2018~2019学年泰州市高三上学期期末考试数学
2018-2019学年人教A版高中数学必修1课件:3.1.1函数的应用
(6)在(k1,k2)内有且仅有一个实根的充要条件是
Δ=0, f(k1)f(k2)<0,或k1<-2ba<k2.
例3 方程x2-2ax+4=0的两根均大于1,求实数a的取值范 围.
【解析】 方法一:设f(x)=x2-2ax+4,由于方程x2-2ax
由于相邻两个零点之间的所有函数值保持同号,函数的图 像如图所示.
(2)不等式xf(x)<0同解于
x>0, f(x)<0
或xf(<0x,)>0,
结合函数图
像得不等式的解集为(0,2)∪(-2,0).
探究 根据函数的零点定义与性质,可以用来帮助画函数
的图像,结合函数图像不仅可以直观的研究函数的性质,而且
∴函数y=-x2-2x+3的零点为-3,1. y=-x2-2x+3=-(x+1)2+4. 画出这个函数的简图(如右图),从图像 上可以看出,当-3<x<1时,y>0.
当x<-3或x>1时,y<0. ∴函数y=-x2-2x+3的零点是-3,1. y>0时,x的取值范围是(-3,1); y<0时,x的取值范围是(-∞,-3)∪(1,+∞). 探究2 由于一元二次不等式在前面没有讲过,因此对本题 的解法要正确作出函数的简图,从而解决问题.
课时学案
题型一 求函数的零点 例1 求函数f(x)=(x2+x-2)(x2-2x-8)的零点,并指出使 y<0成立的x的取值范围.
【解析】 y=(x2+x-2)(x2-2x-8)=(x+2)(x-1)(x+2)(x -4)=(x+2)2(x-1)(x-4),
2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)(解析版)
2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.12.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.686.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°7.若均α,β为锐角,=()A.B.C.D.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.49.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣212.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n}满足a1=1,a n﹣a n+1=2a n a n+1,且n∈N*,则a8=.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于.15.设实数x,y满足,则的取值范围是.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.21.(2分)已知函数f(x)=ax+lnx(a∈R)(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)求f(x)的单调区间和极值;(3)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.1【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.【解答】解:iz=1+2i,∴﹣i•iz=﹣i(1+2i),z=﹣i+2则z的共轭复数=2+i的虚部为1.故选:D.【点评】本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.2.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④【分析】利用命题的否定判断①的正误;命题的否定判断②的正误;充要条件判断③的正误;幂函数的形状判断④的正误;【解答】解:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;满足命题的否定形式,正确;②若p∧q是真命题,p是真命题,则¬p是假命题;所以②不正确;③“a>5且b>﹣5”可得“a+b>0”成立,“a+b>0”得不到“a>5且b>﹣5”所以③不正确;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减,正确,反例:y=,可知:x∈(﹣∞,0)时,函数是增函数,在(0,+∞)上单调递减,所以④正确;故选:A.【点评】本题考查命题的真假的判断与应用,涉及命题的否定,复合命题的真假,充要条件的应用,是基本知识的考查.3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)【分析】当B=∅时,m+1>2m﹣1,当B≠∅时,,由此能求出实数m的取值范围.【解答】解:∵集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},B⊆A,∴当B=∅时,m+1>2m﹣1,解得m<2,成立;当B≠∅时,,解得2≤m≤3.综上,实数m的取值范围是(﹣∞,3].故选:C.【点评】本题考查实数的取值范围的求法,考查子集、不等式的性质等基础知识,考查运算求解能力,是基础题.4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π【分析】由题意利用正弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.【解答】解:对于函数,令2x+=kπ+,求得x=+,k∈Z,故它的图象的对称轴为x=+,k∈Z,故A不正确.令2x+=kπ,求得x=﹣,k∈Z,故它的图象的对称中心为(﹣,0 ),k∈Z,故B正确.令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ﹣,k∈Z,故它增区间[kπ﹣,kπ﹣],k∈Z,故C不正确.该函数的最小正周期为=π,故D错误,故选:B.【点评】本题主要考查正弦函数的图象和性质,属于基础题.5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.68【分析】首先运用a n=求出通项a n,判断正负情况,再运用S10﹣2S2即可得到答案.【解答】解:当n=1时,S1=a1=﹣2,当n≥2时,a n=S n﹣S n﹣1=(n2﹣4n+1)﹣[(n﹣1)2﹣4(n﹣1)+1]=2n﹣5,故a n=,据通项公式得a1<a2<0<a3<a4<…<a10∴|a1|+|a2|+…+|a10|=﹣(a1+a2)+(a3+a4+…+a10)=S10﹣2S2=102﹣4×10+1﹣2(﹣2﹣1)=67.故选:C.【点评】本题主要考查数列的通项与前n项和之间的关系式,注意n=1的情况,是一道基础题.6.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°【分析】利用正弦定理把已知等式转化成角的关系,根据三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式可求cosA的值,结合A的范围即可得解A的值.【解答】解:∵b=acosC+c.∴由正弦定理可得:sinB=sinAcosC+sinC,可得:sinAcosC+sinCcosA=sinAcosC+sinC,可得:sinCcosA=sinC,∵sinC≠0,∴cosA=,∵A∈(0°,180°),∴A=60°.故选:A.【点评】本题主要考查了正弦定理的应用,三角函数恒等变换的应用.注重了对学生基础知识综合考查,属于基础题.7.若均α,β为锐角,=()A.B.C.D.【分析】由题意求出cosα,cos(α+β),利用β=α+β﹣α,通过两角差的余弦函数求出cosβ,即可.【解答】解:α,β为锐角,则cosα===;<sinα,∴,则cos(α+β)=﹣=﹣=﹣,cosβ=cos(α+β﹣α)=cos(α+β)cosα+sin(α+β)sinα==.故选:B.【点评】本题考查两角和与差的三角函数的化简求值,注意角的范围与三角函数值的关系,考查计算能力.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.4【分析】由“等差数列{a n}前9项的和等于前4项的和”可求得公差,再由a k+a4=0可求得结果.【解答】解:∵等差数列{a n}前9项的和等于前4项的和,∴9+36d=4+6d,其中d为等差数列的公差,∴d=﹣,又∵a k+a4=0,∴1+(k﹣1)d+1+3d=0,代入可解得k=10,故选:C.【点评】本题考查等差数列的前n项和公式及其应用,涉及方程思想,属基础题.9.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]【分析】求函数的导数,利用导数的几何意义以及直线垂直的等价条件,转化为e x﹣2m=﹣3有解,即可得到结论.【解答】解:函数的f(x)的导数f′(x)=e x﹣2m,若曲线C存在与直线y=x垂直的切线,则切线斜率k=e x﹣2m,满足(e x﹣2m)=﹣1,即e x﹣2m=﹣3有解,即2m=e x+3有解,∵e x+3>3,∴m>,故选:A.【点评】本题主要考查导数的几何意义的应用,以及直线垂直的关系,结合指数函数的性质是解决本题的关键.10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)【分析】根据已知得出x,y的约束条件,画出满足约束条件的可行域,再用角点法,求出目标函数z=x﹣y的最大值,再根据最值给出λ的求值范围.【解答】解:由题意得x,y的约束条件.画出不等式组表示的可行域如图示:在可行域内平移直线z=x﹣y,当直线经过3x+y﹣2=0与x=3的交点A(3,﹣7)时,目标函数z=x﹣y有最大值z=3+7=10.x﹣y<λ+恒成立,即:λ+≥10,即:.解得:λ∈(0,1]∪[9,+∞)故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣2【分析】利用基本不等式的性质即可得出.【解答】解:∵a,b,c>0且(a+b)(a+c)=4﹣2,则2a+b+c=(a+b)+(a+c)≥=2=2,当且仅当a+b=a+c=﹣1时取等号.故选:D.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.12.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.【分析】根据题意可得函数g(x)=xf(x)=e x﹣ax2在x∈(0,+∞)时是单调增函数,求导,分离参数,构造函数,求出最值即可【解答】解:∵x∈(0,+∞),∴x1f(x1)<x2f(x2).即函数g (x )=xf (x )=e x ﹣ax 2在x ∈(0,+∞)时是单调增函数. 则g′(x )=e x ﹣2ax ≥0恒成立. ∴2a ≤,令,则,x ∈(0,1)时m'(x )<0,m (x )单调递减, x ∈(1,+∞)时m'(x )>0,m (x )单调递增, ∴2a ≤m (x )min =m (1)=e , ∴.故选:D .【点评】本题考查了函数的单调性问题,考查函数恒成立问题,考查转化思想,考查导数的应用,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,且n ∈N*,则a 8=.【分析】直接利用递推关系式求出数列的通项公式,进一步根据通项公式求出结果. 【解答】解:数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,则:(常数),数列{}是以为首项,2为公差的等差数列.则:,所以:,当n=1时,首项a 1=1, 故:.所以:.故答案为:【点评】本题考查的知识要点:数列的通项公式的求法及应用.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于﹣3.【分析】由已知中向量的模为1,且,满足|﹣|=4,|+|=2,我们易求出•的值,进而根据在方向上的投影等于得到答案.【解答】解:∵||=1,|﹣|=4,|+|=2,∴|+|2﹣|﹣|2=4•=﹣12∴•=﹣3=||||cosθ∴||cosθ=﹣3故答案为:﹣3【点评】本题考查的知识点是平面向量数量积的含义与物理意义,其中根据已知条件求出•的值,是解答本题的关键.15.设实数x,y满足,则的取值范围是[﹣,] .【分析】首先画出可行域,利用目标函数的几何意义求z的最值.【解答】解:由实数x,y满足,得到可行域如图:由图象得到的范围为[k OB,k OA],A(1,1),B(,)即∈[,1],∈[1,7],﹣ [﹣1,].所以则的最小值为﹣;m最大值为:;所以的取值范围是:[﹣,]故答案为:[﹣,].【点评】本题考查了简单线性规划问题;关键是正确画出可行域,利用目标函数的几何意义求出其最值,然后根据对勾函数的性质求m的范围.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.【分析】由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.固我们可以根据已知中平面几何中,关于线的性质“正三角形内任意一点到三边距离之和是一个定值”,推断出一个空间几何中一个关于面的性质.【解答】解:类比P是边长为a的正△ABC内的一点,本题可以用一个正四面体来计算一下棱长为a的三棱锥内任一点到各个面的距离之和,如图:由棱长为a可以得到BF=a,BO=AO=,在直角三角形中,根据勾股定理可以得到BO2=BE2+OE2,把数据代入得到OE=a,∴棱长为a的三棱锥内任一点到各个面的距离之和4×a=a,故答案为:a.【点评】本题考查的知识点是类比推理,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.【分析】(1)用向量数量积公式计算后再化成辅助角形式,最后用正弦函数的周期公式和对称轴的结论可求得;(2)将方程有解转化为求函数的值域,然后用正弦函数的性质解决.【解答】解:(1)∵f(x)=•=2sin(+x)•sin(+x)﹣cos2x=2sin2(+x)﹣cos2x=1﹣cos[2(+x)]﹣cos2x=sin2x﹣cos2x+1=2sin(2x﹣)+1,∴最小正周期T=π,由2x﹣=+kπ,得x=+,k∈Z,所以f(x)的对称轴为:x=+,k∈Z,(2)因为f(x)﹣m=2可化为m=2sin(2x﹣)﹣1在x∈[,]上有解,等价于求函数y=2sin(2x﹣)﹣1的值域,∵x∈[,],∴2x﹣∈[,],∴sin(2x﹣)∈[,1]∴y∈[0,1]故实数m的取值范围是[0,1]【点评】本题考查了平面向量数量积的性质及其运算.属基础题.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.【分析】(Ⅰ)由已知及正弦定理,三角形内角和定理,三角函数恒等变换的应用可得,结合sinB≠0,可得,结合A为三角形内角,可求A 的值.(Ⅱ)由余弦定理,基本不等式可得,根据三角形面积公式即可计算得解.【解答】解:(Ⅰ)由正弦定理可得:,从而可得:,即,又B为三角形内角,所以sinB≠0,于是,又A为三角形内角,所以.(Ⅱ)由余弦定理:a2=b2+c2﹣2bccosA,得:,所以,所以≤2+,即△ABC面积的最大值为2+.【点评】本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.【分析】(1)根据等差数列的通项公式和等比数列的性质列出关于公差d的方程,利用方程求得d,然后写出通项公式;(2)根据单调数列的定义推知a n=2n﹣1,然后利用已知条件求得b n的通项公式,再由错位相减法求得答案.【解答】解:(1)∵a8是a5,a13的等比中项,{a n}是等差数列,∴(1+7d)2=(1+4d)(1+12d)解得d=0或d=2,∴a n=1或a n=2n﹣1;(2)由(1)及{a n}是单调数列知a n=2n﹣1,(i)当n=1时,T1=b1===.(ii)当n>1时,b n==,∴T n=+++…+……①∴T n=+++…++……②①﹣②得T n=+++…+﹣=﹣,∴T n=﹣.综上所述,T n=﹣.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题综上所述,20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.【分析】(1)直接利用等差数列的性质求出数列的通项公式.(2)利用裂项相消法求出数列的和.【解答】解:(1)等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.令n=1时,,n=2时,, n=3时,,由于2a 2=a 1+a 3, 所以,解得k=﹣1. 由于=(2n ﹣1)(n +1),且n +1≠0, 则a n =2n ﹣1;(2)由于===,所以S n =+…+=+n==.【点评】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用.21.(2分)已知函数f (x )=ax +lnx (a ∈R ) (1)若a=2,求曲线y=f (x )在x=1处的切线方程; (2)求f (x )的单调区间和极值;(3)设g (x )=x 2﹣2x +2,若对任意x 1∈(0,+∞),均存在x 2∈[0,1],使得f (x 1)<g (x 2),求实数a 的取值范围.【分析】(1)利用导数的几何意义,可求曲线y=f (x )在x=1处切线的斜率,从而求出切线方程即可;(2)求导函数,在区间(0,﹣)上,f'(x )>0;在区间(﹣,+∞)上,f'(x )<0,故可得函数的单调区间;求出函数的极值即可;(3)由已知转化为f (x )max <g (x )max ,可求g (x )max =2,f (x )最大值﹣1﹣ln (﹣a ),由此可建立不等式,从而可求a 的取值范围.【解答】解:(1)由已知f′(x)=2+(x>0),…(2分)∴f'(1)=2+1=3,f(1)=2,故曲线y=f(x)在x=1处切线的斜率为3,故切线方程是:y﹣2=3(x﹣1),即3x﹣y﹣1=0…(4分)(2)求导函数可得f′(x)=a+=(x>0).…当a<0时,由f'(x)=0,得x=﹣.在区间(0,﹣)上,f'(x)>0;在区间(﹣,+∞)上,f'(x)<0,所以,函数f(x)的单调递增区间为(0,﹣),单调递减区间为(﹣,+∞),=﹣1﹣ln(﹣a)…(10分)故f(x)极大值=f(﹣)(3)由已知转化为f(x)max<g(x)max.∵g(x)=x2﹣2x+2=(x﹣1)2+1,x2∈[0,1],∴g(x)max=2…(11分)由(2)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在(0,﹣)上单调递增,在(﹣,+∞)上单调递减,故f(x)的极大值即为最大值,f(﹣)=﹣1+ln(﹣)=﹣1﹣ln(﹣a),所以2>﹣1﹣ln(﹣a),所以ln(﹣a)>﹣3,解得a<﹣.…(14分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查求参数的值,解题的关键是转化为f(x)max<g(x)max.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)根据函数的单调性求出函数的最小值,求出m的范围,构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,根据函数的单调性证明即可.【解答】解:(Ⅰ)∵,∴∴a=1,∴f(x)=e x,f令h(x)=x2e x﹣1,h'(x)=(2x+x2)e x,h(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,所以x∈(﹣∞,0)时,h(x),即x∈(﹣∞,0)时,f'(x)<0,所以函数y=f(x)在x∈(﹣∞,0)上单调递减.(Ⅱ) 由条件可知,g(x)=e x﹣x+m+1,①g'(x)=e x﹣1,∴g(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,要使函数有两个零点,则g(x)min=g(0)=m+2<0,∴m<﹣2.‚②证明:由上可知,x1<0<x2,∴﹣x2<0,∴构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,所以m(x)>m(0)即g(x2)=g(x1)>g(﹣x1)又g(x)在(﹣∞,0)上单调递减,所以x1<﹣x2,即x1+x2<0.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,属于中档题.。
