高三力学计算题复习
13力学计算题 专题
专题十三 力学计算题力与运动命题特点:考查受力分析。
用牛顿第二定理求加速度;普遍涉及多个过程;匀变速直线运动规律方程;水平面、斜面、竖直方向都有可能被考查;少数情况会有多个对象,若有多个对象往往涉及动量守恒、追及相遇问题。
处理方法:重视画好受力分析图,规范列式。
拆分运动过程,明确运动性质和初末节点,必要时可适当用v-t 图来辅助运动过程的分析。
1. (2021广州一模)(10分)如图,单人双桨赛艇比赛中,运动员用双桨同步划水使赛艇沿直线运动。
运动员每次动作分为划水和空中运桨两个阶段。
假设划水和空中运桨用时均为0.8s ,赛艇(含运动员、双桨)质量为70kg ,受到的阻力恒定,划水时双桨产生动力大小为赛艇所受阻力的2倍。
某时刻双桨刚入水时赛艇的速度大小为4m/s ,紧接着运动员完成1次动作,此过程赛艇前进8m 。
求 (1)划水和空中运桨两阶段赛艇的加速度大小之比; (2)赛艇的最大速度大小和受到的恒定阻力大小。
2. (2021广东省四校)随着冬天的来临,虽然我国的新冠病毒疫情已经被控制得非常好,但人们仍然不敢大意,大家勤洗手,常戴口罩,减少不必要的接触。
在广州市的餐馆里,出现了一批特殊的“工作人员”——人工智能机器人,他们担负起送餐的职责。
送餐时,餐盘被放在水平托盘中央,边缘不与护栏接触。
某时刻,天娱广场某餐馆正在一动不动地“休息”的机器人小美,在得到送餐指令后,沿预定的路径开始做加速度大小为a 1的匀加速直线运动,当他的速度大小为v =1m/s 时,他发现正前方不远处站着一位顾客,于是立即制动做匀减速直线运动,在顾客前及时停下。
若减速运动的加速度大小a 2=2a 1,小美运动的总时间为t =3s 。
(不考虑反应时间,重力加速度g 取10m/s 2。
)求: (1)小美减速运动的时间t 2;(2)为使制动时,餐盘不会与水平托盘发生相对滑动,餐盘与托盘间的静摩擦系数μ至少为多少?(静摩擦系数等于最大静摩擦力与正压力之比。
力学复习题答案
练 习 卷一、选择:1、沿直线运动的质点,其运动学方程为320et ct bt x x+++=(0x 、b 、c 、e 是常数)。
则初始时刻,质点的坐标、速度和加速度分别为( D )A .0x 、b 和c ;B .0x 、b 和c +e ;C .0x 、b 和2c +3e ;D .0x 、b 和2c ;2.一质点在平面上运动,质点的位矢的表达式为j bt i at r 22+=,其中a ,b 为常量,则该质点作( B )(A )匀速直线运动; (B )匀变速直线运动;(C )抛物线运动; (D )一般曲线运动.j bt i at v 22+=为时间的函数,x=at 2,y=bt 2 ,x/y =a/b=常数 所以为匀变速直线运动。
3.一物体从静止沿长度为L 的无摩擦斜面下滑,当其速度达到底部速度的一半时,它沿斜面下滑的长度为( B ) (A )2L ; (B )4L ; (C ; (D )34L .4.用铁锤将一铁钉击入木板,铁钉受到的阻力与其进入木板内的深度成正比。
设铁锤两次击打的速度相同,因而对铁钉所作的功也相同,已知第一次把铁钉击入木板内1cm ,则第二次继续击入的深度为[ D ] (A )1/2cm ;(B )1cm ;(C )2cm ;(D )12-cm.5.下列说法中哪一个正确?[ A ] (A)物体的动量不变,动能也不变; (B)物体的动能不变,动量也不变; (C)物体的动量变化,动能也一定变化; (D)物体的动能变化,动量却不一定变化.6.用锤压钉不易将钉压入木块内,用锤击钉则很容易将钉击入木块,这是因为( D ) (A)前者遇到的阻力大,后者遇到的阻力小; (B)前者动量守恒,后者动量不守恒; (C)后者动量大,给钉的作用力就大;(D)后者动量变化率大,给钉的作用冲力就大;7.一人张开双臂,手握哑铃,坐在转椅上,让转椅转动起来,若此后无外力矩作用,则当此人收回双臂时,人和转椅这一系统的为( D ) (A)转速加大,角动量变小; (B)角动量和转速都不变; (C)转速和角动量都加大;(D)角动量保持不变,转速加大。
高考物理模拟专题力学计算题(三十)含答案与解析
高考物理力学计算题(三十)含答案与解析评卷人得分一.计算题(共40小题)1.观光旅游、科学考察经常利用热气球,保证热气球的安全就十分重要。
科研人员进行科学考察时,气球、座舱、压舱物和科研人员的总质量为为M=1000kg,在空中停留一段时间后,由于某种故障,气球受到的空气浮力减小,当科研人员发现气球在竖直下降时,气球速度为v0=2m/s,此时开始,经t0=4s气球继续匀加速下降h1=16m,科研人员立即抛掉一些压舱物,使气球匀速下降。
不考虑气球由于运动而受到的空气阻力。
求:(1)气球加速下降阶段的加速度大小a:(2)抛掉压舱物的质量m:(3)气球从静止开始经过t=12s的时间内下落的总高度h总。
