9_第六节 对数与对数函数

合集下载

【高中数学】第六节 对数与对数函数

【高中数学】第六节 对数与对数函数

第六节对数与对数函数学习要求:1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数,了解对数在化简运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).1.对数的概念(1)对数的定义:一般地,如果①a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作②x=logN ,其中③ a 叫做对数的底数,④N 叫做真数.a(2)几种常见的对数:对数形式特点记法一般对数底数为a(a>0,且a≠1) ⑤log a N常用对数底数为10 ⑥lg N自然对数底数为e ⑦ln N2.对数的性质与运算法则(1)对数的性质:a log a N=⑧N ;log a a N=⑨N .(a>0,且a≠1)(2)对数的重要公式:换底公式:⑩log b N =log a N(a,b均大于0且不等于1);log a b,log a b·log b c·log c d=log a d (a,b,c均大于0且不等于1,d大于相关结论:log a b=1log b a0).(3)对数的运算法则:如果a >0且a ≠1,M >0,N >0,那么 log a (MN )= log a M +log aN; log a MN = log a M -log a N ; log a M n = n log a M (n ∈R); lo g a m M n =nm log a M (m ,n ∈R,且m ≠0). 3.对数函数的图象与性质a >1 0<a <1图象性质定义域:(0,+∞) 值域:R图象恒过点(1,0),即x =1时,y =0 当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数 是(0,+∞)上的减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数 y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称. 知识拓展对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c <d <1<a <b.由此我们可得到以下规律:在第一象限内,从左到右底数逐渐增大.1.判断正误(正确的打“√”,错误的打“✕”). (1)log a (MN )=log a M +log a N. ( ) (2)log a x ·log a y =log a (x +y ). ( )(3)log 2x 2=2log 2x. ( ) (4)若log a m <log a n ,则m <n. ( )(5)函数y =ln 1+x1-x 与函数y =ln(1+x )-ln(1-x )的定义域相同.( )(6)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),其图象经过第一,四象限.( )答案 (1)✕ (2)✕ (3)✕ (4)✕ (5)√ (6)√ 2.log 525+1612=( )A.94 B.6 C.214 D.9答案 B log 525+1612=log 552+(42)12=2log 55+4=6.故选B . 3.下列各式中正确的是( )A.log a 6log a3=log a 2 B.lg 2+lg 5=lg 7 C.(ln x )2=2ln x D.lg √x 35=35lg x答案 D 对于A 选项,由换底公式得log a 6log a3=log 36=1+log 32,故A 错;对于B 选项,lg 2+lg 5=lg(2×5)=1,故B 错; 对于C 选项,(ln x )2=ln x ×ln x ≠2ln x ,故C 错;对于D选项,lg √x 35=lg x 35=35lg x ,故D 正确.故选D.4.(2020安徽月考)已知a =log 23,b =(12)12,c =(13)13,则a ,b ,c 的大小关系是 ( )A.a <b <cB.a <c <bC.b <c <aD.c <b <a 答案 D 因为a =log 23>log 22=1,0<b =(12)12<(12)0=1,0<c =(13)13<(13)0=1, 又b 6=(12)3=18,c 6=(13)2=19,所以b 6>c 6,所以b >c ,即c <b <a.故选D.5.(2020河北唐山第十一中学期末)函数f (x )=lg(x -2)的定义域为 ( )A.(-∞,+∞)B.(-2,2)C.[2,+∞)D.(2,+∞)答案 D 函数f (x )=lg(x -2)的定义域为x -2>0,即x >2,所以函数f (x )=lg(x -2)的定义域为(2,+∞),故选D .6.(易错题)已知a >0,且a ≠1,则函数f (x )=a x 与函数g (x )=log a x 的图象可能是( )答案 B 由函数f (x )=a x 与函数g (x )=log a x 互为反函数,得图象关于y =x 对称,从而排除A,C,D.易知当a >1时,两函数图象与B 选项中的图象相同.故选B. 易错分析 忽视反函数的定义.对数的概念、性质与运算角度一 对数的概念与性质典例1 (1)若log a 2=m ,log a 5=n (a >0,且a ≠1),则a 3m +n = ( )A.11B.13C.30D.40 (2)已知2a =5b =10,则a+bab = . (3)设52log 5(2x -1)=9,则x = . 答案 (1)D (2)1 (3)2 角度二 对数的运算典例2 计算:(1)(lg 2)2+lg 2·lg 50+lg 25; (2)log 3√2743+lg 5+7log 72+log 23·log 94+lg 2; (3)(log 32+log 92)·(log 43+log 83).解析 (1)原式=(lg 2)2+(1+lg 5)·lg 2+lg 52=(lg 2+lg 5+1)·lg 2+2lg 5=(1+1)·lg 2+2lg 5=2(lg 2+lg 5)=2.(2)原式=log 3334-1+lg 5+2+lg3lg2·2lg22lg3+lg 2=34-1+(lg 5+lg 2)+2+1=-14+1+3=154.(3)原式=log 32·log 43+log 32·log 83+log 92·log 43+log 92·log 83 =lg2lg3·lg32lg2+lg2lg3·lg33lg2+lg22lg3·lg32lg2+lg22lg3·lg33lg2=12+13+14+16=54. 规律总结对数运算的求解思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数的运算性质求解.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,将其转化为同底数对数的真数的积、商、幂的运算.1.(lg 5)2+lg 2·lg 5+lg 20-log 23·log 38+2(1+log 25)= . 答案 9解析 原式=lg 5·(lg 5+lg 2)+lg 2+lg 10-log 23·log 28log 23+2·2log 25=1+1-3+10=9.2.如果45x =3,45y =5,那么2x +y = . 答案 1解析 ∵45x =3,45y =5,∴x =log 453,y =log 455,∴2x +y =2log 453+log 455=log 459+log 455=log 45(9×5)=1.对数函数的图象及应用典例3 (1)函数f (x )=ln|x -1|的大致图象是( )(2)当0<x ≤12时,4x <log a x (a >0,且a ≠1),则a 的取值范围是 ( )A.(0,√22) B.(√22,1) C.(1,√2) D.(√2,2)(3)已知函数f (x )=4+log a (x -1)(a >0,且a ≠1)的图象恒过定点P ,则点P 的坐标是 .答案 (1)B (2)B (3)(2,4)解析 (1)当x >1时, f (x )=ln(x -1),又f (x )的图象关于直线x =1对称,所以选B .(2)易知0<a <1,函数y =4x与y =log a x 的大致图象如图所示,则由题意可知只需满足log a 12>412,解得a >√22,∴√22<a <1,故选B .方法技巧对数函数图象的应用方法一些对数型方程、不等式的问题常转化为相应函数的图象问题,利用数形结合求解.1.(2020黑龙江齐齐哈尔第六中学模拟)函数f(x)=|log a(x+1)|(a>0,且a≠1)的大致图象是()答案C函数f(x)=|log a(x+1)|的定义域为{x|x>-1},且对任意的x∈(-1,+∞),均有f(x)≥0,结合对数函数的图象可知选C.2.函数y=x-a与函数y=log a x(a>0,且a≠1)在同一坐标系中的图象可能是()答案C当a>1时,对数函数y=log a x为增函数,当x=1时,函数y=x-a的值为负,故A、D错误; 当0<a<1时,对数函数y=log a x为减函数,当x=1时,函数y=x-a的值为正,故B错误,C正确.故选C.对数函数的性质及应用角度一比较对数值的大小典例4(1)(2018天津,5,5分)已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a >b >cB.b >a >cC.c >b >aD.c >a >b(2)已知f (x )满足f (x )-f (-x )=0,且在(0,+∞)上单调递减,若a =(79)-14,b =(97)15,c =log 219,则f (a ), f (b ), f (c )的大小关系为 ( )A.f (b )<f (a )<f (c )B.f (c )<f (b )<f (a )C.f (c )<f (a )<f (b )D.f (b )<f (c )<f (a ) 答案 (1)D (2)C解析 (1)由已知得c =log 23,∵log 23>log 2e>1,b =ln 2<1,∴c >a >b ,故选D . (2)∵f (x )-f (-x )=0,∴f (x )=f (-x ), ∴f (x )为偶函数.∵c =log 219<0,∴f (c )=f (-log 219) =f (-log 219)=f (log 29),∵log 29>log 24=2,2>(97)1>a =(79)-14=(97)14>(97)15=b >0,∴log 29>a >b.∵f (x )在(0,+∞)单调递减, ∴f (log 29)<f (a )<f (b ), 即f (c )<f (a )<f (b ). 故选C .角度二 解简单的对数不等式典例5 (1)函数f (x )=√(log 2x )-1的定义域为 ( )A.(0,12)B.(2,+∞)C.(0,12)∪(2,+∞) D.(0,12]∪[2,+∞) (2)函数y =√log 3(2x -1)+1的定义域是 ( )A.[1,2]B.[1,2)C.[23,+∞)D.(23,+∞) 答案 (1)C (2)C角度三 对数函数性质的综合应用典例6 已知函数f (x )=log a (ax 2-x +1)(a >0,且a ≠1). (1)若a =12,求函数f (x )的值域;(2)当f (x )在[14,32]上为增函数时,求a 的取值范围. 解析 (1)当a =12时,ax 2-x +1=12x 2-x +1=12[(x -1)2+1]>0恒成立, 故函数f (x )的定义域为R,∵12x 2-x +1=12[(x -1)2+1]≥12,且函数y =lo g 12x 在(0,+∞)上单调递减,∴lo g 12(12x 2-x +1)≤lo g 1212=1,即函数f (x )的值域为(-∞,1]. (2)由题意可知,①当a >1时,由复合函数的单调性可知,必有y =ax 2-x +1在[14,32]上单调递增,且ax 2-x +1>0对任意的x ∈[14,32]恒成立,所以{x =12a ≤14,a ·(14)2-14+1>0,解得a ≥2;②当0<a <1时,同理可得必有y =ax 2-x +1在[14,32]上单调递减,且ax 2-x +1>0对任意的x ∈[14,32]恒成立,所以{x =12a ≥32,a ·(32)2-32+1>0,解得29<a ≤13.综上,a 的取值范围是(29,13]∪[2,+∞).规律总结1.比较对数值大小的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. (3)若底数与真数都不同,则常借助1,0等中间值进行比较.2.对数不等式的类型及解法(1)形如log a x >log a b (a >0,且a ≠1)的不等式,需借助y =log a x 的单调性求解,如果a 的取值不确定,那么需要分为a >1与0<a <1两种情况讨论.(2)形如log a x >b (a >0,且a ≠1)的不等式,需先将b 化为以a 为底的对数式的形式,再求解.1.设a =log 36,b =log 510,c =log 714,则 ( )A.c >b >aB.b >c >aC.a >c >bD.a >b >c答案 D ∵a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,且log 27>log 25>log 23>0,∴a >b >c.2.(2019山东高考模拟)已知f (x )=e x -1+4x -4,若正实数a 满足f (log a 34)<1,则a 的取值范围是( )A.a >34 B.0<a <34或a >43 C.0<a <34或a >1 D.a >1答案 C 因为y =e x -1与y =4x -4都是在R 上的增函数,所以f (x )=e x -1+4x -4是在R 上的增函数,又因为f (1)=e 1-1+4-4=1,所以f (log a 34)<1等价于log a 34<1,所以log a 34<log a a ,当0<a <1时,y =log a x 在(0,+∞)上单调递减,所以a <34,故0<a <34; 当a >1时,y =log a x 在(0,+∞)上单调递增,所以a >34,故a >1, 综上所述,a 的取值范围是0<a <34或a >1.故选C.3.(2020上海高三专题练习)函数y=√log0.5(4x2-3x)的定义域为.答案[-14,0)∪(34,1]解析由题意可知0<4x2-3x≤1,解得x∈[-14,0)∪(34,1].4.函数f(x)=lo g13(-x2+2x+3)的单调递增区间是.答案[1,3)解析令u=-x2+2x+3,由u>0,解得-1<x<3,即函数f(x)的定义域为(-1,3),根据二次函数的图象与性质可知函数u=-x2+2x+3在(-1,1)上单调递增,在[1,3)上单调递减, 因为函数f(x)=lo g13u为单调递减函数,所以根据复合函数的单调性可得函数f(x)的单调递增区间为[1,3).5.已知函数f(x)=ln(√1+9x2-3x)+1,求f(lg 2)+f(lg12)的值.解析由√1+9x2-3x>0恒成立知函数f(x)的定义域为R,因为f(-x)+f(x)=[ln(√1+9x2+3x)+1]+[ln(√1+9x2-3x)+1]=ln [(√1+9x2+3x)·(√1+9x2-3x)]+2=ln 1+2=2,所以f(lg 2)+f(lg12)=f(lg 2)+f(-lg 2)=2.A组基础达标1.已知函数f(x)=log2(x2-2x+a)的最小值为2,则a= ()A.4B.5C.6D.7答案 B2.log29×log34+2log510+log50.25= ()A.0B.2C.4D.6答案 D 原式=2log 23×(2log 32)+log 5(102×0.25)=4+log 525=4+2=6. 3.(2020河北冀州中学模拟)函数y =√log 3(2x -1)+1的定义域是 ( ) A.[1,2] B.[1,2) C.[23,+∞) D.(23,+∞) 答案 C4.log 6[log 4(log 381)]的值为( )A.-1B.1C.0D.2 答案 C5.(2019河南郑州模拟)设a =log 50.5,b =log 20.3,c =log 0.32,则 ( )A.b <a <cB.b <c <aC.c <b <aD.a <b <c答案 B a =log 50.5>log 50.2=-1,b =log 20.3<log 20.5=-1,c =log 0.32>log 0.3103=-1,log 0.32=lg2lg0.3,log 50.5=lg0.5lg5=lg2-lg5=lg2lg0.2.∵-1<lg 0.2<lg 0.3<0,∴lg2lg0.3<lg2lg0.2,即c <a ,故b <c <a.故选B .6.若lg 2=a ,lg 3=b ,则log 418= ( ) A.a+3b a 2B.a+3b 2aC.a+2b a 2D.a+2b 2a答案 D log 418=lg18lg4=lg2+2lg32lg2.因为lg 2=a ,lg 3=b ,所以log 418=a+2b 2a.故选D .7.已知函数f (x )=lg 1-x1+x ,若f (a )=12,则f (-a )= ( ) A.2 B.-2 C.12 D.-12答案 D ∵f (x )=lg 1-x1+x 的定义域为{x |-1<x <1},且f (-x )=lg 1+x1-x =-lg 1-x1+x =-f (x ), ∴f (x )为奇函数,∴f (-a )=-f (a )=-12.8.设f (x )=lg(10x +1)+ax 是偶函数,则a 的值为 ( ) A.1 B.-1 C.12 D.-12答案 D 函数f (x )=lg(10x+1)+ax 的定义域为R,因为f (x )为偶函数,所以f (x )-f (-x )=0,即lg(10x +1)+ax -[lg(10-x +1)+a (-x )]=(2a +1)x =0,所以2a +1=0,解得a =-12.B 组 能力拔高9.已知f (x )=lo g 12x ,则不等式(f (x ))2>f (x 2)的解集为 ( ) A.(0,14) B.(1,+∞) C.(14,1) D.(0,14)∪(1,+∞)答案 D 由(f (x ))2>f (x 2)得(lo g 12x )2>lo g 12x 2⇒lo g 12x ·(lo g 12x -2)>0,即lo g 12x >2或lo g 12x <0,解得原不等式的解集为(0,14)∪(1,+∞).10.若x 、y 、z 均为正数,且2x =3y =5z ,则 ( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2x D.3y <2x <5z答案 D 令2x =3y =5z =k (k >1),则x =log 2k ,y =log 3k ,z =log 5k ,∴2x 3y =2lgklg2·lg33lgk =lg9lg8>1,则2x >3y ,2x 5z =2lgklg2·lg55lgk =lg25lg32<1,则2x <5z ,故选D . 11.(2020福建莆田第六中学模拟)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm = . 答案 9解析 ∵f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),∴0<m <1<n ,-log 3m =log 3n ,∴mn =1. ∵f (x )在区间[m 2,n ]上的最大值为2,且函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数, ∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,则m =13(舍负),故n =3, 此时log 3n =1=-log 3m ,符合题意, 即nm =3÷13=9;若log 3n =2,则n =9,故m =19,此时-log 3m 2=4>2,不符合题意.故nm =9.C 组 思维拓展12.(2020四川攀枝花第七中学模拟)设函数f (x )=|log a x |(0<a <1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为13,则实数a 的值为 . 答案 23解析 作出y =|log a x |(0<a <1)的大致图象如图所示,令|log a x |=1,得x =a 或x =1a ,又1-a -(1a -1)=1-a -1-a a=(1-a )(a -1)a<0,所以1-a <1a -1,所以n -m 的最小值为1-a =13,即a =23.13.若log a (a 2+1)<log a (2a )<0,则a 的取值范围是 . 答案 (12,1)解析 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a (2a )<0,所以0<a <1,又2a >1,所以a >12.综上,实数a 的取值范围为(12,1).14.已知2x ≤16且log 2x ≥12,求函数f (x )=log 2x2·lo g √2√x2的值域. 解析 由2x ≤16得x ≤4,∴log 2x ≤2, 又log 2x ≥12,∴12≤log 2x ≤2,f (x )=log 2x2·lo g √2√x 2=(log 2x -1)·(log 2x -2) =(log 2x )2-3log 2x +2 =(log 2x -32)2-14,∴当log 2x =32时, f (x )min =-14.又当log 2x =12时, f (x )=34; 当log 2x =2时, f (x )=0, ∴当log 2x =12时, f (x )max =34. 故函数f (x )的值域是[-14,34].15.已知函数f (x )=3-2log 2x ,g (x )=log 2x.(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (√x )>k ·g (x )恒成立,求实数k 的取值范围. 解析 (1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2. 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (√x )>k ·g (x )得 (3-4log 2x )·(3-log 2x )>k ·log 2x. 令t =log 2x ,因为x ∈[1,4], 所以t =log 2x ∈[0,2],所以(3-4t )·(3-t )>k ·t 对任意的t ∈[0,2]恒成立. 当t =0时,k ∈R; 当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立,即k <4t +9t -15恒成立. 因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号, 所以(4t +9t -15)min =-3,则k <-3.综上,实数k 的取值范围是(-∞,-3).高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