2018_2019学年七年级数学上学期期末复习检测试卷 (6)
2018-2019学年七年级数学上学期期末复习检测试卷一、选择题(每小题3分,共30分)1.(3分)绝对值最小的数是()A.0.000001 B.0 C.﹣0.000001 D.﹣1000002.(3分)下列各组中的单项式是同类项的是()A.2xy2和﹣y2x B.﹣m2np和﹣mn2C.﹣m2和﹣2m D.0.5a和﹣ b3.(3分)已知x=2是关于x的一元一次方程ax﹣2=0的解,则a的值为()A.0 B.﹣2 C.1 D.24.(3分)三棱锥有()个面.A.3 B.4 C.5 D.65.(3分)下列变形中错误的是()A.如果x=y,那么x+2=y+2 B.如果x=y,那么x﹣1=y﹣1C.如果x=3,那么xy=3y D.如果x2=3x,那么x=36.(3分)已知∠1=α<90°,则∠1的补角比∠1的余角大()度.A.αB.90°﹣αC.90 D.180°﹣2α7.(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°8.(3分)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是()A. B.C.D.9.(3分)一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C. +10 D. +1010.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°.下列说法:①如果∠AOC=∠BOD,则图中有两对互补的角;②如果作OE平分∠BOC,则∠AOC=2∠DOE;③如果作OM平分∠AOC,且∠MON=90°,则ON平分∠BOD;④如果在∠AOB外部分别作∠AOC、∠BOD的余角∠AOP、∠BOQ,则=2,其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)11.(3分)一个角为48°29′,则它的余角的大小为:.12.(3分)线段AB=2cm,延长AB至点C,使BC=2AB,则AC= cm.13.(3分)关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a= .14.(3分)轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了小时.15.(3分)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,则整式2x2+4xy﹣3y2的值为.16.(3分)如图,已知直线l上两点A、B(点A在点B左边),且AB=10cm,在直线l上增加两点C、D(点C在点D左边),作线段AD点中点M、作线段BC点中点N;若线段MN=3cm,则线段CD=cm.三、解答题(本大题共72分)17.(10分)计算题(1)(﹣)÷(﹣4)×(﹣6)(2)﹣22÷(﹣4)﹣3×(﹣1)2﹣(﹣4)18.(6分)解方程:﹣1=.19.(8分)化简求值:2(3a2b﹣ab2)﹣3(2a2b﹣ab2+ab),其中a=,b=﹣220.(8分)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积分,胜一场积分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.21.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.22.(10分)为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:方式一:一套服装一天收取20元,另收总计80元的服装清洗费方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.23.(10分)如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 度.24.(12分)如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应)如图(1)若翻折后A′C=2,则翻折前线段AP=(2)若点P在线段BC上运动,点M为线段A′C的中点,求线段PM的长度;(3)若点P在射线BC上运动,点N为B′P的中点,点M为线段A′C的中点,设AP=x,用x表示A′M+PN.参考答案一、选择题(每小题3分,共30分)1.(3分)绝对值最小的数是()A.0.000001 B.0 C.﹣0.000001 D.﹣100000【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【解答】解:|0.000001|=0.000001,|0|=0,|﹣0.000001|=0.000001,|﹣100000|=100000,所以绝对值最小的数是0.故选:B.【点评】考查了有理数的大小比较,以及绝对值的意义,注意先运算出各项的绝对值.2.(3分)下列各组中的单项式是同类项的是()A.2xy2和﹣y2x B.﹣m2np和﹣mn2C.﹣m2和﹣2m D.0.5a和﹣ b【分析】根据同类项的定义对四个选项进行逐一分析即可.【解答】解:A、2xy2和﹣y2x符合同类项的定义,故本选项正确;B、﹣m2np和﹣mn2所含字母不同,相同字母的次数不同,不是同类项,故本选项错误;C、﹣m2和﹣2m所含相同字母的次数不同,不是同类项,故本选项错误;D、0.5a和﹣b所含字母不同,相同字母的次数不同,不是同类项,故本选项错误;故选:A.【点评】本题考查的是同类项的定义,解答此题时要注意同类项必需满足以下条件:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.3.(3分)已知x=2是关于x的一元一次方程ax﹣2=0的解,则a的值为()A.0 B.﹣2 C.1 D.2【分析】把x=2代入方程计算求出a的值,即可解答.【解答】解:把x=2代入ax﹣2=0得:解得:a=1,故选:C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(3分)三棱锥有()个面.A.3 B.4 C.5 D.6【分析】三棱锥的侧面由三个三角形围成,底面也是一个三角形,结合三棱锥的组成特征,可确定它棱的条数和面数.【解答】解:三棱锥有6条棱,有4个面.故选:B.【点评】本题考查了认识立体图形,几何体中,面与面相交成线,线与线相交成点.熟记常见立体图形的特征是解决此类问题的关键.5.(3分)下列变形中错误的是()A.如果x=y,那么x+2=y+2 B.如果x=y,那么x﹣1=y﹣1C.如果x=3,那么xy=3y D.如果x2=3x,那么x=3【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【解答】解:A、两边都加2,正确;B、两边都减1,正确;C、两边都乘以3,正确;D、如果x2=3x,那么x=3或0,错误;故选:D.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.6.(3分)已知∠1=α<90°,则∠1的补角比∠1的余角大()度.A.αB.90°﹣αC.90 D.180°﹣2α【分析】分别表示出α的补角和α的余角,然后可得出答案.【解答】解:α的补角=180°﹣α,α的余角=90°﹣α,故α的补角比α的余角大:180°﹣α﹣(90°﹣α)=90°.故∠1的补角比∠1的余角大90°,【点评】本题考查了余角和补角的知识,关键是掌握互余两角之和为90°,互补两角之和为180°.7.(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°【分析】根据位置的相对性可知,小凡和小华的观测方向相反,角度相等,据此解答.【解答】解:小华在小凡的南偏东30°方位,那么小凡在小华的北偏西30°.故选:B.【点评】本题主要考查了方向角的定义,在叙述方向角时一定要注意以某个图形为参照物是本题的关键.8.(3分)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、出现“U”字的,不能组成正方体,A错;B、以横行上的方格从上往下看:B选项组成正方体;C、由两个面重合,不能组成正方体,错误;D、四个方格形成的“田”字的,不能组成正方体,D错.故选:B.【点评】考查了展开图折叠成几何体,如没有空间观念,动手操作可很快得到答案.需记住正方体的展开图形式:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种.9.(3分)一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C. +10 D. +10【分析】设每个房间需要粉刷的墙面面积为xm2,根据“每名一级技工比二级技工一天多粉刷10m2墙面”,列方程即可.【解答】解:设每个房间需要粉刷的墙面面积为xm2,根据题意,得=+10.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.(3分)如图,已知∠AOB=120°,∠COD在∠AOB内部且∠COD=60°.下列说法:①如果∠AOC=∠BOD,则图中有两对互补的角;②如果作OE平分∠BOC,则∠AOC=2∠DOE;③如果作OM平分∠AOC,且∠MON=90°,则ON平分∠BOD;④如果在∠AOB外部分别作∠AOC、∠BOD的余角∠AOP、∠BOQ,则=2,其中正确的有()个.A.1 B.2 C.3 D.4【分析】先求出∠AOC=∠BOD=30°,再根据互补的角的定义即可判断①正确;设∠AOC=x,根据角平分线定义以及角的和差定义求出∠DOE=x,即可判断②正确;设∠AOC=x,当ON在OM的右边时,可得∠DON=∠BON,ON平分∠BOD;当ON在OM的左边时,ON不是∠BOD的平分线,即可判断③错误;设∠AOC=x,根据角的和差定义可得∠AOP=90°﹣x,∠BOQ=30°+x,即可判断④正确.【解答】解:∵∠AOB=120°,∠COD=60°,∴∠AOC+∠BOD=∠AOB﹣∠COD=60°.①∵∠AOC=∠BOD,∠AOC+∠BOD=60°,∴∠AOC=∠BOD=30°,∴∠AOD=∠COB=90°,∴∠AOD+∠COB=180°,又∵∠AOB+∠COD=180°,∴图中有两对互补的角,故①正确;②设∠AOC=x,则∠BOD=60°﹣x,∴∠BOC=∠BOD+∠COD=60°﹣x+60°=120°﹣x.∵OE平分∠BOC,∴∠BOE=∠BOC=60°﹣x,∴∠DOE=∠BOE﹣∠BOD=(60°﹣x)﹣(60°﹣x)=x,∴∠AOC=2∠DOE,故②正确;③设∠AOC=x,则∠BOD=60°﹣x,∵OM平分∠AOC,∴∠COM=∠AOC=x.如果ON在OM的右边,那么∠DON=∠MON﹣∠COD﹣∠COM=90°﹣60°﹣x=30°﹣x,∴∠BON=∠BOD﹣∠DON=60°﹣x﹣(30°﹣x)=30°﹣x,∴∠DON=∠BON,∴ON平分∠BOD;如果ON在OM的左边,显然ON的反向延长线平分∠BOD,即ON不是∠BOD的平分线,故③错误;④设∠AOC=x,则∠BOD=60°﹣x,∠AOP=90°﹣x,∠BOQ=90°﹣(60°﹣x)=30°+x,∴∠AOP+∠BOQ=90°﹣x+30°+x=120°,∵∠COD=60°,∴=2,故④正确.故选:C.【点评】本题考查了余角和补角,角平分线定义以及角的计算,设∠AOC=x,用含x的代数式表示相关角度是解题的关键.二、填空题(每小题3分,共18分)11.(3分)一个角为48°29′,则它的余角的大小为:41°31′.【分析】根据余角的定义得出算式,求出即可.【解答】解:余角为90°﹣48°29′=41°31′,故答案为:41°31′.【点评】本题考查了余角和度、分秒之间的换算,能知道∠A的余角是90°﹣∠A是解此题的关键.12.(3分)线段AB=2cm,延长AB至点C,使BC=2AB,则AC= 6 cm.【分析】根据线段AB=2cm,BC=2AB,可求BC,再根据线段的和差关系可求AC的长.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.13.(3分)关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a= 2 .【分析】利用一元一次方程的定义判断即可确定出a的值.【解答】解:∵关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,∴a2﹣4=0,且a+2≠0,解得:a=2,故答案为:2【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.14.(3分)轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了10 小时.【分析】设轮船在静水中的速度为x千米/时,根据静水速度+水流速度=顺水速度,静水速度﹣水流速度=逆水速度,可得静水速度×2=顺水速度+逆水速度,依此列方程即可求解.然后根据漂流路程求得漂流时间.【解答】解:设轮船在静水中的速度为x千米/时,根据题意得2x=28+24,解得x=26.即:轮船在静水中的速度为26千米/时.所以漂浮时间为: =10(小时)故答案是:10.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.(3分)已知x2﹣xy=﹣3,2xy﹣y2=﹣8,则整式2x2+4xy﹣3y2的值为﹣30 .【分析】依据等式的性质得到2x2﹣2xy=﹣6,6xy﹣3y2=﹣24,然后将两式相加即可.【解答】解:∵x2﹣xy=﹣3,2xy﹣y2=﹣8,∴2x2﹣2xy=﹣6,6xy﹣3y2=﹣24,∴2x2+4xy﹣3y2=﹣6+(﹣24)=﹣30.故答案为:﹣30.【点评】本题主要考查的是求代数式的值,依据等式的性质求得2x2﹣2xy=﹣6,6xy﹣3y2=﹣24是解题的关键.16.(3分)如图,已知直线l上两点A、B(点A在点B左边),且AB=10cm,在直线l上增加两点C、D(点C在点D左边),作线段AD点中点M、作线段BC点中点N;若线段MN=3cm,则线段CD= 16或4 cm.【分析】分两种情况讨论,当点M在点N左侧,当点M在点N右侧,即可解答.【解答】解:如图,把直线l放到数轴上,让点A和原点重合,则点A对应的数为0,点B对应的数为10,点C对应的数为x,点D对应的数为y,∵线段AD的中点为M、线段BC的中点为N,∴点M对应的数为,点N对应的数为,(1)如图1,当点M在点N左侧时,MN==3,化简得:x﹣y=﹣4,由点C在点D左边可得:CD=y﹣x=4.(2)如图1,当点M在点N右侧时,MN==3=3,化简得:y﹣x=16,由点C在点D左边可得:CD=y﹣x=16.故答案为:16或4【点评】本题考查了两点间的距离,解决本题的关键是分类讨论.三、解答题(本大题共72分)17.(10分)计算题(1)(﹣)÷(﹣4)×(﹣6)(2)﹣22÷(﹣4)﹣3×(﹣1)2﹣(﹣4)【分析】(1)原式从左到右依次计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣××6=﹣1;(2)原式=1﹣3+4=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)解方程:﹣1=.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母:3(x﹣2)﹣6=2(x+1),去括号:3x﹣6﹣6=2x+2,移项:3x﹣2x=2+6+6,合并同类项:x=14.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.19.(8分)化简求值:2(3a2b﹣ab2)﹣3(2a2b﹣ab2+ab),其中a=,b=﹣2【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=6a2b﹣2ab2﹣6a2b+3ab2﹣3ab=(6a2b﹣6a2b)+(﹣2ab2+3ab2)﹣3ab=ab2﹣3ab,当,b=﹣2时原式=ab2﹣3ab==2+3=5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如表):盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:(1)从表中可以看出,负一场积 1 分,胜一场积 2 分(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.【分析】(1)仔细观察表格中的数据发现规律并设出未知数列出一元一次方程求解即可;(2)根据题意列出一元一次方程求解即可得到答案.【解答】解(1)由题意可得,负一场积分为:22÷22=1(分),胜一场的积分为:(34﹣10×1)÷12=2(分),故答案为:1,2;(2)设胜x场,负22﹣x场,由题知 2x=2(22﹣x),解得x=11.