实数第一课时教案1 (1)

合集下载

实数(1)教案

实数(1)教案

2 π
3
6 7


3
4 这些数中,
有理数是 无理数是 2.判断对错:对的画“√” ,错的画“×”.
; ;
(1)无理数都是无限小数.( )(2)无限小数都是无理数. ( ) (3) 2 5 是无理数. ( )(4) 1 5 是无理数. ( )55 (5)带根号的数都是无理数. ( ) (6)有理数都是实数. ( ) 探究案 二、认真阅读课本 54、55 页的有关内容,回答下列问题: 1、教材中确定 2 ,∏在数轴上的位置的依据是什么?你能类似地找 到-∏,- 2 等无理数的点吗? 2、总结: ①事实上,每一个无理数都可以用数轴上的__________表示出来,这 就是说,数轴上的点有些表示__________,有些表示__________ 当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即 每一个实数都可以用数轴上的__________来表示;反过来,数轴上的 __________都是表示一个实数 ②用什么方法比较两个实数的大小? ③数从有理数扩充到实数以后, 有理数关于相反数和绝对值的意义同样 适合于实数吗?请填写课本 54 页下面的思考栏目。 对于任意实数 a ,其相反数为_____ 一个正实数的绝对值是______;一个负实数的绝对值是它的______; 0 的绝对值是______ 【尝试练习 2】 1、 — 3 的相反数是 2、 绝对值等于 5 的数是 ,绝对值是 , — 3 的平方是
3、
4、下列说法正确的有( ) ⑴不存在绝对值最小的无理数 ⑵不存在绝对值最小的实数 ⑶不存在与本身的算术平方根相等的数 ⑷比正实数小的数都是负实数 ⑸非负实数中最小的数是 0 A. 2 个 B. 3 个 C. 4 个 D.5 个 三、学生自学,教师巡视: 生先独立完成自学指导,将其中的疑惑和不同解法说出来,小组解决。 四、更正、讨论、归纳、总结 1、自由更正 做完的同学请看板演的内容,你认为有问题的请上来更正,有不同 见解的请上来补充。 2、讨论、归纳 五、当堂检测 1、目标 58 页上的自主测评, 2、课本 56 页的练习 1、2 题。57 页的 2、3 题。

实数(一)教案

实数(一)教案

第二章实数6.实数(一)一、学生起点分析实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。

二、教学任务分析●教材地位及作用在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。

中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。

三、教学目标分析教学目标●知识与技能目标1.了解实数的意义,能对实数按要求进行分类;2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

3.了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小。

●过程与方法目标1.通过对实数分类的探究,增强学生的分类意识;2.在利用数轴上的点来表示实数的过程中,将数和图形结合在一起,让学生进一步体会数形结合的思想。

●情感与态度目标1.通过对实数进行分类的练习、进一步领会分类的思想方法;2.在探究利用数轴上的点表示实数的过程中,训练学生多角度思维,培养和发展学生的合作意识。

教学重点2.在实数范围求相反数、倒数和绝对值;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

教学难点建立实数概念及分类四、教法学法1.教学方法:自主探究—交流—发现2.课前准备:多媒体课件、投影仪、电脑五、教学过程:本节课设计了八个教学环节:第一环节:复习引入新课;第二环节:实数概念;第三环节:实数分类;第四环节:实数相关概念;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:课堂小节;第八环节:作业布置。

