九年级数学相似三角形综合测试题
(完整word版)九年级数学相似三角形综合练习题及答案
九年级数学相似三角形综合练习题及答案1填空(本题14 分)(1 )若a=8cm , b=6cm , c=4cm ,贝U a 、b 、c 的第四比例项 d= ; a 、c 的比例中项 x=_。
(2) (2 x):x x:(1 x)。
贝U x= _______________ 。
(3) _______________________________________________________________ 在比例尺为1: 10000的地图上,距离为 3cm 的两地实际距离为 _________________________________ 公里。
(4) _______________________________ 圆的周长与其直径的比为 。
a 5 a b(5 )右,贝V= 。
b 3 b(6) 若 a :b : c=1 : 2: 3, 且 a bc 6,贝U a= ________ , b= ______ , c= _______ 。
ABACBC3CE(7) 如图 1, -- —— --- -,则(1)——(2)若 BD=10cm ,则 AD= cm 。
ADAE DE 2BC ,AB16cm ,则△ ABC 的周长为 (8)若点AEABc是线段AB的黄金分割点,且AC CB ,竺AC2•选择题 (1) 根据 A . 0 B .(2) 若线段bA.- d d C.—c(本题 9分)ab=cd ,共可写出以a 为第四比例项的比例式的个数是(1 C .2 D . 3a 、b 、c 、d 成比例,则下列各式中一定能成立的是(d b bC . DB AB ADEC AC AEBC DB ECECAB ACa3•已知:即3。
求(1)严3;;(2)愛。
(本题10分)4.若x: y:z=2: 7:5, x 2y 3z 6,求的值。
(本题6 分)za c e 25.已知:& d f 3,且2b d 5f 18。
人教版九年级下册数学 27.2相似三角形 同步练习(含解析)
27.2相似三角形同步练习一.选择题1.如图,△ABC∽△DCA,∠B=33°,∠D=117°,则∠BAD的度数是()A.150°B.147°C.135°D.120°2.两个相似三角形对应角平分线的比为4:3,那么这两个三角形的面积的比是()A.2:3B.4:9C.16:36D.16:93.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.且∠B=∠DC.D.且∠A=∠D4.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中能判断△ABC∽△AED 的是()①∠AED=∠B;②∠ADE=∠C;③=;④=.A.①②B.①②③C.①②④D.①②③④5.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=5:2,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.5:7B.10:4C.25:4D.25:496.已知点E、F分别在△ABC的AB、AC边上,则下列判断正确的是()A.若△AEF与△ABC相似,则EF∥BCB.若AE×BE=AF×FC,则△AEF与△ABC相似C.若,则△AEF与△ABC相似D.若AF•BE=AE•FC,则△AEF与△ABC相似7.如图,在△ABC,D是BC上一点,BD:CD=1:2,E是AD上一点,DE:AE=1:2,连接CE,CE的延长线交AB于F,则AF:AB为()A.1:2B.2:3C.4:3D.4:78.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1:4B.1:5C.1:6D.1:79.如图,AD∥BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△P AD 与△PBC相似,则这样的点P有()A.1 个B.2 个C.3 个D.4 个10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于F,连接DF,若BF=,BC =3,则DF=()A.4B.3C.2D.二.填空题11.已知△ABC∽△A′B′C′,且AB=3cm,A′B′=5cm,则相似比为.12.如图,△ABC中,CA=CB,点E在BC边上,点D在AC边上,连接AE、DE,若AB =AE,2∠AEB+∠ADE=180°,BE=8,CD=,则CE=.13.如图,在△ABC中,若DE∥BC,EF∥CD,AE=2EC,则AF:FD:DB=.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值是.15.如图,在矩形ABCD中,AD=2,AB=4,E、F分别是AB、CD边上的动点,EF⊥AC,则AF+CE的最小值为.三.解答题16.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.17.如图,在△ABC中,点D、E分别在AB、AC上,DE、BC的延长线相交于点F,且EF•DF=CF•BF.求证:△CAB∽△DAE.18.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.参考答案一.选择题1.解:∵△ABC∽△DCA,∴∠BAC=∠D=117°,∠DAC=∠B=33°,∴∠BAD=∠BAC+∠DAC=150°,故选:A.2.解:∵两个相似三角形对应角平分线的比为4:3,∴它们的相似比为4:3,∴它们的面积比为16:9.故选:D.3.解:A、∠A=∠D,∠B=∠F,可以得出△ABC∽△DFE,故此选项不合题意;B、=且∠B=∠D,不是两边成比例且夹角相等,故此选项符合题意;C、==,可以得出△ABC∽△DEF,故此选项不合题意;D、=且∠A=∠D,可以得出△ABC∽△DEF,故此选项不合题意;故选:B.4.解:∵∠A=∠A,∴∠AED=∠B或∠ADE=∠C时,△ABC∽△AED.∵=,∴=∵∠A=∠A,∴△ABC∽△AED,故①②③可以判断三角形相似,故选:B.5.解:设DE=5k,EC=2k,则CD=7k,∵四边形ABCD是平行四边形,∴AB=CD=7k,DE∥AB,∴△DEF∽△BAF,∴===,故选:D.6.解:选项A错误,∵△AEF与△ABC相似,可能是∠AEF=∠C,推不出EF∥BC.选项B错误,由AE×BE=AF×FC,推不出△AEF与△ABC相似.选项C错误,由,推不出△AEF与△ABC相似.选项D正确.理由:∵AF•BE=AE•FC,∴=,∴EF∥BC,∴△AEF∽△ABC.故选:D.7.解:过D作DH∥AB交CF于H,如图,∵DH∥BF,∴=,∵BD:CD=1:2,∴CD:BC=2:3,∴BF=DH,∵DH∥AF,∴==2,∴AF=2DH,∴AF:BF=2DH:DH=4:3,∴AF:AB=4:7.故选:D.8.解:∵四边形ABCD是平行四边形,∴BO=DO,AB∥CD,∵E为OD的中点,∴DE=EO=DO,∴BO=2EO,BE=3DE,∵DF∥AB,∴△DFE∽△BAE,∴=()2=,设S△DEF=x,则S△BEA=9x,∵BO=2OE,∴S△AOB=6x=S△DOC,∴四边形EFCO的面积=5x,∴△DEF与四边形EFCO的面积比=1:5,故选:B.9.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.设DP的长为x,则CP长为6﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则DP:CP=AD:BC,即x:(6﹣x)=3:4,解得:x=②若△APD∽△BPC,则DP:PC=AD:BC,即x:4=3:(6﹣x),整理得:x2﹣6x+12=0,∵△<0,这种情形不存在,∴满足条件的点P的个数是1个,故选:A.10.解:如图,连接BD,∵∠AEF=∠BEA,∠AFE=∠BAE=90°,∴△AEF∽△BEA,∴=,∵AE=ED,∴=,又∵∠FED=∠DEB,∴△FED∽△DEB,∴∠EFD=∠EDB,∵∠EFD+∠DFC=90°,∠EDB+∠ODC=90°,∴∠DFC=∠ODC,∵在矩形ABCD中,OC=AC,OD=BD,AC=BD,∴OD=OC,∴∠OCD=∠ODC,∴∠DFC=∠OCD,∴DF=DC,在Rt△BCF中,FC===2,∵AD∥BC,∴△AEF∽△CBF,∴==,∴AF=FC=,∴AB===3,∴DF=3,故选:B.二.填空题11.解:由题意得,=,∵△ABC∽△A′B′C′,∴△ABC与△A′B′C′的相似比为=,故答案为:.12.解:如图,过点A作AM⊥BE于E,过点D作DN⊥EC于N,∵CA=CB,AB=AE,∴∠B=∠CAB,∠B=∠AEB,∴∠B=∠CAB=∠AEB,∵∠B+∠BAC+∠C=180°,∠B+∠AEB+∠BAE=180°,∴∠C=∠BAE,∴2∠AEB+∠C=180°,又∵2∠AEB+∠ADE=180°,∴∠C=∠ADE,又∵∠ADE=∠C+∠DEC,∴∠C=∠DEC,∴DE=DC=,∵AB=AE,AM⊥BE,DE=CC,DN⊥EC,∴BM=ME=BE=4,EN=NC=EC,AM∥DN,∴△CDN∽△CAM,∴,∴,∴EC=12,EC=﹣5(不合题意舍去),故答案为:12.13.解:∵EF∥CD,AE=2EC,∴==2,∵DE∥BC,∴==2,设DF=m,则AF=2m,AD=3m,DB=m,∴AF:DF:DB=2m:m:m=4:2:3.故答案为:4:2:3.14.解:∵DE∥AC,∴△DOE∽△COA,∴=()2=,∴=,∵DE∥AC,∴△BDE∽△BAC,∴=,∴=,故答案为:.15.解:如图所示:设DF=x,则FC=4﹣x;过点C作CG∥EF,且CG=EF,连接FG,当点A、F、G三点共线时,AF+FG的最值小;∵CG∥EF,且CG=EF,∴四边形CEFG是平行四边形;∴EC∥FG,EC=FG,又∵点A、F、G三点共线,∴AF∥EC,又∵四边形ABCD是矩形,∴AE∥DC,∠D=90°,∴四边形AECF是平行四边形,∴OA=OC,OE=OF,又∵EF⊥AC,AF=CF=4﹣x,在Rt△ADF中,由勾股定理得:AD2+DF2=AF2,又∵AD=2,DF=x,则FC=4﹣x,∴22+x2=(4﹣x)2,解得:x=,∴AF=,在Rt△ADC中,由勾股定理得:AD2+DC2=AC2,∴AC=,∴AO=,又∵OF∥CG,∴△AOF∽△ACG,∴=,∴AG=5,又∵AG=AF+FG,FG=EC,∴AF+EC=5,故答案为5.三.解答题16.证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.17.证明:∵EF•DF=CF•BF.∴,∵∠EFC=∠BFD,∴△EFC∽△BFD,∴∠CEF=∠B,∴∠B=∠AED,∵∠CAB=∠DAE,∴△CAB∽△DAE.18.(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.。
初三数学相似三角形经典题(含答案)
相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,若是2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个极点组成的小三角形与ABC ∆相似.尽可能多地画出知足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地址,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,假设5.1=AC m ,小明的眼睛离地面的高度为,请你帮忙小明计算一下楼房的高度(精准到).例8 格点图中的两个三角形是不是是相似三角形,说明理由.例9 依照以下各组条件,判定ABC ∆和C B A '''∆是不是相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每一个图形中,存不存在相似的三角形,若是存在,把它们用字母表示出来,并简要说明识别的依照.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长别离为五、1二、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,教师让同窗们到操场上测量旗杆的高度,然后回来交流各自的测量方式.小芳的测量方式是:拿一根高米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为米,如此即可明白旗杆的高.你以为这种测量方式是不是可行?请说明理由.例14.如图,为了估算河的宽度,咱们能够在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确信BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)若是有一个正方形的边在AB 上,另外两个极点别离在AC ,BC 上,求那个正方形的面积.。
