浙江省2019届数学中考专题复习专题十综合性压轴题训练1

合集下载

2019年全国各地中考数学压轴题分类汇编:选择、填空(浙江专版)(解析卷)

2019年全国各地中考数学压轴题分类汇编:选择、填空(浙江专版)(解析卷)

2019年全国各地中考数学压轴题分类汇编(浙江专版)选择、填空参考答案与试题解析一.选择题(共17小题)1.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.2.(2019•宁波)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm解:设AB=xcm,则DE=(6﹣x)cm,根据题意,得=π(6﹣x),解得x=4.故选:B.3.(2019•杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1解:∵y=(x+a)(x+b)=x2+(a+b)x+ab,∴△=(a+b)2﹣4ab=(a﹣b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.4.(2019•温州)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2解:∵y=x2﹣4x+2=(x﹣2)2﹣2,∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,当x=﹣1时,有最大值为y=9﹣2=7.故选:D.5.(2019•嘉兴)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④解:二次函数y=﹣(x﹣m)2﹣m+1(m为常数)①∵顶点坐标为(m,﹣m+1)且当x=m时,y=﹣m+1∴这个函数图象的顶点始终在直线y=﹣x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得﹣(x﹣m)2﹣m+1=0,其中m≤1解得:x=m﹣,x=m+∵顶点坐标为(m,﹣m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|﹣m+1|=|m﹣(m﹣)|解得:m=0或1∴存在m=0或1,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴∵二次函数y=﹣(x﹣m)2﹣m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且﹣1<0∴y1>y2故结论③错误;④当﹣1<x<2时,y随x的增大而增大,且﹣1<0∴m的取值范围为m≥2.故结论④正确.故选:C.6.(2019•温州)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD 于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A.B.C.D.解:如图,连接ALGL,PF.由题意:S矩形AMLD=S阴=a2﹣b2,PH=,∵点A,L,G在同一直线上,AM∥GN,∴△AML∽△GNL,∴=,∴=,整理得a=3b,∴===,故选:C.7.(2019•湖州)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A.2B.C.D.解:如图,经过P、Q的直线则把它剪成了面积相等的两部分,由图形可知△AMC≌△FPE≌△BPD,∴AM=PB,∴PM=AB,∵PM==,∴AB=,故选:D.8.(2019•台州)已知某函数的图象C与函数y=的图象关于直线y=2对称.下列命题:①图象C与函数y=的图象交于点(,2);②点(,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A.①②B.①③④C.②③④D.①②③④解:∵函数y=的图象在第一、三象限,则关于直线y=2对称,点(,2)是图象C与函数y=的图象交于点;∴①正确;点(,﹣2)关于y=2对称的点为点(,6),∵(,6)在函数y=上,∴点(,﹣2)在图象C上;∴②正确;∵y=中y≠0,x≠0,取y=上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4﹣;∴③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=上,∴4﹣y1=,4﹣y2=,∵x1>x2>0或0>x1>x2,∴4﹣y1<4﹣y2,∴y1>y2;∴④不正确;故选:A.9.(2019•绍兴)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变解:连接DE,∵,,∴矩形ECFG与正方形ABCD的面积相等.故选:D.10.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx 与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x轴上为(0,﹣)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A错误;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b >0,故选项B错误;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C 错误;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b <0,故选项D正确;故选:D.11.(2019•宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的长=a﹣(c﹣b),宽=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.12.(2019•金华)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2B.C.D.解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选:D.13.(2019•绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.解:过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF=.故选:A.14.(2019•金华)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是()A.B.﹣1C.D.解:连接HF,设直线MH与AD边的交点为P,如图:由折叠可知点P、H、F、M四点共线,且PH=MF,设正方形ABCD的边长为2a,则正方形ABCD的面积为4a2,∵若正方形EFGH与五边形MCNGF的面积相等∴由折叠可知正方形EFGH的面积=×正方形ABCD的面积=,∴正方形EFGH的边长GF==∴HF=GF=∴MF=PH==a∴=a÷=故选:A.15.(2019•台州)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=∴CM=∴tanα=tan∠DMC==故选:D.16.(2019•衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A →D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y 与x函数关系的是()A.B.C.D.解:通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的高BC不变,则其面积是x的一次函数,面积随x增大而增大,当x=2时有最大面积为4,当P在AD边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而增大,当x=6时,有最大面积为8,当点P在DC边上运动时,△CPE的底边EC不变,则其面积是x 的一次函数,面积随x增大而减小,最小面积为0;故选:C.17.(2019•台州)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1B.3:2C.:1D.:2解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF.由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,∴∠CDK=∠DKF=90°,DK=FK,DF=DK,∴===(角平分线的性质定理,可以用面积法证明),∴==,∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为:1,故选:A.二.填空题(共15小题)18.(2019•杭州)在直角三角形ABC中,若2AB=AC,则cos C=或.解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;综上所述,cos C的值为或.故答案为或.19.(2019•宁波)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为 6.5或3.解:∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,∴AB==6,在Rt△ADC中,∠C=90°,AC=12,CD=5,∴AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,∵∠C=90°,∴AC⊥BC,∴PH∥AC,∴△DPH∽△DAC,∴,∴=,∴PD=6.5,∴AP=6.5;当⊙P于AB相切时,点P到AB的距离=6,过P作PG⊥AB于G,则PG=6,∵AD=BD=13,∴∠P AG=∠B,∵∠AGP=∠C=90°,∴△AGP∽△BCA,∴,∴AP=3,∵CD=5<6,∴半径为6的⊙P不与△ABC的AC边相切,综上所述,AP的长为6.5或3,故答案为:6.5或3.20.(2019•杭州)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于2(5+3).解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴P A′=PD′=2a,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)21.(2019•温州)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于57度.解:连接OE,OF∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57°22.(2019•宁波)如图,过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为6.解:连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,∵过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,∴A与B关于原点对称,∴O是AB的中点,∵BE⊥AE,∴OE=OA,∴∠OAE=∠AEO,∵AE为∠BAC的平分线,∴∠DAE=∠AEO,∴AD∥OE,∴S△ACE=S△AOC,∵AC=3DC,△ADE的面积为8,∴S△ACE=S△AOC=12,设点A(m,),∵AC=3DC,DH∥AF,∴3DH=AF,∴D(3m,),∵CH∥GD,AG∥DH,∴△DHC∽△AGD,∴S△HDC=S△ADG,∵S△AOC=S△AOF+S梯形AFHD+S△HDC=k+(DH+AF)×FH+S△HDC=k+×2m+=k++=12,∴2k=12,∴k=6;故答案为6;23.(2019•嘉兴)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC 交⊙O于点D,则CD的最大值为.解:连接OD,如图,∵CD⊥OC,∴∠COD=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时OC=,∴CD的最大值为=AB=1=,故答案为:.24.(2019•温州)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为12+8cm.解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=x,IK=x﹣x,∵Rt△CIK中,(x﹣x)2+x2=22,解得x2=2+,又∵S菱形BCOI=IO×CK=IC×BO,∴x2=×2×BO,∴BO=2+2,∴BE=2BO=4+4,AB=AE=BO=4+2,∴△ABE的周长=4+4+2(4+2)=12+8,故答案为:12+8.25.(2019•湖州)如图,已知在平面直角坐标系xOy中,直线y=x﹣1分别交x轴,y轴于点A 和点B,分别交反比例函数y1=(k>0,x>0),y2=(x<0)的图象于点C和点D,过点C作CE⊥x轴于点E,连结OC,OD.若△COE的面积与△DOB的面积相等,则k的值是2.解:令x=0,得y=x﹣1=﹣1,∴B(0,﹣1),∴OB=1,把y=x﹣1代入y2=(x<0)中得,x﹣1=(x<0),解得,x=1﹣,∴,∴,∵CE⊥x轴,∴,∵△COE的面积与△DOB的面积相等,∴,∴k=2,或k=0(舍去).故答案为:2.26.(2019•嘉兴)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF 重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm;连接BD,则△ABD的面积最大值为(24+36﹣12)cm2.解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm 如图,连接BD',AD',∵S△AD'B=S△ABC+S△AD'C﹣S△BD'C∴S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N当E'D'⊥AC时,S△AD'B有最大值,∴S△AD'B最大值=24+(12﹣4)×6=(24+36﹣12)cm2.故答案为:(24﹣12),(24+36﹣12)27.(2019•绍兴)如图,矩形ABCD的顶点A,C都在曲线y=(常数是>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是y=x.解:∵D(5,3),∴A(,3),C(5,),∴B(,),设直线BD的解析式为y=mx+n,把D(5,3),B(,)代入得,解得,∴直线BD的解析式为y=x.故答案为y=x.28.(2019•湖州)七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图2所示的“拼搏兔”造型(其中点Q、R分别与图2中的点E、G重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是4.解:如图2中,连接EG,作GM⊥EN交EN的延长线于M.在Rt△EMG中,∵GM=4,EM=2+2+4+4=12,∴EG===4,∴EH==4,故答案为4.29.(2019•绍兴)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是6+2或10或8+2.解:如图所示:图1的周长为1+2+3+2=6+2;图2的周长为1+4+1+4=10;图3的周长为3+5++=8+2.故四边形MNPQ的周长是6+2或10或8+2.故答案为:6+2或10或8+2.30.(2019•衢州)如图,在平面直角坐标系中,O为坐标原点,▱ABCD的边AB在x轴上,顶点D 在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B 恰好为OE的中点,DE与BC交于点F.若y=(k≠0)图象经过点C,且S△BEF=1,则k的值为24.解:连接OC,BD,∵将△AOD沿y轴翻折,使点A落在x轴上的点E处,∴OA=OE,∵点B恰好为OE的中点,∴OE=2OB,∴OA=2OB,设OB=BE=x,则OA=2x,∴AB=3x,∵四边形ABCD是平行四边形,∴CD=AB=3x,∵CD∥AB,∴△CDF∽△BEF,∴==,∵S△BEF=1,∴S△BDF=3,S△CDF=9,∴S△BCD=12,∴S△CDO=S△BDC=12,∴k的值=2S△CDO=24.31.(2019•台州)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为.解:过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,∵BD=4,∴DM=y﹣4,DN=4﹣x,∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°,∴∠EAB+∠ABE=∠ABE+∠CBF=90°,∴∠EAB=∠CBF,∴△ABE∽△BFC,∴,即=,∴xy=mn,∵∠ADN=∠CDM,∴△CMD∽△AND,∴=,即=,∴y=﹣x+10,∵=,∴n=m,32.(2019•衢州)如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A位于x轴上,顶点B,D位于y轴上,O为坐标原点,则的值为.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1,摆放第三个“7”字图形得顶点F2,依此类推,…,摆放第n个“7”字图形得顶点F n﹣1,…,则顶点F2019的坐标为().解:(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴=,∵DC=1,BC=2,∴=,故答案为;(2解:过C作CM⊥y轴于M,过M1作M1N⊥x轴,过F作FN1⊥x轴.根据勾股定理易证得BD==,CM=OA=,DM=OB=AN=,∴C(,),∵AF=3,M1F=BC=2,∴AM1=AF﹣M1F=3﹣2=1,∴△BOA≌ANM1(AAS),∴NM1=OA=,∵NM1∥FN1,∴,,∴FN1=,∴AN1=,∴ON1=OA+AN1=+=∴F(,),同理,F1(,),即()F2(,),即(,)F3(,),即(,)F4(,),即(,)…F2019(,),即(,405),故答案为即(,405).。

2019年全国各地中考数学压轴题分类汇编几何综合(浙江专版)含答案

2019年全国各地中考数学压轴题分类汇编几何综合(浙江专版)含答案

2019年全国各地中考数学压轴题分类汇编(浙江专版)几何综合打印版答案在最后1.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.2.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.3.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.4.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC 于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.5.(2019•宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.6.(2019•温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E 三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.7.(2019•嘉兴)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).8.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC 内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.9.(2019•湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.10.(2019•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x 轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B 三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.11.(2019•绍兴)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.12.(2019•绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.13.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.14.(2019•绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F 分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.15.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.16.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.17.(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE=,∠C=30°,求的长.18.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?19.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()20.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.2019年全国各地中考数学压轴题分类汇编(浙江专版)几何综合参考答案与试题解析1.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.2.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.3.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.4.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC 于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.5.(2019•宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.证明:(1)∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE;(2)如图1,过点A作AG⊥BC于点G,∵△ABC是等边三角形,AC=6,∴BG=,∴在Rt△ABG中,AG=BG=3,∵BF⊥EC,∴BF∥AG,∴,∵AF:EF=3:2,∴BE=BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,AE=;(3)①如图1,过点E作EH⊥AD于点H,∵∠EBD=∠ABC=60°,∴在Rt△BEH中,,∴EH=,BH=,∵,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE+BE=(2x+)BE,∴在Rt△AHE中,tan∠EAD=,∴y=;②如图2,过点O作OM⊥BC于点M,设BE=a,∵,∴CG=BG=xBE=ax,∴EC=CG+BG+BE=a+2ax,∴EM=EC=a+ax,∴BM=EM﹣BE=ax﹣a,∵BF∥AG,∴△EBF∽△EGA,∴,∵AG=,∴BF=,∴△OFB的面积=,∴△AEC的面积=,∵△AEC的面积是△OFB的面积的10倍,∴,∴2x2﹣7x+6=0,解得:,∴,6.(2019•温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E 三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF==3,即⊙O的直径长为3.7.(2019•嘉兴)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).解:(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形如图1所示;(2)如图2所示.8.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC 内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得PN=.(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴=,同理可得:=,∴=,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形.(4)解:如图3中,结论:∠QEM=90°.理由:由tan∠NBM==,可以假设MN=3k,BM=4k,则BN=5k,BQ=k,BE=2k,∴==,==,∴=,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.9.(2019•湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)如图1,连接BC,∵∠BOC=90°,∴点P在BC上,∵⊙P与直线l1相切于点B,∴∠ABC=90°,而OA=OB,∴△ABC为等腰直角三角形,则⊙P的直径长=BC=AB=3;(2)过点作CM⊥AB,由直线l2:y=3x﹣3得:点C(1,0),则CM=AC sin45°=4×=2=圆的半径,故点M是圆与直线l1的切点,即:直线l1与⊙Q相切;(3)如图3,①当点M、N在两条直线交点的下方时,由题意得:MQ=NQ,∠MQN=90°,设点Q的坐标为(m,3m﹣3),则点N(m,m+3),则NQ=m+3﹣3m+3=2,解得:m=3﹣;②当点M、N在两条直线交点的上方时,同理可得:m=3;故点P的坐标为(3﹣,6﹣3)或(3+,6+3).10.(2019•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x 轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B 三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.解:(1)∵OA=3,tan∠OAC==,∴OC=,∵四边形OABC是矩形,∴BC=OA=3,∵D是BC的中点,∴CD=BC=,∴D(,);(2)①∵tan∠OAC=,∴∠OAC=30°,∴∠ACB=∠OAC=30°,设将△DBF沿DE所在的直线翻折后,点B恰好落在AC上的B'处,则DB'=DB=DC,∠BDF=∠B'DF,∴∠DB'C=∠ACB=30°∴∠BDB'=60°,∴∠BDF=∠B'DF=30°,∵∠B=90°,∴BF=BD•tan30°=,∵AB=,∴AF=BF=,∵∠BFD=∠AEF,∴∠B=∠F AE=90°,∴△BFD≌△AFE(ASA),∴AE=BD=,∴OE=OA+AE=,∴点E的坐标(,0);②动点P在点O时,∵抛物线过点P(0,0)、D(,)、B(3,)求得此时抛物线解析式为y=﹣x2+x,∴E(,0),∴直线DE:y=﹣x+,∴F1(3,);当动点P从点O运动到点M时,∵抛物线过点P(0,)、D(,)、B(3,)求得此时抛物线解析式为y=﹣x2+x+,∴E(6,0),∴直线DE:y=﹣x+,∴F2(3,);∴点F运动路径的长为F1F2==,∵△DFG为等边三角形,∴G运动路径的长为.11.(2019•绍兴)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=AB=1,∴AC=BC=.12.(2019•绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.13.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20或(﹣20舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=10或(﹣10舍弃).综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1==30,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30.14.(2019•绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F 分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.解:(1)如图1中,作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴FH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN≤a,a≤EF≤a,∴当MN的长取最大时,EF取最短,此时k的值最大最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴==3,∴==2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH=60°,∴PH=2m,FH=2m,DH=10m,∴===.②如图3中,当点N与C重合,作EH⊥MN于H.则PH=m,HE=m,∴HC=PH+PC=13m,∴tan∠HCE===,∵ME∥FC,∴∠MEB=∠FCB=∠CFD,∵∠B=∠D,∴△MEB∽△CFD,∴==2,∴===,综上所述,a:b的值为或.15.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°.16.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.(1)证明:如图1中,∵CA=CB,∠ACB=90°,BD=AD,∴CD⊥AB,CD=AD=BD,∵CD=CF,∴AD=CF,∵∠ADC=∠DCF=90°,∴AD∥CF,∴四边形ADFC是平行四边形,∴OD=OC,∵BD=2OD.(2)①解:如图2中,作DT⊥BC于点T,FH⊥BC于H.由题意:BD=AD=CD=7,BC=BD=14,∵DT⊥BC,∴BT=TC=7,∵EC=2,∴TE=5,∵∠DTE=∠EHF=∠DEF=90°,∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,∴∠TDE=∠FEH,∵ED=EF,∴△DTE≌△EHF(AAS),∴FH=ET=5,∵∠DDBE=∠DFE=45°,∴B,D,E,F四点共圆,∴∠DBF+∠DEF=90°,∴∠DBF=90°,∵∠DBE=45°,∴∠FBH=45°,∵∠BHF=90°,∴∠HBF=∠HFB=45°,∴BH=FH=5,∴BF=5,∵∠ADC=∠ABF=90°,∴DG∥BF,∵AD=DB,∴AG=GF,∴DG=BF=.②解:如图3﹣1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC于H.设EC=x.∵AD=6BD,∴BD=AB=2,∵DT⊥BC,∠DBT=45°,∴DT=BT=2,∵△DTE≌△EHF,∴EH=DT=2,∴BH=FH=12﹣x,∵FH∥AC,∴=,∴=,整理得:x2﹣12x+28=0,解得x=6±2.如图3﹣2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.设EC=x,由2①可知BF=(12﹣x),OG=BF=(12﹣x),∵∠EHD=∠EDG=∠DOG=90°,∴∠ODG+∠OGD=90°,∠ODG+∠EDH=90°,∴∠DGO=∠HDE,∴△EHD∽△DOG,∴=,∴=,整理得:x2﹣36x+268=0,解得x=18﹣2或18+2(舍弃),如图3﹣3中,当∠DGE=90°时,取AB的中点O,连接OG,CG,作DT⊥BC于T,FH⊥BC 于H,EK⊥CG于K.设EC=x.∵∠DBE=∠DFE=45°,∴D,B,F,E四点共圆,∴∠DBF+∠DEF=90°,∵∠DEF=90°,∴∠DBF=90°,∵AO=OB,AG=GF,∴OG∥BF,∴∠AOG=∠ABF=90°,∴OG⊥AB,∵OG垂直平分线段AB,∵CA=CB,∴O,G,C共线,由△DTE≌△EHF,可得EH=DT=BT=2,ET=FH=12﹣x,BF=(12﹣x),OG=BF=(12﹣x),CK=EK=x,GK=7﹣(12﹣x)﹣x,由△OGD∽△KEG,可得=,∴=,解得x=2,,综上所述,满足条件的EC的值为6±2或18﹣2或2.17.(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE=,∠C=30°,求的长.(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.(2)解:连接AD,∵AC是直径,∴∠ADC=90°,∵AB=AC,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵DE=,∠B=30°,∠BED=90°,∴CD=BD=2DE=2,∴OD=AD=tan30°•CD=×2=2,∴的长为:=.18.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=∠BAC=30°,在Rt△ADC中,DC=AC•tan30°=6×=2.(2)由题意易知:BC=6,BD=4,∵DE∥AC,∴∠FDM=∠GAM,∵AM=DM,∠DMF=∠AMG,∴△DFM≌△AGM(ASA),∴DF=AG,∵DE∥AC,∴==,∴====.(3)∵∠CPG=60°,过C,P,G作外接圆,圆心为Q,∴△CQG是顶角为120°的等腰三角形.①当⊙Q与DE相切时,如图3﹣1中,作QH⊥AC于H,交DE于P.连接QC,QG.菁优网设⊙Q的半径为r.则QH=r,r+r=2,∴r=,∴CG=×=4,AG=2,由△DFM∽△AGM,可得==,∴DM=AD=.②当⊙Q经过点E时,如图3﹣2中,延长CO交AB于K,设CQ=r.∵QC=QG,∠CQG=120°,∴∠KCA=30°,∵∠CAB=60°,∴∠AKC=90°,在Rt△EQK中,QK=3﹣r,EQ=r,EK=1,∴12+(3﹣r)2=r2,解得r=,∴CG=×=,由△DFM∽△AGM,可得DM=.③当⊙Q经过点D时,如图3﹣3中,此时点M,点G与点A重合,可得DM=AD=4.观察图象可知:当DM=或<DM≤4时,满足条件的点P只有一个.19.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(假)②若AD=BE=CF,则六边形ABCDEF是正六边形.(假)(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;假命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=F A,在△AEF、△CAB和△ECD中,,∴△AEF≌△CAB≌△ECD(SSS),如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假;②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下:如图4所示:连接AE、AC、CE、BF,在△BFE和△FBC中,,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△F AE和△BCA中,,∴△F AE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假.20.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.解:(1)设AP=FD=a,∴AF=2﹣a,∵四边形ABCD是正方形∴AB∥CD∴△AFP∽△DFC∴即∴a=﹣1∴AP=FD=﹣1,∴AF=AD﹣DF=3﹣∴=(2)在CD上截取DH=AF∵AF=DH,∠P AF=∠D=90°,AP=FD,∴△P AF≌△HDF(SAS)∴PF=FH,∵AD=CD,AF=DH∴FD=CH=AP=﹣1∵点E是AB中点,∴BE=AE=1=EM∴PE=P A+AE=∵EC2=BE2+BC2=1+4=5,∴EC=∴EC=PE,CM=﹣1∴∠P=∠ECP∵AP∥CD∴∠P=∠PCD∴∠ECP=∠PCD,且CM=CH=﹣1,CF=CF∴△FCM≌△FCH(SAS)∴FM=FH∴FM=PF(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,∵EN⊥AB,AE=BE∴AQ=BQ=AP=﹣1由旋转的性质可得AQ=AQ'=﹣1,AB=AB'=2,Q'B'=QB=﹣1,∵点B(0,﹣2),点N(2,﹣1)∴直线BN解析式为:y=x﹣2设点B'(x,x﹣2)∴AB'==2∴x=∴点B'(,﹣)∵点Q'(﹣1,0)∴B'Q'=≠﹣1∴点B旋转后的对应点B'不落在线段BN上.。

2019年浙江省中考数学真题分类汇编 专题10 图形的性质之解答题(解析版)

2019年浙江省中考数学真题分类汇编 专题10 图形的性质之解答题(解析版)

