有理数培优题(有问题详解)

合集下载

七年级数学上册第一单元《有理数》-解答题专项(培优)

七年级数学上册第一单元《有理数》-解答题专项(培优)

一、解答题1.某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库)+25,-22,-14,+35,-38,-20(1)经过这6天,仓库里的粮食是增加了还是减少了?)(2)经过这6天,仓库管理员结算时发现库里还存280吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?解析:(1)减少了34吨;(2)314吨;(3)770元【分析】(1)求出6天的数据的和即可判断;(2)根据(1)中结果计算即可;(3)求出数据的绝对值的和,再乘5即可;【详解】解:(1)25−22−14+35−38−20=−34<0,答:经过6天,粮库里的粮食减少了34吨;(2)280+34=314(吨),答:6天前粮库里的存量314吨;(3)(25+22+14+35+38+20)×5=770(元),答:这6天要付出770元装卸费.【点睛】本题考查有理数混合运算的实际应用,正确理解题意,列出算式是解题的关键. 2.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.3.计算:(1)13|38|44⎛⎫--+- ⎪⎝⎭(2)2202111(1)236⎛⎫-+⨯-÷ ⎪⎝⎭ (3)22110.51339⎛⎫⨯-÷ ⎪⎝⎭ (4)157(48)2812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦ 解析:(1)4;(2)13;(3)14-;(4)26. 【分析】 (1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13|38|44⎛⎫--+- ⎪⎝⎭ =13544-- =5-1=4; (2)2202111(1)236⎛⎫-+⨯-÷ ⎪⎝⎭ =11269-+⨯⨯ =-1+43 =13; (3)22110.51339⎛⎫⨯-÷ ⎪⎝⎭ =2111()1369⨯-÷ =519()3610⨯-⨯=14-; (4)157(48)2812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦=157(48)()(48)(48)2812-⨯---⨯+-⨯ =24+30-28=26.【点睛】 本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 4.计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.5.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.6.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.7.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.8.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.9.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.10.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.11.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.12.计算:(1)()()674-+--;(2)()3232--⨯. 解析:(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭3414⎛⎫=⨯- ⎪⎝⎭144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.14.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 15.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=; 在数轴上2-与3所对的两点之间的距离:235--=; 在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______; 数轴上表示数x 和3的两点之间的距离表示为_______; 数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.解析:(1)3;|x−3|;x ,-2;(2)5;−3或4. 【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可; (2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论. 【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3; 数轴上表示数x 和3的两点之间的距离为:|x−3|; 数轴上表示数x 和−2的两点之间的距离表示为:|x +2|; 故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5; ②当x >3时,x−3+x +2=7, 解得:x=4,当x <−2时,3−x−x−2=7. 解得x=−3, ∴x=−3或x=4.故答案为:5;−3或4. 【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.16.计算:2334[28(2)]--⨯-÷- 解析:21-. 【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得. 【详解】解:原式[]9428(8)=--⨯-÷-,[]942(1)=--⨯--,943=--⨯, 912=--, 21=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键. 17.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法; (2)先计算乘方和绝对值,再计算乘除法,最后计算加减法. 【详解】(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+ =23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1=116(8)123122÷--+⨯⨯+=33121 44--++=-11.【点睛】此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键.18.计算:(1)6÷(-3)×(-32)(2)-32×29-+(-1)2019-5÷(-54)解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.计算(1)2125824(3)3 -+-+÷-⨯(2)71113 ()24 61224-+-⨯解析:(1)113-;(2)-19【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3 -+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113-(2)71113()2461224-+-⨯=7111324242461224-⨯+⨯-⨯ =-28+22-13 =-19 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 20.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2 【分析】(1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的. 【详解】解:(1)45(30)(13)+--- =4530+13- =15+13 =28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11-- =-2. 【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 21.计算:|﹣2|﹣32+(﹣4)×(12-)3 解析:162-【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12 -)3=2﹣9+(﹣4)×(﹣18)=2+(﹣9)+1 2=162 -.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58)解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =15 4()68 -÷⨯-=5 468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.23.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9+15=x+24,∴点M所对应的数为x+24-x=24;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9-15=x-6,∴点M所对应的数为x-6-x=-6;综上,点M所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.24.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点A B C D终点上车人数161512780下车人数0-3-4-10-11)到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算.解析:(1)30;(2)B,C;(3)71.5元.【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A、B、C、D站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解.【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人;故到终点下车还有30人. 故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.25.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3. 【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可. 【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3. 故答案为:-3<112-<0<112<3. 【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 26.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭.解析:(1)-2;(2)-19 【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可;(2)利用乘法的分配率进行计算. 【详解】(1)4222(37)2(1)-+--⨯-=16162-+- =-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21 =-19 【点睛】考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.27.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1. 【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解. 【详解】(1)()()()923126--⨯-+÷- =962-- =1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭=11891632-+-÷ =1893216-+-⨯=892-+- =-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 解析:(1)2或2-或0;(2)-1. 【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可. 【详解】 (1)0ab ≠∴①0,0a b >>,==1+1=2a b a ba b a b++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a ba b+-, 综上所述,当0ab ≠时,a ba b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b ca b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.29.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒. 【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果. 【详解】 解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒. 【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键. 30.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷解析:(1)2;(2)4 【分析】(1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案. 【详解】解:(1)14251311132-+=-+=; (2)42111|23|()823---+-⨯÷ =111834--+⨯⨯ =26-+ =4. 【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.。

word完整版有理数测试题培优提高版

word完整版有理数测试题培优提高版

2015年人教版数学七年级上册“单元精品卷”(含精析)第一章有理数(培优提高卷)题型选择题填空题解答题总分得「分一、选择题。

(本题有10个小题,每小题3分,共30分)1 •在实数0,—「3 , - , | 2中,最小的数是()3A .2B . 0C .3D . I 22•如图所示,有理数 a 、b 在数轴上的位置如下图,则下列说法错误的是( )b -2-1A 、b<aB 、a+b <0C 、ab<0D 、b- a>04 •已知有理数a ,b 所对应的点在数轴上如图所示,则有 ( )【0: 21 • 2. 1 •网】卜六进制 01 23•6 78 9 AC D E F十进制12] 3 4567910 11 12 13 1415)3 .观察下面一组数: -1,2-5,6, -7,….,将这组数排成如图的形式,按照如图规律排下去,则第10行中从左边数第9个数是()21*5y*3算一行 第二行 童三行 sra 行A 、-902-3 4■5 (5 ・7 8 /10 -11 12 43 14 15 16B 、90C 、-91D 、91 A . — a v 0v b B .— b v a v 0 C . a v 0v — bD . 0 v b v — a5 .计算机中常用的十六进制是逢16进I 的计数制,采用数字0〜9和字母A 〜F 共16个计6 .若a b,则下列各式一定成立的是(7.下列算式中,积为负数的是(法表示为()二、填空题。

(本题有6个小题,每小题4分,共24分)2 a+b11.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m -cd+ 的值是_m12 .北京的水资源非常匮乏,为促进市民节水,从阶梯水价,实施细则如下表:B. 6E .C. . 5FD. B0 .A. a b 0B. a b 0 C .ab D. ab 0A. 0 ( 5) 0.5) 10)C . ( 1.5) ( 2)D . ( 2)(11)(2)8.生物学家发现了一种病毒的长度约为0 . 00000432毫米.数据0 . 00000432用科学记数A 0 432 XI0-5B . 4 . 32 X 10-6C 4 32 X0-7D 43 2 X10-79.下列各组的两个数中,运算后的结果相等的是(A . 23和3233和( 3)3 C . 22和( 2)2 D . -和—3 310 . 一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.)张?1=1 1=1 1=^□ 1=1A . 15B . 16C . 21 D. 222014年5月1日起北京市居民用水实行)若用餐的人数有90人,则这样的餐桌需要(1=1 l=ZI1匕京市居民用水阶梯水价隼1单位:元,立方米分栏水嚣户年用水量(立万米)水价其中自来水费水资源费污水处理费第一阶梯0-1S0 (含》 1. 07第二阶梯181-260 ⑻7, 004・071・571・36第三阶梯260凯上P. (K) 6. 07某户居民从2015年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费___________ 元.15•如果互为a,b相反数,x,y互为倒数,则2014 a b 2015x y的值是__________________________ 。

深圳市新华中学七年级数学上册第一章《有理数》经典练习(培优专题)

深圳市新华中学七年级数学上册第一章《有理数》经典练习(培优专题)

一、选择题1.(0分)数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( )A .94分B .85分C .98分D .96分D解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+--即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D .【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.(0分)某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得: ()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.3.(0分)2--的相反数是( )A .12-B .2-C .12D .2D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D .【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0. 4.(0分)实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0B解析:B 【分析】 先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得. 【详解】 从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.5.(0分)计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( )A .54B .27C .272D .0C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】 解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27 =27×12 =272. 故选:C .【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.6.(0分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m , 所以28nm 用科学记数法可表示为:2.8×10﹣8m ,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.(0分)若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3B .﹣1C .2D .1D 解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.8.(0分)6-的相反数是( )A .6B .-6C .16D .16- B 解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B .9.(0分)计算-2的结果是( ) A .0B .-2C .-4D .4A 解析:A【详解】解:因为|-2|-2=2-2=0,故选A .考点:绝对值、有理数的减法10.(0分)已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- C 解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b <a <0,∴a+b <a+(-b)=a-b .∵b >-1,∴a-1=a+(-1)<a+b .又∵-b <1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b <a-b <a+1,故选:C .【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键. 二、填空题11.(0分)对于有理数a 、b ,定义一种新运算,规定a ☆2b a b =-,则3☆(2)-=__.【分析】根据新定义把新运算转化为常规运算进行解答便可【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7故答案为:7【点睛】本题主要考查了有理数的混合运算读懂新定义运算是解题的关键解析:【分析】根据新定义把新运算转化为常规运算进行解答便可.【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.【点睛】本题主要考查了有理数的混合运算,读懂新定义运算是解题的关键.12.(0分)数轴上表示 1 的点和表示﹣2 的点的距离是_____.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.13.(0分)计算3253.1410.31431.40.284⨯+⨯-⨯=__.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便解析:0【分析】先把0.314,31.4都转化为3.14,然后逆运用乘法分配律进行计算即可得解.【详解】解:3253.1410.31431.40.284⨯+⨯-⨯,353.141 3.14 3.14288=⨯+⨯-⨯,353.14(12)88=⨯+-,3.140=⨯,=.故答案为:0.【点睛】本题考查了有理数的乘法运算,把算式进行转化,逆运用乘法分配律运算更加简便.14.(0分)若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a(a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a (a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.15.(0分)有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.16.(0分)定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.17.(0分)点A表示数轴上的一个点,将点A向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A到原点的距离为______.2【分析】设点A表示的数为x然后根据向右平移加向左平移减列出方程再解方程即可得出答案【详解】设A表示的数是x依题意可得:x+10-8=0解得:x=-2则点A到原点的距离为2故答案为:2【点睛】本题主解析:2【分析】设点A表示的数为x,然后根据向右平移加,向左平移减列出方程,再解方程即可得出答案.【详解】设A表示的数是x,依题意可得:x+10-8=0,解得:x=-2,则点A到原点的距离为2.故答案为:2.【点睛】本题主要考查的是数轴,解题时需注意点在数轴上移动,向右平移加,向左平移减. 18.(0分)把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.19.(0分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n是正数;当原数解析:5×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.(0分)(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.三、解答题21.(0分)点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 22.(0分)计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(0分)计算:2202013(1)(2)4(1)2-÷-⨯---+-. 解析:33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 24.(0分)计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.25.(0分)计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】 (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 26.(0分)计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.27.(0分)计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 28.(0分)出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.。

人教版数学七年级上册第一章《有理数》培优测试卷(含答案解析)

人教版数学七年级上册第一章《有理数》培优测试卷(含答案解析)

