大学微积分模拟试卷

合集下载

2023微积分模考卷参考答案

2023微积分模考卷参考答案

一、选择题(每题1分,共5分)1. 下列函数中,在区间(0, +∞)上单调递增的是()A. y = x^2B. y = x^2C. y = 1/xD. y = x^32. 函数f(x) = x^2 2x的极小值点是()A. x = 0B. x = 1C. x = 2D. x = 13. 不定积分∫(1/x)dx的结果是()A. ln|x| + CB. x^2 + CC. e^x + CD. 1/x + C4. 定积分∫_{0}^{1} xdx的结果是()A. 1/2B. 1C. 0D. 无穷大5. 下列极限中,不存在的是()A. lim(x→0) (sinx/x)B. lim(x→1) (x^2 1)/(x 1)C. lim(x→+∞) (1/x)D. lim(x→0) (1/cosx)二、判断题(每题1分,共5分)1. 微分学的中心思想是求导数和求极值。

()2. 函数在某一点可导,则在该点必连续。

()3. 无穷小量与有界函数的乘积一定是无穷小量。

()4. 二重积分的积分区域一定是矩形。

()5. 泰勒公式可以用来求函数的近似值。

()三、填空题(每题1分,共5分)1. 函数f(x) = e^x在x = 0处的导数值为______。

2. 不定积分∫(sinx)dx的结果是______。

3. 曲线y = x^3 3x在点(1, 2)处的切线方程为______。

4. 若函数f(x) = x^2 + ax + b在x = 1处有极小值,则a的值为______。

5. 定积分∫_{0}^{π/2} (1 + cosx)dx的结果是______。

四、简答题(每题2分,共10分)1. 简述罗尔定理的条件和结论。

2. 什么是函数的极值?如何求函数的极值?3. 举例说明定积分在几何、物理中的应用。

4. 简述泰勒公式的意义。

5. 什么是反常积分?如何判断反常积分的收敛性?五、应用题(每题2分,共10分)1. 求函数f(x) = x^3 6x^2 + 9x的极值。

微积分模拟试题及答案

微积分模拟试题及答案
10.f(x)在点x=x_0连续是f(x)在点x=x_0可导的___条件。
三、计算题
1.求f(x)=x/x,phi(x)=|x|/x当x->0时的左、右极限,并说明它们在x->0时的极限是否存在。
2.求微分方程(dy)/(dx)+2xy=xe^(-x^2)的通解
3.设z=lntan(y/x),求dz
3.设y=2arctan(sqrt(x/(1-x))),求y’
五、应用题
1.设某商品日产量是x个单位时,总费用F(x)的变化率为f(x)=0.2x+5(元/单位),且已知F(0)=0,求
(1)总费用F(x)
(2)若销售单价是25元,求总利润
(3)日产量为多少时,才能获得最大利润
六、证明题
A.x^2-6x+5
B.x^2-5x+6
C.x^2-5x+2
D.x^2-x
答案:b
二、填空题
1.lim_(n->oo)sqrt(n)(sqrt(n+1)-sqrt(n))=___
答案:1/2
2.f(x)={(ax+b,x<=1),(x^2,x>1):}在x=1处可导,则a=___,b=___
1.设z=arctan(x/y),求证x(delz)/(delx)+y(delz)/(dely)=0
试卷答案
一、单选题
1.已知函数f(x)=(x-1)(x-2)(x-3)(x-4),则方程f’(x)=0有
A.三个根,分别位于区间(1,2)、(2,3)、(3,4)内
B.四个根,分别为x_1=1,x_2=2,x_3=3,x_4=4

微积分的(上、下)模拟的试卷和答案

微积分的(上、下)模拟的试卷和答案

北京语言大学网络教育学院《微积分(上、下)》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。

请监考老师负责监督。

2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。

3.本试卷满分100分,答题时间为90分钟。

4.本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。

一、【单项选择题】(本大题共20小题,每小题4分,共80分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。

1、设函数()f x 的定义域是[]0,4,则函数1)f 的定义域是( ) 2、数列nn n)211(lim +∞→的极限为( )。

[A] e 4 [B] e 2 [C] e[D] e 33、函数y = )。

[A] ()21,,y x x =+∈-∞+∞[B] [)21,0,y x x =+∈+∞[C] (]21,,0y x x =+∈-∞[D] 不存在4、1arctany x=, 则dy =( )。