答:胜场数为11场时,胜场的积分等于负场的2倍.【点评】本题考查了一元一次方程的应用,解题的关键是根据题目中的重点语句找到等量关系并列出方程求解.21.(8分)已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.【分析】(1)求出AC长,根据线段中点求出AM长,即可求出答案;(2)先求出AM和CM长,分为两种情况:当D在线段BC上时和当D在l上且在点C的右侧时,求出MD即可.【解答】解:(1)当m=4时,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∵M为AC中点,∴,①当D在线段BC上时,CD=n,MD=MC﹣CD==;②当D在l上且在点C的右侧时,CD=n,∴=.【点评】本题考查了线段的中点和求两点之间的距离,能用x表示出各个线段的长度是解此题的关键,注意(2)要进行分类讨论.22.(10分)为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍.(1)请根据上述两位队长的交谈,求出七(1)班的学生人数;(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:方式一:一套服装一天收取20元,另收总计80元的服装清洗费方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)设租赁服装x天(x为整数),请你帮班主任参谋一下:选择哪种付费方式节省一些,并说明理由.【分析】(1)设甲队有x人,则乙队有x+10人,由题意列方程得x+10+5=3(x﹣5),解答即可;(2)方式一:根据题意可列方程:40×20x+80=800x+80,方式二:根据题意可列方程:(20×0.9+1)×40•x+40×5=760x+200,当x=3时,选方式一,方式二均可,当0<x<3选方式一,当x>3时,选方式二;【解答】解:(1)设甲队有x人,则乙队有x+10人由题知x+10+5=3(x﹣5)∴甲队有15人,乙队有25人15+25=40(人)故七(1)班共有40人(2)方式一:40×20x+80=800x+80方式二:(20×0.9+1)×40•x+40×5=760x+200800x+80=760x=200,可得x=3∴若x=3时,选方式一,方式二均可若0<x<3选方式一若x>3时,选方式二【点评】本题主要考查了一元一次方程的运用,读懂题意是解题的关键.23.(10分)如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 105或135 度.【分析】(1)设∠A′OB=∠POB=x,表示∠AOP=2x,∠BOP=x,由∠AOB=60°列方程为:x+2x=60,可得x的值,从而求出结论;(2)分两种情况讨论,①当点O运动到使点A在射线OP的左侧,②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时,分别求的值即可;(3))①如图3,当∠A′OB=150°时,可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°,因为∠AOP=∠A'OP,所以∠AOP=45°,∠BOP=60°+45°=105°;②如图4,当∠A′OB=150°时,可得:∠A'OA=360°﹣150°﹣60°=150°,因为∠AOP=∠A'OP,所以∠AOP=75,∠BOP=60°+75°=135°;【解答】(本题10分)解:(1)∵OB平分∠A′OP,∴设∠A′OB=∠POB=x,∵∠AOP=∠A′OP,∴∠AOP=2x,∵∠AOB=60°,∴x+2x=60,∴x=20°,∴∠AOP=2x=40°;(2)①当点O运动到使点A在射线OP的左侧∵∠AOM=3∠A′OB∴设∠A′OB=x,∠AOM=3x∵OP⊥M∴∠AON=180°﹣3x∠AOP=90°﹣3x∴∵∠AOP=∠A′OP∴∠AOP=∠A′OP=∴OP⊥MN∴∴∴②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时∵∠AOM=3∠A′OB设∠A′OB=x,∠AOM=3x∴∠AOP=∠A′OP=∴OP⊥MN∴3x+=90∴x=24°∴(3)①如图3,当∠A′OB=150°时,由图可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°∵∠AOP=∠A'OP∴∠AOP=45°∴∠BOP=60°+45°=105°②如图4,当∠A′OB=150°时,由图可得:∠A'OA=360°﹣150°﹣60°=150°∵∠AOP=∠A'OP∴∠AOP=75°∴∠BOP=60°+75°=135°故答案为:105°或135°【点评】本题主要考查了角的运算,学会灵活处理问题,注意分类讨论不同的情况.24.(12分)如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应)如图(1)若翻折后A′C=2,则翻折前线段AP= 11(2)若点P在线段BC上运动,点M为线段A′C的中点,求线段PM的长度;(3)若点P在射线BC上运动,点N为B′P的中点,点M为线段A′C的中点,设AP=x,用x表示A′M+PN.【分析】(1)先根据线段的和差关系求出AC,进一步得到AA′,再根据翻折的定义即可求解;(2)分①当A′在线段BC上,②当A′在l上且在C的右侧,进行讨论即可求解;(3)分①当8<x<12,此时,A′在C的左侧,②当x>12 此时,A′在C的右侧,③当x>24时,点C落在C’,进行讨论即可求解.【解答】解:(1)AC=AB+BC=8+16=24,AA′=AC﹣A′C=24﹣2=22,AP=22÷2=11.故答案为:11;(2)①当A′在线段BC上,由题知PA=PA′,∵M为AC中点,∴MA′=MC,∴PM=PA′+A′M====12;②当A′在l上且在C的右侧,∵M为A′C中点,∴MA′=MC,∴PM=PA′﹣A′M====12,综上:PM=12;(3)①当8<x<12,此时,A′在C的左侧,PB’=PB=x﹣8,∵N为BP中点,∴,∵A′C=24﹣2x,∵M为A′C中点,∴,∴=;②当x>12,此时,A′在C的右侧,PB′=PB=x﹣8,,A′C=2x﹣24∵M为A′C中点,∴,∴=;③当x>24时,点C落在C’,不予考虑(考虑了则M为A′C’中点,得),∴.【点评】本题考查了两点之间的距离的应用,分类讨论的思想是解此题的关键.。
泰州市2014届高三上学期期末考试数学试题
2013~2014学年度第一学期期末考试高三数学试题(考试时间:120分钟 总分:160分)命题人:朱占奎 张乃贵 王宏官 范继荣 审题人:吴卫东 石志群注意事项:所有试题的答案均填写在答题纸上,答案写在试卷上的无效. 一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.已知集合A ={}9,6,1,B ={}2,1,则A ∩B = ▲ . 2.复数bi a i +=+2)1((b a ,是实数,i 是虚数单位),则b a +的值为 ▲ . 3.函数2lg(6)y x x =-++4 小学生中用分层抽样的方法抽取 别为1200,1000,800 为 ▲ .5 值是▲ .6.在ABC ∆中,2=,若 AC ,则的值为 ▲ .7.将一颗骰子先后抛掷两次,观察向上的点数.则点数相同的概率是 ▲ . 8.如图,在正三棱柱111C B A ABC -中,D 为棱1AA 的中点. 若41=AA ,2=AB ,则四 棱锥D ACC B 1-的体积 为 ▲ .9.以双曲线116922=-y x 的右焦点为圆心,且与双曲线的渐近 线相切的圆的方程为 ▲ .10.设函数b a x a x x f +--=)()((b a ,都是实数).则下列叙述中,正确的序号是 ▲ .(请把所有叙述正确的序号都填上) ①对任意实数b a ,,函数)(x f y =在R 上是单调函数; ②存在实数b a ,,函数)(x f y =在R 上不是单调函数;第8题A 1A③对任意实数b a ,,函数)(x f y =的图象都是中心对称图形; ④存在实数b a ,,使得函数)(x f y =的图象都不是中心对称图形. 11.已知在等差数列{}n a 中,若r t s p n m ++=++22,*∈N r t s p n m ,,,,,则r t s p n m a a a a a a ++=++22,仿此类比,可得到等比数列{}n b 中的一个正确命题: 若r t s p n m ++=++22,*∈N r t s p n m ,,,,,,则 ▲ . 12.设等差数列{}n a 的前n 项和为n S ,若1208642=a a a a ,且+++842862864111a a a a a a a a a6071642=a a a ,则9S 的值为 ▲ .13.在平面直角坐标系中,)2,1(),0,0(B A 两点绕定点P 顺时针方向旋转θ角后,分别到 )2,5(),4,4(B A ''两点,则θcos 的值为 ▲ .14.已知函数a x x f +=3)(与函数a x x g 23)(+=在区间),(c b 上都有零点,则2222422c bc b bc ac ab a +-+++的最小值为 ▲ .二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)已知函数)42sin(2)(π+=x x f .(1)求函数)(x f y =的最小正周期及单调递增区间; (2)若56)8(0-=-πx f ,求)(0x f 的值.16.(本题满分14分)如图,在四棱锥ABCD E -中, ABD ∆为正三角形,CD CB ED EB ==,. (1)求证:BD EC ⊥;(2)若BC AB ⊥,N M ,分别为线段AB AE ,的中点, 求证:平面DMN ∥平面BEC .第16题17.(本题满分15分)已知椭圆(1:2222>>=+b a by a x C 和圆222:a y x O =+,)0,1(),0,1(21F F -右两焦点,过1F 且倾斜角为])2,0((παα∈的动直线l交椭圆C 于B A ,两点,交圆O 于Q P ,两点(点A 在轴上方).当4πα=时,弦PQ 的长为14.(1)求圆O 和椭圆C 的方程;(2)若点M 是椭圆C 上一点,求当AB BF AF ,,22成等差数列时,MPQ ∆面积的最大值.18.(本题满分15分)某运输装置如图所示,其中钢结构ABD 是l BD AB ==,3π=∠B 的固定装置,AB 上可滑动的点C 使CD 垂直与底面(C 不B A ,与重合),且CD 可伸缩(当CD 伸缩时,装置ABD 随之绕D 在同一平面内旋转),利用该运输装置可以将货物从地面D 处沿A C D →→运送至A 处,货物从D 处至C 处运行速度为v ,从C 处至A 处运行速度为v 3.为了使运送货物的时间t 最短,需在运送前调整运输装置中θ=∠DCB 的大小.(1)当θ变化时,试将货物运行的时间t 表示成θ 的函数(用含有v 和l 的式子);(2)当t 最小时,C 点应设计在AB 的什么位置?第18题19.(本题满分16分)设函数x ae x x f +=41121)((其中a 是非零常数,e 是自然对数的底),记)()(1x f x f n n -'=(2≥n ,*∈N n )(1)求使满足对任意实数x ,都有)()(1x f x f n n -=的最小整数n 的值(2≥n ,*∈N n ); (2)设函数)(...)()()(54x f x f x f x g n n +++=,若对5≥∀n ,*∈N n ,)(x g y n =都存在极值点n t x =,求证:点))(,(n n n n t g t A (5≥n ,*∈N n )在一定直线上,并求出该直线方程;(注:若函数)(x f y =在0x x =处取得极值,则称0x 为函数)(x f y =的极值点.) (3)是否存在正整数)4(≥k k 和实数0x ,使0)()(010==-x f x f k k 且对于*∈∀N n ,)(x f n 至多有一个极值点,若存在,求出所有满足条件的k 和0x ,若不存在,说明理由.20.(本题满分16分)已知数列{}n a 是公差不为零的等差数列,数列{}n b 是等比数列. (1)若n n n n b a a c )(1-=+(*∈N n ),求证:{}n c 为等比数列;(2)设n n n b a c =(*∈N n ),其中n a 是公差为2的整数项数列,nn b )1312(=,若 1234516842c c c c c >>>>,且当17≥n 时,{}n c 是递减数列,求数列{}n a 的通项公式;(3)若数列{}n c 使得⎭⎬⎫⎩⎨⎧n n n c b a 是等比数列,数列{}nd 的前n 项和为n nn c c a -,且数列{}n d 满足:对任意2≥n ,*∈N n ,或者0=n d 恒成立或者存在正常数M ,使M d Mn <<1恒成立,求证:数列{}n c 为等差数列.2013~2014学年度第一学期期末考试高三数学试题(附加题)21.[选做题]请考生在A 、B 、C 、D 四小题中任选两题作答,如果多做,则按所做的前两题记分。
城阳区高中2018-2019学年上学期高三数学10月月考试题
城阳区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( )A .211 B .227 C . 32259 D .32435 2. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .5 3. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y++= 4. 设i 是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=( )A .﹣1﹣i B .1+i C .﹣1+iD .1﹣i5. 在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B两点,则线段AB 的长为()A .4B .4C .2D .26.已知正方体ABCD﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y的值分别为()A .x=1,y=1 B .x=1,y= C .x=,y=D .x=,y=17. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0 D .28. 设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A. BC .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.9. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力. 10.函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞11.若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .3 12.一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形, 则该几何体的体积为( )A .64B .32C .643 D .323二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则n a =_________.14.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下:①若()()0f x f x '+>,且(0)1f =,则不等式()xf x e -<的解集为(0,)+∞;②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 .15.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .16.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题(本大共6小题,共70分。
模拟卷:2018-2019学年八年级数学上学期期末原创卷B卷(河北)