人教版数学七年级上册第一章《有理数》培优测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.据相关报道,开展精准扶贫户工作五年来,我国约有5500万人摆脱贫困,国家发放扶贫资金共375亿元.将375亿用科学记数法表示为()A.375×107B.3.75×1010C.3.75×109D.37.5×1082.已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()A.b>a B.ab>0 C.b—a>0 D.a+b>03.下列计算正确的是()A.(﹣16)÷(﹣4)=﹣4 B.﹣|2﹣5|=3C.(﹣3)2=9 D.(﹣2)3=﹣64.股民小王上周五买进某公司的股票,每股25元,下表为本周内该股票的涨跌情况,则本周五收盘时,该股票每股价格是()A.27.1元B.24.5元C.29.5元D.25.8元5.如果|a|=7,|b|=5,试求a-b的值为()(A)2(B)12(C)2和12(D)2;12;-12;-26.一根1米长的小木棒,第一次截去它的13,第二次截去剩余部分的13,第三次再截剩余部分的13,如此截下去,第五次后剩余的小木棒的长度是()A.(23)5B.1﹣(23)5C.(13)5D.1﹣(13)57.下列表述中,正确的是()A.有理数有最大的数,也有最小的数B.有理数有最大的数,但没有最小的数C.有理数有最小的数,但没有最大的数D.有理数既没有最大的数,也没有最小的数8.下列说法正确的是( ) A .绝对值等于3的数是﹣3B .绝对值不大于2的数有±2,±1,0C .若|a|=﹣a ,则a≤0D .一个数的绝对值一定大于这个数的相反数9.现规定一种运算:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,……,则200!199!的值为( ) A .200B .199C .200199D .110.当2<a <3时,代数式|3﹣a|﹣|2﹣a|的结果是( ) A .﹣1 B .1C .2a ﹣5D .5﹣2a二、填空题 11.﹣23的绝对值的相反数与﹣223的相反数的差是_____. 12.如果两个数的绝对值相等,那么这两个数_____.13.已知m 为最大的负整数,x 与y 互为相反数,则(x+y )2018+m 2=_____. 14.在(-1)2 017,(-1)2 018,-22,(-3)2中,最大的数与最小的数的和等于______. 15.计算(-34)×(-112)÷(-214)的值为______. 16.有理数a ,b ,c 在数轴上的位置如图所示,化简|b ﹣c|﹣|c|+|c ﹣a|=_____.三、解答题 17.计算(1)﹣(3﹣5)+32×(1﹣3) (2)﹣32﹣3122(1)293-⨯-- . 18.(1)当a≠0时,求aa的值.(写出解答过程) (2)若a≠0,b≠0,且a a +b b=0,则abab 的值为 .(3)若ab >0,则a a+b b +abab 的值为 . 19.某公司的线路检修小组在一条东西方向的马路上工作,从甲地出发,如果规定向东行驶为正,向西行驶为负,下表记录的是检修小组从甲地出发后连续七次行驶情况.(单位:km,每次行驶终点为下次行驶的起点)解答下列问题:(1)检修小组在第几次纪录时距甲地最远?(2)检修小组收工时,位于出发点甲地哪一侧,距甲地多远?20.股民李叔叔在上周星期五以每股11.2元买了一批股票,共购进5000股,下表为本周星期一到星期五该股票的涨跌情况:(1)求本周星期三收盘时每股的价格;(2)本周内每股最高是多少元?最低是多少元?(3)已知李叔叔买进股票时支付了0.15%的手续费,卖出时还需支付成交额的0.15%手续费和0.1%的交易税,如果李叔叔在星期五收盘时将全部的股票卖出,你对他的收益情况如何评价?21.一只小虫从某点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左记为负数,爬行的各段路程依次为+5,﹣3,+11,﹣8,﹣6,+12,﹣10.(单位:厘米)(1)小虫离开O点最远是厘米.(2)小虫最后是否回到出发点O的位置?为什么?(3)在爬行过程中,每爬行1厘米被奖励两粒芝麻,则小虫可得多少粒芝麻?22.把下列各数填入相应的大括号内:﹣13.5,0,+27,﹣45,227,﹣10,3.14(1)正数集合:{}(2)负数集合:{}(3)整数集合:{}(4)分数集合:{}(5)非负整数集合:{}23.请观察下列定义新运算的各式:1⊙3=1×4+3=7;3⊙(﹣1)=3×4﹣1=11;5⊙4=5×4+4=24;4⊙(﹣3)=4×4﹣3=13.(1)请你归纳:a⊙b=;(2)若a≠b,那么a⊙b b⊙a(填“=”或“≠”);(3)先化简,再求值:(a﹣b)⊙(2a+b),其中a是最大的负整数,b是绝对值最小的整数.参考答案1.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将375亿用科学记数法表示为3.75×1010.故选B.【点睛】本题考查科学记数法—表示较大的数,解题关键是小数点移动了多少位,n的绝对值与小数点移动的位数相同2.B【分析】由数轴可得b<a<0,从而可以判断选项中的结论是否正确,从而可以解答本题.【详解】解:∵由数轴可得,b<a<0,∴a>b,(故A错误);ab>0,(故B正确);b-a<0,(故C错误);a+b<0,(故D错误).故选:B.【点睛】本题考查数轴,解题的关键是明确数轴的特点,能根据各数的大小判断选项中的结论是否成立.3.C【分析】原式利用有理数的乘方,乘法,以及除法法则计算得到结果,即可做出判断.【详解】解:A、(﹣16)÷(﹣4)=4,故A错误;B、﹣|2﹣5|=﹣3,故B错误;C、(﹣3)2=9,故C正确;D、(﹣2)3=﹣8,故D错误;故选C.【点睛】本题考查有理数的除法,绝对值的化简,有理数的减法,有理数的乘方,解题关键是熟练掌握法则.4.B【分析】本题是一道较为基础的题型,考查的是对正数和负数的实际意义的熟练程度,对于本题而言,星期五收盘时,该股票每股是:25﹣2.1+2﹣1.2+0.5+0.3=24.5(元).【详解】解:25﹣2.1+2﹣1.2+0.5+0.3=24.5(元),故选B.【点睛】本题考查正数和负数的实际意义,解题关键是掌握本题中正数和负数的意义,这样可以提高解题的速度和准确率.5.D【解析】绝对值等于7的数有正负7,绝对值等于5的数有正负5.6.A【分析】根据题意可以得到第五次后剩下的小棒的长度,从而可以解答本题.【详解】解:由题意可得,第五次后剩下的小棒的长度是:(1−13)(1−13)(1−13)(1−13)(1−13)=(23)5米,故选A.【点睛】本题考查有理数的乘方,解答本题的关键是明确题意,求出第五次后剩下的小棒的长度.7.D【分析】根据有理数的分类,可得答案.【详解】解:有理数既没有最大的数,也没有最小的数.故选:D.【点睛】本题考查了有理数,解决本题的关键是熟记没有最大的有理数,也没有最小的有理数.8.C【分析】根据绝对值的性质进行解答,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【详解】解:A、绝对值等于3的数是3和﹣3,故错误;B、绝对值不大于2的整数有±2,±1,0,故错误;C、若|a|=﹣a,则a≤0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选C.【点睛】本题考查的是绝对值的性质及相反数的定义,解答关键是熟知以下知识:(1)绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;(2)相反数:只有符号不同的两个数叫互为相反数.9.A【分析】首先观察已知条件,不难找到规律n!=n×(n-1)×(n-2)×…×2×1,注意不要找错对应关系;然后根据新运算法则将待求式转化为一般的算式,再进行化简、计算即可求出所要求的结果. 【详解】解:根据题中的新定义得:原式=2001991 1991981⨯⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯=200,【点睛】本题考查定义新运算,有理数的除法,有理数的乘法,解题关键是要根据题目所给的已知条件得到新运算的法则.10.D【分析】根据绝对值的性质进行解答,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【详解】解:∵2<a<3,∴3﹣a>0,2﹣a<0,∴|3﹣a|﹣|2﹣a|=3﹣a﹣a+2=5﹣2a,故选D.【点睛】本题考查的是绝对值的性质,解答关键是熟练掌握绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.11.﹣313.【分析】根据绝对值的性质和相反数的定义分别求出−23的绝对值的相反数与−223的相反数,再相减即可得出.【详解】解:﹣23的绝对值的相反数为﹣23,﹣223的相反数为223,﹣23﹣223=﹣313.故答案为﹣31 3【点睛】本题考查有理数的减法,相反数,绝对值,解题关键是熟练掌握绝对值、相反数的意义. 12.相等或互为相反数.【分析】根据绝对值的定义及性质可知,一对相反数的绝对值相等,故如果两个数的绝对值相等,那么这两个数可能相等,也可能互为相反数.【详解】解:如果两个数的绝对值相等,那么这两个数可能相等,也可能互为相反数.故答案为相等或互为相反数.【点睛】本题考查绝对值、相反数的意义,解题关键是熟练、准确掌握意义.13.1.【分析】根据有理数中最大的负整数为-1,可得m=﹣1;相反数的定义:实数a与-a叫做互为相反数,0的相反数是0本身,有理数中最大的负整数为-1【详解】解:由题意得:m=﹣1,x+y=0,∴原式=02018+(﹣1)2=1.故答案为1.【点睛】本题考查有理数、相反数、乘方的相关知识,解题关键是有理数中最大的负整数为-1,有理数中最大的负整数为-1.14.5【详解】(-1)2 017=-1,(-1)2 018=1,-22=-4,(-3)2=9,其中最大的数是9,最小的数是-4,它们的和等于5.故答案是5.15.﹣12.【分析】因为负数的倒数仍然是负数,所以把除法变成乘法,除数变为它的倒数后,先定积的符号,再算绝对值的积.【详解】解:(﹣34)×(﹣112)÷(﹣214)=(-34)×(-32)×(﹣49)=﹣12.故答案为﹣12.【点睛】本题考查有理数的混合运算,解题关键是运算顺序及符号的确定.16.a+b﹣c.【分析】首先根据数轴,确定a、b、c的大小及b﹣c 、c﹣a正负,然后根据绝对值的意义化简,绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号.①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│= -a (a为负值,即a≤0 时)【详解】解:由图知:c<b<0<a,∴b﹣c>0,c﹣a<0,∴|b﹣c|﹣|c|+|c﹣a|=b﹣c+c+a﹣c=a+b﹣c.故答案为a+b﹣c.【点睛】本题考查绝对值意义和整式的加减,解题关键是根据数轴上点的位置确定需要化简的式子的绝对值.17.(1)﹣16;(2)﹣811 12.【分析】(1)先算乘方,再算乘除,最后算加减即可;(2)先算乘方和绝对值,再算乘除,最后算加减即即可. 【详解】解:(1)﹣(3﹣5)+32×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(2)﹣32﹣31221293⎛⎫-⨯--⎪⎝⎭.=﹣9﹣(﹣278)×29﹣23=﹣9+34﹣23=﹣811 12.【点睛】本题考查有理数的混合运算,解题关键是运算顺序、乘方、绝对值化简. 18.(1)1或-1;(2)﹣1;(3)3或﹣1.【分析】(1)当a≠0时,可能a>0.也可能a<0,所以需要分两种情况解答.(2),因为两个式子的和为0,所以两个加数互为相反数,a、b是异号. (3)需要分a、b同号和异号两种情况解答.【详解】解:(1)当a>0时,|a|=a,则原式=1;当a<0时,|a|=﹣a,则原式=﹣1;(2)∵a≠0,b≠0,且aa+bb=0,∴a与b异号,即ab<0,∴|ab|=﹣ab,则原式=﹣1;(3)∵ab>0,∴a与b同号,当a>0,b>0时,原式=1+1+1=3;当a<0,b<0时,原式=﹣1﹣1+1=﹣1.故答案为(2)﹣1;(3)3或﹣1【点睛】本题考查绝对值的意义及式子化简,解题关键是分类讨论.19.(1)检修小组在第五次纪录时距甲地最远;(2)检修小组位于出发点甲地东侧,距甲地5千米.【分析】(1)分别计算每次距A地的距离,进行比较即可;(2)收工时距A地的距离等于所有记录数字的和的绝对值;【详解】解:(1)第一次距甲地|﹣4|=4千米;第二次距甲地:|﹣4+7|=3千米;第三次距甲地:|﹣4+7﹣10|=7千米;第四次距甲地:|﹣4+7﹣10+9|=2千米;第五次距甲地:|﹣4+7﹣10+9+6|=8千米;第六次距甲地:|﹣4+7﹣10+9+6﹣1|=7千米;第七次距甲地:|﹣4+7﹣10+9+6﹣1﹣2|=5千米.所以检修小组在第五次纪录时距甲地最远;(2)因为收工时,﹣4+7﹣10+9+6﹣1﹣2=5千米,所以此时检修小组位于出发点甲地东侧,距甲地5千米.【点睛】此题主查考查正负数在实际生活中的应用及有理数的加减混合运算,掌握运算法则是解答此题的关键.20.(1)本周星期三收盘时每股的价格为11.7元;(2)本周内每股最高是12.2元,最低是11.5元;(3)盈利2768.5元.【分析】(1)用每股原价加上每天每股涨跌数就是该天每股的钱数,依次类推,计算出周三股价;;(2),根据统计表所提供的每天涨跌的数据,计算出每一天的股价,从中找出本周内最高价每股的钱数,同理,计算出本周内最低价每股的钱数;(3),用周五每股的钱数乘1000,再分别减去买进股票时付的手续费、卖出时付的手续费、交易税,即得他的收益.【详解】解:(1)根据题意得:11.2+0.3+0.4+(﹣0.2)=11.7(元),则本周星期三收盘时每股的价格为11.7元;(2)星期一收盘价格为11.2+0.3=11.5(元),星期二收盘时价格为11.5+0.4=11.9(元),星期三收盘时价格为11.9﹣0.2=11.7(元),星期四收盘时价格为11.7+0.5=12.2(元),星期五收盘时价格为12.2﹣0.4=11.8(元),所以本周内每股最高是12.2元,最低是11.5元;(3)买进的费用:5000×11.2×(1+0.15%)=56084(元);卖出时的受益:5000×11.8×(1﹣0.15%﹣0.1%)=58852.5(元).则盈利:58852.5﹣56084=2768.5(元).【点睛】本题考查如何根据统计表所提供的数据,进行有关计算.解题关键是:读懂表格中正、负数的含义,涉及的知识点有理数的大小比较、有理数的加减、百分数乘法的应用等.21.(1)13;(2)小虫最后没有回到出发点O的位置;(3)小虫可得110粒芝麻.【分析】(1)由于向右爬行的路程记为正数,向左爬行的路程为负数,所以要计算出它爬行所有数的和,于是可判断到离出发点多远;(2)依次往后计算看哪个数最大即可得到离O点的最远距离;(3)计算所有数的绝对值的和得到小虫爬行的路程,再把路程乘以2得到小虫共得的芝麻.【详解】解:(1)第一次爬行距离O点是5cm,第二次爬行距离O点是5﹣3=2(cm),第三次爬行距离O点是2+11=13(cm),第四次爬行距离O点是13﹣8=5(cm),第五次爬行距离O点是|5﹣6|=|﹣1|=1(cm),第六次爬行距离O点是﹣1+12=11(cm),第七次爬行距离O点是11﹣10=1(cm),从上面可以看出小虫离开O点最远是13cm.故答案为13;(2)小虫最后没有回到出发点O的位置.理由如下:∵(+5)+(﹣3)+(+11)+(﹣8)+(﹣6)+(+12)+(﹣10)=1(cm ), ∴小虫最后没有回到出发点O 的位置;(3)(|+5|+|﹣3|+|+11|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2=55×2=110(粒),所以小虫可得110粒芝麻.【点睛】本题考查数轴,正数和负数,22.见解析【分析】利用正数,负数,整数,分数,以及非负整数定义判断即可.【详解】(1)正数集合:{+27,227,3.14}; (2)负数集合:{413.5,,105---}; (3)整数集合:{0,+27,10-};(4)分数集合:{13.5-,45-,227,3.14}; (5)非负整数集合:{0,+27},【点睛】此题考查了有理数,熟练掌握各自的定义是解本题的关键.23.(1)4a +b ;(2)≠;(3)-6.【分析】(1)根据题目中的式子可以猜出a ⊙b 的结果;(2)根据(1)中的结果和a≠b ,可以得到a ⊙b 和b ⊙a 的关系;(3)根据(1)中的结果可以得到(a-b )⊙(2a+b )的值,【详解】解:(1)由题目中的式子可得,a ⊙b=4a+b ,故答案为4a+b ;(2)∵a ⊙b=4a+b ,b ⊙a=4b+a ,∴(a ⊙b )-(b ⊙a )=(4a+b )-(4b+a )=4a+b-4b-a=4(a-b)+(b-a),∵a≠b,∴4(a-b)+(b-a)≠0,∴(a⊙b)≠(b⊙a),故答案为≠;(3)(a-b)⊙(2a+b)=4(a-b)+(2a+b)=4a-4b+2a+b=6a-3b.由题意a=-1,b=0∴原式=6×(-1)-3×0=-6.【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.。

黑龙江大兴安岭市七年级数学上册第一章《有理数》(培优专题)

黑龙江大兴安岭市七年级数学上册第一章《有理数》(培优专题)

一、选择题1.(0分)13-的倒数的绝对值()A.-3 B.13-C.3 D.13C解析:C 【分析】首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】13-的倒数为-3,-3绝对值是3,故答案为:C.【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.2.(0分)在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.3.(0分)2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是()A.0.15×105B.15×103C.1.5×104D.1.5×105C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】15000用科学记数法表示是1.5×104.故选C .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(0分)已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.5.(0分)若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.6.(0分)下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.7.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.8.(0分)下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C 解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.9.(0分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm用科学记数法可表示为:2.8×10﹣8m,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(0分)下面说法中正确的是()A.两数之和为正,则两数均为正B.两数之和为负,则两数均为负C.两数之和为0,则这两数互为相反数D.两数之和一定大于每一个加数C解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.二、填空题11.(0分)已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.12.(0分)在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.13.(0分)截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.14.(0分)若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a(a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a (a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.15.(0分)填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.16.(0分)定义一种正整数的“H 运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果为11,经过3次“H 运算”的结果为46,那么数28经过2020次“H 运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】解:第1次:280.50.57⨯⨯=;第2次:371334⨯+=;第3次:340.517⨯=;第4次:3171364⨯+=;第5次:640.50.50.50.50.50.51⨯⨯⨯⨯⨯⨯=;第6次:311316⨯+=;第7次:160.50.50.50.51⨯⨯⨯⨯=,等于第5次.所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.17.(0分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,18.(0分)在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.19.(0分)一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ .-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50【分析】根据题意,列出式子,然后计算即可.【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.20.(0分)某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.三、解答题21.(0分)在数轴上,一只蚂蚁从原点O出发,它先向左爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,最后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据点C在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A,B,C三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A点表示的数是0-2=-2,B点表示的数是-2+3=1,C点表示的数是1-9=-8;(2)∵O点表示的数是0;C点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.22.(0分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.23.(0分)计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 解析:(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113- (2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.(0分)计算(1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】(1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-, (2)原式113924()(8)8444=⨯--⨯-⨯+ 39324=-++ 34=, 【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.25.(0分)计算:-32+2×(-1)3-(-9)÷213⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.26.(0分)计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯=26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.27.(0分)计算:()22216232⎫⎛-⨯--⎪⎝⎭ 解析:2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.28.(0分)某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】(1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本(3)由118157书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况.。

有理数的及其运算---培优题库4(含解析)

有理数的及其运算---培优题库4(含解析)