2.如图甲所示为一景区游乐滑道,游客坐在坐垫上沿着花岗岩滑道下滑,他可依靠手脚与侧壁间的摩擦来控制下滑速度。
滑道简化图如图乙所示,滑道由AB、BC、CD三段组成,各段之间平滑连接。
AB段和CD段与水平面夹角为θ1,竖直距离均为h0,BC段与水平面夹角为θ2,竖直距离为h0.一质量为m的游客从A点由静止开始下滑,到达底端D 点时的安全速度不得大于,若使用坐垫,坐垫与滑道底面间摩擦不计,若未使用坐垫,游客与各段滑道底面间的摩擦力大小恒为重力的0.1倍,运动过程中游客始终不离开滑道,空气阻力不计。
已知sinθ1=,sinθ1=,求(1)若游客使用坐垫且与侧壁间无摩擦自由下滑,则游客在BC段增加的动能△E k;(2)若游客未使用坐垫且与侧壁间无摩擦自由下滑,则游客到达D点时是否安全;(3)若游客使用坐垫下滑,且游客安全到达D点,则全过程克服侧壁摩擦力做功的最小值。
3.如图所示,枭龙战机为中国和巴基斯坦联合研制的多用途战斗机。
在一次试飞任务中,质量m=60kg的驾驶员驾驶战斗机径直向上运动,从某一时刻起以恒定加速度a加速上升,10s后竖直方向速度大小为20m/s,接下来10s内竖直爬升了300m,之后在竖直方向做匀减速运动,再经过20s到达最高点,求:(1)枭龙战机在加速上升过程中的加速度;(2)前20s内座位对驾驶员的支持力大小;(3)这40s内枭龙战斗机在竖直方向上的位移。
力学计算题题专练
高三物理复习资料-力学计算题专练班级学号姓名★两种典型的碰撞模型1.“一动碰一静”弹性正碰:如下图所示,一个动量为m1v1的小球,与一个静止的质量为m2的小球发生弹性正碰,按要求回答问题:①若碰后两球的速度分别为v1’及v2’,试写出碰撞过程中满足的关系式。
②求出碰后两球的速度v1’和v2’(用m1、m2、 v1表示出来)③试讨论碰后v1’的方向2.“一动碰一静”完全非弹性碰撞:如图所示,在光滑水平面上,有一块静止的质量为M的木块,一颗初动量为mv0的子弹,水平射入木块并留入其中,若冲击过程中阻力f恒定。
按要求回答问题:①若碰后两球的速度为v,试写出碰撞过程中满足的关系式。
并求出速度v的大小。
②试求出撞击过程中动能的损失量③试求出撞击过程中产生的热量④试求木块移动的距离S⑤试求子弹打入木块的深度d3.如图,木板A静止在光滑水平面上,其左端与固定台阶相距x.与滑块B(可视为质点)相连的细线一端固定在O点.水平拉直细线并给B一个竖直向下的初速度,当B到达最低点时,细线恰好被拉断,B从A右端的上表面水平滑入.A与台阶碰撞无机械能损失,不计空气阻力.已知A的质量为2m,B的质量为m,A、B之间动摩擦因数为μ;细线长为L、能承受的最大拉力为B重力的5倍;A足够长,B不会从A表面滑出;重力加速度为g.(1)求B的初速度大小v0和细线被拉断瞬间B的速度大小v1(2)A与台阶只发生一次碰撞,求x满足的条件(3)x在满足(2)条件下,讨论A与台阶碰撞前瞬间的速度4.如图所示,质量为M的小球用长为R=0.45m的细绳固定于O点,从A(与O点等高)处由静M的物块弹性正碰。
重力加速度g=10m/s2止释放,与O点正下方B点处质量为21)求小球碰后能上升的高度h2)已知粗糙水平地面BC及传送带的动摩擦因数均为μ=0.2,传送带长为0.5l m,顺时针匀速转动,速度大小为υ=2m/s,DE、EF、FH的长度均为S=0.4m。
高中物理 20个力学经典计算题汇总及解析
高中物理 20个力学经典计算题汇总及解析1. 概述在力学领域中,经典的计算题是学习和理解物理知识的重要一环。
通过解题,我们能更深入地了解力学概念,提高解决问题的能力。
在本文中,我将为您带来高中物理领域中的20个经典力学计算题,并对每个问题进行详细解析,以供您参考和学习。
2. 一维运动1) 题目:一辆汽车以30m/s的速度行驶,经过10秒后匀减速停下,求汽车减速的大小和汽车在这段时间内行驶的距离。
解析:根据公式v=at和s=vt-0.5at^2,首先可求得汽车减速度a=3m/s^2,然后再求出汽车行驶的距离s=30*10-0.5*3*10^2=150m。
3. 二维运动2) 题目:一个质点在竖直平面内做抛体运动,初速度为20m/s,抛体初位置为离地30m的位置,求t=2s时质点的速度和所在位置。
解析:首先利用v=vo+gt求得t=2s时的速度v=20-9.8*2=-19.6m/s,然后再利用s=s0+vo*t-0.5gt^2求得t=2s时的位置s=30+20*2-0.5*9.8*2^2=30+40-19.6=50.4m。
1. 牛顿运动定律3) 题目:质量为2kg的物体受到一个5N的力,求物体的加速度。
解析:根据牛顿第二定律F=ma,可求得物体的加速度a=5/2=2.5m/s^2。
2. 牛顿普适定律4) 题目:一个质量为5kg的物体受到一个力,在10s内速度从2m/s 增加到12m/s,求物体受到的力的大小。
解析:利用牛顿第二定律F=ma,可求得物体受到的力F=5*(12-2)/10=5N。