人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案
人教版九年级数学下册第二十七章《相似——相似三角形》同步测试题一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.82.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm 3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.76.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:27.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2 9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为_________.(填出一个正确的即可)12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________ cm.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为_________.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=_________cm时,四边形ABCN的面积最大,最大面积为_________cm2.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_________(写出所有正确结论的序号).17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_________.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=_________.(用含n的式子表示)20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是_________.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.23.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.25.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.26.(2013•汕头)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.27.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.28.(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)参考答案与解析一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.解答:解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选D.点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm考点:相似三角形的判定与性质;平行四边形的性质.分析:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DEC,∴AE:DE=AF:CD,∵AE=2ED,CD=3cm,∴AF=2CD=6cm.故选B.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.专题:压轴题.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.考点:相似三角形的应用;正方形的性质;几何概率.专题:压轴题.分析:求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.点评:本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△AB F∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.专题:压轴题.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.8.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明△DFE∽△BAE,然后利用对应变成比例,E为OD的中点,求出DF:AB 的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤考点:切线的性质;切线长定理;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;又ABCD为直角梯形,利用梯形的面积计算后得到梯形ABCD的面积为AB(AD+BC),将AD+BC化为CD,可得出梯形面积为AB•CD,选项④错误,而OD不一定等于OC,选项③错误,即可得到正确的选项.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;而S梯形ABCD=AB•(AD+BC)=AB•CD,选项④错误;由OD不一定等于OC,选项③错误,则正确的选项有①②⑤.故选A点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,以及梯形面积的求法,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为4s.(填出一个正确的即可)考点:圆周角定理;垂径定理;相似三角形的判定与性质.专题:压轴题;开放型.分析:根据圆周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根据含30度的直角三角形三边的关系得到AB=2BC=8cm,而F是弦BC的中点,所以当EF∥AC时,△BEF 是直角三角形,此时E为AB的中点,易得t=4s;当从A点出发运动到B点名,再运动到O点时,此时t=12s;也可以过F点作AB的垂线,点E点运动到垂足时,△BEF 是直角三角形.解答:解:∵AB是⊙O的直径,∴∠C=90°,而∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵F是弦BC的中点,∴当EF∥AC时,△BEF是直角三角形,此时E为AB的中点,即AE=AO=4cm,∴t==4(s).故答案为4s.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆周角定理的推论以及含30度的直角三角形三边的关系.12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.专题:压轴题.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米.考点:相似三角形的应用.分析:根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.解答:解:∵DE∥BC,∴△ADE∽△ACB,即=,则=,∴h=1.5m.故答案为:1.5米.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形ABCN的面积最大,最大面积为cm2.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.专题:压轴题.分析:设BM=xcm,则MC=1﹣xcm,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据梯形的面积公式表示四边形ABCN的面积,用二次函数的性质求面积的最大值.解答:解:设BM=xcm,则MC=1﹣xcm,∵∠AMN=90°,∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=∠MNC,又∵∠B=∠C∴△ABM∽△MCN,则,即,解得CN==x(1﹣x),∴S四边形ABCN=×1×[1+x(1﹣x)]=﹣x2+x+,∵﹣<0,∴当x=﹣=cm时,S四边形ABCN最大,最大值是﹣×()2+×+=cm2.故答案是:,.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是②③④(写出所有正确结论的序号).考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为的中点,得到两条弧相等,再由C为的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ 与三角形ABC相似,根据相似得比例得到AC2=CQ•CB,连接CD,同理可得出三角形ACP与三角形ACD相似,根据相似三角形对应边成比例可得出AC2=AP•AD,等量代换可得出AP•AD=CQ•CB,选项④正确.解答:解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④点评:此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,熟练掌握性质及定理是解本题的关键.17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.考点:相似三角形的判定与性质.专题:压轴题.分析:(1)过点P作l3∥BC交AC于Q,则△APQ∽△ABC,l3是第3条相似线;(2)按照相似线的定义,找出所有符合条件的相似线.总共有4条,注意不要遗漏.解答:解:(1)存在另外 1 条相似线.如图1所示,过点P作l3∥BC交AC于Q,则△APQ∽△ABC;故答案为:1;(2)设P(l x)截得的三角形面积为S,S=S△ABC,则相似比为1:2.如图2所示,共有4条相似线:①第1条l1,此时P为斜边AB中点,l1∥AC,∴=;②第2条l2,此时P为斜边AB中点,l2∥BC,∴=;③第3条l3,此时BP与BC为对应边,且=,∴==;④第4条l4,此时AP与AC为对应边,且=,∴==,∴=.故答案为:或或.点评:本题引入“相似线”的新定义,考查相似三角形的判定与性质和解直角三角形的运算;难点在于找出所有的相似线,不要遗漏.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是①③.考点:相似三角形的判定与性质;勾股定理;等腰直角三角形.专题:压轴题.分析:首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC=6S△BDF,故④错误.故答案为:①③.点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)考点:相似三角形的判定与性质.专题:压轴题;规律型.分析:由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.解答:解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.点评:此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.考点:相似三角形的判定与性质;等腰直角三角形.专题:规律型.分析:求出第一个、第二个、第三个内接正方形的边长,总结规律可得出第n个小正方形A nB n D n E n的边长.解答:解:∵∠A=∠B=45°,∴AE1=A1E=A1B1=B1D1=D1B,∴第一个内接正方形的边长=AB=1;同理可得:第二个内接正方形的边长=A1B1=AB=;第三个内接正方形的边长=A2B2=AB=;故可推出第n个小正方形A n B n D n E n的边长=AB=.故答案为:.点评:本题考查了相似三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是求出前几个内接正方形的边长,得出一般规律.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,。