有理数及其运算培优题库41.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9 B.10 C.12 D.132.如图所示,在数轴上A点表示数a,B点表示数b,且a、b满足|2a+6|+|b﹣9|=0(1)点A表示的数为,点B表示的数为;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在点A、点B之间的数轴上找一点C,使BC=2AC,则C点表示的数为;(3)在(2)的条件下,若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.请用含t的代数式表示:点P到点A的距离PA=,点Q到点B的距离QB=;点P与点Q之间的距离 PQ=.3.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C 是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数所表示的点是{M,N}的奇点;数所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?4.在有理数范围内,我们定义三个数之间的新运算法则“⊕”;a⊕b⊕c=(|a﹣b﹣c|+a+b+c).如:1⊕(﹣2)⊕3=[|1﹣(﹣2)﹣3|+1+(﹣2)+3]=1.解答下列问题:(1)计算:⊕(﹣3)⊕(﹣)的值;(2)在﹣,﹣,﹣,0,,,,,,这11个数中,任意取三个数作为a,b,c的值,进行“a⊕b⊕c”运算,求在所有计算的结果中的最大值.5.数轴上点A,C对应的数分别是a,c,且a,c满足:|a+6|+(c﹣1)2=0,点B对应的数是﹣2.(1)填空:a=,c=;在数轴上描出点A,B,C;(2)若点M在数轴上对应的数为m,且满足|m﹣1|+|m+6|=15,则m=;(3)若A,B两点同时沿数轴正方向匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,在运动过程中,点A到点C的距离是点B到点C距离的3倍时,点A对应的数是多少?6.如图,在单位长度为1的数轴上有,A、B、C、D四个点,点A、C表示的有理数互为相反数(1)请在数轴上标出原点O,并在点A、B、C、D上方标出它们所表示的有理数;(2)A、C两点间的距离AC=,B、D两点间距离BD=;(3)通过观察可以发现,数轴上两点之间的距离可以用这两个点所表示的有理数的绝对值来表示,如果数轴上点M表示的有理数是x,点N表示的有理数是y,那么M、N两地间的距离用含有绝对值的式子可以表示为;(4)设点P在数轴表示的有理数是x,借助数轴解答下列问题:①式子|x﹣4|表示点P与有理数所对应的点之间的距离:|x+1|表示点P与有理数所对应的点之间的距离;②当x是哪个有理数或哪个有理数范围内时,式子|x﹣4|+|x+1|的值最小?最小值是多少?③若式子|x﹣4|+|x+1|的值是6,那么点P所表示的有理数是多少?.7.已知数轴上A,B两点表示的有理数分别为a,b,且(a﹣1)2+|b+2|=0.(1)求a,b的值;(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求c值;(3)小蜗牛甲以1个单位长度/s的速度从点B出发向其左边6个单位长度外的食物爬去,3s后位于点A 的小蜗牛乙收到它的信号,以2个单位长度/s的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D点相遇,则点D表示的有理数是什么?从出发至此时,小蜗牛甲共用去多少时间?8.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B(B在﹣2与﹣3的正中)两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣2表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为2010(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M: N:.9.点A、B在数轴上分别表示有理数a、b,点A与原点O两点之间的距离表示为AO,则AO=|a﹣0|=|a|,类似地,点B与原点O两点之间的距离表示为BO,则BO=|b|,点A与点B两点之间的距离表示为AB=|a ﹣b|.请结合数轴,思考并回答以下问题:(1)数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示m和﹣1的两点之间的距离是;(3)数轴上表示m和﹣1的两点之间的距离是3,则有理数m是;(4)若x表示一个有理数,并且x比﹣3大,x比1小,则|x﹣1|+|x+3|=;(5)求满足|x﹣2|+|x+4|=6的所有整数x的和.10.结合数轴与绝对值的知识回答下列问题:一般地,数轴上表示数m和数n的两点之间的距离公式为|m﹣n|.(1)例如:数轴上表示4和1的两点之间的距离为|4﹣1|=数轴表示5和﹣2的两点之间的距离为|5﹣(﹣2)|=|5+2|=(2)数轴上表示数a的点与表示﹣4的点之间的距离表示为数轴上表示数a的点与表示2的点之间的距离表示为若数轴上a位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a=时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为.11.如图,数轴上A、B两点所对应的数分别是a和b,且(a+5)2+|b﹣7|=0.(1)则a=,b=.A、B两点之间的距离=;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2017次时,求点P所对应的有理数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?请直接写出此时点P的位置,并指出是第几次运动.12.阅读下面材料:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|,当A、B两点都不在原点时.(1)如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2)如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b| (3)如图4,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|综上,数轴上A、B两点的距离|AB|=|a﹣b|回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示﹣2和5的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2那么x为.(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.13.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,”因此,为了解问题和解决问题,我们常常需要把“数”和“形”结合起来.【教材回顾由形想数】下图选自教材《合并同类项》(单位略)(1)从图1中可以直观地看出,学校的占地面积可以表示为100a+200a+240b+60b,也可以表示为【速算研究由数想形】37×33,26×24,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?图形建模:用长方形的面积表示两个正数的乘积,以37×33为例:构图方法:如图2,画长为37,宽为33的长方形,将这个37×33的长方形从右边切下一个长为30,宽为3的小长方形,拼接到原长方形的上面.图形分析:原长方形面积可以有两种不同的表达方式,37×33的长方形面积(30+7+3)×30的长方形与右上角3×7的矩形面积之和,即37×33=(30+10)×30+3×7=4×3×100+3×7=1221.用文字表述37×33的算方法是:十位数字3加1的和与3相乘,再乘以100,加上个位数字3与7的积,构成运算结果.(2)①类比示例:对于26×24,画图并简要说明其构图方法、速算方法.②归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是.(用文字语言表述)(3)①如图3,你能破解其中的奥妙吗?请画图解释图3的速算方法,并标出必要数据.②归纳提炼:用字母表示①中的速算方法:ab=.(用符号语言表述,设其中一个两位数是a,另一个两位数是b).14.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,数轴上有一点C,且C 点到A点的距离是C点到B点距离的2倍,且a、b满足|a+4|+(b﹣11)2=0.(1)直接写出点C表示的数;(2)点P从A点以每秒4个单位的速度向右运动,点Q同时从B点以每秒3个单位的速度向左运动,若AP+BQ =2PQ,求时间t;(3)数轴上有一定点N,N点在数轴上对应的数为2,若点P与点M同时从A点出发,一起向右运动,P点的速度为每秒6个单位,M点的速度为每秒3个单位,在P点到达点B之前:①的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.15.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+2|+(b+2a)2=0(1)求点C表示的数;(2)若点P从A向右运动,点M为AP中点,在P点到达点B之前,求证:2BM﹣BP为定值(3)点P从A点以每秒2个单位的速度向右运动,点Q同时从B点出发以每秒1个单位的速度向左运动,若AP+BQ=2PQ,求时间t.16.在数轴上,点A表示数a,点B表示数b,已知a、b满足(3a+b)2+|b﹣6|=0,(1)求a、b的值;(2)若在数轴上存在一点C,使得C到B的距离是C到A的距离的3倍,求点C表示的数;(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒.求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.17.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,到终点表示的数是﹣2.已知A、B是数轴上的点,请参照上图,完成下列填空:(1)如果点A表示的数是3,将点A先向右移动7个单位长度,再向左移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(2)如果点A表示的数是﹣4,将点A先向右移动12个单位长度,再向左移动16个单位长度,那么终点B 表示的数是,A、B两点间的距离为;(3)一般地,如果点A表示的数是a,将点A先向右移动m个单位长度,再向左移动n个单位长度,那么终点B表示的数是,A、B两点间的距离为.18.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在﹣1到1之间运动时(即﹣1≤x≤1时),请化简式子:|x+1|﹣|x﹣1|﹣2|x+3|;(写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B以每秒2个单位长度,点C以每秒5个单位长度的速度向右运动,3秒钟后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请求BC﹣AB的值.19.已知数轴上,点O为原点,点A对应的数为11,点B对应的数为b,点C在点B右侧,长度为3个单位的线段BC在数轴上移动,(1)如图1,当线段BC在O,A两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b的值;(2)线段BC在数轴上沿射线AO方向移动的过程中,是否存在AC﹣OB=AB?若存在,求此时满足条件的b的值;若不存在,说明理由.20.某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B 景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.(2)A景区与C景区之间的距离是多少?(3)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充足电而途中不充电的情况下完成此次任务?请计算说明.21.材料1:一般地,n个相同因数a相乘:记为a n.如23=8,此时,3叫做以2为底的8的对数,记为log28(即log28=3).那么,log39=,(log216)2+log381=.材料2:新规定一种运算法则:自然数1到n的连乘积用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在这种规定下,请你解决下列问题:(1)计算 5!=(2)已知x为整数,求出满足该等式的x:=1.22.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD =4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b ﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P 到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.24.如图,半径为1个单位长度的圆片上有一点Q与数轴上的原点重合(提示:计算结果保留π)(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+3,﹣1,,+4,﹣3,①第3次滚动周后,Q点回到原点.第6次滚动周后,Q点距离原点4π②当圆片结束运动时,Q点运动的路程共有多少?25.观察下列各式:=×(1﹣),=×(﹣),=×(﹣),…,=×(),…(1)归纳猜想:=.(2)巧计算:+++…+‘(3)巧解方程:++=.26.【背景知识】数轴上A点、B点表示的数为a、b,则A、B两点之间的距离AB=|a﹣b|;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣40和20,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数为.(2)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(3)当t为多少时,线段AB的中点M表示的数为﹣5?27.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,我们知道了绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.(1)一般地,点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的所有值是.②|x﹣3|+|x+1|的最小值是.28.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B 之间的距离可表示为|a﹣b|.(1)点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是,②设|x﹣3|+|x+1|=p,当x 的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的值取在的范围时,|x|+|x﹣2|取得最小值,这个最小值是.(3)求|x﹣3|+|x﹣2|+|x+1|的最小值为,此时x的值为.(4)求|x﹣3|+|x﹣2|+|x+1|+|x+2|的最小值,求此时x的取值范围.29.如果有理数a、b满足|ab﹣2|+(1﹣b)2=0,试求:++…+的值.30.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(注:结果保留π)(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+4,﹣6,+3①第次滚动后,A点距离原点最远②当圆片结束运动时,此时点A所表示的数是.31.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?32.如图1,有一个玩具火车放置在数轴上,若将火车在数轴上水平移动,则当A点移动到B点时,B点所对应的数为15,当B点移动到A点时,A点所对应的数为3(单位:单位长度).由此可得(1)玩具火车的长为个单位长度.(2)你能解决下面问题吗?一天,小明去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?请你帮他求出来.(3)在(1)的条件下数轴上放置与AB一模一样的玩具火车CD,使原点与C重合,两列玩具火车分别从O 和A同时向右出发,已知CD火车速度1个单位/秒,AB火车速度为0.5个单位/秒,问几秒两火车头A与C 相距1个单位?33.数学课上老师出了一道题计算:1+21+22+23+24+25+26+27+28+29,老师在教室巡视了一圈,发现同学们都做不出来,于是给出答案:解:令s=1+21+22+23+24+25+26+27+28+29①则2s=2+22+23+24+25+26+27+28+29+210②②﹣①得s=210﹣1根据以上方法请计算:(1)1+2+22+23+…+22015(写出过程,结果用幂表示)(2)1+3+32+33+…+32015=(结果用幂表示)34.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1仿照此法计算:1+2+22+23+ (2100)35.计算:1+2﹣3﹣4+5+6﹣7﹣8+9+10﹣11﹣12+…+2005+2006﹣2007﹣2008.36.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时.(1)如果甲乙丙三人同时改卷,那么需要多少时间完成?(2)如果按照甲、乙、丙、甲、乙、丙,…的次序轮流阅卷,每一轮中每人各阅卷1小时,那么需要多少小时完成?(3)能否把(2)题所说的甲、乙、丙的次序作适当调整,其余的不变,使得完成这项任务的时间至少提前半小时?(答题要求:如认为不能,需说明理由;如认为能,请至少说出一种轮流的次序,并求出相应能提前多少时间完成阅卷任务)37.某超市在国庆期间推出如下优惠购物方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折优惠;③一次性购物超过300元一律八折优惠.王强两次购物分别付款80元、234元;若他一次性购买,比分两次购买可省多少元?38.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上x1,x2对应点之间的距离.例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或﹣2,即该方程的解为x=2或x=﹣2例2:解不等式|x﹣1|>2,如图1,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1和3,则|x﹣1|>2的解集为x<﹣1或x>3.例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为.(2)不等式|x﹣3|+|x+4|≥9的解集为.39.如果表示运算x+y+z,表示运算a﹣b﹣c+d,那么的结果是多少?40.今年铁路大提速,小明的爸爸因要出差,于是去火车站查询列车的开行时间.下面是小明的爸爸从火车站带回家的最新时刻表:2015年10月18日起1008次列车时刻表始发点发车时间终点站到站时间A站上午8:20 B站次日12:20小明的爸爸找出以前同一车次的时刻表如下:2014年1008次列车时刻表到站时间始发点发车时间终点站A站下午14:30 B站第三日8:30 比较了两张时刻表后,小明的爸爸提出了如下问题,请你帮小明解答:(1)请直接写出现在该次列车的运行时间是多少小时?(2)现在该次列车的运行时间比以前缩短了多少小时?(3)若该次列车提速后的平均时速为每小时200千米,那么,该次列车原来的平均时速为多少?(结果精确到个位)41.如图,在数轴上,点A表示的数是﹣1,点B表示的数是2.5,解答下列各问:(2)观察数轴,与点A的距离为10的点表示的数为;(3)若将数轴折叠,使点A恰好与表示3的点重合,则点B与表示的点重合;(4)若数轴上P、Q两点之间的距离为2016,点P在点Q的左侧,且P、Q两点按(3)中的方式折叠后互相重合,则P、Q两点表示的数分别是,.42.为了计算1+2+22+23+24+…+29+210的值,我们采用如下的方法:设S=1+2+22+23+24+…+29+210①,则2S=2+22+23+24+…+29+210+211②,由②﹣①,得S=211﹣1,利用上述的方法,求1+5+52+53+54+…+52014+52015的值.43.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周内黄瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):星期一二三四五六每公斤销售+0.3 +0.4 ﹣0.5 ﹣0.6 ﹣0.7 +0.1 价涨跌(与前一天比较)(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?44.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数2表示的点与﹣2表示的点重合,则数轴上数﹣6表示的点与数表示的点重合.(2)若数轴上数﹣3表示的点与数1表示的点重合.①则数轴上数3表示的点与数表示的点重合.②若数轴上A、B两点之间的距离为2016,并且A、B两点经折叠后重合,如果A点表示的数比B点表示的数大,则A点表示的数是多少?45.如图1在5×5的方格(每小格边长为1个单位长度)格点处有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+3),从B到A的爬行路线为:B→A(﹣1,﹣3),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)A→C(,),B→D(,);(2)若甲虫A的爬行路线为A→B→C→D(如左图),请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图2标出甲虫A的爬行路线示意图及最终甲虫P的位置;若甲虫A向上爬行的速度为每秒0.5个单位长度,向下爬行的速度为每秒2个单位长度,向左或向右爬行的速度为每秒1个单位长度,请计算甲虫A 爬行的时间.46.计算下面各题(1)计算:+++…++(2)计算:1++++…+.47.(一)问题:你能比较两个数20102011和20112010的大小吗?为解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较n n+1和(n+1)n的大小(n为自然数),然后从简单情形入手,从中发现规律,经过归纳猜想出结论.(1)通过计算,比较下列各组数的大小:。