专题10 图形的性质之解答题参考答案与试题解析一.解答题(共23小题)1.(2019•舟山)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.【答案】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.【点睛】本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.2.(2019•温州)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED 的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【答案】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.【点睛】本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.3.(2019•杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B 的度数.【答案】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴P A=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.【点睛】本题主要考查了等腰三角形的性质、垂直平分线的性质以及三角形的外角性质,难度适中.4.(2019•衢州)已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连结AE,AF.求证:AE=AF.【答案】证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=CF.【点睛】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.5.(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.【答案】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形BEFD是平行四边形;(2)解:∵∠AFB=90°,D是AB的中点,AB=6,∴DF=DB=DA AB=3,∵四边形BEFD是平行四边形,∴四边形BEFD是菱形,∵DB=3,∴四边形BEFD的周长为12.【点睛】本题考查了平行四边形的性质和判定,菱形的判定和性质,三角形的中位线的性质,熟练掌握平行四边形的性质是解题的关键.6.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G 在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.【答案】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH,∵CH=0.5,CG,∴HG,∴HD=HG.【点睛】本题考查正方形的性质、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.7.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【答案】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【点睛】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.8.(2019•舟山)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).【答案】解:(1)由勾股定理得:CD=AB=CD',BD=AC=BD'',AD'=BC=AD'';画出图形如图1所示;(2)如图2所示.【点睛】本题考查了平行四边形的判定与性质、勾股定理、平行线分线段成比例定理;熟练掌握勾股定理好平行线分线段成比例定理是解题的关键.9.(2019•温州)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP =NQ.【答案】解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.【点睛】本题考查作图﹣应用与设计,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.10.(2019•衢州)如图,在4×4的方格子中,△ABC的三个顶点都在格点上.(1)在图1中画出线段CD,使CD⊥CB,其中D是格点.(2)在图2中画出平行四边形ABEC,其中E是格点.【答案】解:(1)线段CD即为所求.(2)平行四边形ABEC即为所求.【点睛】本题考查作图﹣应用与设计,平行四边形的判定等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.11.(2019•金华)如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.【答案】解:如图:从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F,则EG平分BC;EC,EF,FC,借助勾股定理确定F点,则EF⊥AC;借助圆规作AB的垂直平分线即可;【点睛】本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直、中点是解题的关键.12.(2019•绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.【答案】解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、矩形面积公式以及二次函数的应用等知识;熟练掌握矩形的性质,证明三角形是等腰直角三角形是解题的关键.13.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【答案】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.【点睛】本题为四边形综合题,涉及到直角三角形中线定理、三角形相似等知识点,这种新定义类题目,通常按照题设顺序逐次求解,较为容易.14.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(假)②若AD=BE=CF,则六边形ABCDEF是正六边形.(假)【答案】(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;假命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=F A,在△AEF、△CAB和△ECD中,,∴△AEF≌△CAB≌△ECD(SSS),如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假;②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下:如图4所示:连接AE、AC、CE、BF,在△BFE和△FBC中,,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△F AE和△BCA中,,∴△F AE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假.【点睛】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.15.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM 时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.【答案】(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴,即,解得PN.(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴,同理可得:,∴,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形.(4)解:如图3中,结论:∠QEM=90°.理由:由tan∠NBM,可以假设MN=3k,BM=4k,则BN=5k,BQ=k,BE=2k,∴,,∴,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.【点睛】本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.16.(2019•舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.【答案】(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴,即,解得PN(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴,同理可得:∴,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形(4)如图,过点N作ND⊥ME于点D∵MN=EN,ND⊥ME,∴∠NEM=∠MNE,ED=DM∵∠BMN=∠QEM=90°∴∠EQM+∠EMQ=90°,∠EMQ+∠EMN=90°∴∠EMN=∠EQM,且MN=QN,∠QEM=∠NDM=90°∴△QEM≌△MDN(AAS)∴EQ=DM EM,∵∠BMN=∠QEM=90°∴∠BEQ+∠NEM=90°,∠BME+∠NME=90°∴∠BEQ=∠BME,且∠MBE=∠MBE∴△BEQ∽△BME∴,∴BM=2BE,BE=2BQ∴BM=4BQ∴QM=3BQ=MN,BN=5BQ∴∴BN MN()【点睛】本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.17.(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE,∠C=30°,求的长.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.(2)解:连接AD,∵AC是直径,∴∠ADC=90°,∵AB=AC,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵DE,∠B=30°,∠BED=90°,∴CD=BD=2DE=2,∴OD=AD=tan30°•CD22,∴的长为:.【点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.18.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.【答案】解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA t,则HO t,∵OC=2OH,∴∠OCE=30°.【点睛】本题主要利用了切线和平行四边形的性质,其中(2),要利用(1)中△AOB是等腰直角三角形结论.19.(2019•温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD AB时,求⊙O的直径长.【答案】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF3,即⊙O的直径长为3.【点睛】本题考查了三角形的外接圆与外心,平行四边形的判定和性质,勾股定理,圆周角定理,熟练掌握平行四边形的判定定理是解题的关键.20.(2019•绍兴)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.【答案】解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC AB=1,∴AC BC.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.【答案】解:(1)①连接OB、OC,则∠BOD BOC=∠BAC=60°,∴∠OBC=30°,∴OD OB OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD,△ABC面积的最大值BC×AD2OB sin60°;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.【点睛】本题为圆的综合运用题,涉及到解直角三角形、三角形内角和公式,其中(2),∠AOD=∠COD+∠AOC是本题容易忽视的地方,本题难度适中.22.(2019•宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.【答案】证明:(1)∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE;(2)如图1,过点A作AG⊥BC于点G,∵△ABC是等边三角形,AC=6,∴BG,∴在Rt△ABG中,AG BG=3,∵BF⊥EC,∴BF∥AG,∴,∵AF:EF=3:2,∴BE BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,AE;(3)①如图1,过点E作EH⊥AD于点H,∵∠EBD=∠ABC=60°,∴在Rt△BEH中,,∴EH,BH,∵,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE BE=(2x)BE,∴在Rt△AHE中,tan∠EAD,∴y;②如图2,过点O作OM⊥BC于点M,设BE=a,∵,∴CG=BG=xBE=ax,∴EC=CG+BG+BE=a+2ax,∴EM EC a+ax,∴BM=EM﹣BE=ax a,∵BF∥AG,∴△EBF∽△EGA,∴,∵AG,∴BF,∴△OFB的面积,∴△AEC的面积,∵△AEC的面积是△OFB的面积的10倍,∴,∴2x2﹣7x+6=0,解得:,∴,【点睛】此题是圆的综合题,关键是根据等边三角形的性质、勾股定理和相似三角形的判定和性质解答.23.(2019•湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.【答案】解:(1)如图1,连接BC,∵∠BOC=90°,∴点P在BC上,∵⊙P与直线l1相切于点B,∴∠ABC=90°,而OA=OB,∴△ABC为等腰直角三角形,则⊙P的直径长=BC=AB=3;(2)过点作CM⊥AB,由直线l2:y=3x﹣3得:点C(1,0),则CM=AC sin45°=42圆的半径,故点M是圆与直线l1的切点,即:直线l1与⊙Q相切;(3)如图3,①当点M、N在两条直线交点的下方时,由题意得:MQ=NQ,∠MQN=90°,设点Q的坐标为(m,3m﹣3),则点N(m,m+3),则NQ=m+3﹣3m+3=2,解得:m=3;②当点M、N在两条直线交点的上方时,同理可得:m=3;故点P的坐标为(3,6﹣3)或(3,6+3).【点睛】本题为圆的综合运用题,涉及到一次函数、圆的切线性质等知识点,其中(2),关键要确定圆的位置,分类求解,避免遗漏.。

浙江省2019年中考数学专题复习专题十综合性压轴题训练

浙江省2019年中考数学专题复习专题十综合性压轴题训练

专题十综合性压轴题类型一函数中点的存在性问题(2018·山东东营中考)如图,抛物线y=a(x-1)(x-3)(a>0)与x轴交于A,B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的表达式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,求出x的值,确定出A与B坐标,根据已知相似三角形得比例,求出OC的长即可;(2)根据C为BM的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC,确定出C的坐标,利用待定系数法确定出直线BC的表达式,把C坐标代入抛物线求出a的值,确定出二次函数的表达式即可;(3)过P作x轴的垂线,交BM于点Q,设出P与Q的横坐标为x,分别代入抛物线与直线表达式,表示出纵坐标,相减表示出PQ,四边形ACPB面积最大即为三角形BCP面积最大,三角形BCP面积等于PQ与B和C横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P的坐标即可.【自主解答】1.(2018·湖南衡阳中考)如图,已知直线y=-2x+4分别交x轴、y轴于点A,B,抛物线经过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的表达式为y=-2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M,N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B,P,D为顶点的三角形与△AO B相似?若存在,求出满足条件的抛物线的表达式;若不存在,请说明理由.类型二图形运动中的函数关系问题如图,在△ABC中,AB=6 cm,AC=4 2 cm,BC=2 5 cm,点P以1 cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【分析】(1)作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形讨论,求出QM即可解决问题.【自主解答】2.(2018·广东中考)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如图1,连结BC.(1)填空:∠OBC=°;(2)如图1,连结AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?类型三点的运动中的计算说理问题(2018·山东青岛中考)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16 cm,BC=6 cm,CD=8 cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2 cm/s.点P和点Q同时出发,以QA,QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.【分析】(1)作DH⊥AB 于H ,则四边形DHBC 是矩形,利用勾股定理求出AD 的长即可解决问题; (2)作PN ⊥AB 于N.连结PB ,根据S =S △PQB +S △BCP ,计算即可;(3)当PQ⊥BD 时,∠PQN+∠DBA=90°,∠QPN+∠PQN=90°,推出∠QPN=∠DBA,推出tan ∠QPN=QNPB =34,由此构建方程即可解决问题; (4)存在.连结BE 交DH 于K ,作KM⊥BD 于M.当BE 平分∠ABD 时,△KBH≌△KBM,推出KH =KM ,BH =BM =8,设KH =KM =x ,在Rt △DKM 中,(6-x)2=22+x 2,解得x =83,作EF⊥AB 于F ,则△AEF≌△QPN,推出EF =PN =35(10-2t),AF =QN =45(10-2t)-2t ,推出BF =16-[45(10-2t)-2t],由KH∥EF,可得KHEF =BHBF,由此构建方程即可解决问题; 【自主解答】解决点动产生的计算说理题,关键是抓住点,由点到线段再到图形.此类问题涉及计算与说理,计算时常常用到勾股定理、三角函数、面积计算等相关知识,说理时往往较综合,涉及几何图形的相关性质与判定方法等,有时需要借助函数解决.3.(2018·浙江衢州中考)如图,Rt △OAB 的直角边OA 在x 轴上,顶点B 的坐标为(6,8),直线CD 交AB 于点D(6,3),交x 轴于点C(12,0). (1)求直线CD 的函数表达式;(2)动点P 在x 轴上从点(-10,0)出发,以每秒1个单位的速度向x 轴正方向运动,过点P 作直线l 垂直于x 轴,设运动时间为t.①点P 在运动过程中,是否存在某个位置,使得∠PDA=∠B,若存在,请求出点P 的坐标;若不存在,请说明理由;②请探索当t 为何值时,在直线l 上存在点M ,在直线CD 上存在点Q ,使得以OB 为一边,O ,B ,M ,Q 为顶点的四边形为菱形,并求出此时t 的值.类型四 图形运动变化过程中的分类讨论问题(2018·江苏淮安中考)如图,在平面直角坐标系中,一次函数y =-23x +4的图象与x 轴和y 轴分别相交于A ,B 两点.动点P 从点A 出发,在线段AO 上以每秒3个单位长度的速度向点O 作匀速运动,到达点O 停止运动,点A 关于点P 的对称点为点Q ,以线段PQ 为边向上作正方形PQMN.设运动时间为t 秒. (1)当t =13秒时,点Q 的坐标是 ;(2)在运动过程中,设正方形PQMN 与△AOB 重叠部分的面积为S ,求S 与t 的函数表达式; (3)若正方形PQMN 对角线的交点为T ,请直接写出在运动过程中OT +PT 的最小值.【分析】(1)先确定出点A 的坐标,进而求出AP ,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T 的运动轨迹,进而找出OT +PT 最小时的点T 的位置,即可得出结论. 【自主解答】图形运动中会产生不同的位置、形成不同的图形形状、对应关系也会随着图形的变化而改变,所以在解决此类问题时,要注意分类讨论,分类讨论可以根据点的位置不同、图形的形状、对应关系等为依据,但分类讨论容易遗漏,解题时要特别关注.4.(2018·湖南衡阳中考)如图,在Rt △ABC 中,∠C=90°,AC =BC =4 cm ,动点P 从点C 出发以1 cm /s 的速度沿CA 匀速运动,同时动点Q 从点A 出发以 2 cm /s 的速度沿AB 匀速运动,当点P 到达点A 时,点P ,Q 同时停止运动,设运动时间为t(s ).(1)当t 为何值时,点B 在线段PQ 的垂直平分线上?(2)是否存在某一时刻t ,使△APQ 是以PQ 为腰的等腰三角形?若存在,求出t 的值;若不存在,请说明理由;(3)以PC 为边,往CB 方向作正方形CPMN ,设四边形QNCP 的面积为S ,求S 关于t 的函数关系式.参考答案类型一【例1】 (1)由题可知当y =0时,a(x -1)(x -3)=0, 解得x 1=1,x 2=3,即A(1,0),B(3,0), ∴OA=1,OB =3.∵△OCA∽△OBC,∴OC∶OB=OA∶OC, ∴OC 2=OA·OB=3,则OC = 3.(2)∵C 是BM 的中点,即OC 为斜边BM 的中线, ∴OC=BC ,∴点C 的横坐标为32.又OC =3,点C 在x 轴下方, ∴C(32,-32).设直线BM 的表达式为y =kx +b ,把点B(3,0),C(32,-32)代入得⎩⎪⎨⎪⎧3k +b =0,32k +b =-32, 解得⎩⎪⎨⎪⎧k =33,b =-3,∴y=33x - 3.又∵点C(32,-32)在抛物线上,代入抛物线表达式得a(32-1)(32-3)=-32,解得a =233,∴抛物线表达式为y =233x 2-833x +2 3.(3)存在,设点P 坐标为(x ,233x 2-833x +23),如图,过点P 作PQ⊥x 轴交直线BM 于点Q ,则Q(x ,33x -3), ∴PQ=33x -3-(233x 2-833x +23)=-233x 2+33x -3 3. 当△BCP 面积最大时,四边形ABPC 的面积最大,S △BCP =12PQ(3-x)+12PQ(x -32)=34PQ =-32x 2+934x -934,当x =-b 2a =94时,S △BCP 有最大值,四边形ABPC 的面积最大,此时点P 的坐标为(94,-538).变式训练1.解:(1)①如图,∵y=-2x 2+2x +4=-2(x -12)2+92,∴顶点M 的坐标为(12,92).当x =12时,y =-2×12+4=3,则点N 的坐标为(12,3).②不存在.理由如下: MN =92-3=32.设P 点坐标为(m ,-2m +4),则D(m ,-2m 2+2m +4), ∴PD=-2m 2+2m +4-(-2m +4)=-2m 2+4m.∵PD∥MN,当PD =MN 时,四边形MNPD 为平行四边形, 即-2m 2+4m =32,解得m 1=12(舍去),m 2=32,此时P 点坐标为(32,1).∵PN=(12-32)2+(3-1)2=5, ∴PN≠MN,∴平行四边形MNPD 不为菱形, ∴不存在点P ,使四边形MNPD 为菱形. (2)存在. 如图,OB =4,OA =2,则AB =22+42=2 5. 当x =1时,y =-2x +4=2,则P(1,2), ∴PB=12+(2-4)2= 5. 设抛物线的表达式为y =ax 2+bx +4, 把A(2,0)代入得4a +2b +4=0, 解得b =-2a -2,∴抛物线的表达式为y =ax 2-2(a +1)x +4.当x =1时,y =ax 2-2(a +1)x +4=a -2a -2+4=2-a ,则D(1,2-a), ∴PD=2-a -2=-a. ∵DC∥OB, ∴∠DPB=∠OBA,∴当PD BO =PBBA 时,△PDB∽△BOA,即-a 4=525,解得a =-2, 此时抛物线的表达式为y =-2x 2+2x +4; 当PD BA =PBBO时,△PDB∽△BAO,即-a 25=54, 解得a =-52,此时抛物线的表达式为y =-52x 2+3x +4.综上所述,满足条件的抛物线的表达式为y =-2x 2+2x +4或y =-52x 2+3x +4.类型二【例2】 (1)如图1中,作CH⊥AB 于H.设BH =x.∵CH⊥AB,∴∠CHB=∠CHA=90°, ∴AC 2-AH 2=BC 2-BH 2,∴(42)2-(6-x)2=(25)2-x 2,解得x =2,∴当点P 与H 重合时,CP⊥AB,此时t =2. (2)如图2中,当点Q 与H 重合时,BP =2BQ =4,此时t =4.如图3中,当CP =CB =25时,CQ⊥PB,此时t =6+(42-25)=6+42-2 5.(3)①如图4中,当0<t≤6时,S =12PQ·CH=12×12t×4=t.②如图5中,当6<t <6+42时,作BG⊥AC 于G ,QM⊥AC 于M.易知BG =AG =32,CG = 2.MQ =12BG =322,∴S=12PC·QM=12×322×(6+42-t)=922+6-324t.综上所述,S =⎩⎪⎨⎪⎧t (0<t≤6),922+6-324t (6<t <6+42). 变式训练 2.解:(1)60 (2)如图,∵OB=4,∠ABO =30°,∴OA=12OB =2,AB =3OA =23,∴S △AOC =12OA·AB=12×2×23=2 3.∵△BOC 是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°, ∴AC=AB 2+BC 2=27, ∴OP=2S △AOC AC =4327=2217.(3)①当0<x≤83时,M 在OC 上运动,N 在OB 上运动,如图,过点N 作NE⊥OC且交OC 于点E.则NE =ON·sin60°=32x ,∴S △OMN =12OM·NE=12×1.5x×32x ,∴y=338x 2,∴x=83时,y 有最大值,最大值为833.②当83<x≤4时,M 在BC 上运动,N 在OB 上运动.如图,作MH⊥OB 于H ,则BM =8-1.5x , MH =BM·sin 60°=32(8-1.5x), ∴y=83ON·MH=-338x 2+23x.当x =83时,y 取最大值,y <833,③当4<x≤4.8时,M ,N 都在BC 上运动,如图,作OG⊥BC 于G.MN =12-2.5x ,OG =AB =23,∴y=12·MN·OG=123-532x ,当x =4时,y 有最大值,最大值接近于2 3. 综上所述,y 有最大值,最大值为833.类型三【例3】 (1)如图,作DH⊥AB 于H ,则四边形DHBC 是矩形, ∴CD=BH =8,DH =BC =6. ∵AH=AB -BH =8, ∴AD=DH 2+AH 2=10, ∴AP=AD -DP =10-2t.(2)如图,作PN⊥AB 于N ,连结PB. 在Rt△APN 中,PA =10-2t , ∴PN=PA·sin∠DAH=35(10-2t),AN =PA·cos∠DAH=45(10-2t),∴BN=16-AN =16-45(10-2t),S =S △PQB +S △BCP =12×(16-2t)×35(10-2t)+12×6×[16-45(10-2t)]=65t 2-545t +72.(3)当PQ⊥BD 时,∠PQN+∠DBA=90°. ∵∠QPN+∠PQN=90°, ∴∠QPN=∠DBA, ∴tan∠QPN=QM PN =34,∴45(10-2t )-2t 35(10-2t )=34,解得t =3527.经检验,t =3527是分式方程的解,∴当t =3527 s 时,PQ⊥BD.(4)存在.理由如下:连结BE 交DH 于K ,作KM⊥BD 于M. 当BE 平分∠ABD 时,△KBH≌△KBM,∴KH=KM ,BH =BM =8,设KH =KM =x , 在Rt△DKM 中,(6-x)2=22+x 2, 解得x =83.如图,作EF⊥AB 于F ,则△AEF≌△Q PN , ∴EF=PN =35(10-2t),AF =QN =45(10-2t)-2t ,∴BF=16-[45(10-2t)-2t].∵KH∥EF,∴KH EF =BHBF,∴8335(10-2t )=816-[45(10-2t )-2t],解得t =2518.经检验,t =2518是分式方程的解,∴当t =2518s 时,点E 在∠ABD 的平分线.变式训练3.解:(1)设直线CD 的表达式为y =kx +b ,则有⎩⎪⎨⎪⎧12k +b =0,6k +b =3,解得⎩⎪⎨⎪⎧k =-12,b =6,∴直线CD 的表达式为y =-12x +6.(2)①如图1中,作DP∥OB,则∠PDA=∠B.图1∵DP∥OB,∴PA AO =ADAB ,∴PA 6=38,∴PA=94, ∴OP=6-94=154,∴P(154,0),根据对称性可知,当AP =AP′时,P′(334,0),∴满足条件的点P 坐标为(154,0)或(334,0).②如图2中,当OP =OB =10时,作PQ∥OB 交CD 于Q.图2∵直线OB 的表达式为y =43x ,∴直线PQ 的表达式为y =43x +403,由⎩⎪⎨⎪⎧y =43x +403,y =-12x +6,解得⎩⎪⎨⎪⎧x =-4,y =8,∴Q(-4,8),∴PQ=62+82=10, ∴PQ=OB.∵PQ∥OB,∴四边形OBQP 是平行四边形. ∵OB=OP ,∴四边形OBQP 是菱形,此时点M 与P 重合,满足条件,t =0. 如图3中,当OQ =OB 时,设Q(m ,-12m +6),图3则有m 2+(-12m +6)2=102,解得m =12±4895,∴点Q 的横坐标为12+4895或12-4895,设点M 的横坐标为a ,则有a +02=12+4895+62或a +02=12-4895+62,∴a=42+4895或42-4895.又∵点P 从点(-10,0)开始运动,∴满足条件的t 的值为92+4895或92-4895.如图4中,当点Q 与C 重合时,M 点的横坐标为6,此时t =16,图4综上所述,满足条件的t 的值为0或16或92+4895或92-895.类型四【例4】 (1)(4,0)(2)当点Q 在原点O 时,AQ =6, ∴AP=12AQ =3,∴t=3÷3=1.①当0<t≤1时,如图1,令x =0,图1∴y =4,∴B(0,4),∴OB=4. ∵A(6,0),∴OA=6,在Rt△AOB 中,tan∠OAB=OB OA =PD 3t =23,由运动知AP =3t ,∴P(6-3t ,0), ∴Q(6-6t ,0),∴PQ=AP =3t. ∵四边形PQMN 是正方形, ∴MN∥OA,PN =PQ =3t ,在Rt△APD 中,tan∠OAB=PD AP =PD 3t =23,∴PD=2t ,∴DN =t. ∵MN∥OA,∴∠DCN=∠OAB, ∴tan∠DCN=DN CN =t CN =23,∴CN=32t ,∴S=S 正方形PQMN -S △CDN =(3t)2-12t×32t =334t 2.②当1<t≤43时,如图2,同①的方法得DN =t ,CN =32t ,图2∴S=S 矩形OENP -S △CDN =3t×(6-3t)-12t×32t =-394t 2+18t.③当43<t≤2时,如图3,S =S 梯形OBDP =12(2t +4)(6-3t)=-3t 2+12.图3(3)如图4,由运动知P(6-3t ,0),Q(6-6t ,0),图4∴M(6-6t ,3t).∵T 是正方形PQMN 的对角线交点, ∴T(6-92t ,32t),∴点T 是直线y =-13x +2上的一段线段,(-3≤x<6).同理,点N 是直线AG :y =-x +6上的一段线段,(0≤x≤6), ∴G(0,6),∴OG=6. ∵A(6,0),∴AB=6 2.∵T 是正方形PQMN 的对角线的交点, ∴TN=TP ,∴OT+TP =OT +TN ,∴点O ,T ,N 在同一条直线上,且ON⊥AG 时,OT +TN 最小,即OT +TN 最小. ∵S △OAG =12OA·OG=12AG·ON,∴ON=OA·OGAG =32,即OT +PT 的最小值为3 2. 变式训练4.解:(1)如图,连结BP.在Rt△ACB 中,∵AC=BC =4,∠C=90°,∴AB=4 2. ∵点B 在线段PQ 的垂直平分线上, ∴BP=BQ.∵AQ=2t ,CP =t ,∴BQ=42-2t ,PB 2=42+t 2, ∴(42-2t)2=16+t 2,解得t =8-43或8+43(舍去), ∴t=(8-43)s 时,点B 在线段PQ 的垂直平分线上.(2)①如图,当PQ =QA 时,易知△APQ 是等腰直角三角形,∠AQP=90°,则有PA =2AQ ,∴4-t =2·2t ,解得t =43.②如图,当AP =PQ 时,易知△APQ 是等腰直角三角形,∠APQ =90°,则有AQ =2AP ,∴2t =2(4-t),解得t =2.综上所述,t =43s 或2 s 时,△APQ 是以PQ 为腰的等腰三角形.(3)如图,连结QC ,作QE⊥AC 于E ,作QF⊥BC 于F.则QE =AE ,QF =EC ,可得QE +QF =AE +EC =AC =4,∴S=S △QNC +S △PCQ =12CN·QF+12PC·QE=12t(QE +QF)=2t(0<t <4).。