[A] (1,1)-[B] (1,0)-[C](0,1)[D] [1,25][A] 21dx x +[B] 21dxx -+[C] 221x dx x+ [D]()221dxx x +5、xx xx sin cos 1lim0⋅-→=( )6、设,ln x y =则'y =( )。

[B] 1x;[C] 不存在7、函数4334+-=x x y 的二阶导数是( )。

[A] 2x [B] 21218x x - [C] 3249x x -[D] x 128、21lim 1xx x →∞⎛⎫-= ⎪⎝⎭( )9、已知()03f x '=-,则()()0003lim x f x x f x x x∆→+∆--∆=∆( )10、函数1()()2x xf x e e -=+的极小值点是( ) 11、函数()ln z x y =--的定义域为( ) [A] (){},0x y x y +< [B] (){},0x y x y +≠[C](){},0x y x y +>[D](){},,x y x y -∞<<+∞-∞<<+∞12、幂级数1nn x n ∞=∑的收敛域是( )[A] -1 [B] 0[C] 1/2[D] 不存在[A] 2e -[B] e[C]2e [D] 1[A] 12 [B] -12[C]3[D] -3[A] 1[B] -1[C]0[D] 不存在[A] []1,1- [B] [)1,1- [C] (]1,1-[D] ()1,1-13、设)(x f 为],[b a 上的连续函数,则⎰⎰-babadt t f dx x f )()(的值( )14、若f x ax nn n ()==∞∑0,则a n =( )15、设(,)f x y 为连续函数,且(,)(,)d d Df x y xy f u v u v =+⎰⎰,其中D 是由0y =,2y x =和1x =围成的区域。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试卷及标准答案6套微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>?ε,总存在δ>0,使得当时,恒有│?(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,与是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是。

6. 设函数y =?(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为。

8. ='?))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是。

二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的邻域(a -,a +)内有无穷多个点,则()。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的()。

(A) 可去间断点 (B) 跳跃间断点(C) 无穷型间断点 (D) 连续点 3. =+-∞→13)11(lim x x x()。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ()时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是()。

微积分试卷及答案4套

微积分试卷及答案4套

微积分试卷及答案4套(共14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,与 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的邻域(a -,a +)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

3(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点 (D) 连续点3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C) 2e (D)3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

微积分试卷及答案6套

微积分试卷及答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。

2. 已知2235lim 2=-++∞→n bn an n ,则a = ,b= 。

3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

微积分试卷(附答案)

微积分试卷(附答案)

微积分试卷一、填空题(每题3分,共30分) 1、函数)1ln(3-+-=x x y 的定义域是____________.2、设xx f -=11)(则=))(1(x f f ________________. 3、已知654lim25=-+-→x kx x x ,则k =________________. 4、=+-∞→xx x x )11(lim ____________. 5、设函数⎪⎩⎪⎨⎧=≠=0,0,1sin )(x a x xx x f 为),(+∞-∞上的连续函数,则a =____________ . 6、设)(x f 在0=x 处可导,且0)0(=f ,则=→xx f x )(lim 0. 7、已知xxx f +=1)1(,求)(ln x f '= . 8、曲线)1ln(2x y +=的在区间__________________单调减少。

9、若xe-是)(x f 的原函数,则=⎰dx x f x )(ln 2_____________.10、⎰=xdx x ln _____________. 二、单选题(每题3分,共15分)1、下列极限计算正确的是( )A . 111lim 0=⎪⎭⎫ ⎝⎛++→x x x B. e x xx =⎪⎭⎫⎝⎛++→11lim 0C . 1sin lim=∞→x x x D. 11sin lim 0=→xx x2、函数11arctan )(-=x x f 在x =1处是( ).A. 连续B. 可去间断点C. 跳跃间断点D. 第二类间断点3、函数3)(x x f =在区间]1,0[上满足拉格朗日中值定理,则其ξ=( ).A . 3 B.3- C.33-D. 33 4、当0→x 时,与2x 等价的无穷小是( )。