对数与对数函数PPT课件

对数与对数函数PPT课件
(3)知道对数函数是一类重要的函数模型。
(4)了解指数函数和对数函数互为反函数。
二、高考考查题型:
以小题为主,如运算、比较大小、图象、性质等。
第1页/共14页
二、基础知识要点强化
1.对数的概念:
2.对数的运算:
(1)loga 1 _0__; loga a ___;
(2)loga MN __________;
(3)loga
M N
___________;
(4)log a
m
Mn
__________;
(5)a loga N ___; loga aN ___;
(6)loga b logb a __1 _;
(7)换底公式:logb N ______.
第2页/共14页
对数函数y=log a x (a>0, a≠1)
(2)若f (x)在( ,1上为增函数,求a的取值范围。
第9页/共14页
思考:带有参数的对数问题,做题应注意什么?
(1)对于带有参数的函数,不仅仅是对数函数,定义域 为R的问题应转化为恒成立问题解决,这种恒成立问题也 是高考的重点热点问题。 (2)在第二问中,应特别强调对数的真数在给定区间上 应恒大于0。
第7页/共14页
题型2:对数函数的图象
例4(2008山东理)已知函数 f (x) loga(2x b 1)(a 0,a 1)
的图象如图示,则 a,b 满足的关系是( A )
y
A. 0 a1 b 1 B. 0 b a1 1 O
x
C.0 b1 a 1 D. 0 a1 b1 1
第10页/共14页
巩固练习: 已知函数 f (x) log2(x2 ax在 a区) 间(-∞, 1- ] 3

对数和对数函数PPT教学课件

对数和对数函数PPT教学课件

loga
b
1 logb
a
loga1 a2 loga2 a3 logan1 an loga1 an
© 2006 NENU 济南九中高三数学备课组
知识要点
2.对数函数 (1)对数函数的定义
一般地,函数 y=loga x(a 0, a 1, x 0)
叫做对数函数,其中x是自变量.
注意:形如 y loga (2x),y loga (x 3),
类型之三:对数函数的图象
练习:如图所示,曲线C1、C2、C3、C4是
函数y
loga
x的图象,已知a取
1 ,1 ,2,3, 32
则曲线C1、C2、C3、C4对应的a的值依次为
2,3,1 ,1
y
3 2.
C1
C2
0
x
C3 C4
© 2006 NENU 济南九中高三数学备课组
类型之四:指数函数与对数函数综合题
互为反函数(a 0, a 1).
© 2006 NENU 济南九中高三数学备课组
知识要点 1.对数及其运算 (1)指数式与对数式的互化
ax N
x loga N
a N 对数恒等式: loga N
© 2006 NENU 济南九中高三数学备课组
知识要点
1.对数及其运算
(2)对数的性质
①零和负数没有对数,即N>0;
(2)已知loga 2 m, loga 3 n, 求a2mn的值;
(3)已知 10a 2,10b 3,求 1002ab 的值.
答案(1)1;(2)12; (3)16 .
9
© 2006 NENU 济南九中高三数学备课组
类型之一:求值、化简、证明问题 练习:

高三数学人教版A版数学(理)高考一轮复习教案对数与对数函数1

高三数学人教版A版数学(理)高考一轮复习教案对数与对数函数1

第六节 对数与对数函数对数与对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念;理解对数函数的单调性,掌握函数图象通过的特殊点. (3)知道对数函数是一类重要的函数模型.(4)了解指数函数y =a x 与对数函数y =log a x 互为反函数(a >0,且a ≠1). 知识点一 对数及对数运算 1.对数的定义一般地,如果a x =N (a >0,且a ≠1),那么数x 叫作以a 为底N 的对数,记作x =log a _N ,其中a 叫作对数的底数,N 叫作真数.2.对数的性质 (1)log a 1=0,log a a =1. (2)a log a N =N ,log a a N =N . (3)负数和零没有对数. 3.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (MN )=log a M +log a N . (2)log aMN=log a M -log a N . (3)log a M n =n log a M (n ∈R ).(4)换底公式log a b =log m blog m a (a >0且a ≠1,b >0,m >0,且m ≠1).必记结论1.指数式与对数式互化:a x =N ⇔x =log a N . 2.对数运算的一些结论:①log am b n =nm log a b .②log a b ·log b a =1.③log a b ·log b c ·log c d =log a d .易误提醒 在运算性质log a M n =n log a M 中,易忽视M >0.[自测练习]1.(2015·临川一中模拟)计算⎝⎛⎭⎫lg 1125-lg 82÷4-12=________. 解析:本题考查指数和对数的运算性质.由题意知原式=(lg 5-3-lg 23)2÷2-1=(-3lg 5-3lg 2)2×2=9×2=18.答案:18 2.lg427-lg 823+lg 75=________. 解析:原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5=2lg 2+12(lg 2+lg 5)-2lg 2=12.答案:12知识点二 对数函数定义、图象与性质定义函数y =log a x (a >0,且a ≠1)叫作对数函数图 象a >10<a <1性 质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当0<x <1时, y ∈(-∞,0); 当x >1时, y ∈(0,+∞) 当0<x <1时, y ∈(0,+∞); 当x >1时, y ∈(-∞,0) 在(0,+∞)上为增函数在(0,+∞)上为减函数易误提醒 解决与对数函数有关的问题时易漏两点: (1)函数的定义域. (2)对数底数的取值范围. 必记结论1.底数的大小决定了图象相对位置的高低;不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.[自测练习]3.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是( )解析:函数y =log a (-x )的图象与y =log a x 的图象关于y 轴对称,符合条件的只有B. 答案:B4.函数y =log a x (a >0,且a ≠1)在[2,4]上的最大值与最小值的差是1,则a 的值为________.解析:(1)当a >1时,函数y =log a x 在[2,4]上是增函数,所以log a 4-log a 2=1,即log a 42=1,所以a =2. (2)当0<a <1时,函数y =log a x 在[2,4]上是减函数,所以log a 2-log a 4=1,即log a 24=1,所以a =12.由(1)(2)知a =2或a =12.答案:2或12考点一 对数式的化简与求值|1.(2015·内江三模)lg51 000-823=( )A.235 B .-175 C .-185 D .4 解析:lg 51 000-823=lg 1035-(23)23=35-4=-175.答案:B2.(log 23)2-4log 23+4+log 2 13=( )A .2B .2-2log 2 3C .-2D .2log 2 3-2解析:(log 23)2-4log 23+4=(log 23-2)2=2-log 23,又log 213=-log 23,两者相加即为B.答案:B3.(2015·高考浙江卷)若a =log 43,则2a +2-a =________. 解析:原式=2log 4 3+2-log 4 3=3+13=433.答案:433对数运算的一般思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.考点二 对数函数图象及应用|(1)(2016·福州模拟)函数y =lg |x -1|的图象是( )[解析] 因为y =lg |x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1,lg (1-x ),x <1.当x =1时,函数无意义,故排除B 、D. 又当x =2或0时,y =0,所以A 项符合题意. [答案] A(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1C .(1,2)D .(2,2)[解析] 法一:构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象,可知,f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1.法二:∵0<x ≤12,∴1<4x ≤2,∴log a x >4x >1,∴0<a <1,排除选项C ,D ;取a =12,x =12,则有412=2,log 12 12=1,显然4x <log a x 不成立,排除选项A.[答案] B应用对数型函数的图象可求解的两类问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:作出f (x )的大致图象,不妨设a <b <c ,因为a ,b ,c 互不相等,且f (a )=f (b )=f (c ),由函数的图象可知10<c <12,且|lg a |=|lg b |,因为a ≠b ,所以lg a =-lg b ,可得ab =1,所以abc =c ∈(10,12).答案:C考点三 对数函数性质及应用|已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集. [解] (1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f (x )的定义域为(-1,1).(2)由(1)知f (x )的定义域为(-1,1), 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ), 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数, 所以f (x )>0⇔x +11-x >1,解得0<x <1.所以使f (x )>0的x 的解集是(0,1).利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.2.已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,求实数a 的取值范围.解:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立, 则f (x )min =log a (8-2a )>1, 解之得1<a <83.若0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立, 则f (x )min =log a (8-a )>1, 且8-2a >0,∴a >4,且a <4,故不存在.综上可知,实数a 的取值范围是⎝⎛⎭⎫1,83. 5.插值法比较幂、对数大小【典例】 (1)设a =0.50.5,b =0.30.5,c =log 0.3 0.2,则a ,b ,c 的大小关系是( ) A .c <b <aB .a <b <cC .b <a <cD .a <c <b(2)已知a =5log 23.4,b =5log 43.6,c =⎝⎛⎭⎫15log 30.3,则( ) A .a >b >c B .b >a >c C .a >c >bD .c >a >b(3)已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b[思路点拨] (1)利用幂函数y =x 0.5和对数函数y =log 0.3x 的单调性,结合中间值比较a ,b ,c 的大小;(2)化成同底的指数式,只需比较log 23.4、log 43.6、-log 3 0.3=log 3 103的大小即可,可以利用中间值或数形结合进行比较;(3)先判断函数φ(x )=xf (x )的单调性,再根据20.2,log π3,log 39的大小关系求解. [解析] (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1; 根据对数函数y =log 0.3x 的单调性, 可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .(2)c =⎝⎛⎭⎫15log 3 0.3=5-log 3 0.3=5log 3 103. 法一:在同一坐标系中分别作出函数y =log 2 x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知: log 2 3.4>log 3 103>log 43.6. 法二:∵log 3 103>log 33=1,且103<3.4, ∴log 3103<log 3 3.4<log 2 3.4. ∵log 4 3.6<log 4 4=1,log 3103>1,∴log 4 3.6<log 3 103. ∴log 2 3.4>log 3103>log 4 3.6. 由于y =5x 为增函数,∴5log 2 3.4>5log 3103>5log 4 3.6. 即5log 2 3.4>⎝⎛⎭⎫15log 3 0.3>5log 4 3.6,故a >c >b . (3)因为函数y =f (x )关于y 轴对称, 所以函数y =xf (x )为奇函数.因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时, [xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减; 因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减. 因为1<20.2<2,0<log π3<1,log 39=2,所以0<log π 3<20.2<log 3 9,所以b >a >c ,选A. [答案] (1)C (2)C (3)A[方法点评] (1)比较幂、对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[跟踪练习] 设a >b >0,a +b =1且x =⎝⎛⎭⎫1a b,y =log ⎝⎛⎭⎫1a +1b ab ,z =log 1b a ,则x ,y ,z 的大小关系是( )A .y <x <zB .z <y <xC .y <z <xD .x <y <z解析:用中间量比较大小.由a >b >0,a +b =1,可得0<b <12<a <1,所以1b >2>1a >1,所以x =⎝⎛⎭⎫1a b>1,y =log ⎝⎛⎭⎫1a +1b ab =log ⎝⎛⎭⎫1ab ab =-1,0>z =log 1b a >log 1bb =-1,则y<z <x ,故选C.答案:CA 组 考点能力演练1.函数f (x )=log a |x |+1(0<a <1)的图象大致为( )解析:由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位即得f (x )的图象,结合图象知选A.答案:A2.设a =30.5,b =0.53,c =log 0.5 3,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <b <aD .c <a <b解析:因为a =30.5>30=1,0<b =0.53<0.50=1,c =log 0.5 3<log 0.5 1=0,所以c <0<b <1<a ,故选C.答案:C3.(2015·郑州二检)若正数a ,b 满足2+log 2a =3+log 3b =log 6 (a +b ),则1a +1b 的值为( )A .36B .72C .108D.172解析:设2+log 2a =3+log 3b =log 6(a +b )=k ,可得a =2k -2,b =3k -3,a +b =6k ,所以1a +1b =a +b ab =6k 2k -23k -3=108.所以选C. 答案:C4.(2015·长春质检)已知函数f (x )=log a |x |在(0,+∞)上单调递增,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3) C .f (-2)<f (1)<f (3) D .f (3)<f (1)<f (-2)解析:因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,f (1)<f (2)<f (3). 又函数f (x )=log a |x |为偶函数,所以f (2)=f (-2),所以f (1)<f (-2)<f (3). 答案:B5.已知函数f (x )=log 2 ⎝⎛⎭⎫21-x +t 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析:由f (-x )=-f (x )得log 2 ⎝ ⎛⎭⎪⎫21+x +t =-log 2 ⎝ ⎛⎭⎪⎫21-x +t ,所以21+x +t =121-x +t,整理得1-x 2=(2+t )2-t 2x 2,可得t 2=1且(t +2)2=1,所以t =-1,则f (x )=log 21+x1-x<0,即⎩⎪⎨⎪⎧1+x1-x>01+x 1-x <1,解得-1<x <0.答案:A6.(2015·深圳一模)lg 2+lg 5+20+⎝⎛⎭⎫5132×35=________. 解析:lg 2+lg 5+20+⎝⎛⎭⎫5132×35=lg 10+1+523×513=32+5=132. 答案:1327.若log a (a 2+1)<log a 2a <0,则实数a 的取值范围是________. 解析:∵a 2+1>1,log a ()a 2+1<0,∴0<a <1. 又log a 2a <0,∴2a >1,∴a >12.∴实数a 的取值范围是⎝⎛⎭⎫12,1.答案:⎝⎛⎭⎫12,18.(2015·成都摸底)关于函数f (x )=lg x 2+1x,有下列结论: ①函数f (x )的定义域是(0,+∞);②函数f (x )是奇函数;③函数f (x )的最小值为lg 2;④当x >0时,函数f (x )是增函数.其中正确结论的序号是________(写出所有你认为正确的结论的序号).解析:函数f (x )=lg x 2+1x的定义域为(0,+∞),其为非奇非偶函数,即得①正确,②不正确;由f (x )=lg x 2+1x =lg ⎝⎛⎭⎫x +1x ≥lg ⎝⎛⎭⎫2 x ×1x =lg 2,得③正确;函数u =x +1x 在x ∈(0,1)时为减函数,在x ∈(1,+∞)时为增函数,函数y =lg u 为增函数,所以函数f (x )在x ∈(0,1)时为减函数,在x ∈(1,+∞)时为增函数,即得命题④不正确.故应填①③.答案:①③9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解:(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,∴函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 10.已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,求a的取值范围.解:由已知f (x )=log a x ,当0<a <1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=log a 13+log a 2=log a 23>0, 当a >1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=-log a 13-log a 2=-log a 23>0,故⎪⎪⎪⎪f ⎝⎛⎭⎫13>|f (2)|总成立.则y =|f (x )|的图象如图. 要使x ∈⎣⎡⎦⎤13,2时恒有|f (x )|≤1,只需⎪⎪⎪⎪f ⎝⎛⎭⎫13≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a , 当a >1时,得a -1≤13≤a ,即a ≥3; 当0<a <1时,得a -1≥13≥a ,得0<a ≤13. 综上所述,a 的取值范围是⎝⎛⎦⎤0,13∪[3,+∞). B 组 高考题型专练1.(2014·高考福建卷)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )解析:由y =log a x 的图象可知log a 3=1,所以a =3.对于选项A :y =3-x =⎝⎛⎭⎫13x 为减函数,A 错误;对于选项B :y =x 3,显然满足条件;对于选项C :y =(-x )3=-x 3在R 上为减函数,C 错误;对于选项D :y =log 3(-x ),当x =-3时,y =1,D 错误.故选B.答案:B2.(2014·高考山东卷)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1.答案:D3.(2015·高考北京卷)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2 (x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}解析:在平面直角坐标系中作出函数y =log 2(x +1)的图象如图所示.所以f (x )≥log 2 (x +1)的解集是{x |-1<x ≤1},所以选C.答案:C4.(2015·高考浙江卷)log 2 22=________,2log 2 3+log 4 3=________. 解析:log 222=log 22-12=-12,2log 2 3+log 4 3=232log 2 3=2log 2 332=27=3 3. 答案:-12 3 3 5.(2015·高考北京卷)2-3,312,log 25三个数中最大的数是________. 解析:因为2-3=123=18,312=3≈1.732,而log 24<log 25,即log 25>2,所以三个数中最大的数是log 25.答案:log 25。