内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。

八年级数学上册实数教案北师大版

八年级数学上册实数教案北师大版

八年级数学上册实数教案北师大版一、教学目标:1. 理解实数的定义,掌握实数的分类及性质。

2. 学会实数的运算方法,包括加、减、乘、除、乘方等。

3. 能够运用实数解决实际问题,提高学生的数学应用能力。

二、教学内容:1. 实数的定义与分类:有理数、无理数、实数。

2. 实数的性质:实数的加减法、乘除法、乘方运算。

3. 实数的应用:解决实际问题,如长度、面积、体积等计算。

三、教学重点与难点:1. 重点:实数的定义、性质及运算方法。

2. 难点:实数运算的灵活应用,解决实际问题。

四、教学方法:1. 采用讲授法,讲解实数的定义、性质及运算方法。

2. 运用案例分析法,分析实际问题,引导学生运用实数解决。

3. 开展小组讨论,让学生互动交流,巩固所学知识。

五、教学过程:1. 导入新课:回顾七年级学习的有理数,引出实数的定义。

2. 讲解实数的分类:有理数、无理数、实数。

3. 讲解实数的性质:实数的加减法、乘除法、乘方运算。

4. 运用案例分析,让学生体会实数在实际问题中的应用。

5. 课堂练习:布置有关实数运算的练习题,巩固所学知识。

6. 总结本节课内容,布置课后作业。

六、教学评价:1. 课堂问答:通过提问学生,了解学生对实数定义、性质及运算方法的掌握情况。

2. 课后作业:布置有关实数的练习题,评估学生对知识的应用能力。

3. 阶段测试:进行实数知识的测试,全面了解学生掌握情况。

七、教学拓展:1. 介绍实数在科学研究中的应用,如物理、化学、计算机科学等。

2. 探讨实数与生活中的实际问题,提高学生的数学素养。

八、教学资源:1. 教材:八年级数学上册,北师大版。

2. 教案:实数教案。

3. PPT:实数相关内容。

4. 练习题:实数运算练习题。

九、教学时间安排:1. 第一课时:实数的定义与分类。

2. 第二课时:实数的性质与运算。

3. 第三课时:实数的应用与拓展。

十、课后作业:1. 复习实数的定义、性质及运算方法。

2. 完成练习题,巩固所学知识。

荥阳市五中八年级数学上册第3章实数3.3实数第1课时实数的概念教案新版湘教版

荥阳市五中八年级数学上册第3章实数3.3实数第1课时实数的概念教案新版湘教版

3.3实数 第1课时 实数的概念【知识与技能】从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系. 【过程与方法】让学生经历数系扩展的过程,体会数系的扩展源于社会实际,又为社会实际服务的辩证关系 . 【情感态度】培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点. 【教学重点】无理数、实数的概念和实数的分类. 【教学难点】无理数与有理数的本质区别,实数与数轴上的点的一一对应关系.一、情景导入,初步认知我们在前面学过无理数,什么样的数是无理数呢?举例说明? 【教学说明】复习相关内容,为本节课的教学作准备. 二、思考探究,获取新知1.下列各数中,哪些是有理数?哪些是无理数?2、0、1、414、9、π、-32、32、0.1010010001… (相邻两个1之间逐次增加一个0)【教学说明】学生自己回忆有理数、无理数的分类,为引入实数的概念及分类作好铺垫.【归纳结论】有理数和无理数统称为实数.2.根据实数的概念,你能对实数分类吗?【归纳结论】实数以概念可分为:【教学说明】通过对实数进行分类,让学生进一步领会分类的思想,培养学生从多角度思考问题,为他们以后更好地学习新知识作准备.同时也能使学生加深对无理数和实数的理解.3.任何有理数都可以用数轴上唯一的一个点来表示,那么无理数是否可以用数轴上的点来表示呢?思考:如何用数轴上的点表示无理数8和-8?我们已经知道,一个面积为8的正方形的边长是8,因此我们以原点为圆心,以正方形的边长为半径画弧,与正半轴的交点M就表示8,与负半轴的交点N就表示-8,如图所示:这样,我们就分别用数轴上唯一的一个点表示出了无理数8和-8.事实上,每一个无理数都可以用数轴上唯一的一个点来表示.【归纳结论】每一个实数都可以用数轴上唯一的一个点来表示.反过来,数轴上每一个点都表示唯一的一个实数.即:实数和数轴上的点一一对应.4.实数从正负性又如何分类呢?【归纳结论】实数分为正实数、零、负实数.5.有理数中有互为相反数的两个有理数,那么实数中有没有互为相反数的两个实数呢?举例说明.6.对于实数a的绝对值,又是什么样的呢?【归纳结论】设a表示一个实数,则:【教学说明】使学生通过类比的方式得到实数的相关知识,加深对实数的理解. 三、运用新知,深化理解1.教材P118例1.2.判断下列说法是否正确 (1)无限小数都是无理数 (2)有理数都是有限小数 (3)无理数都是无限小数 (4)带根号的数都是无理数 答案:四个全是错的.3.实数x 满足x+x 2=0,则x 是( C ) A.非零实数 B.非负数 C.零和负数 D.负数 4.当x 时,式子102+x 有意义. 答案:≥-55.如图,在数轴上表示实数14的点可能是( C )A.点MB.点NC.点PD.点Q 6.下列各数中,哪些是有理数,哪些是无理数? π、-3.1415926、113355、39、321、38、0、27、3π、0.5、3.14159、-0.020*******、13、22、3625、0.10010001…答案:略.7.求-364 、3-π的相反数和绝对值解:-364的相反数是364,绝对值是364;3-π的相反数是π-3,绝对值是π-3.【教学说明】巩固提高. 四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.3”中第1、2 题.本次教学,我坚持从兴趣入手,从差异入手,做到了在细致处求真、求创意,真正地使学生表明自己的看法,阐述自己的观点,大胆表现自我,张扬个性,体现出他们这个年龄应有的特点,因此,我认为这节课不仅很好地实现了知识与技能目标,对于过程与方法和情感态度与价值观两个目标的实现也非常到位,是比较成功的.15.3分式方程第2课时用分式方程解决实际问题一、新课导入1.导入课题:分式方程在实际生活、生产实践中有着广泛的应用,今天我们来学习列分式方程解决实际问题.2.学习目标:(1)会找出实际问题中的等量关系,熟练地列出相应的方程.(2)会解含字母系数的分式方程.(3)知道列方程解应用题为什么必须验根,掌握解题的基本步骤和要求.3.学习重、难点:重点:根据条件恰当设未知数列方程和解方程.难点:会从实际问题中获取有用的信息,准确找出相应的数量关系和等量关系.二、分层学习1.自学指导:(1)自学内容:教材第152页例3.(2)自学时间:5分钟.(3)自学方法:认真阅读课本例题,按课本例题分析的思路填空,体会列方程每一步的依据.(4)自学参考提纲:①工程问题中,工作总量=工作效率×工作时间.在没有具体的工作量时,常把总工程量看作1.②请认真读题,分析题意,完成课本分析中的填空.③问题中是用哪个等量关系来列方程的?甲队单独施工一个月完成的工程+甲乙两队共同工作半个月完成的工程=1④在例3的解答过程中的每一步骤后面标出步骤名称.2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生自学中存在的问题.②差异指导:对学生学习中存在的问题进行启发诱导.(2)生助生:将本题的分析过程讲给同桌听,帮助抓住问题关键条件.4.强化:(1)认真读题,找出相关的数量关系和等量关系,是解应用题的关键.(2)练习:某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天加工的效率是原来的2倍,结果共用了7天完成了任务,求该厂原来每天加工多少个零件?解:设该厂原来每天加工x个零件,则采用新技术后,每天加工2x个零件,去分母,得200+500=14x,系数化为1,x=50.检验:x=50时,2x≠0.所以x=50是原方程的根答:该厂原来每天加工50个零件.1.自学指导:(1)自学内容:教材第153页例4.(2)自学时间:5分钟.(3)自学方法:对照自学提纲,结合例3的解题经验,总结解答列分式方程解应用题的方法与步骤.(4)自学参考提纲:①这是一类分式方程的应用,有速度、路程、时间等三个量,它们之间的关系是路程=速度×时间.②题中的v、s是已知量还是未知量?未知量是什么?v、s是已知量.未知量是提速前列车的平均速度.③认真学习例题中的分析和解答过程,字母一定是表达未知量吗?不一定,需根据具体题目来分析确定.④按例题格式完成教材第154页“练习”的分析与解答.2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否读懂例题的分析解答过程和归纳解题步骤是否完整.②差异指导:关注两个方面:a.等量关系;b.解字母系数的分式方程时,已知量可以是字母.(2)生助生:学生之间相互交流帮助.4.强化:(1)含字母系数的分式方程,分清已知量和未知量.(2)列方程解应用题的一般步骤:①分析题意,找出相等的数量关系;②设未知数,并用未知数表示相关的量;③列出方程;④解方程;⑤验根:Ⅰ.求得的解是不是原方程的解;Ⅱ.求得的解符不符合该实际问题;⑥作答.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习热情、态度、方法、成果、不足进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学除了在一般意义上让学生经历“提出问题——构建模型——解决问题”的过程,还应让学生特别注意分式方程根的“检验”.一、基础巩固(每题10分,共50分)1.学校用420元钱购买“84”消毒液,经过讨价还价,每瓶比原价便宜了0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出的方程是(B)2.甲、乙两人同时从A地出发,骑自行车行30km到B地,甲比乙每小时少骑3km,结果乙早到40分钟,若设乙每小时走xkm,则可列方程(D)3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加入此项工作,且甲、乙两人的工作效率相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是(A)A.8B.7C.6D.54.甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的b ab a+-倍.5.一个分数的分母比它的分子大5,如果这个分数的分子加上14,分母减去1,所得的分数是原分数的倒数,求这个分数.解:设分子为x,则分母为x+5,所以根据倒数关系列方程为:解得:x=4检验,x=4时,(x+5)(x+14)≠0,所以,x=4是原分式方程的根.所以这个分数为49.二、综合应用(20分)6.为了支持爱心捐款活动,某校师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款的人数比第一天捐款的人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?解:设第一天参加捐款的人数为x人,则可列方程为解得x=200(人),检验:当x=200时,x(x+50)≠0,所以,原分式方程的解为x=200.两天共捐款人数为200+250=450(人),人均捐款为4800÷200=24(元).答:两天共参加捐款的人数为450人,人均捐款24元.三、拓展延伸(30分)7.在某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?解:(1)解:设乙队单独完成这项工程需要x天,则根据题意可列方程为解得x=90.经检验:x=90时原方程的根.所以,乙队单独完成这项工程需要90天.(2)甲队单独做工程款:60×3.5=210(万元).乙队单独做需要90天,超过了70天.甲乙合作工程款:36×(3.5+2)=198(万元)∴甲、乙合作完该工程最省钱.抽样调查1.为了完成下列任务,你认为可采用什么调查方式?(1)了解全国八年级学生的体重,掌握学生的身体发育情况;(2)考察一批炮弹的杀伤半径;(3)了解本班同学每周的睡眠时间;(4)为了体现公平的体育精神,关爱运动员的身心健康,国际奥委会明令禁止运动员服用违禁药物.为了了解奥运会上运动员的执行情况,对运动员进行的尿样检查.2.小明、小亮和小丽想要了解他们所生活的小区里小朋友的年龄情况,小明调查了当天在院子里玩耍的小朋友,情况如图1;小亮调查了他所居住的二单元的小朋友,情况如图2;图1图2小丽调查了每个单元一楼的两家住户家中小朋友的年龄,数据(单位:岁)如下:3,16,14,15,17,8,4,6,9,7,17,12,2,13,6,5,12,14,3,15,5,16,1,1.这个小区中小朋友的年龄情况到底如何?你认为的调查方式好一些?为什么?如果你去调查的话,你有没有更好的方式?3.(1)调查全班近视同学所戴眼镜的度数,将统计的数据用适当的图表表示出来,并计算出它们的平均数、中位数和众数;(2)你认为你所做的调查能反映全国八年级学生的视力情况吗?你能用什么办法来改进这次调查的结果吗?4.同学们,相信大家在暑假一定过得很快乐,那么在假期中你最喜欢什么电视节目呢?你能对此进行一次调查吗?你打算怎样收集数据呢?请将你收集的数据进行统计(最好绘制成统计图),最后谈谈你对某些电视节目的看法.5.给别人起外号是一种不礼貌的行为,现在请同学们在全班开展一次调查,看看班里有多少学生有外号,从而估计全校百分之几的学生有外号,这些有外号的同学,他们自己是一种什么态度呢?6.就“父母回家后,你会主动倒一杯水吗?”这一问题调查全班同学,填写下表,并谈谈你对调查结果的看法.参考答案1.(1)抽样调查;(2)抽样调查;(3)普查;(4)普查.2.小明调查了当天在院子里玩耍的小朋友,一般不具有代表性;小亮调查了他所居住的二单元的小朋友,调查对象较少,不具有广泛性;一般可认为小丽的调查效果较好.3.(1)略;(2)相对全国八年级学生而言,全班同学的人数较少,且分布地区较狭窄.因而,一般认为对全班同学所做的调查不能反映全国八年级学生的视力情况,需要再进行更广泛更随机的抽样调查.4、5、6 略。