A. 12-xeB. )21ln(x+ C. )cos 1(2x - D.x arctan5、设)()(x f x F =',则下列正确的表达式是( ) A .⎰+=C x f x dF )()( B. C x F dx x f +=⎰)()(C.⎰+=C x f dx x F dx d)()( D. ⎰+='C x f dx x F )()( 三、计算题(每题8分,共32分)1、求极限xx xx x 3220sin sin lim -→2、求曲线x yy x arctan ln22=+所确定的函数)(x f y =在)0,1(处的切线方程。

微积分考试试卷及答案6套

微积分考试试卷及答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

微积分试卷及答案

微积分试卷及答案

微积分试卷及答案【篇一:微积分试题和答案】s=txt>数学教研是:一、选择题(每题2分)1、设??x?定义域为(1,2),则??lgx?的定义域为() a、(0,lg2)b、(0,lg2?c、(10,100)d、(1,2)x2?x2、x=-1是函数??x?=的() 2xx?1a、跳跃间断点 b、可去间断点 c、无穷间断点 d、不是间断点 3、试求a、?4、若x?01b、0c、1d、? 4yx??1,求y?等于() xya、x?2y2x?yy?2x2y?xb、c、d、2x?y2y?x2y?x2x?y2x的渐近线条数为() 1?x2a、0b、1 c、2 6、下列函数中,那个不是映射()5、曲线y?d、3a、y2?x (x?r?,y?r?)b、y2??x2?1c、y?x2d、y?lnx (x?0) 二、填空题(每题2分) 1、__________(n?)1x,则() fx的间断点为__________x??nx2?1fx)m?il2、、设(x2?bx?a?5,则此函数的最大值为__________ 3、已知常数 a、b,limx?11?x4、已知直线 y?6x?k是 y?3x2的切线,则 k?__________5、求曲线 xlny?y?2x?1,在点(,11)的法线方程是__________ 三、判断题(每题2分)x2是有界函数( ) 1、函数y?21?x2、有界函数是收敛数列的充分不必要条件( )3、若lim???,就说?是比?低阶的无穷小 ( ) ?4、可导函数的极值点未必是它的驻点 ( )5、曲线上凹弧与凸弧的分界点称为拐点( ) 四、计算题(每题6分) 1、求函数 y?xsin1x的导数12、已知f(x)?xarctanx?ln(1?x2),求dy23、已知x2?2xy?y3?6,确定y是x的函数,求y?4、求limtanx?sinx2x?0xsinx5、计算 1(cosx)x 6、计算lim?x?0五、应用题1、设某企业在生产一种商品x件时的总收益为r(x)?100x?x2,总成本函数为c(x)?200?50x?x2,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分)12、描绘函数y?x2?的图形(12分)x六、证明题(每题6分)1f()?a 1、用极限的定义证明:设limf(x)?a,则limx???x?0?x2、证明方程xex?1在区间(0,1)内有且仅有一个实数一、选择题1、c2、c3、a4、b5、d6、b 二、填空题1、x?02、a?6,b??73、184、35、x?y?2?0 三、判断题 y??(x?(esin1x)?)?1sinlnxx1111???ecos(?2)lnx?sin??xxxx??1sin1111x?x(?2coslnx?sin)xxxx1sinlnxx2、dy?f?(x)dx112x?(arctanx?x?)dx221?x21?x?arctanxdx3、解:2x?2y?2xy??3y2y??02x?3y?y??22x?3y?y???4、解:2)2(2?3y?)(2x?3y2)?(2x?2y)(2?6yy?)(2x?3yx2?当x?0时,x?tanx?sinx,1?cosx?212xxtanx(1?cosx)1?原式=lim?lim3?2x?0x?0xsinxx25、解:令x?t6dx?6t5原式??(1?t2)t3t2?6?1?t2t2?1?1?6?1?t21?6?(1?)21?t?6t?6arctant?c??6arctan6、解:1?c原式?lime?x?0xlncosx?ex?0?lim1xlncosx其中:1lncosxx?0x2lncosx?lim x?0?x21(?sinx)?lim?x?02x?tanx1?lim??x?0?2x2lim??原式?e?12五、应用题1、解:设每件商品征收的货物税为a,利润为l(x) l(x)?r(x)?c(x)?ax?100x?x2?(200?50x?x2)?ax??2x2?(50?a)x?200l?(x)??4x?50?a50?a令l?(x)?0,得x?,此时l(x)取得最大值4a(50?a)税收t=ax?41t??(50?2a)41令t??0得a?25t?????02?当a?25时,t取得最大值2、解:d????,0???0,???间断点为x?0y??2x?1x2令y??0则x?y???2?2x3令y???0则x??1渐进线:【篇二:微积分试卷及答案6套】>一. 填空题 (每空2分,共20分)x?1?an2?bn?5?2,则a =,b =。

