ 2004 年 1 月 1 日之前与我国建立外交关系的所有国家; ⑸ 所有的正方形;
(2)如果 a 不是集合 A 的元素,就说 a 不属于 A,记作 a∈A
五、常用数集及其记法
非负整数集(或自然数集),
除 0 的非负整数集,也称正整数集,
整数集,;
有理数集,
实数集,
练习:(1)已知集合 M={a,b,c}中的三个元素可构成某一三角形
的三条边,那么此三角形一定不是( )
A 直角三角形 B 锐角三角形 C 钝角三角形 D 等腰三角形
(2)方程 x2=x 的所有实数根组成的集合; (3)由 1~20 以内的所有质数组成。 例 2、 试分别用列举法和描述法表示下列集合: (1)由大于 10 小于 20 的的所有整数组成的集合; (2)方程 x2-2=2 的所有实数根组成的集合. 注意:(1)描述法表示集合应注意集合的代表元素
(2)只要不引起误解集合的代表元素也可省略
且且 ∈且且且且 且且且且且且
A = { y | y = x2 + 1, x ∈ R} B = {x | x = t 2 + 1, t ∈ R} C = {(x, y) | y = x2 + 1, x ∈ R}
七、小结 集合的概念、表示;集合元素与集合间的关系;常用数集的记法.
1.集合的概念、集合三要素 2.集合的表示、符号、常用数集、列举法、描述法 3.关于“属于”的概念
集合的基本概念知识点总结及练习
集合的基本概念知识点总结及练习 (3) 差集﹕属于A ,但不属于B 的所有元素所成的集合,记作A B -,即{}|A B x x A x B -=∈∉但。
(4) 宇集﹕当我们所探讨的集合皆为某一个集合U 的一、集合:是由一些满足某些条件之事物所组成的整体,记作S 表示之。
二、元素:组成集合的每一事物即是。
三、(一)空集合:不含任何元素的集合,记作{}或φ。
(注) 空集合φ为任何集合的子集。
(二)子集合:若集合A 中的每一个元素都是集合B 的元素,则称A 为B 的子集,记作A B ⊂(读作A 包含于B )或B A ⊃(读作B 包含A )。
(三)相等集合﹕已知A B 、为两集合,若A B ⊂且B A ⊂,则称A B 、两集合相等,记作A B =。
四、集合与元素的关系:若a 为集合A 的一个元素,则称a 属于A ,通常记作a A ∈﹔若a 不为集合A 的元素,则称a 不属于A ﹐记作a A ∉。
五、集合表示法:(一)列举法﹕当集合的元素不多时﹐我们可以把集合的所有元素全部列出﹐再冠以大括号﹐表示此一集合。
如:掷骰子、12的所有正因子、小于10的正奇数、…等。
(二)描述法﹕在大括号内将元素的共同特性描述出来,再加一直杠﹐而直杠的后面界定出此集合中元素的属性。
如:{}2104C k k k =+≤≤,為整數六、集合的运算﹕设A B 、为两集合,则(1) 交集﹕同时属于A 且属于B 的所有元素所成的集合,称为A 与B 的交集,记作A B ,即{}|A B x x A x B =∈∈且。
(2) 联集﹕属于A 或属于B 的所有元素所成的集合称为A 与B 的联集,记作A B ﹐即{}|A B x x A x B =∈∈或。
子集,则U就称为宇集。
(5) 补集(余集)﹕属于U但不属于A的所有元素所成的集合,称为A的补集,记作A'U A=-﹒七、笛摩根定律(De Morgan Laws)﹕(1) ()=A B'A'B'A B'A'B'=(2) ()八、集合元素的计数﹕当集合A中所包含元素的个数为有限个时,我们以()n A 来表示集合A中的元素个数。
集合经典知识点复习总结与练习综合
知识点一:集合的含义与表示一、集合的概念实例引入:⑴1~20以内的所有质数;⑵我国从1991~2003的13年内所发射的所有人造卫星;⑶金星汽车厂2003年生产的所有汽车;⑷2004年1月1日之前与我国建立外交关系的所有国家;⑸所有的正方形;⑹黄图盛中学2004年9月入学的高一学生全体.概念结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴2,3,4 ⑵(2,3),(3,4)⑶三角形⑷2,4,6,8,…⑸1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∈A五、常用数集及其记法非负整数集(或自然数集),除0的非负整数集,也称正整数集,整数集,;有理数集,实数集,练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形 B 锐角三角形C钝角三角形D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成。