浙江省2019届中考数学总复习专题训练(共8个专题16份含答案)

浙江省2019届中考数学总复习专题训练(共8个专题16份含答案)

专题一选择题的解题策略与应试技巧类型一直选法(2018·浙江宁波中考)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE,若∠ABC=60°,∠BAC=80°,则∠1的度数为( )A.54° B.40° C.30° D.20°【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.得出EO是△DBC的中位线是解题关键.【自主解答】1.(2018·浙江嘉兴中考)2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1 500 000 km.数1 500 000用科学记数法表示为( ) A.15×105B.1.5×106C.0.15×107D.1.5×1052.(2018·浙江湖州中考) 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是( )A.3rB .(1+22)r C .(1+32)r D.2r类型二 排除法(或筛选法、淘汰法)(2018·甘肃定西中考)如图是二次函数y =ax 2+bx +c(a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x =1.对于下列说法:①ab <0;②2a+b =0;③3a+c >0;④a+b≥m(am+b)(m 为实数);⑤当-1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a +b 与0的关系;当x =-1时,y =a -b +c ;然后由图象确定当x 取何值时,y >0. 【自主解答】3.(2018·浙江舟山中考)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A .甲 B .甲与丁 C .丙D .丙与丁4.(2018·四川南充中考)如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE⊥AP 于点E ,延长CE 交AD 于点F ,过点C 作CH⊥BE 于点G ,交AB 于点H ,连结HF.下列结论正确的是( )A .CE = 5B .EF =22C .cos ∠CEP=55D .HF 2=EF·CF类型三 特殊值法(2018·湖北十堰中考)如图,直线y =-x 与反比例函数y =kx 的图象交于A ,B 两点,过点B 作BD∥x 轴,交y 轴于点D ,直线AD 交反比例函数y =k x 的图象于另一点C ,则CBCA 的值为( )A .1∶3B .1∶2 2C .2∶7D .3∶10【分析】 联立直线AB 与反比例函数表达式组成方程组,通过解方程组可求出点A ,B 的坐标,由BD∥x 轴可得出点D 的坐标,由点A ,D 的坐标利用待定系数法可求出直线AD 的表达式,联立直线AD 与反比例函数表达式组成方程组,通过解方程组可求出点C 的坐标,再结合两点间的距离公式即可求出CBCA 的值.【自主解答】5.(2018·四川内江中考)已知:1a -1b =13,则abb -a 的值是( )A.13B .-13C .3D .-36.(2018·山东聊城中考)如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A .γ=2α+βB .γ=α+2βC .γ=α+βD .γ=180°-α-β类型四 逆推代入法(2018·江苏泰州中考)如图,平面直角坐标系xOy 中,点A 的坐标为(9,6),AB⊥y 轴,垂足为B ,点P 从原点O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点P ,Q 同时停止运动,若点P 与点Q 的速度之比为1∶2,则下列说法正确的是( )A .线段PQ 始终经过点(2,3)B .线段PQ 始终经过点(3,2)C .线段PQ 始终经过点(2,2)D .线段PQ 不可能始终经过某一定点【分析】 当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6).设直线PQ 的表达式为y =kx +b(k≠0),利用待定系数法求出PQ 的表达式即可判断. 【自主解答】将选项中给出的答案或其特殊值代入题干,逐一验证是否满足题设条件,然后选择符合题设条件的选项.在运用验证法解题时,若能根据题意确定代入顺序,则能较大提高解题速度.7.(2018·湖北襄阳中考) 下列语句所描述的事件是随机事件的是( ) A .任意画一个四边形,其内角和为180° B .经过任意两点画一条直线 C .任意画一个菱形,是中心对称图形 D .过平面内任意三点画一个圆 类型五 图解法(2018·贵州毕节中考) 不等式组⎩⎪⎨⎪⎧2x +1≥-3,x <1 的解集在数轴上表示正确的是( )A BC D【分析】先解不等式组,再判断其解集在数轴上的正确表示.【自主解答】8.(2018·山东潍坊中考)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6 B.1或6C.1或3 D.4或6类型六动手操作法(2017·河北中考)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是( )A.1.4 B.1.1 C.0.8 D.0.5【分析】画图即可判断.【自主解答】与剪、折操作有关或者有些关于图形变换的试题是各地试题热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.9.(2018·广西南宁中考)如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则cos ∠ADF 的值为( )A.1113B.1315C.1517D.1719类型七 整体代入法(2018·浙江宁波中考)在矩形ABCD 内,将两张边长分别为a 和b(a >b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为( )图1 图2A .2aB .2bC .2a -2bD .-2b【分析】 利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差. 【自主解答】整体思想也是初中数学中的重要思想之一,它是把题目分散的条件整合起来视为一个整体,从而实现整体代入使其运算得以简化.10.(2018·吉林中考改编)若a +b =4,ab =1,则a 2b +ab 2=( ) A .1B .3C .4D .511.(2018·云南中考)已知x +1x =6,则x 2+1x 的值是( )A .38B .36C .34D .32类型八 构造法(2018·山东枣庄中考)如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP =2,BP =6,∠APC=30°,则CD 的长为( )A.15B .2 5C .215D .8【分析】 作OH⊥CD 于H ,连结OC ,如图,根据垂径定理由OH⊥CD 得到HC =HD ,再利用AP =2,BP =6可计算出半径OA =4,则OP =OA -AP =2,接着在Rt △OPH 中根据含30度的直角三角形的性质计算出OH =12OP =1,然后在Rt △OHC 中利用勾股定理计算出CH =15,所以CD =2CH =215. 【自主解答】综合运用各种知识,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造出与问题相关的数学模型,揭示问题的本质,从而沟通解题思路,是一种思维创造.12.(2018·山西中考)如图,在Rt △ABC 中,∠ACB=90°,∠A=60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB 边上,则点B′与点B 之间的距离为( )A .12B .6C .6 2D .6 313.(2018·江苏苏州中考)如图,在△ABC 中,延长BC 至D ,使得CD =12BC ,过AC 中点E作EF∥CD(点F 位于点E 右侧),且EF =2CD ,连结DF.若AB =8,则DF 的长为( )A .3B .4C .2 3D .3 2类型九 转化法(2018·湖南郴州中考)如图,A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1【分析】 先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,再过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S四边形AODB=S △AOB +S △BOD =S △AOC +S梯形ABDC,得出S △AOB =S梯形ABDC,利用梯形面积公式即可得出S △AOB . 【自主解答】常言道:“兵无常势,题无常形”,面对千变万化的中考新题型,当我们在思维受阻时,运用思维转化策略,换一个角度去思考问题,常常能打破僵局,解题中不断调整,不断转化,可以使我们少一些“山穷水复疑无路”的尴尬,多一些“柳暗花明又一村”的喜悦.14. (2018·湖北宜昌中考)如图,正方形ABCD 的边长为1,点E ,F 分别是对角线AC 上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G ,I ,H ,J.则图中阴影部分的面积等于 ( )A .1B.12C.13D.14参考答案【专题类型突破】 类型一【例1】 ∵∠ABC=60°,∠BAC=80°, ∴∠BCA=180°-60°-80°=40°.∵对角线AC 与BD 相交于点O ,E 是边CD 的中点, ∴EO 是△DBC 的中位线,∴EO∥BC,∠1=∠ACB=40°.故选B. 变式训练 1.B 2.D 类型二【例2】 ①∵对称轴在y 轴右侧, ∴a,b 异号,∴ab<0,故正确; ②∵对称轴x =-b2a =1,∴2a+b =0,故正确; ③∵2a+b =0,∴b=-2a , ∵当x =-1时,y =a -b +c <0, ∴a-(-2a)+c =3a +c <0,故错误; ④根据图示知,当m =1时,有最大值; 当m≠1时,有am 2+bm +c≤a+b +c , 所以a +b≥m(am+b)(m 为实数).故正确. ⑤当-1<x <3时,y 不只是大于0.故错误. 故选A. 变式训练 3.B 4.D 类型三【例3】 联立直线AB 及反比例函数表达式组成方程组⎩⎪⎨⎪⎧y =-x ,y =k x,解得⎩⎨⎧x 1=--k ,y 1=-k ,⎩⎨⎧x 2=-k ,y 2=--k ,∴点B 的坐标为(--k ,-k),点A 的坐标为(-k ,--k). ∵BD∥x 轴,∴点D 的坐标为(0,-k). 设直线AD 的表达式为y =mx +n.将A(-k ,--k),D(0,-k)代入y =mx +n ,⎩⎨⎧-km +n =--k ,n =-k ,解得⎩⎨⎧m =-2,n =-k , ∴直线AD 的表达式为y =-2x +-k. 联立直线AD 及反比例函数表达式成方程组,⎩⎪⎨⎪⎧y =-2x +-k ,y =kx, 解得⎩⎪⎨⎪⎧x 3=--k 2,y 3=2-k ,⎩⎨⎧x 4=-k ,y 4=--k , ∴点C 的坐标为(--k2,2-k). ∴CBCA= [--k -(--k 2)]2+(-k -2-k )2[-k -(--k 2)]2+(--k -2-k )2=13.故选A. 变式训练 5.C 6.A 类型四【例4】 当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6). 设直线PQ 的表达式为y =kx +b(k≠0), 将P(t ,0),Q(9-2t ,6)代入y =kx +b , ⎩⎪⎨⎪⎧kt +b =0,(9-2t )k +b =6,解得⎩⎪⎨⎪⎧k =23-t ,b =2t t -3, ∴直线PQ 的表达式为y =23-t x +2tt -3.∵x=3时,y =2,∴直线PQ 始终经过(3,2).故选B. 变式训练 7.D 类型五【例5】 解不等式2x +1≥-3得x≥-2. ∵x<1,∴不等式组的解集为-2≤x<1. 将其正确表示在数轴上为选项D.故选D. 变式训练 8.B 类型六【例6】 如图,在这样连续6次旋转的过程中,点M 的运动轨迹是图中的弧线,观察图象可知点B ,M 间的距离大于等于2-2小于等于1,故选C.变式训练 9.C 类型七【例7】 S 1=(AB -a)·a+(CD -b)(AD -a)=(AB -a)·a+(AB -b)(AD -a), S 2=AB(AD -a)+(a -b)(AB -a),∴S 2-S 1=AB(AD -a)+(a -b)(AB -a)-(AB -a)·a-(AB -b)(AD -a)=(AD -a)(AB -AB +b)+(AB -a)(a -b -a)=b·AD-ab -b·AB+ab =b(AD -AB)=2b.故选B. 变式训练 10.C 11.C 类型八【例8】 如图,作OH⊥CD 于H ,连结OC.∵OH⊥CD,∴HC=HD. ∵AP=2,BP =6,∴AB=8, ∴OA=4,∴OP=OA -AP =2. 在Rt△OPH 中,∵∠OPH=30°, ∴∠POH=60°,∴OH=12OP =1.在Rt △OHC 中,∵OC=4,OH =1, ∴CH=OC 2-OH 2=15, ∴CD=2CH =215.故选C. 变式训练 12.D 13.B类型九【例9】 ∵A,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x =2时,y =2,即A(2,2), 当x =4时,y =1,即B(4,1).如图,过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,则S △AOC =S △BOD =12×4=2.∵S 四边形AODB=S △AOB +S △BOD =S △AOC +S 梯形ABDC , ∴S△AOB =S 梯形ABDC .∵S 梯形ABDC =12(BD +AC)·CD=12(1+2)×2=3,∴S △AOB =3.故选B. 变式训练 14.B专题一选择题的解题策略与应试技巧类型一直选法(2018·浙江宁波中考)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE,若∠ABC=60°,∠BAC=80°,则∠1的度数为( )A.54° B.40° C.30° D.20°【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.得出EO是△DBC的中位线是解题关键.【自主解答】1.(2018·浙江嘉兴中考)2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1 500 000 km.数1 500 000用科学记数法表示为( ) A.15×105B.1.5×106C.0.15×107D.1.5×1052.(2018·浙江湖州中考) 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是( )A.3rB .(1+22)r C .(1+32)r D.2r类型二 排除法(或筛选法、淘汰法)(2018·甘肃定西中考)如图是二次函数y =ax 2+bx +c(a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x =1.对于下列说法:①ab <0;②2a+b =0;③3a+c >0;④a+b≥m(am+b)(m 为实数);⑤当-1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a +b 与0的关系;当x =-1时,y =a -b +c ;然后由图象确定当x 取何值时,y >0. 【自主解答】3.(2018·浙江舟山中考)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A .甲 B .甲与丁 C .丙D .丙与丁4.(2018·四川南充中考)如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE⊥AP 于点E ,延长CE 交AD 于点F ,过点C 作CH⊥BE 于点G ,交AB 于点H ,连结HF.下列结论正确的是( )A .CE = 5B .EF =22C .cos ∠CEP=55D .HF 2=EF·CF类型三 特殊值法(2018·湖北十堰中考)如图,直线y =-x 与反比例函数y =kx 的图象交于A ,B 两点,过点B 作BD∥x 轴,交y 轴于点D ,直线AD 交反比例函数y =k x 的图象于另一点C ,则CBCA 的值为( )A .1∶3B .1∶2 2C .2∶7D .3∶10【分析】 联立直线AB 与反比例函数表达式组成方程组,通过解方程组可求出点A ,B 的坐标,由BD∥x 轴可得出点D 的坐标,由点A ,D 的坐标利用待定系数法可求出直线AD 的表达式,联立直线AD 与反比例函数表达式组成方程组,通过解方程组可求出点C 的坐标,再结合两点间的距离公式即可求出CBCA 的值.【自主解答】5.(2018·四川内江中考)已知:1a -1b =13,则abb -a 的值是( )A.13B .-13C .3D .-36.(2018·山东聊城中考)如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A .γ=2α+βB .γ=α+2βC .γ=α+βD .γ=180°-α-β类型四 逆推代入法(2018·江苏泰州中考)如图,平面直角坐标系xOy 中,点A 的坐标为(9,6),AB⊥y 轴,垂足为B ,点P 从原点O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点P ,Q 同时停止运动,若点P 与点Q 的速度之比为1∶2,则下列说法正确的是( )A .线段PQ 始终经过点(2,3)B .线段PQ 始终经过点(3,2)C .线段PQ 始终经过点(2,2)D .线段PQ 不可能始终经过某一定点【分析】 当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6).设直线PQ 的表达式为y =kx +b(k≠0),利用待定系数法求出PQ 的表达式即可判断. 【自主解答】将选项中给出的答案或其特殊值代入题干,逐一验证是否满足题设条件,然后选择符合题设条件的选项.在运用验证法解题时,若能根据题意确定代入顺序,则能较大提高解题速度.7.(2018·湖北襄阳中考) 下列语句所描述的事件是随机事件的是( ) A .任意画一个四边形,其内角和为180° B .经过任意两点画一条直线 C .任意画一个菱形,是中心对称图形 D .过平面内任意三点画一个圆 类型五 图解法(2018·贵州毕节中考) 不等式组⎩⎪⎨⎪⎧2x +1≥-3,x <1 的解集在数轴上表示正确的是( )A BC D【分析】先解不等式组,再判断其解集在数轴上的正确表示.【自主解答】8.(2018·山东潍坊中考)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6 B.1或6C.1或3 D.4或6类型六动手操作法(2017·河北中考)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是( )A.1.4 B.1.1 C.0.8 D.0.5【分析】画图即可判断.【自主解答】与剪、折操作有关或者有些关于图形变换的试题是各地试题热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.9.(2018·广西南宁中考)如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则cos ∠ADF 的值为( )A.1113B.1315C.1517D.1719类型七 整体代入法(2018·浙江宁波中考)在矩形ABCD 内,将两张边长分别为a 和b(a >b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为( )图1 图2A .2aB .2bC .2a -2bD .-2b【分析】 利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差. 【自主解答】整体思想也是初中数学中的重要思想之一,它是把题目分散的条件整合起来视为一个整体,从而实现整体代入使其运算得以简化.10.(2018·吉林中考改编)若a +b =4,ab =1,则a 2b +ab 2=( ) A .1B .3C .4D .511.(2018·云南中考)已知x +1x =6,则x 2+1x 的值是( )A .38B .36C .34D .32类型八 构造法(2018·山东枣庄中考)如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP =2,BP =6,∠APC=30°,则CD 的长为( )A.15B .2 5C .215D .8【分析】 作OH⊥CD 于H ,连结OC ,如图,根据垂径定理由OH⊥CD 得到HC =HD ,再利用AP =2,BP =6可计算出半径OA =4,则OP =OA -AP =2,接着在Rt △OPH 中根据含30度的直角三角形的性质计算出OH =12OP =1,然后在Rt △OHC 中利用勾股定理计算出CH =15,所以CD =2CH =215. 【自主解答】综合运用各种知识,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造出与问题相关的数学模型,揭示问题的本质,从而沟通解题思路,是一种思维创造.12.(2018·山西中考)如图,在Rt △ABC 中,∠ACB=90°,∠A=60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB 边上,则点B′与点B 之间的距离为( )A .12B .6C .6 2D .6 313.(2018·江苏苏州中考)如图,在△ABC 中,延长BC 至D ,使得CD =12BC ,过AC 中点E作EF∥CD(点F 位于点E 右侧),且EF =2CD ,连结DF.若AB =8,则DF 的长为( )A .3B .4C .2 3D .3 2类型九 转化法(2018·湖南郴州中考)如图,A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1【分析】 先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,再过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S四边形AODB=S △AOB +S △BOD =S △AOC +S梯形ABDC,得出S △AOB =S梯形ABDC,利用梯形面积公式即可得出S △AOB . 【自主解答】常言道:“兵无常势,题无常形”,面对千变万化的中考新题型,当我们在思维受阻时,运用思维转化策略,换一个角度去思考问题,常常能打破僵局,解题中不断调整,不断转化,可以使我们少一些“山穷水复疑无路”的尴尬,多一些“柳暗花明又一村”的喜悦.14. (2018·湖北宜昌中考)如图,正方形ABCD 的边长为1,点E ,F 分别是对角线AC 上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G ,I ,H ,J.则图中阴影部分的面积等于 ( )A .1B.12C.13D.14参考答案【专题类型突破】 类型一【例1】 ∵∠ABC=60°,∠BAC=80°, ∴∠BCA=180°-60°-80°=40°.∵对角线AC 与BD 相交于点O ,E 是边CD 的中点, ∴EO 是△DBC 的中位线,∴EO∥BC,∠1=∠ACB=40°.故选B. 变式训练 1.B 2.D 类型二【例2】 ①∵对称轴在y 轴右侧, ∴a,b 异号,∴ab<0,故正确; ②∵对称轴x =-b2a =1,∴2a+b =0,故正确; ③∵2a+b =0,∴b=-2a , ∵当x =-1时,y =a -b +c <0, ∴a-(-2a)+c =3a +c <0,故错误; ④根据图示知,当m =1时,有最大值; 当m≠1时,有am 2+bm +c≤a+b +c , 所以a +b≥m(am+b)(m 为实数).故正确. ⑤当-1<x <3时,y 不只是大于0.故错误. 故选A. 变式训练 3.B 4.D 类型三【例3】 联立直线AB 及反比例函数表达式组成方程组⎩⎪⎨⎪⎧y =-x ,y =k x,解得⎩⎨⎧x 1=--k ,y 1=-k ,⎩⎨⎧x 2=-k ,y 2=--k ,∴点B 的坐标为(--k ,-k),点A 的坐标为(-k ,--k). ∵BD∥x 轴,∴点D 的坐标为(0,-k). 设直线AD 的表达式为y =mx +n.将A(-k ,--k),D(0,-k)代入y =mx +n ,⎩⎨⎧-km +n =--k ,n =-k ,解得⎩⎨⎧m =-2,n =-k , ∴直线AD 的表达式为y =-2x +-k. 联立直线AD 及反比例函数表达式成方程组,⎩⎪⎨⎪⎧y =-2x +-k ,y =kx, 解得⎩⎪⎨⎪⎧x 3=--k 2,y 3=2-k ,⎩⎨⎧x 4=-k ,y 4=--k , ∴点C 的坐标为(--k2,2-k). ∴CBCA= [--k -(--k 2)]2+(-k -2-k )2[-k -(--k 2)]2+(--k -2-k )2=13.故选A. 变式训练 5.C 6.A 类型四【例4】 当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6). 设直线PQ 的表达式为y =kx +b(k≠0), 将P(t ,0),Q(9-2t ,6)代入y =kx +b , ⎩⎪⎨⎪⎧kt +b =0,(9-2t )k +b =6,解得⎩⎪⎨⎪⎧k =23-t ,b =2t t -3, ∴直线PQ 的表达式为y =23-t x +2tt -3.∵x=3时,y =2,∴直线PQ 始终经过(3,2).故选B. 变式训练 7.D 类型五【例5】 解不等式2x +1≥-3得x≥-2. ∵x<1,∴不等式组的解集为-2≤x<1. 将其正确表示在数轴上为选项D.故选D. 变式训练 8.B 类型六【例6】 如图,在这样连续6次旋转的过程中,点M 的运动轨迹是图中的弧线,观察图象可知点B ,M 间的距离大于等于2-2小于等于1,故选C.变式训练 9.C 类型七【例7】 S 1=(AB -a)·a+(CD -b)(AD -a)=(AB -a)·a+(AB -b)(AD -a), S 2=AB(AD -a)+(a -b)(AB -a),∴S 2-S 1=AB(AD -a)+(a -b)(AB -a)-(AB -a)·a-(AB -b)(AD -a)=(AD -a)(AB -AB +b)+(AB -a)(a -b -a)=b·AD-ab -b·AB+ab =b(AD -AB)=2b.故选B. 变式训练 10.C 11.C 类型八【例8】 如图,作OH⊥CD 于H ,连结OC.∵OH⊥CD,∴HC=HD. ∵AP=2,BP =6,∴AB=8, ∴OA=4,∴OP=OA -AP =2. 在Rt△OPH 中,∵∠OPH=30°, ∴∠POH=60°,∴OH=12OP =1.在Rt △OHC 中,∵OC=4,OH =1, ∴CH=OC 2-OH 2=15, ∴CD=2CH =215.故选C. 变式训练 12.D 13.B类型九【例9】 ∵A,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x =2时,y =2,即A(2,2), 当x =4时,y =1,即B(4,1).如图,过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,则S △AOC =S △BOD =12×4=2.∵S 四边形AODB=S △AOB +S △BOD =S △AOC +S 梯形ABDC , ∴S△AOB =S 梯形ABDC .∵S 梯形ABDC =12(BD +AC)·CD=12(1+2)×2=3,∴S △AOB =3.故选B. 变式训练 14.B专题二 填空题的解题策略与应试技巧类型一 直接推演法(2018·湖北黄石中考)在Rt △ABC 中,∠C=90°,CA =8,CB =6,则△ABC 内切圆的周长为________.【分析】先利用勾股定理计算出AB 的长,再利用直角三角形内切圆的半径的计算方法求出△ABC 的内切圆的半径,然后利用圆的周长公式求解. 【自主解答】直接推演法是解填空题的基本方法,它是直接从题设条件出发,利用定义、定理、公式等知识,通过变形、推理、运算等过程,直接得到结果,它是解填空题的最基本、最常用的方法.1.(2018·浙江舟山中考)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是____,据此判断该游戏__________(填“公平”或“不公平”).2.(2016·浙江衢州中考)如图,正方形ABCD 的顶点A ,B 在函数y =kx(x >0)的图象上,点C ,D 分别在x 轴,y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)当k =2时,正方形A′B′C′D′的边长等于____.(2)当变化的正方形ABCD 与(1)中的正方形A′B′C′D′有重叠部分时,k 的取值范围是______________.类型二 特殊元素法(2018·江苏连云港中考改编)已知A(-4,y 1),B(-1,y 2)是反比例函数y =kx (k <0)图象上的两个点,则y 1与y 2的大小关系为________.【分析】可用特殊值法,根据反比例函数的表达式可以求出y 1与y 2的大小,从而可以解答本题. 【自主解答】当填空题的结论唯一或题目条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数、特殊角、图形的特殊位置、特殊点、特殊方案、特殊模型等)进行处理,从而得到探求的结论,这样可大大地简化推理、论证的过程.3.(2018·广西玉林中考)已知ab =a +b +1,则(a -1)(b -1)=______.4.(2018·陕西中考)若一个反比例函数的图象经过点A(m ,m)和B(2m ,-1),则这个反比例函数的表达式为_______. 类型三 数形结合法(2018·山东枣庄中考)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度. 【自主解答】“数缺形时少直观,形缺数时难入微.”数学中大量数的问题后面都隐藏着图形的信息,图形的特征也体现许多数量关系.我们要将抽象、复杂的数量关系,通过形的形象、直观地揭示出来,以达到“形帮数”的目的;同时我们又要运用数的规律和数值的计算来寻找处理形的方法,来达到“数促形”的目的.对于含有几何背景的填空题,若能数中思形,以形助数,则往往可以简化问题,得出准确的结果.类型四等价转化法(2018·吉林长春中考)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为________.【分析】解方程x2+mx=0得A(-m,0),再利用对称的性质得到点A的坐标为(-1,0),所以抛物线表达式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【自主解答】5.(2018·天津中考) 如图,在边长为4的等边△ABC 中,D ,E 分别为AB ,BC 的中点,EF⊥AC 于点F ,G 为EF 的中点,连结DG ,则DG 的长为___________.参考答案类型一【例1】 ∵∠C=90°,CA =8,CB =6, ∴AB=62+82=10, ∴△ABC 的内切圆的半径=6+8-102=2, ∴△ABC 内切圆的周长=2×π×2=4π. 故答案为4π. 变式训练1.14 不公平2.(1) 2 (2)29<k<18 类型二【例2】 不妨取k =-4 ,则反比例函数为y =-4x,∴当x =-4时,y 1=1;当x =-1时,y 2=4, ∴y 1<y 2.故答案为y 1<y 2. 变式训练 3.2 4.y =4x类型三【例3】 根据图象可知点P 在BC 上运动时,此时BP 不断增大, 由图象可知点P 从B 向C 运动时,BP 的最大值为5,即BC =5. 由于M 是曲线部分的最低点, ∴此时BP 最小,即BP⊥AC,BP =4, ∴由勾股定理可知PC =3.由于图象的曲线部分是轴对称图形, ∴PA=3,∴AC=6,∴S △ABC =12×4×6=12.故答案为12.类型四【例4】 当y =0时,x 2+mx =0,解得x 1=0,x 2=-m ,则A(-m ,0). ∵点A 关于点B 的对称点为A′,点A′的横坐标为1, ∴点A 的坐标为(-1,0), ∴抛物线表达式为y =x 2+x.当x =1时,y =x 2+x =2,则A′(1,2), 当y =2时,x 2+x =2,解得x 1=-2,x 2=1,则C(-2,2), ∴A′C 的长为1-(-2)=3.故答案为3. 变式训练 5.192专题二 填空题的解题策略与应试技巧类型一 直接推演法(2018·湖北黄石中考)在Rt △ABC 中,∠C=90°,CA =8,CB =6,则△ABC 内切圆的周长为________.【分析】先利用勾股定理计算出AB 的长,再利用直角三角形内切圆的半径的计算方法求出△ABC 的内切圆的半径,然后利用圆的周长公式求解. 【自主解答】直接推演法是解填空题的基本方法,它是直接从题设条件出发,利用定义、定理、公式等知识,通过变形、推理、运算等过程,直接得到结果,它是解填空题的最基本、最常用的方法.1.(2018·浙江舟山中考)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是____,据此判断该游戏__________(填“公平”或“不公平”).2.(2016·浙江衢州中考)如图,正方形ABCD 的顶点A ,B 在函数y =kx(x >0)的图象上,点C ,D 分别在x 轴,y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)当k =2时,正方形A′B′C′D′的边长等于____.(2)当变化的正方形ABCD 与(1)中的正方形A′B′C′D′有重叠部分时,k 的取值范围是______________.类型二 特殊元素法。