微积分综合练习题及参考答案精选全文完整版

微积分综合练习题及参考答案精选全文完整版

可编辑修改精选全文完整版综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

微积分试卷及规范标准答案6套

微积分试卷及规范标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A │< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的邻域(a -,a +)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点 (D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

微积分模拟考试试题及答案

微积分模拟考试试题及答案

微积分模拟考试试题及答案一、选择题(每题2分,共10分)1. 函数f(x) = 2x^3 - 5x^2 + 7x - 3的导数是:A. 6x^2 - 10x + 7B. 6x^2 - 10x + 6C. 6x^2 - 8x + 7D. 6x^3 - 10x^2 + 72. 曲线y = x^2 + 3x - 2在x = 1处的切线斜率是:A. 4B. 5C. 6D. 73. 定积分∫[0,1] x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/34. 函数f(x) = sin(x) + cos(x)的原函数是:A. -cos(x) + sin(x) + CB. -cos(x) - sin(x) + CC. cos(x) - sin(x) + CD. cos(x) + sin(x) + C5. 函数y = ln(x)的反函数是:A. e^xB. x^eC. 1/xD. √x二、填空题(每空1分,共10分)6. 函数f(x) = 3x^4 - 2x^3 + x^2 - 5的二阶导数是______。

7. 函数y = x^3 - 2x^2 + x - 3在x = 2处的切线方程是______。

8. 定积分∫[1,2] (3x + 1) dx的结果是______。

9. 函数f(x) = 2e^x的原函数是______。

10. 函数y = x^2的反函数是______。

三、简答题(每题5分,共15分)11. 求函数f(x) = x^2 + 2x + 1在区间[0, 2]上的定积分。

12. 求函数f(x) = x^3 - 6x^2 + 9x的极值点。

13. 证明函数f(x) = x^3在R上的单调性。

四、解答题(每题10分,共20分)14. 已知函数f(x) = x^3 - 3x^2 + 2x,求其在x = 1处的泰勒展开式。

15. 利用定积分求曲线y = 2x - 1与x轴围成的面积。

五、综合题(每题15分,共15分)16. 一个物体从静止开始,以初速度0,加速度a = 3t^2(m/s^2)加速运动。

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。

微积分(上、下)模拟试卷和答案

微积分(上、下)模拟试卷和答案

北京语言大学网络教育学院《微积分(上、下)》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。

请监考老师负责监督。

2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。

3.本试卷满分100分,答题时间为90分钟。

4.本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。

一、【1为()34、y ='y =()。

[B]1x[C]不存在7、函数4334+-=x x y 的二阶导数是()。

[A]2x [B]21218x x - [C]3249x x -[D]x 128、21lim 1xx x →∞⎛⎫-= ⎪⎝⎭()9、已知()03f x '=-,则()()0003limx f x x f x x∆→+∆--∆=()函数()x xe e -+函数)y 的定[A]{[C]{12[A][[C](13、设若x n n n =0,则a n =()15、设(,)f x y 为连续函数,且(,)(Df x y xy =+⎰⎰,其中D 是由0y =,2y x =和1x =围成的区域。

则(,)f x y 等于()16、下列微分方程中,是可分离变量的方程是()[A]2e -[B]e[C]2e [D]1[A]1[A][A]fn n ()()!0 [B]fx n n ()()![C](())!()f n n 0 [D]1n ![A]xy [B]2xy[C]xy+81 [D]xy+1[A]'x yy e x+= [B]'sin y y x -= [C]22'1y y x y x =+++[D]'2xy xy y e +=17、将11x+展开成x 的幂级数为() [A]∑∞=o n nx[B]()1nn n x ∞=-∑[C]∞=+n nn 1∞n18、设xyz =,则[A][C]20、】(本大题2分,共2021、f '2223()1,+∞。