2023年中考九年级数学高频考点拔高训练--相似三角形的综合题
2023年中考九年级数学高频考点拔高训练--相似三角形的综合题1.如图1,直线y=﹣43x+8,与x轴、y轴分别交于点A、C,以AC为对角线作矩形OABC,点P、Q分别为射线OC、射线AC上的动点,且有AQ=2CP,连结PQ,设点P的坐标为P(0,t).(1)求点B的坐标.(2)若t=1时,连接BQ,求△ABQ的面积.(3)如图2,以PQ为直径作△I,记△I与射线AC的另一个交点为E.①若PEPQ=35,求此时t的值.②若圆心I在△ABC内部(不包含边上),则此时t的取值范围为是多少?2.如图,在Rt△ABC中,△ACB=90°,AC=8cm,BC=6cm,点P沿AB边从点A开始以2cm/s的速度向点B运动,点Q沿CB边从点C开始以1cm/s的速度向点B运动,P、Q同时出发,用t (s)表示运动的时间(0≤t≤5).(1)当t为何值时,以P、Q、B为顶点的三角形与△ABC相似.(2)分别过点A,B作直线CP的垂线,垂足为D,E,设AD+BE=y,求y与t的函数关系式;并求当t为何值时,y有最大值.(3)直接写出PQ中点移动的路径长度.3.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在BE⌢上取点F,使EF⌢=AE⌢,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.4.如图,已知MN//BC,A是MN上一点,AM=AN,MC交AB于D,NB交AC于E,连接DE.(1)求证:DE//BC;(2)设MC与BN的交点为点G,如果DE=1,BC=4,求C△MGNC△CGB的值.5.已知:如图,在四边形ABCD中,AD△BC,△C=90°,AB=AD=50,BC=64,连结BD,AE△BD 垂足为E,(1)求证:△ABE△△DCB;(2)求线段DC的长.6.在▱ABCD中,E是DC的中点,连接AE并延长,交BC的延长线于点F.(1)求证:BC=CF;(2)点G是CF上一点,连接AG交CD于点H,且∠DAF=∠GAF.若CG=2,GF=5,求AН的长.7.已知直线m△n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P 为线段CD的中点.(1)操作发现:直线l△m,l△n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:;(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得△APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.8.如图,在平面直角坐标系中,直线y=kx+3与x轴、y轴分别交于A,B两点. 抛物线y=−14x2+32x经过点A,且交线段AB于点C,BC=√5.(1)求k的值.(2)求点c的坐标.(3)向左平移抛物线,使得抛物线再次经过点C,求平移后抛物线的函数解析式.9.如图,在△ABCD中,点G是对角线AC上一点,DE垂直平分CG,交GC于点O,交BC于点E,作GF△AD交DE于点F,连接FC.(1)求证:四边形GFCE是菱形;(2)点H为线段AO上一点,连接HD,HF,当△1=△2时,若AD=6,CF=2,求AH•CH的值.10.如图,已知直线y=12x+1与y轴交于点A,与x轴交于点D,抛物线y=ax2+bx+c与直线交于A,E两点,与x轴交于B(1,0),C(2,0)两点.(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,请通过计算写出一个满足条件点P的坐标.11.Rt△ABC在直角坐标系内的位置如图所示,反比例函数y=k x(k≠0)在第一象限内的图象与BC边交于点D(4,m),与AB交于点E(2,n)(1)求m与n的数量关系.(2)当tan∠BAC=12时,记△BDE面积为S,用含有k的式子表示S.(3)若△BDE的面积为2.设P是线段AB边上的点,在(2)的条件下,是否存在点P,以B,C,P为顶点的三角形与△EDB相似?若存在,求出此时点P的坐标;若不存在,请说明理由. 12.将抛物线C:y=(x﹣1)2向下平移4个单位长度得到抛物线C1,再将抛物线C1向左平移1个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),抛物线C1 与x轴交于A,B两点,与y轴交于C点,且D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求S1 S2的最大值;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=−4k x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.13.如图,点E是矩形ABCD的边BC的中点,连接DE交AC于点F。
人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)
人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)一、选择题(每小题6分,共48分)1.在△ABC 中,D 、F 是AB 上的点,E 、H 是AC 上的点,直线DE//FH//BC ,且DE 、FH 将△ABC 分成面积相等的三部分,若线段FH=65,则BC 的长为( ) A .15 B .10 C.6215 D .15322.在△ABC 中,DE//BC ,DE 交AB 于D ,交AC 于E ,且S △ADE :S 四边形DBCE=1:2,则梯形的高与三角形的边BC 上的高的比为( )A .1:2B .1:)12(-C .1:)13(-D .)13(-:33.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,AC=5,BC=8,则S △ACD :S △CBD 为( ) A .85B .6425 C .3925 D .8925 4.如图1—5—1,D 、E 、F 是△ABC 的三边中点,设△DEF 的面积为4,△ABC 的周长为9,则△DEF 的周长与△ABC 的面积分别是( )A.29,16 B. 9,4 C. 29,8 D. 49,165.如图1—5—2,在△ABC 中,AD ⊥BC 于D ,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC ; (3)ABAC AD CD =;(4)AB 2=BD ·BC 。
其中一定能够判定△ABC 是直角三角形的共有( ) A .3个B .2个C .1个D .0个6.如图1—5—3,在正三角形ABC 中,D ,E 分别在AC ,AB 上,且31AC AD =,AE=BE ,则有( )A. △AED ∽△BED B .△AED ∽△CBD C. △AED ∽△ABD D .△BAD ∽△BCD7.如图1—5—4,PQ//RS//AC ,RS=6,PQ=9,SC 31QC =,则AB 等于( ) A. 415B. 436C. 217D. 58.如图1—5—5,平行四边形ABCD 中,O 1、O 2、O 3是BD 的四等分点,连接AO 1,并延长交BC 于E ,连接EO 2,并延长交AD 于F ,则FDAD等于( )A .3:1B .3:1C .3:2 D. 7:39.如果一个三角形的一条高分这个三角形为两个相似三角形,那么这个三角形必是( ) A .等腰三角形 B. 任意三角形C .直角三角形D .直角三角形或等腰三角形10.在△ABC 和△A'B'C'中,AB : AC=A'B':A'C',∠B=∠B',则这两个三角形( ) A .相似,但不全等 B .全等C .一定相似D .无法判断是否相似11.如图1—6—1,正方形ABCD 中,E 是AB 上的任一点,作EF ⊥BD 于F ,则BEEF为( )A .22B .21C .36D .2图1—6—112.如图1—6—2,把△ABC 沿边AB 平移到△A'B'C'的位置,它们的重叠部分(图中阴影部分)的面积是△ABC 的面积的一半,若2AB =,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21 图1—6—213.如图1—6—3,在四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C .4D .6 图1—6—314.如图1—6—4,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A .3对B .4对C .5对D .6对15.在直角三角形中,斜边上的高为6cm ,且把斜边分成3:2两段,则斜边上的中线的长为( )A.265cm B .64cm C .65cmD .325cm16.AD 为Rt △ABC 斜边BC 上的高,作DE ⊥AC 于E ,45AC AB =,则EACE=( ) A .2516 B .54C .45D .162517.如图1—6—5,△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,已知AB=m ,BC=n ,求CD 的长。
浙教版数学九年级上册 第四章 相似三角形 单元练习(含答案)
浙教版数学九年级上册第四章相似三角形一、选择题1.如果2a =5b ,那么下列比例式中正确的是( )A .a b =25B .a 5=2b C .a 2=b 5D .a 5=b 22.如图,直线l 1∥l 2∥l 3,AC =6,DE =3,EF =2,则AB 的长为( )A .3B .125C .165D .1853.如图,点P 是线段AB 的黄金分割点,且PA >PB ,若AB =2,则PA 的长度是( )A .5−1B .3−5C .25−4D .14.如图, 在▱ABCD 中, E 是边AB 上一点, 连结AC ,DE 相交于点F . 若AE EB =23,则 AF CF 等于( )A .13B .23C .25D .355.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )A .B .C.D.6.△ABC和△DEF是两个等边三角形,AB=2,DE=4,则△ABC与△DEF的面积比是( ) A.1:2B.1:4C.1:8D.1:27.如图,在△ABC中,BC=6,AC=8,∠C=90°,以B为圆心,BC长为半径画弧,与AB交于点D,再分别以点A,D为圆心,大于12AD的长为半径画弧,两弧交于点M,N,作直线MN,分别交AC,AB于点E,F,则AE的长度为( )A.52B.103C.3D.228.如图,△ABC和△A1B1C1是以点O为位似中心的位似图形,点A在线段O A1上,若OA:A A1=1:2,则△ABC和△A1B1C1的周长之比为( )A.1:2B.2:1C.1:3D.3:19.如图,在△ABC中,D为线段AC上一点,点E在AC的延长线上,过点D作DF∥AB交BC于点F,连结BE,EF,若A C2+D E2=A E2,则△BEF与△DCF的面积比为( )A.1:2B.1:3C.2:3D.2:510.如图,矩形ABCD中,AB=4,AD=2,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是( )A .4B .154C .3D .114二、填空题11.如图,AC 、BD 交于点O ,连接AB 、CD ,若要使△AOB ∽△COD ,可以添加条件 .(只需写出一个条件即可)12.已知△ABC ∽△DEF ,且AB:DE =1:3,△ABC 与△DEF 的周长比是 .13.如图,在这架小提琴中,点C 是线段AB 的黄金分割点(BC >AC ).