浙江省中考数学一轮复习 专题练习10 压轴题(1) 浙教版-浙教版初中九年级全册数学试题

浙江省中考数学一轮复习 专题练习10 压轴题(1) 浙教版-浙教版初中九年级全册数学试题

压轴题(1)班级某某学号一、选择题1.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或102.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.44.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.35.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A .大于0B .等于0C .小于0D .不能确定6.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan∠CAD =2.其中正确的结论有( ) A.4个 B .3个 C .2个 D .1个第10题图FEDB CA7.如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B.若反比例函数的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )A .3B .4C .6D .88.有3个正方形如图所示放置,阴影部分的面积依次记为S 1,S 2,则S 1:S 2等于( )A .1:B .1:2C .2:3D .4:99.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为( )A .671B .672C .673D .67410.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论: ①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3; ③3a +c >0④当y >0时,x 的取值X 围是﹣1≤x <3 ⑤当x <0时,y 随x 增大而增大 其中结论正确的个数是( )A .4个B .3个C .2个D .1个 二、填空题11.如图,在Rt△ABC 中,∠B =90°,AB =4,BC >AB ,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是_____________.第14题图EOBCD12.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是_____________.13.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)14.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是.15.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OB n的对角线交点的坐标为.三、解答题16.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?18.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n 均为实数,方程①的根为非负数.(1)求k的取值X围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.19.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.24.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.答案详解一、选择题【考点】一元二次方程的解.【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.3.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.4【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【解答】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1,故选A.4.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=BD=×3=3,故选D.5.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A .大于0B .等于0C .小于0D .不能确定【考点】抛物线与x 轴的交点.【分析】设ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,由二次函数的图象可知x 1+x 2>0,a >0,设方程ax 2+(b ﹣)x +c =0(a ≠0)的两根为a ,b 再根据根与系数的关系即可得出结论.【解答】解:设ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,∵由二次函数的图象可知x 1+x 2>0,a >0,∴﹣>0.设方程ax 2+(b ﹣)x +c =0(a ≠0)的两根为a ,b ,则a +b =﹣=﹣+,∵a >0,∴>0, ∴a +b >0.故选C .6.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan∠CAD =2.其中正确的结论有( )A.4个 B .3个 C .2个 D .1个第10题图F D B A【知识点】特殊平行四边形——矩形的性质、相似三角形——相似三角形的判定与性质、锐角三角函数——锐角三角函数值的求法【答案】B. 【解析】∵矩形ABCD 中,∴AD ∥BC .∴△AEF ∽△CAB ….......................①正确;∵△AEF ∽△CAB ,∴AF CF =AE BC =12,∴CF =2AF ……………………………②正确;过点D 作DH ⊥AC 于点H .易证△ABF ≌△CDH (AAS ).∴AF =CH .∵EF ∥DH ,∴AF FH =AEED =1.∴AF =FH .∴FH =CH .∴DH 垂直平分CF .∴DF =DC . ……………………………………………③正确;第10题答案图G HF E D ACB设EF =1,则BF =2.∵△ABF ∽△EAF .∴AF EF =BFAF .∴AF =EF •BF =1×2= 2.∴tan∠ABF =AF BF =22.∵∠CAD =∠ABF ,∴tan∠CAD =tan∠ABF =22.…………④错误. 故选择B.7.如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B.若反比例函数的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )A .3B .4C .6D .8【分析】先根据S △ABO =4,tan ∠BAO =2求出AO 、BO 的长度,再根据点C 为斜边A ′B 的中点,求出点C 的坐标,点C 的横纵坐标之积即为k 值.【解答】解:设点C 坐标为(x ,y ),作CD ⊥BO ′交边BO ′于点D ,∵tan ∠BAO =2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A′O′B,∴AO=A′0′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′0′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x•y=3•2=6.故选C..8.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.674【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.【解答】解:∵第1个图案中白色纸片有4=1+1×3X;第2个图案中白色纸片有7=1+2×3X;第3个图案中白色纸片有10=1+3×3X;…∴第n个图案中白色纸片有1+n×3=3n+1(X),根据题意得:3n+1=2017,解得:n=672,故选:B.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值X围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为负数可得到3a+c<0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的X围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣=1,即b =﹣2a ,而x =﹣1时,y <0,即a ﹣b +c <0,∴a +2a +c <0,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选B .二、填空题11.如图,在Rt△ABC 中,∠B =90°,AB =4,BC >AB ,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是_____________.第14题图EO B A CD【知识点】直线射线和线段——垂线段最短、图形的相似——平行线分线段成比例定理、平行四边形——平行四边形的性质、【答案】4.【解析】根据“垂线段最短”,可知:当OD ⊥BC 时,OD 最短,DE 的值最小.当OD ⊥BC 时,OD ∥AB .∴CD BD =CO OA =1.∴OD 是△ABC 的中位线.∴OD =12AB =2.∴DE 的最小值=2OD =4.第14题答案图EOCABD12.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________.【知识点】一次函数——一次函数与一元一次不等式【答案】x>3.【解析】由图象得到直线y=x+b与直线y=kx+6的交点P(3,5),在点P(3,5)的右侧,直线y =x+b落在直线y=kx+6的上方,该部分对应的x的取值X围为x>3,即不等式x+b>kx+6的解集是x>3.13.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)【考点】矩形的性质;等腰三角形的判定;相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:14.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是(﹣3,0)或(5,0)或(3,0)或(﹣5,0).【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.【解答】解:∵反比例函数y=图象关于原点对称,∴A、B两点关于O对称,∴O为AB的中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).15.如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OB n的对角线交点的坐标为(﹣,).【考点】位似变换;坐标与图形性质;矩形的性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n OB n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).三、解答题16.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.【考点】切线的判定.【专题】计算题;与圆有关的位置关系.【分析】(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA 为直径,即可得证;(2)由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可.【解答】(1)证明:连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;(2)解:过O作OG⊥BC,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∴BC=BG+GC=6+10=16,∵OD∥BC,∴△AOD∽△ABC,∴=,即=,解得:OA=,∴AB=+10=,连接EF,∵BF为圆的直径,∴∠BEF=90°,∴∠BEF=∠C=90°,∴EF∥AC,∴=,即=,解得:BE=12.17.某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?【考点】一次函数的应用;分式方程的应用.【分析】(1)设乙队单独完成这项工程需要x天,根据题意得方程即可得到结论;(2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论.【解答】解:(1)设乙队单独完成这项工程需要x天,根据题意得×(30+15)+×15=,解得:x=450,经检验x=450是方程的根,答:乙队单独完成这项工程需要450天;(2)根据题意得(+)×40=,∴a=60m+60,∵60>0,∴a随m的增大增大,∴当m=1时,最大,∴=,∴÷=7.5倍,18.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n 均为实数,方程①的根为非负数.(1)求k的取值X围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2==1﹣,∴1﹣为整数,∴m=1或﹣1,∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,x2﹣3x+2=0,(x﹣1)(x﹣2)=0,x1=1,x2=2;(3)|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2,m2﹣4=1,m2=5,m=±,∴|m|≤2不成立.19.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)在直线y=﹣x+2中,分别令y=0和x=0,容易求得A、B两点坐标;(2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB 的长,从而可用t表示出AF的长;(3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到=,可判定△AFG与△AGB 相似;(4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式.【解答】解:(1)在直线y=﹣x+2中,令y=0可得0=﹣x+2,解得x=2,令x=0可得y=2,∴A为(2,0),B为(0,2);(2)由(1)可知OA=2,OB=2,∴tan∠ABO==,∴∠ABO=30°,∵运动时间为t秒,∴BE=t,∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t,在Rt△ABO中,OA=2,OB=2,∴AB=4,∴AF=4﹣2t;(3)相似.理由如下:当四边形ADEF为菱形时,则有EF=AF,即t=4﹣2t,解得t=,∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=,如图,过G作GH⊥x轴,交x轴于点H,则四边形OEGH为矩形,∴GH=OE=,又EG∥x轴,抛物线的顶点为A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=,又AF•AB=×4=,∴AF•AB=AG2,即=,且∠FAG=∠GAB,∴△AFG∽△AGB;(4)存在,∴∠GFA=∠BAO=60°,又G点不能在抛物线的对称轴上,∴∠FGA≠90°,∴当△AGF为直角三角形时,则有∠FAG=90°,又∠FGA=30°,∴FG=2AF,∵EF=t,EG=4,∴FG=4﹣t,且AF=4﹣2t,∴4﹣t=2(4﹣2t),解得t=,即当t的值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=,∴E点坐标为(0,),∵抛物线的顶点为A,∴可设抛物线解析式为y=a(x﹣2)2,把E点坐标代入可得=4a,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+.20.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?【分析】(1)根据特征线直接求出点D的特征线;(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;(2)分平行于x轴和y轴两种情况,由折叠的性质计算即可.【解答】解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.21.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).22.已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【考点】四边形综合题.【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE即可解决问题.【解答】(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°,在RT△EFH中,∠CEF=15°,∴∠EFH=75°,∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°,∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,在RT△CHF中,∵∠CFH=30°,CF=2﹣2,∴FH=CF•cos30°=(2﹣2)•=3﹣.∴点F到BC的距离为3﹣.,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O 顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上的一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.【知识点】平行四边形——平行四边形的性质、旋转——旋转的性质、二次函数——确定二次函数的表达式(待定系数法)、函数与几何动态——运动产生的面积问题及运动产生的特殊四边形问题、分类讨论思想、实际问题与数学建模——函数模型【思路分析】(1)先由OA ′=OA 得到点A ′的坐标,再用点C 、A 、A ′的坐标即可求此抛物线的解析式;(2)连接AA ′, 过点M 作MN ⊥x 轴,交AA ′于点N ,把△AMA ′分割为△AMN 和△A ′MN , △AMA ′的面积=△AMA ′的面积+△AMN 的面积=12OA ′•MN ,设点M 的横坐标为x ,借助抛物线的解析式和AA ′的解析式,建立MN 的长关于x 的函数关系式,再据此建立△AMA ′的面积关于x 的二次函数关系式,再求△AMA ′面积的最大值以及此时M 的坐标;(3)在P 、N 、B 、Q 这四个点中,B 、Q 这两个点是固定点,因此可以考虑将BQ 作为边、将BQ 作为对角线分别构造符合题意的图形,再求解.【解答】解:(1)∵ ABOC 绕点O 顺时针旋转90°,得到平行四边形A ′B ′OC ′,点A 的坐标是(0,4),∴点A ′的坐标为(4,0),点B 的坐标为(1,4).∵抛物线过点C ,A ,A ′,设抛物线的函数解析式为y =ax 2+bx +c (a ≠0),可得: ⎩⎪⎨⎪⎧a -b +c =0c =416a + 4b +c =0. 解得:⎩⎪⎨⎪⎧a =-1b =3c =4.∴抛物线的函数解析式为y =-x 2+3x +4.(2)连接AA ′,设直线AA ′的函数解析式为y =kx +b ,可得⎩⎨⎧0+b =414k +b =0.解得:⎩⎨⎧k =-1b =4.∴直线AA '的函数解析式是y =-x +4.设M (x ,-x 2+3x +4),S △AMA ′=12×4×[-x 2+3x +4一(一x +4)]=一2x 2+8x =一2(x -2)2+8.∴x =2时,△AMA ′的面积最大S △AMA ′=8.∴M (2,6).(3)设P 点的坐标为(x ,-x 2+3x +4),当P 、N 、B 、Q 构成平行四边形时,①当BQ 为边时,PN ∥BQ 且PN =BQ ,∵BQ =4,∴一x 2+3x +4=±4.当一x 2+3x +4=4时,x 1=0,x 2=3,即P 1(0,4),P 2(3,4);当一x 2+3x +4=一4时,x 3=3+412,x 4=3-412,即P 3(3+412,-4),P 4(3-412,-4); ②当BQ 为对角线时,PB ∥x 轴,即P 1(0,4),P 2(3,4);当这个平行四边形为矩形时,即P l (0,4),P 2(3,4)时,N 1(0,0),N 2(3,0).综上所述,当P 1(0,4),P 2(3,4),P 3(3+412,-4),P 4(3-412,-4)时,P 、N 、B 、Q 构成平行四边形;当这个平行四边形为矩形时,N 1(0,0),N 2(3,0).24.如图1,△ABC 是等腰直角三角形,∠BAC = 90°,AB =AC ,四边形ADEF 是正方形,点B 、C 分别在边AD 、AF 上,此时BD =CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗?若成立,请。

浙江省2019届中考数学复习微专题训练(打包10套,Word版,含答案)

浙江省2019届中考数学复习微专题训练(打包10套,Word版,含答案)