微积分——期末考试模拟试卷以及答案

微积分——期末考试模拟试卷以及答案

《微积分II 》练习题一、 填空题1.函数()y x z +=ln 1的定义域是_______________ 。

2.函数(,)f x y =,则定义域为 。

3. 。

4.设(,)(1)arcsin f x y xy y =+-(,1)x f x = _______ 。

5.设222lny x e z x +=,则=)1,1(dz 。

6.函数yx z =在(2,1)点处的全微分为_______________。

7.22()Dxyf x y dxdy +=⎰⎰。

(其中D :由曲线221y x y ==与所围成)。

8. 改变积分次序210(,)xx dx f x y dy ⎰⎰= _________ 。

9.微分方程'sin cos x y y x e -+=的通解是 。

10.微分方程0=+'y y 满足初始条件10==x y的特解 。

11.计算_________________sin 21231=⎰⎰-dy y dx x12.微分方程02'"=+-y y 的通解是 。

13.差分方程02312=+-++t t t y y y 的通解是 。

14.计算极限.______________________)sin(42lim 00=+-→→xy xy y x二、选择题),(,),( 22=-=-y x f y x yxy x f 则1.极限).(2lim22)0,0(),(=+→yx xyy x(A );0 (B );1 (C );2 (D )不存在。

2.二元函数z=f(x,y)在点),(00y x 处各偏导数存在是全微分存在的( ) (A )充分条件 (B )必要条件 (C )无关条件 (D )充要条件 3.设 f(x,y) 在点(a,b )处的偏导数存在,则=--+→xb x a f b x a f x ),(),(lim 0( )(A) 0 (B) ),2(b a f x ' (C) ),(b a f x ' (D) ),(2b a f x ' 4.若)y , (x f z =在点P (x ,y )处x z ∂∂,yz ∂∂都存在,则下列结论正确的是( )。

大学微积分试题及答案

大学微积分试题及答案

大学微积分试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在点x=a处连续B. f(x)在点x=a处一定有极值C. f(x)在点x=a处的导数为0D. f(x)在点x=a处的导数一定大于0答案:A2. 曲线y=x^2在点(1,1)处的切线方程是:A. y=2x-1B. y=x+1C. y=2xD. y=x-1答案:A3. 函数f(x)=x^3-3x+2的导数是:A. 3x^2-3B. 3x^2+3C. x^2-3D. x^3-3答案:A4. 曲线y=x^3-6x^2+9x+1在x=3处的凹凸性是:A. 凹B. 凸C. 不确定D. 既非凹也非凸答案:B二、填空题(每题5分,共20分)1. 函数f(x)=2x^2-4x+3的极小值点是______。

答案:12. 曲线y=x^3-3x在点(2,5)处的切线斜率是______。

答案:33. 函数f(x)=x^2-6x+8的单调递增区间是______。

答案:[3, +∞)4. 曲线y=x^2-4x+3在x=2处的法线方程是______。

答案:y=-x+7三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-2在区间[0,3]上的最大值和最小值。

答案:函数f(x)的导数为f'(x)=3x^2-6x+4。

令f'(x)=0,解得x=1, 2。

在区间[0,1]上,f'(x)>0,函数单调递增;在区间[1,2]上,f'(x)<0,函数单调递减;在区间[2,3]上,f'(x)>0,函数单调递增。

因此,函数在x=1处取得极大值f(1)=1,在x=2处取得极小值f(2)=-2。

在区间端点处,f(0)=-2,f(3)=1。

所以,函数在区间[0,3]上的最大值为1,最小值为-2。

2. 求由曲线y=x^2与直线y=4x-3围成的面积。

大学微积分模拟试卷

大学微积分模拟试卷

一、单项选择题(本大题分5小题,每小题2分,共10分)(在每个小题四个备选答案中选出一个正确答案,填在括号内.)1.当时,与相比较下列变量中是高阶无穷小量的是()A.B. C。

D.2.函数在点处连续且取得极大值,则在处必有( )(A) (B)(C)且(D)或不存在3.的极限为( )(A)1(B)-1(C)1或-1(D)不存在补充:是函数的 ( )A。