若AB =60cm ,则BC = cm .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图,矩形ABCD 中,AB =3 6 ,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .16.如图,正方形ABCD 中,BF =FG =CG ,BE =2AE ,CE 交DF 、DG 于M 、N 两点,有下列结论:①DF ⊥EC ;②S △MFC =59S 四边形MFBE ;③DM :MF =2:1;④MN NC =913.其中,正确的有 .三、解答题17.(1)已知线段a =2,b =6,求线段a ,b 的比例中项线段c 的长.(2)已知x :y =3:2,求2x−yx的值.18.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥BC ,AD BD =32,求DE BC 的值.19.如图,AD 、BC 相交于点P ,连接AC 、BD ,且∠1=∠2,AC =6,CP =4,DP =2,求BD 的长.20. 如图,在平行四边形ABCD 中,E 为DC 边上一点,∠EAB =∠EBC .(1)求证:△ABE∽△BEC ;(2)若AB=4,DE=3,求BE的长.21.如图,在四边形ABCD中,OA=OC,OB=OD,AB=BC,AC=12,BD=16.(1)求证:四边形ABCD时菱形;(2)延长BC至点M,连接OM交CD于点N,若∠M=12∠BAC,求MNOM.22.如图,AB∥CD,且AB=2CD,E是AB的中点,F是边BC上的动点(F不与B,C重合),EF与BD相交于点M.(1)求证:△FDM∽△FBM;(2)若F是BC的中点,BD=18,求BM的长;(3)若AD=BC,BD平分∠ABC,点P是线段BD上的动点,是否存在点P使DP⋅BP=BF⋅CD,若存在,求出∠CPF的度数;若不存在,请说明理由.23.如图,在平面直角坐标系中,已知抛物线y=12x2+bx+c与x轴交于A、B两点,与y轴交于C点,且OB=OC=4.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使∠ABC=∠BCM,如果存在,求M点的坐标,如果不存在,说明理由;(3)若D是抛物线第二象限上一动点,过点D作DF⊥x轴于点F,过点A、B、D的圆与DF交于E点,求△ABE的面积.答案解析部分1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】B11.【答案】∠A=∠C(答案不唯一)12.【答案】1:313.【答案】(305−30)14.【答案】9415.【答案】21516.【答案】①④17.【答案】(1)解:∵线段a=2,b=6,线段c是线段a、b的比例中项,∴c2=ab=12,∴c=23(负值舍去);(2)解:∵x:y=3:2,∴可设x=3k,y=2k(k≠0),∴2x−yx=6k−2k3k=43.18.【答案】3519.【答案】BD=320.【答案】(1)证明:∵平行四边形ABCD,∴AB//CD,∴∠EBA=∠BEC,又∵∠EAB=∠EBC,∴△ABE∽△BEC.(2)解:∵四边形ABCD 平行四边形,∴AB =DC =4,∵DE =3,∴CE =1,∵△ABE∽△BEC ,∴AB EB =EBEC,∴AB ⋅CE =B E 2=4×1=4,∴BE =2.21.【答案】(1)证明:∵ 在四边形ABCD 中,OA=OC ,OB=OD∴ 四边形ABCD 是平行四边形 ∵ AB=BC∴ 平行四边形ABCD 是菱形。
九年级数学相似三角形单元测试题(卷)和答案
九年级数学 相似 单元测试一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C. 12.5km D.1.25km 2.已知0432≠==c b a ,则cb a +的值为( )A.54B.45C.2D.213.已知⊿ABC 的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿ABC 与⊿A ′B ′C ′相似,那么⊿A ′B ′C ′的第三边长应该是( )A.2B.22C.26D.334.在相同时刻,物高与影长成正比。
如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为 ( ) A 20米 B 18米 C 16米 D 15米 5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD, 只要CD 等于 ( )A.cb 2B.ab 2C.cabD.ca 2 6.一个钢筋三角架三 长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( ) A.一种 B.两种 C.三种 D.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置 8、如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则CD 的长( )A .163B .8C .10D .169.已知a 、b 、c 为非零实数,设k=cba b c a a c b +=+=+,则k 的值为() A .2 B .-1 C .2或-1 D .110、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC 上,△ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m 二.填空题(每小题3分,共30分) 11、已知43=y x ,则._____=-yy x12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= .13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .14、如图,⊿ABC中,D,E分别是AB,AC上的点(DE BC),当或或时,⊿ADE与⊿ABC相似.15、在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ·,则∠BCA的度数为____________。
完整版)九年级数学相似三角形综合练习题及答案
完整版)九年级数学相似三角形综合练习题及答案1.填空题:1) 若$a=8$cm,$b=6$cm,$c=4$cm,则$a$、$b$、$c$的第四比例项$d=\underline{12}$;$a$、$c$的比例中项$x=\underline{5}$。
2) $(2-x):x=x:(1-x)$。
则$x=\underline{1}$。
3) 在比例尺为1:的地图上,距离为3cm的两地实际距离为\underline{30}公里。
4) 圆的周长与其直径的比为\underline{$\pi$}。
5) $\frac{a^5-ab}{b^3}=\frac{a^4}{b^2}$,则$\frac{a}{b}=\underline{a^2}$。
6) 若$a:b:c=1:2:3$,且$a-b+c=6$,则$a=\underline{2}$,$b=\underline{1}$,$c=\underline{3}$。
7) 如图1,则$\frac{AB}{AC}=\frac{BC}{CE}=\underline{\frac{3}{2}}$;若$BD=10$cm,则$AD=\underline{6}$cm;若$\triangle ADE$的周长为16cm,则$\triangle ABC$的周长为\underline{24}cm。
8) 若点$c$是线段$AB$的黄金分割点,且$AC>CB$,则$\frac{AC}{AB}=\underline{\frac{1+\sqrt{5}}{2}}$,$\frac{CB}{AB}=\underline{\frac{\sqrt{5}-1}{2}}$。
2.选择题:1) 根据$ab=cd$,共可写出以$a$为第四比例项的比例式的个数是()A.$1$,B.$2$,C.$3$,D.$4$。
答案:B。
2) 若线段$a$、$b$、$c$、$d$成比例,则下列各式中一定能成立的是()A.$abcd=1$,B.$a+b=c+d$,C.$\frac{a}{b}=\frac{c}{d}$,D.$a^2+b^2=c^2+d^2$。
浙教版数学九年级上册第四章相似三角形 单元测试(含答案)
浙教版数学九年级上册第四章相似三角形一、选择题1.已知c 是a 和b 的比例中项,a =2,b =18,则c =( )A .±6B .6C .4D .±32.如图,DE ∥BC ,在下列比例式中,不能成立的是()A .AD DB =AEECB .DE BC =AEEC C .AB AD =AC AED .DB EC =ABAC3.如果两个相似三角形的周长之比为5:7,那么这两个三角形的面积之比为( )A .5:7B .7:5C .25:49D .49:254.如图,已知AB ∥CD ∥EF ,AE =9,AC =6,BD =4,则BF 的长是( )A .5B .6C .7D .85.小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为( )A .10米B .12米C .15米D .22.5米6.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是( )A .B .C.D.7.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为( ).A.1:2B.1:3C.1:4D.1:58.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为5,则下列结论中正确的是( )A.m=5B.m=45C.m=35D.m=109.如图,已知AB=AC,∠B<30°,BC上一点D满足∠BAD=120°,BDCD =73,则ADAC的值为( )A.12B.33C.13D.3210.如图,在边长为2的正方形ABCD中,对角线AC与BD相交于点O,点P是BD上的一个动点,过点P作EF∥AC,分别交正方形的两条边于点E,F,连接OE,OF,设BP=x,△OEF的面积为y,则能大致反映y与x之间的函数关系的图像为( )A .B .C .D .二、填空题11.如图,线段AC 、BD 交于点O ,请你添加一个条件: ,使△AOB ∽△COD .12.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC = .13.在某市建设规划图上,城区南北长为120cm ,该市城区南北实际长为36km ,则该规划图的比例尺是 .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图, EB 为驾驶员的盲区,驾驶员的眼睛点 P 处与地面 BE 的距离为1.6米,车头 FACD 近似看成一个矩形,且满足 3FD =2FA ,若盲区 EB 的长度是6米,则车宽 FA 的长度为 米.16.如图,在△ABC中,点D是AC边上一点,将△ABD沿BD翻折得到△EBD,BE与AC交于点F,设AF=x,EF=y.(1)当BE⊥AC,x=9,y=3时,AD的长是 ;(2)当BD=BF,2x=7y时,△DEF与△ABD的面积之比是 .三、解答题17.如图,已知D、E分别是△ABC的边AB、AC上的点,DE∥BC,ADBD =32,求DEBC的值.18.如图,在△ABC中,D为BC上一点,∠BAD=∠C.(1)求证:△ABD∽△CBA;(2)若AB=6,BD=3,求CD的长.19.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的(全身)的高度比,可以增加视觉美感,按比例,如果雕像的高为2m,那么它的下部设计为多高?(结果保留小数点后两位)参考数据:2=1.414,3=1.732,5=2.23620.如图,在矩形ABCD中,AB=6,BC=4,E是边BC上的一点(不与B、C重合),DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;S△ABE,求BE的长.(2)若S△DFA=1321.如图,在△ABC中,AD是BC上的高,且BC=3,AD=2,矩形EFGH的顶点F、G在边BC上,顶点E、H分别在边AB、AC上.