微专题一 数形结合与实数的运算姓名:________ 班级:________ 用时:______分钟1.两个实数互为相反数,在数轴上的对应点分别是点A 、点B ,则下列说法正确的是( ) A .原点在点A 的左边 B .原点在线段AB 的中点处 C .原点在点B 的右边D .原点可以在点A 或点B 上2.(2018·浙江绍兴模拟)计算-(2)2+(2+π)0+(-12)-2的结果是( )A .1B .2C.114D .33.定义一种新运算☆,其规则为a☆b=1a +1b ,根据这个规则,计算2☆3的值是( )A.56B.15C .5D .64.如图,数轴上的A ,B ,C ,D 四点中,与表示数-3的点最接近的是( )A .点AB .点BC .点CD .点D5.若实数a 满足|a -12|=32,则a 对应于图中数轴上的点可以是A ,B ,C 三点中的点______.6.计算:8-|2-22|+2tan 45°=______.7.(2019·创新题)按所给程序计算:输入x =3,则输出的答案是________.输入x →立方→-x →÷2→答案8.观察下列各式: 11×2=1-12=12; 11×2+12×3=1-12+12-13=23; 11×2+12×3+13×4=1-12+12-13+13-14=34; …按以上规律,写出第n 个式子的计算结果(n 为正整数)____.(写出最简计算结果即可) 9.设S 1=1+112+122,S 2=1+122+132,S 3=1+132+142,…,S n =1+1n 2+1(n +1)2.设S =S 1+S 2+…+S n ,则S =____(用含n 的代数式表示,其中n 为正整数). 10.设a n 为正整数n 4的末位数,如a 1=1,a 2=6,a 3=1,a 4=6.则a 1+a 2+a 3+…+a 2 017+a 2 018+a 2 019=______________.11.(2019·创新题)有一数值转换器,原理如图所示,若开始输入x 的值是5,可发现第1次输出的结果是8,第2次输出的结果是4…则第2 018次输出的结果是______.12.(2019·改编题)计算:2-2+(327-146)÷6-3sin 45°.13.计算:(13)-1-|-2+3tan 45°|+(2-2 018)0-(2-3)(2+3).14.如图,点A ,B 在数轴上分别表示有理数a ,b ,且A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a -b|.回答下列问题:(1)在数轴上表示2和5的两点之间的距离是________,在数轴上表示1和-3的两点之间的距离是________;(2)在数轴上表示x 和-5的两点之间的距离是________;(3)若x 表示一个有理数,则|x -1|+|x +3|有最小值吗?若有,请求出最小值;若没有,请说明理由.15.我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i ”,使其满足i 2=-1(即方程x 2=-1有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 1=i ,i2=-1,i 3=i 2·i =(-1)·i =-i ,i 4=(i 2)2=(-1)2=1,从而对于任意正整数n ,我们可以得到i4n +1=i 4n ·i =(i 4)n ·i =i ,同理可得i4n +2=-1,i4n +3=-i ,i 4n =1.求i +i 2+i3+i 4+…+i 2 018+i 2 019的值.参考答案1.D 2.D 3.A 4.B5.B 6.4 7.12 8.nn+19.n2+2nn+110.6 666 11.412.解:原式=4+3276-14-3×22=4+922-14-322=154+3 2.13.解:原式=3-(2-3)+1-(2-3)=3-2+3+1-(-1)=3+ 3.14.解:(1)3 4(2)|x+5|(3)根据绝对值的定义知|x-1|+|x+3|可表示点x到表示1与-3的两点的距离之和.根据几何意义分析可知当x在-3与1之间时,|x-1|+|x+3|有最小值4.15.解:由题意得,i1=i,i2=-1,i3=-i,i4=1,i5=i4·i=i,i6=i5·i=-1,故可发现4个一循环,一个循环内的和为0.∵2 019÷4=504 (3)∴i+i2+i3+i4+…+i2 018+i2 019=504×0+(i-1-i)=-1.微专题二 代数式的化简与求值姓名:________ 班级:________ 用时:______分钟1.下列运算正确的是( ) A .x -2x =-x B .2x -y =-xy C .x 2+x 2=x 4D .(x -1)2=x 2-12.(2018·浙江丽水模拟)已知1a -1b =13,则2aba -b 的值是( )A.16B .-16C .6D .-63.实数a 在数轴上的位置如图所示,则(a -4)2+(a -11)2化简后为( )A .7B .-7C .2a -15D .无法确定4.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( ) A .9B .±3C .3D .55.已知2a -3b =7,则8+6b -4a =________. 6.已知a<0,化简:4-(a +1a)2-4+(a -1a)2=________.7.若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a =____,b =______;计算:m =11×3+13×5+15×7+…+119×21=____.8.(2019·改编题)若m 2=n +2,n 2=m +2(m≠n),则m 3-2mn +n 3的值为________. 9. 先化简,再求值:(x +2)(x -2) +x(1-x),其中x =-1.10.化简:(a +1a -1-a a +1)÷3a +1a 2+a11.已知A =x 2+2x +1x -1-xx -1.(1)化简A.(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.12.先化简,再求值:m 2-4m +4m -1÷(3m -1-m -1),其中m =2-2.13.为鼓励学生努力学习,某校拿出了b 元资金作为奖学金,其中一部分作为奖学金发给了n 个学生.奖金分配方案如下:首先将n 个学生按学习成绩、思想道德评价(假设n 个学生的综合评分均不相同)从高到低,由1到n 排序,第1位学生得奖金bn 元,然后再将余额除以n 发给第2位学生,按此方法将奖金逐一发给了n 个学生.(1)假设第k 个学生得到的奖金为a k 元(1≤k≤n),试用k ,n 和b 表示a k .(2)比较a k 和a k +1的大小(k =1,2,…,n -1),并解释此结果就奖学金设置原则的合理性.参考答案1.A 2.D 3.A 4.C 5.-6 6.-2 7.1021 8.-29.解:原式=x 2-4+x -x 2=x -4. 当x =-1时,原式=-1-4=-5. 10.解:原式=[(a +1)2(a -1)(a +1)-a (a -1)(a -1)(a +1)]·a 2+a 3a +1 =a 2+2a +1-a 2+a (a -1)(a +1)·a (a +1)3a +1=3a +1(a -1)(a +1)·a (a +1)3a +1=aa -1. 11.解:(1)A =x 2+2x +1x 2-1-xx -1=(x +1)2(x +1)(x -1)-xx -1 =x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x≥1; 解x -3<0,得x<3,∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x<3. ∵x 为整数,∴x=1,2. 当x =1时,分式无意义. 当x =2时,A =12-1=1. 12.解:原式=(m -2)2m -1÷3-m 2+1m -1=(m -2)2m -1÷(2+m )(2-m )m -1=(m -2)2m -1×m -1(2+m )(2-m )=2-m 2+m .当m =2-2时,原式=2-2+22+2-2=4-22=22-1.13.解:(1)a k =b n (1-1n )k -1.(2)∵a k =b n (1-1n )k -1,a k +1=b n (1-1n )k,∴a k +1=(1-1n)a k <a k ,说明排名越靠前获得的奖学金越多.微专题三 列方程(组)解应用题姓名:________ 班级:________ 用时:______分钟1.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是( ) A .100元 B .90元C .810元D .819元2.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( ) A .不盈不亏 B .盈利20元 C .亏损10元D .亏损30元3.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B .3C .4D .54.夏季来临,某超市试销A ,B 两种型号的风扇,两周内共销售30台,销售收入5 300元,A 型风扇每台200元,B 型风扇每台150元,问A ,B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A.⎩⎪⎨⎪⎧x +y =5 300200x +150y =30B.⎩⎪⎨⎪⎧x +y =5 300150x +200y =30 C.⎩⎪⎨⎪⎧x +y =30200x +150y =5 300 D.⎩⎪⎨⎪⎧x +y =30150x +200y =5 300 5.滴滴快车是一种便捷的出行工具,计价规则如表:费相同,那么这两辆滴滴快车的行车时间相差( ) A .10分钟 B .13分钟 C .15分钟D .19分钟6.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为__________________________.7.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为________尺,竿子长为________尺.8.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.9.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2 560元,求两种型号粽子各多少千克.10.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1∶2,且里程数之比为2∶1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a >0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a 的值.参考答案1.A 2.C 3.D 4.C 5.D 6.2x +56=589-x 7.20 15 8.解:设城中有x 户人家. 依题意得x +x3=100,解得x =75.答:城中有75户人家.9.解:设订购了A 型粽子x 千克,B 型粽子y 千克,根据题意得⎩⎪⎨⎪⎧y =2x -20,28x +24y =2 560,解得⎩⎪⎨⎪⎧x =40,y =60.答:订购了A 型粽子40千克,B 型粽子60千克.10.解:(1)设道路硬化的里程数是x 千米,则道路拓宽的里程数是(50-x)千米. 根据题意得x≥4(50-x),解得x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米,x 千米,2x +x =45,x =15,2x =30,设每千米的道路硬化和道路拓宽的经费分别为y 万元,2y 万元, 30y +15×2y=780,y =13, 2y =26,由题意得13(1+a%)·40(1+5a%)+26(1+5a%)·10(1+8a%)=780(1+10a%), 设a%=m ,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m), 10m 2-m =0,m 1=0.1,m 2=0(舍去), ∴a=10.微专题四 反比例函数、二次函数图象与性质的综合应用姓名:________ 班级:________ 用时:______分钟1.如图,若二次函数y =ax 2+bx +c(a≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A ,点B(-1,0),则 ①二次函数的最大值为a +b +c ; ②a-b +c <0; ③b 2-4ac <0;④当y >0时,-1<x <3.其中正确的个数是( ) A .1B .2C .3D .42.如图,点D 为矩形OABC 的AB 边的中点,反比例函数y =kx (x >0)的图象经过点D ,交BC边于点E.若△BDE 的面积为1,则k =______.3.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m )与飞行时间x(单位:s )之间具有函数关系y =-5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?4.参照学习函数的过程与方法,探究函数y =x -2x 的图象与性质.因为y =x -2x =1-2x ,即y =-2x +1,所以我们对比函数y =-2x 来探究.列表:描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以y =x -2x 相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y 轴左边各点和右边各点,分别用一条光滑曲线顺次连结起来; (2)观察图象并分析表格,回答下列问题:①当x <0时,y 随x 的增大而________;(填“增大”或“减小”) ②y=x -2x 的图象是由y =-2x 的图象向______平移______个单位而得到;③图象关于点______________中心对称.(填点的坐标)(3)设A(x 1,y 1),B(x 2,y 2)是函数y =x -2x 的图象上的两点,且x 1+x 2=0,试求y 1+y 2+3的值.5.为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其他费用1万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?6.如图,四边形ABCD 的四个顶点分别在反比例函数y =m x 与y =nx (x >0,0<m <n)的图象上,对角线BD∥y 轴,且BD⊥AC 于点P.已知点B 的横坐标为4. (1)当m =4,n =20时.①若点P 的纵坐标为2,求直线AB 的函数表达式;②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由;(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.参考答案1.B 2.43.解:(1)当y =15时,15=-5x 2+20x , 解得x 1=1,x 2=3,答:在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是1 s 或3 s. (2)当y =0时,0=-5x 2+20x , 解得x 1=0,x 2=4 ∵4-0=4,∴在飞行过程中,小球从飞出到落地所用时间是4 s. (3)y =-5x 2+20x =-5(x -2)2+20, ∴当x =2时,y 取得最大值,此时,y =20,答:在飞行过程中,小球飞行高度在第2 s 时最大,最大高度是20 m. 4.解:(1)画出函数图象如图所示.(2)①增大 ②上 1 ③(0,1) (3)∵x 1+x 2=0,∴x 1=-x 2.∴A(x 1,y 1),B(x 2,y 2)关于(0,1)对称, ∴y 1+y 2=2, ∴y 1+y 2+3=5.5.解:(1)设直线AB 的表达式为y =kx +b ,代入A(4,4),B(6,2)得⎩⎪⎨⎪⎧4k +b =4,6k +b =2,解得⎩⎪⎨⎪⎧k =-1,b =8,∴直线AB 的表达式为y =-x +8.同理代入B(6,2),C(8,1)可得直线BC 的表达式为y =-12x +5.∵工资及其他费用为0.4×5+1=3(万元),∴当4≤x≤6时,w 1=(x -4)(-x +8)-3=-x 2+12x -35, 当6<x≤8时,w 2=(x -4)(-12x +5)-3=-12x 2+7x -23.(2)当4≤x≤6时,w 1=-x 2+12x -35=-(x -6)2+1, ∴当x =6时,w 1取最大值是1. 当6<x≤8时,w 2=-12x 2+7x -23=-12(x -7)2+32,当x =7时,w 2取最大值是32.∴1032=203=623, 即最快在第7个月可还清10万元的无息贷款. 6.解:(1)①∵m=4,∴反比例函数为y =4x .当x =4时,y =1,∴B(4,1). 当y =2时,2=4x ,∴x=2,∴A(2,2).设直线AB 的表达式为y =kx +b ,∴⎩⎪⎨⎪⎧2k +b =2,4k +b =1,∴⎩⎪⎨⎪⎧k =-12,b =3,∴直线AB 的表达式为y =-12x +3.②四边形ABCD 是菱形.理由如下:如图,由①知,B(4,1).∵BD∥y 轴,∴D(4,5).∵点P 是线段BD 的中点,∴P(4,3). 当y =3时,由y =4x 得x =43,由y =20x 得x =203,∴PA=4-43=83,PC =203-4=83,∴PA=PC.∵PB=PD ,∴四边形ABCD 为平行四边形. ∵BD⊥AC,∴四边形ABCD 是菱形. (2)四边形ABCD 能是正方形.理由如下:当四边形ABCD 是正方形时, PA =PB =PC =PD =t(t≠0). 当x =4时,y =m x =m4,∴B(4,m4),∴A(4-t ,m 4+t),∴(4-t)(m4+t)=m ,∴t=4-m 4,∴点D 的纵坐标为m 4+2t =m 4+2(4-m 4)=8-m4,∴D(4,8-m 4),∴4(8-m4)=n ,∴m+n =32.微专题五 以特殊三角形为背景的计算与证明姓名:________ 班级:________ 用时:______分钟1.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,E 为AB 边的中点,以BE 为边作等边△BDE,连结AD ,CD. (1)求证:△ADE≌△CDB;(2)若BC =3,在AC 边上找一点H ,使得BH +EH 最小,并求出这个最小值.2.如图,在等边△ABC 中,点D ,E ,F 分别同时从点A ,B ,C 出发,以相同的速度在AB ,BC ,CA 上运动,连结DE ,EF ,DF. (1)证明:△DEF 是等边三角形;(2)在运动过程中,当△CEF 是直角三角形时,试求S △DEFS △ABC的值.3.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线;(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB 的度数;(3)如图2,在△ABC中,AC=2,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.4.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长.5.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t 的值;若不存在,请说明理由.6.问题:(1)如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连结EC,则线段BC,DC,EC之间满足的等量关系式为________;探索:(2)如图2,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:(3)如图3,在四边形ABCD中,∠ABC=∠ACB=∠A DC=45°.若BD=9,CD=3,求AD的长.参考答案1.(1)证明:在Rt△ABC 中,∠BAC=30°,E 为AB 边的中点, ∴BC=EA ,∠ABC=60°. ∵△DEB 为等边三角形,∴DB=DE ,∠DEB=∠DBE=60°, ∴∠DEA=120°,∠DBC=120°, ∴∠DEA=∠DBC, ∴△ADE≌△CDB.(2)解:如图,作点E 关于直线AC 对称点E′,连结BE′交AC 于点H ,连结EH ,AE′, 则点H 即为符合条件的点.由作图可知,EH =HE′,AE′=AE ,∠E′AC=∠BAC=30°, ∴∠EAE′=60°,∴△EAE′为等边三角形, ∴EE′=EA =12AB ,∴∠AE′B=90°.在Rt△ABC 中,∠BAC=30°,BC =3, ∴AB=23,AE′=AE =3,∴BE′=AB 2-AE′2=(23)2-(3)2=3, ∴BH+EH 的最小值为3.2.(1)证明:∵△ABC 是等边三角形, ∴∠A=∠B=∠C=60°,AB =BC =CA. ∵AD=BE =CF ,∴BD=CE =AF. 在△ADF,△BED 和△CFE 中, ∵⎩⎪⎨⎪⎧AD =BE =CF ,∠A=∠B=∠C,AF =BD =CE ,∴△ADF≌△BED≌△CFE, ∴FD=DE =EF , ∴△DEF 是等边三角形.(2)解:∵△ABC 和△DEF 是等边三角形,∴△DEF∽△ABC.当DE⊥BC 时(EF⊥BC 时,同理),∠BDE=30°, ∴BE=12BD ,即BE =13BC ,CE =23BC.∵EF=EC·sin 60°=23BC·32=33BC ,∴S △DEF S △ABC =(EF BC )2=(33)2=13. 3.(1)证明:∵∠A=40°,∠B=60°, ∴∠ACB=80°,∴△ABC 不是等腰三角形. ∵CD 平分∠ACB,∴∠ACD=∠BCD=12∠ACB=40°,∴∠ACD=∠A=40°, ∴△ACD 为等腰三角形.∵∠DCB=∠A=40°,∠CBD=∠ABC, ∴△BCD∽△BAC,∴CD 是△ABC 的完美分割线. (2)解:①当AD =CD 时,如图,则∠ACD=∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°, ∴∠ACB=∠ACD+∠BCD=96°. ②当AD =AC 时,如图,则∠ACD=∠ADC=180°-48°2=66°.∵△BDC∽△BCA,∴∠BCD=∠A=48°, ∴∠ACB=∠ACD+∠BCD=114°. ③当AC =CD 时,如图,则∠ADC =∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°. ∵∠ADC=∠BCD=48°与∠ADC>∠BCD 矛盾, ∴AC=CD 不成立.综上所述,∠ACB=96°或114°. (3)解:由已知得AD =AC =2. ∵△BCD∽△BAC,∴BC BA =BD BC =CDAC .设BD =x(x>0), 则(2)2=x(x +2), 解得x =3-1(负值舍去), ∴CD AC =BD BC =3-12, ∴CD=3-12×2=6- 2. 4.(1)证明:∵△ABC 和△ADE 是等腰直角三角形,∠BAC=∠DAE=90°, ∴AB=AC ,AD =AE ,∠DAB=∠EAC, ∴△ADB≌△AEC,∴BD=CE.(2)解:如图,①当点E 在AB 上时,BE =AB -AE =1.∵∠EAC=90°,∴CE=AE 2+AC 2= 5. 同(1)可证△ADB≌△AEC, ∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC, ∴PB AC =BE CE ,∴PB 2=15,∴PB=255. ②如图,当点E 在BA 延长线上时,BE =3.∵∠EAC=90°,∴CE=AE 2+AC 2= 5. 同(1)可证△ADB≌△AEC, ∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC, ∴PB AC =BE CE ,∴PB 2=35,∴PB=655. 综上所述,PB 的长为255或655.5.(1)证明:在Rt△ABC 中,AB =6,AC =8, ∴BC=10,sin∠B=AC BC =810=45,sin∠C=35.如图,过点Q 作QE⊥AB 于点E ,作QD⊥AC 于点D.在Rt△BQE 中,BQ =5t , ∴sin∠B=QE BQ =45,∴QE=4t.在Rt△CDQ 中,CQ =BC -BQ =10-5t , ∴QD=CQ·sin∠C=35(10-5t)=3(2-t),QE =BQ·sin∠B=5t·45=4t.由运动知AP =3t ,CR =4t ,∴BP=AB -AP =6-3t =3(2-t),AR =AC -CR =8-4t =4(2-t), ∴S △APR =12AP·AR=12×3t×4(2-t)=6t(2-t),S △BPQ =12BP·QE=12×3(2-t)×4t=6t(2-t),S △CQR =12CR·QD=12×4t×3(2-t)=6t(2-t),∴S △APR =S △BPQ =S △CQR ,∴△APR,△BPQ,△CQR 的面积相等.(2)解:由(1)知,S △APR =S △BPQ =S △CQR =6t(2-t). ∵AB=6,AC =8,∴S △PQR =S △ABC -(S △APR +S △B PQ +S △CQR ) =12×6×8-3×6t(2-t)=24-18(2t -t 2) =18(t -1)2+6.∵0≤t≤2,∴当t =1时,S △PQR 最小=6.(3)解:存在.由(1)知QE =4t ,QD =3(2-t),AP =3t ,CR =4t ,AR =4(2-t), ∴BP=AB -AP =6-3t =3(2-t), AR =AC -CR =8-4t =4(2-t). ∵∠A=90°,∴四边形AEQD 是矩形, ∴AE=DQ =3(2-t),AD =QE =4t , ∴DR=|AD -AR|=|4t -4(2-t)| =|4(2t -2)|,PE =|AP -AE|=|3t -3(2-t)| =|3(2t -2)|.∵∠DQE=90°,∠PQR=90°, ∴∠DQR=∠EQP, ∴tan∠DQR=tan∠EQP. 在Rt△DQR 中,tan∠DQR=DR DQ =4|2t -2|3(2-t ),在Rt△EQP 中,tan∠EQP=PE QE =3|2t -2|4t ,∴4|2t -2|3(2-t )=3|2t -2|4t , ∴t=1825或1.6.解:(1) BC =DC +EC (2)BD 2+CD 2=2AD 2,理由如下: 如图,连结CE.∵∠BAC=∠BAD+∠DAC=90°,∠DAE=∠CAE+∠DAC=90°, ∴∠BAD=∠CAE. 在△BAD 与△CAE 中, ∵⎩⎪⎨⎪⎧AB =AC ,∠BAD=∠CAE,AD =AE , ∴△BAD≌△CAE, ∴BD=CE ,∠ACE=∠B, ∴∠DCE=90°,∴CE 2+CD 2=ED 2. 在Rt△ADE 中,AD 2+AE 2=ED 2,AD =AE , ∴BD 2+CD 2=ED 2,ED =2AD , ∴BD 2+CD 2=2AD 2.(3)如图,作AE⊥AD,使AE =AD ,连结CE ,DE.∵∠BAC+∠CAD=∠DAE+∠CAD, 即∠BAD=∠CAE. 在△BAD 与△CAE 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAD=∠CAE,AD =AE ,∴△BAD≌△CAE(SAS),∴BD=CE =9. ∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE=CE 2-CD 2=6 2. ∵∠DAE=90°,∴AD =AE =22DE =6.微专题六以特殊四边形为背景的计算与证明姓名:________ 班级:________ 用时:______分钟1.如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.2.如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连结CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.3.如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连结MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.4.如图,点E,F分别是矩形ABCD的边AD,AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.5.问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2 cm,AC=4 cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC′的延长线交于点E,则四边形ACEC′的形状是________;(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B,A,D三点在同一条直线上,得到如图3所示的△AC′D,连结CC′,取CC′的中点F,连结AF并延长至点G,使FG=AF,连结CG,C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论;实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A′点,A′C与BC′相交于点H,如图4所示,连结CC′,试求tan∠C′CH的值.参考答案1.证明:(1)如图,延长AO 到E. ∵OA=OB ,∴∠ABO=∠BAO. 又∠BOE=∠ABO+∠BAO, ∴∠BOE=2∠BAO. 同理∠DOE=2∠DAO,∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO), 即∠BOD=2∠BAD.又∠C=2∠BAD,∴∠BOD=∠C.(2)如图,连结OC.∵OB=OD ,CB =CD ,OC =OC , ∴△OBC≌△ODC,∴∠BOC=∠DOC,∠BCO=∠DCO. ∵∠BOD=∠BOC+∠DOC, ∠BCD=∠BCO+∠DCO,∴∠BOC=12∠BOD,∠BCO=12∠BCD.又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC. 又OB =OD ,BC =CD , ∴OB=BC =CD =DO , ∴四边形OBCD 是菱形.2.证明:(1)∵E 是AD 的中点,∴AE=DE. ∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB, ∴△AEF≌△DEB (AAS). (2)如图,连结DF.∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形.∵△AEF≌△DEB,∴BE=FE.∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB.∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.3.(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°.∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON. (2)解:如图,过点O作OH⊥AD于点H.∵正方形的边长为4,∴OH=HA=2.∵E为OM的中点,∴HM=4,则OM=22+42=25,∴MN=2OM=210.4.(1)证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC.∵AE=DC ,∴△AEF≌△DCE. ∴ED=AF.∵AE=DC =AB =2DE ,∴AB=2AF ,∴F 是AB 的中点. (2)解:由(1)得AF =FB ,且AE∥BH, ∴∠FBH=∠FAE=90°,∠AEF=∠FHB, ∴△AEF≌△BHF,∴HB=AE. ∵ED=2,且AE =2ED ,∴AE=4, ∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32, ∴AH=4 2. 5.解:(1)菱形(2)在图1中,∵四边形ABCD 是矩形, ∴AB∥CD,∴∠CAD=∠ACB,∠B=90°, ∴∠BAC+∠ACB=90°.在图3中,由旋转知,∠DAC′=∠DAC, ∴∠ACB=∠DAC′, ∴∠BAC+∠DAC′=90°. ∵点D ,A ,B 在同一条直线上, ∴∠CAC′=90°. 由旋转知,AC =AC′.∵点F 是CC′的中点,∴AG⊥CC′,CF =C′F. ∵AF=FG ,∴四边形ACGC′是平行四边形. ∵AG⊥CC′,∴四边形ACGC′是菱形. ∵∠CAC′=90°, ∴菱形ACGC′是正方形.(3)在Rt△ABC 中,AB =2,AC =4, ∴BC′=AC =4,BD =BC =23, sin ∠ACB=AB AC =12,∴∠ACB=30°.由(2)结合平移知,∠CHC′=90°.在Rt△BCH 中,∠ACB=30°, ∴BH=BC·sin 30°=3, ∴C′H=BC′-BH =4- 3. 在Rt△ABH 中,AH =12AB =1,∴CH=AC -AH =4-1=3, 在Rt△CHC′中,tan ∠C′CH=C′H CH =4-33.微专题七 与圆有关的计算与证明姓名:________ 班级:________ 用时:______分钟1.若将半径为12 cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是( ) A .2 cmB .3 cmC .4 cmD .6 cm2.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD,则AB ︵的长为( )A .πB.32πC .3πD .6π3. 如图,已知⊙O 的半径是2,点A ,B ,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分的面积为( )A.23π-2 3 B.23π- 3 C.43π-2 3D.43π- 3 4.一般地,如果在一次试验中,结果落在区域D 中每一个点都是等可能的,并用A 表示“试验结果落在区域D 中的某个小区域M 中”这个事件,那么事件A 发生的概率为P A =MD .如图,现在往等边三角形ABC 内投入一个点,则该点落在△ABC 的内切圆中的概率是______.5.如图,分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为________.6.我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r 的圆内接正n 边形的周长为L ,圆的直径为d.如图所示,当n =6时,π≈l d =6r 2r =3,那么当n =12时,π≈ld =____________.(结果精确到0.01,参考数据:sin 15°=cos 75°≈0.259)7.如图,⊙O 的半径是2,直线l 与⊙O 相交于A ,B 两点,M ,N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB=45°,则四边形MANB 面积的最大值是______.8.如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30 cm ,∠B 1D 1C 1=120°. (1)图2中,弓臂两端B 1,C 1的距离为________cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为______________cm .9.如图,⊙O 是△ABC 的外接圆,AB 为直径,∠BAC 的平分线交⊙O 于点D ,过点D 作DE⊥AC 分别交AC 、AB 的延长线于点E ,F.(1)求证:EF 是⊙O 的切线;(2)若AC =4,CE =2,求BD ︵的长度.(结果保留π)10.如图,已知AB 是圆O 的直径.弦CD⊥AB,垂足为H.与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连结AF 交CD 于点N.(1)求证:CA =CN ;(2)连结DF ,若cos ∠DFA=45,AN =210,求圆O 的直径的长度.11.如图,在平面直角坐标系xOy 中,直线y =3x -23与x 轴,y 轴分别交于A ,B 两点,P 是直线AB 上一动点,⊙P 的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.参考答案1.D 2.B 3.C 4.39π 5.πa 6.3.11 7.4 2 8.(1)30 3 (2)105-10 9.解:(1)证明:如图,连结OD.∵OA=OD ,∴∠OAD=∠ODA. ∵AD 平分∠EAF,∴∠DAE=∠DAO, ∴∠DAE=∠ADO,∴OD∥AE. ∵AE⊥EF,∴OD⊥EF, ∴EF 是⊙O 的切线.(2)如图,作OG⊥AE 于点G ,连结BD ,则AG =CG =12AC =2,∠OGE=∠E=∠ODE=90°,∴四边形ODEG 是矩形,∴OA=OB =OD =CG +CE =2+2=4,∠DOG=90°. ∵∠DAE=∠BAD,∠AED=∠ADB=90°, ∴△ADE∽△ABD, ∴AE AD =AD AB ,即6AD =AD 8, ∴AD 2=48.在Rt△ABD 中,BD =AB 2-AD 2=4. 在Rt△ABD 中,∵AB=2BD , ∴∠BAD=30°, ∴∠BOD=60°,则BD ︵的长度为60·π·4180=4π3.10.(1)证明:如图,连结OF. ∵ME 与圆O 相切于点F ,∴OF⊥ME, 即∠OFN+∠MFN=90°.∵∠OFN=∠OAN,∠OAN+∠ANH=90°, ∴∠MFN=∠ANH.(等量代换) 又∵ME∥AC,∴∠MFN=∠NAC, ∴∠ANH=∠NAC.∴CA=CN.(2)解:如图,连结OC , ∵cos ∠DFA=45,∴cos C=45.在直角△AHC 中,设AC =5a ,HC =4a , 则AH =3a.由(1)知,CA =CN ,∴NH=a.在直角△ANH 中,利用勾股定理得AH 2+NH 2=AN 2, 即(3a)2+a 2=(210)2,解得a =2.如图,连结OC ,在直角△OHC 中,利用勾股定理得OH 2+HC 2=OC 2. 设圆O 的半径为R ,则(R -6)2+82=R 2,解得2R =503,∴圆O 的直径长度为2R =503.11.解:(1)原点O 在⊙P 外.理由:∵直线y =3x -23与x 轴,y 轴分别交于A ,B 两点, ∴点A(2,0),点B(0,-23). 在Rt△OAB 中,tan∠OBA=OA OB =33,∴∠OBA=30°.如图,过点O 作OH⊥AB 于点H.在Rt△OBH 中,OH =OB·sin∠OBA= 3. ∵3>1,∴原点O 在⊙P 外.(2)如图,当⊙P 过点B 时,点P 在y 轴右侧时,∵PB=PC ,∴∠PCB=∠OBA=30°,∴⊙P 被y 轴所截得的劣弧所对的圆心角为180°-30°-30°=120°, ∴弧长为120π×1180=2π3.同理,当⊙P 过点B 时,点P 在y 轴左侧时,弧长同样为2π3.∴当⊙P 过点B 时,⊙P 被y 轴所截得的劣弧长为2π3.(3)如图,当⊙P 与x 轴相切时,且位于x 轴下方时,设切点为D ,连结DP ,则PD⊥x 轴,∴PD∥y 轴,∴∠APD=∠ABO=30°,∴在Rt△DAP中,AD=DP·tan ∠DPA=1×tan 30°=33,∴OD=OA-AD=2-33,∴此时点D的坐标为(2-33,0).当⊙P与x轴相切时,且位于x轴上方时,根据对称性可以求得此时切点的坐标为(2+33,0).综上所述,当⊙P与x轴相切时,切点的坐标为(2-33,0)或(2+33,0).微专题八巧用图形变换进行计算与证明姓名:________ 班级:________ 用时:______分钟1.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2,则旋转的牌是( )2.如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点,则图中阴影部分的面积是( )A. 3 B.2 3 C.3 3 D.4 33.如图,已知⊙O的半径为3,∠AOB+∠COD=150°,则阴影部分的面积为_________.4.如图是一个台阶的纵切面图,∠B=90°,AB=3 m,BC=5 m,现需在台阶从点A到点C 处铺上红地毯,则该地毯的长度为______m.5.将一张矩形纸片折叠成如图所示的图形,若AB=6 cm,则AC=______cm.6.如图①,四边形CFDE是正方形,且点E,D,F分别在三角形ABC的三边上,观察图①和图②,请回答下列问题:(1)请简述由图①变成图②的形成过程:______________________________________________________.(2)若AD=3,DB=4,则△ADE和△BDF的面积之和为______.7.如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是______形,点P,E,F分别为线段AB,AD,DB的任意点,则PE+PF的最小值是_________.8.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2 019次后,点P的坐标为______________________.9.如图,在正方形ABCD中,点M,N分别是AD,CD边上的动点(含端点),且∠MBN=45°.求证:AM+CN=MN.10.问题背景:如图1,点A,B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连结AB′与直线l交于点C,则点C即为所求.(1)实践运用:如图2,已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为________.(2)知识拓展:如图3,在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E,F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.。