集合知识点总结带例题
集合知识点总结带例题一、基本概念1. 集合集合是由一些确定的对象构成的整体。
集合是一个无序的整体,它只关心集合中包含的元素,与元素的排列顺序无关。
2. 元素集合中的个体称为元素,元素可以是任何事物或对象,例如数字、字母、集合等。
3. 空集一个不包含任何元素的集合称为空集,通常用符号∅ 或 {} 表示。
4. 包含关系若集合 A 中的所有元素都是集合 B 中的元素,则称集合 A 包含在集合 B 中,通常用符号A⊆B 表示。
5. 相等关系若集合 A 包含在集合 B 中,并且集合 B 包含在集合 A 中,则称集合 A 和集合 B 相等,通常用符号 A=B 表示。
6. 子集若集合 A 包含在集合 B 中,且集合 A 不等于集合 B,则称集合 A 是集合 B 的子集,通常用符号A⊂B 表示。
7. 并集若集合 A 和集合 B 的元素都包含在一个新的集合中,则称该集合为 A 和 B 的并集,通常用符号A∪B 表示。
8. 交集若集合 A 和集合 B 的公共元素构成一个新的集合,则称该集合为 A 和 B 的交集,通常用符号A∩B 表示。
9. 完全集一个包含所有可能元素的集合称为完全集。
10. 互斥集若集合 A 和集合 B 没有共同的元素,则称集合 A 和集合 B 互斥。
二、运算1. 并集对于两个集合 A 和 B,它们的并集是一个包含 A 和 B 所有元素的集合。
例如:A={1,2,3}, B={3,4,5} 则A∪B={1,2,3,4,5}。
2. 交集对于两个集合 A 和 B,它们的交集是一个包含 A 和 B 共同元素的集合。
例如:A={1,2,3}, B={3,4,5} 则A∩B={3}。
3. 补集对于一个集合 A,它在另一个集合 U 中的补集是指 U 中不属于 A 的元素所组成的集合,通常用符号 A' 或 A^c 表示。
4. 差集对于两个集合 A 和 B,它们的差集是包含在 A 中但不包含在 B 中的元素所组成的集合,通常用符号 A-B 表示。
(完整word版)《集合》知识点总结.docx
《集合》知识点总结一、集合有关概念1.集合的含义一般地,把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)2.集合中元素的三个特性:确定性互异性无序性3.集合的表示:{} 如: { 我校的篮球队员} ,{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合: A ={我校的篮球队员}, B ={ 1,2,3,4,5}集合的表示方法:列举法与描述法。
列举法: { a, b,c,d,}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{ x | x 3 2}语言描述法:例:{不是直角三角形的三角形}Venn 图 :记作: N注:常用数集及其记法:非负整数集(即自然数集)正整数集N *或 N整数集 Z 有理数集Q 实数集R4.集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{ x | x25}二、集合间的基本关系1.“包含”关系—子集注意: A B 有两种可能( 1)A是 B的一部分;(2) A与 B是同一集合。
反之,集合 A 不包含于集合B,或集合 B 不包含集合A, 记作A B 或B A2.“相等”关系: A=B (5 ≥5,且 5≤5,则 5=5)例:设 A={x| x210 } B={-1,1}“元素相同则两集合相等”① 任何一个集合是它本身的子集. A A②真子集 :如果 A B,且 A B 那就说集合 A 是集合 B 的真子集,记作A B(或 B A)③如果 A B, B C ,那么 A C④如果 A B 同时 B A 那么 A=B3.不含任何元素的集合叫做空集,记为规定 : 空集是任何集合的子集,空集是任何非空集合的真子集。
结论:有 n 个元素的集合,含有2n个子集, 2n 1个真子集三、集合的运算运算交集并集类型由所有属于 A 且属于 B由所有属于集合 A 或属的元素所组成的集合于集合 B 的元素所组成定叫做 A,B 的交集.记作的集合,叫做A,B的并义A B(读作‘A 交 B’)集.记作 A B(读作‘ A 即 A B={ x|x A 且并 B ’),即 A Bx B}.={x|x A,或 x B}) .