(1)设EF=x(0<x<2),矩形EFGH的周长为y,求y关于x的函数解析式;(2)当EFGH为正方形时,求正方形EFGH的面积.22.如图,矩形ABCD中,点M在对角线BD上,过点A、B、M的圆与BC交于点E.(1)若AM=4,EB=EM=3,求BM.(2)若AB=6,BC=8,①求AM:ME.②若BM=7,求BE.23.如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长交BC于点E,过点Q作QF//AC,交BD于点F,设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形;(2)设五边形OECQF的面积为S(c m2),试确定S与t的函数关系式;(3)在运动过程中,当S五边形OECQF:S△ACD=9:16时.直接写出t的值.答案解析部分1.【答案】A2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】A7.【答案】C8.【答案】B9.【答案】A10.【答案】C11.【答案】AB∥CD(答案不唯一)12.【答案】6.13.【答案】1:3000014.【答案】9415.【答案】12716.【答案】5;1417.【答案】3518.【答案】(1)证明:∵∠BAD=∠C,∠B=∠B,∴△ABD∽△CBA(2)解:设DC=x,∵△ABD∽△CBA,∴ABBD=BCAB,∴63=2+x6,解得,x=9;即CD=719.【答案】1.24米.20.【答案】(1)证明:∵四边形ABCD是矩形,AB=6,BC=4,∴∠B=90°,AD∥BC,AD=BC=4,∴∠AEB=∠DAF,∵DF⊥AE,∴∠DFA=90°,∴∠B=∠DFA,∴△ABE∽△DFA;(2)解:∵△ABE∽△DFA,S△DFA=13S△ABE,∴(AEAD )2=S△ABES△DFA=3,∴AEAD=3或AEAD=−3(负数不符合题意,舍去),∴AE=3AD=43,∴BE=AE2−AB2=(43)2−62=12=23,∴BE的长为23.21.【答案】(1)解:设AD,EH交于点M,∵矩形EFGH,∴EH∥BC,AM⊥EH,∴△ABC∼△AEH,∴EHBC=AMAD∵EF=DM=x,AD=2∴AM=2−x∴EH3=2−x2∴EH=32(2−x)∴y=2(EH+EF)=2(3−32x+x)=−x+6(0<x<2)∴y关于x的函数解析式为∴y=−x+6(0<x<2)(2)解:当EFGH为正方形时,∴EF=EH,由(1)得:EF =x ,EH =32(2−x),∵EF =EH ,∴x =3(2−x)2,∴x =65,即EF =65.正方形EFGH 的面积=65×65=3625.22.【答案】(1)245(2)①43,②17423.【答案】(1)解:在矩形ABCD 中,AB =6cm ,BC =8cm ,∴AC =10,①当AP =PO =t ,如图1,过P 作PM ⊥AO 于点M ,∴AM =12AO =52,∵∠PMA =∠ADC =90°,∠PAM =∠CAD ,∴△APM∽△ACD ,∴AP AC =AM AD,∴AP =t =258,②当AP =AO =t =5,∴当t 为258或5时,△AOP 是等腰三角形;(2)解:如图2,过点O 作OH ⊥BC 交BC 于点H ,则OH =12CD =12AB =3cm ,由矩形的性质可知∠PDO =∠EBO ,DO =BO ,又得∠DOP =∠BOE ,∴△DOP≌BOE(ASA),∴BE =PD =8−t ,则S △BOE =12BE ⋅OH =12×3(8−t)=12−32t.∵FQ//AC ,∴△DFQ∽△DOC ,相似比为DQ DC =t6,∴S △DFQ S △DOC =t 236,∵S △DOC =14S 矩形ABCD =14×6×8=12c m 2,∴S △DFQ =12×t 236=t 23,∴S 五边形OECQF =S △DBC −S △BOE −S △DFQ =12×6×8−(12−32t)−t 23=−13t 2+32t +12;∴S 与t 的函数关系式为S =−13t 2+32t +12;(3)t =3或32。
九年级数学相似三角形单元测试题及答案
九年级数学 相似 单元测试一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A .1250km ﻩ B.125k m C.ﻩ12.5k m D.1.25km 2.已知0432≠==c b a ,则cb a +的值为ﻩ ﻩﻩ( )A.54 ﻩﻩﻩB.45 ﻩ C .2D.213.已知⊿A BC 的三边长分别为2,6,2,⊿A ′B ′C′的两边长分别是1和3,如果⊿AB C与⊿A′B′C′相似,那么⊿A ′B ′C ′的第三边长应该是ﻩﻩﻩ( )A.2 ﻩB.22 ﻩﻩC.26 ﻩﻩ D.334.在相同时刻,物高与影长成正比。
如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为ﻩﻩ ﻩ ﻩﻩﻩ ﻩﻩ( )A 20米ﻩB 18米ﻩ ﻩC 16米ﻩﻩﻩ D 15米5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB =c,要使⊿ABC ∽⊿CAD, 只要CD 等于 ﻩﻩ ﻩﻩ ﻩ ﻩ( )A.c b 2 ﻩ B.a b 2 ﻩ C.cab ﻩﻩﻩ D.c a 26.一个钢筋三角架三 长分别为20c m,50cm,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ﻩﻩﻩﻩﻩﻩ ( ) A.一种 ﻩ B.两种 C.三种 ﻩﻩD.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部ﻩ C 原图形的边上 D 任意位置8、如图,□AB CD中,EF ∥A B,DE ∶EA = 2∶3,EF = 4,则CD 的长( ) A .\F (16,3) ﻩ B .8 C.10 D.169.已知a 、b 、c为非零实数,设k=cba b c a a c b +=+=+,则k 的值为() A.2 B.-1 C .2或-1 D.110、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC 上,△ABC 中边BC =60m,高AD=30m ,则水池的边长应为( ) A 10m ﻩﻩ B 20m ﻩﻩ C 30m ﻩﻩ D 40m二.填空题(每小题3分,共30分) 11、已知43=y x ,则._____=-y y x12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= .13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .当或或时,⊿ADE与⊿ABC相似.15、在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ·,则∠BCA的度数为____________。
最新九年级中考数学专题: 二次函数综合题(相似三角形问题)含答案
2023年九年级中考数学专题: 二次函数综合题(相似三角形问题)1.如图1,抛物线()221y x m m =--+(m 为常数)与x 轴交于A B 、两点(点B 在点A 右侧),与y 轴交于点C .(1)下列说法:①抛物线开口向上,①点C 在y 轴正半轴上;①12m >;①抛物线顶点在直线21y x =-+上,其中正确的是_______;(2)如图2,若直线21y x =-+与该抛物线交于M N 、两点(点M 在点N 下方),试说明:线段MN 的长是一个定值,并求出这个值;(3)在(2)的条件下,设直线21y x =-+与y 轴交于点D ,连接BM BN BD 、、,当:1:2DN MN =时,求此时m 的值,判断MBN △与MDB △是否相似,并说明理由.2.在平面直角坐标系xOy 中,抛物线()260y ax ax c a =-+>与x 轴交于A 、B 两点(点A 在点B 的左侧),顶点为C ,直线AC 交y 轴于点D ,连接BD ,且ABD △与ABC 的面积之比为1:2.(1)顶点C 的横坐标为__________; (2)求点B 的坐标;(3)连接CO ,将BCO 绕点C 按逆时针方向旋转一定的角度后,点B 与点A 重合,此时点O 恰好也在y 轴上,求抛物线的表达式.3.如图,抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C ,点D 是直线BC 上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点D 作DE x ⊥轴于点E ,交直线BC 于点M .当2DM ME =时,求点D 的坐标; (3)如图2,设AB 的中点为点N ,过点D 作DF BC ⊥于点F ,连接CD 、CN ,使得以C 、D 、F 三点为顶点的三角形与CNO 相似,请直接写出点D 的坐标.4.如图,在平面直角坐标系xOy 中,抛物线()2y a x h k =-+与x 轴相交于O ,A 两点,顶点P 的坐标为()2,1-.点B 为抛物线上一动点,连接,AP AB ,过点B 的直线与抛物线交于另一点C .(1)求抛物线的函数表达式;(2)若点B 的横坐标与纵坐标相等,ABC OAP ∠=∠,且点C 位于x 轴上方,求点C 的坐标; (3)若点B 的横坐标为t ,90ABC ∠=︒,请用含t 的代数式表示点C 的横坐标,并求出当0t <时,点C 的横坐标的取值范围.5.如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A ,B ,C 三点(1)求证:①ACB =90°(2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F . ①求DE +BF 的最大值;①点G 是AC 的中点,若以点C ,D ,E 为顶点的三角形与AOG 相似,求点D 的坐标.6.在平面直角坐标系xOy 中,已知抛物线L 与x 轴交于,A B 两点,且经过点(0,2)C -,抛物线的顶点D 的坐标为325,28⎛⎫- ⎪⎝⎭.(1)求抛物线L 的函数表达式;(2)如图1,点E 为第四象限抛物线L 上一动点,过点E 作EG BC ⊥于点G ,求EG 的最大值,及此时点E 的坐标;(3)如图2,连接,AC BC ,过点O 作直线//l BC ,点,P Q 分别为直线l 和抛物线L 上的点.试探究:在第一象限是否存在这样的点,P Q ,使PQB CAB ∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.7.如图所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C .(1)求A 、B 、C 三点的坐标;(2)过点A 作AP ①CB 交抛物线于点P ,求四边形ACBP 的面积;(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ①x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与①PCA 相似?若存在,请求出M 点的坐标;否则,请说明理由.8.如图,在同一直角坐标系中,抛物线1L :28y ax bx =++与x 轴交于()8,0A -和点C ,且经过点()2,12B -,若抛物线1L 与抛物线2L 关于y 轴对称,点A 的对应点为'A ,点B 的对应点为'B .(1)求抛物线2L 的表达式;(2)现将抛物线2L 向下平移后得到抛物线3L ,抛物线3L 的顶点为M ,抛物线3L 的对称轴与x 轴交于点N ,试问:在x 轴的下方是否存在一点M ,使MNA '与ACB '△相似?若存在,请求出抛物线的3L 表达式;若不存在,说明理由.9.如图,在平面直角坐标系中,抛物线26y ax bx =++与x 轴交于点(1,0),(3,0)A B -,与y 轴交于点C ,点P 是第一象限内抛物线上的动点. (1)求抛物线的解析式;(2)连接BC 与OP ,交于点D ,当:PD OD 的值最大时,求点P 的坐标;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使90CMN ∠=︒,且CMN △与BOC 相似,若存在,请直接写出点M 的坐标.10.如图,已知抛物线23y ax bx =+-与x 轴交于()2,0A -、()6,0B 两点,与y 轴交于C 点,设抛物线的顶点为D .