6.3实数教案

6.3实数教案

设计意图: 通过复习有理数和平方根、 立方根相关知识, 为新知识的学习做好铺垫。
(二)创设情境,引入新课 1.无理数、实数的概念及分类 活动一:请学生阅读 P53 内容,了解无理数和实数的定义。 活动二:完成练习。 活动三:小组讨论 活动四:课堂展示,教师指导提升引导学生用定义判断有理数和无理数,厘清判断标 准,归纳表现形式。
(2)学生思考探究:
2 在数轴上表示出来吗?
总结:每一个无理数都可以用数轴上的一个点来表示。数轴上的点有些表示有理数,有些表 示无理数。 因此,实数与数轴上的点一 一对应。
设计意图:通过具体操作,渗透“数形结合”的数学思想,使学生直观认识无理数也可 以在数轴上表示。
三、小结提升: 1.实数由哪些数组成? 2.实数与数轴上点有第十四中学 王蕊 2016 年 3 月
6.3 一、教学内容:
实数
人教版初中数学第六章第三节实数第一课时。 二、教学目标: 1.了解无理数和实数的概念,掌握实数进行的分类; 2.理解实数与数轴上点具有一一对应关系,体会“数形结合”的数学思想; 三、教学重点: 无理数、实数的概念及实数的分类 四、教学难点: 无理数的数轴表示。 五、教学过程: (一)温故知新 1.有理数:整数和分数统称为有理数. 2.练习。
设计意图:通过学生对本课所学知识进行梳理,进一步提升知识的理解水平。
四、课堂检测,布置作业
设计意图:活动一至活动四的连环设计是为落实“自主学习——合作学习——课堂展 示——教师指导”的课堂教学模式,培养学生自学、互学的意识与能力,实现学生从 “学会到会学”的提升。
活动五:完成课堂练习。 2.探索实数与数轴上点的对应关系 问题: 有理数可以用数轴上的点表示,无理数是否也可以用数轴上的点表示呢? (1)师生共同探究在数轴上找到表示 π 的点? 直径为 1 个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点 O, 点 O' 对应的数是多少?

冀教版数学八年级上册14.3《实数》教学设计1

冀教版数学八年级上册14.3《实数》教学设计1

冀教版数学八年级上册14.3《实数》教学设计1一. 教材分析冀教版数学八年级上册14.3《实数》是学生在学习了有理数、无理数相关知识的基础上,进一步对实数进行系统地认识和理解。

本节内容主要包括实数的定义、实数的分类、实数的性质等。

通过本节课的学习,使学生掌握实数的概念,了解实数的分类,理解实数的性质,为学生进一步学习函数、几何等知识打下基础。

二. 学情分析八年级的学生已经学习了有理数、无理数的相关知识,对数的运算、性质有一定的了解。

但是,学生对实数的认识还比较模糊,对实数的分类和性质的理解还有待提高。

此外,学生的数学思维能力、逻辑表达能力等方面也有待提高。

三. 教学目标1.了解实数的概念,掌握实数的分类,理解实数的性质。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生的数学思维能力、逻辑表达能力。