3. 弹力5) 题目:一个质点的质量为4kg,受到一个弹簧的拉力,拉力大小为8N,求弹簧的弹性系数。
解析:根据弹簧的胡克定律F=kx,可求得弹簧的弹性系数k=8/0.2=40N/m。
4. 摩擦力6) 题目:一个质量为6kg的物体受到一个10N的水平力,地面对其的摩擦力为4N,求物体的加速度。
解析:首先计算摩擦力是否达到最大值f=μN=6*10=60N,由于摩擦力小于最大值,所以物体的加速度a=10-4/6=1m/s^2。
高考物理力学计算题(五)含答案与解析
高考物理力学计算题(五)组卷老师:莫老师一.计算题(共50小题)1.如图所示,质量为m3=2kg的滑道静止在光滑的水平面上,滑道的AB部分是半径为R=0.15m的四分之一圆弧,圆心O在B点正上方,其他部分水平,在滑道右侧固定一轻弹簧,滑道除CD部分粗糙外其他部分均光滑.质量为m2=3kg 的物体2(可视为质点)放在滑道上的B点,现让质量为m1=1kg的物体1(可视为质点)自A点上方R处由静止释放.两物体在滑道上的C点相碰后粘在一起(g=10m/s2),求:(1)物体1第一次到达B点时的速度大小;(2)B点和C点之间的距离;(3)若CD=0.06m,两物体与滑道CD部分间的动摩擦因数都为μ=0.15,则两物体最后一次压缩弹簧时,求弹簧的最大弹性势能的大小.2.如图所示,质量m=1.1kg的物体(可视为质点)用细绳拴住,放在水平传送带的右端,物体和传送带之间的动摩擦因数μ=0.5,传送带的长度L=5m,当传送带以v=5m/s的速度做逆时针转动时,绳与水平方向的夹角θ=37°.已知:g=l0m/s2,sin37°=0.6,cos37°=0.8.求:(1)传送带稳定运动时绳子的拉力T;(2)某时刻剪断绳子,求物体运动至传送带最左端所用时间.3.如图,粗糙直轨道AB长s=1.6m,与水平方向的夹角θ=37°;曲线轨道BC光滑且足够长,它们在B处光滑连接.一质量m=0.2kg的小环静止在A点,在平行于斜面向上的恒定拉力F的作用下,经过t=0.8s运动到B点,然后撤去拉力F.小环与斜面间动摩擦因数μ=0.4.(g取10m/s2,sin37°=0.6,cos37°=0.8)求:(1)拉力F的大小;(2)小环沿BC轨道上升的最大高度h.4.如图所示,一倾斜的传送带,上、下两端相距L=5m,倾角α=37°,将一物块轻放在传送带下端,让其由静止从传送带底端向上运动,物块运动到上端需要的时间为t=5s,传送带沿顺时针方向转动,速度大小为2m/s,重力加速度g取10m/s2,求(1)物块与传送带间的动摩擦因数,(2)若将传送带沿逆时针方向转动,速度大小不变,再将另一物块轻轻放在传送带的上端,让其由静止从传送带上端向下运动,物块与传送带间的动摩擦因数为0.5,则该物块从传送带上端运动到下端所用的时间为多少?5.如图所示,可看成质点的A物体叠放在上表面光滑的B物体上,一起以v0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C发生碰撞,碰撞后B、C的速度相同,B、C的上表面相平且B、C不粘连,A滑上C 后恰好能到达C板的右端.已知A、B质量相等,C的质量为A的质量的2倍,木板C长为L,重力加速度为g.求:(1)A物体与木板C上表面间的动摩擦因数;(2)当A刚到C的右端时,BC相距多远?6.如图所示,木块m2静止在高h=0.8m的水平桌面的最右端,木块m1静止在距m2左侧s0=5m处,现木块m1在水平拉力F作用下由静止开始沿水平桌面向右移动,与m2碰前瞬间碰撞撤去F,m1、m2发生弹性正碰,碰后m2落在水平地面上,落点距桌面右端水平距离s=1.6m.已知m1=0.2kg,m2=0.3kg,m1与桌面的动摩擦因素μ=0.4.(两木块都可以视为质点,g=10m/s2)求:(1)碰后瞬间m2的速度是多少?(2)m1碰撞前后的速度分别是多少?(3)水平拉力F的大小?7.如图所示,一质量m=1kg的小物块(可视为质点),放置在质量M=4kg的长木板左侧,长木板放置在光滑的水平面上。
高考物理历年真题-力学综合计算题10道及答案解析
高考物理历年真题-力学综合计算题10道及答案解析
- 题目一:
一个圆柱体半径R和质量m用绳子连接到一条竖直支架上,
该支架上仍有另一端的绳子,使用Newton定律可以知道,当
绳子拉长的距离为L时,它的线速度v及角速度ω分别为多少?
解:
根据牛顿定律,在围绕支架旋转的圆柱体m的力F = ma,其
中m是质量,a是圆柱体的加速度。
而加速度的表达式可以写成:a = v2/r,其中r是竖直支架的半径。
于是,有:F = mv2/r。
根据力的定义F = mω2L,可以得到:ω2 = F/mL = v2/rL。
于是,就可以得到绳子拉长距离为L时,线速度v及角速度ω
分别为:v = √(rF/m),ω = √(F/(mL)).
- 题目二:
一个质量为m2的圆柱体在水中自由落体,同时,一个质量
为m1的球体在水面上以初速度V移动,请问,当他们相遇时,球体的速度V'是多少?