过点D 作DE x ⊥轴,垂足为E .P 为线段DE 上一动点,(),0F m 为x 轴上一点,且PC PF ⊥.(1)求抛物线的解析式:(2)①当点P 与点D 重合时,求m 的值;①在①的条件下,将COF 绕原点按逆时针方向旋转90︒并平移,得到111C O F △,点C ,O ,F 的对应点分别是点1C ,1O ,1F ,若COF 的两个顶点恰好落在抛物线上,直接写出点1F 的坐标; (3)当点P 在线段DE 上运动时,求m 的变化范围.11.综合与实践如图1,抛物线y =﹣83x 2﹣94x +6与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .(1)求直线AC 的表达式;(2)点E 在抛物线的对称轴上,在平面内是否存在点F ,使得以点A ,C ,E ,F 为顶点的四边形是矩形?若存在,请直接写出点E 的坐标;若不存在,请说明理由;(3)如图2,设点P 从点O 出发以1个单位长度/秒的速度向终点A 运动,同时点Q 从点A 出发以54个单位长度/秒的速度向终点C 运动,运动时间为t 秒,当①OPQ 的平分线恰好经过OC 的中点时,求t 的值.12.抛物线23y x bx =-++与x 轴交于(3,0),(1,0)A B -两点,与y 轴交于点C ,点D 为抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)在直线AC 上方的抛物线上找一点P ,使12ACPACDSS =,求点P 的坐标;(3)在坐标轴上找一点M ,使以点B ,C ,M 为顶点的三角形与ACD △相似,直接写出点M 的坐标.13.如图,将抛物线2443y x =-+平移后,新抛物线经过原抛物线的顶点C ,新抛物线与x 轴正半轴交于点B ,联结BC ,tanB 4=,设新抛物线与x 轴的另一交点是A ,新抛物线的顶点是D .(1)求点D 的坐标;(2)设点E 在新抛物线上,联结,AC DC ,如果CE 平分DCA ∠,求点E 的坐标;(3)在(2)的条件下,将抛物线2443y x =-+沿x 轴左右平移,点C 的对应点为F ,当DEF 和ABC 相似时,请直接写出平移后得到抛物线的表达式.14.在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(2)3,和(312)--,. (1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC 相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.15.如图1,在平面直角坐标系中,抛物线2y x bx c =-++经过点A 和点()10B ,,交y 轴于点()0,3C .(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE x ⊥轴于点E ,PG y ⊥轴,交抛物线于点G ,过点G 作GF x ⊥轴于点F ,当矩形PEFG 的周长最大时,求点P 的坐标;(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作直线MN x ⊥轴交抛物线于点N ,是否存在点M ,使得AMN 与OBC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.16.在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于()1,0A -,()4,0B 两点,与y 轴交于点()0,2C -.(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,求DEAE的最大值; (3)如图2,连接AC ,BC ,过点O 作直线//l BC ,点P ,Q 分别为直线l 和抛物线上的点,试探究:在第一象限是否存在这样的点P ,Q ,使PQB CAB ∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.17.如图1,在平面直角坐标xoy 系中,已知抛物线y =-12x 2+bx +c 与x 轴交于点A (﹣4,0)、B(2,0),与y 轴交于点C . (1)求抛物线的解析式;(2)如图2,沿直线AC 平移抛物线y =-12x 2+bx +c ,使得A 、C 两点的对应点E 、F 始终在直线AC上.①设在平移过程中抛物线与y 轴交于点M ,求点M 纵坐标的最大值;①试探究抛物线在平移过程中,是否存在这样的点E ,使得以A 、E 、B 为顶点的三角形与①ABF 相似.若存在,请求出此时点E 的坐标;若不存在,请说明理由.18.如图,已知二次函数y =ax 2+bx +c 的图象经过点A (﹣1,0),B (4,0),E (1,3),与y 轴交于点C .(1)求该二次函数表达式;(2)判断△ABC 的形状,并说明理由;(3)P 为第一象限内该二次函数图象上一动点,过P 作PQ ∥AC ,交直线BC 于点Q ,作PM ∥y 轴交BC 于M .①求证:△PQM ∽△COA ; ②求线段PQ 的长度的最大值.19.如图,直线y x n =-+与x 轴交于点(4,0)A ,与y 轴交于点B ,抛物线2y x bx c =-++经过点A ,B .(1)求抛物线的解析式;(2)(m,0)E 为x 轴上一动点,过点E 作ED x ⊥轴,交直线AB 于点D ,交抛物线于点P ,连接BP . ①点E 在线段OA 上运动,若BPD ∆直角三角形,求点E 的坐标;①点E 在x 轴的正半轴上运动,若45PBD CBO ∠+∠=︒.请直接写出m 的值.20.如图,点A ,B 都在x 轴上,过点A 作x 轴的垂线交抛物线24y x x =-+于点C ,过点B 作x 轴的垂线交该抛物线于点D ,点C ,D 都在第一象限,点D 在点C 的右侧,DE AC ⊥于点E ,连结CD ,BE ,//CD EB .(1)若2OA =,求AB 的长.(2)若点A 是线段OB 的中点,求点E 的坐标.(3)根据(2)的条件,连结OD ,动点P 在线段OB 上,作PQ OD ⊥交OD 于点Q ,当PDQ 与CDE △相似时,求OQOD的值.答案1.(1)①①①;(3)m =3,相似;m =1,不相似2.(1)3;(2)(5,0);(3)2y 3.(1)2y x 2x 3=-++;(2)()2,3D ;(3)57,24D ⎛⎫ ⎪⎝⎭或315,24⎛⎫ ⎪⎝⎭4.(1)214y x x =-或21(2)14y x =--;(2)点C 的坐标为(6,3)或51,4⎛⎫- ⎪⎝⎭;(3)164t t --+;12C x ≥ 5.(1)(2)①9;①(4,6)D 或25(3,)4D .6.(1)213222y x x =--;(2)max ()=EG E 的坐标为(2,3)-;(3)存在,点P 的坐标为6834,99⎛⎫ ⎪⎝⎭或⎝⎭. 7.(1)A (-1,0),B (1,0),C (0,-1);(2)四边形ACBP 的面积为4;(3)M 点的坐标为(-2,3)或(43,79)或(4,15). 8.(1)抛物线2L 的解析式为21382y x x =-++.(2)函数3L 的解析式为:2121322y x x =-+-或2126323y x x =-+-. 9.(1)2 246y x x =-++;(2)点P 的坐标为315,22⎛⎫ ⎪⎝⎭;(3)存在,点M 的坐标为939,48⎛⎫ ⎪⎝⎭. 10.(1)2134y x x =--;(2)①4;①1(2,9)16或13(6-,49)144;(3)748m ≤≤ 11.(1)直线AC 的表达式为364y x =+;(2)点E 1的坐标为20(3,)3--;点E 2的坐标为(3,10)-;点E 3的坐标为(3,3-+;点E 4的坐标为(3,3--;(3)t 的值为5.12.(1)223y x x =--+;(1,4)D -;(2)⎝⎭P 或⎝⎭;(3)点M 的坐标为(0,0)或(9,0)-,或10,3⎛⎫- ⎪⎝⎭. 13.(1)16(1,)3-;(2)(2,4)-;(3)242()433y x =-++或241()4312y x =--+ 14.(1)2y x 2x 3=-++;(2)存在,点D 的坐标分别为3944⎛⎫ ⎪⎝⎭,或(12),; (3)当5p x >时,锐角PCO ACO ∠<∠;当5p x =时,锐角PCO ACO ∠=∠;当25p x <<时,锐角PCO ACO ∠>∠.15.(1)223y x x =--+,()1,4-;(2)()2,3P -;(3)存在,()2,0-或2,03⎛⎫ ⎪⎝⎭16.(1)213222y x x =--;(2)45;(3)存在,点P 的坐标为6834,99⎛⎫ ⎪⎝⎭或⎝⎭17.(1)2142y x x =--+;(2)①6;①存在,E (62--或(62--18.(1)二次函数表达式为:213222y x x =-++ ;(2)△ABC 为直角三角形;(3); 19.(1)234y x x =-++;(2)①(2,0)或(3,0);①7m =或134.20.(1;(2)1296,749E ⎛⎫ ⎪⎝⎭;(3)2或4932。
九年级数学相似三角形(压轴必刷30题专项训练)(学生版)
相似三角形(压轴必刷30题专项训练)一.填空题(共9小题)1(2020秋•虹口区校级月考)一张等腰三角形纸片,底边长为15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第张.2(2019秋•浦东新区校级月考)如图,在平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果BEBC=23,那么BFFD=.3(2017秋•虹口区校级月考)如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB 上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1,若△E1FA1∽△E1BF,则AD=.4(2021秋•普陀区校级月考)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC 的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则AGFD的值为.5(2022秋•普陀区校级月考)如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,且A1 B 1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为1,4,则图中三个阴影三角形面积之和为.6(2017秋•徐汇区校级月考)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;⋯,依此类推,则S n可表示为.(用含n的代数式表示,其中n为正整数)7(2018秋•南岗区校级月考)已知菱形ABCD的边长是6,点E在直线AD上,DE=3,连接BE与对角线AC相交于点M,则MCAM的值是.8(2020秋•虹口区校级月考)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则ABAD+ABAE=.9(2022秋•黄浦区校级月考)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,PA=1 4AB,点D在BC边上,PD=PC,则CDBC的值是.二.解答题(共21小题)10(2017秋•虹口区校级月考)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC 与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.11(2021秋•杨浦区校级月考)如图,已知在菱形ABCD,点E是AB的中点,AF⊥BC于点F,连接EF、ED、DF,DE交AF于点G,且DE⊥EF.(1)求证:AE2=EG•ED;(2)求证:BC2=2DF•BF.12(2021秋•杨浦区校级月考)如图,已知在平行四边形ABCD中,AE:ED=1:2,点F为DC的中点,连接BE、AF,BE与AF交于点H.