韦恩A B A B图示图 1图 2补集设S 是一个集合,A 是 S 的一个子集,由 S 中所有不属于 A 的元素组成的集合,叫做S 中子集 A 的补集(或余集)记作C U A,即C U A { x|x U,且x A}SA性质A A A(C u A) (C u B) C u (A B)AA A(C u A) (C u B) C u (A B)A B B AB B AA BAAB A A(C u A) UA BABB BAA(C u A)(2)交、并、补集的混合运算①集合交换律 A B B A A B B A②集合结合律③集合分配律( A B) C A ( B C )( A B) C A ( B C )A (B C) ( A B) ( AC ) A ( B C ) ( A B) ( A C )(3)容斥定理card (A B) card ( A) card ( B) card ( A B)card ( A B C ) card ( A) card ( B) card (C ) card ( A B) card ( A B) card (B C ) card ( A B C )card 表示有限集合 A 中元素的个数。
集合知识点总结及典型例题
集 合一.【课标要求】1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn 图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。
考试形式多以一道选择题为主。
预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。
具体三.【要点精讲】1.集合:某些指定的对象集在一起成为集合(1)集合中的对象称元素,若a 是集合A 的元素,记作;若b 不是集合A 的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
集合知识点+基础习题(有答案)
集合练习题知识点一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集).1.集合中元素具的有几个特征⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一些元素”是确定的.⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几个)相同的元素就只能算一个,即集合中的元素是不重复出现的.⑶无序性-即集合中的元素没有次序之分.2.常用的数集及其记法我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R3.元素与集合之间的关系4.反馈演练1.填空题2.选择题⑴以下说法正确的( )(A) “实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定⑵已知2是集合M={ }中的元素,则实数为( )(A) 2 (B)0或3 (C) 3 (D)0,2,3均可二、集合的几种表示方法1、列举法-将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开.*有限集与无限集*⑴有限集-------含有有限个元素的集合叫有限集例如: A={1~20以内所有质数}⑵无限集--------含有无限个元素的集合叫无限集例如: B={不大于3的所有实数}2、描述法-用集合所含元素的共同特征表示集合的方法.具体方法:在花括号内先写上表示这个集合元素的一般符号及以取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.3、图示法 -- 画一条封闭曲线,用它的内部来表示一个集合.常用于表示不需给具体元素的抽象集合.对已给出了具体元素的集合也当然可以用图示法来表示如: 集合{1,2,3,4,5}用图示法表示为:三、集合间的基本关系观察下面几组集合,集合A与集合B具有什么关系?(1) A={1,2,3},B={1,2,3,4,5}.(2) A={x|x>3},B={x|3x-6>0}.(3) A={正方形},B={四边形}.(4) A=∅,B={0}.1.子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作A⊆B(或B⊇A),即若任意x∈A,有x∈B,则A⊆B(或A⊂B)。
(完整版)集合知识点总结与习题《经典》