七年级上册数学有理数培优50题含详细答案

七年级上册数学有理数培优50题含详细答案

(七年级上册数学有理数培优50题一.填空题(共5小题)1.=2.若|a|+|b|=2,则满足条件的整数a、b的值有组.3.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.4.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)5.|x+1|+|x﹣2|+|x﹣3|的值为.二.解答题(共45小题)6.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;( (2)正确的结果是.8.如图,已知数轴上的点A 表示的数为 6,点 B 表示的数为﹣4,点 C 是 AB 的中点,动点P 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,设运动时间为 x 秒(x>0).(1)当 x =秒时,点 P 到达点 A .(2)运动过程中点 P 表示的数是(用含 x 的代数式表示);(3)当 P ,C 之间的距离为 2 个单位长度时,求 x 的值.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式 a +b =ab ﹣1 成立的一对有理数 a ,b 为“椒江有理数对”,记为(a ,b ),如:数对(3,2),(4, )都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是 ;(2)若(a ,3)是“椒江有理数对”,求 a 的值;(3)若(m ,n )是“椒江有理数对”,则(﹣n ,﹣m )“椒江有理数对” 填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)10.计算:(﹣+1 ﹣ )÷(﹣ )×|﹣110﹣(﹣3)2|11.已知 a 、b 互为相反数,c 、d 互为倒数,并且 x 的绝对值等于 2.试求:x 2﹣(a +b +cd )+2(a +b )的值.12.如图,A 、B 分别为数轴上的两点,A 点对应的数为﹣20,B 点对应的数为 100.(1)请写出与 A 、B 两点距离相等的点 M 所对应的数;(2)现有一只电子蚂蚁 P 从 B 点出发,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道 C 点对应的数是多少吗?(3)若当电子蚂蚁 P 从 B 点出发时,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)5001000100050017.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”18.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合.②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.③若数轴上M、N两点之间的距离为2018,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是.则N点表示的数是.19.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,(1)求3※(﹣5)的值;(2)若(﹣3)※b与b互为相反数,求b的值.20.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数dB , 的点到原点的距离为 4,求 a ﹣b ﹣c +d 的值.21.阅读下列材料:点 A 、B 在数轴上分别表示两个数 a 、b ,A 、B 两点间的距离记为|AB|,O 表示原点.当A 、B 两点中有一点在原点时,不妨设点 A 为原点,如图 1,则|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,①如图 2,若点 A 、B 都在原点的右边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;②如图 3,若点 A 、B 都在原点的左边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a﹣b |;③如图 4,若点 A 、B 在原点的两边时,|AB|=|OB|+|OA|=|b |+|a|=﹣b +a =|a ﹣b |.回答下列问题:(1)综上所述,数轴上 A 、B 两点间的距离为|AB|=.(2)若数轴上的点 A 表示的数为 3,点 B 表示的数为﹣4,则 A 、 两点间的距离为 ;(3)若数轴上的点 A 表示的数为 x ,点 B 表示的数为﹣2,则|AB|= ,若|AB|=3,则 x 的值为.22.已知数轴上 A ,B 两点对应数分别为﹣2 和 5,P 为数轴上一点,对应数为 x .(1)若 P 为线段 AB 的三等分点(把一条线段平均分成相等的三部分的两个点) 求 P点对应的数.(2)数轴上是否存在点 P ,使 P 点到 A 点,B 点距离和为 10?若存在,求出 x 值;若不存在,请说明理由.(3)若点 A ,点 B 和点 P (P 点在原点)同时向左运动,它们的速度分别为 1,6,3 个长度单位/分,则第几分钟时,A ,B ,P 三点中,其中一点是另外两点连成的线段的中点?23.已知|x|=5,|y|=3.(1)若 x ﹣y >0,求 x +y 的值;(2)若 xy <0,求|x ﹣y|的值;(3)求 x ﹣y 的值.24.解答下列问题::(1)计算:6÷(﹣ + )方方同学的计算过程如下:原式=6÷(﹣ )+6÷ =﹣12+18=6.请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程)①999×(﹣15);②999×118 +333×(﹣ )﹣999×18 .25.阅读材料,解答下列问题:例:当 a =5,则|a|=|5|=5,故此时 a 的绝对值是它本身;当 a =0 时,|a|=0,故此时 a的绝对值是 0;当 a <0 时,如 a =﹣5,则|a|=|5|=﹣(5)=5,故此时 a 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即|a|=这种分析方法涌透了数学中的分类讨论思想.请仿照图例中的分类讨论,解决下面的问题:(1)|﹣4+5|=;|﹣ ﹣3|= ;(2)如果|x+1|=2,求 x 的值;(3)若数轴上表示数 a 的点位于﹣3 与 5 之间,求|a +3|+|a ﹣5|的值;(4)当 a =时,|a ﹣1|+|a +5|+|a ﹣4|的值最小,最小值是 .26.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米),﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为 0.3 升/千米,这天下午汽车共耗油多少升?27.定义一种新运算:a ⊕b =a ﹣b +ab .(1)求(﹣2)⊕(﹣3)的值;(2)求 5⊕[1⊕(﹣2)]的值.28.在学习绝对值后,我们知道,a|表示数a在数轴上的对应点与原点的距离.如:|5|表示|5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B 在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.29.夫子庙派出所巡警骑摩托车在东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,当天行驶记录如下(单位:千米)+11,﹣9,7,﹣14,+8,﹣13,+4.①该巡警巡逻时离岗亭最远是千米.②在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.③A在岗亭何方?距岗亭多远?④若摩托车每行1千米耗油0.06升,那么该摩托车这天巡逻共耗油多少升?30.邮递员骑车从邮局出发,先向南骑行3km到达A村,继续向南骑行2km到达B村,然后向北骑行8km到达C村,最后回到邮局,以邮局为原点,以向南方向为正方向,用1cm 表示1km,画出数轴如图.(1)在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有km;(3)邮递员一共骑行了km;(4)如果邮递员骑行的速度为10千米/小时,在每个村庄停留10分钟,那么邮递员从出发到回到邮局一共用了多少小时?31.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿(AC 方向,以每秒 1 个单位的速度向终点 C 运动,设点 P 运动时间为 t 秒.(1)用含 t 的代数式表示点 P 到点 A 、C 的距离,PA =;PC = .(2)当点 P 运动到点 B 时,点 Q 从 C 点出发,沿 CA 方向,以每秒 3 个单位的速度向 A点运动,当其中一点到达目的地时,另一点也停止运动.①当 t =,点 P 、Q 相遇,此时点 Q 运动了 秒.②请用含 t 的代数式表示出在 P 、Q 同时运动的过程中 PQ 的长.32.如图 A 在数轴上所对应的数为﹣2.(1)点 B 在点 A 右边距 A 点 4 个单位长度,求点 B 所对应的数;(2)在(1)的条件下,点 A 以每秒 2 个单位长度沿数轴向左运动,点 B 以每秒 2 个单位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A ,B 两点间距离.(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A ,B两点相距 4 个单位长度.33.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖 100 斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期与计划量一+4二﹣3 三﹣5 四+14五﹣8 六+21鈤﹣6的差值(1)根据记录的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按 8 元出售,每斤冬枣的运费平均 3 元,那么小明本周一共收入多少元?34.如图,半径为 1 个单位的圆片上有一点 A 与数轴上的原点重合,AB 是圆片的直径. 注:结果保留 π )(1)把圆片沿数轴向右滚动半周,点 B 到达数轴上点 C 的位置,点 C 表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.35.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N →A应记为什么?36.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?37.我们定义一种新运算:△a b=a﹣b+ab.3 2)(1)求 △2 (﹣)的值;(2)求(﹣△5) △[1 (﹣ ]的值.38.学校图书馆平均每天借出图书 50 册,如果某天借出 53 册,就记作+3;如果某天借出40 册,就记作﹣10.上星期图书馆借出图书记录如表:星期一0 星期二+8 星期三+6星期四﹣2 星期五﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?39.已知,如图 A 、B 分别为数轴上的两点,A 点对应的数为﹣10,B 点对应的数为 70(1)请写出 AB 的中点 M 对应的数(2)现在有一只电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的 C 点相遇,请你求出 C 点对应的数(3)若当电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距 35 个单位长度,并写出此时 P 点对应的数.40.一辆交通巡逻车在南北公路上巡视,某天早上从 A 地出发,中午到达 B 地,行驶记录如下(规定向北为正方向,单位:千米):+15,﹣8,+6,+12,﹣8,+5,﹣10.回答下列问题:(1)B 地在 A 地的什么方向?与 A 地相距多远?(2)巡逻车在巡逻中,离开 A 地最远多少千米?(3)巡逻车行驶每千米耗油 a 升,这半天共耗油多少升?41.【概念学习】规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”,一般地,把 (a ≠0)记作 a ,读作“a 的圈 n 次方”.+,【初步探究】(1)直接写出计算结果:2③=,(﹣ )⑤= ;(2)关于除方,下列说法错误的是A .任何非零数的圈 2 次方都等于 1;B .对于任何正整数 n ,1 =1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥= ;(﹣ )⑩= .(2)想一想:将一个非零有理数 a 的圈 n 次方写成幂的形式等于;(3)算一算:122÷(﹣ )④×(﹣2)⑤﹣(﹣ )⑥÷33.42.若|a|=5,|b |=2,且 a <b ,求 a ﹣b 的值.43.观察下列等式: =1﹣ , = ﹣ , = ﹣ ,把以上三个等式两边分别相加得: + + =1﹣ + ﹣ + ﹣(1)猜想并写出:=.(2)规律应用:计算: + +++ +(3)拓展提高:计算:+ +…+.44.操作探究:已知在纸面上有一数轴(如图所示)操作一:(1)折叠纸面,使表示的1 点与﹣1 表示的点重合,则﹣3 表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1 表示的点与 3 表示的点重合,回答以下问题:①5 表示的点与数表示的点重合;b :② 若数轴上 A 、B 两点之间距离为 11,(A 在 B 的左侧),且 A 、B 两点经折叠后重合,求 A 、B 两点表示的数是多少.45.阅读下面材料:点 A 、B 在数轴上分别表示实数 a 、 ,A 、B 两点之间的距离表示为|AB|.当 A 、B 两点中有一点在原点时,不妨设点 A 在原点,如图 1,|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,如图 2,点 A 、B 都在原点的右边|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;如图 3,点 A 、B 都在原点的左边,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a ﹣b |;如图 4,点 A 、B 在原点的两边,|AB|=|OB|+|OA|=|a|+|b |=a +(﹣b )=|a ﹣b |;回答下列问题:(1)数轴上表示 2 和 5 的两点之间的距离是,数轴上表示﹣2 和﹣5 的两点之间的距离是,数轴上表示 1 和﹣3 的两点之间的距离是.(2)数轴上表示 x 和﹣1 的两点 A 和 B 之间的距离是 ,如果|AB|=2,那么 x为;(3)当代数式|x +1|+|x ﹣2|取最小值时,相应的 x 的取值范围是.46.某淘宝商家计划平均每天销售某品牌儿童滑板车 100 辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负)星期与计划量的差值一+4二﹣3 三﹣5 四+14五﹣8 六+21 日﹣6(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;( (3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得 40 元,若超额完成任务,则超过部分每辆另奖 15 元;少销售一辆扣 20 元,那么该店铺的销售人员这一周的工资总额是多少元?47.求若干个相同的不为零的有理数的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3次方”, ﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”.一般地,把(a ≠0)记作 ,读作“a 的圈 n 次方”.(1)直接写出计算结果:2③=,(﹣3)④=,(﹣ )⑤=;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于;(3)计算 24÷23+(﹣8)×2③.48.已知 a ,b 互为相反数,c ,d 互为倒数,且 a ≠0,那么 3a +3b + ﹣cd 的值是多少?49.已知(|x +1|+|x ﹣2|)(|y ﹣2)|+|y+1|)(|z ﹣3|+|z+1|)=36,求 2016x+2017y+2018z 的最大值和最小值50.已知 a 2=9,|b |=5,且 a <b ,求 a ﹣b 的值.(七年级上册数学有理数培优 50 题参考答案与试题解析一.填空题(共 5 小题)1.【解答】解:====,故答案为:=.2.若|a|+|b |=2,则满足条件的整数 a 、b 的值有8 组.【解答】解:∵|a|+|b |=2,∴|a|=0,|b |=2 或|a|=1|b |=1,或|a|=2,|b |=0,∴a =0,b =2;a =0,b =﹣2;a =1,b =1;a =1,b =﹣1;a =﹣1,b =1;a =﹣1,b=﹣1;a =﹣2,b =0;a =2,b =0,故答案为:8.3.已知 a ,b ,c ,d 分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|取得最大值时,这个四位数的最小值是 1119 .【解答】解:若使|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|的值最大,则最低位数字最大 d =9,最高位数字最小 a =1 即可,同时为使|c ﹣d |最大,则 c 应最小,且使低位上的数字不小于高位上的数字,故 c 为 1,此时 b 只能为 1.所以此数为 1119.故答案为 1119.4.如图,若数轴上 a 的绝对值是 b 的绝对值的 3 倍,则数轴的原点在点C 或点D .填“A ”、“B ”“C ”或“D ”)|【解答】解:由图示知,b ﹣a =4,①当 a >0,b >0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,舍去;②当 a <0,b <0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,故数轴的原点在 D 点;③当 a <0,b >0 时,由题意可得 a |=3|b |,即﹣a =3b ,解得 a =﹣3,b =1,故数轴的原点在 C 点;综上可得,数轴的原点在 C 点或 D 点.故填 C 、D .5.|x +1|+|x ﹣2|+|x ﹣3|的值为.【解答】解:当 x ≤﹣1 时,|x +1|+|x ﹣2|+|x ﹣3|=﹣x ﹣1﹣x +2﹣x +3=﹣3x +4;当﹣1<x ≤2 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1﹣x +2﹣x +3=﹣x +6;当 2<x ≤3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2﹣x +3=x +2;当 x >3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2+x ﹣3=3x ﹣4.综上所述,|x +1|+|x ﹣2|+|x ﹣3|的值为.故答案为: .二.解答题(共 45 小题)6.在一个 3×3 的方格中填写了 9 个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的 3×3 的方格称为一个三阶幻方.(1)在图 1 中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图 2 的方格中填写了一些数和字母,当 x +y 的值为多少时,它能构成一个三阶幻方.【解答】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:(1)上面解题过程中有两个错误,第一处是第一步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第三步,错误的原因是同号两数相除,结果为正(事实上结果应为正数);(2)正确的结果是.【解答】解:正确做法:原式=(第一步)=15××6(第二步)=(第三步).故答案为:(1)一,在同级运算中,没有按从左到右的顺序进行,二,同号两数相除,结果为正(事实上结果应为正数);(2).8.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x >0).(1)当x=5秒时,点P到达点A.(2)运动过程中点P表示的数是2x﹣4(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(6,1.4)等.故答案为:(5,);不是;(6,1.4).10.计算:(﹣+1﹣)÷(﹣)×|﹣110﹣(﹣3)2|【解答】解:原式=(﹣+﹣)×(﹣42)+×|﹣1﹣9|=27﹣54+10+×10=﹣17+15=﹣2.11.已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴原式=4﹣(0+1)+2×0=4﹣1+0=3.12.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.【解答】解:根据题意得:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣(﹣8)=.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.)×【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)50010001000500【解答】解:﹣22×500+1.5×1000﹣4×1000﹣(﹣2)×500=﹣2000+1500﹣4000+1000=﹣3500,答:乐乐的爸爸赔了,赔了3500元.17.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”【解答】解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(﹣5)❈12=﹣17;(3)加法的交换律仍然适用,例如:(﹣3)❈(﹣5)=8,(﹣5)❈(﹣3)=8,所以(﹣3)❈(﹣5)=(﹣5)❈(﹣3),。

有理数的及其运算---培优题库3(含解析)

有理数的及其运算---培优题库3(含解析)