数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前2018-2019学年上学期期末原创卷B 卷(河北)八年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版八上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .2.16的算术平方根是( ) A .4B .±4C .±2D .23.在实数|-3|,-2,0,π中,最小的数是( ) A .|-3|B .-2C .0D .π4.要使得代数式12x x --在实数范围内有意义,则x 的取值范围是( ) A .2x ≥ B .1x ≥ C .2x ≠D .1x ≥且2x ≠5.如果132x y x +=,那么yx的值为( ) A .12 B .23 C .13D .256.下列运算错误的是( ) A .532-=B .632÷=C .6332⨯=D .2333-=7.已知a 、b 、c 是三角形的三边长,如果满足2(6)8|10|0a b c -+-+-=,则三角形的形状是( ) A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形8.下列命题中,真命题的是( )A .相等的两个角是对顶角B .若a >b ,则|a |>|b |C .两条直线被第三条直线所截,内错角相等D .等腰三角形的两个底角相等9.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则 ∠CBE 的度数为( )A .80°B .70°C .40°D .30°10.如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米11.数学课上,小丽用尺规这样作图:(1)以点O 为圆心,任意长为半径作弧,交OA ,OB 于D ,E 两点;(2)分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧交于点C ;(3)作射线OC 并连数学试题第3页(共6页)数学试题第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCD C.OD=CD D.OC垂直平分DE12.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC13.已知:如果二次根式28n是整数,那么正整数n的最小值是()A.1 B.4 C.7 D.2814.如图,∠AOB=30º,∠AOB内有一定点P,且OP=12,在OA上有一动点Q,OB上有一动点R.若△PQR 周长最小,则最小周长是()A.6 B.12 C.16 D.2015.若关于x的方程2222x mx x++=--的解为正数,则m的取值范围是()A.m<6 B.m>6 C.m<6且m≠0D.m>6且m≠816.在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正确的有()A.①②④B.②③④C.①②⑤D.③④⑤第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分)17.同学们都知道,蜜蜂建造的蜂房既坚固又省料.那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m.此数据用科学记数法表示为__________.18.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.19.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)计算下列各题:(1)03816(21)-++-;(2)211(3)||292----+-.21.(本小题满分9分)如图,某公路上A,B两点的正南方有D,C两村庄,现要在公路AB上建一个车站E,使C,D两村到E站的距离相等,已知AB=50 km,DA=20 km,CB=10 km,请你设计出E站的位置,并计算车站E距A点多远?数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________22.(本小题满分9分)如图,△ABC 中,AB 的垂直平分线分别交AB ,BC 于D ,E ,AC 的垂直平分线分别交AC ,BC 于F ,G .(1)若△AEG 的周长为10,求线段BC 的长. (2)若∠BAC =128°,求∠EAG 的度数.23.(本小题满分9分)如图,在△ABC 中,∠BAC =90°,AC =AB ,点D 为BC 边上的一个动点(点D 不与B ,C 重合),以AD 为边作等腰直角△ADE ,∠DAE =90°,连接CE . (1)求证:△ABD ≌△ACE .(2)试猜想线段BD ,CD ,DE 之间的等量关系,并证明你的猜想.24.(本小题满分10分)某地下管道,若由甲队单独铺设,恰好在规定时间内完成;若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少? 25.(本小题满分10分)如图,在△ABC 中,AB =AC ,D ,E ,F 分别在三边上,且BE =CD ,BD =CF ,G为EF 的中点.(1)若∠A =40°,求∠B 的度数; (2)试说明:DG 垂直平分EF .26.(本小题满分11分)如图1,△ABC 中,CD ⊥AB 于D ,且BD ∶AD ∶CD =2∶3∶4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40 cm 2,如图2,动点M 从点B 出发以每秒1 cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.。
2018-2019学年第二学期期末考试高一年级数学试卷(含答案)
2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。
2018-2019学年人教A版高中数学必修二:空间几何体的表面积和体积(知识讲解+例题演练)
空间几何体的表面积和体积【学习目标】1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法;2.能运用公式求解柱体、锥体和台体的体积,并且熟悉台体与柱体和锥体之间的转换关系;3.了解球的表面积和体积公式推导的基本思想,掌握球的表面积和体积的计算公式,并会求球的表面积和体积;4.会用柱、锥、台体和球的表面积和体积公式求简单几何体的表面积和体积. 【要点梳理】要点一、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台是多面体,它们的各个面均是平面多边形,它们的表面积就是各个面的面积之和.计算时要分清面的形状,准确算出每个面的面积再求和.棱柱、棱锥、棱台底面与侧面的形状如下表:求多面体的表面积时,只需将它们沿着若干条棱剪开后展开成平面图形,利用平面图形求多面体的表面积.要点二、圆柱、圆锥、圆台的表面积圆柱、圆锥、圆台是旋转体,它们的底面是圆面,易求面积,而它们的侧面是曲面,应把它们的侧面展开为平面图形,再去求其面积.1.圆柱的表面积(1)圆柱的侧面积:圆柱的侧面展开图是一个矩形,如下图,圆柱的底面半径为r ,母线长l ,那么这个矩形的长等于圆柱底面周长C=2πr ,宽等于圆柱侧面的母线长l (也是高),由此可得S 圆柱侧=C l =2πr l .(2)圆柱的表面积:2222()S r rl r r l πππ=+=+圆柱表.2.圆锥的表面积(1)圆锥的侧面积:如下图(1)所示,圆锥的侧面展开图是一个扇形,如果圆锥的底面半径为r ,母线长为l ,那么这个扇形的弧长等于圆锥底面周长C=πr ,半径等于圆锥侧面的母线长为l ,由此可得它的侧面积是12S Cl rl π==圆锥侧. (2)圆锥的表面积:S 圆锥表=πr 2+πr l .3.圆台的表面积(1)圆台的侧面积:如上图(2)所示,圆台的侧面展开图是一个扇环.如果圆台的上、下底面半径分别为r '、r ,母线长为l ,那么这个扇形的面积为π(r '+r)l ,即圆台的侧面积为S 圆台侧=π(r '+r)l .(2)圆台的表面积:22('')S r r r l rl π=+++圆台表.要点诠释:求旋转体的表面积时,可从旋转体的生成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系.4.圆柱、圆锥、圆台的侧面积公式之间的关系如下图所示.要点三、柱体、锥体、台体的体积 1.柱体的体积公式棱柱的体积:棱柱的体积等于它的底面积S 和高h 的乘积,即V 棱柱=Sh . 圆柱的体积:底面半径是r ,高是h 的圆柱的体积是V 圆柱=Sh=πr 2h . 综上,柱体的体积公式为V=Sh . 2.锥体的体积公式棱锥的体积:如果任意棱锥的底面积是S ,高是h ,那么它的体积13V Sh =棱锥. 圆锥的体积:如果圆锥的底面积是S ,高是h ,那么它的体积13V Sh =圆锥;如果底面积半径是r ,用πr 2表示S ,则213V r h π=圆锥. 综上,锥体的体积公式为13V Sh =. 3.台体的体积公式棱台的体积:如果棱台的上、下底面的面积分别为S '、S ,高是h ,那么它的体积是1(')3V h S S =棱台.圆台的体积:如果圆台的上、下底面半径分别是r '、r ,高是h ,那么它的体积是2211(')('')33V h S S h r rr r π=+=++圆台.综上,台体的体积公式为1(')3V h S S =. 4.柱体、锥体、台体的体积公式之间的关系如下图所示.要点四、球的表面积和体积 1.球的表面积(1)球面不能展开成平面,要用其他方法求它的面积. (2)球的表面积设球的半径为R ,则球的表面积公式 S 球=4πR 2. 即球面面积等于它的大圆面积的四倍. 2.球的体积设球的半径为R ,它的体积只与半径R 有关,是以R 为自变量的函数. 球的体积公式为343V R π=球. 要点五、侧面积与体积的计算 1.多面体的侧面积与体积的计算在掌握直棱柱、正棱锥、正棱台侧面积公式及其推导过程的基础上,对于一些较简单的几何组合体的表面积与体积,能够将其分解成柱、锥、台、球,再进一步分解为平面图形(正多边形、三角形、梯形等),以求得其表面积与体积.要注意对各几何体相重叠部分的面积的处理,并要注意一些性质的灵活运用.(1)棱锥平行于底的截面的性质:在棱锥与平行于底的截面所构成的小棱锥中,有如下比例关系:S S S S S S ===小锥底小锥全小锥侧大锥底大锥全大锥侧对应线段(如高、斜高、底面边长等)的平方之比.要点诠释:这个比例关系很重要,在求锥体的侧面积、底面积比时,会大大简化计算过程.在求台体的侧面积、底面积比时,将台体补成锥体,也可应用这个关系式.(2)有关棱柱直截面的补充知识.在棱柱中,与各侧棱均垂直的截面叫做棱柱的直截面,正棱柱的直截面是其上下底面及与底面平行的截面.棱柱的侧面积与直截面周长有如下关系式:S 棱柱侧=C 直截l (其中C 直截、l 分别为棱柱的直截面周长与侧棱长), V 棱柱=S 直截l (其中S 直截、l 分别为棱柱的直截面面积与侧棱长). 2.旋转体的侧面积和体积的计算(1)圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形式及侧面展开图中各线段与原旋转体的关系,是掌握它们的侧面积公式及解决有关问题的关键.(2)计算柱体、锥体和台体的体积,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关问题的关键.【典型例题】类型一、简单几何体的表面积例1.如右图,有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为345(0)a a a a >、、.用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a 的取值范围是 .【答案】03a <<. 【解析】底面积为26a ,侧面面积分别为6、8、10,拼成四棱柱时,有三种情况:221(86)2462428s a a =+⨯+⨯=+222242(108)2436,s a a =++=+ 223242(106)2432,s a a =++=+拼成三棱柱时也有三种情况:表面积为22262(1086)1248a a ⨯+++=+,24a 2+36, 24a 2+32由题意得2224281248a a +<+,解得03a <<. 【总结升华】(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.举一反三:【变式1】一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( )A .4S πB .2S πC .S πD S 【答案】A【解析】由圆柱的底面面积是S ,求出圆柱的半径为r =4S π.例2.在底面半径为R ,高为h 的圆锥内有一内接圆柱,求内接圆柱的侧面积最大时圆柱的高,并求此时侧面积的最大值.【思路点拨】一般要画出其轴截面来分析,利用相似三角形求解。
2019届高三上期末数学分类汇编(18)等差数列与等比数列(含答案)
(山东省德州市2019届高三期末联考数学(理科)试题)4.已知数列为等差数列,且成等比数列,则的前6项的和为()A. 15B.C. 6D. 3【答案】C【解析】【分析】利用成等比数列,得到方程2a1+5d=2,将其整体代入 {a n}前6项的和公式中即可求出结果.【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{a n}前6项的和为2a1+5d)=.故选:C.【点睛】本题考查等差数列前n项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.(福建省宁德市2019届高三第一学期期末质量检测数学理科试题)3.等差数列中,,,则数列的前20项和等于()A. -10B. -20C. 10D. 20【答案】D【解析】【分析】本道题结合等差数列性质,计算公差,然后求和,即可。
【详解】,解得,所以,故选D。
【点睛】本道题考查了等差数列的性质,难度中等。
(江西省新余市2019届高三上学期期末考试数学(理)试题)5.在等差数列中,已知是函数的两个零点,则的前10项和等于( )A. -18B. 9C. 18D. 20【答案】D【解析】【分析】由韦达定理得,从而的前10项和,由此能求出结果.【详解】等差数列中,是函数的两个零点,,的前10项和.故选:D.【点睛】本题考查等差数列的前n项和公式,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.(湖南省长沙市2019届上学期高三统一检测理科数学试题)13.设等差数列的前项和为,且,则__________.【答案】【解析】分析:设等差数列{a n}的公差为d,由S13=52,可得13a1+d=52,化简再利用通项公式代入a4+a8+a9,即可得出.详解:设等差数列{a n}的公差为d,∵S13=52,∴13a1+d=52,化为:a1+6d=4.则a4+a8+a9=3a1+18d=3(a1+6d)=3×4=12.故填12.点睛:本题主要考查等差数列通项和前n项和,意在考查学生等差数列基础知识的掌握能力和基本的运算能力.(湖南省湘潭市2019届高三上学期第一次模拟检测数学(文)试题)3.已知数列是等比数列,其前项和为,,则()A. B. C. 2 D. 4【答案】A【解析】【分析】由题意,根据等比数列的通项公式和求和公式,求的公比,进而可求解,得到答案。
人教版数学高三期末测试精选(含答案)3
【答案】A
15.设 Sn 为等差数列an 的前 n 项和,若 3S3 S2 S4 , a1 2 ,则 a5
A. 12
B. 10
C.10
D.12
【来源】2018 年全国普通高等学校招生统一考试理科数学(新课标 I 卷)
【答案】B
16.若圆的半径为 4,a、b、c 为圆的内接三角形的三边,若 abc=16 2 ,则三角形的
b
c
a
A.都大于 2
B.都小于 2
C.至少有一个不大于 2
D.至少有一个不小于 2
【来源】2015-2016 湖南常德石门一中高二下第一次月考文科数学卷(带解析)
【答案】D
5. ABC 中, A 、 B 、 C 的对边的长分别为 a 、 b 、 c ,给出下列四个结论: ①以 1 、 1 、 1 为边长的三角形一定存在;
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中, a 2 3 0°或150
B. 60 或120
A.等腰直角三角形 B.直角三角形
C.等腰三角形
D.等边三角形
【来源】2013-2014 学年河南省郑州一中高二上学期期中考试文科数学试卷(带解析)
【答案】C
21.在△ABC 中,如果 sin A : sin B : sin C 2 : 3 : 4 ,那么 cosC 等于 ( )
2
A.
3
B. 2 3
【答案】D
10.在锐角 ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,a b cosC 3 c sin B , 3
江苏省泰州市2013届高三上学期期末考试数学试题(WORD解析版)
2012-2013学年江苏省泰州市高三(上)期末数学试卷参考答案与试题解析一、填空题:(本大题共14小题,每小题4分,共56分.请将答案填入答题纸填空题的相应答题线上.)1.(4分)已知集合A={1,2,3},B={1,2,5},则A∩B={1}.考点:交集及其运算.专题:阅读型.分析:把两个集合的公共元素写在花括号内即可.解答:解:由A={1,2,﹣3},B={1,﹣4,5},则A∩B={1,2,﹣3}∩{1,﹣4,5}={1}.故答案为{1}.点评:本题考查了交集及其运算,考查了交集概念,是基础的概念题.2.(4分)设复数z1=2+2i,z2=2﹣2i,则=i.考点:复数代数形式的乘除运算.专题:计算题.分析:把复数代入表达式,复数的分母、分子同乘分母的共轭复数,化简复数即可.解答:解:因为复数z1=2+2i,z2=2﹣2i,所以=====i.故答案为:i.点评:本题考查复数代数形式的混合运算,复数的分母实数化,是解题的关键,是基础题.3.(4分)若数据x1,x2,x3,x4,x5,3的平均数为3,则数据x1,x2,x3,x4,x5的平均数为3.考点:众数、中位数、平均数.专题:概率与统计.分析:根据平均数的性质知,要求x1,x2,x3,x4,x5的平均数,只要把数x1、x2、x3、x4、x5的和表示出即可.解答:解:∵x1,x2,x3,x4,x5,3的平均数为3,∴数x1+x2+x3+x4+x5+3=6×3∴x1,x2,x3,x4,x5的平均数=(x1+x2+x3+x4+x5)÷5=(6×3﹣3)÷5=3.故答案为:3.点评:本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.4.(4分)设双曲线的左、右焦点分别为F1,F2,点P为双曲线上位于第一象限内的一点,且△PF1F2的面积为6,则点P的坐标为.考点:双曲线的简单性质.专题:计算题.分析:由双曲线方程,算出焦点F1、F2的坐标,从而得到|F1F2|=6.根据△PF1F2的面积为6,算出点P的纵坐标为2,代入双曲线方程即可算出点P的横坐标,从而得到点P的坐标.解答:解:∵双曲线的方程是,∴a2=4且b2=5,可得c==3由此可得双曲线焦点分别为F1(﹣3,0),F2(3,0)设双曲线上位于第一象限内的一点P坐标为(m,n),可得△PF1F2的面积S=|F1F2|•n=6,即×6×n=6,解得n=2将P(m,2)代入双曲线方程,得,解之得m=.∴点P的坐标为故答案为点评:本题给出双曲线上一点与焦点构成面积为6的三角形,求该点的坐标,着重考查了三角形面积公式、双曲线的标准方程与简单几何性质等知识,属于基础题.5.(4分)曲线y=2lnx在点(e,2)处的切线(e是自然对数的底)与y轴交点坐标为(0,0).考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出曲线方程的导函数,把切点横坐标代入导函数中表示出的导函数值即为切线的斜率,由切点坐标和斜率表示出切线方程,把x=0代入切线方程中即可求出y轴交点坐标.解答:解:对y=2lnx求导得:y′=,∵切点坐标为(e,2),所以切线的斜率k=,则切线方程为:y﹣2=(x﹣e),把x=0代入切线方程得:y=0,所以切线与y轴交点坐标为(0,0).故答案为:(0,0).点评:本题的解题思想是把切点的横坐标代入曲线方程的导函数中求出切线的斜率,进而写出切线方程.6.(4分)如图,ABCD是一个4×5的方格纸,向此四边形ABCD内抛撒一粒豆子,则豆子恰好落在阴影部分内的概率为0.2.考点:几何概型.专题:计算题;概率与统计.分析:试验发生包含的事件对应的图形是一个大长方形,若设小正方形的边长是1,则长方形的面积是20,满足条件的事件是正方形面积是4,根据面积之比做出概率.解答:解:由题意知本题是一个几何概型,设每一个小正方形的边长为1试验发生包含的事件对应的图形是一个长方形,面积为5×4=20阴影部分是边长为2的正方形,面积是4,∴落在图中阴影部分中的概率是=0.2故答案为:0.2点评:本题考查几何概型,解题的关键是求出两个图形的面积,根据概率等于面积之比得到结果,本题是一个基础题.7.(4分)设函数f(x)是定义在R上的奇函数,且f(a)>f(b),则f(﹣a)<f(﹣b)(用“>”或“<”填空).考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据奇函数的性质f(﹣x)=﹣f(x)求解.解答:解:根据奇函数的性质,f(﹣a)=﹣f(a),f(﹣b)=﹣f(b);∵f(a)>f(b),∴﹣f(a)<﹣f(b),即f(﹣a)<f(﹣b).故答案是<点评:本题考查函数的奇偶性.8.(4分)在空间中,用a,b,c表示三条不同的直线,γ表示平面,给出下列四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b;。