解:
由于在物体相遇时,动能守恒,所以原球体速度V应该等于
最终球体速度V'。
水的阻力力大小可以用系数k表示,有F_water = kv (即
F_water = -kmv)。
令变量x表示球体的速度变化量,有:V = V + x,V' = V - x
根据动能守恒定律,有:m1V^2 / 2 + m2v^2/2 = m1(V + x)^2 / 2 + m2(V - x)^2 / 2
代入m1V^2 / 2、m2v^2/2以及F_water,则可以求得最终球体速度V':
V' = V - (k/2)(m1 + m2)V。
高考物理力学计算题(十二)含答案与解析
高考物理力学计算题(十二)组卷老师:莫老师一.计算题(共50小题)1.如图甲所示为一景区游乐滑道,游客坐在座垫上沿着花岗岩滑道下滑,他可依靠手、脚与侧壁间的摩擦来控制下滑速度.滑道简化图如图乙所示,滑道由AB、BC、CD三段组成,各段之间平滑连接.AB段和CD段与水平面夹角为θ1,竖直距离均为h0,BC段与水平面夹角为θ2,竖直距离为h0.一质量为m的游客从A点由静止开始下滑,到达底端D点时的安全速度不得大于2gh0,已知sinθ1=、sinθ2=,座垫与滑道底面间摩擦及空气阻力均不计,若未使用座垫,游客与滑道底面间的摩擦力大小f恒为重力的0.1倍,运动过程中游客始终不离开滑道,问:(1)游客使用座垫自由下落(即与侧壁间无摩擦),则游客在BC段增加的动能△E k多大?(2)若游客未使用座垫且与侧壁间无摩擦下滑,则游客到达D点时是否安全?(3)若游客使用座垫下滑,则克服侧壁摩擦力做功的最小值.2.如图所示,质量为m2=1.95kg的长木板B,静止在粗糙的水平地面上,质量为m3=1.00kg的物块 C (可视为质点)放在长木板的最右端.一个质量为m1=0.05kg的子弹A以速度v0=360m/s向着长木板运动.子弹打入长木板并留在其中(子弹打入长木板的时间极短),整个过程物块C始终在长木板上.已知长木板与地面间的动摩擦因数为μ1=0.20,物块C与长木板间的动摩擦因数μ2=0.40,物块C与长木板间的最大静摩擦力等于滑动摩擦力,g取10m/s2,求:(1)子弹打入长木板后瞬间长木板B的速度;(2)长木板B的最小长度.3.一个静止的铀核(U)要放出一个α粒子变成钍核(Th),已知α粒子动能为E k1,且在核反应中释放的能量全部转化为两个粒子的动能.(已知真空中的光速为c),求:①钍核的动能②该核反应中的质量亏损.4.如图所示,在高h=0.8m的水平平台上放置有质量均为m=1kg的A、B两木块(可视为质点),B在平台右端边缘,A从与B相距L=2m处以一定的水平初速度向右运动,运动到处时速度v1=m/s.运动到平台边缘时与B相撞并粘在一起,从平台边缘滑出落在距平台右侧水平距离S=0.4m的地面上,g取10m/s2,求:(1)AB一起滑出时的速度v,及碰前瞬间物体A的速度v2;(2)物体A的初速度v0;(3)物体在平台滑动过程中产生的热量Q。
【高考物理一轮力学专题复习】 计算题专练(含解析)
【备考2022 高考物理一轮力学专题复习】计算题专练(含解析)1.我国规定摩托车、电动自行车骑乘人员必须依法佩戴具有缓冲作用的安全头盔。
小明对某轻质头盔的安全性能进行了模拟实验检测。
某次,他在头盔中装入质量为5.0kg的物体(物体与头盔密切接触),使其从1.80m的高处自由落下(如图),并与水平地面发生碰撞,头盔厚度被挤压了0.03m时,物体的速度减小到零。
挤压过程不计物体重力,且视为匀减速直线运动,不考虑物体和地面的形变,忽略空气阻力,重力加速度g取210m/s。
求:(1)头盔接触地面前瞬间的速度大小;(2)物体做匀减速直线运动的时间;(3)物体在匀减速直线运动过程中所受平均作用力的大小。
2.如图所示的离心装置中,光滑水平轻杆固定在竖直转轴的O点,小圆环A和轻质弹簧套在轻杆上,长为2L的细线和弹簧两端分别固定于O和A,质量为m的小球B固定在细线的中点,装置静止时,细线与竖直方向的夹角为37︒,现将装置由静止缓慢加速转动,当细线与竖直方向的夹角增大到53︒时,A、B间细线的拉力恰好减小到︒=,零,弹簧弹力与静止时大小相等、方向相反,重力加速度为g,取sin370.6︒=,求:cos370.8(1)装置静止时,弹簧弹力的大小F;(2)环A的质量M;(3)上述过程中装置对A、B所做的总功W。
3.如图,一长木板在光滑的水平面上以速度v0向右做匀速直线运动,将一小滑块无初速地轻放在木板最右端。
已知滑块和木板的质量分别为m和2m,它们之间的动摩擦因数为μ,重力加速度为g。
(1)滑块相对木板静止时,求它们的共同速度大小;(2)某时刻木板速度是滑块的2倍,求此时滑块到木板最右端的距离;(3)若滑块轻放在木板最右端的同时,给木板施加一水平向右的外力,使得木板保持匀速直线运动,直到滑块相对木板静止,求此过程中滑块的运动时间以及外力所做的功。
4.一列沿x轴正方向传播的简谐横波,其波源的平衡位置在坐标原点,波源在0 ~ 4s 内的振动图像如图(a)所示,已知波的传播速度为0.5m/s。
力学计算题专题训练(附答案)