有理数及其运算培优题库31.若|a﹣2|+(﹣b)2=0,则b a=.2.已知(|x+1|+|x﹣2|)(|y﹣2)|+|y+1|)(|z﹣3|+|z+1|)=36,求2016x+2017y+2018z的最大值和最小值3.已知a2=9,|b|=5,且a<b,求a﹣b的值.4.计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)(2)(﹣3)×(﹣4)﹣48÷|﹣6|(3)(﹣24)×(﹣﹣)(4)﹣12+×[6﹣(﹣3)2]5.已知a与b互为相反数,c与d互为倒数,m的绝对值为3,求(a+b)cd+﹣m2的值.6.在数轴上表示数:22,﹣2,﹣12,1,0,﹣1.5,并将它们用“<“连接起来.7.已知有理数a、b、c在数轴上的位置如图所示,化简:2|a+b|﹣3|a﹣c|+2|c﹣b|8.阅读探究:12=;12+22=;12+22+32=;12+22+32+42=;…(1)根据上述规律,求12+22+32+42+52的值;(2)你能用一个含有n(n为正整数)的算式表示这个规律吗?请直接写出这个算式(不计算);(3)根据你发现的规律,计算下面算式的值:62+72+82+92+102+112+122+132+142+152.9.已知a、b互为相反数,m、n互为倒数(m、n都不等于±1),x的绝对值为2,求的值.10.已知a是最大的负整数,且b、c满足|b﹣1|+(c+4)2=0.(1)填空:a=,b=,c=;(2)a、b、c在数轴上所对应的点分别为A、B、C,P是数轴上点A、B之间一动点(不与点A、B重合),其对应的数为x,化简:|x+1|﹣2|x﹣1|;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上同时运动,若点C和点A分别以每秒4个单位长度和1个单位长度的速度向左运动,点B以每秒2个单位长度的速度向右运动,假设t秒钟过后,点A与点C 之间的距离表示为AC,点A与B之间的距离表示为AB.请问:AC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.11.已知在纸面上有一数轴(如图所示).一般地,数轴上表示数m和数n的两点之间的距离可用|m﹣n|表示(1)①数轴上表示﹣3和2两点之间的距离是②如果表示数a与﹣2的两点之间的距离是4,那么a=③若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值是(2)①5﹣|x+3|有最大值是.②|x﹣4|+|x﹣5|的最小值是.12.规定一种新运算“※”,即a※b=a2﹣(1+b),例如1※2=12﹣(1+2)=﹣2,根据规定完成下列问题:(1)求3※(﹣2)的值;(2)求(﹣1)※[3※(﹣2)]的值.13.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间距离记作|AB|,定义:|AB|=|a﹣b|.(1)求线段AB的长|AB|;(2)设点P在数轴上对应的数为x,当|PA|﹣|PB|=3时,求x的值.14.已知三个有理数a,b,c,其积是负数,其和是正数,当时,求代数式x2017﹣2x+2的值.15.(1)已知|x+2|+|y﹣3|=0,求﹣x﹣y+4xy的值.(2)一只猴子沿一条东西方向的木棒爬行,先以5米/秒的速度向东爬行,然后以2.4米/秒的速度向西爬行,试求它向东爬行2秒,又向西爬行5秒后与出发点的距离及方向.16.阅读下列材料:|x|=,即当x<0时,=﹣1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求的值;(2)已知a,b是有理数,当abc≠0时,求的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.17.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是;(2)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,大圆离原点最远?②当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距9π,求此时两圆与数轴重合的点所表示的数.18.如图所示,丁丁做了一个程序图,按要求完成下列问题.(1)当丁丁输入的数为6时,求输出的结果n;(2)若丁丁某次输入数m后,输出的结果n为﹣5.5.请你写出m可能的2个值.19.王老师在一节数学课上讲解了二道例题:请你参考黑板上王老师的讲解,用运算律简便计算:(1)99×15;(2)999×118+999×(﹣)﹣999×.20.如图,A,B分别为数轴上的两点,点A对应的数是﹣2,点B对应的数是10.现有点P从点A出发,以4个单位长度/秒的速度向右运动,同时另一点Q从点B出发,以1个单位长度/秒的速度向右运动,设运动时间为t秒.(1)A、B两点之间的距离为;(2)当t=1时,P、B两点之间的距离为;(3)在运动过程中,线段PB、BQ、PQ中是否会有两条线段相等?若有,请求出此时t的值;若没有,请说明理由.21.当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,求相应x的取值范围,并求出最小值.22.若我们定义a*b=4ab﹣(a+b),其中符号“*”是我们规定的一种运算符号.例如:6*2=4×6×2﹣(6+2)=40.依据以上内容,求下列式子的值.(1)(﹣4)*(﹣2);(2)(﹣1)*2.23.已知|a+3|+|b﹣5|=0,x,y互为相反数,求3(x+y)﹣a+2b的值.24.【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,把(a≠0)记作aⓝ读作“a的圈n次方”【初步探究】(1)直接写出计算结果:2③=,=(2)关于除方,下列说法错误的是A.任何非零数的圈3次方都等于它的倒数B.对于任何正整数n,1ⓝ=1C.3③=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘法运算呢?(3)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(﹣3)④=;5⑥=;=10 ⑩=(4)想一想:将一个非零有理数a的圈n次方写成幂的形式是(5)算一算:.25.有理数a、b表示的点在数轴上的位置如图所示,.(1)化简|a+1|;(2)化简:|b﹣1|;(3)化简:|ab﹣1|;(4)化简:|a﹣b﹣1|+|a+b+1|.26.计算:(1)11+(﹣18)﹣12﹣(﹣19)(2)(﹣5)×6+(﹣125)÷(﹣5)(3)﹣22×()+8÷(﹣2)2(4).27.已知数轴上三点A,O,B表示的数分别为6,0,﹣4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.已知数轴上三点A,O,B表示的数分别为6,0,﹣4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.28.如果|a+1|+(b﹣2)2=0,求(a+b)2009+a2008的值.29.规定一种新的运算:a*b=ab﹣a﹣b+1,如3*4=3×4﹣3﹣4+1=6,试求x*y的值,其中其中x和y满足(x+2)2+|3﹣y|=0.30.已知a,b是有理数,且a,b异号,试比较|a+b|,|a﹣b|,|a|+|b|的大小关系.31.已知|2a﹣2|+|3b﹣1|+|c+4|=0,求﹣2a+6b+2c的值.32.已知|a|=2,|b|=5,且ab<0,求3a﹣2b的值.33.国庆节放假时,小华一家三口一起乘小轿车去乡下探望爷爷、奶奶和外公、外婆.早上从家里出发,向东走了4千米到超市买东西,然后又向东走了3千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里.(1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)问超市A和外公家C相距多少千米?(3)若小轿车每千米耗油0.09升,求小明一家从出发到返回家所经历路程小车的耗油量.(精确到0.1升)34.如果有理数a、b满足|ab﹣2|+(1﹣b)2=0,试求…的值.35.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则.综上所述,值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)若a,b,c为三个不为0的有理数,且,求的值.36.如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.(1)求a、b、c的值;(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.37.阅读理解:|a|的几何意义是a这个数在数轴上对应的点到原点的距离,那么|a﹣1|可以看作是a这个数在数轴上对应的点到1的距离:|a﹣1|+|a2|就可以看作是a这个数在数轴上对应的点到1和2两个点的距离之和,下面我们结合数轴研究|a﹣1|+|a﹣2|的最小值,我们先看a表示的点可能的三种情况:(1)a 点在1的左边;(2)a点在1、2之间(包括在1、2上);(3)a点在2的右边.(1)a在1的左边,从图中很明显看出a到1和2的距离和明显大于1;(2)a点在1、2之间(包括在1、2上)可以看出a到1和2的距离和等于1;(3)a在2的右边,从图中很明显看出a到1和2的距离和明显大于1;那么我们可以得到当a在1、2之间(包括在1、2上)时,|a﹣1|+|a﹣2|有最小值的结论.问题解决:(1)|a﹣1|+|a﹣2|+|a﹣3|的几何意义是.(2)请你结论数轴探究|a﹣1|+|a﹣2|+|a﹣3|的最小值是;并在数轴上描出得到最小值时a所在的位置.深入探究:通过材料的飞分析和问题的解决,你现在对|a﹣1|+|a﹣2|+|a﹣3|…求最小值问题有所了解吗?找到a点在数轴上的位置可以帮助我们顺利解决问题,下面你自己再结合数轴算一算|a﹣1|+|a﹣2|+|a﹣3|+|a﹣4|+|a﹣5|的最小值是.(3)求|a﹣1|+|a﹣2|+|a﹣3|…+|a﹣2017|的最小值.38.在一条东西走向的马路旁,有青少年宫、党校、商场、医院四家公共场所.已知青少年宫在学校东400m 处,商场在学校西200m处,医院在学校东600m处,若将马路近似地看作一条直线,以学校为原点,向东为正方向,用1个单位长度表示100m.(1)在数轴上表示四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.39.一天,小天和小海利用温差来测量山峰的高度.小海在山脚测得气温是4℃,小天同时在山顶测得气温是2℃,已知该地区高度每升高100米,气温下降8℃,问这个山峰有多高?40.已知a与b互为相反数,c与d互为倒数,e是绝对值最小的有理数,求的值.41.已知|2x﹣1|+(y+2)2=0,求(xy)2016.42.已知a与b互为相反数,c与d互为倒数,m是绝对值为4的负数,求a++(cd)2017﹣m的值.43.现规定一种运算“*”,对于a、b两数有:a*b=a b﹣2ab,试计算(﹣3)*2的值.44.已知:a、b互为相反数,c、d互为倒数,m是最小的正整数,求代数式2017(a+b)﹣3cd+2m的值.45.如果|a+1|+(b﹣2)2=0,求(a+b)2011+a2010﹣(3ab﹣a)的值.46.小明的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A、B、C、D,学校位于小明家西边150米,邮局位于小明家东边100米,图书馆位于学校西边250米.(1)用数轴表示A、B、C、D的位置(以小明家为原点)(2)一天小明从家里先去邮局寄信后,以每分钟50米的速度往图书馆方向走了8分钟,试问小明此时的位置在何处?到图书馆和学校的距离分别是多少米?47.邮递员骑摩托车车从邮局出发,先向西骑行3千米到达A村,继续向西骑行3千米到达B村,然后向东骑行10千米到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1千米表示1个单位长度,画出数轴,并在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村的路程有多远?(3)邮递员骑摩托车,每千米耗油0.05升,一共耗油了多少升?48.先阅读,后探究相关的问题.【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B 和点C表示的数分别为和,B,C两点间的距离是.(2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为.(3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等.(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.49.对于有理数a,b,定义新运算:a△b=.如果|x+1|+|y﹣3|+|xz+2|=0,求x△(y△z)的值.50.如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围;(1)包含所有大于﹣3且小于0的数[画在数轴(1)上];(2)包含﹣1.5、π这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.参考答案1.若|a﹣2|+(﹣b)2=0,则b a=.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=.故答案是:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.2.已知(|x+1|+|x﹣2|)(|y﹣2)|+|y+1|)(|z﹣3|+|z+1|)=36,求2016x+2017y+2018z的最大值和最小值【分析】先讨论:|x+1|+|x﹣2|、|y﹣2|+|y+1|、|z﹣3|+|z+1|的最小值,根据它们的积是36,分别得到|x+1|+|x﹣2|、|y﹣2|+|y+1|、|z﹣3|+|z+1|的值,再讨论x、y、z的最大最小值,代入计算出代数式的最大值和最小值.【解答】解:∵|x+1|+|x﹣2|≥3,(|y﹣2|+|y+1|)≥3,(|z﹣3|+|z+1|)≥4,又∵(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,∴|x+1|+|x﹣2|=3,|y﹣2|+|y+1|=3,|z﹣3|+|z+1|=4,当|x+1|+|x﹣2|=3时,x最小取﹣1,最大取2,当|y﹣2|+|y+1|=3时,y最小取﹣1,最大取2,当|z﹣3|+|z+1|=4时,z最小取﹣1,最大取3所以2016x+2017y+2018z的最大值为:2016×2+2017×2+2018×3=14120,2016x+2017y+2018z的最小值为:2016×(﹣1)+2017×(﹣1)+2018×(﹣1)=﹣6051【点评】本题考查了绝对值的意义,主要运用了分类讨论的思想.解决本题的关键是根据积得到各个绝对值的和分别是多少.3.已知a2=9,|b|=5,且a<b,求a﹣b的值.【分析】利用算术平方根,绝对值的性质求出a、b的值即可解决问题;【解答】解:∵a2=9,|b|=5,∴a=±3,b=±5,∵a<b,∴a=3,b=5或a=﹣3,b=5,∴a﹣b=3﹣5=﹣2或a﹣b=﹣3﹣5=﹣8【点评】本题考查有理数的乘方、绝对值、有理数的加法等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)(2)(﹣3)×(﹣4)﹣48÷|﹣6|(3)(﹣24)×(﹣﹣)(4)﹣12+×[6﹣(﹣3)2]【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘除运算,再计算加减运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣20+3+5﹣7=﹣27+8=﹣19;(2)原式=12﹣8=4;(3)原式=﹣12+40+9=37;(4)原式=﹣1+×(﹣3)=﹣1﹣1=﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.已知a与b互为相反数,c与d互为倒数,m的绝对值为3,求(a+b)cd+﹣m2的值.【分析】利用相反数性质,倒数的定义,绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=3或﹣3,∴原式=0×1+0﹣9=﹣9.【点评】此题考查了代数式求值,相反数,绝对值以及倒数的综合运用,熟练掌握各自的定义是解本题的关键.6.在数轴上表示数:22,﹣2,﹣12,1,0,﹣1.5,并将它们用“<“连接起来.【分析】先计算22,﹣12的值,再把各点表示在数轴上,最后用“<”连接各数.【解答】解:因为22=4,﹣12=﹣1,如图所示:用“<“连接起来为:﹣2<﹣1.5<﹣12<0<1<22.【点评】考查了有理数大小比较,本题难度不大,注意在数轴上表示的数和用不等号连接的数需是题目中给出的数.7.已知有理数a、b、c在数轴上的位置如图所示,化简:2|a+b|﹣3|a﹣c|+2|c﹣b|【分析】先通过点在数轴上的位置,先判断a、b、c的正负,再根据加法法则、减法法则判断a+b、a﹣c、c﹣b的正负,最后利用绝对值的意义对代数式化简.【解答】解:由有理数a、b、c在数轴上的位置知:a<0<b<c,|a|>|b|因为|a|>|b|,a<0,b>0所以﹣a>b,即﹣a﹣b>0所以a+b<0因为a<0<b<c所以a﹣c<0,c﹣b>0.所以2|a+b|﹣3|a﹣c|+2|c﹣b|=2×(﹣a﹣b)﹣3(c﹣a)+2(c﹣b)=﹣2a﹣2b﹣3c+3a+2c﹣2b=a﹣4b﹣c【点评】本题考查了数轴、绝对值的有关内容,解决本题的关键是通过数轴,利用加减法法则判断a+b、a ﹣c、c﹣b的正负.8.阅读探究:12=;12+22=;12+22+32=;12+22+32+42=;…(1)根据上述规律,求12+22+32+42+52的值;(2)你能用一个含有n(n为正整数)的算式表示这个规律吗?请直接写出这个算式(不计算);(3)根据你发现的规律,计算下面算式的值:62+72+82+92+102+112+122+132+142+152.【分析】(1)仿照阅读材料中的方法计算即可;(2)归纳总结得到一般性规律,写出即可;(3)原式利用得出的规律计算即可求出值.【解答】解:(1)根据题意得:原式==55;(2)根据题意得:12+22+32+…+n2=(n为正整数);(3)根据题意得:12+22+32+42+52=55②,12+22+32+42+52+62+72+82+92+102+112+122+132+142+152==1240②,则②﹣①得:62+72+82+92+102+112+122+132+142+152=1185.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.已知a、b互为相反数,m、n互为倒数(m、n都不等于±1),x的绝对值为2,求的值.【分析】利用相反数,倒数,以及绝对值的代数意义计算求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,mn=1,x=2或﹣2,则原式=﹣2+0﹣4=﹣6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.已知a是最大的负整数,且b、c满足|b﹣1|+(c+4)2=0.(1)填空:a=﹣1 ,b= 1 ,c=﹣4 ;(2)a、b、c在数轴上所对应的点分别为A、B、C,P是数轴上点A、B之间一动点(不与点A、B重合),其对应的数为x,化简:|x+1|﹣2|x﹣1|;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上同时运动,若点C和点A分别以每秒4个单位长度和1个单位长度的速度向左运动,点B以每秒2个单位长度的速度向右运动,假设t秒钟过后,点A与点C 之间的距离表示为AC,点A与B之间的距离表示为AB.请问:AC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.【分析】(1)根据绝对值和偶次幂具有非负性可得b﹣1=0,c+4=0,进而可得答案;(2)根据a、b、c的值可得x+1>0,x﹣1<0,然后再利用绝对值的性质取绝对值合并同类项即可;(3)根据题意可得A、B、C三点对应的数字,然后表示出AC、AB的长,进而可得AC﹣AB的值是常数.【解答】解:(1)∵a是最大的负整数,∴a=﹣1,∵|b﹣1|+(c+4)2=0,∴b﹣1=0,c+4=0,∴b=1,c=﹣4.(2)由题意可知:﹣1<x<1,所以x+1>0,x﹣1<0,所以:|x+1|﹣2|x﹣1|=x+1+2x﹣2=3x﹣1.(3)由题意可知:A点对应的数字:﹣1﹣t;B点对应的数字:1+2t;C点对应的数字:﹣4﹣4t,所以AC=﹣1﹣t﹣(﹣4﹣4t)=3t+3,AB=1+2t﹣(﹣1﹣t)=3t+2,所以AC﹣AB=3t+3﹣3t﹣2=1.故答案为:﹣1;1;﹣4.【点评】此题考查一元一次方程的实际运用,以及数轴与绝对值,正确理解AB,AC的变化情况是关键.11.已知在纸面上有一数轴(如图所示).一般地,数轴上表示数m和数n的两点之间的距离可用|m﹣n|表示(1)①数轴上表示﹣3和2两点之间的距离是 5②如果表示数a与﹣2的两点之间的距离是4,那么a=﹣6或2③若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值是 6(2)①5﹣|x+3|有最大值是 5 .②|x﹣4|+|x﹣5|的最小值是 1 .【分析】(1)①根据题意可以求得﹣3和2两点之间的距离;②根据题意可以列出相应的式子,从而可以求得a的值;③根据题意可以求得|a+4|+|a﹣2|的值;(2)①根据绝对值的定义可以求得题目中式子的最大值;②利用分类讨论的数学思想可以解答本题.【解答】解:(1)①数轴上表示﹣3和2两点之间的距离是:2﹣(﹣3)=5,故答案为:5;②表示数a与﹣2的两点之间的距离是4,则|a﹣(﹣2)|=4,解得,a=2或a=﹣6,故答案为:﹣6或2;③由题意可得,﹣4<a<2,∴|a+4|+|a﹣2|=a+4+2﹣a=6,故答案为:6;(2)①∵|x+3|≥0,∴5﹣|x+3|≤5,故答案为:5;②当x>5时,|x﹣4|+|x﹣5|=x﹣4+x﹣5=2x﹣9>1,当4≤x≤5时,|x﹣4|+|x﹣5|=x﹣4+5﹣x=1,当x<4时,|x﹣4|+|x﹣5|=4﹣x+5﹣x=9﹣2x>1,∴|x﹣4|+|x﹣5|的最小值是1,故答案为:1.【点评】本题考查数轴、非负数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想和数形结合的思想解答.12.规定一种新运算“※”,即a※b=a2﹣(1+b),例如1※2=12﹣(1+2)=﹣2,根据规定完成下列问题:(1)求3※(﹣2)的值;(2)求(﹣1)※[3※(﹣2)]的值.【分析】(1)原式利用已知的新定义计算即可求出值;(2)原式利用已知的新定义计算即可求出值.【解答】解:(1)根据题中的新定义得:3※(﹣2)=32﹣[1+(﹣2)]=9+1=10;(2)(﹣1)※[3※(﹣2)]=1﹣10=﹣9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间距离记作|AB|,定义:|AB|=|a﹣b|.(1)求线段AB的长|AB|;(2)设点P在数轴上对应的数为x,当|PA|﹣|PB|=3时,求x的值.【分析】(1)利用非负数的性质求出a、b的值即可解决问题;(2)列出绝对值方程,分区间讨论区间即可;【解答】解:(1)∵|a+4|+(b﹣1)2=0,∴a=﹣4,b=1,∴AB=|﹣4﹣1|=5.(2)由题意:|x﹣(﹣4)|﹣|x﹣1|=3,∴|x+4|﹣|x﹣1|=3,当x<﹣4时,﹣x﹣4+x﹣1=3,不合题意,当﹣4≤x<1时,x+4+x﹣1=3,解得x=0,当x≥1时,x+4﹣x+1=3,不符合题意,∴x=0.【点评】本题考查数轴、非负数的性质、绝对值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.已知三个有理数a,b,c,其积是负数,其和是正数,当时,求代数式x2017﹣2x+2的值.【分析】根据积是负数得出a,b,c均≠0,且a,b,c全为负数或一负两正,根据和为正数得出a,b,c 一负两正,求出x值,即可求出答案.【解答】解:∵三个有理数a、b、c,其积是负数,∴a,b,c均≠0,且a,b,c全为负数或一负两正,∵其和是正数,∴a,b,c一负两正,∴=1+1﹣1=1时,代数式x2017﹣2x+2=12017﹣2×1+2=1.【点评】本题考查了绝对值,有理数的加法、乘法、除法的应用,关键是求出x的值.15.(1)已知|x+2|+|y﹣3|=0,求﹣x﹣y+4xy的值.(2)一只猴子沿一条东西方向的木棒爬行,先以5米/秒的速度向东爬行,然后以2.4米/秒的速度向西爬行,试求它向东爬行2秒,又向西爬行5秒后与出发点的距离及方向.【分析】(1)先根据非负数的性质求出x、y的值,再代入代数式计算即可.(2)设向东为正,然后列出算式,再根据有理数的乘法运算法则进行计算即可得解.【解答】解:(1)∵|x+2|+|y﹣3|=0,|x+2|≥0,|y﹣3|≥0,∴x+2=0,y﹣3=0,解得x=﹣2,y=3,∴﹣x﹣y+4xy=5﹣5﹣24=﹣24;(2)设向东为正,根据题意得3×2.5+5×(﹣2.5)=(3﹣5)×2.5=﹣2×2.5=﹣5(米),即小虫距出发点西边5米处.【点评】(1)本题考查的是代数式求值、绝对值的概念、非负数的性质的知识.(2)考查了有理数的乘法,正、负数的意义,设向东为正,然后列出算式是解题的关键.16.阅读下列材料:|x|=,即当x<0时,=﹣1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求的值;(2)已知a,b是有理数,当abc≠0时,求的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.【分析】(1)对a、b进行讨论,即a、b同正,a、b同负,a、b异号,根据绝对值的意义计算+得到结果;(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算++得结果;(3)根据a,b,c是有理数,a+b+c=0,把求转化为求++的值,根据abc <0得结果.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=﹣1﹣1=﹣2;②a>0,b>0,+=1+1=2;③a,b异号,+=0.故+的值为±2或0.(2)已知a,b是有理数,当abc≠0时,①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,++=1+1+1=3;③a,b,c两负一正,++=﹣1﹣1+1=﹣1;④a,b,c两正一负,++=﹣1+1+1=1.故++的值为±1,或±3.(3)已知a,b,c是有理数,a+b+c=0,abc<0.所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,所以++=++=﹣[++]=﹣1.【点评】本题考查了有理数的加法、绝对值的化简,解决本题的关键是对a、b、c的分类讨论.注意=±1(x>0,结果为1,x<0,结果为﹣1)17.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣4π;(2)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,大圆离原点最远?②当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距9π,求此时两圆与数轴重合的点所表示的数.【分析】(1)该圆与数轴重合的点所表示的数的绝对值,就是大圆的周长;(2)①分别计算出第几次滚动后,大圆离原点的距离,比较作答;②先计算总路程,因为小圆不动,计算各数之和为﹣10,即大圆最后的落点为原点左侧,向左滚动10秒,距离为20π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距9π列等式,求出即可.【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π;(2)①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,大圆离原点最远;②1+2+4+3+2+8=20,20×2π=40π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当大圆结束运动时,大圆运动的路程共有40π,此时两圆与数轴重合的点之间的距离是20π;(3)设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=9π,2t﹣t=9,t=9,2πt=18π,πt=9π,则此时两圆与数轴重合的点所表示的数分别为18π、9π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=9π,﹣t+2t=9,t=9,﹣2πt=﹣18π,﹣πt=﹣9π,则此时两圆与数轴重合的点所表示的数分别为﹣18π、﹣9π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=9π,3t=9,t=3,2πt=6π,﹣πt=﹣3π,则此时两圆与数轴重合的点所表示的数分别为6π、﹣3π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=9π,t=3,πt=3π,﹣2πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣6π、3π.故答案为:﹣4π.【点评】本题考查了数轴及圆的几何变换,还考查了一元一次方程的应用,用方程解决此类问题比较简单,同时又利用了分类讨论的思想,明确向右移动坐标加的关系,向左移动坐标减的关系.18.如图所示,丁丁做了一个程序图,按要求完成下列问题.(1)当丁丁输入的数为6时,求输出的结果n;(2)若丁丁某次输入数m后,输出的结果n为﹣5.5.请你写出m可能的2个值.【分析】(1)把6代入计算即可求出值;(2)根据输出结果确定出m的值即可.【解答】解:(1)根据题意得:6﹣2=4,4﹣2=2,2﹣2=0,0﹣2=﹣2,﹣2的相反数是2,2﹣7=﹣5,则输出的结果n=﹣5;(2)m的可能值为﹣1.5或0.5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.王老师在一节数学课上讲解了二道例题:请你参考黑板上王老师的讲解,用运算律简便计算:(1)99×15;(2)999×118+999×(﹣)﹣999×.【分析】(1)根据乘法分配律进行计算;(2)先根据乘法分配律的逆运算加括号,再将999变形为100﹣1,利用乘法分配律进行计算.【解答】(满分8分)。