2018-2019学年江苏省泰州市泰兴市苏教版二年级下册期末调研数学试卷(含答案解析)
2018-2019学年江苏省泰州市泰兴市苏教版二年级下册期末调研数学试卷学校:___________姓名:___________班级:___________考号:___________一、口算和估算1.口算。
5218-= 7060+= 340300-= 802000+=6419+= 5823-= 300500+= 1100500-=15080-= 4514+= 9067-= 400600+=二、竖式计算2.用竖式计算。
(带★的要验算)62÷9= 76+438= ★903-546=★749+835= 552-187+694=三、填空题3.看图填数。
( )( )( )4.( )÷( )=( )(束)……( )(个)5.从6980起,接着十个十个地数下去,后面第4个数是( )。
6.公鸡和母鸡一共有( )只。
7.要使算式73-□6的差是二十多,□里填( )。
8.用数字卡片摆成的四位数中,接近4000而且一个“零”都不读的数是( )。
9.在括号里填“>”“<”或“=”。
7435( )7453 直角( )钝角 40个百( )4个千半小时( )50秒 108厘米( )18分米 712389-( )612289-10.填合适的单位。
(1)一支铅笔长约2( ),一块橡皮厚约15( )。
(2)在路口等红灯大约要30( )。
11.如图中,有( )个直角、( )个锐角。
12.小红有二十几根同样长的,如果摆摆几个后正好能用完;如果摆,摆几个后还剩3根。
她原来有( )根。
13.乐乐调查了二年级同学最喜欢的体育项目情况。
(1)如果每人只选一种体育项目,乐乐一共调查了( )个同学。
(2)跑步的比跳绳的多( )人。
(3)乐乐又按性别对二年级同学进行了整理,请根据上面的答案填写下表。
四、选择题14.在O÷★=□……6中,★最小是()。
A.5B.8C.715.科技馆星期六上午接待游客516人,中午有194人离开,下午又来了387人。
江苏省泰州市2021-2022学年高三上学期期末考试数学试题
2021-2022学年度第一学期期末考试高三数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填涂到答题卡相应区域.1.已知集合A ={x |x 2-2x -3<0},B ={x |2x >1},则A ∩(∁R B )=A .(-1,0)B .(0,3)C .(-1,0]D .(-1,3]2.已知复数z 满足|z |+z =8+4i ,则z =A .3+4iB .3-4iC .-3+4iD .-3-4i3.在平面直角坐标系xOy 中,已知角α的终边上有一点P (-3,4),则tan2α=A .724B .-724C .247D .-2474.在(x +2)(1x+8)8的展开式中,常数项为 A .27 B .28 C .29 D .305.在平面直角坐标系xOy 中,抛物线C :y 2=4x 的准线为l ,l 与x 轴交于点A ,过点A 作抛物线的一条切线,切点为B ,则△OAB 的面积为A .1B .2C .4D .86.“双十二”网购狂欢节是继“双十一”之后的又一次网络促销日.在这一天,许多网商还会进行促销活动,但促销力度不及“双十一”.已知今年“双十二”期间,某小区居民网上购物的消费金额(单位:元)近似服从正态分布N (6000,10000),则该小区800名居民中,网购金额超过800元的人数大约为(参考数据:P (|X -μ|<σ)=0.683,P (|X -μ|<2σ)=0.954,P (|X -μ|<3σ)=0.997)A .16B .18C .20D .257.已知定义在R 上的奇函数f (x )满足f (2-x )=f (x ).当0≤x ≤1时,f (x )=3x+a ,则f (2021)+f (2022)=A .-4B .-2C .2D .48.已知2a =3,5b =22,c =45,则a ,b ,c 的大小关系是 A .a >b >c B .c >b >a C .c >a >b D .a >c >b二、多选题:本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.对于函数f (x )=sin x +cos x ,下列说法正确的有A .2π是一个周期B .关于(π2,0)对称 C .在[0,π2]的值域为[1,2] D .在[π4,π]上递增 10.在平行四边形ABCD 中,若→AE =12→AB ,→AF =12→AD ,则 A .→EF =12→BD B .→AD +→CD +→BE =0 C .→AC +2→DF +2→BE =0 D .若AC ⊥BF ,→AB ·→AD =→BC 2-2→CD 211.已知首项为正数的等比数列{a n }的公比为q ,曲线C n :a n x 2+a n +1y 2=1,则下列叙述正确的有A .q =1,C n 为圆B .q =-1,C n 离心率为2B .q >1,C n 离心率为1-1qD .q <0,C n 为共渐近线的双曲线 12.如图,两个底面为矩形的四棱锥S -ABCD ,S 1-ABCD 组合成一个新的多面体Γ,其中△SAD ,△S 1BC 为等边三角形,其余各面为全等的等腰直角三角形.平面α∥平面SAD ,平面α截多面体Γ所得截面多边形的周长为L ,则下列结论正确的有A .SB ⊥BC B .SC ⊥AB C .多面体Γ有外接球D .L 为定值三、填空题:本大题共4小题,每小题5分,共计20分.请将答案填写在答题卡相应的位置上.13.写出一个公差不为零,且满足a 1+a 2-a 3=1的等差数列{a n }的通项公式a n = .14.若直线x -ay +2a =0被圆x 2+y 2=4截得的弦长为2,则实数a 的值为 .15.若函数f (x )=cos2x +a cos x 在(0,π3)上是减函数,则实数a 的取值范围为 . 16.△ABC 的三条边分别为a ,b ,c ,若该三角形绕着三条边a ,b ,c 旋转一周所得几何体的体积分别为V a ,V b ,V c .若V a =14,V b =13,V c =12,则cos A 的值为 ;若∠BAC =π6,V b V c =1,则V b 2+V c 2-1V a 2的值为 .四、解答题:本大题共6小题,共计70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a sin2B -3b sin A =0.(1)求角B 的大小;(2)给出三个条件:①b =3;②a +c =3+3;③c sin C =sin A ,试从中选出两个条件,求△ABC 的面积.18.(本小题满分12分)已知数列{a n }的前n 项和为S n ,a n >0,2S n =a n +1.(1)求数列{a n }的通项公式; (2)求数列{a n ·2a n }的前n 项和.19.(本小题满分12分)如图,在三棱锥P -ABC 中,AB =2,PB =BC =4,PA =PC =AC =23.(1)平面PAC ⊥平面ABC ;(2)点D 是棱BC 上一点,→BD =λ→BC ,且二面角B -PA -D 与二面角C -PA -D 的大小相等,求实数λ的值.20.(本小题镇分12分)一学校办公楼共有10层,安装了两部电梯I 和II .电梯运行方式如下:当某人在某层按键后,离他层距较小的电梯运行;当层距相同时,电梯I 先运行.设电梯在每一层运行时间为a .现王老师在第4层准备乘电梯,设等待电梯的时间为随机变量X .(1)求P (X =0);(2)为了响应国家节能减排号召,学校决定只运行一部电梯.求运行两部电梯比运行一部电梯,王老师在第4层乘电梯平均节省的时间.21.(本小题满分12分)在平面直角坐标系xOy 中,已知△ABC 的两个顶点坐标为B (-2,0),C (2,0),直线AB ,AC 的斜率乘积为14. (1)求顶点A 的轨迹Γ的方程;(2)过点P (1,0)的直线与曲线Γ交于点M ,N ,直线BM ,CN 相交于点Q ,求证:→OP ·→OQ 为定值.22.(本小题满分12分)已知函数f (x )=e x -ax 2-sin x ,e 为自然对数的底数.(1)求f (x )在x =0处的切线方程;(2)当x ≥0时,f (x )≥1-x -sin x ,求实数a 的最大值;(3)证明:当a <12时,f (x )在x =0处取极小值.数学参考答案。
人教版数学高三期末测试精选(含答案)4
人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。
2018-2019学年九年级上学期期末数学试题(解析版)
2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。
2018-2019学年第一学期(期末)数学学科试题
湖北省麻城市(思源实验学校)2018-2019学年第一学期(期末)数学学科试题1.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>32.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A .B .C .D .3.如图,直线AB、AD与⊙O相切于点B、D,C为⊙O上一点,且∠BCD=140°,则∠A的度数是()A.70°B.105°C.100°D.110°4.关于x的方程(a﹣1)x2+x+1=0是一元二次方程,则a的取值范围是()A.a≠1 B.a>﹣1且a≠1 C.a≥﹣1且a≠1 D.a为任意实数5.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个B.1个C.2个D.1个或2个6.若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是()A.8 B.10 C.5或4 D.10或87.已知x1,x2是方程x2﹣x+1=0的两根,则x12+x22的值为()A.3 B.5 C.7 D.48.如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为()A.5cm B.6cm C.7cm D.8cm9.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a﹣b+c<0;⑤3a+c>0;则正确的结论是()A.①②⑤ B.③④⑤ C.②③④ D.①④⑤10.如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3 B.4 C .D .③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A.①②④B.①④C.①②③D.③④12.二次函数y=x2+bx+c的图象向左平移2个单位,再向上平移3个单位,得到函数解析y=x2﹣2x+1则b与c分别等于()A.2,﹣2 B.﹣8,14 C.﹣6,6 D.﹣8,1813.关于二次函数y=ax2+bx+c的图象有下列命题:①当c=0时,函数的图象经过原点;②当c>0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;③函数图象最高点的纵坐标是;④当b=0时,函数的图象关于y轴对称.其中正确命题的个数是()A.1个B.2个C.3个D.4个14.若A(﹣4,y l),B(﹣3,y2),C(1,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y l,y2,y3的大小关系是.(用<号连接)15.抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),若平移该抛物线使其顶点移动到点P1(2,﹣2),那么得到的新抛物线的一般式是.16.抛物线y=2x2+3上有两点A(x1,y1)、B(x2,y2),且x1≠x2,y1=y2,当x=x1+x2时,y=.17.若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=.18.如图,矩形纸片ABCD,BC=2,∠ABD=30度.将该纸片沿对角线BD翻折,点A落在点E处,EB交DC于点F,则点F到直线DB的距离为.19.已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是.20.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为.21.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?22.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?23.某加油站销售一批柴油,平均每天可售出20桶,每桶盈利40元,为了支援我市抗旱救灾,加油站决定采取降价措施.经市场调研发现:如果每桶柴油降价1元,加油站平均每天可多售出2桶.(1)假设每桶柴油降价x 元,每天销售这种柴油所获利润为y 元,求y 与x 之间的函数关系式;(2)每桶柴油降价多少元后出售,农机服务站每天销售这种柴油可获得最大利润?此时,与降价前比较,每天销售这种柴油可多获利多少元?(3)请分析并回答该种柴油降价在什么范围内,加油站每天的销售利润不低于1200元?24.如图,在△ABC 中,AB=AC ,以AB 为半径的⊙O 交AC 于点E ,交BC 于点D ,过点D 作⊙O的切线DF ,交AC 于点F .(1)求证:DF ⊥AC ;(2)若CE=2,CD=3,求AB 的长;(3)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.25.如图,以等腰△ABC 的一腰AB 上的点O 为圆心,以OB 为半径作圆,⊙O 交底边BC 于点D .过D 作⊙O 的切线DE ,交AC 于点E .(1)求证:DE ⊥AC ;(2)若AB=BC=CA=2,问圆心O 与点A 的距离为多少时,⊙O 与AC 相切?26.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm )在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价(1)(2)40cm 的薄板,获得的利润是26元(利润=出厂价﹣成本价). ①求一张薄板的利润与边长之间满足的函数关系式; ②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少? 27.如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,﹣3)点,点P是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式. (2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由. (3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积. 28.如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点. (1)求抛物线的解析式; (2)点M 是线段BC 上的点(不与B ,C 重合),过M 作NM∥y 轴交抛物线于N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长; (3)在(2)的条件下,连接NB ,NC ,是否存在点m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由.29.如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连结AD,作BE⊥AD,垂足为E,连结CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)若∠A=45°,试判断四边形ACFE的形状,并说明理由;(3)当∠A在什么范围取值时,线段DE上存在点G,满足条件DG=DA.30.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)31.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t (月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).(1)一件商品在3月份出售时的利润是多少元?(利润=售价﹣成本)(2)求图2中表示一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元?32.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.(1)求该抛物线的解析式及点E的坐标;(2)若D点运动的时间为t,△CED的面积为S,求S关于t的函数关系式,并求出△CED的面积的最大值.。
2018-2019学年九年级上学期期中考试数学试题(含答案)
2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x-7 -6 -5 -4 -3 -2 y-27-13-3353则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ). A .(2,2)B .(2,2)C .(2,2)D .(2,2)(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A .20cmB .18cmC .25cmD .32cm10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ). A .12-B .26-C .2-D .23-二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 2(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.Q BP22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒5个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =, 由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,2x =±, ∴(2,2)P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时25PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴22OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴2BC =,6OC =,故(6,2)B --, 代入2y ax =中得:26a -=,26a =-.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+.分分分分 分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,25AC =,5BC =, ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,5AF t =,52AF AB AE AC ==,又∵EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-,∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。