四. 教学重难点1.实数的定义、分类和性质。

2.实数与实际问题的结合。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的数学思维能力和逻辑表达能力。

六. 教学准备1.教材、教案、课件。

2.相关实数的学习资料。

3.投影仪、白板等教学设备。

七. 教学过程导入(5分钟)教师通过引入生活中实际问题,如身高、体重等,引导学生认识到实数在生活中的重要性。

然后,教师提问:“你们已经学习了有理数和无理数,那么,实数与有理数、无理数有什么关系呢?”从而引出本节课的主题——实数。

呈现(15分钟)教师通过课件展示实数的定义、分类和性质,让学生初步了解实数的概念。

接着,教师通过举例说明实数的性质,如实数的大小比较、实数的加减乘除运算等。

在此过程中,教师引导学生积极参与,提问解答,确保学生对实数的理解。

操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。

题目包括实数的分类、实数的性质等。

完成后,教师选取部分学生的作业进行讲评,指出其中的错误和不足,帮助学生巩固实数知识。

北师大版数学八年级上册6《实数》教学设计1

北师大版数学八年级上册6《实数》教学设计1

北师大版数学八年级上册6《实数》教学设计1一. 教材分析北师大版数学八年级上册6《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习。

本节课的主要内容是实数的定义、性质以及实数与数轴的关系。

教材通过丰富的例题和练习题,帮助学生巩固实数的概念,提高学生解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了有理数和无理数的基本概念,对数轴有一定的了解。

但是,学生对实数的认识还停留在表面,对实数的内在联系和性质还不够清楚。

因此,在教学过程中,教师需要引导学生深入理解实数的含义,并通过实例让学生感受实数在生活中的应用。

三. 教学目标1.理解实数的定义,掌握实数的性质。

2.能够运用实数的概念解决实际问题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.实数的定义和性质。

2.实数与数轴的关系。

五. 教学方法采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过自主学习、合作交流,深入理解实数的概念和性质。

六. 教学准备1.教材、教案、PPT。

2.练习题。

3.数轴教具。

七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,提问:有理数和无理数能否包含所有的数呢?由此引出实数的概念。

2.呈现(10分钟)讲解实数的定义,引导学生通过实例理解实数的性质,如:实数具有加法、减法、乘法、除法等运算性质。

3.操练(10分钟)让学生在练习纸上完成教材中的相关练习题,教师巡回指导,帮助学生巩固实数的概念和性质。

4.巩固(5分钟)邀请学生上黑板演示实数的运算,并解释运算过程中实数的性质如何体现。

5.拓展(5分钟)讨论实数在生活中的应用,如:购物、测量等,让学生感受实数的重要性。

6.小结(5分钟)回顾本节课所学内容,强调实数的定义、性质以及实数与数轴的关系。

7.家庭作业(5分钟)布置教材后的练习题,要求学生独立完成,巩固实数的概念和性质。

8.板书(5分钟)板书实数的定义、性质以及实数与数轴的关系,方便学生复习。

冀教版初中数学八年级上册 14.3 实数 教案 (1)

冀教版初中数学八年级上册  14.3  实数  教案  (1)

学过程教师导学及学生主体活动过程随堂问题简记即0.3 =0.333…=31根据上面提供的方法,你能把0.7 ,0.41 化成分数吗?且想一想是不是任何无限循环小数都可以化成分数?在此基础上与学生一起得到结论:任何一个有限小数或无限循环小数都能化成分数,所以任何一个有限小数或无限循环小数都是有理数。

思考:还有其它类型的小数吗?问题:课本102页,如图,在Rt △ABC 中,两条直角边AC=BC=2,如果将Rt △ABC 沿斜边AB上的高CD剪开后,拼成如图所示的正方形,那么这个正方形的边长是多少呢?如果用计算机计算结果为1.41421356237309504880168872420969807856967187537694……问题:小数点后面的数是循环的吗?那么它属于什么小数?学生命名无限不循环小数--------叫做无理数例如:0.1010010001…〔两个1之间依次多1个0〕—168.3232232223…〔两个3之间依次多1个2〕0.12345678910111213 …〔小数部分有相继的正整数组成〕无理数和有理数一样也有正负之分,例如正无理数:π,,负无理数:-π,- ,-现在我们不仅学过了有理数,而且又定义了无理数,显然我们所学的数的范围又扩大了,我们把有理数和无理数统称为实数,这是我们今天学习的又一新的概念.2.实数的定义:有理数和无理数统称为实数.3.实数的分类:对于实数,我们可按定义分类如下:32,3,5,6,,232323由上述分类,我们发现有理数和无理数都有正负之分,所以对实数我们还可以按大小分类如下:对于这两种分类的方法,同学们应牢固地掌握.二、练一练例1(1)你能尝试着找出三个无理数来吗?(2)下列各数中,哪些是有理数?哪些是无理数?解决问题后,可以再问同学:“用根号形式表示的数一定是无理数吗?”例2把下列各数填人相应的集合内:整数集合{ … }负分数集合{ …} 正数集合{ …} 负数集合{ …} 有理数集合{ …} 无理数集合{ …}三、探一探我们知道,在有理数中只有符号不同的两个数叫做互为相反数,例如3和-3,43和-43等,实数的相反数的意义与有理数一样。