有理数培优题(有问题详解)

有理数培优题(有问题详解)

有理数培优题 基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于( )。

2、若∣a ∣=-a,则a ( )0.3、任何有理数的绝对值都是( )。

4、如果a+b=0,那么a 、b 一定是( )。

5、将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。

6、已知||3,||2,||a b a b a b ==-=-,则a b +=( )7、|2||3|x x -++的最小值是( )。

8、在数轴上,点A 、B 分别表示2141,-,则线段AB 的中点所表示的数是( )。

9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则()20102a b mn p p++-=( )。

10、若abc ≠0,则||||||a b c a b c++的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、53、…,其中从左到右第100个数是( )。

二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。

3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。

4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

5、计算:-21 +65-127+209-3011+4213-5615+72176、应用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。

现要求每次翻转其中任意四只,使它们杯口朝向相反,问能否经有限次翻转后,让所有杯子杯口朝下?能力培训题知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓广训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )(“祖冲之杯”邀请赛试题)A .1B .2C .3D .43、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。

七年级《有理数》培优练习题(有答案)

七年级《有理数》培优练习题(有答案)

1.计算:1﹣(+2)+3﹣(+4)+5﹣(+6)…+2015﹣(+2016)= .2.已知a、b、c的位置如图:则化简|﹣a|﹣|c﹣b|﹣|a﹣c|= .3.有理数a、b在数轴上的位置如图所示化简:|a+2|﹣|a|+|b﹣1|+|a+b|可得到.4.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是.5.如果x、y都是不为0的有理数,则代数式的最大值是.6.|x+2|+|x﹣2|+|x﹣1|的最小值是.7.当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.8.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x的值.16 x11 15129.先观察:1﹣=×,1﹣=×,1﹣=×,…(1)探究规律填空:1﹣= ×;(2)计算:(1﹣)•(1﹣)•(1﹣)…(1﹣)10.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×)100= ,2100×()100= ;(2)通过上述验证,归纳得出:(a•b)n= ;(abc)n= .(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.11.数轴上的点M对应的数是2,一只蚂蚁从点M出发沿着数轴以每秒2个单位的速度向左或向右爬行,当它到达数轴上的点N后,立即返回到原点,共用6秒.(1)蚂蚁爬行的路程是多少?(2)点N对应的数是多少?(3)点M和点N之间的距离是多少?12.我们已经学习过“乘方”和“开方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果a b=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作log a N=b.例如:因为53=125,所以log5125=3;因为112=121,所以log11121=2.(1)填空:log66= ,log381= .(2)如果log2(m﹣2)=3,求m的值.13.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?14.已知:数轴上点A表示的数是8,点B表示的数是﹣4.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左运动.P,Q两点同时出发.(1)经过多长时间,点P位于点Q左侧2个单位长度?(2)在点P运动的过程中,若点M是AP的中点,点N是BP的中点,求线段MN的长度.15.已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边.(1)点A所对应的数是,点B对应的数是;(2)若已知在数轴上的点E从点A出发向左运动,速度为每秒2个单位长度,同时点F 从点B出发向左运动,速度为每秒4个单位长度,在点C处点F追上了点E,求点C对应的数.16.如图,点A、B都在数轴上,且AB=6(1)点B表示的数是;(2)若点B以每秒2个单位的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B都以每秒2个单位沿数轴向右运动,而点O不动,t秒后有一个点是一条线段的中点,求t.17.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.18.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.19.已知点A在数轴上对应的有理数为a,将点A向左移动6个单位长度,再向右移动2个单位长度与点B重合,点B对应的有理数为﹣24.(1)求a;(2)如果数轴上的点C在数轴上移动3个单位长度后,距B点8个单位长度,那么移动前的点C距离原点有几个单位长度?20.已知数轴上A、B两点对应的数分别为﹣1和3,数轴上的一个动点P,其对应的数为x.(1)若点P到A、B两点的距离相等,求点P对应的数x的值;(2)数轴上是否存在点P,使点P到A、B两点的距离之和为5:若存在,请求出求x的值;若不存在,请说明理由.21.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?22.如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时出发,相向而行.M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数是;(2)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值(写出解题过程).23.看数轴,化简:|a|﹣|b|+|a﹣2|.24.在一条不完整的数轴上从左到右有点A,B,C,其中点A到点B的距离为3,点C到点B的距离为7,如图所示:设点A,B,C所对应的数的和是m.(1)若以B为原点,则点C所对应的数是;若以C为原点,则m的值是.(2)若原点O在图中数轴上,且点C到原点O的距离为4,求m的值.(3)动点P从A点出发,以每秒2个单位长度的速度向终点C移动,动点Q同时从B点出发,以每秒1个单位的速度向终点C移动,当几秒后,P、Q两点间的距离为2?请直接写出答案.参考答案与试题解析一.填空题(共8小题)1.﹣1008 . 2.b﹣2c . 3.﹣2b﹣a﹣1 . 4.﹣1 .【解答】解:∵点A1在数轴表示的数是,∴A2==2,A3==﹣1,A4==,A5==2,A6=﹣1,…,2016÷3=672,所有点A2016在数轴上表示的数是﹣1,故答案为:﹣1.5.如果x、y都是不为0的有理数,则代数式的最大值是 1 .【解答】解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的最大值是1.6.|x+2|+|x﹣2|+|x﹣1|的最小值是 4 .【解答】解:|x+2|+|x ﹣2|+|x ﹣1|表示:数轴上一点到﹣2,2和1距离的和, 当x 在﹣2和2之间的1时距离的和最小,是4. 7.﹣1≤x ≤2 ,最小值是 3 . 【解答】解:由数形结合得,若|x+1|+|x ﹣2|取最小值,那么表示x 的点在﹣1和2之间的线段上, 所以﹣1≤x ≤2,最小值是3.8.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x 的值 9 .【解答】解:16+11+12=39, 39﹣11﹣15=13, 39﹣12﹣13=14,x=39﹣16﹣14=9. 故答案为:9.二.解答题(共16小题) 9.先观察:1﹣=×,1﹣=×,1﹣=×,… (1)探究规律填空:1﹣=× ; (2)计算:(1﹣)•(1﹣)•(1﹣) (1))【解答】解:(1)原式=×;(2)原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)=××××…××=,故答案为:(1);10.阅读下列各式:(a•b)2=a 2b 2,(a•b)3=a 3b 3,(a•b)4=a 4b 4…16 x111512回答下列三个问题:(1)验证:(2×)100= 1 ,2100×()100= 1 ;(2)通过上述验证,归纳得出:(a•b)n= a n b n;(abc)n= a n b n c n.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.【解答】解:(1)(2×)100=1,2100×()100=1;②(a•b)n=a n b n,(abc)n=a n b n c n,③原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×=(﹣1)2015×=﹣1×=﹣.11.【解答】解:(1)2×6=12(个单位长度).故蚂蚁爬行的路程是12个单位长度;(2)①当点M在点N左侧时:a﹣2+a=12,a=7;②当点M在点N右侧时:﹣a+2﹣a=12,a=﹣5;(3)若向左爬MN=2﹣(﹣5)=7若向右爬MN=7﹣2=5.12.(1)填空:log66= 1 ,log381= 4 .(2)如果log2(m﹣2)=3,求m的值.解:(1)∵61=6,34=81,∴log66=1,log381=4,故答案为:1、4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;13.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,答:B地在A地的东边20千米;(2)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油;(3)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5(千米);14﹣9+8=13(千米);14﹣9+8﹣7=6(千米);14﹣9+8﹣7+13=19(千米);14﹣9+8﹣7+13﹣6=13(千米);14﹣9+8﹣7+13﹣6+12=25(千米);14﹣9+8﹣7+13﹣6+12﹣5=20(千米),25>20>19>14>13>>6>5,∴最远处离出发点25千米;(每小题2分)14.解:(1)设经过t秒,点P位于点Q左侧2个单位长度,6t﹣[4t+8﹣(﹣4)]=2,解得,t=7答:经过7秒,点P位于点Q左侧2个单位长度;(2)由题意可得,经过时间t,点P表示的数为:8﹣6t,∵点M是AP的中点,点N是BP的中点,∴点M表示的数是:,点N表示的数是:,∴MN=|(8﹣3t)﹣(2﹣3t)|=|8﹣3t﹣2+3t|=6,即线段MN的长度是6.15.(1)点A所对应的数是﹣5 ,点B对应的数是27 ;解:(1)根据题意得:A点所对应的数是﹣5;B对应的数是27;(2)设经过x秒F追上点E,根据题意得:2x+32=4x,解得:x=16,则点C对应的数为﹣5﹣2×16=﹣37.故答案为:﹣5;27.16.如图,点A、B都在数轴上,且AB=6(1)点B表示的数是﹣4 ;(2)若点B以每秒2个单位的速度沿数轴向右运动,则2秒后点B表示的数是0 ;解:(1)点B表示的数是﹣4;(2)﹣4+2×2=﹣4+4=0.故2秒后点B表示的数是0,(3)由题意可知:①O为BA的中点,(﹣4+2t)+(2+2t)=0,解得t=;②B为OA的中点,2+2t=2(﹣4+2t),解得t=5.故答案为:﹣4;0.17.(1)运动前线段AB的长为 6 ;运动1秒后线段AB的长为 4 ;(2)运动t秒后,点A,点B运动的距离分别为5t 和3t ;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.18.解:(1)根据题意得2t+t=28,解得t=,∴AM=>10,∴M在O的右侧,且OM=﹣10=,∴当t=时,P、Q两点相遇,相遇点M所对应的数是;(2)由题意得,t的值大于0且小于7.若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.若点P在点O的右边,则2t﹣10=7﹣t,解得t=.综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;(3)∵N是AP的中点,∴AN=PN=AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.19.解:(1)依题意有a﹣6+2=﹣24,解得a=﹣20.(2)点C在数轴上向左移动3个单位长度是﹣24﹣8+3=﹣29或﹣24+8+3=﹣13;点C在数轴上向右移动3个单位长度是﹣24﹣8﹣3=﹣35或﹣24+8﹣3=﹣19.故移动前的点C距离原点有29或13或35或19个单位长度.20.解:(1)由题意,得PA=PB,∴x﹣(﹣1)=3﹣x,解得x=1.(2)∵3﹣(﹣1)=4<5,∴点P不在线段AB上.当点P落在点B右侧时,有PB+PA=5,∴(x﹣3)+(x+1)=5,解得x=3.5.当点P落在点A左侧时,有BP+AP=5,∴(﹣1﹣x)+(3﹣x)=5,解得x=﹣1.5.∴x的值是3.5或﹣1.5.21.解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.22.解:(1)设运动x秒时,两只蚂蚁相遇在点P,根据题意可得:2x+3x=8﹣(﹣12),解得:x=4,﹣12+2×4=﹣4.答:运动4秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数为:﹣4;(2)运动t秒钟,蚂蚁M向右移动了2t,蚂蚁N向左移动了3t,若在相遇之前距离为10,则有2t+3t+10=20,解得:t=2.若在相遇之后距离为10,则有2t+3t﹣10=20,解得:t=6.综上所述:t的值为2或6.故答案为:4;﹣4.24.(1)若以B为原点,则点C所对应的数是7 ;若以C为原点,则m的值是﹣17 .解:(1)当B为原点时,点C对应的数是7;当以C为原点时,A、B对应的数分别为﹣7,﹣10,m=﹣10+(﹣7)+0=﹣17,故答案为:7,﹣17;(2)当O在C的左边时,A、B、C三点在数轴上所对应的数分别为﹣6、﹣3、4,则 m=﹣6﹣3+4=﹣5,当O在C的右边时,A、B、C三点在数轴上所对应的数分别为﹣14、﹣11、﹣4,则m=﹣14﹣11﹣4=﹣29,综上所述:m=﹣5或﹣29;(3)假如以C为原点,则A、B、C对应的数为﹣10,﹣7,0,Q对应的数是﹣(7﹣t),P 对应的数是﹣(10﹣2t),当P在Q的左边时,[﹣(7﹣t)]﹣[﹣(10﹣2t)]=2,解得:t=1当P在Q的左边时,[﹣(10﹣2t)]﹣[﹣(7﹣t)]=2,解得:t=5,即当1秒或5秒后,P、Q两点间的距离为2.。