江苏省射阳中学2018-2019学年高三上学期第三次月考试卷数学含答案
江苏省射阳中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-2. 复数满足2+2z1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i3. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.4. 设集合A ={x |x =2n -1,n ∈Z },B ={x |(x +2)(x -3)<0},则A ∩B =( ) A .{-1,0,1,2} B .{-1,1} C .{1} D .{1,3}5. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .15B .C .15D .15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.6.设为全集,是集合,则“存在集合使得是“”的()A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件x ,则输出的所有x的值的和为()7.执行如图所示的程序,若输入的3A.243B.363C.729D.1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.8. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为( )A .4320B .﹣4320C .20D .﹣209. 若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a 10.设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A.B.C.D.11.已知全集为R,集合{}|23A x x x=<->或,{}2,0,2,4B=-,则()RA B =ð()A.{}2,0,2-B.{}2,2,4-C.{}2,0,3-D.{}0,2,4 12.集合{}|42,M x x k k Z==+∈,{}|2,N x x k k Z==∈,{}|42,P x x k k Z==-∈,则M,N,P的关系()A.M P N=⊆B.N P M=⊆C.M N P=⊆D.M P N==二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知tan23πα⎛⎫+=⎪⎝⎭,则42sin cos335cos sin66ππααππαα⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫--+⎪ ⎪⎝⎭⎝⎭.14.81()xx-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.15.已知抛物线1C:xy42=的焦点为F,点P为抛物线上一点,且3||=PF,双曲线2C:12222=-byax(0>a,0>b)的渐近线恰好过P点,则双曲线2C的离心率为.【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.16.在ABC∆中,角A B C、、的对边分别为a b c、、,若1cos2c B a b⋅=+,ABC∆的面积S=,则边c的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.三、解答题(本大共6小题,共70分。
【解析版】江苏省泰州市2013届高三上学期期末考试数学试题
2012-2013学年江苏省泰州市高三(上)期末数学试卷参考答案与试题解析一、填空题:(本大题共14小题,每小题4分,共56分.请将答案填入答题纸填空题的相应答题线上.)1.(4分)已知集合A={1,2,3},B={1,2,5},则A∩B={1}.考点:交集及其运算.专题:阅读型.分析:把两个集合的公共元素写在花括号内即可.解答:解:由A={1,2,﹣3},B={1,﹣4,5},则A∩B={1,2,﹣3}∩{1,﹣4,5}={1}.故答案为{1}.点评:本题考查了交集及其运算,考查了交集概念,是基础的概念题.2.(4分)设复数z1=2+2i,z2=2﹣2i,则=i.考点:复数代数形式的乘除运算.专题:计算题.分析:把复数代入表达式,复数的分母、分子同乘分母的共轭复数,化简复数即可.解答:解:因为复数z1=2+2i,z2=2﹣2i,所以=====i.故答案为:i.点评:本题考查复数代数形式的混合运算,复数的分母实数化,是解题的关键,是基础题.3.(4分)若数据x1,x2,x3,x4,x5,3的平均数为3,则数据x1,x2,x3,x4,x5的平均数为3.考点:众数、中位数、平均数.专题:概率与统计.分析:根据平均数的性质知,要求x1,x2,x3,x4,x5的平均数,只要把数x1、x2、x3、x4、x5的和表示出即可.解答:解:∵x1,x2,x3,x4,x5,3的平均数为3,∴数x1+x2+x3+x4+x5+3=6×3∴x1,x2,x3,x4,x5的平均数=(x1+x2+x3+x4+x5)÷5=(6×3﹣3)÷5=3.故答案为:3.点评:本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.4.(4分)设双曲线的左、右焦点分别为F1,F2,点P为双曲线上位于第一象限内的一点,且△PF1F2的面积为6,则点P的坐标为.考点:双曲线的简单性质.专题:计算题.分析:由双曲线方程,算出焦点F1、F2的坐标,从而得到|F1F2|=6.根据△PF1F2的面积为6,算出点P的纵坐标为2,代入双曲线方程即可算出点P的横坐标,从而得到点P的坐标.解答:解:∵双曲线的方程是,∴a2=4且b2=5,可得c==3由此可得双曲线焦点分别为F1(﹣3,0),F2(3,0)设双曲线上位于第一象限内的一点P坐标为(m,n),可得△PF1F2的面积S=|F1F2|•n=6,即×6×n=6,解得n=2将P(m,2)代入双曲线方程,得,解之得m=.∴点P的坐标为故答案为点评:本题给出双曲线上一点与焦点构成面积为6的三角形,求该点的坐标,着重考查了三角形面积公式、双曲线的标准方程与简单几何性质等知识,属于基础题.5.(4分)曲线y=2lnx在点(e,2)处的切线(e是自然对数的底)与y轴交点坐标为(0,0).考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出曲线方程的导函数,把切点横坐标代入导函数中表示出的导函数值即为切线的斜率,由切点坐标和斜率表示出切线方程,把x=0代入切线方程中即可求出y轴交点坐标.解答:解:对y=2lnx求导得:y′=,∵切点坐标为(e,2),所以切线的斜率k=,则切线方程为:y﹣2=(x﹣e),把x=0代入切线方程得:y=0,所以切线与y轴交点坐标为(0,0).故答案为:(0,0).点评:本题的解题思想是把切点的横坐标代入曲线方程的导函数中求出切线的斜率,进而写出切线方程.6.(4分)如图,ABCD是一个4×5的方格纸,向此四边形ABCD内抛撒一粒豆子,则豆子恰好落在阴影部分内的概率为0.2.考点:几何概型.专题:计算题;概率与统计.分析:试验发生包含的事件对应的图形是一个大长方形,若设小正方形的边长是1,则长方形的面积是20,满足条件的事件是正方形面积是4,根据面积之比做出概率.解答:解:由题意知本题是一个几何概型,设每一个小正方形的边长为1试验发生包含的事件对应的图形是一个长方形,面积为5×4=20阴影部分是边长为2的正方形,面积是4,∴落在图中阴影部分中的概率是=0.2故答案为:0.2点评:本题考查几何概型,解题的关键是求出两个图形的面积,根据概率等于面积之比得到结果,本题是一个基础题.7.(4分)设函数f(x)是定义在R上的奇函数,且f(a)>f(b),则f(﹣a)<f(﹣b)(用“>”或“<”填空).考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据奇函数的性质f(﹣x)=﹣f(x)求解.解答:解:根据奇函数的性质,f(﹣a)=﹣f(a),f(﹣b)=﹣f(b);∵f(a)>f(b),∴﹣f(a)<﹣f(b),即f(﹣a)<f(﹣b).故答案是<点评:本题考查函数的奇偶性.8.(4分)在空间中,用a,b,c表示三条不同的直线,γ表示平面,给出下列四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b;其中真命题的序号为①④.考点:命题的真假判断与应用;平面的基本性质及推论.专题:阅读型.分析:①有平行线公理判断即可;②中正方体从同一点出发的三条线进行判断;③可以翻译为:平行于同一平面的两直线平行,错误,还有相交、异面两种情况;④由线面垂直的性质定理可得;解答:解:①因为空间中,用a,b,c表示三条不同的直线,若a∥b,b∥c,则a∥c,满足平行线公理,所以①正确;②中正方体从同一点出发的三条线,也错误;③可以翻译为:平行于同一平面的两直线平行,错误,还有相交、异面两种情况;④可以翻译为:垂直于同一平面的两直线平行,由线面垂直的性质定理,正确;故答案为:①④.点评:与立体几何有关的命题真假判断,要多结合空间图形.本题考查空间两条直线的位置关系以及判定方法,线面平行的判定,解决时要紧紧抓住空间两条直线的位置关系的三种情况,牢固掌握线面平行、垂直的判定及性质定理.9.(4分)如图是一个算法流程图,则输出的P=.考点:程序框图.专题:计算题;概率与统计.分析:由程序中的变量、各语句的作用,结合流程图所给的顺序,可知当n<6时,用P+的值代替P得到新的P值,并且用n+1代替n值得到新的n值,直到n=6时输出最后算出的P值,由此即可得到本题答案.解答:解:根据题中的程序框图可得:当n<6时,用P+的值代替P,并且用n+1代替n 值;直到当n=6时,输出最后算出的P值.因此可列出如下表格:依此表格,可得输出的P=++++=1﹣=故答案为:点评:本题给出程序框图,求最后输出的P值,属于基础题.解题的关键是先根据已知条件判断程序的功能,构造出相应的数学模型再求解,从而使问题得以解决.10.(4分)已知点P(t,2t)(t≠0)是圆C:x2+y2=1内一点,直线tx+2ty=m与圆C相切,则直线x+y+m=0与圆C的位置关系是相交.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:由圆的方程找出圆心坐标与半径,因为M为圆内一点,所以M到圆心的距离小于圆的半径,利用两点间的距离公式表示出一个不等式,然后利用点到直线的距离公式表示出圆心到已知直线的距离d,根据求出的不等式即可得到d大于半径r,得到直线与圆的位置关系是相离.解答:解:由圆的方程得到圆心坐标为(0,0),半径r=1,由P为圆内一点得到:<1,则圆心到已知直线tx+2ty=m的距离d==1,可得|m|=<1,圆心到已知直线x+y+m=0的距离<1=r,所以直线x+y+m=0与圆的位置关系为:相交.故答案为:相交.点评:此题考查小时掌握点与圆的位置关系及直线与圆的位置关系的判断方法,灵活运用两点间的距离公式及点到直线的距离公式化简求值,是一道综合题.11.(4分)设a∈R,s:数列{(n﹣a)2}是递增的数列;t:a≤1,则s是t的必要不充分条件.(填“充分不必要,必要不充分,充要,既不充分也不必要”中的一个).考点:必要条件、充分条件与充要条件的判断.分析:在a∈R的前提下,看由数列{(n﹣a)2}是递增的数列能否推出a≤1,再看由a≤1能否推出数列{(n﹣a)2}是递增的数列.解答:解:若数列{(n﹣a)2}是递增的数列,则(n+1﹣a)2﹣(n﹣a)2=(n+1)2﹣2a(n+1)+a2﹣n2+2an﹣a2=n2+2n+1﹣2an﹣2a+a2﹣n2+2an﹣a2=2n+1﹣2a>0,即a<n+,因为n的最小值是1,所以当n取最小值时都有a<,则a≤1不成立.又由(n+1﹣a)2﹣(n﹣a)2=(n+1)2﹣2a(n+1)+a2﹣n2+2an﹣a2=n2+2n+1﹣2an﹣2a+a2﹣n2+2an﹣a2=2n+1﹣2a.因为n是大于等于1的自然数,所以当a≤1时,2n+1﹣2a,即数列{(n﹣a)2}中,从第二项起,每一项与它前一项的差都大于0,数列是递增的数列.所以,s是t的必要不充分条件.故答案为必要不充分.点评:本题考查了必要条件、充分条件与充要条件.判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.此题是基础题.12.(4分)各项均为正数的等比数列{a n}中,若a1≥1,a2≤2,a3≥3,则a4的取值范围是.考点:简单线性规划;等比数列;等比数列的通项公式.专题:计算题;等差数列与等比数列;不等式的解法及应用.分析:根据题中的不等式组,联想到运用线性规划的知识解决问题.因此,将所得的不等式的两边都取常用对数,得到关于lga1和lgq的一次不等式组,换元:令lga1=x,lgq=y,lga4=t,得到关于x、y的二次一次不等式组,再利用直线平移法进行观察,即可得到a4的取值范围.解答:解:设等比数列的公比为q,根据题意得:,∴各不式的两边取常用对数,得令lga1=x,lgq=y,lga4=t将不等式组化为:,作出以上不等式组表示的平面区域,得到如图的△ABC及其内部其中A(0,lg2),B(2lg2﹣lg3,lg3﹣lg2),C(0,lg3)将直线l:t=x+3y进行平移,可得当l经过点A时,t=3lg2取得最大值;当l经过点B时,t=﹣lg2+2lg3取得最小值∴t=lga4∈[﹣lg2+2lg3,3lg2],即lga4∈[lg,lg8]由此可得a4的取值范围是故答案为:点评:本题给出等比数列,在已知a1≥1,a2≤2,a3≥3的情况下求a4的取值范围.着重考查了等比数列的通项公式、二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.13.(4分)已知六个点A1(x1,1),B1(x2,﹣1),A2(x3,1),B2(x4,﹣1),A3(x5,1),B3(x6,﹣1)(x1<x2<x3<x4<x5<x6,x6﹣x1=5π)都在函数f(x)=sin(x+)的图象C上.如果这六点中不同的两点的连线的中点仍在曲线C上,则称此两点为“好点组”,则上述六点中好点组的个数为11.(两点不计顺序)考点:正弦函数的图象;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:题干错误:x6﹣x1=5π,应该是:x6 ﹣x1=5π,请给修改,谢谢.由题意可得,只要研究函数y=sinx在[0,6π]上的情况即可.画出函数y=sinx在[0,6π]上的图象,数形结合可得结论.解答:解:由于对称关系不因平移而改变,∴y=sinx与f(x)=sin(x+)对称关系没有变.根据函数的周期性,只要研究函数y=sinx在[0,6π]上的情况即可.画出函数y=sinx在[0,6π]上的图象,如图所示:可得A1(,0)、B1(,0)、A2(,0)、B2(,0)、A3(,0)、B3(,0).由函数y=sinx的图象性质可得,“好点租”有:A1B1,B1A2,A2B2,B2B2,B2A3,A3B3,A1A3,B1B3,A1B2,A2B3,B1A3,共11个,故答案为11.点评:本题主要考查新定义“好点组”,正弦函数的图象的对称性的应用,函数y=Asin(ωx+∅)的图象变换规律,属于中档题.14.(4分)已知f(x)=2mx+m2+2,m≠0,m∈R,x∈R.若|x1|+|x2|=1,则的取值范围是.考点:函数与方程的综合运用.专题:函数的性质及应用.分析:(i)法一:目标函数法:①分类讨论去绝对值找x1,x2的关系.②将化为一个变量的函数g(x2).(ii)法二:数形结合:①“数”难时,要考虑“形”.②C:|x1|+|x2|=1为正方形.③“分式”联想到斜率.解答:解:解法一:先考虑0≤x1≤1,0≤x2≤1的情形,则x1+x2=1===当m>0,令函数g(x)=,x∈[0,1],由单调性可得:g(1)≤g(x)≤g(0).其中,,当m<0,同理.x1、x2在其他范围同理.综上可得.解法二:==,∴为点P与点Q (x2,x1)连线的斜率.P点在直线上.由图可得直线PQ斜率的范围,即的范围.点评:熟练掌握分类讨论、数形结合的思想方法、函数的单调性、直线的斜率公式及意义是解题的关键.二、解答题:(本大题共12小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.(14分)已知向量=(cosλθ,cos(10﹣λ)θ),=(sin(10﹣λ)θ,sinλθ),λ、θ∈R.(1)求+的值;(2)若⊥,求θ;(3)若θ=,求证:∥.考点:平面向量数量积的运算;向量的模;平行向量与共线向量.专题:综合题;平面向量及应用.分析:(1)由向量的数量积的坐标表示可求||,||,代入即可求解(2)由⊥,利用向量数量积的性质的坐标表示可得cosλθ•sin(10﹣λ)θ+cos(10﹣λ)θ•sinλθ=0,整理可求θ(3)要证明∥,根据向量平行的坐标表示,只要证明cosλθ•sinλθ﹣cos(10﹣λ)θ•sin[(10﹣λ)θ]=0即可解答:解:(1)∵||=,||=(算1个得1分)||2+||2=2,…(4分)(2)∵⊥,∴cosλθ•sin(10﹣λ)θ+cos(10﹣λ)θ•sinλθ=0∴sin((10﹣λ)θ+λθ)=0,∴sin10θ=0…(7分)∴10θ=kπ,k∈Z,∴θ=,k∈Z…(9分)(3)∵θ=,cosλθ•sinλθ﹣cos(10﹣λ)θ•sin[(10﹣λ)θ]=cos•sin﹣cos(﹣)•sin(﹣)=cos•sin﹣sin•cos=0,∴∥…..…..