1.如图所示,平底茶壶的质量是400g,底面积是40cm2,内盛0.6kg的开水,放置在面积为1m2的水平桌面中央.试求:(1)水对茶壶底部的压强;(2)茶壶对桌面的压力;(3)茶壶对桌面的压强.【答案】解:(1)水对茶壶底部的压强:p=ρ水gℎ=1×103kg/m3×9.8N/kg×0.12m=1176Pa (2)茶壶对桌面的压力:F=mg=(m壶+m水)g=(0.4kg+0.6kg)×9.8N/kg=9.8N(3)壶对桌面的压强:p=FS =9.8N40×10−4m2=2.45×103Pa2.如图所示的容器中有一定质量的酒精,酒精的深度为20cm,A点距容器底12cm,酒精重24N,容器底面积为20cm2,(g=10N/kg,酒精的密度ρ=0.8×103kg/m3)求:(1)A点受到酒精的压强。
(2)容器底受到酒精的压强。
(3)容器底受到酒精的压力。
【答案】解:(1)A点深度ℎA=20cm−12cm=8cm=0.08mA点受到酒精的压强:p A=ρgℎA=0.8×103kg/m3×10N/kg×0.08m=640Pa(2)杯内酒精的深度:ℎ=20cm=0.2m杯底所受的压强:p=ρgℎ=0.8×103kg/m3×10N/kg×0.2m=1600Pa(3)由p=FS可得,杯底所受的压力:F=pS=1600Pa×20×10−4m2=3.2N3.将一未装满水密闭的矿泉水瓶,先正立放置在水平桌面上,再倒立放置,如图所示,瓶盖的面积是8cm2,瓶底的面积是28cm2,瓶重和厚度忽略不计(g取10N/kg)。
求:(1)倒立放置时瓶盖所受水的压力和压强;(2)倒立放置时矿泉水瓶对桌面的压强。
【答案】解:(1)倒立放置时瓶盖所受水的压强:p=ρgℎ倒立=1.0×103kg/m3×10N/kg×0.13m=1300Pa由p=FS可得,倒立放置时瓶盖所受水的压力:F=pS瓶盖=1300Pa×8×10−4m2=1.04N(2)由左图可知,矿泉水瓶内水的体积:V=S瓶底ℎ正立=28cm2×10cm=280cm3由ρ=mV可得,水的质量:m水=ρV=1.0g/cm3×280cm3=280g=0.28kg瓶重和厚度忽略不计,则倒立放置时矿泉水瓶对桌面的压力:F′=G水=m水g=0.28kg×10N/kg=2.8N,倒立放置时矿泉水瓶对桌面的压强:p′=F′S瓶盖= 2.8N8×10−4m2=3500Pa。
理论力学期末复习
讨论三种可能发生
FD f D FND 0.4 300N 120N, 的运动情况 FE f E FNE 0.2 643N 128.6N
Fx 0, FT1 FD FE 0
FT1 FD FE 248.6N
线圈架沿AB梁滚动而无滑动
FD f D FND , FE f E FNE =128.6 N
解:解除约束,画整体受力图
列平衡方程
M A F 0
•
FNB AB FT AD r FT DE r 0
FNB FT AD DE 120 2 1.5 kN 105 kN AB 4
FAy FNB FT 0
•
Fy 0
2-4-2 物系平衡问题解法
受力分析
① 首先从二力构件入手,可使受力图比较简单,易于求解。
② 解除约束时,要严格地按照约束的性质,画出相应的约 束力,切忌凭主观想象。对于一个销钉连接三个或三个以上物 体时,要明确所选对象中是否包括该销钉?解除了哪些约束? 然后正确画出相应的约束力。
③ 画受力图时,关键在于正确画出铰链约束力,除二力构
d FR
MO FR
FR 0 M O 0
FR 0
MO 0
合力 力螺旋
FR 0 M O 0 FR // MO
FR 0 M O 0 ( FR , MO )= 力螺旋
1-3-3 力系的最简形式
1.图示力系沿正方体棱边作用,F1=F2=F3=F,
三 点的复合运动
3-1 运动学基础(填空题) 3-2 点的复合运动概念 3-3 点的运动合成定理(注意科氏加速度) 3-4 点的复合运动问题(计算题2)
高考物理力学计算题(九)含答案与解析
高考物理力学计算题(九)组卷老师:莫老师一.计算题(共50小题)1.如图所示,某超市两辆相同的手推购物车质量均为m,相距l沿直线排列,静置于水平地面上.为节省收纳空间,工人给第一辆车一个瞬间的水平推力使其运动,并与第二辆车相碰,且在计算时间内相互嵌套结为一体,以共同速度运动了距离的,恰好停靠在墙边.若车运动时受到的摩擦力恒为车重的k倍.重力加速度为g,求:(1)购物车碰撞过程中系统损失的机械能;(2)工人给第一辆购物车的水平冲量大小.2.如图,长度x=5m的粗糙水平面PQ的左端固定一竖直挡板,右端Q处与水平传送带平滑连接,传送带以一定速率v逆时针转动,其上表面QM间距离为L=4m,MN无限长,M端与传送带平滑连接.物块A和B可视为质点,A的质量m=1.5kg,B的质量M=5.5kg.开始A静止在P处,B静止在Q处,现给A一个向右的初速度v o=8m/s,A运动一段时间后与B发生弹性碰撞,设A、B与传送带和水平面PQ、MN间的动摩擦因数均为μ=0.15,A与挡板的碰撞也无机械能损失.取重力加速度g=10m/s2,求:(1)A、B碰撞后瞬间的速度大小;(2)若传送带的速率为v=4m/s,试判断A、B能否再相遇,如果能相遇,求出相遇的位置;若不能相遇,求它们最终相距多远.3.如图所示,有一个可视为质点的质量为m=1kg的小物块,从光滑平台上的A 点以v0=2m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3kg的长木板,已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R=0.4m,C点和圆弧的圆心连线与竖直方向的夹角θ=60°,不计空气阻力,g取10m/s2.求:(1)小物块刚要到达圆弧轨道末端D点时对轨道的压力;(2)若长木板长度L=2.4m,小物块能否滑出长木板?4.