第2章 有理数运算培优训练试题(解析)

第2章 有理数运算培优训练试题(解析)

浙教版七上数学第二章:有理数运算培优训练答案一.选择题:1.答案:C解析:∵8800108.83≈⨯,故精确到百位,故选择C2.答案:D解析:由题意可知,两次交易,总成交额是700+900=1600,总成本是600+800=1400, 总利润是1600-1400=200元,故选D.3.答案:D解析:∵ab <0,∴a ,b 异号, ∵a+b >0,∴正数的绝对值较大, 故选D .4.答案:C解析:∵3=x ,162=y ,∴3±=x ,4±=y ∴=+y x 7或1-或1或7-,故选择C5.答案:B 解析:100991...65154143132121199001...3012011216121⨯++⨯+⨯+⨯+⨯+⨯=++++++ 10099100111001991...6151514141313121211=-=-++-+-+-+-+-=, 故选择B6.答案:A解析:∵1===PR NP MN 数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,且3=+b a ,∴原点应为M 或R ,故选择A7.答案:D解析:当0=a 时,不成立,故①错误; ∵532a a a =⋅,故②正确; ∵4122=-,故③错误; ∵()()()()0228162182534=-=-÷+=-⨯÷-+--,故④正确; ∵2222x x x =+,故⑤正确,故正确答案为②④⑤,故选择D8.答案:A解析:64306032=÷⨯,即进行64次变化,这种变化每四次一个循环, ∴16464=÷,∴经过32分钟后回到开始状态,故选择A9.答案:B解析:输入48=x ,第一次输出24,第二次输出12,第三次输出6,第四次输出3, 第五次输出8,第六次输出4,第七次输出2,第八次输出1,第九次输出6,第十次输出3,第十一次输出8,第十二次输出4,第十三次输出2, 第十四次输出1,接下去第15至20次输出分别是6,3,8,4,2,1,即6次一循环, 第2019次输出()1......335682019=÷-,即为6,故选择B10.答案:A解析:圆转动过程中,以3,2,1,0的顺序四次一循环, ∴()504422018=÷-,故2018-与0重合,故选择A二.填空题: 11.答案:2解析:∵()0212=++-b a ,又∵01≥-a ,()022≥+b ,∴1=a ,2-=b , ∴()()2112019201820192018=+-=++a b a12.答案:7-或7解析:∵5=a ,∴5±=a ,∵2=b ,∴2±=b ,∵0>ab ,∴b a ,同号,∴725=+=+b a 或725-=--=+b a13.答案:0解析:∵n 为正整数,∴()()01111212=+-=-+-+nn14.答案:10 3028解析:点A 表示1,现将点A 沿数轴做如下移动:第一次将点A 向左移动3个单位长度到达点21-=A ,第2次将点A 1向右平移6个单位长度到达点42=A ,第3次将点A 2向左移动9个单位长度到达点53-=A ,第4次将点3A 向右移动12个单位到达74=A ......则第6次移动到点A 6时,点A 6在数轴上对应的实数是10;∴第2018次移动,2018A 对应的数为:30281322018=+⨯÷15.答案:12-n解析:∵一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7, 四层二叉树的结点总数为15......,∴第n 层二叉树的结点总数为12-n16.答案:nn 21+ 解析:nn n n n 211...45433432232111......4113112112222+=+⨯⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-三.解答题:17.解析:(1)原式651569532221732243431441338421==+=+=-++= (2)原式()()()41109422412524832447=-+=-⨯+-⨯⎪⎭⎫⎝⎛-+-⨯-=(3)原式()()()192217642178787=-⨯-=-⨯⨯⨯-= (4)原式143181=-+-=18.解析:(1)点B 在点A 右边距A 点4个单位长度,点B 所对应的数是 2 ;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒2个单位长度沿数轴向右运动,当点A 运动到﹣6所在的点处时,则A 、B 两点间距离为 12 ; (3)解:在(2)的条件下,经过4秒或者8秒,A 、B 两点相距4个单位。

有理数培优试题

有理数培优试题

......-15 14 -13 12 -11 10 8 -7 6 -5 4 -3 2 -1 -916 有理数培优试题1.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中准确的是( )A a c >bcB . |a ﹣b |=a ﹣bC . ﹣a <﹣b <cD . ﹣a ﹣c >﹣b ﹣c2.规定用符号[x ]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=.3、有理数a 、b 在数轴上的位置如图所示,下列各式成立的是( )A .B . a ﹣b >0C . a b >0 D. a ÷b >04有理.数a ,b 在数轴上的位置如图所示,以下说法准确的是( )A . a +b=0B . b <aC . a b >0D . |b|<|a|5.数轴上A 、B 、C 三点所表示的数分别为a 、b 、c ,且C 在AB 上.若|a|=|b|,AC :CB=1:3,则下列b 、c 的关系式,何者准确?( )A .|c|=|b|B .|c|=|b|C .|c|=|b|D .|c|=|b|6、 观察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式:按照上述规律排下去,那么第10行从左边第9个数是_________________________.7、下列说法准确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④8.若实数a 、b 、c 在数轴上对应点的位置如图所示, 则|c |-|b -a |+|b +c |等于…………( )A .-aB .-a +2bC .-a -2cD .a -2b9. 适合81272=-++a a 的整数a 的值的个数有 ………………………………( )A .5B .4C .3D .210. 王老伯在集市上先买回5只羊,平均每只a 元,稍后又买回3只羊,平均每只b 元,后 来他以每只2b a +的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是……( ) A .b a > B .b a < C .b a = D .与a 、b 的大小无关11. 已知一列有规律的数:2,3,5,9,17,33,…,其中第10个数是……………………( )A .512B .513C .1024D .102512. 设n ﹗表示从1连续乘到n,如:1!=1,2!=1×2,3!=1×2×3,…,100!=1×2×3…×100,那么,1!+2!+3!+…+100!的个位数字是………( • )A .1B .2C .3D .413、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则mb a cd m ++-2 值为14. 观察下列等式111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.(1) 猜想并写出:1(1)n n =+ .(2)直接写出下列各式的计算结果:111112233420062007++++=⨯⨯⨯⨯ ;(3)探究并计算: 111124466820062008++++⨯⨯⨯⨯。

(人教版)济南七年级数学上册第一章《有理数》经典习题(培优)

(人教版)济南七年级数学上册第一章《有理数》经典习题(培优)

一、选择题1.(0分)若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.(0分)数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.3.(0分)下列计算正确的是( )A .|﹣3|=﹣3B .﹣2﹣2=0C .﹣14=1D .0.1252×(﹣8)2=1D解析:D【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案.【详解】A 、原式=3,故A 错误;B 、原式=﹣4,故B 错误;C 、原式=﹣1,故C 错误;D 、原式=[0.125×(﹣8)]2=1,故D 正确.故选:D .【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.4.(0分)已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C 解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.5.(0分)一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样B 解析:B根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.6.(0分)用计算器求243,第三个键应按( )A .4B .3C .y xD .=C 解析:C【解析】用计算器求243,按键顺序为2、4、y x 、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.7.(0分)若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5± A 解析:A【分析】通过ab <0可得a 、b 异号,再由|a |=1,|b |=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a +b 的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab <0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.8.(0分)一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米C .612⎛⎫ ⎪⎝⎭米D .1212⎛⎫ ⎪⎝⎭米C 解析:C【分析】 根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米. 【详解】∵1-12=12, ∴第2次后剩下的绳子的长度为(12)2米; 依此类推第六次后剩下的绳子的长度为(12)6米. 故选C .【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.9.(0分)计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.10.(0分)已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b <a <0,∴a+b <a+(-b)=a-b .∵b >-1,∴a-1=a+(-1)<a+b .又∵-b <1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b <a-b <a+1,故选:C.【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.二、填空题11.(0分)在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.12.(0分)大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.13.(0分)按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是___.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.14.(0分)(1)-23与25的差的相反数是_____.(2)若|a+2|+|b-3|=0,则a-b=_____.(3)-13的绝对值比2的相反数大_____.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b-解析:1615-5123【分析】(1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.15.(0分)在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律 乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.16.(0分)已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab <0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab <0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.17.(0分)有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中是准确数的有_____,是近似数的有_____.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.18.(0分)A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【 解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.19.(0分)在数轴上,距离原点有2个单位的点所对应的数是________.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x 由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x |=2,所以x =±2.【详解】设距离原点有2个单位的点所对应的数为x ,由绝对值的定义可知:|x |=2,∴x =±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.20.(0分)已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.三、解答题21.(0分)计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.22.(0分)已知: b 是最小的正整数,且a 、b 满足(c -5)2+|a + b |= 0请回答问题: (1)请直接写出a 、b 、c 的值: a = ,b = ,c = ,(2)数轴上a , b , c 所对应的点分别为A ,B ,C ,则 B ,C 两点间的距离为 ;(3)在(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t秒,①此时A表示的数为;此时B表示的数为;此时C表示的数为;②若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解析:(1)-1;1;5;(2)4;(3)①-1-t;1+2t;5+5t;②BC-AB的值为2,不随着时间t的变化而改变.【分析】(1)先根据b是最小的正整数,求出b,再根据c2+|a+b|=0,即可求出a、c;(2)由(1)得B和C的值,通过数轴可得出B、C的距离;(3)①在(2)的条件下,通过运动速度和运动时间可表示出A、B、C;②先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.∵(c-5)2+|a+b|=0,∴a=-1,c=5;故答案为:-1;1;5;(2)由(1)知,b=1,c=5,b、c在数轴上所对应的点分别为B、C,B、C两点间的距离为4;(3)①点A以每秒1个单位长度的速度向左运动,运动了t秒,此时A表示的数为-1-t;点B以每秒2个单位长度向右运动,运动了t秒,此时B表示的数为1+2t;点C以5个单位长度的速度向右运动,运动了t秒,此时C表示的数为5+5t.②BC-AB的值不随着时间t的变化而改变,其值是2,理由如下:∵点A都以每秒1个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC=5+5t–(1+2t)=3t+4,AB=1+2t–(-1-t)=3t+2,∴BC-AB=(3t+4)-(3t+2)=2.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.23.(0分)计算:(1)117483612⎛⎫-+-⨯⎪⎝⎭;(2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.24.(0分)计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. 解析:(1)﹣8;(2)13. 【分析】(1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. =-1+(-8)×16⎛⎫-⎪⎝⎭ =413-+=13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题. 25.(0分)某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为 ;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.26.(0分)某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.27.(0分)某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.28.(0分)计算下列各式的值:(1)1243 3.55-+-(2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯-=488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键.。

第1章 有理数培优训练试题(含解析)

第1章 有理数培优训练试题(含解析)

浙教版七上数学第一章:有理数培优训练答案一.选择题:1.答案:B解析:∵053=-++b a ,∴,3,03-=∴=+a a 5,05=∴=-b b ,故选择B2.答案:D解析:∵ab <0, ∴a 、b 异号, ∵a+b <0,∴负数的绝对值大于正数的绝对值. 故选:D .3.答案:B解析:∵01≥-x ,即当1=x 时,|x ﹣1|+2的最小值为2,故选择B4.答案:B解析:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256, 我们发现四次一循环,因为2......50442018=÷,故未位数为4,故选择B5.答案:A解析:∵0是有理数中的其中一个数,它可以表示很多种不同的意义,故①错误; ∵整数包括正整数、负整数和零,故②错误; ∵正数和负数中有不是有理数的数,故③错误; ∵没有最小的整数,故④错误;∵负分数是有理数,故⑤正确。

故选择A 6.答案:A解析:01<<-a ,01,01,0>+>-<∴a a a ,()()011<+-∴a a a ,故选择A7.答案:D解析:如果m 是一个有理数,当0>m 时,0<-m ;当0=m 时,0=-m ; 当0<m 时,0>-m ,故选择D8.答案:D解析:试题分析:0<a <1,取21=a ,所以21-=-a ,21=a ,21-=-a ,所以a a a a 11->->>,故本题选D.9.答案:B解析:∵0,0><b a 且b a >, ∴a b b a -<<-<,故选择B10.答案:A解析:因为102601710=, 98604930=, 92602315=, 99603320=, 95601912= 又10299989592<<<<,故中间一个数应是4930,故选择A二.填空题:11.答案:2解析:P 表示的数为1-,向右平移3个单位后P '表示的数为212.答案:5解析:∵212-的相反数为212,这两个数中间的整数为2,1,0,1,2--共5个。