连续点 B。

可去间断点C。

跳跃间断点 D. 无穷间断点4.已知函数在处可导,且导数为2,则()(A)3(B)-3(C)-6(D)65.已知某商品的需求函数为,当时,下列解释正确的是( )(A)价格上升1%,需求增加0.6%(B)价格上升1%,需求减少0.6%60% (D)价格上升1%,需求减少60%二、填空题(将正确答案填在横线上)(本大题分5小题,每小题2分,共10分)1.函数的连续区间为2.的值等于3.已知,则4.,则,则三、计算题(必须有解题过程)(本大题分12小题,每小题5分,共60分)1.求极限2.补充:a.b.c.3.已知,求.4。

设,求.5.设,求。

6.设, 可微,求。

补充:a.设,求。

b.设 ,求.c.设 ,求.d.设 ,求。

e.已知隐函数方程确定了是的函数,求.7. 设函数,求函数的定义域、单调区间、极值、凹凸性、拐点以及渐近线。

补充:a.求的单调区间。

b.求的极值.c.设,列表讨论函数的增减区间和极值;曲线的凹凸区间和拐点。

8.求9.若的原函数为,问与间有什么关系?并求补充:a.b.四、应用题(本大题8分)设生产某产品的固定成本为60000元,变动成本为每件20元,价格函数为,(为销售量),假设供销平衡。

(2)求为多少时利润为最大?并求最大利润。

补充:a.设某种产品个单位的总成本函数为(万元),其价格函数为(万元),问:(1)当个单位时,边际成本和边际收益分别为多少?(2)应生产多少个单位产品,才能使利润函数取最大值?最大利润是多少?b.某种商品的需求函数为(其中为价格,为需求量),(1)求时的需求弹性,并说明其经济意义;,总收益最大?最大收益为多少?五、证明题(本大题6分)设在闭区间上连续,在内可微,且,证明:对任意实数,则存在,使得.a。

微积分试卷及答案4套

微积分试卷及答案4套

微积分试卷及答案4套微积分试题(A卷)一.填空题(每空2分,共20分)1.已知$\lim\limits_{x\to1^+}f(x)=A$,则对于$\forall\epsilon>0$,总存在$\delta>0$,使得当$x\to1^+$时,恒有$|f(x)-A|<\epsilon$。

2.已知$\lim\limits_{n\to\infty}\dfrac{a_n^2+bn+5}{n^2+3n-2}=2$,则$a=1$,$b=3$。

3.若当$x\to x_0$时,$\alpha$与$\beta$是等价无穷小量,则$\lim\limits_{x\to x_0}\dfrac{\alpha-\beta}{\beta}=0$。

4.若$f(x)$在点$x=a$处连续,则$\lim\limits_{x\toa}f(x)=f(a)$。

5.函数$f(x)=\ln(\arcsin x)$的连续区间是$(0,1]$。

6.设函数$y=f(x)$在$x$点可导,则$\lim\limits_{h\to0}\dfrac{f(x+3h)-f(x)}{h}=3f'(x)$。

7.曲线$y=x^2+2x-5$上点$M$处的切线斜率为6,则点$M$的坐标为$(-1,2)$。

8.$\dfrac{d(xf'(x))}{dx}=xf''(x)+2f'(x)$。

9.设总收益函数和总成本函数分别为$R=24Q-2Q^2$,$C=Q+5$,则当利润最大时产量$Q=6$。

二.单项选择题(每小题2分,共18分)1.若数列$\{x_n\}$在$a$的$\epsilon$邻域$(a-\epsilon,a+\epsilon)$内有无穷多个点,则(B)数列$\{x_n\}$极限存在,且一定等于$a$。

2.设$f(x)=\arctan\dfrac{2}{x-1}$,则$x=1$为函数$f(x)$的(A)可去间断点。

大学微积分数学模拟题(含答案)

大学微积分数学模拟题(含答案)