(14分)点评:本题主要考查了向量的数量积的性质的坐标表示及向量平行的坐标表示,属于基础试题16.(14分)在三棱锥S﹣ABC中,SA⊥平面ABC,SA=AB=AC=BC,点D是BC边的中点,点E是线段AD上一点,且AE=4DE,点M是线段SD上一点.(1)求证:BC⊥AM;(2)若AM⊥平面SBC,求证EM∥平面ABS.考点:直线与平面平行的判定;直线与平面垂直的判定.专题:空间位置关系与距离.分析:对(1),通过证明线面垂直⇒线线垂直即可;对(2),将空间几何问题转化为平面几何问题,在△SAD中利用M、E分线段SD、AD成等比例,证明ME与SA平行,再由线线平行⇒线面平行.解答:证明:(1)∵AB=AC,D是BC的中点,∴AD⊥BC,∵SA⊥平面ABC,BC⊂平面ABC,∴SA⊥BC,SA∩AD=A,∴BC⊥平面SAD∵AM⊂平面SAD,∴BC⊥AM.(2)∵AM⊥面SAB,⇒AM⊥SD,∵SA=AB=AC=BC,可设BC=3,SA=在△ABC中,cos∠A==﹣,∴∠A=∴AD=.在Rt△SAD中,=2==,∴SM=4MD,∵AE=4ED,∴ME∥SA,ME⊄平面ABS,SA⊂平面ABS.∴EM∥平面ABS.点评:本题考查直线与平面平行、垂直的判定.利用平面几何知识证明线线平行是本题证明(II)的关键;另:将空间几何问题转化为平面几何问题是解决问题的常用方法.17.(14分)如图,一个半圆和长方形组成的铁皮,长方形的边AD为半圆的直径,O为半圆的圆心,AB=1,BC=2,现要将此铁皮剪出一个等腰三角形PMN,其底边MN⊥BC.(1)设∠MOD=30°,求三角形铁皮PMN的面积;(2)求剪下的铁皮三角形PMN面积的最大值.考点:两角和与差的正弦函数.专题:应用题;三角函数的图像与性质.分析:(1)设MN交AD交于Q点由∠MOD=30°,利用锐角三角函数可求MQ,OQ,进而可求MN,AQ,代入S△PMN=MN•AQ可求(2)设∠MOQ=θ,由θ∈[0,],结合锐角三角函数的定义可求MQ=sinθ,OQ=cosθ,代入三角形的面积公式S△PMN=MN•AQ=(1+sinθ)(1+cosθ)展开利用换元法,转化为二次函数的最值求解解答:解:(1)设MN交AD交于Q点∵∠MOD=30°,∴MQ=,OQ=(算出一个得2分)S△PMN=MN•AQ=××(1+)=…(6分)(2)设∠MOQ=θ,∴θ∈[0,],MQ=sinθ,OQ=cosθ∴S△PMN=MN•AQ=(1+sinθ)(1+cosθ)=(1+sinθcosθ+sinθ+cosθ)….(11分)令sinθ+cosθ=t∈[1,],∴S△PMN=(t+1+)θ=,当t=,∴S△PMN的最大值为.…..…(14分)点评:本题主要考查了三角函数的定义的应用及利用三角函数求解函数的最值,换元法的应用是求解的关键18.(16分)直角坐标系xoy中,已知椭圆C:(a>b>0)的左、右顶点分别是A1,A2,上、下顶点为B2,B1,点P(,m)(m>0)是椭圆C上一点,PO⊥A2B2,直线PO分别交A1B1、A2B2于点M、N.(1)求椭圆离心率;(2)若MN=,求椭圆C的方程;(3)在(2)的条件下,设R点是椭圆C上位于第一象限内的点,F1、F2是椭圆C的左、右焦点,RQ平分∠F1RF2且与y轴交于点Q,求点Q纵坐标的取值范围.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据点P在椭圆上可把P点坐标用a,b表示出来,由PO⊥A2B2,可得•K OP=﹣1,由此可得a,b的关系式,连同a2=b2+c2可求得e值;(2)由MN=可得关于a,b的一方程,再根据(1)中离心率值即可求得a,b值,从而求得椭圆方程;(3)设R(x0,y0),Q(0,t),由题意得cos∠F1RQ=cos∠F2RQ,利用向量夹角公式可表示成关于y0与t的式子,根据y0的范围即可求得t的范围;解答:解:(1)因为点P在椭圆上,所以在方程中令x=,得m=b,故P(,),∵PO⊥A2B2,∴•K OP=﹣1,即﹣×=﹣1,∴4b2=3a2=4(a2﹣c2),∴a2=4c2,∴e=①,故椭圆的离心率为;(2)MN==,∴②联立①②解得,a2=4,b2=3,∴椭圆C的方程为:.(3)由(2)可得F1(﹣1,0),F2(1,0),设∠F1RQ=α,∠F2RQ=β,则cosα=cosβ,∴=.设R(x0,y0),Q(0,t),则化简得:t=﹣y0,∵0<y0<,t∈(﹣,0).故点Q纵坐标的取值范围为:(﹣,0).点评:本题考查直线与圆锥曲线的位置关系以及椭圆标准方程的求解,考查学生综合运用所学知识分析问题解决问题的能力,属难题.19.(4分)已知数列a n=n﹣16,b n=(﹣1)n|n﹣15|,其中n∈N*.(1)求满足a n+1=|b n|的所有正整数n的集合;(2)若n≠16,求数列的最大值和最小值;(3)记数列{a n b n}的前n项和为S n,求所有满足S2m=S2n(m<n)的有序整数对(m,n).考点:数列的求和;数列的函数特性.专题:计算题;分类讨论;等差数列与等比数列.分析:(1)由a n+1=|b n|,把已知通项代入可得关于n的方程,根据绝对值的意义,从而可求符合条件的n(2)由已知=,结合式子的特点,考虑讨论n与16的大小关系及n的奇偶性分别对已知式子进行化简求解最值(3)结合b n=(﹣1)n|n﹣15|,需要考虑n与15的大小对已知式子去绝对值,然后讨论n的奇偶性代入可求满足条件的m,n解答:解:(1)∵a n+1=|b n|,∴n﹣15=|n﹣15|,∴当n≥15时,a n+1=|b n|恒成立,当n<15时,n﹣15=﹣(n﹣15),∴n=15n的集合{n|n≥15,n∈N*}….….….(4分)(2)∵=(i)当n>16时,n取偶数==1+当n=18时()max=无最小值n取奇数时=﹣1﹣n=17时()min=﹣2无最大值…(8分)(ii)当n<16时,=当n为偶数时==﹣1﹣n=14时()max=﹣()min=﹣当n奇数==1+,n=1,()max=1﹣=,n=15,()min=0 …(11分)综上,最大值为(n=18)最小值﹣2(n=17)….…..….(12分)(3)n≤15时,b n=(﹣1)n﹣1(n﹣15),a2k﹣1b2k﹣1+a2k b2k=2 (16﹣2k)≥0,n>15时,b n=(﹣1)n(n﹣15),a2k﹣1b2k﹣1+a2k b2k=2 (2k﹣16)>0,其中a15b15+a16b16=0∴S16=S14m=7,n=8….(16分)点评:本题主要考查了数列的和的求解,求解中要注意对所出现式子的化简,体现了分类讨论思想的应用20.(6分)已知函数f(x)=(x﹣a)(x﹣b)2,a,b是常数.(1)若a≠b,求证:函数f(x)存在极大值和极小值;(2)设(1)中f(x)取得极大值、极小值时自变量的值分别为x1、x2,令点A(x1,f(x1)),B (x2,f(x2)).如果直线AB的斜率为﹣,求函数f(x)和f′(x)的公共递减区间的长度;(3)若f(x)≥mxf′(x)对于一切x∈R恒成立,求实数m,a,b满足的条件.考点:函数在某点取得极值的条件;函数恒成立问题.专题:导数的综合应用.分析:(1)由于f′(x)=(x﹣b)[3x﹣(2a+b)],可得一元二次方程f′(x)=0有两不等实数根,可得f(x)存在极大值和极小值.(2)分a=b、a>b、a<b三种情况,求得f(x)的减区间,再求出f′(x)减区间,可得f (x)与′的公共减区间,从而求得公共减区间的长度.(3)由条件可得,(x﹣b){(1﹣3m)x2+[m(2a+b)﹣(a+b)]x+ab}≥0恒成立,可得m=,故(x﹣b)[(a+2b)x﹣3ab]≤0恒成立.再利用二次函数的性质求得实数m,a,b满足的条件.解答:解:(1)由于f′(x)=(x﹣b)[3x﹣(2a+b)],…(1分)∵a≠b,∴,∴一元二次方程f′(x)=0有两不等实数根b和,∴f(x)存在极大值和极小值.…(4分)(2)①若a=b,f(x)不存在减区间.②若a>b,由(1)知x1=b,x2=,∴A(b,0),B ,∴,∴(a﹣b)2 =,∴.③当a<b时,x1=,x2=b,同理可得a﹣b=(舍).综上a﹣b=…..….(7分)∴f(x)的减区间为即(b,b+1),f′(x)减区间为,∴公共减区间为(b,b+),故公共减区间的长度为.…(10分)(3)∵f(x)≥mxf′(x),∴(x﹣a)(x﹣b)2 ≥m•x(x﹣b)[3x﹣(2a+b)],∴(x﹣b){(1﹣3m)x2+[m(2a+b)﹣(a+b)]x+ab}≥0.若,则左边是一个一次因式,乘以一个恒正(或恒负)的二次三项式,或者是三个一次因式的积,无论哪种情况,总有一个一次因式的指数是奇次的,这个因式的零点左右的符号不同,因此不可能恒非负,不满足条件.∴,…(12分)∴(x﹣b)[(a+2b)x﹣3ab]≤0恒成立.若a+2b=0,则有a=﹣2b,∴a=b=0.若a+2b≠0,则x1=b,,且b=.①当b=0,则由二次函数的性质得a<0,②当b≠0,则,∴a=b,且b<0.综上可得,,a=b≤0或a<0,b=0.…..(16分)点评:本题主要考查函数在某点取得极值的条件,函数的恒成立问题,体现了分类讨论的数学思想,属于中档题.21.(6分)如图⊙O的两弦AB,CD所在直线交于圆外一点P.(1)若PC=2,CD=1,点A为PB的中点,求弦AB的长;(2)若PO平分∠BPD,求证:PB=PD.考点:与圆有关的比例线段.分析:(1)利用割线定理即可得出;(2)利用垂径定理、同圆中的弦与弦心距的关系定理、角平分线的性质及全等三角形的判定与性质即可得出.解答:解(1)由割线定理可得:PA•PB=PC•PD,∵点A为PB的中点,∴PA=AB,∴AB•2AB=2×3,解得AB=.(2)作OM⊥CD于M,ON⊥AB于N,∵PO平分∠BPD,∴OM=ON,在同圆中弦心距相等,∴AB=CD,∴点M平分弦CD,点N平分弦AB,∴AN=NB,CM=MD,∴NB=MD.又∵△PON≌△POM,∴PN=PM,∴PN+NB=PM+MD,∴PB=PD.点评:熟练掌握圆的割线定理、垂径定理、同圆中的弦与弦心距的关系定理、角平分线的性质及全等三角形的判定与性质是解题的关键.22.(6分)已知变换T 把平面上的点(1,0),(0,)分别变换成点(1,1),(﹣,).(1)试求变换T对应的矩阵M;(2)求曲线x2﹣y2=1在变换T的作用下所得到的曲线的方程.考点:几种特殊的矩阵变换.专题:计算题.分析:(1)先设出所求矩阵,利用待定系数法建立一个四元一次方程组,解方程组即可;(2)先设P(x,y)是曲线x2﹣y2=1上的任一点,P1(x′,y′)是P(x,y)在矩阵T对应变换作用下新曲线上的对应点,根据矩阵变换求出P与P1的关系,代入已知曲线求出所求曲线即可.解答:解:(1)设矩阵M=依题意得,=→,∴(1,0)变换为(1,1)得:a=1,c=1,(0,)变换为(﹣,)得:b=﹣1,d=1所求矩阵M=…(5分)(2)变换T所对应关系解得…(7分)代入x2﹣y2=1得:x′y′=1,故x2﹣y2=1在变换T的作用下所得到的曲线方程得xy=1 …(10分)点评:本题主要考查来了逆矩阵与投影变换,以及计算能力,属于基础题.23.(6分)已知直线(t为参数)与圆C:(θ为参数)相交于A,B两点,m为常数.(1)当m=0时,求线段AB的长;(2)当圆C上恰有三点到直线的距离为1时,求m的值.考点:参数方程化成普通方程;直线与圆的位置关系.专题:直线与圆.分析:(1)先把参数方程化为普通方程,再利用点到直线的距离公式、弦长|AB|=2即可得出;(2)圆C上恰有三点到直线的距离为1的条件⇔圆心C到直线l的距离=1.解答:解:(1)由直线(t为参数)消去参数化为普通方程l:x+y﹣1=0;当m=0时,圆C:(θ为参数)消去参数θ得到曲线C:x2+y2=4,圆心C(0,0),半径r=2.∴圆心C到直线l的距离为d=,∴|AB|=2=.(2)由(1)可知:x+y﹣1=0,又把圆C的参数方程的参数θ消去可得:x2+(y﹣m)2=4,∴圆心C(0,m),半径r=2.只要圆心C到直线l的距离=1即可满足:圆C上恰有三点到直线的距离为1的条件.由d==1,解得m﹣1=±,∴m=1+或m=1﹣.点评:熟练把参数方程化为普通方程、掌握点到直线的距离公式、弦长|AB|=2及正确把问题等价转化是解题的关键.24.(6分)若a,b,c∈R+,a+2b+3c=6.(1)求abc的最大值;(2)求证≥12.考点:基本不等式.专题:综合题.分析:(1)由已知可得abc=a•2b•3c≤()3,可求(2)由++=3+++=(++)(a+2b+3c),化简后利用基本不等式可证解答:解:(1)∵a,b,c∈R+,a+2b+3c=6∴abc=a•2b•3c≤()3=当a=2,b=1,c=时取等号,∴abc的最大值为….…..(5分)(2)∵++=3+++而(++)(a+2b+3c)≥(++)2=54∴++≥9∴++≥12…(10分)点评:本题主要考查了基本不等式在求解最值及证明中的应用,解题的关键是对基本不等式应用条件的配凑25.(6分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E、F分别为AD、DC的中点.(1)求直线BC1与平面EFD1所成角的正弦值;(2)设直线BC1上一点P满足平面PAC∥平面EFD1,求PB的长.考点:用空间向量求直线与平面的夹角;平面与平面平行的判定;直线与平面所成的角.专题:空间位置关系与距离;空间角.分析:(1)建立以D点为原点,DA所在直线为x轴,DC所在直线为y轴,DD1所在直线为z轴的空间直角坐标系,求出平面D1EF的法向量,和直线BC1的方向向量,代入向量夹角公式,可得直线BC1与平面EFD1所成角的正弦值;(2)设=λ,可求出向量的坐标(含参数λ),进而根据平面PAC∥平面EFD1,可得平面D1EF的法向量也垂直平面PAC,即.=0,进而求出参数值后,代入向量模的计算公式可得答案.解答:解:(1)建立以D点为原点,DA所在直线为x轴,DC所在直线为y轴,DD1所在直线为z 轴的空间直角坐标系则D1(0,0,2),A(2,0,0),B(2,2,0),E(1,0,0),C1(0,2,2),F(0,1,0).=(﹣2,0,2),=(1,0,﹣2),=(﹣1,1,0).设平面D1EF的法向量=(x1,y1,z1),则,即令x1=2,则=(2,2,1)…(3分)∴cos<,>==﹣∴直线BC1与平面EFD1所成角的正弦值为…..…..(5分)(2)设=λ=(﹣2λ,0,2λ)则=+=(﹣2λ,2,2λ),.=﹣4λ+4+2λ=0∴λ=2…(8分)∵AP⊄平面EFD1,AP∥平面EFD1,又AC∥EF,EF⊆平面EFD1,∴AC∥平面EFD1又AP∩AC=A,AP,AC⊂平面EFD1,∴平面PAC∥平面EFD1,∴=(﹣4,0,4),=4….(10分)点评:本题考查的知识点是直线与平面所成的角,平面与平面平行的判定,其中建立空间坐标系,将空间线面关系及夹角问题转化为向量夹角问题是解答的关键.26.(6分)如图A1(x1,y1)(y1<0)是抛物线y2=mx(m>0)上的点,作点A1关于x轴的对称点B1,过B1作与抛物线在A1处的切线平行的直线B1A2交抛物线于点A2.(1)若A1(4,﹣4),求点A2的坐标;(2)若△A1A2B1的面积为16,且在A1,B1两点处的切线互相垂直.①求抛物线方程;②作A2关于x轴的对称点B2,过B2作与抛物线在A2处的切线平行的直线B2A3,交抛物线于点A3,…,如此继续下去,得一系列点A4,A5,…,设A n(x n,y n),求满足x n≥10000x1的最小自然数n.考点:抛物线的标准方程;数列的函数特性.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)由A1(4,﹣4)在抛物线上代入可求m,设出A2(x2,﹣2x2),对函数y=﹣求导根据导数的几何意义可求x2,即可求解A2.(2)①设A1,B1处切线的斜率分别为K1,K2,容易得出K1•K2=﹣1,代入点的坐标即可得到m与x1 的方程,再设A2,结合已知又可得x2,x1的关系,代入三角形的面积公式中即可可求知x1,m,从而可求抛物线方程②由题意可求x n与x n﹣1的递推关系,结合等比数列的通项公式可求n的最小值解答:解:(1)若A1(4,﹣4)在抛物线上∴16=4m∴m=4,设A2(x2,﹣2x2),y=﹣,y′=﹣,B(4,4)∴=∴x2=36∴A2(36,﹣12)….….…(3分)(2)①设A1,B1处切线的斜率分别为K1,K2,K1•K2=﹣1∴(﹣).=﹣1∴m=4x1 ①设A2(x2,﹣)∴=﹣∴x2=9x1 ②又S=×2(x2﹣x1)=16 ③由①②③知x1=1,m=4∴抛物线方程为y2=4x…..…(6分)②由(2)知=﹣,∴x n=9x n﹣1,∴数列{x n}为等比数列,∴x19n﹣1≥10000x1∴n≥6∴n最小值为6…(10分)点评:本题主要考查了由抛物线的性质求解抛物线的方程,还考查了一定的逻辑推理与运算的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届高三模拟考试试卷(七)数 学(满分160分,考试时间120分钟)2019.1参考公式:柱体的体积V =Sh ,锥体的体积V =13Sh .一、 填空题:本大题共14小题,每小题5分,共70分. 1. 函数f (x )=sin 2x 的最小正周期为 W.2. 已知集合A ={4,a 2},B ={-1,16}.若A ∩B ≠∅,则a = W.3. 若复数z 满足z i =4+3i(i 是虚数单位),则|z |= W.4. 函数y =1-x 2的定义域是 W.5. 从1,2,3,4,5这五个数中随机取两个数,则这两个数的和为6的概率为 W.6. 一个算法的伪代码如图所示,执行此算法,最后输出T 的值是 W.i ←1 T ←1While i ≤2 T ←T ×2i i ←i +1 End While Print T (第6题)7. 已知数列{a n }满足log 2a n +1-log 2a n =1,则a 5+a 3a 3+a 1= W.8. 若抛物线y 2=2px (p >0)的准线与双曲线x 2-y 2=1的一条准线重合,则p = W.(第9题)9. 如图,在直三棱柱ABCA 1B 1C 1中,点M 为棱AA 1的中点,记三棱锥A 1MBC 的体积为V 1,四棱锥A 1BB 1C 1C 的体积为V 2,则V 1V 2的值是 W.10. 已知函数f (x )=2x 4+4x 2,若f (a +3)>f (a -1),则实数a 的取值范围是 W. 11. 在平面直角坐标系xOy 中,过圆C 1:(x -k )2+(y +k -4)2=1上任一点P 作圆C 2:x 2+y 2=1的一条切线,切点为Q ,则当线段PQ 长最小时,k = W.12. 已知点P 为平行四边形ABCD 所在平面上任一点,且满足P A →+PB →+2PD →=0,λPA →+μPB →+PC →=0,则λμ= W.13. 已知函数f(x)=⎩⎪⎨⎪⎧x 3-3x +2a ,x ≥a ,x 3+3x -4a ,x<a ,若存在x 0<0,使得f(x 0)=0,则实数a 的取值范围是 W.14. 