第二章 第六节 对数与对数函数

第二章 第六节 对数与对数函数

A.a>0>b
B.a>b>0
C.b>a>0
D.b>0>a
(1)D
(2)A



(1)a

log315

log3
3×5
= 1 + log35>1 , b = log420 =
log44×5
=1+log45>1,c=log21.9<1,因为
log35=llgg
5 3
lg 5 >lg 4
=log45,所以 a>b>c.
B.b<c<a
C.c<a<b
D.c<b<a
D
解析:画出函数 f(x)=|lg x|,∵f(2)=|lg 2|=|-lg 2|=lg
1 2
,且14
1 <3
1 <2

∴f14
1 >f3
1 >f2
,即 a>b>c.
5.(多选)函数 y=loga(x+c)(a,c 为常数,其中 a>0,a≠1)的图象如图所示, 则下列结论成立的是( )
第二章 函 数 第六节 对数与对数函数
必备知识 增分策略 关键能力 精准突破
栏目索引
必备知识 增分策略
必备知识 1.对数的概念 如果 ab=N(a>0,且 a≠1),那么 b 叫作以 a 为底,(正)数 N 的对数,记作 b =logaN.这里,a 叫作对数的_底__数_,N 叫作对数的真数.
答案:0,
2 2
解析:若方程 4x=logax 在0,12 上有解,则函数 y=4x 与

对数的运算与对数函数

对数的运算与对数函数

1.对数的概念如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。

即指数式与对数式的互化:log ba aN b N =⇔=2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。

自然对数:通常将以无理数 2.71828e =⋅⋅⋅为底的对数叫做自然对数,记作ln N 。

3.对数的运算性质:如果0a >,且1,0,0a M N ≠>>,那么:⑴log ()log log a a a M N M N ⋅=+;(积的对数等于对数的和) 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ ⑵log log log aa a MM N N=-;(商的对数等于对数的差) ⑶log log (R)a a M M ααα=∈,则log a = 。

⑷log a N a N =2.换底公式:log log log a b a NN b=(,0,,1,0a b a b N >≠>) 换底公式的意义:把以一个数为底的对数换成以另一个大于0且不等于1的数为底的对数,以达到计算、化简或证明的目的. 推广:⑴1log log a b b a=⑵log log log log a b c a b c d d =, ⑶1log log n a a M M n =,则log na m M = 。

特别地:log log 1a b b a =知识要点对数运算与对数函数【例1】 求下列各式中x 的取值范围。

(1)2log (5)x +(2)1log (10)x x --【例2】 将下列指数式化为对数式,对数式化为指数式。

(1) 1642= (2) 9132=- (3) 481log 3=(4) 6125log -=a (5)lg0.0013=-; (6)ln100=4.606【例3】 计算(1)lg 4lg 25+ (2)22log 24log 6-(3)531log ()3(4) 001.0lg (5)e1ln (6)1lg【巩固1】3log =2log =(2log (2= 21log 52+=【巩固2】). A. 1 B. -1 C. 2 D. -2【巩固3】计算2(lg5)lg 2lg50+⋅= .知识要点【例4】 (1)(2 。

《 对数与对数函数》课件

《 对数与对数函数》课件

1 题目1
已知log35≈1.465,求log325的值。
3 题目2
已知log23≈1.585,求log63的值。
2 解答1
log325=log3((5)2)=2log35≈2×1.465≈2.93。
4 解答2
log63=log23/log26≈1.585/1.585≈1。
例题: 求解对数方程
1 题目1
求解方程log2(3x-2)=3。
3 题目2
求解方程log2x-14=log2(x-1)。
2 解答1
化为指数形式得:23=3x-2,解得x=7/3。
4 解答2
化为指数形式得:(2x-1)log42=x-1,解得x=3。
例题: 理解对数运算的应用
1 题目1
已知ab=c,则logac=?
2 解答1
根据对数的定义得:logac=b。
定义域为(0,+∞),值域为(-∞,+∞)。

对数函数的图像特征
随着x的增加而变化
当x>1时,y随x的增加而增加;当x=1时,y=0;当 0<x<1时,y随x的减小而增加;当x<0时,对数函数 无意义。
渐近线
对数函数的图像有两条渐近线,即x轴和y轴的反比 例函数。
对数函数的性质
1
单调性
当a>1时,对数函数单调递增;当0<a<1
3 题目2
已知log23≈1.585,log27≈2.807,求log521 的值。
4 解答2
log221=log2(3×7)=log23+log27≈1.585+2.80 7=4.392。利用换底公式得: log521=log221/log25≈4.392/2.322≈1.892。

对数与对数函数知识点及例题讲解

对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。

课件9:§2.6 对数与对数函数

课件9:§2.6   对数与对数函数
§2.6 对数与对数函数
高考·导航
1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转 化成自然对数或常用对数;了解对数在简化运算中的作用. 2.理解对数函数的概念;理解对数函数的单调性,掌握函数图象通 过的特殊点. 3.知道对数函数是一类重要的函数模型. 4.了解指数函数 y=ax 与对数函数 y=logax 互为反函数(a>0,且 a≠1).
[归纳总结]
对数不等式问题,一般是先确保对数中真数大于 0,再利用对 数函数的单调性来求解不等式,特别是对数函数的底数不确定 时,单调性不明确,从而无法求解不等式,故应分 a>1 和 0<a<1 两种情况讨论.
[小题纠偏]
已知函数 f(x)=loga(2x-a)在区间12,23上恒有 f(x)>0,则实数
答案:C
思维升华
应用对数型函数的图象可求解的 2 类问题 (1)对一些可通过平移、对称变换作出其图象的对数型函数,在求 解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合 思想. (2)一些对数型方程、不等式问题常转化为相应的函数图象问题, 利用数形结合法求解.
即时应用
1.函数 y=lg|x-1|的图象是( A )
lg lg
4 3
lg lg
9 5
2 lg 5 lg 2
2 lg 2 lg 3
2 lg 3 lg 5
8.
3.计算 (lg
1 4
1
lg 25) 100 2
-20
.
1
解析:原式=(lg 2-2-lg 52)×1002 =lg
221·52×10=lg 10-2×10
=-2×10=-20.
4.12lg3429-43lg
综上所述,实数 a 的取值范围是13,1. 答案:A

高三数学一轮 第二章 第六节 对数、对数函数课件 理

高三数学一轮 第二章 第六节 对数、对数函数课件 理

与对数函数有关的复合函数的单调性的求解步 骤为:
(1)确定定义域;
(2)弄清函数是由哪些基本初等函数复合而成 的,将复合函数分解成基本初等函数y=f(u), u=g(x);
(3)分别确定这两个函数的单调区间;
(4)若这两个函数同增或同减,则y=f[g(x)]为 增函数,若一增一减,则y=f[g(x)]为减函数, 即“同增异减”.
【解析】 (1)由题设,3-ax>0 对一切 x∈[0,2]恒成立,a>0 且 a≠1, ∵a>0,∴g(x)=3-ax 在[0,2]上为减函 数,
从而 g(2)=3-2a>0,∴a<32, ∴a 的取值范围为(0,1)∪1,32.
(2)假设存在这样的实数 a,由题设知 f(1) =1,
即 loga(3-a)=1,∴a=32, 此时 f(x)=log323-32x, 当 x=2 时,f(x)没有意义,故这样的实 数不存在.
【答案】 A
4.已知 loga(3a-1)有意义,那么实数 a 的取值范围是________.
a>0
【解析】 由a≠1 3a-1>0
,可得 a>31且
a≠1.
【答案】 a>13且 a≠1
5.函数 y= log1(3x-2)的定义域是________.
2
【解析】 要使 y= log1(3x-2)有意义
(3)令 u(x)=xx+ -bb,则函数 u(x)=1+x2-bb 在(-∞,-b)和(b,+∞)上分别为减函 数,所以当 0<a<1 时,f(x)在(-∞,- b)和(b,+∞)上分别为增函数;当 a>1 时,f(x)在(-∞,-b)和(b,+∞)上分 别为减函数.
(4)解关于 x 的方程 y=logaxx+ -bb,得 x= b(ay+1)

对数与对数函数

对数与对数函数

对数与对数函数什么是对数?对数是数学中的一个重要概念,在许多领域中都得到了广泛的应用。

对数的概念最早由苏格兰数学家约翰·纳皮尔斯·纳皮尔斯发现并提出。

对数可以帮助我们解决许多数学问题,特别是在指数运算中起到了重要的作用。

在数学中,对数是指一个数与某个给定的正数之间的关系。

具体来说,如果a^x = b,那么x就是以a为底数的对数。

用符号表示就是log_a(b) = x。

在这里,a被称为底数,b被称为真数,x被称为对数。

对数的性质对数具有一些重要的性质,这些性质使得对数在数学中得到了广泛的应用。

1.对数的底数不能为0或1:对数的底数不能为0或1,这是因为0没有正数的幂,而1的任何幂都等于1。

因此,对数函数的底数通常选择大于1的正数。

2.对数的特殊性质:log_a(1) = 0,对数的底数为多少,对应的对数值就是多少。

3.对数的运算律:对数具有一系列的运算律,如log_a(mn) = log_a(m) +log_a(n),log_a(m/n) = log_a(m) - log_a(n),log_a(m^k) = klog_a(m)等。

对数函数及其图像对数函数是指以对数为自变量的函数。

对数函数的基本形式是y = log_a(x),其中a为底数,x为真数,y为对数值。

对数函数的图像呈现出一些特点。

当底数a大于1时,对数函数的图像逐渐向右上方倾斜;当底数a在0和1之间时,图像逐渐向右下方倾斜。

对数函数的图像会经过点(1, 0),并且与x轴和y轴相交。

对数函数的应用对数函数在许多领域中都有广泛的应用,下面我们来介绍一些常见的应用。

1. 倍数增长问题在经济学中,对数函数可以用来描述某个指标的倍数增长。

例如,GDP的增长通常是以指数形式增长的,我们可以用对数函数来表示这种增长。

通过对数函数,我们可以方便地比较不同时间段的经济增长率。

2. 计算器的对数函数对数函数在计算器上得到了广泛的应用。

计算器上的对数函数通常以10为底,可以方便地计算一个数的对数值。

对数与对数函数

对数与对数函数

A. ①③
4.若 0<a<1, 则函数 y=loga(x+5)的图象不经过( A ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5.如果 loga3>logb3>0, 则( B ) A. 0<a<b<1 B. 1<a<b C. 0<b<a<1 D. 1<b<a
6.函数 f(x)=ax+loga(x+1) 在[0, 1]上的最大值与最小值之和为 a, 则 a 的值为( B ) 1 A. 1 B. C. 2 D. 4 2 4
1.化简下列各式: (1) (lg5)2+lg2· lg50; (2) 2(lg 2 )2+lg 2 · lg5+ (lg 2 )2-lg2+1 ; (3) lg5(lg8+lg1000)+(lg2 3 )2+lg 1 +lg0.06. 6 解: (1)原式=(lg5)2+lg2(lg2+2lg5) =(lg5)2+(lg2)2+2lg2lg5 =(lg5+lg2)2 =1. (2)原式=lg 2 (2lg 2 +lg5)+ (lg 2 -1)2 =lg 2 (lg2+lg5)+(1-lg 2 ) =lg 2 +1-lg 2 =1. (3)原式=lg5(3lg2+3)+3lg22-lg6+lg6-2 =3lg5lg2+3lg5+3lg22-2 =3lg2(lg5+lg2)+3lg5-2 =3(lg2+lg5)-2 =1.
三、对数恒等式
alogaN=N(a>0 且 a1, N>0).