(1)求EH:BH的值;(2)若△AEH的面积为1,求平行四边形ABCD的面积.13(2021春•徐汇区校级月考)如图,在菱形ABCD中,点E在对角线AC上,点F在BC的延长线上,EF=EB,EF与CD相交于点G;(1)求证:EG•GF=CG•GD;(2)联结DF,如果EF⊥CD,那么∠FDC与∠ADC之间有怎样的数量关系?证明你的结论.14(2021秋•宝山区校级月考)如图,四边形DEFG是△ABC的内接正方形,AB=BC=6cm,∠B= 45°,则正方形DEFG的面积为多少?15(2021秋•松江区月考)如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长AE 交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F .求证:DF FC =DM CD.16(2021秋•松江区月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD FC =BD DC ;(2)若BC FC =54,求BD DC 的值.17(2021春•黄浦区校级月考)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF •AG =BC •BE .18(2021秋•浦东新区校级月考)如图,在△ABC 中,DE ∥BC ,EF ∥CD ,求证:AD 2=AF •AB .19(2020秋•浦东新区月考)在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.20(2021春•静安区校级月考)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF∥AE,CF与边AD相交于点G.求证:(1)FD=CG;(2)CG2=FG•FC.21(2021秋•浦东新区校级月考)如图,梯形ABCD中,AD∥BC,BC=2AD,点E为边DC的中点,BE交AC于点F.求:(1)AF:FC的值;(2)EF:BF的值.22(2021秋•浦东新区校级月考)已知:如图,在△ABC中,BD是∠ABC的平分线,过点D作DE∥CB,交AB于点E,ADDC =13,DE=6.(1)求AB的长;(2)求S△ADES△BCD.23(2022春•长宁区校级月考)已知:如图,在平行四边形ABCD中,AC、DB交于点E,点F在BC的延长线上,联结EF、DF,且∠DEF=∠ADC.(1)求证:EFBF =AB DB;(2)如果BD2=2AD•DF,求证:平行四边形ABCD是矩形.24(2021秋•宝山区校级月考)已知,如图,在梯形ABCD中,AD∥BC,BC=6,点P是射线AD上的点,BP交AC于点E,∠CBP的角平分线交AC于点F,且CF=13AC时.求AP+BP的值.25(2020秋•虹口区校级月考)已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA= DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.26(2021秋•金山区校级月考)已知:如图,在梯形ABCD中,AD∥BC,点E在边AD上,CE与BD 相交于点F,AD=4,AB=5,BC=BD=6,DE=3.(1)求证:△DFE∽△DAB;(2)求线段CF的长.27(2020秋•宝山区月考)如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC的边BC=15,高AH=10,求正方形DEFG的边长和面积.28(2021秋•闵行区校级月考)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,M是CD上的点,DH ⊥BM于H,DH的延长线交AC的延长线于E.求证:(1)△AED∽△CBM;(2)AE•CM=AC•CD.29(2022秋•徐汇区校级月考)如图,在直角坐标平面内有点A(6,0),B(0,8),C(-4,0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向做匀速运动,点N以5个单位长度/秒的速度自A向B方向做匀速运动,MN交OB于点P.(1)求证:MN:NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.30(2022秋•松江区月考)已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.。
相似三角形综合测试卷
相似三角形综合测试卷一、选择题(10题共30分)1.用放大镜将图形放大,应该属于( ) A 、相似变换 B 、平移变换 C 、对称变换D 、旋转变换2 一个铝质三角形框架三条边长分别为24cm ,30cm ,36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm ,45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边,截法有( ) A 、0种 B 、1种 C 、2种 D 、3种3、如图1,P 是Rt △ABC 斜边BC 上异于B 、C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条4、已知△ABC 与△DEF 的相似比为1︰2 ,△ABC 的周长为30cm ,△ DEF 的三边之比为 4︰5︰6,则△DEF 的最长边为( ) A 44cm B 40cm C 36cm D 24cm5、在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为21,把△EFO 缩小,则点E 的对应点E′的坐标是( ) A .(-2,1)B .(-8,4)C .(-8,4)或(8,-4) D .(-2,1)或(2,-1) 6、如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为( ) A .21 B .23 C .22 D .33 7、如图,Rt △ABC 中,∠A=90°,AD ⊥BC 于点D ,若BD :CD=3:2,则tanB=( ) A 、23B .32 C .26 D .36 8、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( ) A .16 B .17 C .18 D .19 9、某数学课外实习小组想利用树影测量树高,他们在同一时刻测得一身高为1.5米的同学的影子长为1.35米,因大树靠近一栋建筑物,大树的影子不全在地面上,他们测得地面部分的影子长BC =3.6米,墙上影子高CD =1.8米,则树高AB ( )A.2 .8B.3 .8C.4 .8D.5.810.如图,△ABC 中,CD ⊥AB 于D ,一定能确定△ABC 为直角三角形的条件的个数是( )①∠1=∠A ;②;③∠B+∠2=90°;④BC :AC :AB=3:4:5;⑤AC•BD=AD•CD .A.2B.3C.4D.5二、填空题(6题共18分) 11、如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC =_____°,BC =_____;(2)△ABC 与△DEF 是否相似?__________(填相似或不相似)12、如图,把矩形ABCD 对折,折痕为MN ,矩形DMNC 与矩形ABCD 相似,已知AB =4. (1)AD 的长为_______;(2)矩形DMNC 与矩形ABCD 的相似比为_________。
湘教版九年级上册期末复习数学考试试题3.相似三角形综合训练(有答案)
期末测试3 相似三角形综合应用1.如图,已知点O 是△ABC 中BC 边的中点,且32 AD AB ,则AC AE的值为( )A.31B.32 C.43 D.54第1题图 第2题图 第3题图2.如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( ) A.25 B.35 C.5 D.63.如图,矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在边BC 上,且BF=2FC ,AF 分别与DE 、DB 相交于点M ,N ,则MN 的长为( ) A.522 B.2029 C.523 D.4234.如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD ,CD =21AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( ) A.71 B.61 C.51 D.41第4题图 第5题图 第6题图5.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系是()A.CE=3DEB.CE=2DEC.CE=3DED.CE=2DE6.如图,在四边形ABCD中,AD//BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上的动点,若△P AD与△PBC相似,则满足条件的点P的个数是()A.4个B.3个C.2个D.1个7.如图,正五边形的边长为2,连结对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N.给出下列结论:①∠AME=108°;②AN2=AM AD⋅;③MN=35-;④S△EBC =215-.其中正确结论的个数是()A.1个B.2个C.3个D.4个第7题图第8题图第9题图8.如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH的长度是.9.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.10.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则ODOB 的值为.第10题图第11题图第12题图5,则BD的11.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5长是.12.如图,M、N为△ABC的边BC上的两点,且满足BM=MN=NC,DF//AC交AB、AM与AN的延长线于D、E、F. DE=2,则EF的长为.13.如图,△ABC中,AB=AC,AD⊥BC于点D,DE⊥AC于点E,AD、BE相交于点P,且PB=3,PE=1,求△BDP的面积.14.看图解答下列问题:(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.15.如图1,在正方形ABCD中,延长BC至M , 使BM=DN ,连接MN交BD延长线于点E.(1)求证:BD+2DE=2BM.(2)如图2 ,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2 , 且CM=2,求线段DG的长.16.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P 处,折痕为EC,连结AP并延长AP交CD于F点.(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.17.如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BG C . (1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求EFAD的值.18.在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.参考答案1.C ,点拨:过B 作BF //AC 交DE 于F ,证△OBF ∽△COE2.C ,点拨:连接EF 交AC 于O ,证△AOE ∽△ABC3.B ,点拨:过F 作FH ⊥AD 于H ,证△AEM ∽△FOM4.C ,点拨:连接BD5.B ,点拨:过D 作DH ⊥BC 于H6.B7.C8.553,点拨:连接OC ,在BD 上截取CE=CH ,证△OBE ≌△OCH ,△CDH ∽△BD C 9.2,点拨:过F 作FG ⊥BC 于G ,证△ABE ∽△ADB ,△BFG ∽△BDC 10.211.412,点拨:连接AC ,过D 作DE ⊥BC 交BC 延长线于E ,证△ABC ∽CDH 12.6,点拨:分别过M 、N 作MG//DF ,NH//DF ,分别交AB 于G 、H 13.223,点拨:过D 作DF ⊥BE 于F ,证△DBG ∽△PDG 14.(1)9,点拨:连BE ,证△ACD ∽△BCE ;(2)3310 15.(1)略;(2)22,点拨:证△BCN ∽△FDN 16.(1)略;(2)略;(3)2542,点拨:过P 作PM//AD ,证△ADF ∽△PMF 17.(1)略;(2)点拨:先证△AGB ∽△DGC ;(3)2,点拨:过C 作CH ⊥AD 交AD 延长线于H18.(1)略;(2)点拨:先证△ABD ≌△ACF ;(3)点拨:作D 关于AE 的对称点F ,连接AF 、EF 、DF。