集合详解集合的含义与表示1、集合的概念把某些特定的对象集在一起就叫做集合. 2、常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.3、集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 4、集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. 5、集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). 二、集合间的基本关系 1、子集、真子集、集合相等2、已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.三、集合的基本运算1、交集、并集、补集【经典例题】1.知集合{(,)|,A x y x y=为实数,且}221,x y +={(,)|,B x y x y =为实数,且},A By x =I 则的元素个数为( )A 、0B 、1C 、2D 、3 2.已知集合{{},1,,A B m A B A==⋃=,则m = ( )A 、0或3B 、0或3C 、1或3D 、1或33.A={1,2,3,4},B==⋂∈=B A A n n x x 则},,|{2( ) A,{1,4} B,{2,3} C,{9,16} D,{1,2}4.已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则)(B A C U ⋃=( )A .{1,3,4}B .{3,4}C .{3}D .{4}5.已知集合{}{}1,2,3,4,|2,A B x x A B ==<=I 则( )A .{1}B .{}0,1C .{}0,2D .{}0,1,26.若集合A ={x ∈R|ax 2+ax+1=0}其中只有一个元素,则a=( )A .4B .2C .0D .0或47.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =IA .{0}B .{0,2}C .{2,0}-D .{2,0,2}-8.下列八个关系式①{0}=φ;①φ=0;①φ={φ};①φ∈{φ};①{0}⊇φ;①0∉φ;①φ≠{0};①φ≠{φ}其中正确的个数( )A.4B.5C.6D.7 9.下列各式中,正确的是( ) A.2}2{≤⊆x x B.{}≠<>12x x x 且φC.{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠D.{Z k k x x ∈+=,13}={Z k k x x ∈-=,23}练习:一、选择题1.若集合{|1}X x x =>-,下列关系式中成立的为( )A .0X ⊆B .{}0X ∈C .X φ∈D .{}0X ⊆2.已知集合{}2|10,A x x A R φ=+==I 若,则实数m 的取值范围是( ) A .4<m B .4>m C .40<≤m D .40≤≤m 3.下列说法中,正确的是( )A . 任何一个集合必有两个子集;B . 若,A B φ=I则,A B 中至少有一个为φC . 任何集合必有一个真子集;D . 若S 为全集,且,A B S =I 则,A B S ==4.设集合22{|0},{|0}A x x x B x x x =-==+=,则集合A B =I ( ) A .0 B .{}0 C .φ D .{}1,0,1- 二、填空题 7.已知{}Rx x x y y M ∈+-==,34|2,{}Rx x x y y N ∈++-==,82|2则__________=N M I 。
集合复习知识要点及典型例题.pptx
(2)A B A B A; A B A B B.
第13页/共36页
Part 02
基础过关
第14页/共36页
基础自测
圆梦,P2,基础自测.
第15页/共36页
Part 03
典例剖析
第16页/共36页
典例剖析
考点1、2 集合与元素、集合的表示法
【例1】 下列各描 A x x U且x A ;
第10页/共36页
知识要点
7、常用的性质
(1)A A; A;若A B,B C,则A C.
(2)A A A; A ; A B B A;
A B A; A B B. (3)A A A; A A; A B B A;
Part 01
知识点回顾
第2页/共36页
1、集合的相关概念
知识要点
(1)集合:某些确定的对象所组成的整体,常用大写字母表示;
(2)元素:集合中每一个确定的对象,常用小写字母表示; 组成集合的元素具有确定性、互异性、无序性三个特性;
(3)集合的分类:按元素个数可分为空集、有限集、无限集.
第3页/共36页
第23页/共36页
典例剖析
【方法规律】 (1)集合A中的任意1个,2个,3个元素组成的集合 及空集,都是集合A的子集.若一个集合中有n个元素,则这个集 合的子集个数有2n个,真子集个数有2n-1个. (2)写子集或真子集时,要按元素个数由少到多的顺序写,空集 不能遗忘.