有理数经典培优训练含答案

有理数经典培优训练含答案

专训一:有理数的比较大小的方法名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.)利用作差法比较大小1.比较1731和5293的大小.利用作商法比较大小2.比较-172 016和-344 071的大小.利用找中间量法比较大小3.比较1 0072 016与1 0092 017的大小. 利用倒数法比较大小4.比较1111 111和1 11111 111的大小.利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.6.比较-623,-417,-311,-1247的大小.利用数轴法比较大小7.已知a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.利用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为_______________________________________________.利用分类讨论法比较大小9.比较a 与a 3的大小.专训二:有理数中6种易错类型对有理数有关概念理解不清造成错误1.下列说法正确的是( )A .最小的正整数是0B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a2.已知|a|=7,则a = W.误认为|a|=a ,忽略对字母a 分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是() A .负数 B .负数或零C .正数或零D .正数4.已知a =8,|a|=|b|,则b 的值等于( )A .8B .-8C .0D .±8对括号使用不当导致错误5.计算:-7-5.6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.忽略或不清楚运算顺序7.计算:-81÷94×49÷(-16).8.计算:(-5)-(-5)×110÷110×(-5).乘法运算中确定符号与加法运算中的符号规律相混淆9.计算:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345.10.计算:-36×⎝ ⎛⎭⎪⎫712-56-1.除法没有分配律11.计算:24÷⎝ ⎛⎭⎪⎫13-18-16.专训三:有理数中几种热门考点 名师点金:本章主要学习了有理数的定义及其相关概念,有理数的运算,科学记数法与近似数等.本章内容是中考的基本考查内容之一,命题形式多以选择题和简单的计算题为主,注重对基础知识和基本技能的考查.有理数的定义、分类1.在下列各数中:+6,-8.25,-0.49,-23,-18,负有理数有( )A .1个B .2个C .3个D .4个相反数、倒数、绝对值2.(1)化简下列各式:⎪⎪⎪⎪⎪⎪-12= ;|+(-3)|= ;-⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-35= W.(2)-5的相反数是 ;-13的绝对值是 ;54的倒数是 W.3.式子|m -3|+5的值随m 的变化而变化,当m = 时,|m -3|+5有最小值,最小值是 .4.已知a ,b 分别是两个不同的点A ,B 所表示的有理数,且|a|=5,|b|=2,它们在数轴上的位置如图所示.(1)试确定数a,b;(2)表示a,b两数的点相距多远?(3)若C点在数轴上,C点到B点的距离是C点到A点距离的13,求C点表示的数.(第4题)有理数的大小比较5.(中考·莱芜)在-12,-13,-2,-1这四个数中,最大的数是()A.-12B.-13C.-2D.-16.如图,数轴上A,B两点分别表示有理数a,b,则下列结论正确的是()(第6题)A.a<bB.a+b<0C.a-b>0D.ab>0有理数的运算7.下列各式成立的是()A.|-2|=2B.-(-1)=-1C.1÷(-3)=13D.-2×3=68.若四个有理数之和的14是3,其中三个数分别是-10,+8,-6,则第四个数是()A.+8B.-8C.+20D.+119.计算下列各题:(1)17-23÷(-2)×3;(2)2×(-5)+23-3÷12;(3)10+8÷(-2)2-(-4)×(-3);(4)(-24)÷⎝ ⎛⎭⎪⎫2232+512×⎝ ⎛⎭⎪⎫-16-0.52.非负数性质的应用10.已知a 为有理数,下列说法中正确的是( )A .⎝ ⎛⎭⎪⎫a +12 0162为正数 B .-⎝ ⎛⎭⎪⎫a -12 0162为负数 C .a +⎝ ⎛⎭⎪⎫12 0162为正数 D .a 2+12 016为正数11.若|a +1|+(b -2)2=0,求(a +b )9+a 6的值.科学记数法、近似数的应用12.(2015·成都)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学记数法表示126万为( )A .126×104B .1.26×105C .1.26×106D .1.26×10713.若一个数等于5.8×1021,则这个数的整数位数是( )A .20B .21C .22D .2314.把390 000用科学记数法表示为 ,用科学记数法表示的数5.16×104的原数是 ,近似数2.236×108精确到的数位是 W.15.(2015·资阳)太阳的半径约为696 000千米,用科学记数法表示为 千米.数学思想方法的应用a.数形结合思想16.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c.根据图中各点位置,下列式子正确的是( )(第16题)A .(a -1)(b -1)>0B .(b -1)(c -1)>0C .(a +1)(b +1)<0D .(b +1)(c +1)<0b.转化思想17.下列各式可以写成a -b +c 的是( )A .a -(+b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )18.计算:⎣⎢⎡⎦⎥⎤113-⎝ ⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712.c.分类讨论思想19.比较2a 与-2a 的大小.有理数中的探究与创新20.(2015·德州)一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( )A .8B .9C .13D .1521.(2015·荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m =(i ,j )表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2 015=( )A .(31,50)B .(32,47)C .(33,46)D .(34,42)22.(2015·广东)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 W.23.(2015·绥化)填在下面各正方形(如图)中的四个数之间都有一定的规律,据此规律得出a +b +c = W.(第23题)24.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.(第24题)根据此规律求:(1)这样的一个细胞经过第四个30分钟后可分裂成多少个细胞?(2)这样的一个细胞经过3小时后可分裂成多少个细胞?(3)这样的一个细胞经过n(n为正整数)小时后可分裂成多少个细胞?答案专训一1.解:因为5293-1731=5293-5193=193>0,所以5293>1731.点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方法.2.解:因为172 016÷344 071=172 016×4 07134=1 3571 344>1,所以172 016>344 071.所以-172 016<-344 071.点拨:作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时,作商比较往往能起到事半功倍的效果;当这两个数是负数时,可先分别求出它们的绝对值,再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3.解:因为1 0072 016<12,1 0092 017>12,所以1 0072 016<1 0092 017.点拨:对于类似的两数的大小比较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案.4.解:1111 111的倒数是101111,1 11111 111的倒数是1011 111.因为101111>1011 111,所以1111 111<1 11111 111.点拨:利用倒数法比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小,从而确定这两个数的大小.5.解:每个分数都加1,分别得12 015,115,12 016,116.因为12 016<12 015<116<115,所以-2 0152 016<-2 0142 015<-1516<-1415.点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了.6.解:因为-623=-1246,-417=-1251,-311=-1244,-1244<-1246<-1247<-1251,所以-311<-623<-1247<-417.点拨:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.7.解:把a ,-a ,b ,-b 在数轴上表示出来,如图所示,根据数轴可得-a <b <-b <a.(第7题)点拨:本题运用了数轴法比较有理数的大小,在数轴上找出这几个数对应的点的大致位置,即可作出判断.8.|a +b|<|a -b|=|a|+|b|点拨:已知a ,b 异号,不妨取a =2,b =-1或a =-1,b =2.当a =2,b =-1时,|a +b|=|2+(-1)|=1,|a -b|=|2-(-1)|=3,|a|+|b|=|2|+|-1|=3;当a =-1,b =2时,|a +b|=|(-1)+2|=1,|a -b|=|-1-2|=3,|a|+|b|=|-1|+|2|=3.所以|a +b|<|a -b|=|a|+|b|.方法总结:本题运用特殊值法解题,取特殊值时要注意所取的值既要符合题目条件,又要考虑可能出现的多种情况.以本题为例,可以分为a 正、b 负和a 负、b 正两种情况.9.解:分三种情况讨论:①当a >0时,a >a 3;②当a =0时,a =a 3;③当a <0时,|a|>⎪⎪⎪⎪⎪⎪a 3,则a <a 3.专训二1.D 2.±7 3.C4.D 点拨:因为|a|=|b|=8,所以b =±8.5.解:原式=-7+(-5)=-12.6.解:原式=2+15-14+12=2920.7.解:原式=-81×49×49×(-116)=1.点拨:本题易出现“原式=-81÷1÷(-16)=8116”的错误.8.解:原式=(-5)-(-5)×110×10×(-5) =(-5)-25=-30.9.解:原式=⎝ ⎛⎭⎪⎫-94×⎝ ⎛⎭⎪⎫-195 =17120.点拨:解本题时常常会出现乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆的错误.如:(-214)×(-345)=-(94×195)=-17120.10.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36=45.11.解:原式=24÷⎝ ⎛⎭⎪⎫824-324-424 =24÷124=576.点拨:解本题时往往会出现将乘法分配律运用到除法运算中,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.专训三1.D 2.(1)12;3;-35(2)5;13;453.3;54.解:(1)因为|a|=5,|b|=2,所以a=±5,b=±2.由数轴可知a<b<0,所以a=-5,b=-2.(2)相距3.(3)C点表示的数为-0.5或-2.75.5.B 6.C7.A8.C9.解:(1)原式=17-8÷(-2)×3=17-(-12)=29.(2)原式=-10+8-6=-8.(3)原式=10+8÷4-12=0.(4)原式=(-16)×964+112×(-16)-14=⎝⎛⎭⎪⎫-94+(-1112)-14=-4112.10.D11.解:由题意得a+1=0,b-2=0,所以a=-1,b=2. 所以(a+b)9+a6=[(-1)+2]9+(-1)6=2.12.C13.C14.3.9×105;51 600;十万位15.6.96×10516.D17.B18.解:原式=113÷⎝⎛⎭⎪⎫-712-⎝⎛⎭⎪⎫-234÷⎝⎛⎭⎪⎫-712=-167-337=-7.19.解:当a<0时,2a<-2a;当a=0时,2a=-2a;当a>0时,2a>-2a.20.A点拨:根据从第三个数起,每个数都等于它前面的两个数之和,可得x=1+2=3,y=x+5=3+5=8,故选A.21.B点拨:第1个正奇数是1,第2个正奇数是3,第3个正奇数是5,…,第n个正奇数是2n-1,由2 015=2n-1,得n=1 008,即2 015是从1开始的第1 008个正奇数.由题意知,第1组有1个正奇数,第2组有3个正奇数,第3组有5个正奇数,…,第i组有(2i-1)个正奇数,第31组有31×2-1=61(个)正奇数.因为前31组正奇数的总个数为1+3+5+7+…+57+59+61=961,前32组正奇数的总个数为961+63=1 024,所以第1 008个正奇数应在第32组内.又因为1 008-961=47,所以2 015是第32组的第47个正奇数,故选B.22.1021 点拨:从这组数可以看出,这组数的分子是从1开始,逐次增加1的自然数,分母是分子的2倍加1,即第n 个数是n 2n +1,所以第10个数是102×10+1=1021.23.110 点拨:根据前三个正方形中数的规律可知:c 所处的位置上的数是连续的奇数,所以c =9;a 所处的位置上的数是连续的偶数,所以a =10;而b =ac +1=10×9+1=91,所以a +b +c =10+91+9=110.24.解:(1)一个细胞经过第四个30分钟后可分裂成16个细胞.(2)一个细胞经过3小时后可分裂成64个细胞.(3)一个细胞经过n(n 为正整数)小时后可分裂成22n 个细胞.。

七年级有理数(培优篇)(Word版 含解析)

七年级有理数(培优篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数培优题 基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于( )。

2、若∣a ∣=-a,则a ( )0.3、任何有理数的绝对值都是( )。

4、如果a+b=0,那么a 、b 一定是( )。

5、将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。

6、已知||3,||2,||a b a b a b ==-=-,则a b +=( )7、|2||3|x x -++的最小值是( )。

8、在数轴上,点A 、B 分别表示2141,-,则线段AB 的中点所表示的数是( )。

9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则()20102a b mn p p++-=( )。

10、若abc ≠0,则||||||a b c a b c++的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、53、…,其中从左到右第100个数是( )。

二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。

3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。

4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

5、计算:-21 +65-127+209-3011+4213-5615+72176、应用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。

现要求每次翻转其中任意四只,使它们杯口朝向相反,问能否经有限次翻转后,让所有杯子杯口朝下?能力培训题知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓广训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )(“祖冲之杯”邀请赛试题)A .1B .2C .3D .43、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。

2、利用数轴能直观地解释相反数;例2:如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为 。

拓广训练:1、在数轴上表示数a 的点到原点的距离为3,则._________3=-a2、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于 。

(北京市“迎春杯”竞赛题)3、利用数轴比较有理数的大小;例3:已知0,0<>b a 且0<+b a ,那么有理数b a b a ,,,-的大小关系是 。

(用“<”号连接)(北京市“迎春杯”竞赛题) 拓广训练:1、 若0,0><n m 且n m >,比较m n n m n m n m --+--,,,,的大小,并用“>”号连接。

例4:已知5<a 比较a 与4的大小拓广训练:1、已知3->a ,试讨论a 与3的大小2、已知两数b a ,,如果a 比b 大,试判断a 与b 的大小4、利用数轴解决与绝对值相关的问题。

例5: 有理数c b a ,,在数轴上的位置如图所示,式子c b b a b a -++++化简结果为( )A .c b a -+32B .c b -3C .c b +D .b c -拓广训练:1、有理数c b a ,,在数轴上的位置如图所示,则化简c c a b b a ------+11的结果为 。

2、已知b b a b a 2=-++,在数轴上给出关于b a ,的四种情况如图所示,则成立的是 。

3、已知有理数c b a ,,在数轴上的对应的位置如下图:则b a c ac -+-+-1化简后的结果是( ) (湖北省初中数学竞赛选拨赛试题)A .1-b B .12--b a C .c b a 221--+ D .b c +-21 三、培优训练1、已知是有理数,且()()012122=++-y x ,那以yx +的值是( )A .21 B .23 C .21或23- D .1-或232、(07乐山)如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为( ) A.7B.3C.3-D.2-3、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数d c b a ,,,且102=-a d ,那么数轴的原点应是( ) A .A 点 B .B 点 C .C 点 D .D 点4、数d c b a ,,,所对应的点A ,B ,C ,D 在数轴上的位置如图所示,那么c a +与d b +的大小关系是( )A .d b c a +<+B .d b c a +=+C .d b c a +>+D .不确定的5、不相等的有理数c b a ,,在数轴上对应点分别为A ,B ,C ,若c a c b b a -=-+-,那么点B ( )A .在A 、C 点右边B .在A 、C 点左边 C .在A 、C 点之间D .以上均有可能 6、设11++-=x x y ,则下面四个结论中正确的是( )(全国初中数学联赛题) A .y 没有最小值 B .只一个x 使y 取最小值 C .有限个x (不止一个)使y 取最小值 D .有无穷多个x 使y 取最小值 7、在数轴上,点A ,B 分别表示31-和51,则线段AB 的中点所表示的数是 。

8、若0,0<>b a ,则使b a b x a x -=-+-成立的x 的取值范围是 。

9、x 是有理数,则22195221100++-x x 的最小值是 。

10、已知d c b a ,,,为有理数,在数轴上的位置如图所示:且,64366====d c b a 求c b a b d a -+---22323的值。

11、(南京市中考题)(1)阅读下面材料:点A 、B 在数轴上分别表示实数b a ,,A 、B 两点这间的距离表示为AB ,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,b a b OB AB -===;当A 、B两点都不在原点时,①如图2,点A 、B 都在原点的右边b a a b a b OA OB AB -=-=-=-=;②如图3,点A 、B都在原点的左边()b a a b a b OA OB AB -=---=-=-=; ③如图4,点A 、B 在原点的两边()b a b a b a OB OA AB -=-+=+=+=。

综上,数轴上A 、B 两点之间的距离b a AB -=。

(2)回答下列问题:①数轴上表示2和5两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ;BAOB(A)O BAOoAOo②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果2=AB ,那么x 为 ; ③当代数式21-++x x 取最小值时,相应的x 的取值范围是 ; ④求1997321-+⋅⋅⋅+-+-+-x x x x 的最小值。

聚焦绝对值一、阅读与思考绝对值是初中代数中的一个重要概念,引入绝对值概念之后,对有理数、相反数以及后续要学习的算术根可以有进一步的理解;绝对值又是初中代数中一个基本概念,在求代数式的值、代数式的化简、解方程与解不等式时,常常遇到含有绝对值符号的问题,理解、掌握绝对值概念应注意以下几个方面: 1、脱去绝值符号是解绝对值问题的切入点。

脱去绝对值符号常用到相关法则、分类讨论、数形结合等知识方法。

去绝对值符号法则:()()()0000<=>⎪⎩⎪⎨⎧-=a a a a a a 2、恰当地运用绝对值的几何意义从数轴上看a 表示数a 的点到原点的距离;b a -表示数a 、数b 的两点间的距离。

3、灵活运用绝对值的基本性质 ①0≥a ②222a aa == ③b a ab ⋅= ④()0≠=b ba b a⑤b a b a +≤+ ⑥b a b a -≥- 二、知识点反馈 1、去绝对值符号法则例1:已知3,5==b a 且a b b a -=-那么=+b a 。

拓广训练:1、已知,3,2,1===c b a 且c b a >>,那么()=-+2c b a 。

(北京市“迎春杯”竞赛题)2、若5,8==b a ,且0>+b a ,那么b a -的值是( )A .3或13B .13或-13C .3或-3D .-3或-13 2、恰当地运用绝对值的几何意义例2: 11-++x x 的最小值是( ) A .2 B .0 C .1 D .-1 解法1、分类讨论当1-<x 时,()()221111>-=--+-=-++x x x x x ; 当11≤≤-x 时,()21111=--+=-++x x x x ; 当1>x 时()221111>=-++=-++x x x x x 。

比较可知,11-++x x 的最小值是2,故选A 。

解法2、由绝对值的几何意义知1-x 表示数x 所对应的点与数1所对应的点之间的距离;1+x 表示数x 所对应的点与数-1所对应的点之间的距离;11-++x x 的最小值是指x 点到1与-1两点距离和的最小值。

如图易知当11≤≤-x 时,11-++x x 的值最小,最小值是2故选A 。

拓广训练:1、 已知23++-x x 的最小值是a ,23+--x x 的最大值为b ,求b a +的值。

三、培优训练1、如图,有理数b a ,在数轴上的位置如图所示:则在4,2,,,2,--+---+b a b a a b a b b a 中,负数共有( )(湖北省荆州市竞赛题) A .3个 B .1个 C .4个 D .2个 2、若m 是有理数,则m m -一定是( ) A .零 B .非负数 C .正数 D .负数3、如果022=-+-x x ,那么x 的取值范围是( )A .2>xB .2<xC .2≥xD .2≤x4、b a ,是有理数,如果b a b a +=-,那么对于结论(1)a 一定不是负数;(2)b 可能是负数,其中( )(第15届江苏省竞赛题)A .只有(1)正确B .只有(2)正确C .(1)(2)都正确D .(1)(2)都不正确 5、已知a a -=,则化简21---a a 所得的结果为( ) A .1- B .1 C .32-a D .a 23-6、已知40≤≤a ,那么a a -+-32的最大值等于( )A .1B .5C .8D .9 7、已知c b a ,,都不等于零,且abcabcc c b b a a x +++=,根据c b a ,,的不同取值,x 有( ) A .唯一确定的值 B .3种不同的值 C .4种不同的值 D .8种不同的值 8、满足b a b a +=-成立的条件是( )(湖北省黄冈市竞赛题) A .0≥ab B .1>ab C .0≤ab D .1≤ab 9、若52<<x ,则代数式xx xx x x +-----2255的值为 。

相关文档
最新文档