2019年全国各地中考数学压轴题汇编:几何综合(浙江专版)(解析卷)

2019年全国各地中考数学压轴题汇编:几何综合(浙江专版)(解析卷)

2019年全国各地中考数学压轴题汇编(浙江专版)几何综合参考答案与试题解析1.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x取值范围.解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.2.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.3.如图,在6×6的网格中,每个小正方形边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件图形.解:符合条件的图形如图所示:4.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.(1)证明:∵AD∥EC,∵E是AB中点,∴AE=EB,∵∠AED=∠B,∴△AED≌△EBC.(2)解:∵△AED≌△EBC,∴AD=EC,∵AD∥EC,∴四边形AECD是平行四边形,∴CD=AE,∵AB=6,∴CD=AB=3.5.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.6.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.②若AD=EC,求的值.解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°﹣∠BCD=31°;(2)①由勾股定理得,AB==,∴AD=﹣a,解方程x2+2ax﹣b2=0得,x==﹣a,∴线段AD的长是方程x2+2ax﹣b2=0的一个根;②∵AD=AE,∴AE=EC=,由勾股定理得,a2+b2=(b+a)2,整理得,=.7.在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.8.如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.证明:如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,,∴得△ABE≌△CDF(AAS),∴AE=CF.9.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.10.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC 沿直线AD折叠,点C的对应点E落在BD上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.解:(1)由折叠的性质可知,△ADE≌△ADC,∴∠AED=∠ACD,AE=AC,∵∠ABD=∠AED,∴∠ABD=∠ACD,∴AB=AC,∴AE=AB;(2)如图,过A作AH⊥BE于点H,∵AB=AE,BE=2,∴BH=EH=1,∵∠ABE=∠AEB=∠ADB,cos∠ADB=,∴cos∠ABE=cos∠ADB=,∴=.∵∠BAC=90°,AC=AB,∴BC=3.11.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.12.如图,△ABC是⊙O内接三角形,点D在上,点E在弦AB上(E不与A 重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若=,求BC的长;②当为何值时,AB•AC的值最大?解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=AE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴BC=2k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=BC=k,∴DM==k,∴OM=OD﹣DM=3﹣k,在Rt△COM中,由OM2+MC2=OC2得(3﹣k)2+(k)2=32,解得:k=或k=0(舍),∴BC=2k=4;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=36﹣4d2,AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴当x=,即OM=时,AB•AC最大,最大值为,∴DC2=,∴AC=DC=,∴AB=,此时=.13.小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探索,若将点P,Q的位置特殊化;把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图2.此时她证明了AE=AF,请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题证明.(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).(1)证明:∵四边形ABCD是菱形,∴∠B+∠C=180°,∠B=∠D,AB=AD,∵∠EAF=∠B,∴∠EAF+∠C=180°,∴∠AEC+∠AFC=180°,∵AE⊥BC,∴AF⊥CD,在△AEB和△AFD中,,∴△AEB≌△AFD,∴AE=AF;(2)证明:由(1)得,∠PAQ=∠EAF=∠B,AE=AF,∴∠EAP=∠FAQ,在△AEP和△AFQ中,,∴△AEP≌△AFQ,∴AP=AQ;(3)解:已知:AB=4,∠B=60°,求四边形APCQ的面积,解:连接AC、BD交于O,∵∠ABC=60°,BA=BC,∴△ABC为等边三角形,∵AE⊥BC,∴BE=EC,同理,CF=FD,∴四边形AECF的面积=×四边形ABCD的面积,由(2)得,四边形APCQ的面积=四边形AECF面积,OA=AB=2,OB=AB=2,∴四边形ABCD的面积=×2×2×4=8,∴四边形APCQ的面积=4.14.如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN 于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB,ED,当tan∠MAN=2,AB=2时,在点P的整个运动过程中.①若∠BDE=45°,求PD的长.②若△BED为等腰三角形,求所有满足条件的BD的长.(3)连接OC,EC,OC交AP于点F,当tan∠MAN=1,OC∥BE时,记△OFP 的面积为S1,△CFE的面积为S2,请写出的值.解:(1)∵PB⊥AM、PC⊥AN,∴∠ABP=∠ACP=90°,∴∠BAC+∠BPC=180°,又∠BPD+∠BPC=180°,∴∠BPD=∠BAC;(2)①如图1,∵∠APB=∠BDE=45°,∠ABP=90°,∴BP=AB=2,∵∠BPD=∠BAC,∴tan∠BPD=tan∠BAC,∴BP=PD,∴PD=2;②当BD=BE时,∠BED=∠BDE,∴∠BPD=∠BPE=∠BAC,∴tan∠BPE=2,∵AB=2,∴BP=,∴BD=2;当BE=DE时,∠EBD=∠EDB,∵∠APB=∠BDE、∠DBE=∠APC,∴∠APB=∠APC,∴AC=AB=2,过点B作BG⊥AC于点G,得四边形BGCD是矩形,∵AB=2、tan∠BAC=2,∴AG=2,∴BD=CG=2﹣2;当BD=DE时,∠DEB=∠DBE=∠APC,∵∠DEB=∠DPB=∠BAC,∴∠APC=∠BAC,设PD=x,则BD=2x,∴,∴x=,∴BD=2x=3,综上所述,当BD=2、3或2﹣2时,△BDE为等腰三角形;(3)如图3,过点O作OH⊥DC于点H,∵tan∠BPD=tan∠MAN=1,∴BD=PD,设BD=PD=2a、PC=2b,则OH=a、CH=a+2b、AC=4a+2b,∵OC∥BE且∠BEP=90°,∴∠PFC=90°,∴∠PAC+∠APC=∠OCH+∠APC=90°,∴∠OCH=∠PAC,∴△ACP∽△CHO,∴=,即OH•AC=CH•PC,∴a(4a+2b)=2b(a+2b),∴a=b,即CP=2a、CH=3a,则OC=a,∵△CPF∽△COH,∴=,即=,则CF=a,OF=OC﹣CF=a,∵BE∥OC且BO=PO,∴OF为△PBE的中位线,∴EF=PF,∴==.15.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠BAC=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,=CE•FH=×1×=,∴S△CEF由(2)知,AE⊥CF,=CF•ME=×ME=ME,∴S△CEF∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,=CF•GM=××=.∴S△CFG16.如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C 是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A交x 轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.解:∵直线l:y=﹣x+b与x轴交于点A(4,0),∴﹣×4+b=0,∴b=3,∴直线l的函数表达式y=﹣x+3,∴B(0,3),∴OA=4,OB=3,在Rt△AOB中,tan∠BAO==;(2)①如图2,连接DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA,②过点E⊥OA于M,由①知,tan∠OAB=,设EM=3m,则AM=4m,∴OM=4﹣4m,AE=5m,∴E(4﹣4m,3m),AC=5m,∴OC=4﹣5m,由①知,△COE∽△EOA,∴,∴OE2=OA•OC=4(4﹣5m)=16﹣20m,∵E(4﹣4m,3m),∴(4﹣4m)2+9m2=25m2﹣32m+16,∴25m2﹣32m+16=16﹣20m,∴m=0(舍)或m=,∴4﹣4m=,3m=,∴(,),(3)如图,设⊙O的半径为r,过点O作OG⊥AB于G,∴AG==×=,∴EG=AG﹣AE=﹣r,连接FH,∵EH是⊙O直径,∴EH=2r,∠EFH=90°=∠EGO,∵∠OEG=∠HEF,∴△OEG∽△HEF,∴,∴OE•EF=HE•EG=2r(﹣r)=﹣2(r﹣)2+,∴r=时,OE•EF最大值为.。

2019中考数学压轴题专项训练题1(附答案).doc

2019中考数学压轴题专项训练题1(附答案).doc

2019中考数学压轴题专项训练题二1•如图,在平面直角坐标系中,二次函数y二-0. 25x'+bx+c的图象与坐标轴交于A、B、C三点,其屮点A的坐标为(0, 8),点B的坐标为(- 4, 0)・(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0, 4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.2•如图,抛物线y=ax2+bx+c经过AABC的三个顶点,与y轴相交于q(0,亍),点A坐标为(- 1, 2),点B是点A关于y轴的对称点,点C 在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE丄x轴,FG丄y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG 为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M, DG所在的直线与AC交于点N,连接DM, 是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.3•已知线段0A丄OB, C为0B上中点,D为A0上一点,连AC、BD交于P点.AP(1)如图1,当0A二OB RD为A0中点时,求菱的值;(2)如图2,当OA=OB,豊冷时,求tanZBPC.4.如图,已知RtAABC中,ZC=90° , AC二8・BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A-B-C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒.(I )在运动过程中,请你用t表示P、Q两点间的距离,并求出P、Q两点间的距离的最大值;(II)经过t秒的运动,求AAEC被直线PQ扫过的面积S与时间t的函数关系式.5•在平面直角坐标系xOy中,抛物线y=ax2+bx+2 it B ( - 2, 6) , C (2, 2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为I),求ABCD的面积;丄(3)若直线y= - 2向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.答案:1•解:(1)把A (0, 8) , B ( - 4, 0)代入y二-0. 25x?+bx+c 得{:_.+c抄解所以抛物线的解析式为y= - 0. 25/+x+&当y二0时,・0. 25 x2+x+8=0,解得X】二・4, x2=8,所以(:点坐标为(8, 0); (2)①连结OF,如图,设F (t, - 0.25 t2+t+8),• ° 四边形ocn)— °ACD1* °AOCD-AOCES A CDE=S AODE+S AO CE - S^(o=0. 5*4*t+0. 5*8* ( - 0. 25t2+t+8) - 0. 5*4*8 二・t2+6t+16= - (t - 3) 2+25,当t二3时,ACDF的面积有最大值,最大值为25,・・•四边形CDEF为平行四边形,・・・S的最大值为50;②•・•四边形CDEF为平行四边形,・・・CD〃EF, CD二EF,•・•点C向左平移8个单位,再向上平移4个单位得到点D,・••点F向左平移8个单位,再向上平移4个单位得到点E,即t2+t+12),VE (t - 8, - 0. 25 t2+t+12)在抛物线上,・・・-0. 25 (t - 8)2+t-8+8=-0. 25t2+t+12,解得t二7,当t二7 时,S AC DF=-(7 -3) 2+25=9,・•・此时S二2S△商二18.2.解:(1)・・・点B是点A关于y轴的对称点,・・・抛物线的对称轴为y 轴,・••抛物线的顶点为(0, |),故抛物线的解析式可设为y 二ax'+ A ( - 1, 2 )在抛物线 y=ax 2+-~± , a+#二2,解得 a 二-寺,・・・抛物线的函数关系表达式为y= - y=-寺x+春设正方形OEFG 的边长为p,则F(p, p).1 R 1 3 ;•点F(p, p)在直线y 二・qx+㊁上,.I ・qp+◎二p,解得p=l,・••点F 的坐标为(1, 1).②当点F 在第二象限时,同理可得:点F 的坐标为(- 3, 3),此时点F 不在线段AC 上,故舍 去・综上所述:点F 的坐标为(1, 1 );(3) 过点 M 作 MII 丄 DN 于 H,如图 2,则 0D 二 t, 0E=t + l.・・•点E 和点C 重合时停止运动,・・・0WtW2.1 3 1 ? 1当 x = t 时,y= ■ ^+―,则 N ( t, - —1+—), DN= - —t1 3 i当 x 二t+1 时,y= - — ( t + 1)= - —1 +1,则 M ( t + 1,(-討号)2={t 2 - t+2,解得t 二寺 -丄t+丄 2 2(2)①当点F 在第一象限时,如图1,令 y=0 得,--^x 2+-|=0, 解•得:Xi 二3, X2二・••点C 的坐标为 (3, 0). 设直线AC 的解析式为 y=mx+n,贝I 」有 ;昭竽解得“ 3irH-n=0 ^4 n 4-yt+1), ME 二在 RtADEM 中,在 RtANHM 中,DM"+(*)*t+2・ 沁) MH 二1, NH 二( 討1) I , A MN 2=12+ •:直线AC 的解析式为 ①当DN 二DM 时,②当ND=NM 时, ,解得 t=3 - V5;•••0WtW2, A t = l.综上所述:当△ DMX 是等腰三角形时,t 的值为吉,3 -旋或1 ••・・D 为0A 中点,・・・AE 二CE 二专AC,罟斗 •・•点C 为0B 中点,ABC=CO,器专,DU Z (2)过点D 作DE//BO 交AC 于E,喘T ••罟晋T •••点c 为OR 中点,・・・|H ,过D 作DF 丄AC,垂足为F,设AD=a,则AO 二4a,V0A=0B,点 C 为 OB 中点,AC0=2a, 在 RtAAC0 中,AC 二J AO S C O 2刃(仙)2+ (厉)2二2 V5a又TR/ADFsMACO, .•.鬻寺疇说,"2等a ,DF 芈“PF 二AC ・ AF 一 PC=2 V5a-绍戈合・辛 X 2忑 丁逵® tan ZBPC=tan ZFPD=^=-^. 5b 5rr z 2 1 ・・・Pg|CE 二.AP_AC - PC •瓦=PCl AC=2; .PE_DE_2・PC =BC =1, 4 3 ・・・PC 二4•解:(I )分两种情况考虑:当Q 在AB 边上时,过Q 作QE 丄AC,交AC 于点E,连接PQ,如图1所示: 3.解:(1)过 D 作 DE//CO 交 AC 于 E,・.・ZC 二90° ,・・・QE 〃BC, AAABC^AAQE,二孝二警二星,A D AC D C 在RtAABC 中,AC 二8,BC=6,根据勾股定理得:AB 二10, ・・・AQ 二2t, AP 二t, •:烹二普二竽,整理得:PE#t ,QE=*t, 1U o b b b根据勾股定理得:PQ 2=QE 2+PE 2,整理得:PQ 二婪t ; 5当Q 在BC 边上时,连接PQ,如图2所示:由 AB+BQ 二2t, AB 二 10,得到 BQ 二2t - 10, CQ 二BC - BQ 二6 - (2t - 10) =16 - 2t, 由 AP 二t, AC=8,得到 PC 二8-t,根据勾股定理得:PQ=V P C 2+QC 2=V (16-2t) 2+ (8-t) 2,当Q 与B 重合时,PQ 的值最大,则当t 二5时,PQ 最大值为3;(II )分两种情况考虑:当Q 在AB 边上时,如图1, 被直线PQ 扫过的面积为S △呼腐丄 丄§丄此时S R A P ・QE=2•鬲二花严(0<tW5);当Q 在BC 边上时,AABC 被直线PQ 扫过的面积为S 四边形ABQP ,丄 丄此时 S 二S NBC -S △啲二E X 8X6-E (8 - I) (16-2t) = - t 2+16t - 40 (5<lW8)・ 综上,经过t 秒的运动,AABC 被直线PQ 扫过的面积S 与时间t 的函数关系式 s=|t 2 (0<t<5) 、b [ s 二- t'+16t - 401 2 ,・••抛物线解析式为y 二夕一 x+2・ b 二-12 (2) ・・・y=討 飞+2二£ (x- 1)退..••顶点坐标(1, |),・・•直线BC 为y 二-x+4,・•・对称轴与BC 的交点H (1, 3),1 3 1 3:爲管:解得 4a+2b+2-2 5.解:(1)由题意 BS ABIK-S ABDH+S ADUC-"^巧巧w_2* 1=3.1 尸一万x+b(3)由“消去y得到x2 - x+4・2b=0,尸討-我当厶二0吋,直线与抛物线相切,1・4 (4-2b)二0,・・・b=¥,O当直线y二-£x+b经过点C时,b=3,当直线y二-*x+b经过点B时,b=5,・・•直线y二-号x向上平移b个单位所得的直线与抛物线段BDC (包括端点B、C)部分有两个交点,。

2019年中考数学压轴题100题精选(1-15题)

2019年中考数学压轴题100题精选(1-15题)

2019年中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x=-+a≠0)经过点(2)A-,0,抛物线的顶点为D,过O作射线OM AD∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()t s.问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).Array(1)当t = 2时,AP = ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C 时,请直接..写出t的值.图16【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值。

2019年全国各地中考数学压轴题分类汇编:选择、填空(浙江专版)(原卷)

2019年全国各地中考数学压轴题分类汇编:选择、填空(浙江专版)(原卷)

图 1,以直角三角形的各边为边分别向外作正方形, 再把较小的两张正方形纸片按图 2 的方式放置
在最大正方形内.若知道图中阴影部分的面积,则一定能求出(

1
1
A .直角三角形的面积
B .最大正方形的面积
C .较小两个正方形重叠部分的面积
D .最大正方形与直角三角形的面积和
12.( 2019 ?金华)如图物体由两个圆锥组成.其主视图中,∠
方形的公共顶点,小强在小明的启发下,将该图形沿着过点
P 的某条直线剪一刀,把它剪成了面
积相等的两部分,则剪痕的长度是(

A .2
B.
C.
D.
8.( 2019?台州)已知某函数的图象 C 与函数 y= 的图象关于直线 y= 2 对称.下列命题: ① 图象
C 与函数 y= 的图象交于点( , 2); ② 点( ,﹣ 2)在图象 C 上; ③ 图象 C 上的点的纵坐 标都小于 4;④ A( x1,y1), B( x2,y2)是图象 C 上任意两点,若 x1> x2,则 y1> y2.其中真命
1
1
题是(

A .①②
B.①③④
C. ②③④
D. ①②③④
9.( 2019 ?绍兴)正方形 ABCD 的边 AB 上有一动点 E,以 EC 为边作矩形 ECFG ,且边 FG 过点 D.在
点 E 从点 A 移动到点 B 的过程中,矩形 ECFG 的面积(

A .先变大后变小
B .先变小后变大
C .一直变大
与 x 函数关系的是(

A.
B.
C.
D.
1
1
17.( 2019?台州)如图是用 8 块 A 型瓷砖(白色四边形)和 8 块 B 型瓷砖(黑色三角形)不重叠、 无空隙拼接而成的一个正方形图案, 图案中 A 型瓷砖的总面积与 B 型瓷砖的总面积之比为 ( )

浙江省2019届数学中考专题复习专题十综合性压轴题训练1(优选.)