第24页/共36页
典例剖析
第7页/共36页
5、常用的数集符号
知识要点
自然数集:N ; 正整数集: N 或N ; 整数集:Z; 有理数集: Q; 实数集:R;
N ,N ,Z ,Q,R是集合符号,各表示一个集合,不能写成
高中数学《集合》知识点归纳及题型练习
高中数学《集合》知识点归纳及题型练习【知识点】1.集合的三个特性:确定性,互异性,无序性2.自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R 。
3.集合的三种表示方法:列举法,描述法,文氏图。
4.集合的分类:有限集,无限集,空集5.子集:若a A ∈,则a B ∈,称为A 是B 的子集,记作:A B ⊆或B A ⊇, 读作:“集合A 包含于集合B ”或“集合B 包含集合A ”。
6.真子集:若A B ⊆且B A ⊆,则称集合A 与集合B 相等,记作:A B =; 若A B ⊆且A B ≠,则称集合A 是集合B 的真子集,记作:【注意】空集φ是任何集合的真子集。
一个集合的子集个数为2n ,真子集个数为21n -,非空真子集个数为22n -。
7.补集:已知A U ⊆,由所有属于U 但不属于A 中的元素组成的集合称为A 的补集,记作:U A , 读作:A 在U 中的补集。
即:{|,}U A x x U x A =∈∉且8.交集:由两个集合中的公共元素组成的集合,即:{|}A B x x A x B =∈∈,且9.并集:由两个集合中的所有元素组成的集合,即:{|}A B x x A x B =∈∈,或10.集合的包含关系:A B ⊆⇔A B A A B B =⇔=题型1.集合性质的应用1.判断能否构成集合:【根据集合的确定性】(1)我国的所有直辖市; (2)我校的所有大树;(3)深圳机场学校的所有优秀学生; (4)深圳市的全体中学生;(5)不等式220x x ->的所有实数解; (6)所有的正三角形。
2.用,∈∉填空:2 N , , -3 Z , , 2- R ; 已知2{|20}A x x x =--=,则1 A ,2 A ,-1 A ,-2 A 。
3.集合{(0,1),(1,2)}A =中有 个元素;{,{0},{1,2}}B φ=中有 个元素。
3.已知集合{0,1,2}M x =+,则x 不能取哪些值?4.(1)2{1,0,}x x ∈,则x = ; (2)若2{,1}{1,}x x =,则x = 。
高一数学集合知识点及练习题
第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 B{x A A = ∅=∅ B A ⊆ B B ⊆ B{x A A = A ∅= B A ⊇ B B ⊇()A C B UA A U U U ==∅=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法0)例题讲解1.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )答案 B解析 由{}2|0N x x x =+=,得{1,0}N =-,则N M ⊂,选B.2.设U =R ,{|0}A x x =>,{|1}B x x =>,则U AB =ð( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x > 答案 B解析 对于{}1U C B x x =≤,因此U A B =ð{|01}x x <≤3.(北京文)设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( ) A .{12}x x -≤< B .1{|1}2x x -<≤ C .{|2}x x < D .{|12}x x ≤<答案 A解析 本题主要考查集合的基本运算以及简单的不等式的解法. 属于基础知识、基本运 算的考查∵1{|2},2A x x =-<<{}2{1}|11B x x x x =≤=-≤≤, ∴{12}AB x x =-≤<,故选A.4.(山东卷理)集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16AB =,则a 的值为 ( )A.0B.1C.2D.4 答案 D解析 ∵{}0,2,A a =,{}21,B a =,{}0,1,2,4,16A B =∴2164a a ⎧=⎨=⎩∴4a =,故选D.【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题. 5.(全国卷Ⅱ文)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则C u ( M N )=( ) A.{5,7} B.{2,4} C. {2.4.8} D. {1,3,5,6,7} 答案 C6.已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有 ( )A. 3个B. 2个C. 1个D. 无穷多个 答案 B解析 由{212}M x x =-≤-≤得31≤≤-x ,则{}3,1=⋂N M ,有2个,选B. 7.设,a b R ∈,集合{1,,}{0,,}ba b a b a+=,则b a -= ( ) A .1 B .1- C .2 D .2-答案 C8.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =( )A .∅B .{x |0<x <3}C .{x |1<x <3}D .{x |2<x <3}答案 D解析 {}{}2log 12N x x x x =>=>,用数轴表示可得答案D 。