高三数学复习(理):第6讲 对数与对数函数

高三数学复习(理):第6讲 对数与对数函数

第6讲对数与对数函数[学生用书P30]1.对数概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底数N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数,log a N 叫做对数式性质对数式与指数式的互化:a x=N⇔x=log a N(a>0,且a≠1) log a1=0,log a a=1,a log aN=N(a>0,且a≠1)运算法则log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0log aMN=log a M-log a Nlog a M n=n log a M(n∈R)换底公式log a b=log c blog c a(a>0,且a≠1,c>0,且c≠1,b>0)2.对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x>1时,y>0当0<x<1时,y<0当x>1时,y<0 当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数3.反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x 对称.常用结论1.换底公式的三个重要结论(1)log a b=1log b a;(2)log a m b n=nm log a b;(3)log a b·log b c·log c d=log a d.2.对数函数的图象与底数大小的关系如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数.故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内与y=1相交的对数函数从左到右底数逐渐增大.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)log a(MN)=log a M+log a N.()(2)log a x·log a y=log a(x+y).()(3)函数y=log2x及y=log133x都是对数函数.()(4)对数函数y=log a x(a>0且a≠1)在(0,+∞)上是增函数.()(5)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( ) (6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只经过第一、四象限.( ) 答案:(1)× (2)× (3)× (4)× (5)√ (6)√ 二、易错纠偏常见误区|K(1)对数函数图象的特征不熟致误; (2)忽视对底数的讨论致误; (3)忽视对数函数的定义域致误.1.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是________.(填序号)解析:函数y =log a (-x )的图象与y =log a x 的图象关于y 轴对称,符合条件的只有②.答案:②2.函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.解析:分两种情况讨论:①当a >1时,有log a 4-log a 2=1,解得a =2;②当0<a <1时,有log a 2-log a 4=1,解得a =12.所以a =2或12.答案:2或123.函数y =log 23(2x -1)的定义域是________. 解析:由log 23(2x -1)≥0,得0<2x -1≤1.所以12<x ≤1.所以函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1.答案:⎝ ⎛⎦⎥⎤12,1[学生用书P31]对数式的化简与求值(自主练透) 1.(2020·高考全国卷Ⅰ)设a log 34=2,则4-a =( ) A.116 B .19 C.18D.16解析:选B.方法一:因为a log 34=2,所以log 34a =2,则有4a =32=9,所以4-a =14a =19,故选B.方法二:因为a log 34=2,所以-a log 34=-2,所以log 34-a =-2,所以4-a=3-2=132=19,故选B.方法三:因为a log 34=2,所以a 2=1log 34=log 43,所以4a2=3,两边同时平方得4a =9,所以4-a =14a =19,故选B.方法四:因为a log 34=2,所以a =2log 34=log 39log 34=log 49,所以4-a =14a =19,故选B.方法五:令4-a =t ,两边同时取对数得log 34-a =log 3t ,即a log 34=-log 3t =log 31t ,因为a log 34=2,所以log 31t =2,所以1t =32=9,所以t =19,即4-a =19,故选B.方法六:令4-a =t ,所以-a =log 4t ,即a =-log 4t =log 41t .由a log 34=2,得a =2log 34=log 39log 34=log 49,所以log 41t =log 49,所以1t =9,t =19,即4-a =19,故选B.2.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1 B . 10.1 C. lg 10.1D. 10-10.1解析:选A.根据题意,设太阳的星等与亮度分别为m 1与E 1,天狼星的星等与亮度分别为m 2与E 2,则由已知条件可知m 1=-26.7,m 2=-1.45,根据两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,把m 1与m 2的值分别代入上式得,-1.45-(-26.7)=52lg E 1E 2,得lg E 1E 2=10.1,所以E 1E 2=1010.1,故选A.3.计算(lg 2)2+lg 2·lg 50+lg 25的结果为________.解析:原式=lg 2(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 4+lg 25=2. 答案:24.已知2x =3,log 483=y ,则x +2y 的值为________.解析:由2x =3,log 483=y 得x =log 23,y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3.答案:35.设2a =5b =m ,且1a +1b =2,则m =________. 解析:由2a =5b =m 得a =log 2m ,b =log 5m , 所以1a +1b =log m 2+log m 5=log m 10. 因为1a +1b =2,所以log m 10=2. 所以m 2=10,所以m =10.答案:106.已知log 23=a ,3b =7,则log 37221的值为________.解析:由题意3b =7,所以log 37=b . 所以log 37221=log6384=log 284log 263=log 2(22×3×7)log 2(32×7)=2+log 23+log 23·log 372log 23+log 23·log 37=2+a +ab2a +ab .答案:2+a +ab2a +ab对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.对数函数的图象及应用(典例迁移)(1)已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b满足的关系是( )A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<1(2)方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为________.【解析】 (1)由函数图象可知,f (x )为单调递增函数,故a >1.函数图象与y轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0,解得1a <b <1.综上有0<1a <b <1.(2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,令f (x )=4x ,g (x )=log a x ,则函数f (x )=4x 和函数g (x )=log a x 在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎪⎨⎪⎧0<a <1,log a 12≤2,解得0<a ≤22.【答案】 (1)A (2)⎝⎛⎦⎥⎤0,22【迁移探究】 (变条件)在本例(2)中,若4x <log a x 在⎝ ⎛⎦⎥⎤0,12上恒成立,则实数a 的取值范围是________.解析:当0<x ≤12时,令f (x )=4x ,g (x )=log a x ,则函数f (x )=4x 的图象在函数y =log a x 图象的下方,又当x =12时,412=2,即函数y =4x 的图象过点⎝ ⎛⎭⎪⎫12,2,把点⎝ ⎛⎭⎪⎫12,2代入g (x )=log a x ,得a =22.若函数f (x )=4x 的图象在函数g (x )=log a x 图象的下方,则需22<a <1(如图所示).当a >1时,不符合题意,舍去. 所以实数a 的取值范围是⎝ ⎛⎭⎪⎫22,1.答案:⎝ ⎛⎭⎪⎫22,1对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.函数f (x )=lg(|x |-1)的大致图象是( )解析:选B.由函数f (x )的值域为R ,可以排除C ,D ,当x >1时,f (x )=lg(x -1)在(1,+∞)上单调递增,排除A ,选B.2.若不等式x 2-log a x <0对x ∈⎝ ⎛⎭⎪⎫0,12恒成立,则实数a 的取值范围是________.解析:只需f 1(x )=x 2在⎝ ⎛⎭⎪⎫0,12上的图象恒在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立; 当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝ ⎛⎭⎪⎫0,12上恒成立,只需f 1⎝ ⎛⎭⎪⎫12≤f 2⎝ ⎛⎭⎪⎫12,所以有⎝ ⎛⎭⎪⎫122≤log a 12,解得a ≥116,所以116≤a <1.即实数a 的取值范围是⎣⎢⎡⎭⎪⎫116,1.答案:⎣⎢⎡⎭⎪⎫116,1对数函数的性质及应用(多维探究) 角度一 解对数方程、不等式(1)方程log 2(x -1)=2-log 2(x +1)的解为________.(2)设f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,则方程f (a )=f (-a )的解集为________.【解析】 (1)原方程变形为log 2(x -1)+log 2(x +1)=log 2(x 2-1)=2,即x 2-1=4,解得x =±5,又x >1,所以x = 5.(2)当a >0时,由f (a )=log 2a =log 12⎝ ⎛⎭⎪⎫1a =f (-a )=log 12a ,得a =1;当a <0时,由f (a )=log 12(-a )=log 2⎝ ⎛⎭⎪⎫-1a =f (-a )=log 2(-a ),得a =-1.所以方程f (a )=f (-a )的解集为{1,-1}. 【答案】 (1)x =5 (2){1,-1}【迁移探究】 (变问法)本例(2)中,f (a )>f (-a )的解集为________. 解析:由题意,得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎨⎧a <0,log 12(-a )>log 2(-a ), 解得a >1或-1<a <0. 答案:(-1,0)∪(1,+∞)对于形如log a f (x )>b 的不等式,一般转化为log a f (x )>log a a b ,再根据底数的范围转化为f (x )>a b 或0<f (x )<a b .而对于形如log a f (x )>log b g (x )的不等式,一般要转化为同底的不等式来解.角度二 对数函数性质的综合应用已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.【解】 (1)因为a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. 所以3-2a >0.所以a <32.又a >0且a ≠1,所以a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32.(2)t (x )=3-ax ,因为a >0, 所以函数t (x )为减函数.因为f (x )在区间[1,2]上为减函数, 所以y =log a t 为增函数,所以a >1,当x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),所以⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.利用对数函数的性质,求与对数函数有关的函数值域、最值和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.1.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)解析:选A.令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上单调递减,则有⎩⎪⎨⎪⎧g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[)1,2.2.已知函数f (x )=log 12(x 2-2ax +3).(1)若f (-1)=-3,求f (x )的单调区间;(2)是否存在实数a ,使f (x )在(-∞,2)上为增函数?若存在,求出a 的范围;若不存在,说明理由.解:(1)由f (-1)=-3,得log 12(4+2a )=-3.所以4+2a =8,所以a =2. 则f (x )=log 12(x 2-4x +3),由x 2-4x +3>0,得x >3或x <1.故函数f (x )的定义域为(-∞,1)∪(3,+∞).令μ=x 2-4x +3,则μ在(-∞,1)上单调递减,在(3,+∞)上单调递增. 又y =log 12μ在(0,+∞)上单调递减,所以f (x )的单调递增区间是(-∞,1),单调递减区间是(3,+∞). (2)令g (x )=x 2-2ax +3,要使f (x )在(-∞,2)上为增函数,应使g (x )在(-∞,2)上单调递减,且恒大于0.因此⎩⎪⎨⎪⎧a ≥2,g (2)≥0,即⎩⎪⎨⎪⎧a ≥2,7-4a ≥0,a 无解.所以不存在实数a ,使f (x )在(-∞,2)上为增函数.