浙江省2019届数学中考专题复习专题十综合性压轴题训练1(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。

专题十综合性压轴题类型一函数中点的存在性问题(2018·山东东营中考)如图,抛物线y=a(x-1)(x-3)(a>0)与x轴交于A,B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的表达式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,求出x的值,确定出A与B坐标,根据已知相似三角形得比例,求出OC的长即可;(2)根据C为BM的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC,确定出C的坐标,利用待定系数法确定出直线BC的表达式,把C坐标代入抛物线求出a的值,确定出二次函数的表达式即可;(3)过P作x轴的垂线,交BM于点Q,设出P与Q的横坐标为x,分别代入抛物线与直线表达式,表示出纵坐标,相减表示出PQ,四边形ACPB面积最大即为三角形BCP面积最大,三角形BCP面积等于PQ与B和C横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P的坐标即可.【自主解答】1.(2018·湖南衡阳中考)如图,已知直线y=-2x+4分别交x轴、y轴于点A,B,抛物线经过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的表达式为y=-2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M,N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B,P,D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的表达式;若不存在,请说明理由.类型二图形运动中的函数关系问题如图,在△ABC中,AB=6 cm,AC=4 2 cm,BC=2 5 cm,点P以1 cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【分析】(1)作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形讨论,求出QM即可解决问题.【自主解答】2.(2018·广东中考)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如图1,连结BC.(1)填空:∠OBC=°;(2)如图1,连结AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?类型三点的运动中的计算说理问题(2018·山东青岛中考)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16 cm,BC=6 cm,CD=8 cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2 cm/s.点P和点Q同时出发,以QA,QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.【分析】(1)作DH⊥AB 于H ,则四边形DHBC 是矩形,利用勾股定理求出AD 的长即可解决问题;(2)作PN⊥AB 于N.连结PB ,根据S =S △PQB +S △BCP ,计算即可;(3)当PQ⊥BD 时,∠PQN+∠DBA=90°,∠QPN+∠PQN=90°,推出∠QPN=∠DBA,推出tan ∠QPN=QN PB =34,由此构建方程即可解决问题;(4)存在.连结BE 交DH 于K ,作KM⊥BD 于M.当BE 平分∠ABD 时,△KBH≌△KBM,推出KH=KM ,BH =BM =8,设KH =KM =x ,在Rt △DKM 中,(6-x)2=22+x 2,解得x =83,作EF⊥AB 于F ,则△AEF≌△QPN,推出EF =PN =35(10-2t),AF =QN =45(10-2t)-2t ,推出BF =16-[45(10-2t)-2t],由KH∥EF,可得KH EF =BH BF,由此构建方程即可解决问题; 【自主解答】解决点动产生的计算说理题,关键是抓住点,由点到线段再到图形.此类问题涉及计算与说理,计算时常常用到勾股定理、三角函数、面积计算等相关知识,说理时往往较综合,涉及几何图形的相关性质与判定方法等,有时需要借助函数解决.3.(2018·浙江衢州中考)如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).(1)求直线CD的函数表达式;(2)动点P在x轴上从点(-10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B,若存在,请求出点P的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.类型四 图形运动变化过程中的分类讨论问题(2018·江苏淮安中考)如图,在平面直角坐标系中,一次函数y =-23x +4的图象与x 轴和y 轴分别相交于A ,B 两点.动点P 从点A 出发,在线段AO 上以每秒3个单位长度的速度向点O 作匀速运动,到达点O 停止运动,点A 关于点P 的对称点为点Q ,以线段PQ 为边向上作正方形PQMN.设运动时间为t 秒.(1)当t =13秒时,点Q 的坐标是 ; (2)在运动过程中,设正方形PQMN 与△AOB 重叠部分的面积为S ,求S 与t 的函数表达式;(3)若正方形PQMN 对角线的交点为T ,请直接写出在运动过程中OT +PT 的最小值.【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【自主解答】图形运动中会产生不同的位置、形成不同的图形形状、对应关系也会随着图形的变化而改变,所以在解决此类问题时,要注意分类讨论,分类讨论可以根据点的位置不同、图形的形状、对应关系等为依据,但分类讨论容易遗漏,解题时要特别关注.4.(2018·湖南衡阳中考)如图,在Rt△ABC中,∠C=90°,AC=BC=4 cm,动点P从点C出发以1 cm/s的速度沿CA匀速运动,同时动点Q从点A出发以 2 cm/s的速度沿AB匀速运动,当点P到达点A时,点P,Q同时停止运动,设运动时间为t(s).(1)当t为何值时,点B在线段PQ的垂直平分线上?(2)是否存在某一时刻t,使△APQ是以PQ为腰的等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S关于t的函数关系式.参考答案类型一【例1】 (1)由题可知当y =0时,a(x -1)(x -3)=0, 解得x 1=1,x 2=3,即A(1,0),B(3,0), ∴OA=1,OB =3.∵△OCA∽△OBC,∴OC∶OB=OA∶OC, ∴OC 2=OA·OB=3,则OC = 3.(2)∵C 是BM 的中点,即OC 为斜边BM 的中线, ∴OC=BC ,∴点C 的横坐标为32.又OC =3,点C 在x 轴下方, ∴C(32,-32).设直线BM 的表达式为y =kx +b ,把点B(3,0),C(32,-32)代入得⎩⎪⎨⎪⎧3k +b =0,32k +b =-32, 解得⎩⎪⎨⎪⎧k =33,b =-3,∴y=33x - 3.又∵点C(32,-32)在抛物线上,代入抛物线表达式得a(32-1)(32-3)=-32,解得a =233,∴抛物线表达式为y =233x 2-833x +2 3.(3)存在,设点P 坐标为(x ,233x 2-833x +23), 如图,过点P 作PQ⊥x 轴交直线BM 于点Q ,则Q(x ,33x -3), ∴PQ=33x -3-(233x 2-833x +23)=-233x 2+33x -3 3. 当△BCP 面积最大时,四边形ABPC 的面积最大,S △BCP =12PQ(3-x)+12PQ(x -32)=34PQ =-32x 2+934x -934,当x =-b 2a =94时,S △BCP 有最大值,四边形ABPC 的面积最大,此时点P 的坐标为(94,-538).1.解:(1)①如图,∵y=-2x 2+2x +4=-2(x -12)2+92,∴顶点M 的坐标为(12,92).当x =12时,y =-2×12+4=3,则点N 的坐标为(12,3).②不存在.理由如下: MN =92-3=32.设P 点坐标为(m ,-2m +4),则D(m ,-2m 2+2m +4), ∴PD=-2m 2+2m +4-(-2m +4)=-2m 2+4m. ∵PD∥MN,当PD =MN 时,四边形MNPD 为平行四边形, 即-2m 2+4m =32,解得m 1=12(舍去),m 2=32,此时P 点坐标为(32,1).∵PN=(12-32)2+(3-1)2=5,∴平行四边形MNPD 不为菱形, ∴不存在点P ,使四边形MNPD 为菱形. (2)存在. 如图,OB =4,OA =2,则AB =22+42=2 5. 当x =1时,y =-2x +4=2,则P(1,2), ∴PB=12+(2-4)2= 5. 设抛物线的表达式为y =ax 2+bx +4, 把A(2,0)代入得4a +2b +4=0, 解得b =-2a -2,∴抛物线的表达式为y =ax 2-2(a +1)x +4.当x =1时,y =ax 2-2(a +1)x +4=a -2a -2+4=2-a ,则D(1,2-a), ∴PD=2-a -2=-a. ∵DC∥OB, ∴∠DPB=∠OBA,∴当PD BO =PBBA 时,△PDB∽△BOA,即-a 4=525,解得a =-2,此时抛物线的表达式为y =-2x 2+2x +4; 当PD BA =PBBO 时,△PDB∽△BAO, 即-a 25=54, 解得a =-52,此时抛物线的表达式为y =-52x 2+3x +4.综上所述,满足条件的抛物线的表达式为y =-2x 2+2x +4或y =-52x 2+3x +4.类型二【例2】 (1)如图1中,作CH⊥AB 于H.设BH =x.∵CH⊥AB,∴∠CHB=∠CHA=90°, ∴AC 2-AH 2=BC 2-BH 2,∴(42)2-(6-x)2=(25)2-x 2,解得x =2,∴当点P 与H 重合时,CP⊥AB,此时t =2. (2)如图2中,当点Q 与H 重合时,BP =2BQ =4,此时t =4.如图3中,当CP =CB =25时,CQ⊥PB,此时t =6+(42-25)=6+42-2 5.(3)①如图4中,当0<t≤6时,S =12PQ·CH=12×12t×4=t.②如图5中,当6<t <6+42时,作BG⊥AC 于G ,QM⊥AC 于M.易知BG =AG =32,CG =2.MQ =12BG =322,∴S=12PC·QM=12×322×(6+42-t)=922+6-324t.综上所述,S =⎩⎪⎨⎪⎧t (0<t≤6),922+6-324t (6<t <6+42). 变式训练 2.解:(1)60 (2)如图,∵OB=4,∠ABO =30°,∴OA=12OB =2,AB =3OA =23,∴S △AOC =12OA·AB=12×2×23=2 3.∵△BOC 是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°, ∴AC=AB 2+BC 2=27, ∴OP=2S △AOC AC =4327=2217.(3)①当0<x≤83时,M 在OC 上运动,N 在OB 上运动,如图,过点N 作NE⊥OC 且交OC 于点E.则NE =ON·sin 60°=32x ,∴S △OMN =12OM·NE=12×1.5x×32x ,∴y=338x 2,∴x=83时,y 有最大值,最大值为833.②当83<x≤4时,M 在BC 上运动,N 在OB 上运动.如图,作MH⊥OB 于H ,则BM =8-1.5x ,MH =BM·sin 60°=32(8-1.5x), ∴y=83ON·MH=-338x 2+23x.当x =83时,y 取最大值,y <833,③当4<x≤4.8时,M ,N 都在BC 上运动,如图,作OG⊥BC 于G.MN =12-2.5x ,OG =AB =23, ∴y=12·MN·OG=123-532x ,当x =4时,y 有最大值,最大值接近于2 3. 综上所述,y 有最大值,最大值为833.类型三【例3】 (1)如图,作DH⊥AB 于H ,则四边形DHBC 是矩形, ∴CD=BH =8,DH =BC =6. ∵AH=AB -BH =8, ∴AD=DH 2+AH 2=10, ∴AP=AD -DP =10-2t.(2)如图,作PN⊥AB 于N ,连结PB. 在Rt△APN 中,PA =10-2t , ∴PN=PA·sin∠DAH=35(10-2t),AN =PA·cos∠DAH=45(10-2t),∴BN=16-AN =16-45(10-2t),S =S △PQB +S △BCP =12×(16-2t)×35(10-2t)+12×6×[16-45(10-2t)]=65t 2-545t +72.(3)当PQ⊥BD 时,∠PQN +∠DBA=90°. ∵∠QPN+∠PQN=90°, ∴∠QPN=∠DBA, ∴tan∠QPN=QM PN =34,∴45(10-2t )-2t 35(10-2t )=34,解得t =3527.经检验,t =3527是分式方程的解,∴当t =3527 s 时,PQ⊥BD.(4)存在.理由如下:连结BE 交DH 于K ,作KM⊥BD 于M. 当BE 平分∠ABD 时,△KBH≌△KBM, ∴KH=KM ,BH =BM =8,设KH =KM =x , 在Rt△DKM 中,(6-x)2=22+x 2, 解得x =83.如图,作EF⊥AB 于F ,则△AEF≌△QPN, ∴EF=PN =35(10-2t),AF =QN =45(10-2t)-2t ,∴BF=16-[45(10-2t)-2t].∵KH∥EF,∴KH EF =BHBF,∴8335(10-2t )=816-[45(10-2t )-2t],解得t =2518.经检验,t =2518是分式方程的解,∴当t =2518s 时,点E 在∠ABD 的平分线.变式训练3.解:(1)设直线CD 的表达式为y =kx +b ,则有⎩⎪⎨⎪⎧12k +b =0,6k +b =3,解得⎩⎪⎨⎪⎧k =-12,b =6,∴直线CD 的表达式为y =-12x +6.(2)①如图1中,作DP∥OB,则∠PDA=∠B.图1∵DP∥OB,∴PA AO =ADAB ,∴PA 6=38,∴PA=94, ∴OP=6-94=154,∴P(154,0),根据对称性可知,当AP =AP′时,P′(334,0),∴满足条件的点P 坐标为(154,0)或(334,0).②如图2中,当OP =OB =10时,作PQ∥OB 交CD 于Q.图2∵直线OB 的表达式为y =43x ,∴直线PQ 的表达式为y =43x +403,由⎩⎪⎨⎪⎧y =43x +403,y =-12x +6,解得⎩⎪⎨⎪⎧x =-4,y =8,∴Q(-4,8),∴PQ=62+82=10, ∴PQ=OB.∵PQ∥OB,∴四边形OBQP 是平行四边形. ∵OB=OP ,∴四边形OBQP 是菱形,此时点M 与P 重合,满足条件,t =0. 如图3中,当OQ =OB 时,设Q(m ,-12m +6),图3则有m 2+(-12m +6)2=102,解得m =12±4895,∴点Q 的横坐标为12+4895或12-4895,设点M 的横坐标为a ,则有a +02=12+4895+62或a +02=12-4895+62,∴a=42+4895或42-4895.又∵点P 从点(-10,0)开始运动,∴满足条件的t 的值为92+4895或92-4895.如图4中,当点Q 与C 重合时,M 点的横坐标为6,此时t =16,图4综上所述,满足条件的t 的值为0或16或92+4895或92-895.类型四【例4】 (1)(4,0)(2)当点Q 在原点O 时,AQ =6, ∴AP=12AQ =3,∴t=3÷3=1.①当0<t≤1时,如图1,令x =0,图1∴y =4,∴B(0,4),∴OB=4. ∵A(6,0),∴OA=6,在Rt△AOB 中,tan∠OAB=OB OA =PD 3t =23,由运动知AP =3t ,∴P(6-3t ,0), ∴Q(6-6t ,0),∴PQ=AP =3t. ∵四边形PQMN 是正方形, ∴MN∥OA,PN =PQ =3t ,在Rt△APD 中,tan∠OAB=PD AP =PD 3t =23,∴PD=2t ,∴DN =t. ∵MN∥OA,∴∠DCN=∠OAB, ∴tan∠DCN=DN CN =t CN =23,∴CN=32t ,∴S=S 正方形PQMN -S △CDN =(3t)2-12t×32t =334t 2.②当1<t≤43时,如图2,同①的方法得DN =t ,CN =32t ,图2∴S=S 矩形OENP -S △CDN =3t×(6-3t)-12t×32t =-394t 2+18t.③当43<t≤2时,如图3,S =S 梯形OBDP =12(2t +4)(6-3t)=-3t 2+12.图3(3)如图4,由运动知P(6-3t ,0),Q(6-6t ,0),图4∴M(6-6t ,3t).∵T 是正方形PQMN 的对角线交点, ∴T(6-92t ,32t),∴点T 是直线y =-13x +2上的一段线段,(-3≤x<6).同理,点N 是直线AG :y =-x +6上的一段线段,(0≤x≤6), ∴G(0,6),∴OG=6. ∵A(6,0),∴AB=6 2.∵T 是正方形PQMN 的对角线的交点, ∴TN=TP ,∴OT+TP =OT +TN ,∴点O ,T ,N 在同一条直线上,且ON⊥AG 时,OT +TN 最小,即OT +TN 最小. ∵S △OAG =12OA·OG=12AG·ON,∴ON=OA·OGAG =32,即OT +PT 的最小值为3 2. 变式训练4.解:(1)如图,连结BP.在Rt△ACB 中,∵AC=BC =4,∠C =90°,∴AB=4 2. ∵点B 在线段PQ 的垂直平分线上, ∴BP=BQ.∵AQ=2t ,CP =t ,∴BQ=42-2t ,PB 2=42+t 2, ∴(42-2t)2=16+t 2,解得t =8-43或8+43(舍去), ∴t=(8-43)s 时,点B 在线段PQ 的垂直平分线上.(2)①如图,当PQ =QA 时,易知△APQ 是等腰直角三角形,∠AQP =90°,则有PA =2AQ ,∴4-t =2·2t ,解得t =43.②如图,当AP =PQ 时,易知△APQ 是等腰直角三角形,∠APQ=90°,则有AQ =2AP ,∴2t =2(4-t),解得t =2.综上所述,t =43s 或2 s 时,△APQ 是以PQ 为腰的等腰三角形.(3)如图,连结QC ,作QE⊥AC 于E ,作QF⊥BC 于F.则QE =AE ,QF =EC ,可得QE +QF =AE +EC =AC =4,∴S=S △QNC +S △PCQ =12CN·QF+12PC·QE=12t(QE +QF)=2t(0<t <4).最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改赠人玫瑰,手留余香。

19年浙江压轴题含答案

19年浙江压轴题含答案

19年浙江压轴题1.(杭州)(本题满分12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA. (1)若∠BAC=60°,①求证:OD=12 OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC <∠ACB,求证:m-n+2=0.第23题图2.(宁波)(14分)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.3.(温州)如图,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.4.(湖州)(12分)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.5.(绍兴)如图,矩形ABCD 中,AB a =,BC b =,点,M N 分别在边AB ,CD 上,点,E F 分别在BC ,AD 上,MN ,EF 交于点P ,记:k MN EF =.(1)若:a b 的值是1,当MN EF ⊥时,求k 的值.(2)若:a b 的值是12,求k 的最大值和最小值. (3)若k 的值是3,当点N 是矩形的顶点,60MPE ∠=︒,3MP EF PE ==时,求:a b 的值.6.(金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14 。

2019年浙江省中考数学押题试卷附解析

2019年浙江省中考数学押题试卷附解析

2019年浙江省中考数学押题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在一个晴朗的好天气里,小明向正北方向 走路时,发现自己的身影向右偏,则小明当 时所处的时间是( )A .上午B .中午C .下午D .无法确定2.若半径为 7 和 9 的两圆相切,则这两圆的圆心距长一定为( ) A . 16 B .2 C .2 或 16 D . 以上答案都不对3.在△ABC 中,A=70°,⊙O 截△ABC 的三条边所得的弦长相等,则∠BOC 的度数为( ) A .140° B .l35° C .130° D .125° 4.如果∠A 为锐角,那么sin ∠A ( ) A .小于1B .等于1C .大于1D .大于零且小于15.下列说法正确的有( )①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE 与五边形 A ′B ′C ′D ′E ′位似,则其中△ABC 与△A ′B ′C ′也是位似的,且位似比相等. A .1 个B .2 个C .3 个D .4 个6. 若a 是关于x 的方程20x bx a ++=的根,且0a ≠,则a b +的值为( ) A .1B . 1-C .12D .12-7.某学习小组7个男同学的身高(单位:米)为:l .66,1.65,1.72.1.58.1.64,1.66.1.70.那么这组数据的众数是( ) A .1.65米B .1.66米C . 1.67米D .1.70米8.1x -1=1x 2-1的解为( ) A .0B .1C .-1D .1或-1 9.下列各方程中,属于一元一次方程的是( ) A . 22x x -=B . 53x y +=C .125x x +=D .112xx +=二、填空题10.二次函数2y ax bx c =++图象的一部分如图所示,则a+b= .11.若一个边三角形的边长为 6,则它的面积为 .12.已知△CDE是△CAB经相似变换后得到的像,且∠A=30°,∠CDE=30°,AB=4,DE=2,AC=3,则CD= .解答题13.如图①是棱长为a的小正方体,图②、图③由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,……,第n层.第n层的小正方体的个数为.(用含行的代数式表示).当层数为l0时,第10层小正方体的个数为.14.用四舍五入法取l29543的近似值,保留3个有效数字,并用科学记数法表示是.15.水星与太阳的距离约为5.79×102 km,则这个数为 km.三、解答题16.袋中装有 6 只乒乓球,其中 4 只黄色,2 只白色.(1)求从中任取两个球均为白色的概率;(2)求取出两球,一只是白球,一只是黄球的概率.17.如果掷两枚正四面体被子,已细这两枚正四面体骰子每面的点数依次为 1、2、3、4,那么点数和机会均等的结果有哪些?请用树状图或列表来说明你的观点.18.在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I与R之间的函数关系式;(2)当电流I=0.5安培时,求电阻R的值.(1)I=10R ,(2)R=20欧姆.19.已知x =1是一元二次方程2400ax bx +-=的一个解,且a b ≠,求ba b a 2222--的值.20.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y (mg )与燃烧时间x (分钟)成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg .据以上信息解答下列问题:(1)求药物燃烧时y 与x 的函数关系式. (2)求药物燃烧后y 与x 的函数关系式.(3)当每立方米空气中含药量低于1.6mg 时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?21.小华家距离学校 2.4 km ,某一天小华从家中出发去上学,恰好行走到一半的路程时,发现离到校时间只有 12 min 了. 如果小华要按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?22.解下列不等式,并把它们的解集表示在数轴上:(1)33x ->;(2)248x -<-;(3)52720x x +≥+;(4)123x x ≥-23.已知21xy=⎧⎨=⎩和33xy=⎧⎨=⎩是方程y kx b=+的解,求:(1)k,b的值;(2)当4y=时,x的值.24.观察下图.寻找对顶角(不含平角):交于一点的直线的条数2345…2004n对顶角的对数25.对于方程62ax x-=,你能探究出方程的解x与a 的值有什么关系吗?当a取怎样的整数时,方程的解为正整数,并求出这些正整数解.26.用字母表示以下运算律.(1)加法交换律;(2)加法结合律;(3)乘法交换律;(4)乘法结合律;(5)分配律.27.小明买了6个梨的总质量是0.95 kg,那么平均每个梨的质量约为多少(精确到0.01 kg)?28.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图,如上图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?29.如图,已知在方格纸中的每个小方格是边长为 1 的正方形,A、B 两点在小方格的顶点位置如图所示,请在小方格的顶点上确定一点C,使的面积为 2.30.如图所示,(1)请找出图中哪些线段是互相平行的,并用字母把它们表示出来;(2)你能否画出与DE平行的线段?若能画,则在图中画出与DE平行的线段;若不能画,请说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.D5.C6.B7.B8.A9.C二、填空题10.-111.12.1.513.1(1)2n n +;55 14.1.30×10515.57900000三、解答题 16.(1)两个均为白球的概率为2116515P =⨯=;(2)两球为一黄、一白的概率是24428656515P =⨯+⨯=.17.从上表可以看出概率和掷出点数和为掷出点数和为“2”的概率和掷出点数和为“8”的概率是一样的,均为116;掷出点数和为“3”的概率和掷出点数和为“7”的概率是一样的,均为18;掷出点数和为“4”的概率和掷出点数和为“6”的概率是一样的,均为316;掷出点数和为“5”的概率为1418.19.20 .20.解:(1)设药物燃烧阶段函数解析式为11(0)y k x k =≠,由题意得:1810k =,145k =.∴此阶段函数解析式为45y x =. (2)设药物燃烧结束后的函数解析式为22(0)k y k x =≠,由题意得:2810k=,280k =.∴此阶段函数解析式为80y x=.(3)当 1.6y <时,得801.6x<,0x >, 1.680x >,50x >∴从消毒开始经过50分钟后学生才可回教室. 21.6 km /h22.(1)0<-1;(2)x<-2;(3)x ≤-9;(4)x ≥一3 图略23.(1)2k =,3b =-(2) 3.524.25.移项,得26ax x -=,即(2)6a x -=,当2a =时,方程无解.当2a ≠时,方程有唯一解62x a =-.要使x 为正整数,则a=3或4或5或 7. 此时方程的正整数解分别为:x=6或3或2或1.26.(1)a+b=b+a (2)(a+b)+c=a+(b+c) (3)ab=ba (4)()()ab c a bc ⋅=⋅ (5)()m a b c ma mb mc ++=++27.0.16 kg28.⑴60件;⑵第四组上交作品最多,有18件;⑶第六组获奖率较高.29.如图中的点 C 1、C 2、C 3、C 4、C 530.(1)HI∥FG,LM∥ON (2)能。