集合知识点及习题
集合一、集合:1、定义:把研究的对象统称为元素,把一些元素组成的总体叫做集合。
2、集合与元素的关系:(1)如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ;(2)如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A 。
3、常见集合:非负整数集(或自然数集) :N ;正整数集合:*N 或+N ;整数集合:Z ;有理数集合:Q ;实数集合:R 。
注意:(1)自然数集N 含有0;(2)整数集Z 、有理数Q 、实数集R 内排除0的集合分别表示为: Z*或Z+、Q*或Q+、R*或R+。
4、集合三要素:确定性、互异性、无序性。
特别地,不含任何元素的集合叫做空集,记作Φ。
5、集合的表示方法:(1)列举法 (2)描述法 (3)韦恩图 (4)区间表示法 二、集合间的基本关系:1、子集:一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作:A ⊆B 或(B ⊇A).性质:①Φ⊆A (特别地Φ⊆Φ); ②A ⊆A ; ③ 若A ⊆B,B ⊆C,则A ⊆C 。
2、真子集:如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集。
记作:A B ⇔A ⊆B ,A ≠B性质:①若A Φ≠,则有Φ⊂A 。
②如果A ⊂B,B ⊂C ,那么A ⊂C 。
③规定:空集合是任何集合的子集,空集是任何非空集合的真子集。
三、集合间的基本运算:1、并集:一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集。
记作:A ∪B={x| x ∈A,或x ∈B}. 性质:①A ∪A=A ②A ∪Φ=A ③A ∪B=B ∪A④A ⊆A ∪B ,B ⊆A ∪B ⑤A ∪B=B ⇔A ⊆B2、交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:A ∩B={x| x ∈A,且x ∈B}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《集合》
一.集合:
1.集合元素的特性:元素的确定性;元素的互异性;元素的无序性
2.集合的表示:列举法,描述法。
3.元素与集合的关系:
4.集合间的基本关系:子集,真子集,相等
(1)规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
(2)A 有n 个元素,则A 有2n 个子集,2n-1个真子集
5.集合的运算:(1){}=|A B x x A x B ∈∈或;
(2){}|A B x x A x B ⋂=∈∈且;
(3){}|U C A x x U x A =∈∉且
二.练习
1.设集合M={x ︱02
3≤--x x },集合N={x ︱(x-4)(x-1)≤0},则M 与N 的关系是( ) A 、M=N B 、M ∈N C 、M ⊇N D 、M ⊆N
2.集合,,若,则的值为 ( )
A.0
B.1
C.2
D.4
3.A={x ︱52≤≤-x },B={x ︱121-≤≤+m x m },若B A ⊆,则实数m 的取值范围为( )
A 、3≤m
B 、32≤≤m
C 、2≥m
D 、3≥m
4.已知集合M={y |y =x 2+1,x ∈R },N={y|y =x +1,x ∈R },则M ∩N=( )
A .(0,1),(1,2)
B .{(0,1),(1,2)}
C .{y|y=1,或y=2}
D .{y|y ≥1}
5.m A,n B, A=,B=,又C=,则有:( )A .m+n A B. m+n B C.m+n C D. m+n 不属于A ,B ,C 中任意一个
6.满足{a}⊆⊆M {a,b,c,d}的集合M 共有_ 个。
7.U={0,1,2,3,4,5},集合A={x ︱0122=+-x ax }有且只有一个元素,则集合U C A =_
8.已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A ∪B=A ,求实数a 组成的集合C .
{}0,2,A a ={}21,B a ={}0,1,2,4,16A B =a ∈∈{}Z a a x x ∈=,2|{}Z a a x x ∈+=,12|{}Z a a x x ∈+=,14|∈∈∈
9.已知A={x|x 2-3x -10≤0},B={x|p +1≤x ≤2p -1}.若B A ,求实数p 的取值范围.
10.已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.
11.已知A={x ︱0822=--x x },B={x ︱01222=-++a ax x },B A ⊆,且B φ≠,试求实
数a 的取值集合。
12.A 是实数构成的集合,满足若a ∈A ,则A ,且1∉A.⑴若2∈A ,则A 中至少还有几个元素?求出这几个元素.⑵A 能否为单元素集合?请说明理由.⑶若a ∈A ,证明:1-
∈A.⑷求证:集合A 中至少含有三个不同的元素. a
-11∈1≠a a
1。