比较指数式、对数式的大小(师生共研)(1)(2021·广州调研)已知a =⎝ ⎛⎭⎪⎫1213,b =log 23,c =log 46,则a ,b ,c 的大小关系为( )A .a >c >bB .a <b =cC .a >b >cD .a <c <b(2)(2020·高考全国卷Ⅲ)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b【解析】 (1)a =⎝ ⎛⎭⎪⎫1213<⎝ ⎛⎭⎪⎫120=1,b =log 23>log 22=1,c =log 46>log 44=1,所以a 为三者中的最小值.由于 c =log 46=12log 26=log 26<log 23=b ,所以a <c <b .故选D.(2)因为45=log 8845,b =log 85,(845)5=84>55,所以845>5,所以45=log 8845>log 85=b ,即b <45.因为45=log 131345,c =log 138,(1345)5=134<85,所以1345<8,所以45=log 131345<log 138=c ,即c >45.又2 187=37<55=3 125,所以lg 37<lg 55,所以7lg 3<5lg 5,所以lg 3lg 5<57,所以a =lg 3lg 5<57<45,而85<57,所以5lg 8<7lg 5,所以lg 5lg 8>57,所以b =lg 5lg 8>57,所以c >b >a .【答案】 (1)D (2)A(1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.1.(2020·六校联盟第二次联考)设a =log 30.4,b =log 23,则( ) A .ab >b 且a +b >0 B .ab <0且a +b >0 C .ab >0且a +b <0D .ab <0且a +b <0解析:选 B.因为-1=log 313<log 30.4<log 31=0,所以a ∈(-1,0),b =log 23>log 22=1,所以ab <0,a +b >0,选B.2.(2020·全国统一考试(模拟卷))若a >b >c >1且ac <b 2,则( ) A .log a b >log b c >log c a B .log c b >log b a >log a c C .log b c >log a b >log c aD .log b a >log c b >log a c解析:选B.因为a >b >c >1,所以log a b <log a a =1,log b c <log b b =1,log c a >log c c=1,排除选项A ,C ;log a b -log b c =lg b lg a -lg c lg b =(lg b )2-lg a lg clg a lg b,因为lg a lgc <⎝ ⎛⎭⎪⎫lg a +lg c 22=⎝ ⎛⎭⎪⎫lg ac 22<⎝ ⎛⎭⎪⎫lg b 222=(lg b )2,所以(lg b )2-lg a lg c lg a lg b >0,所以log a b >log b c ,所以log c b >log b a ,排除选项D.所以选B.3.已知函数f (x )=|x |,且a =f ⎝ ⎛⎭⎪⎫ln 32 ,b =f (log 213),c =f (2-1),则a ,b ,c的大小关系为( )A .a <c <bB .b <c <aC .c <a <bD .b <a <c解析:选A.ln 32<ln e =12,log 23>12, 所以log 23>12>ln 32.又f (x )是偶函数,在(0,+∞)上为增函数, 所以f ⎝ ⎛⎭⎪⎫ln 32<f ⎝ ⎛⎭⎪⎫12<f (log 23)=f ⎝ ⎛⎭⎪⎫log 213,所以a <c <b .[学生用书P33]思想方法系列5 数形结合法在对数函数问题中的应用 设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1D .0<x 1x 2<1【解析】 作出y =10x 与y =|lg(-x )|的大致图象,如图. 显然x 1<0,x 2<0.不妨令x 1<x 2, 则x 1<-1<x 2<0,所以10 x 1=lg(-x 1),10 x 2=-lg(-x 2), 此时10x 1<10 x 2,即lg(-x 1)<-lg(-x 2), 由此得lg(x 1x 2)<0,所以0<x 1x 2<1,故选D. 【答案】 D一些对数型函数、方程、不等式问题的求解,需转化为相应函数图象问题,利用数形结合法求解.设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值范围是________.解析:由题意知,在(0,10)上,函数y =|lg x |的图象和直线y =c 有两个不同交点,所以ab =1,0<c <lg 10=1,所以abc 的取值范围是(0,1).答案:(0,1)[学生用书P283(单独成册)][A 级 基础练]1.函数y =log 3(2x -1)+1的定义域是( ) A .[1,2] B .[1,2) C.⎣⎢⎡⎭⎪⎫23,+∞ D.⎝ ⎛⎭⎪⎫23,+∞解析:选C.由⎩⎪⎨⎪⎧log 3(2x -1)+1≥0,2x -1>0,即⎩⎪⎨⎪⎧log 3(2x -1)≥log 313,x >12,解得x ≥23.2.(2020·河北九校第二次联考)设a =4-12,b =log 1213,c =log 32,则a ,b ,c的大小关系是( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选B.a =4-12=1412=12,b =log 1213=log 23>log 22=1,c =log 32>log 33=12,且c =log 32<log 33=1,即12<c <1,所以a <c <b ,故选B.3.函数y =ln 1|2x -3|的图象为( )解析:选A.易知2x -3≠0,即x ≠32,排除C ,D. 当x >32时,函数为减函数; 当x <32时,函数为增函数,所以选A. 4.若0<a <1,则不等式1log a x >1的解是( )A .x >aB .a <x <1C .x >1D .0<x <a解析:选B.由题意知0<log a x <1,又0<a <1,所以a <x <1.5.若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是 ( ) A .0<a <1 B .0<a <2,a ≠1 C .1<a <2D .a ≥2解析:选C.当a >1时,y 有最小值,则说明x 2-ax +1有最小值,故x 2-ax +1=0中Δ<0,即a 2-4<0,所以1<a <2.当0<a <1时,y 有最小值,则说明x 2-ax +1有最大值,与二次函数性质相互矛盾,舍去.综上可知,故选C.6.已知函数f (x )=x 3+a log 3x ,若f (2)=6,则f ⎝ ⎛⎭⎪⎫12=________.解析:由f (2)=8+a log 32=6,解得a =-2log 32,所以f ⎝ ⎛⎭⎪⎫12=18+a log 312=18-a log 32=18+2log 32×log 32=178.答案:1787.已知2x =72y=A ,且1x +1y =2,则A 的值是________.解析:由2x =72y=A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2. 答案:7 28.已知函数f (x )=|log 3 x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.解析:因为f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),所以-log 3m =log 3n ,所以mn =1.因为f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,所以-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理.若log 3n=2,得n =9,则m =19,此时-log 3m 2=4>2,不满足题意.综上可得nm =9.答案:99.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)因为f (1)=2,所以log a 4=2(a >0,且a ≠1),所以a =2. 由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, 所以函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], 所以当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )=log a x (a >0且a ≠1)的图象过点(4,2). (1)求a 的值;(2)若g (x )=f (1-x )+f (1+x ),求g (x )的解析式及定义域; (3)在(2)的条件下,求g (x )的单调减区间.解:(1)函数f (x )=log a x (a >0且a ≠1)的图象过点(4,2), 可得log a 4=2,解得a =2.(2)g (x )=f (1-x )+f (1+x )=log 2(1-x )+log 2(1+x )=log 2(1-x 2), 由1-x >0且1+x >0,解得-1<x <1, 可得g (x )的定义域为(-1,1). (3)g (x )=log 2(1-x 2),由t =1-x 2在(-1,0)上单调递增,(0,1)上单调递减, 且y =log 2t 在(0,+∞)上单调递增, 可得函数g (x )的单调减区间为(0,1).[B 级 综合练]11.(2020·高考全国卷Ⅰ)若2a +log 2a =4b +2log 4b ,则( ) A .a >2b B .a <2b C .a >b 2D .a <b 2解析:选B.方法一:令f (x )=2x +log 2x ,因为y =2x 在(0,+∞)上单调递增,y =log 2x 在(0,+∞)上单调递增,所以f (x )=2x +log 2x 在(0,+∞)上单调递增.又2a +log 2a =4b +2log 4b =22b +log 2b <22b +log 2(2b ),所以f (a )<f (2b ),所以a <2b .故选B.方法二:(取特值法)由2a +log 2a =4b +2log 4b =4b +log 2b ,取b =1,得2a +log 2a =4,令f (x )=2x +log 2x -4,则f (x )在(0,+∞)上单调递增,且f (1)<0,f (2)>0,所以f (1)f (2)<0,f (x )=2x +log 2x -4在(0,+∞)上存在唯一的零点,所以1<a <2,故a >2b =2,a <b 2都不成立,排除A ,D ;取b =2,得2a +log 2a =17,令g (x )=2x +log 2x -17,则g (x )在(0,+∞)上单调递增,且g (3)<0,g (4)>0,所以g (3)g (4)<0,g (x )=2x +log 2x -17在(0,+∞)上存在唯一的零点,所以3<a <4,故a >b 2=4不成立,排除C.故选B.12.已知x 1=log 132,x 2=2-12,x 3满足⎝ ⎛⎭⎪⎫13x 3=log 3x 3,则( )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 1<x 2解析:选A.由题意可知x 3是函数y 1=⎝ ⎛⎭⎪⎫13x与y 2=log 3x 的图象交点的横坐标,在同一直角坐标系中画出函数y 1=⎝ ⎛⎭⎪⎫13x与y 2=log 3 x 的图象,如图所示,由图象可知x 3>1,而x 1=log 132<0,0<x 2=2-12<1,所以x 3>x 2>x 1.故选A.13.设函数f (x )=|log a x |(0<a <1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为13,则实数a 的值为________.解析:作出y =|log a x |(0<a <1)的大致图象如图所示,令|log a x |=1.得x =a 或x =1a ,又1-a -⎝ ⎛⎭⎪⎫1a -1=1-a -1-a a =(1-a )(a -1)a <0,故1-a <1a -1,所以n -m 的最小值为1-a =13,a =23.答案:2314.已知函数f (x )=log a (2x -a )在区间⎣⎢⎡⎦⎥⎤12,23上恒有f (x )>0,则实数a 的取值范围是________.解析:当0<a <1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是减函数,所以log a (43-a )>0,即0<43-a <1.解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是增函数,所以log a (1-a )>0,即1-a >1, 解得a <0,此时无解.综上所述,实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.答案:⎝ ⎛⎭⎪⎫13,115.已知函数f (x )=lgx -1x +1.(1)计算:f (2 020)+f (-2 020);(2)对于x ∈[2,6],f (x )<lg m (x +1)(7-x )恒成立,求实数m 的取值范围. 解:(1)由x -1x +1>0,得x >1或x <-1.所以函数f (x )的定义域为{x |x >1或x <-1}.又f (x )+f (-x )=lg ⎝ ⎛⎭⎪⎪⎫x -11+x ·-x -11-x =0,所以f (x )为奇函数. 所以f (2 020)+f (-2 020)=0.(2)当x ∈[2,6]时,f (x )<lg m (x +1)(7-x )恒成立可化为x -11+x<m (x +1)(7-x )恒成立, 即m >(x -1)(7-x )在[2,6]上恒成立.又当x ∈[2,6]时,(x -1)(7-x )=-x 2+8x -7=-(x -4)2+9.所以当x =4时,[(x -1)(7-x )]max =9,所以m >9.即实数m 的取值范围是(9,+∞).[C 级 提升练]16.我们知道,互为反函数的指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称,而所有偶函数的图象都关于y 轴对称.现在我们定义:如果函数y =f (x )的图象关于直线y =x 对称,即已知函数f (x )的定义域为D ,∀x ∈D ,若y =f (x ),x =f (y )也成立,则称函数f (x )为“自反函数”.显然斜率为-1的一次函数f (x )=-x +b 都是“自反函数”,它们都是单调递减的函数.你认为是否还存在其他的“自反函数”?如果有,请举例说明,并对该“自反函数”的基本性质提出一些猜想;如果没有,请说明理由.解:有.举例如下:根据“自反函数”的定义,函数f (x )=k x (k ≠0)是“自反函数”.“自反函数”f(x)=kx(k≠0)的定义域、值域均为(-∞,0)∪(0,+∞);当k>0时,f(x)=kx(k≠0)在区间(-∞,0),(0,+∞)上为减函数;当k<0时,f(x)=kx(k≠0)在区间(-∞,0),(0,+∞)上为增函数;f(x)=kx(k≠0)是奇函数,但不是周期函数.。