2019年浙江省杭州市中考数学押题试卷附解析

2019年浙江省杭州市中考数学押题试卷附解析

2019年浙江省杭州市中考数学押题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.用长为5cm,6cm,7cm的三条线段围成三角形的事件是()A.随机事件B.必然事件C.不可能事件D.以上都不是2.在△ABC 中,∠ABC= 40°,∠CAB= 60°,点0是内心,则∠BOC 度数是()A.50°B.80°C.100°D.120°3.已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为()A.1∶2 B.2∶1 C.1∶4 D.4∶14.一个扇形的半径等于一个圆的半径的 2倍,且面积相等,则这个扇形的圆心角是()A.45°B.60°C.90°D.180°5.一个五边形能画出的对角线条数为()A.2条B.3条C.4条D.5条6.如图,在 Rt△ABC 中,∠B = 90°,ED 垂直平分AC,交AC边于点D,交BC边于E. ∠C= 35°,则∠BAE为()A. 10°B.15°C.20°D.25°7.等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D.顶角的平分线、底边上的高及底边上的中线三线互相重合8.下列说法,正确的是()A.两条不相交的直线叫做平行线B.两直线平行,同旁内角相等C.同位角相等D.平行线之间的距离处处相等9.如图,直线a,b被直线c所截的内错角有()A.一对 B.两对 C.三对 D.四对10.下列6组长度的线段中,可以首尾相接组成三角形的是( )①3,4,5;②1,1,3;③1,2,3;④5,5,5;⑤2,2,5;⑥3,7,4A .①②③④⑤⑥B .①④⑤C .①③④D .①②③④11.如图是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两个家庭的教育支出占全年总支出的百分比的判断中,正确的是( )A .甲户大于乙户B .乙户大于甲户C .甲、乙两户一样大D .无法确定哪一户大12.在3223.14, 2, , , 0.31,8, 0.80800800087π-…(每两个8之间依次多1个0)这些数中,无理数的个数为 ( )A .1个B .2个C .3个D .4个 13.已知3x =,2y =,0x y ⋅<,则x y +的值为( )A .5或-5B .1或-1C .5或1D .-5或-114.下列说法:①代数式21a +的值永远是正的;②代数式2a b +中的字母可以是任何数;③代数式2a b +只代表一个值;④代数式2x x -中字母x 可以是 0 以外的任何数. 其中正确的有( ) A .1 个 B .2 个 C .3 个 D .4 个二、填空题15.如图,已知PA 是⊙O 的切线,切点为A ,PA = 3,∠APO = 30°,那么OP = .16.如图,△ABC 和△DEF 是位似三角形,且AC= 2DF ,那么 OE :OB= .17.将数据分成4组,画出频数分布直方图,各小长方形的高的比是1:3:4:2,若第2 组的频数是15,则此样本的样本容量是_______.18.在梯形ABCD 中,AD ∥BC ,∠B=85°,∠C=45°,则∠D= ,∠A= . 19.在△ABC 中,∠A=120°,∠B=30°,AB=4 cm ,AC= cm .20.写出一个以23x y =⎧⎨=⎩为解的二元一次方程组 . 21.已知2+x a 与2-x b 的和等于442-x x ,则b a += . 22.在△ABC 中,∠A=∠B ,∠C=50°,则∠A= 度.23.某足协举办了一次足球比赛,记分规则为:胜一场积3 分,平一场积 1 分,负一场 积0分,若甲队比赛了 5 场后共积 7 分,则甲队平 场.24.如图所示,已知点C 是∠AOB 角平分线上的一点,点P ,P ′分别在边0A ,OB 上,如果要得到OP=OP ′,需添加以下条件中的某一个即可,请你写出所有可能结果的序号: . ①∠0CP=∠OCP ′;②∠0PC=∠OP ′C ;③PC=P ′C ;④PP ′⊥0C ;⑤PC ⊥OA ,P ′C ⊥OB .三、解答题25.如图,在半径等于5㎝的圆0内有长为53㎝的弦 AB ,求此弦所对的圆周角的度数.26.如图,已知线段 AB ,试以线段 AB 为弦,在 AB 的上方画弧,使所画的弧分别是劣弧、优弧和半圆,并指出这三种不同情况时,圆心与线段的位置关系.27.k 取何值时,关于x 的方程2232(31)310x k x k -++-=.(1)有一个根为零;(2)有两个相等的实数根.28.如果四棱柱用A 表示,立方体用B 表示,长方体用C 表示,直四棱柱用D 表示,斜四棱柱用E 表示.请将它们之间的相互包含关系填入下图中.29.如图,在△ABC 和△DEF 中,∠A=∠D ,AC=DF ,AE=BD ,请说明∠C=∠F 的理由.30.(1)如图,已知∠AOB=Rt ∠,∠BOC=40°,0M 平分∠AOC ,ON 平分∠BOC ,求∠MON 的度数;(2)如果(1)中∠AOB=α,其他条件不变,求∠MON 的度数;(3)你能从(1)、(2)的结果中发现什么规律?A B C DE F【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.C5.D6.C7.D8.D9.B10.D11.B12.C13.B14.B二、填空题15.16.1:2.17.5018.135°,95°19.420.答案不唯一,如521x yx y+=⎧⎨-=⎩等21.422.6523.1 或 424.①②④⑤三、解答题25.连结 AO、BO,过0作 OC⊥AB,交 AB于C,∵OC⊥AB 且平分AB,∴,△AOC为直角三角形,∴∠AOC= 60° ,∵∠AOC=∠BOC,∴∠AOB= 120° ,∴AB 所对圆周角为 60°或 120°.26.如图中虚线所示,当圆心在线段上时所画的弧是半圆;当圆心与弧在线段同侧时所画的弧是优弧;当圆心与弧在线段异侧时所画的弧是劣弧.27. (1)3k =2)23k =- 28.略29.只要证明:DEF ABC ∆≅∆)(SAS ,得出F C ∠=∠.30.(1)45°;(2)12α;(3)∠MON 的度数是∠AOB 度数的一半,即∠MON=12∠AOB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题十综合性压轴题类型一函数中点的存在性问题(2018·山东东营中考)如图,抛物线y=a(x-1)(x-3)(a>0)与x轴交于A,B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的表达式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,求出x的值,确定出A与B坐标,根据已知相似三角形得比例,求出OC的长即可;(2)根据C为BM的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC,确定出C的坐标,利用待定系数法确定出直线BC的表达式,把C坐标代入抛物线求出a的值,确定出二次函数的表达式即可;(3)过P作x轴的垂线,交BM于点Q,设出P与Q的横坐标为x,分别代入抛物线与直线表达式,表示出纵坐标,相减表示出PQ,四边形ACPB面积最大即为三角形BCP面积最大,三角形BCP面积等于PQ与B和C横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P的坐标即可.【自主解答】1.(2018·湖南衡阳中考)如图,已知直线y=-2x+4分别交x轴、y轴于点A,B,抛物线经过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的表达式为y=-2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M,N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B,P,D为顶点的三角形与△AO B相似?若存在,求出满足条件的抛物线的表达式;若不存在,请说明理由.类型二图形运动中的函数关系问题如图,在△ABC中,AB=6 cm,AC=4 2 cm,BC=2 5 cm,点P以1 cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【分析】(1)作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形讨论,求出QM即可解决问题.【自主解答】2.(2018·广东中考)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如图1,连结BC.(1)填空:∠OBC=°;(2)如图1,连结AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?类型三点的运动中的计算说理问题(2018·山东青岛中考)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16 cm,BC=6 cm,CD=8 cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2 cm/s.点P和点Q同时出发,以QA,QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.【分析】(1)作DH⊥AB 于H ,则四边形DHBC 是矩形,利用勾股定理求出AD 的长即可解决问题; (2)作PN ⊥AB 于N.连结PB ,根据S =S △PQB +S △BCP ,计算即可;(3)当PQ⊥BD 时,∠PQN+∠DBA=90°,∠QPN+∠PQN=90°,推出∠QPN=∠DBA,推出tan ∠QPN=QNPB =34,由此构建方程即可解决问题; (4)存在.连结BE 交DH 于K ,作KM⊥BD 于M.当BE 平分∠ABD 时,△KBH≌△KBM,推出KH =KM ,BH =BM =8,设KH =KM =x ,在Rt △DKM 中,(6-x)2=22+x 2,解得x =83,作EF⊥AB 于F ,则△AEF≌△QPN,推出EF =PN =35(10-2t),AF =QN =45(10-2t)-2t ,推出BF =16-[45(10-2t)-2t],由KH∥EF,可得KHEF =BHBF,由此构建方程即可解决问题; 【自主解答】解决点动产生的计算说理题,关键是抓住点,由点到线段再到图形.此类问题涉及计算与说理,计算时常常用到勾股定理、三角函数、面积计算等相关知识,说理时往往较综合,涉及几何图形的相关性质与判定方法等,有时需要借助函数解决.3.(2018·浙江衢州中考)如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB 于点D(6,3),交x轴于点C(12,0).(1)求直线CD的函数表达式;(2)动点P在x轴上从点(-10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B,若存在,请求出点P的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.类型四图形运动变化过程中的分类讨论问题(2018·江苏淮安中考)如图,在平面直角坐标系中,一次函数y =-23x +4的图象与x 轴和y 轴分别相交于A ,B 两点.动点P 从点A 出发,在线段AO 上以每秒3个单位长度的速度向点O 作匀速运动,到达点O 停止运动,点A 关于点P 的对称点为点Q ,以线段PQ 为边向上作正方形PQMN.设运动时间为t 秒. (1)当t =13秒时,点Q 的坐标是 ;(2)在运动过程中,设正方形PQMN 与△AOB 重叠部分的面积为S ,求S 与t 的函数表达式; (3)若正方形PQMN 对角线的交点为T ,请直接写出在运动过程中OT +PT 的最小值.【分析】(1)先确定出点A 的坐标,进而求出AP ,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T 的运动轨迹,进而找出OT +PT 最小时的点T 的位置,即可得出结论. 【自主解答】图形运动中会产生不同的位置、形成不同的图形形状、对应关系也会随着图形的变化而改变,所以在解决此类问题时,要注意分类讨论,分类讨论可以根据点的位置不同、图形的形状、对应关系等为依据,但分类讨论容易遗漏,解题时要特别关注.4.(2018·湖南衡阳中考)如图,在Rt △ABC 中,∠C=90°,AC =BC =4 cm ,动点P 从点C 出发以1 cm /s 的速度沿CA 匀速运动,同时动点Q 从点A 出发以 2 cm /s 的速度沿AB 匀速运动,当点P 到达点A 时,点P ,Q 同时停止运动,设运动时间为t(s ).(1)当t 为何值时,点B 在线段PQ 的垂直平分线上?(2)是否存在某一时刻t ,使△APQ 是以PQ 为腰的等腰三角形?若存在,求出t 的值;若不存在,请说明理由;(3)以PC 为边,往CB 方向作正方形CPMN ,设四边形QNCP 的面积为S ,求S 关于t 的函数关系式.参考答案类型一【例1】 (1)由题可知当y =0时,a(x -1)(x -3)=0, 解得x 1=1,x 2=3,即A(1,0),B(3,0), ∴OA=1,OB =3.∵△OCA∽△OBC,∴OC∶OB=OA∶OC, ∴OC 2=OA·OB=3,则OC = 3.(2)∵C 是BM 的中点,即OC 为斜边BM 的中线, ∴OC=BC ,∴点C 的横坐标为32.又OC =3,点C 在x 轴下方, ∴C(32,-32).设直线BM 的表达式为y =kx +b ,把点B(3,0),C(32,-32)代入得⎩⎪⎨⎪⎧3k +b =0,32k +b =-32, 解得⎩⎪⎨⎪⎧k =33,b =-3,∴y=33x - 3.又∵点C(32,-32)在抛物线上,代入抛物线表达式得a(32-1)(32-3)=-32,解得a =233,∴抛物线表达式为y =233x 2-833x +2 3.(3)存在,设点P 坐标为(x ,233x 2-833x +23),如图,过点P 作PQ⊥x 轴交直线BM 于点Q ,则Q(x ,33x -3), ∴PQ=33x -3-(233x 2-833x +23)=-233x 2+33x -3 3. 当△BCP 面积最大时,四边形ABPC 的面积最大,S △BCP =12PQ(3-x)+12PQ(x -32)=34PQ =-32x 2+934x -934,当x =-b 2a =94时,S △BCP 有最大值,四边形ABPC 的面积最大,此时点P 的坐标为(94,-538).变式训练1.解:(1)①如图,∵y=-2x 2+2x +4=-2(x -12)2+92,∴顶点M 的坐标为(12,92).当x =12时,y =-2×12+4=3,则点N 的坐标为(12,3).②不存在.理由如下: MN =92-3=32.设P 点坐标为(m ,-2m +4),则D(m ,-2m 2+2m +4), ∴PD=-2m 2+2m +4-(-2m +4)=-2m 2+4m. ∵PD∥MN,当PD =MN 时,四边形MNPD 为平行四边形, 即-2m 2+4m =32,解得m 1=12(舍去),m 2=32,此时P 点坐标为(32,1).∵PN=(12-32)2+(3-1)2=5, ∴PN≠MN,∴平行四边形MNPD 不为菱形, ∴不存在点P ,使四边形MNPD 为菱形. (2)存在. 如图,OB =4,OA =2,则AB =22+42=2 5. 当x =1时,y =-2x +4=2,则P(1,2), ∴PB=12+(2-4)2= 5. 设抛物线的表达式为y =ax 2+bx +4, 把A(2,0)代入得4a +2b +4=0, 解得b =-2a -2,∴抛物线的表达式为y =ax 2-2(a +1)x +4.当x =1时,y =ax 2-2(a +1)x +4=a -2a -2+4=2-a ,则D(1,2-a), ∴PD=2-a -2=-a. ∵DC∥OB, ∴∠DPB=∠OBA,∴当PD BO =PBBA 时,△PDB∽△BOA,即-a 4=525,解得a =-2, 此时抛物线的表达式为y =-2x 2+2x +4;当PD BA =PBBO 时,△PDB∽△BAO, 即-a 25=54, 解得a =-52,此时抛物线的表达式为y =-52x 2+3x +4.综上所述,满足条件的抛物线的表达式为y =-2x 2+2x +4或y =-52x 2+3x +4.类型二【例2】 (1)如图1中,作CH⊥AB 于H.设BH =x.∵CH⊥AB,∴∠CHB=∠CHA=90°, ∴AC 2-AH 2=BC 2-BH 2,∴(42)2-(6-x)2=(25)2-x 2,解得x =2,∴当点P 与H 重合时,CP⊥AB,此时t =2. (2)如图2中,当点Q 与H 重合时,BP =2BQ =4,此时t =4.如图3中,当CP =CB =25时,CQ⊥PB,此时t =6+(42-25)=6+42-2 5.(3)①如图4中,当0<t≤6时,S =12PQ·CH=12×12t×4=t.②如图5中,当6<t <6+42时,作BG⊥AC 于G ,QM⊥AC 于M.易知BG =AG =32,CG = 2.MQ =12BG =322,∴S=12PC·QM=12×322×(6+42-t)=922+6-324t.综上所述,S =⎩⎪⎨⎪⎧t (0<t≤6),922+6-324t (6<t <6+42). 变式训练 2.解:(1)60 (2)如图,∵OB=4,∠ABO =30°,∴OA=12OB =2,AB =3OA =23,∴S △AOC =12OA·AB=12×2×23=2 3.∵△BOC 是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°, ∴AC=AB 2+BC 2=27, ∴OP=2S △AOC AC =4327=2217.(3)①当0<x≤83时,M 在OC 上运动,N 在OB 上运动,如图,过点N 作NE⊥OC 且交OC 于点E.则NE =ON·sin60°=32x ,∴S △OMN =12OM·NE=12×1.5x×32x ,∴y=338x 2,∴x=83时,y 有最大值,最大值为833.②当83<x≤4时,M 在BC 上运动,N 在OB 上运动.如图,作MH⊥OB 于H ,则BM =8-1.5x , MH =BM·sin 60°=32(8-1.5x), ∴y=83ON·MH=-338x 2+23x.当x =83时,y 取最大值,y <833,③当4<x≤4.8时,M ,N 都在BC 上运动,如图,作OG⊥BC 于G.MN =12-2.5x ,OG =AB =23, ∴y=12·MN·OG=123-532x ,当x =4时,y 有最大值,最大值接近于2 3. 综上所述,y 有最大值,最大值为833.类型三【例3】 (1)如图,作DH⊥AB 于H ,则四边形DHBC 是矩形, ∴CD=BH =8,DH =BC =6. ∵AH=AB -BH =8, ∴AD=DH 2+AH 2=10, ∴AP=AD -DP =10-2t.(2)如图,作PN⊥AB 于N ,连结PB. 在Rt△APN 中,PA =10-2t , ∴PN=PA·sin∠DAH=35(10-2t),AN =PA·cos∠DAH=45(10-2t),∴BN=16-AN =16-45(10-2t),S =S △PQB +S △BCP =12×(16-2t)×35(10-2t)+12×6×[16-45(10-2t)]=65t 2-545t +72.(3)当PQ⊥BD 时,∠PQN+∠DBA=90°. ∵∠QPN+∠PQN=90°, ∴∠QPN=∠DBA, ∴tan∠QPN=QM PN =34,∴45(10-2t )-2t 35(10-2t )=34,解得t =3527.经检验,t =3527是分式方程的解,∴当t =3527 s 时,PQ⊥BD.(4)存在.理由如下:连结BE 交DH 于K ,作KM⊥BD 于M. 当BE 平分∠ABD 时,△KBH≌△KBM, ∴KH=KM ,BH =BM =8,设KH =KM =x ,在Rt△DKM 中,(6-x)2=22+x 2, 解得x=83.如图,作EF⊥AB 于F ,则△AEF≌△Q PN , ∴EF=PN=35(10-2t),AF =QN =45(10-2t)-2t ,∴BF=16-[45(10-2t)-2t].∵KH∥EF,∴KH EF =BHBF,∴8335(10-2t )=816-[45(10-2t )-2t],解得t =2518.经检验,t =2518是分式方程的解,∴当t =2518s 时,点E 在∠ABD 的平分线.变式训练3.解:(1)设直线CD 的表达式为y =kx +b ,则有⎩⎪⎨⎪⎧12k +b =0,6k +b =3,解得⎩⎪⎨⎪⎧k =-12,b =6,∴直线CD 的表达式为y =-12x +6.(2)①如图1中,作DP∥OB,则∠PDA=∠B.图1∵DP∥OB,∴PA AO =ADAB ,∴PA 6=38,∴PA=94, ∴OP=6-94=154,∴P(154,0),根据对称性可知,当AP =AP′时,P′(334,0),∴满足条件的点P 坐标为(154,0)或(334,0).②如图2中,当OP =OB =10时,作PQ∥OB 交CD 于Q.图2∵直线OB 的表达式为y =43x ,∴直线PQ 的表达式为y =43x +403,由⎩⎪⎨⎪⎧y =43x +403,y =-12x +6,解得⎩⎪⎨⎪⎧x =-4,y =8,∴Q(-4,8),∴PQ=62+82=10, ∴PQ=OB.∵PQ∥OB,∴四边形OBQP 是平行四边形. ∵OB=OP ,∴四边形OBQP 是菱形,此时点M 与P 重合,满足条件,t =0. 如图3中,当OQ =OB 时,设Q(m ,-12m +6),图3则有m 2+(-12m +6)2=102,解得m =12±4895,∴点Q 的横坐标为12+4895或12-4895,设点M 的横坐标为a ,则有a +02=12+4895+62或a +02=12-4895+62,∴a=42+4895或42-4895.又∵点P 从点(-10,0)开始运动,∴满足条件的t 的值为92+4895或92-4895.如图4中,当点Q 与C 重合时,M 点的横坐标为6,此时t =16,图4综上所述,满足条件的t 的值为0或16或92+4895或92-895.类型四【例4】 (1)(4,0)(2)当点Q 在原点O 时,AQ =6, ∴AP=12AQ =3,∴t=3÷3=1.①当0<t≤1时,如图1,令x =0,图1∴y =4,∴B(0,4),∴OB=4. ∵A(6,0),∴OA=6,在Rt△AOB 中,tan∠OAB=OB OA =PD 3t =23,由运动知AP =3t ,∴P(6-3t ,0), ∴Q(6-6t ,0),∴PQ=AP =3t. ∵四边形PQMN 是正方形, ∴MN∥OA,PN =PQ =3t ,在Rt△APD 中,tan∠OAB=PD AP =PD 3t =23,∴PD=2t ,∴DN =t. ∵MN∥OA,∴∠DCN=∠OAB, ∴tan∠DCN=DN CN =t CN =23,∴CN=32t ,∴S=S 正方形PQMN -S △CDN =(3t)2-12t×32t =334t 2.②当1<t≤43时,如图2,同①的方法得DN =t ,CN =32t ,图2∴S=S 矩形OENP -S △CDN =3t×(6-3t)-12t×32t =-394t 2+18t.③当43<t≤2时,如图3,S =S 梯形OBDP =12(2t +4)(6-3t)=-3t 2+12.图3(3)如图4,由运动知P(6-3t ,0),Q(6-6t ,0),图4∴M(6-6t ,3t).∵T 是正方形PQMN 的对角线交点, ∴T(6-92t ,32t),∴点T 是直线y =-13x +2上的一段线段,(-3≤x<6).同理,点N 是直线AG :y =-x +6上的一段线段,(0≤x≤6), ∴G(0,6),∴OG=6. ∵A(6,0),∴AB=6 2.∵T 是正方形PQMN 的对角线的交点, ∴TN=TP ,∴OT+TP =OT +TN ,∴点O ,T ,N 在同一条直线上,且ON⊥AG 时,OT +TN 最小,即OT +TN 最小. ∵S △OAG =12OA·OG=12AG·ON,∴ON=OA·OGAG =32,即OT +PT 的最小值为3 2. 变式训练4.解:(1)如图,连结BP.在Rt△ACB 中,∵AC=BC =4,∠C=90°,∴AB=4 2. ∵点B 在线段PQ 的垂直平分线上, ∴BP=BQ.∵AQ=2t ,CP =t ,∴BQ=42-2t ,PB 2=42+t 2, ∴(42-2t)2=16+t 2,解得t =8-43或8+43(舍去),∴t=(8-43)s 时,点B 在线段PQ 的垂直平分线上.(2)①如图,当PQ =QA 时,易知△APQ 是等腰直角三角形,∠AQP=90°,则有PA =2AQ ,∴4-t =2·2t ,解得t =43.②如图,当AP =PQ 时,易知△APQ 是等腰直角三角形,∠APQ =90°,则有AQ =2AP ,∴2t =2(4-t),解得t =2.综上所述,t =43s 或2 s 时,△APQ 是以PQ 为腰的等腰三角形.(3)如图,连结QC ,作QE⊥AC 于E ,作QF⊥BC 于F.则QE =AE ,QF =EC ,可得QE +QF =AE +EC =AC =4,∴S=S △QNC +S △PCQ =12CN·QF+12PC·QE=12t(QE +QF)=2t(0<t <4).。

相关文档
最新文档