一、填空题(本大题共 5 小题,每小题 3 分,共 15 分。

把答案写在横线上)1.函数y 1x 2 的定义域是。

x2.lim sin5 x。

x 02x3.微分方程y x y0 的通解是。

4.设y a2x2,则 dy。

5.不定积分x x 23dx=。

二、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分,在每小题四个选项中,只有一个是符合题目要求的,把所选字母填在括号内)1.设f (x)x2 ,0x1x1处必定()x,1x, 在点2A.连续但不可导B.连续且可导C.不连续但可导D.不连续,故不可导2.曲线y x 在点 x 4 处的切线方程是()A .y 1x 1B. y1x 1 42C .y 1x 1D. y1x 2 443.下列函数在区间[1,1]上满足罗尔定理条件的是()A.1B.1 C .x D. x3 x2 1 x24.设f x的原函数为 sin x ,则 f x()A.cosx B. sin x C. cosx D.sin x 5.设f x为连续函数,则下列等式中正确的是()A . f ( x)dx f ( x)B.d()( )f f Cx dx x dxC.d f (x)dx f (x)dx D.d f ( x)dx f ( x)三、计算题(本大题共 7 小题,每小题 7 分,共 49 分)3x 1.求极限 lim1 3。

xx2.求极限 lime xx 1 。

x 0x e x13.设函数 y1 1 cosx ,求dy。

x 2dx4.试讨论函数 f (x)e x1 , x 0, 在点 x 0 处的连续性与可导性。

2x , x 05.设方程 xeyexy1 0 确定隐函数 y y( x) ,求 y x 0 。

6.求不定积分 xcos xdx 。

7.求不定积分xdx 。

x 5四、解答题(本大题共3 小题,每小题7 分,共21 分)1.设 ex 是fx的一个原函数,求e xfx dx 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分(上)期末试卷一、填空题(本题共10小题,每小题2分,共20分)1. 函数y =x -1+arccos21+x 的定义域是 2.已知2)3(='f ,则=--→xf x f x 2)3()3(lim 0 3.)sin 11sin (lim x xx x x -+∞→ = 4.设32)2(2+-=+x x x f , 则f [ f (2) ]=5.设x e x f 111)(+=, 则)(lim )(lim 00x f x f x x -+→→+= 6.已知11+=x y ,n 为自然数,则=)(n y 7.设x y cos 2=, 则y '=8.曲线x y ln =上经过点(1,0)的切线方程是:9.⎰-)x cos 1(d = 10.='⎰dx x f )2( 二、单项选择题(本题共5小题,每小题2分,共10分) 11. 当0→x 时,)1(2-x e 是关于x 的( )A.同阶无穷小B.低阶无穷小C.高阶无穷小D.等价无穷小12. 设函数⎩⎨⎧>+≤=1;1;)(2x b ax x x x f 在x = 1处可导,则( )A.1,0==b aB.1,2-==b aC.2,3-==b aD.2,1=-=b a13. 设⎩⎨⎧≤<-≤<-=21;210;1)(x x x x x f 在1=x 处为( C ) A. 连续点 B. 可去型间断点 C. 跳跃型间断点 D. 无穷型间断点14. 下列函数在给定区间满足拉格朗日中值定理条件的是( C ) A.x y =,[-1,1] B. 21x x y -=,[-2,2] C.32x y =,[-1,1] D.xy 1=,[1,2]15. 函数xx f 2)(=及其图形在区间(1,+∞)上( ). A.单调减少下凸 B.单调增加下凸 C.单调减少上凸 D.单调增加上凸三、计算题(本题共4小题,每小题6分,共24分)16. )1)1ln(1(lim 0xx x -+→ . 17. 32)21(lim +∞→++x x x x 18.3log )1ln(2a x x y +++=,求dx dy 及dy . 19. )(x e f y -= ,其中f 具有二阶导数,求22dxy d . 四、计算题(本题共3小题,每小题8分,共24分)20. 设函数)(x f y =由方程e e xy y =+确定,求0=x dx dy . 21. ⎰+dx x x )1ln(222. ⎰+x dx 21五、应用题(本题共2小题,每小题8分,共16分)24. 已知销售量Q 与价格P 的函数关系为P eQ 23-=,求 (1) 销售量Q 关于价格P 的弹性函数p e .(2) 推导)1(p e Q dpdR +=,其中R 为收益. 25. 设某工厂生产某产品的产量为x 件时的固定成本10000=C 元,可变成本21100110)(x x x C -=元,产品销售后的收益250120)(x x x R -=元,国家对每件产品征税2元, 问该工厂生产该产品的产量为多少件时才能获得最大利润?最大利润是多少?六、证明题(本题满分6分)26. 设函数)(x f 在闭区间[0,1]上连续,在开区间(0,1)内可导,且0)1()0(==f f , 试证:存在∈ξ(0,1),使得)(2004)(ξξf f ='.微积分(上)模拟试卷答案一、 填空题(本题共10小题,每小题2分,共20分)1. -3≤x ≤12. -13. 14. 25. 16. 1)1(!)1(++-n n x n 7. 2ln sin 2cos x x - 8. y =1-x9.c x +-cos 10. c xf +)2(2二、 单项选择题(本题共5小题,每小题2分,共10分)11. C 12. B 13. C 14. D 15.A三、计算题(本题共4小题,每小题6分,共24分)16.解 )1)1ln(1(lim 0x x x -+→=])1ln()1ln([lim 0++-→x x x x x --------------------------------(2分) =20)1ln(limx x x x +-→----------------------------------(3分) =x x x 2111lim 0+-→---------------------------------------(4分) =2)1(1lim 20x x +→---------------------------------------(5分) =21.-----------------------------------------------------(6分) 17.