七年级数学下册第6章实数6.2实数第1课时实数的概念及分类教案新版沪科版20210427156

七年级数学下册第6章实数6.2实数第1课时实数的概念及分类教案新版沪科版20210427156

6.2 实数第1课时实数的概念及分类【知识与技能】1.了解无理数和实数的概念.2.会对实数进行分类.3.会用“夹逼法”估计一个无理数的大小,会将循环小数化为分数.【过程与方法】从实际问题引出无理数,会用“夹逼法”估计无理数的大小,能用两种方法对实数进行分类,增强学生的参与意识,发挥学生的积极主动性.【情感态度】让学生在独立思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,增强合作交流意识,激发学生的学习兴趣.【教学重点】掌握无理数的三种形式,能够识别有理数和无理数,能对实数进行分类.【教学难点】循环小数化为分数的规律与方法.一、情境导入,初步认识问题如图是由4条横线,5条竖线构成的方格网,它们相邻的行距,列距都是1,从这些纵横线相交得出的20个点(称为格点)中,我们可以选择其中4个格点作为顶点连接成一个正方形,叫做格点正方形.你能找出多少种面积互不相同的格点正方形?(1)有面积分别是1,4,9的格点是正方形吗?(2)有面积是2的格点正方形吗?把它画出来.(3)还有与这些面积不相同的格点正方形吗?【教学说明】教师提出问题,学生自主探究然后相互交流,第(1)问学生很容易得到答案,第(2)问教师可适当加入引导启发.二、思考探究,获取新知1.问:我们看到四个边长为1的相邻正方形的对角线就围成一个面积为2的格点正方形这种正方形的边长应是多少?【教学说明】学生自然联想到平方根这一节所学知识,很容易得出这种正方形的边长为2 .探究2是一个怎样的数呢?因为12=1<2,22=4>2.所以1<2<2,这说明2不可能是整数.因为1.42=1.96<2,1.52=2.25>2.所以1.4<2<1.5.类似地,可得1.414<2<1.415.像上面这样一直做下法,可以得到:2=1.41412135…这说明2是一个无限不循环小数.【归纳结论】无限不循环小数叫做无理数.任何整数、分数都可以化为有限小数或无限循环小数,反过来,任何有限小数和无限循环小数都可以写成分数形式,因此有理数是有限小数或无限循环小数;而无理数是无限不循环小数.2.实数的分类.问:有理数和无理数统称为实数,这样,我们认识的数的范围又一次扩大了,我们该怎样对实数进行分类呢?【教学说明】教师提出问题,学生思考尝试,然后相互交流,掌握实数的两种分类方法.【归纳结论】我们可以将实数按如下方式分类:有理数、无理数都有正、负之分,实数也可以作如下分类:三、典例精析,掌握新知【教学说明】教师给出例题后,让学生独立完成,然后让部分学生上台展示自己的答案,加深对所学新知识的理解.四、运用新知,深化理解1.把下列各数分类填入图中:2.把下列各数写成分数形式:3.判断是非:(1)无限小数都是无理数.( )(2)无限不循环小数是无理数.( )(3)无理数是带根号的数.( )(4)分数是无理数.( )4.下列各组数都是无理数的是()【教学说明】教师展示习题,学生独立完成,教师巡视,对学生的疑惑及时给予指导.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?请与同伴交流.【教学说明】学生相互交流,回顾无理数、实数的概念以及实数的分类,加深对所学知识的理解.完成练习册中本课时练习.从实际问题中引出无理数,进而引出实数并对实数进行分类,学生积极主动探索,教师引导启发,学生合作交流,培养学生继续探索的兴趣.。

实数教案

实数教案

实数教案实数教案(一):初中数学教案----实数一、资料特点在知识与方法上类似于数系的第一次扩张。

也是后继资料学习的基础。

资料定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于资料的始终。

学习对象----实数概念及其运算;学习过程----透过拼图活动引进无理数,透过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

具体过程:首先透过拼图活动和计算器探索活动,给出无理数的概念,然后透过具体问题的解决,引入平方根和立方根的概念和开方运算。

最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

第一节:数怎样又不够用了:透过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会决定一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常透过估算来求它的近似值,为此这一节资料介绍估算的方法,包括透过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。

经历运用计算器探求数学规律的活动,发展合情推理的潜力。

第六节:实数。

总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些推荐1.注重概念的构成过程,让学生在概念的构成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的好处理解。

实数(教案)

实数(教案)
本节课的教学难点与重点旨在帮助学生深入理解实数的概念、性质和运算,培养其数学思维能力,提高解决实际问题的能力。在教学过程中,教师应针对这些难点与重点,运用适当的教学方法,引导学生透彻理解核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数?”(如圆的周长与直径的比例)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索实数的奥秘。
实数(教案)
一、教学内容
本节教学内容选自人教版《数学》八年级下册第十二章“实数”部分。主要内容包括:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无限不循环小数。
2.无理数的概念:无法表示为两个整数之比的数,如π和e。
3.实数的分类:整数、分数、无理数。
4.实数的性质:包括交换律、结合律、分配律等。
(1)实数的定义及其分类:这是本节课的核心内容,要求学生掌握有理数和无理数的概念,理解实数的分类。
举例:区分整数、分数、无理数等不同类型的实数,如π、√2等。
(2)实数的性质和运算:使学生掌握实数的交换律、结合律、分配律等性质,并熟练进行实数的加减乘除及乘方运算。
举例:3+5=5+3,(3+4)×2=3×2+4×2等。
2.通过实数的分类和运算,提高学生的数学运算和数据分析能力。
3.借助数轴理解实数,发展学生的几何直观和空间想象能力。
4.在解决实际问题的过程中,培养学生运用数学知识解决现实问题的能力,提升数学建模素养。
5.通过小组合作交流,培养学生表达清晰、逻辑严谨的数学交流能力,增强合作意识。

八年级数学上册 实数(第一课时)教案 北师大版

八年级数学上册 实数(第一课时)教案 北师大版

实数教学设计第(一)课时教学设计思想本节内容需三课时讲授;本课时是对这段时间以来学过的数作一归纳性的总结,这个总结过程可由学生自己通过对具体的数比较的基础上引入,分清带根号的数不一定是无理数,对提出实数的概念(有理数和无理数的总称)表示接受和理解。

通过议一议,掌握数的分类要遵循的规则,领会分类的思想;在此过程中,通过对上述数的特点的分析,指出实数的绝对值和相反数的意义与在有理数范围内的意义是一样的,设计有针对性的例题和习题巩固对这些概念的认识,会求一个数的绝对值、相反数及倒数。

同时让学生思考,数的绝对值与相反数往往与数轴有密切的联系,进而让学生议一议“有理数能填满整个数轴吗?”,引出实数与数轴的关系,“每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