为了方便研究物体与地球间的万有引力问题,通常将地球视为质量分布均匀的球体.已知地球的质量为M,半径为R,引力常量为G,不考虑空气阻力的影响.(1)求北极点的重力加速度的大小;(2)若“天宫二号”绕地球运动的轨道可视为圆周,其轨道距地面的高度为h,求“天宫二号”绕地球运行的周期和速率;(3)若已知地球质量M=6.0×1024kg,地球半径R=6400km,其自转周期T=24h,引力常量G=6.67×10﹣11N•m2/kg2.在赤道处地面有一质量为m的物体A,用W0表示物体A在赤道处地面上所受的重力,F0表示其在赤道处地面上所受的万有引力.请求出的值(结果保留1位有效数字),并以此为依据说明在处理万有引力和重力的关系时,为什么经常可以忽略地球自转的影响.5.如图所示,水平面上有一长度L=4m的薄凹槽,长L1=2m、质最M=1kg的薄板放在凹槽右侧D点静止,水平面两侧各有一个R=0.5m的半圆轨道.D点右侧静止一质量m=0.98kg的小木块.现有一颗质量m0=20g的子弹以V0=100m/s的速度射入木块,共速后滑上薄板,板与木块间动摩擦因数μ=0.05,其余一切摩擦不计.若薄板每次与C、D相碰后速度立即减为0且与C、D而不粘连,重力加速g=10m/s2,求:(1)子弹与木块碰后共同的速度为多大?(2)木块过圆弧B点时对B点压力为多大?(3)木块最终停止时离D点多远?6.如图所示,光滑的水平面上有一质量M=9kg的木板,其右端恰好和光滑固定网弧轨道AB的底端等高对接(木板的水平上表面与圆弧轨道相切),木板右端放有一质量m0=2kg的物体C(可视为质点),已知圆弧轨道半径R=0.9m.现将一质量m=4kg的小滑块(可视为质点),由轨道顶端A点无初速释放,滑块滑到B端后冲上木板,并与木板右端的物体C粘在一起沿木板向左滑行,最后恰好不从木板左端滑出.已知滑块与木板上表面的动摩擦因数μ1=0.25,物体C与木板上表面的动摩擦因数μ2=0.1.取g=10m/s2.求:(1)滑块到达圆弧的B端时,轨道对它的支持力大小F N.(2)木板的长度l.7.如图所示,光滑的水平面上,小球A以速率v0撞向正前方的静止小球B,碰后两球沿同一方向运动,且小球B的速率是A的4倍,已知小球A、B的质量别为2m、m.①求碰撞后A球的速率;②判断该碰撞是否为弹性碰撞.8.如图所示,可视为质点的物体AB质量均为m=10kg,它们之间用可遥控引爆的粘性炸药粘在一起.现将它们从光滑曲面上高度H=0.8m处由静止释放,曲面底端恰好和极薄的水平传送带的边缘相切.传送带两皮轮半径均为r=0.1m,均以角速度ω=30rad/s逆时针匀速转动,轮心间距为L=39.5m,皮带和轮间不打滑.已知两物体与传送带间的动摩擦因数均为μ=0.1,重力加速度g=10m/s2.则(1)若不启动引爆装置,求AB在水平传送带上运动的最远距离s以及此过程中AB和传送带之间由于摩擦而增加的内能Q;(2)若两物体在传送带上向右运动时启动引爆器,爆炸所用时间极短,最终物体B从传送带右端水平飞出,飞出时对传送带恰好无压力,物体A恰好回到最初的释放点,求引爆位置d.9.如图为某探究小组设计的简易运输系统;高度为h、倾角为300的固定斜面下端与水平面平滑连接,一劲度系数为k的轻质弹簧左端固定,自由伸长时右端恰好位于斜面下端;质量为M的木箱在斜面顶端时,自动装货装置将质量为m的货物装入木箱,然后木箱载着货物沿斜面无初速度滑下,然后压缩弹簧减速至速度为零时,自动卸货装置立即将货物卸下,然后木箱被弹回;已知水平面光滑,木箱与斜面间的动摩擦因数为μ=,重力加速度为g,求:(1)木箱在斜面上下滑的加速度大小a;(2)卸货的位置离斜面下端的距离d.10.有﹣个可视为质点的小物块,质量为m=lkg,小物块从光滑平台上的A点水平抛出,经过0.24s到达C点时,恰好沿C点的切线方问进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=2kg的长木板,如图所示,已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ=0.2,圆弧轨道的半径为R=5m,C点和圆弧的圆心连线与竖直方向的夹角θ=37°(sin37°=0.6),不计空气阻力,g取10m/s2,求:(1)小物块刚到达圆弧轨道末端D点时对轨道的压力;(2)要使小物块不滑出长木板,木板的长度L至少多大.(3)4s末木板右端到D的距离.11.如图所示,高为1.2h的光滑斜面体固定在水平面上,与水平面在C点平滑对接,D为斜面最高点,水平面左侧A处有一竖直弹性挡板.质量均为m的甲、乙两滑块可视为质点,静置在水平面上的B点,已知AB=h,BC=0.6h,两滑块与水平面间的动摩擦因数μ=0.5.现给滑块甲一水平向左的初速度,所有碰撞均为弹性碰撞,滑块乙恰好能滑到斜面最高点D处,重力加速度为g.求:(1)滑块甲的初速度v0的大小;(2)两滑块最终静止处与挡板的距离.12.如图所示,光滑水平面上有一小车B,右端固定一沙箱,沙箱上连接一水平的轻质弹簧,小车与沙箱的总质量为M=2kg.车上在与沙箱左侧距离S=1m的位置上放一质量为m=1kg小物块A,物块A与小车的动摩擦因数为μ=0.1.仅在沙面上方空间存在水平向右的匀强电场,场强E=2×103V/m.当物块A随小车以速度v0=10m/s向右做匀速直线运动时,距沙面H=5m高处有一质量为m0=2kg的带正电q=1×10﹣2C的小球C,以u0=10m/s的初速度水平向左抛出,最终落入沙箱中.