在△ABC 中,已知sin A sin B sin (C -θ)=λsin 2C ,其中tan θ=12(0<θ<π2).若1tan A +1tan B +2tan C为定值,则实数λ= W. 二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)已知向量a =(sin x ,1),b =(12,cos x ),其中x ∈(0,π).(1) 若a ∥b ,求x 的值;(2) 若tan x =-2,求|a +b |的值.16. (本小题满分14分)如图,在四棱锥P ABCD 中,底面ABCD 为平行四边形,点O 为对角线BD 的中点,点E ,F 分别为棱PC ,PD 的中点,已知P A ⊥AB ,P A ⊥AD .求证:(1) 直线PB ∥平面OEF ; (2) 平面OEF ⊥平面ABCD .如图,三个校区分别位于扇形OAB 的三个顶点上,点Q 是弧AB 的中点,现欲在线段OQ 上找一处开挖工作坑P (不与点O ,Q 重合),为小区铺设三条地下电缆管线PO ,P A ,PB .已知OA =2 km ,∠AOB =π3,记∠APQ =θ rad ,地下电缆管线的总长度为y km.(1) 将y 表示成θ的函数,并写出θ的范围;(2) 请确定工作坑P 的位置,使地下电缆管线的总长度最小.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6.(1) 求椭圆C 的标准方程;(2) 设点Q 的横坐标为x 0,求x 0的取值范围.设A ,B 为函数y =f (x )图象上相异两点,且点A ,B 的横坐标互为倒数,过点A ,B 分别作函数y =f (x )的切线,若这两条切线存在交点,则称这个交点为函数f (x )的“优点”.(1) 若函数f (x )=⎩⎪⎨⎪⎧ln x ,0<x <1,ax 2,x >1不存在“优点”,求实数a 的值;(2) 求函数f (x )=x 2的“优点”的横坐标的取值范围;(3) 求证:函数f (x )=ln x 的“优点”一定落在第一象限.已知数列{a n}的前n项和为S n,2a1+a2=a3,且对任意的n∈N,n≥2都有2nS n+1-(2n +5)S n+S n-1=ra1.(1) 若a1≠0,a2=3a1,求r的值;(2) 数列{a n}能否是等比数列?请说明理由;(3) 当r=1时,求证:数列{a}是等差数列.2019届高三模拟考试试卷(七)数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤-12 52x 的一个特征值为-2,向量α=⎣⎢⎡⎦⎥⎤416,求Mα.B. (选修44:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =12-t ,y =12+t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =-1+2cos θ,y =2sin θ(θ为参数). 若直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.C. (选修45:不等式选讲)设正数a ,b ,c 满足3a +2b +c =1,求1a +1a +b +1b +c的最小值.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在正四棱柱ABCDA1B1C1D1中,AA1=3,AB=1.(1) 求异面直线A1B与AC1所成角的余弦值;(2) 求平面A1BC与平面AC1D所成二面角的正弦值.23. 已知函数f(x)=1-|2x-1|,0≤x≤1,设f n(x)=f n-1(f1(x)),其中f1(x)=f(x),方程f n(x)=0和方程f n(x)=1根的个数分别为g n(0),g n(1).(1) 求g2(1)的值;(2) 求证:g n(0)=g n(1)+1.2019届高三模拟考试试卷(七)(泰州)数学参考答案及评分标准1. π2. -43. 54. [-1,1]5. 156. 87. 48. 29. 14 10. (-1,+∞) 11.2 12. -3413. [-1,0) 14.51015. 解:(1) 因为a =(sin x ,1),b =(12,cos x ),a ∥b ,所以sin x cos x =1×12,即sin 2x =1.(3分)因为x ∈(0,π),所以2x =π2,所以x =π4.(7分) (2) 因为a =(sin x ,1),b =(12,cos x ),tan x =-2,所以sin x cos x =-2,则12sin x +cos x =0,所以a·b =12sin x +cos x =0.(10分)所以|a +b|2=a 2+b 2+2a·b =a 2+b 2=(sin 2x +1)+(14+cos 2x )=94,所以|a +b |=32.(14分)16. 证明:(1) 在△PBD 中,O 为BD 的中点,F 为PD 的中点, 所以OF ∥PB .(3分)因为PB ⊄平面OEF ,OF ⊂平面OEF , 所以直线PB ∥平面OEF .(7分) (2) 连结AC ,因为底面ABCD 为平行四边形,O 为BD 的中点, 所以O 为AC 的中点.在△P AC 中,O 为AC 的中点,E 为PC 的中点, 所以OE ∥P A .(9分)因为P A ⊥AB ,P A ⊥AD ,所以OE ⊥AB ,OE ⊥AD .(11分) 因为AB ∩AD =A ,AB ,AD 在平面ABCD 内, 所以OE ⊥平面ABCD .因为OE ⊂平面OEF ,所以平面OEF ⊥平面ABCD .(14分)17. 解:(1) 因为点Q 是弧AB 的中点,所以∠AOP =π6,P A =PB .因为∠APQ =θ,所以∠APO =π-θ,∠P AO =θ-π6.在△OP A 中,由正弦定理,得P A sin π6=OA sin (π-θ)=OPsin (θ-π6),即P A 12=2sin θ=OPsin (θ-π6), 所以P A =1sin θ,OP =2sin (θ-π6)sin θ,(4分)所以y =PO +P A +PB =2sin (θ-π6)sin θ+1sin θ+1sin θ=2-cos θsin θ+3,θ∈(π6,7π12).(7分) (2) 因为y =2-cos θsin θ+3,θ∈(π6,7π12),所以y ′=1-2cos θsin 2θ,令y ′=0,得θ=π3,(10分) 当θ∈(π6,π3)时,y ′<0,当θ∈(π3,7π12)时,y ′>0,所以当θ=π3时,y 有极小值,且是最小值,此时OP =2sinπ6sin π3=233(km).(13分)答:(1) y =2-cos θsin θ+3,θ∈(π6,7π12);(2) 当OP 为233km 时,地下电缆管线的总长度最小.(14分)18. 解:(1) 由题意得c a =12,a 2c +a =6,解得a =2,c =1,所以b =a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(4分)(2) (解法1)设B (m ,n ),则m 24+n 23=1.因为A (-2,0),AB ⊥BQ ,所以直线BQ 的方程为y =-m +2n (x -m )+n .因为P 是AB 的中点,所以P (m -22,n 2),所以直线OP 的方程为y =nm -2x .联立直线BQ ,OP 的方程得-m +2n (x -m )+n =nm -2x ,(8分)解得x 0=(m -2)(m 2+2m +n 2)m 2-4+n 2.由m 24+n 23=1得n 2=-34(m 2-4),代入上式化简得x 0=m +6.(14分)因为-2<m <2,所以4<x 0<8.(16分)(解法2)设直线AB 的方程为y =k (x +2)(k ≠0),将y =k (x +2)代入椭圆方程x 24+y 23=1得(4k 2+3)x 2+16k 2x +16k 2-12=0, 解得x B =-8k 2+64k 2+3,所以y B =k (-8k 2+64k 2+3+2)=12k 4k 2+3, 则直线BQ 的方程为y -12k 4k 2+3=-1k (x --8k 2+64k 2+3). 因为P 是AB 的中点,则x P =x A +x C 2=-2+-8k 2+64k 2+32=-8k 24k 2+3,y P =12y B =6k 4k 2+3, 所以直线OP 的斜率为6k4k 2+3-8k24k 2+3=-34k ,则直线OP 的方程为y =-34k x .(8分) 联立直线OP ,BQ 的方程得x 0=16k 2+244k 2+3=4+124k 2+3.(14分) 因为4k 2+3>3,所以0<124k 2+3<4,4<4+124k 2+3<8,即4<x 0<8.(16分) 19. (1) 解:不妨设A (t ,f (t ))(0<t <1),当0<x <1时,f ′(x )=1x ,则f ′(t )=1t ;当x >1时,f ′(x )=2ax ,则f ′(1t )=2a t. 因为函数f (x )=⎩⎪⎨⎪⎧ln x ,0<x <1,ax 2,x >1不存在“优点”,所以对任意的0<t <1,都有1t =2a t , 所以a =12.(4分) (2) 解:设A (t ,t 2),B (1t ,1t 2),由题意t ≠0,±1, 过A ,B 两点的切线的方程分别为y -t 2=2t (x -t ),y -1t 2=2t (x -1t),(6分) 联立得2t (x -t )+t 2=2t (x -1t )+1t 2,即2(t -1t )x =t 2-1t 2,所以x =12(t +1t).(8分) 因为t ≠±1,所以当t >0时,t +1t >2;当t <0时,t +1t<-2, 所以“优点”横坐标的取值范围是(-∞,-1)∪(1,+∞).(10分)(3) 证明:设“优点”为P (x 0,y 0),只要证x 0>0,y 0>0.设A (t ,ln t ),B (1t,-ln t ),不妨设A 在B 的右边,则t >1. 过A ,B 切线的方程分别为y =1t (x -t )+ln t ,y =t (x -1t)-ln t , 联立这两个方程得x 0=2t t 2-1ln t ,y 0=(t 2+1)ln t t 2-1-1.(2分)因为t >1,所以x 0=2t t 2-1ln t >0. 设h (t )=ln t -t 2-1t 2+1(t >1),则h ′(t )=(t 2-1)2t (t 2+1)2>0(t >1). 所以函数h (t )在(1,+∞)上是增函数,所以h (t )>h (1)=0,则ln t >t 2-1t 2+1. 因为当t >1时,t 2-1>0,所以y 0=(t 2+1)ln t t 2-1-1>0. 故函数f (x )=ln x 的“优点”P 一定落在第一象限.(16分)20. (1) 解:因为a 2=3a 1,2a 1+a 2=a 3,所以a 3=2a 1+a 2=5a 1.当n =2时,4(a 1+a 2+a 3)-9(a 1+a 2)+a 1=ra 1,所以4(a 1+3a 1+5a 1)-9(a 1+3a 1)+a 1=ra 1,即a 1=ra 1.因为a 1≠0,所以r =1.(4分)(2) 解:数列{a n }不能是等比数列,理由如下:假设数列{a n }是等比数列,设公比为q ,因为2a 1+a 2=a 3,所以2a 1+a 1q =a 1q 2,等比数列需满足a 1≠0,所以q =2或q =-1,(6分)当q =2时,因为n =2时,4(a 1+a 2+a 3)-9(a 1+a 2)+a 1=ra 1,即4(a 1+2a 1+4a 1)-9(a 1+2a 1)+a 1=ra 1,则r =2.又当n =3时,6(S 3+a 4)-11S 3+S 2=2a 1,所以a 4=173a 1. 而a 1,2a 1,4a 1,173a 1不构成等比数列,所以此时满足要求;(8分) 当q =-1时,因为n =2时,4(a 1+a 2+a 3)-9(a 1+a 2)+a 1=ra 1,即4(a 1-a 1+a 1)-9(a 1-a 1)+a 1=ra 1,则r =5.又n =3时,6(S 3+a 4)-11S 3+S 2=5a 1,所以a 4=53a 1. 而a 1,-a 1,a 1,53a 1不构成等比数列,所以此时不满足要求, 故数列{a n }不能是等比数列.(10分)(3) 证明:当n =2时,4(a 1+a 2+a 3)-9(a 1+a 2)+a 1=a 1,即4a 3=5a 1+5a 2. 因为2a 1+a 2=a 3,所以a 2=3a 1,a 3=5a 1,所以S 2=4a 1,S 3=9a 1.当n =3时,6(S 3+a 4)-11S 3+S 2=a 1,所以a 4=7a 1.因为2nS n +1-(2n +5)S n +S n -1=a 1,所以2n (S n +1-S n )-(S n -S n -1)=4S n +a 1,即2na n +1-a n =4S n +a 1,所以当n ≥3时,2(n -1)a n -a n -1=4S n -1+a 1,两式相减得2na n +1-(2n -1)a n +a n -1=4a n ,即2na n +1-(2n +3)a n +a n -1=0,(12分) 所以2(n +1)a n +2-(2n +5)a n +1+a n =0,两式相减得(2n +2)a n +2-(4n +5)a n +1+(2n +4)a n -a n -1=0,所以2(n +1)(a n +2-2a n +1+a n )=(a n +1-2a n +a n -1),(14分)所以a n +1-2a n +a n -1=12n (a n -2a n -1+a n -3)=…=12n -3n (n -1)…(n -4)(a 4-2a 3+a 2)=0,所以对任意的n ≥3,都有a n +1-2a n +a n -1=0.因为a3-2a2+a1=0,所以数列{a n}是等差数列.(16分)2019届高三模拟考试试卷(七)(泰州)数学附加题参考答案及评分标准21. A. 解:将λ=-2代入⎪⎪⎪⎪⎪⎪⎪⎪λ+1-2-52λ-x =λ2-(x -1)λ-(x +5)=0,解得x =3, 故矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤-12 523.(5分) 所以Mα=⎣⎢⎡⎦⎥⎤2858.(10分) B. 解:因为直线l 的参数方程为⎩⎨⎧x =12-t ,y =12+t ,所以直线l 的普通方程为x +y =1. 因为曲线C 的参数方程为⎩⎪⎨⎪⎧x =-1+2cos θ,y =2sin θ,所以曲线C 的普通方程为(x +1)2+y 2=4,它是以(-1,0)为圆心,2为半径的圆.(5分)因为圆心(-1,0)到直线l 的距离为d =|-1+0-1|12+12=2, 所以AB =222-(2)2=2 2.(10分)C. 解:因为3a +2b +c =1, 由柯西不等式得1a +1a +b +1b +c =(3a +2b +c )(1a +1a +b +1b +c) =[(2a )2+(a +b )2+(b +c )2]⎣⎢⎡⎦⎥⎤(1a )2+(1a +b )2+(1b +c )2 ≥(2a ·1a +a +b ·1a +b +b +c ·1b +c)2=(2+2)2=6+42,(6分) 当且仅当2a 1a =a +b 1a +b =b +c 1b +c,即2a =a +b =b +c 时取等号. 又由于3a +2b +c =1,所以此时a =c =2-12,b =3-222, 所以1a +1a +b +1b +c的最小值为6+4 2.(10分)22. 解:(1) 以AB →,AD →,AA 1→为一组正交基底建立如图所示的空间直角坐标系Axyz ,所以A (0,0,0),B (1,0,0),D (0,1,0),C (1,1,0),A 1(0,0,3),C 1(1,1,3), A 1B →=(1,0,-3),AC 1→=(1,1,3),所以cos 〈A 1B →,AC 1→〉=A 1B →·AC 1→|A 1B →||AC 1→|=-810×11=-411055, 所以异面直线A 1B 与AC 1所成角的余弦值是411055.(4分) (2) 设平面A 1BC 的法向量为n 1=(x ,y ,z ),因为A 1B →=(1,0,-3),BC →=(0,1,0),⎩⎪⎨⎪⎧n 1·A 1B →=0,n 1·BC →=0,所以⎩⎪⎨⎪⎧x -3z =0,y =0,取z =1,得n 1=(3,0,1). 同理可得,平面AC 1D 的一个法向量为n 2=(-3,0,1),(7分)所以cos 〈n 1,n 2〉n 1·n 2|n 1||n 2|=-810×10=-45,所以sin 〈n 1,n 2〉=35, 所以平面A 1BC 与平面AC 1D 所成二面角的正弦值是35.(10分) 23. (1) 解:令f (x )=1,有1-|2x -1|=1,得x =12. 令f 2(x )=1,有f (f (x ))=1,得f (x )=12, 即1-|2x -1|=12,得x =14或34,所以g 2(1)=2.(4分) (2) 证明:因为f (0)=f (1)=0,所以f n (0)=f n (1)=0. 因为f 1(x )=1-|2x -1|∈[0,1],当x ∈(0,12]时,f 1(x )单调递增,且f 1(x )∈(0,1], 当x ∈(12,1]时,f 1(x )单调递减,且f 1(x )∈[0,1).(6分) 下面用数学归纳法证明:方程f n (x )=0(x ∈(0,1])、方程f n (x )=1(x ∈(0,1])、方程f n (x )=0(x ∈[0,1))、方程f n (x )=1(x ∈[0,1))的根的个数都相等,且为g n (1).(ⅰ) 当n =1时,方程f 1(x )=0(x ∈(0,1])、方程f 1(x )=1(x ∈(0,1])、方程f 1(x )=0(x ∈[0,1))、方程f 1(x )=1(x ∈[0,1))的根的个数都相等,且为1,上述命题成立.(ⅱ) 假设n =k 时,方程f k (x )=0(x ∈(0,1])、方程f k (x )=1(x ∈(0,1])、方程f k (x )=0(x ∈[0,1))、方程f k (x )=1(x ∈[0,1))的根的个数都相等,且为g k (1),则当n =k +1时,有f k +1(x )=f k (f 1(x )),当x ∈(0,12]时,f 1(x )∈(0,1],方程f k +1(x )=0的根的个数为g k (1), 当x ∈(12,1]时,f 1(x )∈[0,1),方程f k +1(x )=0的根的个数也为g k (1),所以方程f k+1(x)=0(x∈(0,1])的根的个数为g k+1(0)=2g k(1).同理可证:方程f k+1(x)=1(x∈(0,1])、方程f k+1(x)=0(x∈[0,1))、方程f k+1(x)=1(x∈[0,1))的根的个数都相等,且为2g k(1).(8分)由(ⅰ)(ⅱ)可知,命题成立.因为f n(0)=f n(1)=0,所以g n(0)=g n(1)+1.(10分)。