”,掌握如何在数轴上画出如:,等数,真切感受实数在数轴上的存在和实际大小,掌握实数大小比较的方法。

教学目标(一)知识与技能1.能对实数按要求进行分类.2.知道在实数范围内、相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.明白实数和数轴上的点是一一对应的并能根据它们在数轴上的位置来比较大小.(二)过程与方法1.通过对实数进行分类,培养学生的分类意识.2.用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想.(三)情感、态度与价值观通过对实数进行分类的练习,让学生进一步领会分类的思想.鼓励学生要从不同角度入手,寻求解决问题的多种途径.训练学生的多角度思维,为他们以后更好地工作作准备.教学重点1.实数概念的建立.2.实数的分类.3.在实数范围内,求相反数、倒数、绝对值.教学难点1.实数概念的建立.2.实数的分类.教学方法指导法.教具准备投影片.教学安排3课时.教学过程Ⅰ.导入新课在前面我们学了有理数和无理数,有理数是有限小数或无限循环小数,无理数是无限不循环小数,如π.在学了平方根和立方根之后,我们知道、这样的数也不是有理数,因为没有哪一个整数或分数的平方为2,立方为3.而且用估算的方法还知道、是无限不循环小数,因此这些数也是无理数.那是不是说带有根号的数就是无理数呢?也不全是.如=2,2是有理数,一般来说开方开不尽的数就是无理数,如等.在小学学了非负数,上初一引入了负数,数的范围扩充到有理数范围,那么引入无理数之后数的范围扩充到什么范围呢?本节课就来研究此问题以及与之有关的问题.Ⅱ.讲授新课1.实数的概念把下列各数分别填入相应的集合内:…有理数和无理数统称为实数(real number),即实数可以分为有理数和无理数.2.实数的分类[师]在有理数的分类中可以按正数、负数、零进行分类,也可按整数和分数进行分类,那么在实数范围内是不是也能这样分类呢?下面我们把上面各数填入下面相应的集合内.填完之后大家发现了什么?[生]无理数也有正负之分,0既不能填入正数集合,也不能填入负数集合.[师]因此,从正、负方面来考虑,实数可以分为正实数、零、负实数.即实数另外从定义也可以进行分类.实数这就是实数的两种分法.3.在实数范围内的几个概念.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.(1)相反数:a与-a互为相反数,0的相反数是0.(2)倒数:若a≠0,则a与互为倒数.(3)绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即|a|=想一想[师]请大家思考并回答:(1)的相反数是_________,绝对值是_________;(2)与是_________;(3)-π的相反数是_________,它们的和是_________;(4)a是一个实数,它的相反数为_________,绝对值为_________.(5)若a≠0,则它的倒数为_________.[生](1)-,;(2)互为倒数;(3)π,0;(4)-a,|a|;(5)4.实数与数轴上的点之间的关系.[师]请大家认真观察图,然后再回答.(1)如图,OA=OB,数轴上A点对应的数是什么?它介于哪两个整数之间?(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗?[生]因为根据勾股定理得OB2=1+1=2,所以OB=,OA=OB,故OA=,A点对应的数是无理数,它介于整数1和2之间.[生]如果把所有有理数都标到数轴上,那么数轴填不满.因为有理数不包括A点.[师]每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的.在数轴上,右边的点表示的数比左边的点表示的数大.Ⅲ.课堂练习1.判断下列说法是否正确.(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数;(4)无理数都是实数;(5)实数都是无理数.解:(1)错.如1.333…是无限小数但是有理数;(2)是正确的;(3)错误的. 如-、都是带根号的数,但它们不是无理数;(4)正确;(5)错.如,0,-3等都是实数,但不是无理数.2.求下列各数的相反数、倒数和绝对值.(1);(2);(3).解:(1)的相反数为-,倒数为,绝对值为;(2)=-2的相反数为2,倒数为-,绝对值为2;(3)=7,7的相反数为-7,倒数为;绝对值为7.3.在数轴上作出对应的点.解:如图,点A所表示的点即为对应的点.比较下列各组数的大小:(1);(2)-π与-;(3)2与3;(4)5+2与6+2. 解:(1)∵(7)2=56.25,而56.25>50∴,即7>;(2)-=-3.1428…,-π=-3.1415…∴-π>-;(3)采用平方法∵(2)2=60,(3)2=54而60>54 ∴2>3;(4)∵6+2=5+(1+2)以下采用平方法比较2与1+2的大小.(2)2=24,(1+2)2=1+4+20=21+4,又24=21+3,而3<4∴5+2<6+2.说明:被开方数较大的算术平方根较大.Ⅳ.课时小结本节课学了如下内容:1.实数的概念.2.实数的两种分类.(1)按大小分为:正实数,0,负实数.(2)按定义分为:有理数和无理数.3.在实数范围内,相反数,倒数,绝对值的意义仍然和在有理数范围内的意义相同.4.实数和数轴上的点是一一对应的.5.根据实数在数轴上的位置比较实数的大小.Ⅴ.课后作业习题2.8Ⅵ.活动与探究1.写出适合下列条件的数.(1)大于-小于的所有整数;(2)小于的所有自然数;(3)大于-的所有负整数;(4)绝对值小于的所有整数.分析:首先找到满足条件的最大数和最小数,然后再将它们之间的所有满足条件的数都写出来.解:(1)∵-<-<∴大于-且小于的所有整数是:-3,-2,-1,0,1,2.(2)∵∴小于的所有自然数是:4,3,2,1,0.(3)∵-∴大于-的所有负整数是:-3,-2,-1.(4)∵绝对值小于的数x,满足-<x<,而-<-<∴绝对值小于的所有整数是:-2,-1,0,1,2.说明:两个负数比较大小,绝对值大的反而小.2.求满足下列各式的x的值.(1)|x|=(2)|x2-5|=4分析:根据绝对值的概念,正实数的绝对值是它本身,负实数的绝对值是它的相反数.所以(1)中的x既可以是正实数,也可以是负实数.(2)把(x2-5)视作一个整体,类似于(1).解:(1)∵|x|=∴x=±(2)∵|x2-5|=4∴x2-5=±4当x2-5=4时x2=9∴x=±3当x2-5=-4时x2=1∴x=±1∴满足等式的x的值为-3,-1,1,3说明:互为相反数的二数的绝对值相等,即|a|=|-a|.3.已知x是实数,化简|3x-1|-|2x+1|.分析:设法脱掉绝对值符号,但x的范围没有具体给定,所以应讨论,具体方法是:(1)找零点:令3x-1=,x=,令2x+1=0,x=-;(2)描零点:在数轴上找出零点;(3)分区间:两个零点把实数轴所表示的数分成三个区间:x≤-,-<x≤,x>;(4)作化简:在各个区间上分别去绝对值符号,进行化简.解:(1)当x≤-时,3x-1<0,2x+1≤0原式=(1-3x)+(2x+1)=2-x.(2)当-<x≤时,3x-1≤0,2x+1>0原式=(1-3x)-(2x+1)=-5x.(3)当x>时,3x-1>0,2x+1>0原式=(3x-1)-(2x+1)=x-2.说明:在实数范围内的运算中,去绝对值符号时根据字母的取值范围确定绝对值符号内数的正、负、零,进行变形.否则就要分类讨论,借助于数轴把实数分为若干个区间,在每个区间内根据数的范围分别去掉绝对号,再进行合并同类项即可,这样形象、直观、简明,且可保证不重不漏.板书设计§2.6.1实数(一)一、实数的定义二、实数的分类三、在实数范围内的几个概念.四、实数与数轴上的点之间的关系.五、课堂练习六、课时小结七、作业。