已知小球与沙箱的相互作用时间极短,且忽略弹簧最短时的长度,并取g=10m/s2.求:(1)小球落入沙箱前的速度u和开始下落时与小车右端的水平距离x;(2)小车在前进过程中,弹簧具有的最大值弹性势能EP;(3)设小车左端与沙箱左侧的距离为L,请讨论分析物块A相对小车向左运动的过程中,其与小车摩擦产生的热量Q与L的关系式.13.如图所示,在光滑的水平面上静止放一质量为2m的木板B,木板表面光滑,右端固定一轻质弹簧.质量为m的木块A以速度v0从板的左端水平向右滑上木板B,求:(1)弹簧的最大弹性势能;(2)弹被簧压缩直至最短的过程中,弹簧给木块A的冲量;(3)当木块A和B板分离时,木块A和B板的速度.14.如图所示,一传送带与水平面的夹角θ=300,且以v1=2m/s的速度沿顺时针方向传动.一小物块以v2=4m/s的速度从底端滑上传送带,最终又从传送带的底端滑出.已知物块与传送带间的动摩擦因数μ=,传送带足够长,取重力加速度g=10m/s2.求:(1)小物块沿传送带向上滑行的时间t;(2)小物块离开传送带时的速度大小v.15.如图所示,传送带I与水平面夹角为30°,传送带Ⅱ与水平面夹角为37°,两传送带与一小段光滑的水平面BC平滑连接,两传送带均顺时针匀速率运行.现将装有货物的箱子轻放至传送带I的A点,运送到水平面上后,工作人员将箱子内的物体取出,箱子速度不变继续运动到传送带Ⅱ上,传送带Ⅱ的D点与高处平台相切.已知箱子的质量m=lkg,传送带I的速度ν1=8m/s,AB长L1=15.2m,与箱子间的动摩擦因数为μ2=.传送带Ⅱ的速度ν2=5m/s,CD长L2=8.2m.箱子与传送带Ⅱ间的动摩擦因数为μ2=0.5,已知sin37°=0.6,cos37°=0.8,g=10m/s2.(1)求装着物体的箱子在传送带I上运动的时间;(2)通过计算说明箱子能否被运送到高处平台上(能达到D点就认为可运送到平台上);(3)求箱子在传送带Ⅱ上向上运动的过程中产生的内能.16.如图所示,水平地面上有三个静止的小物块A、B、C,质量均为m=2kg,相距均为l=5m,物块与地面间的动摩擦因数均为μ=0.25.班对A施加一水平向右的恒力F=10N,此后每次碰撞后物体都粘在一起运动.设碰撞时间极短,重力加速度大小为g=10m/s2.求:(1)物体A与B碰撞后瞬间的速度;(2)物体AB与C碰撞后摩擦产生的热量.17.如图所示,倾角30°的光滑斜面上,轻质弹簧两端连接着两个质量均为m=1kg 的物块B和C,C紧靠着挡板P,B通过轻质细绳跨过光滑定滑轮与质量M=8kg 的物块A连接,细绳平行于斜面,A在外力作用下静止在圆心角为60°、半径R=2m 的的光滑圆弧轨道的顶端a处,此时绳子恰好拉直且无张力;圆弧轨道最低端b与粗糙水平轨道bc相切,bc与一个半径r=0.2m的光滑圆轨道平滑连接。
高中物理经典题库-力学计算题49个
力学计算题集粹(49个)1.在光滑的水平面内,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求:图1-70(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点时的速度.2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F.图1-71图1-72图1-73图1-74图1-75图1-7614.如图1-77所示,一条不可伸长的轻绳长为L,一端用手握住,另一端系一质量为m的小球,今使手握的一端在水平桌面上做半径为R、角速度为ω的匀速圆周运动,且使绳始终与半径R的圆相切,小球也将在同一水平面内做匀速圆周运动,若人手做功的功率为P,求:图1-77(1)小球做匀速圆周运动的线速度大小.(2)小球在运动过程中所受到的摩擦阻力的大小.15.如图1-78所示,长为L=0.50m的木板AB静止、固定在水平面上,在AB的左端面有一质量为M=0.48kg的小木块C(可视为质点),现有一质量为m=20g的子弹以v0=75m/s的速度射向小木块C并留在小木块中.已知小木块C与木板AB之间的动摩擦因数为μ=0.1.(g取10m/s2)图1-78(1)求小木块C运动至AB右端面时的速度大小v2.(2)若将木板AB固定在以u=1.0m/s恒定速度向右运动的小车上(小车质量远大于小木块C的质量),小木块C仍放在木板AB的A端,子弹以v0′=76m/s的速度射向小木块C并留在小木块中,求小木块C运动至AB右端面的过程中小车向右运动的距离s.16.如图1-79所示,一质量M=2kg的长木板B静止于光滑水平面上,B的右边放有竖直挡板.现有一小物体A(可视为质点)质量m=1kg,以速度v0=6m/s从B的左端水平滑上B,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞时无机械能损失.图1-79图1-80图1-81图1-82图1-83图1-8422.设人造地球卫星绕地球作匀速圆周运动,根据万有引力定律、牛顿运动定律及周期的概念,论述人造地球卫星随着轨道半径的增加,它的线速度变小,周期变大.图1-80 图1-81图1-82 图1-83图1-84 图1-8532.如图1-87所示,1、2两木块用绷直的细绳连接,放在水平面上,其质量分别为m1=1.0kg、m2=2.0kg,它们与水平面间的动摩擦因数均为μ=0.10.