高中数学对数与对数函数知识点及例题讲解

高中数学对数与对数函数知识点及例题讲解

高中数学对数与对数函数知识点及例题讲解内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题题型1(对数的计算) 1.求下列各式的值. (1)355log +212log -1505log -145log ; (2)log 2125×log 318×log 519.练习题1.计算:lg 12-lg 58+-log 89·log 278; +212log -log 5150-log 514; 125×log 318×log 519. 4. 3991log log 4log 32+-. 5. 4lg 2lg 5lg 22+-221(6).log 24lg log lg 2log 32+-- 7.2lg 2lg3111lg 0.36lg823+++ 例2.已知实数x 、y 、z 满足3x =4y =6z >1. (1)求证:2x +1y =2z; (2)试比较3x 、4y 、6z 的大小.练习题.已知log 189=a ,18b =5,用a 、b 表示log 3645. 题型二:(对数函数定义域值域问题)例1.已知函数()22log 1xf x x -=-的定义域为集合A ,关于x 的不等式22a a x --<的解集为B ,若A B ⊆,求实数a 的取值范围.2.设函数22log (22)y ax x =-+定义域为A . (1)若A R =,求实数a 的取值范围;(2)若22log (22)2ax x -+>在[1,2]x ∈上恒成立,求实数a 的取值范围. 练习题1.已知函数()()2lg 21f x ax x =++(1)若()f x 的定义域是R ,求实数a 的取值范围及()f x 的值域; (2)若()f x 的值域是R ,求实数a 的取值范围及()f x 的定义域 2 求函数y =2lg (x -2)-lg (x -3)的最小值. 题型三(奇偶性及其单调性)例题1.已知定义域为R 的函数f(x)为奇函数,且满足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x -1.(1)求f(x)在[-1,0)上的解析式; (2)求f(12log 24)的值.2. 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.3.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 4.已知函数()lg(2)lg(2)f x x x =++-. (Ⅰ)求函数()y f x =的定义域; (Ⅱ)判断函数()y f x =的奇偶性; (Ⅲ)若(2)()f m f m -<,求m 的取值范围.练习题1.已知函数f(x)=log a (x +1)-log a (1-x)(a >0,a≠1) (1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a >1时,求使f(x)>0的x 的取值范围2.函数()f x 是定义在R 上的偶函数,(0)0f =,当0x >时,12()log f x x =.(1)求函数()f x 的解析式; (2)解不等式2(1)2f x ->-;3.已知()f x 是定义在R 上的偶函数,且0x ≤时,12()log (1)f x x =-+.(Ⅰ)求(0)f ,(1)f ; (Ⅱ)求函数()f x 的表达式;(Ⅲ)若(1)1f a -<-,求a 的取值范围. 题型4(函数图像问题)例题1.函数f (x )=|log 2x |的图象是2.求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 3.设f(x)=|lg x|,a ,b 为实数,且0<a <b. (1)求方程f(x)=1的解; (2)若a ,b 满足f(a)=f(b)=2f 2a b +⎛⎫⎪⎝⎭, 求证:a·b=1,2a b+>1. 练习题:1.已知0>a 且1≠a ,函数)1(log )(+=x x f a ,xx g a -=11log )(,记)()(2)(x g x f x F += (1)求函数)(x F 的定义域及其零点;(2)若关于x 的方程2()2350F x m m -++=在区间)1,0[内仅有一解,求实数m 的取值范围. 2.已知函数f(x)=log 4(4x +1)+kx(k∈R)是偶函数. (1)求k 的值;(2)设g(x)=log 44•23x a a ⎡⎤⎢⎥⎣⎦-,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.3.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 题型五:函数方程1方程lg x +lg (x +3)=1的解x =___________________.2.已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为 4.已知函数1,0)((log )(≠>-=a a x ax x f a 为常数). (Ⅰ)求函数()f x 的定义域;(Ⅱ)若2a =,[]1,9x ∈,求函数()f x 的值域;(Ⅲ)若函数()f x y a =的图像恒在直线21y x =-+的上方,求实数a 的取值范围. 5.已知函数221log log (28).242x x y x =⋅⋅≤≤(Ⅰ)令x t 2log =,求y 关于t 的函数关系式及t 的取值范围; (Ⅱ)求函数的值域,并求函数取得最小值时的x 的值.6.设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.。

对数与对数运算

对数与对数运算
对于任意两个正实数a、b(a≠1, b≠1)及对数底数c(c>0,c≠1) ,有logc(a)=logb(a)/logb(c)。
换底公式推导
根据对数定义及指数运算规则,可以 推导出换底公式。具体过程略。
换底公式在简化计算中作用
化简复杂对数式
利用换底公式可以将复杂对数式转化为简单对数式,从而简 化计算过程。
复合函数处理方法
• 对于形如$f(g(x))$的复合函数,若外层函数$f(x)$和对内层函数$g(x)$都可导,则复合函数可导。在处理复合 对数函数如$\ln(\sin x)$、$\log_2(\cos x)$等时,需利用链式法则求导。
04
换底公式推导及应用技巧
换底公式介绍和推导过程
换底公式定义
形如$a^x+b^x=c$或$a^x \times b^x = c$等 更复杂的方程。
利用对数性质解指数方程步骤梳理
第一步
确定方程类型,选择合适的对数性质进行转 换。
第二步
应用对数性质,消去指数,将方程转化为代 数方程。
第三步
解代数方程,求得$x$的值。
第四步
验根,将求得的解代入原方程进行验证,确 保解的正确性。
统一底数
在实际问题中,有时需要将不同底数的对数式统一为一个底 数,以便进行计算和比较。换底公式可以实现这一目的。
实际应用案例展示
案例一
求解log5(25)+log2(32)-log3(9)。通过换 底公式,可将原式转化为以10为底的对数 式进行计算。
案例二
比较log0.5(0.4)与log0.4(0.5)的大小。通过 换底公式将两个对数式转化为以10为底的
运算性质总结
正对数性质
若$a>0, a\neq1, M>0, N>0$,则$\log_a(MN)=\log_a M+\log_a N$,$\log_a\frac{M}{N}=\log_a M\log_a N$,$\log_a M^n=n\log_a M$。

高考数学一轮复习第二章函数导数及其应用第六节对数与对数函数学案文含解析新人教A版

高考数学一轮复习第二章函数导数及其应用第六节对数与对数函数学案文含解析新人教A版

高考数学一轮复习第二章函数导数及其应用第六节对数与对数函数学案文含解析新人教A 版第六节 对数对数函数2019考纲考题考情1.对数的概念 (1)对数的定义如果a x=N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数。

(2)几种常见对数(1)对数的性质 ①alog aN=N (a >0且a ≠1,N >0)。

②log a a N=N (a >0,且a ≠1)。

(2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零,且不等于1,N >0)。

②log a b =1log b a,推广log a b ·log b c ·log c d =log a d 。

(3)对数的运算法则如果a >0,且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N 。

②log a M N=log a M -log a N 。

③log a M n=n log a M (n ∈R )。

④log am M n =n mlog a M (m ,n ∈R )。

3.对数函数的图象与性质4.y =a x与y =log a x (a >0,a ≠1)的关系指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称。

1.指数与对数的等价关系:a x=N ⇔x =log a N 。

2.换底公式的三个重要结论 (1)log a b =1log b a; (2)log am b n=n mlog a b ;(3)log a b ·log b c ·log c d =log a d 。

3.对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数。

对数及对数函数

对数及对数函数

[答案] D
(2011·佛山一模)已知函数f(x)为奇函数,且当x>0时,f(x)=log2x.则满足不等式f(x)>0的x的取值范围是________. [答案] (-1,0)∪(1,+∞) (2010·天津文数)设a=log54,b=(log53)2,c=log45,则( ) A.a<c<b B.b<c<a C.a<b<c D.b<a<c [解析] 因为0<log53<1,所以0<(log53)2<log53,又log53<log54<1 log45>1,所以b<a<c. [答案] D
3.形如y=logaf(x)(a>0,a≠1)的函数有如下性质
化同底后利用函数的单调性; 作差或作商法; 利用中间量(0或1); 化同真数后利用图象比较.
4.对数值的大小比较的方法.
“当底数与真数同时大于1或底数与真数同时大于0而小于1时,对数值是正数,否则对数值小于0”.这一结论对解选择题,填空题很有帮助,能大大提高解题的效率.
Annual Work Summary Report
2021
2023
lgN
lnN
零与负数
0
1
logaN=b(a>0,a≠1)
1.对数的概念及运算性质 (1)对数的概念 如果ab=N(a>0,a≠1),那么b叫做以a为底N的对数,记 . 以10为底的对数叫做常用对数,记作 .以无理数e=2.71828…为底的对数叫做自然对数,记作 . (2)对数的性质 ① 没有对数;②loga1= ;③logaa= ;④alogaN=N(对数恒等式).
命题等价于x2-2ax+3>0的解集为{x|x<1或x>3} ∴x2-2ax+3=0的两根为1和3, ∴2a=1+3即a=2 [点评与警示] 对数函数的值域为R时,其真数必须取遍所有的正数.