实数 教案

实数  教案

实数教案实数教学设计篇一一。

教学目标知识与技能目标:掌握实数运算的法则和运算顺序,会用计算器进行简单的混合运算,并解决一些简单的实际问题。

过程与方法目标:通过回顾有理数的运算法则和运算律,了解有理数的运算法则和运算律在实数范围内同样适用。

情感与态度目标:通过计算器的使用,提高学生的应用意识;通过对实际问题的解决,体验数学的应用性特点。

二。

教学重点和难点教学重点:掌握实数运算的法则和顺序。

教学难点:例2的算式比较复杂,是本节课的难点。

三。

教学过程1.承上启下,口答复习师:请同学们快速口答下列几个题目①②③④⑤⑥⑦⑧师:⑤--⑧这四个算式是属于实数的运算,同学们来思考一下:实数的运算与我们在第二章学习的有理数的运算有什么相同与不同之处吗?引出课题:实数的运算2.师生互动,讲授新课师:那我们先来回顾一下第二章都学习过哪些有理数的运算法则和运算律?我们把它总结出来。

加法减法乘法除法乘方运算法则加法法则减法法则乘法法则除法法则,除法转化为乘法的法则乘方的法则运算律加法交换律和结合律乘法交换律;乘法结合律;分配律师:下面请同学们思考这些运算律和运算法则在实数范围内是否仍然成立?请以四人为一小组讨论,举例来证明你们的结论。

(要求学生每种运算法则和运算律都要举一个例子出来)引导学生:实数的运算与有理数的运算之间就是增加了无理数的运算,无理数的运算是否满足这些运算律与运算法则呢?出示多组学生的例子,得出结论:数从有理数扩展到实数后,有理数的运算法则和运算律在实数范围同样适用。

师:有理数的加,减,乘除的运算法则在实数范围内适用,那么有理数混合运算的法则是否也适用呢?请同学们与自己的同桌进行讨论,同样要举例说明。

(要引导学生思考:在实数范围内,有哪几种运算?这些运算的顺序与有理数混合运算的顺序有什么相同与不同之处?)选择合适的例子说明:在实数范围内,增加了开方运算,并且开方运算与乘方运算是同级运算。

得出结论:实数运算的顺序是先算乘方和开方,再算乘除,最后算加减,如果遇到括号,则先进行括号里的运算。

初一下册数学实数教案

初一下册数学实数教案

初一下册数学实数教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初一下册数学实数教案教案一、实数的概念和表示一、教学目标:1.了解实数的概念和特征;2.能够用数轴表示实数;3.能够正确区分整数、有理数和无理数。

实数教案(1)(八上)

实数教案(1)(八上)

数学苏科版八年级上册p57教案中兴初中数学教研组内容:2.5实数(1)学习目标:1、知道无理数是客观存在的,了解无理数和实数的概念,能对实数按要求进行分类,同时会判断一个数是有理数还是无理数。

2、知道实数和数轴上的点一一对应的关系。

3、经历用有理数估算2的探索过程,从中感受“逼近”的数学思想,发展数感和估算能力,激发学生的探索创新精神。

学习重点:会判断一个数是有理数还是无理数。

学习难点:2是无理数,2有多大?学习过程:一.情境创设1、边长为1的正方形的对角线的长是多少?2、2是一个怎样的数?说说你对2的认识。

3、一个直角三角形,直角边均为1,斜边为多少?你认识这个数吗?4、2是一个有理数,它的算术平方根为多少?是一个有理数吗?5、能在数轴上画出表示2的点吗?能画出来说明什么?二.探索活动1、2是一个整数吗?2、2是1与2之间的一个分数吗?(也就是1与2之间的分数的平方会等于2吗?)3、2是有理数吗?(两者都不是,就说明2不是有理数)4、2有多大?(在做第4题时,启发学生根据第2题确定范围的方法来进一步确定2的百分位是多少?再确定千分位的值,直到保留四位小数、五位小数等。

这里要感受“逼近”的数学思想)2是一个无限不循环小数。

无限不循环小数统称为无理数.举例说明:无限不循环小数、圆周率、开方开不尽的数(42有区别) 实数的分类实数与数轴上的点是什么关系?三、 例题213、38-、0、27、3∏、5.0、3.14159、-0.020020002 、— 31 、0.12121121112… (1)有理数集合{ }(2)无理数集合{ }(3)正实数集合{ }(4)负实数集合{ } 分析:要正确地将以上各数分类,就必须用概念来判定。

注意3∏不是分数。

四、 练习练习一:p58:1。

练习二:判断正误,若不对,请说明理由,并加以改正。

1、带根号的数是无理数,无理数是带根号的数。

2、无限小数是无理数,无理数是无限小数。

七年级人教版数学下册教案:6.3.1 实数(第一课时)

七年级人教版数学下册教案:6.3.1 实数(第一课时)

武陟县实验中学群体智慧教学活动案学 科数 学 年级 七年 级设计者个性备课时 间课题6.3实数(第一课时)计划学时2课时重 点1.了解无理数和实数的概念;2.对实数进行分类。

课 标 要 求 1.了解无理数和实数的概念以及实数的分类; 2.知道实数与数轴上的点具有一一对应的关系。

课 时 目 标 在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类引 桥 突 破 把无理数在数轴上表示出来,得到实数与数轴上的点是一一对应的关系。

教 法 自学引导 巩固练习 学 法 自主探究 小组合作教学内容 及过程群体智慧设计个性化批注一、复习引入无理数:把下列有理数95,119,847,53,3-写成小数的形式,它们有什么特征?发现上面的有理数都可以写成有限小数或无限循环小数的形式即:5.095,18.0119,875.5847,6.053,0.33 ===-=-=归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,反过来,任何有限小数或者无限循环小数也都是有理数。

通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,把无限不循环小数叫做无理数。

比如33,5,2-等都是无理数。

14159265.3=π…也是无理数。

二、实数及其分类:1、实数的概念:有理数和无理数统称为实数。

2、实数的分类:按照定义分类如下:实数⎪⎩⎪⎨⎧⎩⎨⎧数)无理数(无限不循环小小数)(有限小数或无限循环分数整数有理数 按照正负分类如下:实数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数零负无理数正有理数正实数 3、实数与数轴上点的关系:我们知道每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点表示出来吗?活动:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是2以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点就是2-。