九年级相似三角形综合练习题附答案
相似三角形综合练习题一、填空题:1. 已知a ba b+-=2295,则a b:=__________2. 若三角形三边之比为3:5:7,与它相似的三角形的最长边是21cm,则其余两边之和是__________cm3. 如图,△ABC中,D、E分别是AB、AC的中点,BC=6,则DE=__________;△ADE与△ABC的面积之比为:__________。
4. 已知线段a=4cm,b=9cm,则线段a、b的比例中项c为__________cm。
5. 在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AD=8,DB=6,EC=9,那么AE=__________6. 已知三个数1,2,3,请你添上一个数,使它能构成一个比例式,则这个数是__________7. 如图,在梯形ABCD中,AD∥BC,EF∥BC,若AD=12cm,BC=18cm,AE:EB=2:3,则EF=__________8. 如图,在梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=6,BC=10,则梯形的面积为:__________二、选择题:1. 如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是__________A. 9:16B. 3:2C. 3:4D. 3:72. 在比例尺为1:m的某市地图上,规划出长a厘米,宽b厘米的矩形工业园区,该园区的实际面积是__________米2A. 104mabB.1042mabC.abm104D.abm24103. 已知,如图,DE∥BC,EF∥AB,则下列结论:①AEECBEFC=②ADBFABBC=③EFABDEBC=④CECFEABF=其中正确的比例式的个数是__________A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点为顶点组成的三角形与△ABC相似,则AE的长是__________A. 16B. 14C. 16或14D. 16或95. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD,交CB的延长线于点E,则下列结论正确的是__________A. △AED∽△ACBB. △AEB∽△ACDC. △BAE∽△ACED. △AEC∽△DAC三、解答题:1. 如图,AD∥EG∥BC,AD=6,BC=9,AE:AB=2:3,求GF的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建安溪县虎邱镇安溪职校 《相似三角形》综合测试题一.选择题(每小题3分,共36分)1.(2006·宜昌)下列四幅图形中,表示两颗小树在同一时刻阳光下影子的图形可能是 ( )2.如果a nm b =,则下列比例式中,不成立的是( ) A 、n b a m =;B 、b m n a =;C 、b n a m =;D 、a m b n m b++=。
3.下列说法中,错误的是( )A 、所有的等边三角形都相似;B 、所有的等腰直角三角形都相似;C 、所有的矩形都相似;D 、所有的正方形都相似; 4.在相似的两个三角形,已知其中一个三角形的三边长是4、6、8,另一个三角形最短的一边长是2,则另一个三角形的周长是( )A 、4、5;B 、6;C 、9;D 、以上答案都有可能。
5.如图△ABC 中,DE∥BC,AE=1,AC=2,则S△ADE:S△ABC 等于( ) A 、1:2;B 、1:3;C 、1:4;D 、1:9。
6.把一个三角形改成和它相似的三角形,若面积扩大到原来的100倍,则边长扩大到原来的( )A 、10000倍;B 、10倍;C 、100倍;D 、1000倍。
7.如图△ABC∽△AED,其中∠ADE=∠ACB,则下列各式成立的是( )A 、BC ED AB AD =;B 、ADAEAC AB =; C 、BC 2=BD·DE;D 、BCDE AC AB =。
8.如图为羽毛球场地按比例缩小的示意图(由图中粗实线表示),它的宽度为6.18米,那么它的长度大约在( )A .12米至13米之间;B .13米至14米之间;C .14米至15米之间;D .15米至16米之间.9.将点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),在下面的坐标系(A )中描出并顺次连接画在(A )中。
(对以下问题请将图案代码填入相应的括号内)做如下变化:(1)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案是( );(2)纵坐标保持不变,横坐标分别变为原来的2倍,再将所得的点用线段依次连接起10.小强家在小芳家的南偏西60°方向上,则小芳家在小强家的( ) A 、南偏东60°;B 、南偏东30°;C 、北偏东60°;D 、北偏东30°。
二、填空题(每小题3分,共30分)11.在1:1000的地图上,小明量得学校操场的长为20cm ,宽为15cm ,则操场的实际面积是 平方米;12.如图,点E 、F 、G 是枫叶上三点,它们均在格点上,若点E 的坐标是(-2,1),点F 的坐标为(1,-1),则点G 的坐标为___.13.如图,已知:△ABC 中,,CD⊥AB于D 点,如果2BD AD DC =⋅,则∠ABC= ;14.如图所示,为测量油桶内油面的高工,将一根细木棒自油桶小孔插x 桶内,测得木棒插入部分的长为100cm ,木棒上沾油部分的长度为60cm ,桶高为80cm ,那以油桶内面的高度是 cm ;15.如图,每个小正方形边长为1,把△ABC 沿BC 方向平移_____个单位得到△A′B′C′;16.如图所示,如果四边形ACDE 与四边形ABHF 位似,位似中心是A ,且AB=2,BC=1,AH=4,则DH=______;17.如图五对三角形中,位似的有_______对;ABCD 18.两个相似三角形的一边对应边分别为35cm ,14cm ,它们的周长相差60cm ,则这两个三角形的周长为_________;19.(2006年烟台市)如图,请你补充一个你认为正确的条件,使ABC ∆∽ACD ∆,这个条件是: ;20.(2006年南通市)已知A 、B 、C 、D 点的坐标如图所示, E 是图中两条虚线的交点, 若△ABC 和△ADE 相似, 则E 点的坐标是________.三.解答题(共54分)21(6分)如图,A 、B 两点间有一湖泊,无法直接测量AB 的长,小明想了一个办法,他在湖泊外选择可以到达点A 的一点C ,并量得CA=60 米,然后又在点AC 上取一点D ,量得CD=24米,再过点D 作DE ∥AB 交BC 于E ,此时要求AB 的长,还需要一个条件,这个条件是什么?如果需要的条件是线段的长,那就请用a 米表示;如果需要的条件是角的度数,那就用。
求此时AB 的长(用a 或边示)。
22(6分)如图是步枪在瞄准时的俯视图,OE 是从眼睛到准星的距离80mm ,AB 是步枪上的准星宽度2mm ,CD 是目标的正面宽度50cm ,求眼睛到目标的距离OF .23.(8分)如图,某林业检查站为了防止乱伐林木,在公路上设立检查站,栏杆的短臂为1.2米,长臂为7.2米,当短臂端点下降0.8米时,长臂端点升高多少米?(杆的宽度忽略不计)24(6分)小新不小心把一块三角形形状的玻璃打破,只剩下如图一块比较完整的一部分,现要用这块把它切成一个尽可能大、又与原来那一块相似,根据这块玻璃的破碎情况,请你用直尺和圆规画出切割的路线PQ 。
已知原来那一块是等边三角形。
25(6分) 张村和李庄合资投建自来水站,他们在山青水秀的马头山上建了一大蓄水池,然后用口径20cm的水管把水引到距离村庄还有数千米的山坡上,再准备用两条口径相同的分水管分别引向各自的村庄.为了使分水管分到的水与主水管供给的水量持平,分水管的口径应选择多少cm ?26.(10分)在下面的直角坐标系中描出下列各组点,并将各组内的点用线段依次连结起来.(1)(2,0),(4,0),(6,2),(6,6),(5,8),(4,6),(2,6),(1,8),(0,6),(0,2), (2,0);(2)(1,3),(2,2),(4,2),(5,3); (3)(1,4),(2,4),(2,5),(1,5),(1,4); (4)(4,4),(5,4),(5,5),(4,5),(4,4);A(5)(3,3).得到如下的图形:你能否判断出它像什么呢?如下图建立直角坐标系中的图形需要多少点连结而成?你能写出这些点吗?27(12分)如图是一块直角三角形ABC铁片余料,直角边AB=8,AC=6。
现用它截成面积最大的正方形,求所截C得最大正方形的面积。
A B福建安溪县虎邱镇安溪职校《相似三角形》综合测试题参考答案1.A .提示:其他有的方向不对,有的大小不成比例; 2.C .提示:已知式去分母后可化为ab=mn ,C 不能。
3.C .提示:矩形的对应边不一定成比例。
4.C .提示:相似比为最短边与最短边的比,周长比等于相似比。
5.C .提示:相似三角形面积比等于相似比的平方。
6.B .提示:相似三角形面积比等于相似比的平方,相似比等于面积比的算术平方根。
7.B .提示:注意对应边。
8.D .提示:用三角尺量一下示意图的长和宽,由实际图形与示意图对应边成比例得出实际的长。
9. (1)B ;提示:纵坐标分别乘以-1,所得的图形与原图形关于x 轴对称;(2)C ;提示:将原图形向右拉长两个单位;(3)D ;即将原图形向右平移3个单位。
10.C .提示:画图,利用图形直观性。
11.35000;提示:操场实际长为200米,宽为150米。
12.(1,2)。
提示:由点E 、F 的坐标确定坐标原点及单位长度。
13.90°。
提示:△A B D∽△B CD 。
14.48;提示:作辅助线如图。
15.3;16.2.提示:A 、H 、D 三点共线。
17.3.提示:第一、四、五位似。
18. 100cm ,40cm ;设周长分别为L 1和L 2,根据相似三角形的周长的比等于相似比,得L L 211514 ,又L 1-L 2=60,解之即可。
19.∠ACD=∠B 。
提示:已有∠A 为公共角。
20.(4,-3)。
提示:AB=6,AD=9,BC=4,由相似三角形对应边成比例,可得DE=6。
21.需要的条件是DE 的长,设为a 米,∵DE∥AB,∴△CDE∽△CAB, ∴AB DE CA CD =,∴AB=605242a a=(米)。
22.20米;∵AB∥CD, ∴△OAB∽△OCD, ∴CD AB OF OE =,∴OF=250080⨯=2000cm=20m 。
23.设上升x 米,根据相似三角形的对应边成比例,得x8.02.72.1=,∴x=4.8米。
24.在AB 、AC 上截取AM=AN ,连结MN ,过点E 作PQ ∥MN 交AB 、AC 于P 、Q 。
则PQ 为所求。
图略。
25. 设分水管的口径为xcm,则每根分水管的横断面面积是主水管面积的12,由于圆都是相似的,相似比为口径之比.故21202=⎪⎭⎫⎝⎛x ,即2120=x .解得x=210≈14(cm).因此,分水管的口径应选择14cm 。
26.像猫脸;它是连接(-3,-1),(-1,-1),(-1,-3),(2,-3),(2,-1),(4,-1),(4,2),(2,2),(2,4),(-1,4),(-1,2),(-3,2),(-3,-1)点组成的.27.分两个顶点在斜边上和在直角边上讨论,设正方形的边长为x 。
如果正方形与三角形的位置如图1所示,则由△FEC ∽△ABC ,得686x x-=,解得x=247; 如果正方形与三角形的位置如图2所示,由于斜边上的高为245,则由△ADG ∽△ABC ,得24524105xx -=,解得x=12037。
图1图2由于247>12037,所以图1的正方形面积最大,为57649。
(注:可编辑下载,若有不当之处,请指正,谢谢!)。