第二章 函数导数 第六节 对数与对数函数答案

第二章   函数导数 第六节  对数与对数函数答案

答案[全盘巩固]1.解析:选A 由1-2log 6x ≥0得log 6x ≤12,所以0<x ≤6,故函数f(x)的定义域为(0,6].2.解析:选D 因为33=31231=3-12,所以f ⎝ ⎛⎭⎪⎫33=log 333=log 33-12=-12. 3.解析:选D 易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3x 与y =log 5x 的图象,观察可知log 32>log 52.所以c>a>b.比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a>b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式即得log 32>log 52.4.解析:选D 函数y =f(x)的定义域为(-∞,-2)∪(2,+∞),因为函数y =f(x)是由y =log 12t与t =g(x)=x 2-4复合而成,又y =log 12t 在(0,+∞)上单调递减,g(x)在(-∞,-2)上单调递减,所以函数y =f(x)在(-∞,-2)上单调递增.5.解析:选B 因为函数y =log a x 过点(3,1),所以1=log a 3,解得a =3,所以y =3-x不可能过点(1,3),排除A ;y =(-x)3=-x 3不可能过点(1,1),排除C ;y =log 3(-x)不可能过点(-3,-1),排除D.6.解析:选B 令2x =3y =6z=k(k≠1),则x =log 2k ,y =log 3k ,z =log 6k ,所以x +y z =log 2k +log 3k log 6k =log 2k log 6k +log 3klog 6k=log 26+log 36=1+log 23+1+log 32=2+log 23+log 32,又2+log 23+log 32>2+2=4,2+log 23+log 32<2+2+1=5,故选B.7.解析:选A 令h(x)=10-x=⎝ ⎛⎭⎪⎫110x,g(x)=|lg x|,在平面直角坐标系中作出两函数的简图,由图可知⎝ ⎛⎭⎪⎫110x 1=-lg x 1,⎝ ⎛⎭⎪⎫110x 2=lg x 2,两式相减得⎝ ⎛⎭⎪⎫110x 1-⎝ ⎛⎭⎪⎫110x 2=-lg x 1-lg x 2=-lg x 1x 2,因为⎝ ⎛⎭⎪⎫110x 1-⎝ ⎛⎭⎪⎫110x 2>0,所以lg x 1x 2<0,即0<x 1x 2<1.8.解析:选A f(-x)=ln(1-x)-ln(1+x)=-f(x),故①正确;因为f(x)=ln(1+x)-ln(1-x)=ln 1+x 1-x ,又当x∈(-1,1)时,2x 1+x 2∈(-1,1),所以f ⎝ ⎛⎭⎪⎫2x 1+x =ln 1+2x1+x 21-2x 1+x2=ln ⎝ ⎛⎭⎪⎫1+x 1-x 2=2ln 1+x 1-x =2f(x),故②正确;当x∈[0,1)时,|f(x)|≥2|x|⇔f(x)-2x ≥0,令g(x)=f(x)-2x =ln(1+x)-ln(1-x)-2x(x∈[0,1)),因为g′(x)=11+x +11-x -2=2x21-x 2>0,所以g(x)在区间[0,1)上单调递增,g(x)=f(x)-2x ≥g(0)=0,即f(x)≥2x ,又f(x)与y =2x 都为奇函数,所以|f(x)|≥2|x|成立,故③正确,故选A.9.解析:log 227×log 34=log 233×log 32=3log 23×log 32=3. 答案:310.解析:由于a>1,所以f(x)=log a x 在区间[a ,2a]上单调递增,所以f(2a)=3f(a),即log a 2a =3log a a =3,所以a 3=2a ,所以a = 2.答案: 211.解析:由于x 2-2x +3=(x -1)2+2≥2,所以lg(x 2-2x +3)≥lg 2,要使函数f(x)有最大值,则指数函数单调递减,则有0<a<1.由log a (x 2-5x +7)>0得0<x 2-5x +7<1,即⎩⎪⎨⎪⎧0<x 2-5x +7,x 2-5x +7<1,解得2<x<3,即不等式的解集为(2,3).答案:(2,3)12.解析:∵f(x)=ln(1+9x 2-3x)+1, ∴f(-x)=ln(1+9x 2+3x)+1, ∴f(x)+f(-x)=ln 1+1+1=2, 又lg 12=-lg 2,∴f(lg 2)+f ⎝ ⎛⎭⎪⎫lg 12=2. 答案:213.解:(1)∵f(1)=2, ∴log a 4=2(a>0,a ≠1), ∴a =2.由⎩⎪⎨⎪⎧1+x>0,3-x>0,得x∈(-1,3), ∴函数f(x)的定义域为 (-1,3).(2)f(x)=log 2(1+x)+log 2(3-x)=log 2(1+x)(3-x)=log 2[-(x -1)2+4], ∴当x∈(-1,1]时,f(x)是增函数; 当x∈(1,3)时,f(x)是减函数,函数f(x)在⎣⎢⎡⎦⎥⎤0,32上的最大值是f(1)=log 24=2. [冲击名校]1.解析:选C 作出f(x)的大致图象.不妨设a <b <c ,因为a 、b 、c 互不相等,且f(a)=f(b)=f(c),由函数的图象可知10<c<12,且|lg a|=|lg b|,因为a ≠b ,所以lg a =-lg b ,可得ab =1,所以abc =c∈(10,12).2.解析:依题意得y =a 3x ,当x∈[a ,2a]时,y =a 3x ∈[12a 2,a 2]⊆[a ,a 2],因此有12a 2≥a ,又a>1,由此解得a ≥2.答案:[2,+∞]3.解:(1)由f(x)+f(-x)=log 21-x 1+x +log 21+x1-x =log 21=0,∴f ⎝⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫-12 015=0.(2)f(x)的定义域为(-1,1), ∵f(x)=-x +log 2⎝ ⎛⎭⎪⎫-1+2x +1, 当x∈(-1,1)时,f(x)为减函数,∴当a∈(0,1),x ∈(-a ,a)时f(x)单调递减, ∴当x =a 时,f(x)min =-a +log 21-a1+a .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节对数与对数函数
A组基础题组
的定义域是( )
1.函数f(x)=
-
A.(-3,0)
B.(-3,0]
C.(-∞,-3 ∪ 0,+∞
D.(-∞,-3 ∪ -3,0)
2.若函数y=f(x)是函数y=3x的反函数,则f的值为( )
A.-log23
B.-log32
C.
D.
3.设a=,b=log2,c=log23,则( )
A.a>b>c
B.c>a>b
C.a>c>b
D.c>b>a
4.如图,点O为坐标原点,点A(1,1).若函数y=a x(a>0,且a≠1 及y=log b x(b>0,且b≠1 的图象与线段OA 分别交于点M,N,且M,N恰好是线段OA的两个三等分点,则a,b满足( )
A.a<b<1
B.b<a<1
C.b>a>1
D.a>b>1
5.定义在R上的奇函数f(x)满足f(x+1)=f(-x),当x∈
,时, f(x)=log2(x+1),则f(x)在区间,内是( )
A.减函数且f(x)>0
B.减函数且f(x)<0
C.增函数且f(x)>0
D.增函数且f(x)<0
6.计算:log23·log34+(= .
7.函数y=log2|x+1|的单调递减区间为,单调递增区间为.
8.已知函数f(x)=a x+log a x(a>0且a≠1 在[1,2]上的最大值与最小值之和为log a2+6,则a的值
为.
9.已知函数f(x)=log4(ax2+2x+3).
(1)若f(1)=1,求f(x)的单调区间;
(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.
B组提升题组
10.设函数f(x)定义在实数集上, f(2-x)=f(x),且当x≥1时, f(x)=ln x,则有( )
A.f<f(2)<f
B.f<f(2)<f
C.f<f<f(2)
D.f(2)<f<f
11.设a,b,c均为正数,且2a=lo a,=lo b,=log2c,则( )
A.a<b<c
B.c<b<a
C.c<a<b
D.b<a<c
12.已知函数f(x)=-,,
,
(a>0且a≠1 的最大值为1,则a的取值范围是( )
A.,
B.(0,1)
C.,
D. 1,+∞
13.已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h x =[f x +1]·g x 的值域;
(2)如果对任意的x∈[1,4],不等式f(x2 ·f >k·g x 恒成立,求实数k的取值范围.
答案精解精析A组基础题组
1.A 因为f(x)=
-,所以要使函数f(x)有意义,需使
,
-,即-3<x<0.
2.B 由y=f(x)是函数y=3x的反函数,知f(x)=log3x,从而f=log3=-log32,故选B.
3.B 对于a=,有0<a<1;对于b=log2,有b<0;对于c=log23,有c>1,则b<0<a<1<c,即c>a>b,故选B.
4.A 由图象知,函数y=a x(a>0,且a≠1 与y=log b x(b>0,且b≠1 均为减函数,所以0<a<1,0<b<1.因为点A的坐标为(1,1),所以线段OA的方程为y=x 0≤x≤1 ,因为函数y=a x的图象经过点M,所以它的反函数y=log a x的图象也过点M,由对数函数的图象和性质可知a<b,所以a<b<1.故选A.
5.B 因为f(x)是R上的奇函数,
则有f(x+1)=f(-x)=-f(x).
当x∈,时,x-1∈,,
所以f(x)=-f(x-1)=-log2x,所以f(x)在区间,内是减函数且f(x)<0.
6.答案 4
解析log 23·log34+(=·+=2+=2+2=4.
7.答案(-∞,-1);(-1,+∞
解析作出函数y=log 2x的图象,再作出其关于y轴对称的图象即可得到函数y=log2|x|的图象,再将y=log2|x|的图象向左平移1个单位长度,就得到函数y=log2|x+1|的图象(如图所示).由图知,函数
y=log2|x+1|的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞ .
8.答案 2
解析显然函数y=a x与y=log a x在[1,2]上的单调性相同,因此函数f(x)=a x+log a x在[1,2]上的最大值与最小值之和为f(1)+f(2)=(a+log a1)+(a2+log a2)=a+a2+log a2=log a2+6,故a+a2=6,解得a=2或a=-3(舍去).
9.解析(1)因为f(1)=1,所以log 4(a+5)=1,
因此a+5=4,a=-1,
此时f(x)=log4(-x2+2x+3).
由-x2+2x+3>0得-1<x<3,即函数f(x)的定义域为(-1,3).
令t=-x2+2x+3,
则t=-x2+2x+3在(-1,1]上单调递增,在(1,3)上单调递减. 又y=log4t在 0,+∞ 上单调递增,
所以f(x)的单调递增区间是(-1,1],单调递减区间是(1,3).
(2)存在.理由如下:
假设存在实数a,使f(x)的最小值为0.
令h(x)=ax2+2x+3,则h(x)有最小值1,
因此应有
,
-,解得a=.
故存在实数a=,使f(x)的最小值为0.
B组提升题组
10.C 由f(2-x)=f(x),得f(1-x)=f(x+1),即函数f(x)图象的对称轴为直线x=1,结合图象,可知f<f<f(0)=f(2),故选C.
11.A ∵a>0,∴2a>1,∴lo a>1,
∴0<a<.
∵b>0,∴0<<1,∴0<lo b<1,
∴<b<1.
∵>0,∴log2c>0,∴c>1,
∴0<a<<b<1<c,故选A.
12.A 当x≤2时, f(x)=x-1,易知f(x)max=1,
当x>2时,若a>1,则f(x)>2,不合题意;若0<a<1,则2+log a x<2+log a2≤1,
∴≤a<1,故选A.
13.解析(1)h(x)=(4-2log 2x ·log2x=-2(log2x-1)2+2,
因为x∈[1,4],所以log2x∈[0,2],
故函数h(x)的值域为[0,2].
(2)由f(x2 ·f >k·g x 得
(3-4log2x)(3-log2x >k·log2x,
令t=log2x,因为x∈[1,4],所以t=log2x∈[0,2],
所以(3-4t)(3-t >k·t对一切t∈[0,2]恒成立,
①当t=0时,k∈R;
②当t∈ 0,2]时,k<--恒成立,即k<4t+-15恒成立,因为4t+≥12,当且仅当4t=,即t=时取等号,
所以4t+-15的最小值为-3,∴k<-3.
综上,k∈ -∞,-3).。

相关文档
最新文档