华师版数学八年级上册11 实 数(1课时)教案与反思

华师版数学八年级上册11 实 数(1课时)教案与反思

11.2 实数前事不忘,后事之师。

《战国策·赵策》圣哲学校蔡雨欣一、基本目标1.理解无理数与实数的概念,掌握实数的分类.2.理解实数与数轴上的点的一一对应关系,能估计某些无理数的大小,会进行简单的实数运算.二、重难点目标【教学重点】无理数与实数的概念,实数的有关概念及其分类.【教学难点】实数与数轴上的点的一一对应关系,实数的大小比较与运算.环节1 自学提纲,生成问题【5 min阅读】阅读教材P8~P11的内容,完成下面练习.【3 min反馈】1.无理数与实数的概念:无限不循环小数叫做无理数,有理数和无理数统称实数.2.从有理数扩充到实数以后,实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一点都表示一个实数.3.在实数范围内,相反数、绝对值、倒数的意义和求法与有理数范围内的相反数、绝对值、倒数的意义和求法完全相同,有理数的大小比较的方法、运算法则以及运算律,对于实数仍然适用.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】将下列各数填入集合中:-53,3,16,23,5π,25,π,12,0,-3,3,- 5. 有理数集合:{ ...};无理数集合:{ ...};正整数集合:{ ...};分数集合:{ ...}.【互动探索】(引发学生思考)实数分为哪几类?分类时应该注意些什么?【解答】有理数集合:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-53,16,12,0,- 3,3,...; 理数集合:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3,23,5π,25,π,-5,...; 正整数集合:{}16,3 ,...;分数集合:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ -53,12,.... 【互动总结】(学生总结,老师点评)有理数和无理数统称实数,有理数包括整数和分数.分类时注意错误!是无理数,而不是一个分数,分数的分子与分母必须是整数.【例2】比较下列各组数的大小: (1)2与1.5; (2)30.5与23. 【互动探索】(引发学生思考)一组数内的两个数的形式不同,要比较大小,需先统一形式,再比较大小.【解答】(1)因为1.52=2.25,所以1.5是2.25的算术平方根,即 2.5=1.5.因为2<2.25,所以2<1.5.(2)错误!3=错误!,所以错误!是错误!的立方根,即错误!=错误!.因为0.5>827,所以23. 【互动总结】(学生总结,老师点评)比较正有理数与带根号的正无理数的大小,常将正有理数转化为一个带根号的数,用比较被开方数的大小的方法比较正有理数和正无理数的大小.活动2 巩固练习(学生独学)1.下列各数中,是无理数的是( B )A . 4B .πC .15D .2.已知实数a =11,数轴上表示实数a 的点的位置正确的是( C )3.比较大小:15__<___ 365.4.计算:(1)38+||3-2-23; (2)4+||-2+3-27+()-12018.解:(1)原式=2+2-3-23=4-3 3.(2)原式=2+2-3+1=2.活动3 拓展延伸(学生对学)【例3】已知a 是8的整数部分,b 是10的整数部分,求a +b 的值. 【互动探索】要求a +b 的值,需要先求出a 和b 的值. 【解答】因为4<8<9,9<10<16,所以2<8<3,3<10<4.因为a 是8的整数部分,b 是10的整数部分,所以a =2,b =3,所以a +b =5.【互动总结】(学生总结,老师点评)要确定m 的整数部分,先要找到m 位于哪两个连续整数之间.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!【素材积累】每个人对未来都有所希望和计划,立志是成功的起点,有了壮志和不懈的努力,旧能向成功迈进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁教版七年级上册第四章实数第六节第一课时教案 教材分析:
本节内容是对初中数的总结,是对有理数和无理数的归一,将有理数范围内的相反数、倒数、绝对值的意义扩展到实数范围内,借助数轴表示无理数体现数轴上的点与实数一一对应的关系。

既要复习旧知识,又要对旧知识重新整合提升,是一节老树发新芽的课型。

学生分析:
学生对有理数和平方根已有初步的了解,也已经了解近似数,掌握计算器的简单运用。

对于相反数、倒数、绝对值的意义因为时间跨度长,知识遗忘不少,应及时复习。

设计理念:
让学生主动参与合作交流, 探索、发现,注重知识形成的过程
教学目标:
1、了解实数的意义,能对实数按要求进行分类。

2、了解实数范围内,相反数、倒数、绝对值的意义。

3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。

重点、难点:
重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

难点:用数轴上的点来表示无理数。

教学过程:
一、创设问题情景,引出实数的概念
1、知识回顾:填空、有理数的分类方法、无理数的分类方法(PPT )
2、把下列各数分别填入相应的集合内。

(先由学生自己填在课本上,然后前后位四人一组统一答案。


32,41,7,π,25-,2,320,5-,38-,9
4,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)
有理数集合 无理数集合
教师引导学生得出实数概念:有理数和无理数统称实数(real number )。

教师点明:实数可分为有理数与无理数。

(PPT )这是按照实数的定义来分类,即: 整数
有理数 实数 分数
无理数
二、知识整合提升
1、知识整合:按照实数的性质符号对实数进行分类。

无理数与有理数一样,也有正负之分,如3是正的,π-是负的。

教师提出以下问题,让学生思考:
(1)你能把32,41,7,π,25-,2,320,5-,38-,9
4,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?(PPT )
正数集合 负数集合
(2)0属于正数吗?0属于负数吗?
(3)实数除了可以分为有理数与无理数外,实数还可怎样分?(先让学生独立思考上面三个问题,然后分组讨论。


让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。

即: 正有理数
正实数
正无理数
实数 0 负有理数
负实数
负无理数
2、知识提升:了解实数范围内相反数、倒数、绝对值的意义:
(A )大家还记得怎样求一个有理数的相反数、绝对值和倒数吗?试试看。

(B )在有理数中,有理数a 的的相反数、绝对值是什么?不为0的数a 的倒数是什么?
(C )想一想:2的相反数是什么?35的倒数是什么?
在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

例如,2和2-是互为相反数,35和351互为倒数。

33=,00=,ππ=-,33-=-ππ。

(D )练习:填空(PPT )
(E )想一想
让学生思考以下问题
1、a 是一个实数,它的相反数为 ,绝对值为 ;
2、如果0≠a ,那么它的倒数为 。

(教师指明:0没有倒数)
三、探索用数轴上的点来表示无理数
1、复习勾股定理。

填空
2、让学生探讨课本议一议的两个问题:
(A )如图OA=OB ,数轴上A 点对应的数是多少?
(B )如果将所有有理数都标到数轴上,那么数轴上被填满了吗? 让学生充分思考交流后,引导学生达成以下共识:
(1)A 点对应的数等于2,它介于1与2之间。

(2)如果将所有有理数都标到数轴上,数轴未被填满,在数轴上还可以表示无理数。

(3)每一个褛都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

(4)一样地,在数轴上,右边的点比左边的点表示的数大。

3、练习:在数轴上画出表示5
四、知识巩固
随堂练习1、2
五、我的收获
1、实数的概念
2、实数的两种分类
3、实数a 的相反数为a -,绝对值a ,若0≠a ,它的倒数为
a 1。

4、利用勾股定理在数轴上表示无理数
5、数轴上的点和实数一一对应。

六、作业
习题4.8 1、2、3。

相关文档
最新文档