解32)21(lim +∞→++x x x x =x x x x 2)21(lim ++∞→3)21(lim ++∞→x x x ----------------------------(2分) =x x x x 2)21(lim ++∞→=422])21[(])11[(lim x x x xx ++∞→--------------------------------(4分) =242-=e ee --------------------------------(6分) 18.解1122122++++=x x x xdx dy ----------------------------------------------(3分)11122++++=x x x x---------------------------------------------------(4分) =112+x ,-----------------------------------------------------------------(5分)dx x dy 112+=-------------------------------------------------------------(6分) 19.解 ))((''=--x x e e f dxdy ,--------------------------------------------------------(1分) )()('-'=--x e e f x x --------------------------------------------------------(2分)x x e e f --'-=)(--------------------------------------------------------(3分)))(())((22''-'''-=-----x x x x x e e f e e e f dxy d -------------------------------------(4分) x x x x e e f e e f 2)()(----''+'= .-------------------------------------(6分)四、计算题(本题共3小题,每小题8分,共24分)20.解各项关于x 求导,得,0=++dxdy e dx dy x y y ,----------------------------(3分) y ex y dx dy +-=,-------------------------------------------------------------(5分) 又当0=x 时1=y ,-------------------------------------------------------(6分)∴edx dy x 10-==.-------------------------------------------------------------------(8分) 21.解⎰⎰++=+)1()1ln(21)1ln(222x d x dx x x ---------------------------------(2分) =)1ln()1(21)1ln(212222++-++⎰x d x x x -----------(4分) =dx x x x x x ⎰++-++12)1(21)1ln(212222---------------(6分) =C x x x +-++22221)1ln(21--------------------------------(8分) 22.解令x t 2=则tdt dx t x ==,22,-----------------------------------------(2分)dt t t x dx ⎰⎰+=+121----------------------------------------------------------(3分) =dt t )111(⎰+-------------------------------------------- ------(5分) =C t t ++-1ln ------------------------------------ ------------(7分) =C x x +++21ln 2.--------------------------------------(8分)五、应用题(本题共2小题,每小题8分,共16分)24.(1)解p QQ EP EQ e p '==-------------------------------------------------------------(2分) =p ep e p p 23)2(322=------------------------------------------------------------------(4分) (2)由pQ R =---------------------------------------------------------------(5分) Q p Q dpdR '+=---------------------------------------------------(6分) )1()1(p e Q QQ p Q +='+=---------------------------------------------------(8分) 25.解利润1000100182)100110(1000)50120()(222--=-----=x x x x x x x x L ------------(2分) 令05018)(=-='x x L ,得,400=x ,---------------------------------(4分) 又0501)(<-=''x L , 所以利润函数L (x )在400=x 时取极大值, 又唯一的极值点往往就是最值点--------------------------------------------------------(6分) ∴当400=x 时,获得最大利润600)400(=L .--------------------------(8分)六、证明题(本题满分6分)证明:设)()(2004x f e x F x -=,---------------------------------------------------------(2分) 则)(x F 闭区间[0,1]上连续,在开区间(0,1)内可导,且0)1()0(==F F , 由罗尔定理)1,0(∈∀ξ,使得0)(='ξF ,----------------------------------(4分) 即0)(2004)(20042004=-'--ξξξξf e f e ,∴)(2004)(ξξf f ='.---------------------------------------------------------(6分)。

相关文档
最新文档