在t=0时开始用向右的水平拉力F=6.0N拉木块2和木块1同时开始运动,过一段时间细绳断开,到t=6.0s时1、2两木块相距Δs=22.0m(细绳长度可忽略),木块1早已停止.求此时木块2的动能.(g取10m/s2)33.如图1-88甲所示,质量为M、长L=1.0m、右端带有竖直挡板的木板B静止在光滑水平面上,一个质量为m的小木块(可视为质点)A以水平速度v0=4.0m/s滑上B的左端,之后与右端挡板碰撞,最后恰好滑到木板B的左端,已知M/m=3,并设A与挡板碰撞时无机械能损失,碰撞时间可以忽略不计,g取10m/s2.求(1)A、B最后速度;(2)木块A与木板B之间的动摩擦因数.(3)木块A与木板B相碰前后木板B的速度,再在图1-88乙所给坐标中画出此过程中B相对地的v-t图线.图1-88图1-89 图1-90 图1-91图1-92 图1-93图1-96 图1-97图1-98 图1-99图1-100 图1-101 图1-10248.如图1-101所示,在光滑的水平面上,有两个质量都是M的小车A和B,两车之间用轻质弹簧相连,它们以共同的速度v0向右运动,另有一质量为m=M/2的粘性物体,从高处自由落下,正好落在A车上,并与之粘合在一起,求这以后的运动过程中,弹簧获得的最大弹性势能E.49.一轻弹簧直立在地面上,其劲度系数为k=400N/m,在弹簧的上端与盒子A连接在一起,盒子内装物体B,B的上下表面恰与盒子接触,如图1-102所示,A和B的质量mA=mB=1kg,g=10m/s2,不计阻力,先将A向上抬高使弹簧伸长5cm后从静止释放,A和B一起做上下方向的简谐运动,已知弹簧的弹性势能决定于弹簧的形变大小.(1)试求A的振幅;(2)试求B的最大速率;(3)试求在最高点和最低点A对B的作用力.参考解题过程与答案1.解:设经过时间t,物体到达P点(1)xP=v0t,yP=(1/2)(F/m)t2,xP/yP=ctg37°,联解得t=3s,x=30m,y=22.5m,坐标(30m,22.5m) (2)vy=(F/m)t=15m/s,∴v=220yv v += 513m/s, tgα=vy/v0=15/10=3/2,∴ α=arctg(3/2),α为v与水平方向的夹角.2.解:在0~1s内,由v-t图象,知 a1=12m/s2,由牛顿第二定律,得F-μmgcosθ-mgsinθ=ma1, ①在0~2s内,由v-t图象,知a2=-6m/s2, 因为此时物体具有斜向上的初速度,故由牛顿第二定律,得 -μmgcosθ-mgsinθ=ma2, ② ②式代入①式,得 F=18N.3.解:在传送带的运行速率较小、传送时间较长时,物体从A到B需经历匀加速运动和匀速运动两个过程,设物体匀加速运动的时间为t1,则(v/2)t1+v(t-t1)=L,所以 t1=2(vt-L)/v=(2×(2×6-10)/2)s=2s.为使物体从A至B所用时间最短,物体必须始终处于加速状态,由于物体与传送带之间的滑动摩擦力不变,所以其加速度也不变.而 a=v/t=1m/s2.设物体从A至B所用最短的时间为t2,则 (1/2)at22=L, t2=2L a =2101⨯=25s. vmin=at2=1×25m/s=25m/s.传送带速度再增大1倍,物体仍做加速度为1m/s2的匀加速运动,从A至B的传送时间为25m/s.4.解:启动前N1=mg, 升到某高度时 N2=(17/18)N1=(17/18)mg, 对测试仪 N2-mg′=ma=m(g/2), ∴ g′=(8/18)g=(4/9)g,GmM/R2=mg,GmM/(R+h)2=mg′,解得:h=(1/2)R.5.解:由匀加速运动的公式 v2=v02+2as 得物块沿斜面下滑的加速度为a=v2/2s=1.42/(2×1.4)=0.7ms-2,由于a<gsinθ=5ms-2,可知物块受到摩擦力的作用.图3分析物块受力,它受3个力,如图3.对于沿斜面的方向和垂直于斜面的方向,由牛顿定律有mgsinθ-f1=ma,mgcosθ-N1=0,分析木楔受力,它受5个力作用,如图3所示.对于水平方向,由牛顿定律有f2+f1cosθ-N1sinθ=0,由此可解得地面的作用于木楔的摩擦力f2=mgcosθsinθ-(mgsinθ-ma)cosθ=macosθ=1×0.7×(/2)=0.61N.此力的方向与图中所设的一致(由指向).7.解:设月球表面重力加速度为g,根据平抛运动规律,有h=(1/2)gt2,①水平射程为L=v0t,②联立①②得g=2hv02/L2.③根据牛顿第二定律,得mg=m(2π/T)2R,④联立③④得T=(πL/v0h).⑤8.解:前2秒内,有F-f=ma1,f=μN,N=mg,则a1=(F-μmg)/m=4m/s2,vt=a1t=8m/s,撤去F以后a2=f/m=2m/s,s=v12/2a2=16m.9.解:(1)用力斜向下推时,箱子匀速运动,则有Fcosθ=f,f=μN,N=G+Fsinθ,联立以上三式代数据,得F=1.2×102N.(2)若水平用力推箱子时,据牛顿第二定律,得F合=ma,则有F-μN=ma,N=G,联立解得a=2.0m/s2.v=at=2.0×3.0m/s=6.0m/s,s=(1/2)at2=(1/2)×2.0×3.02m/s=9.0m,推力停止作用后a′=f/m=4.0m/s2(方向向左),s′=v2/2a′=4.5m,则s总=s+s′=13.5m.10.解:根据题中说明,该运动员发球后,网球做平抛运动.以v表示初速度,H表示网球开始运动时离地面的高度(即发球高度),s1表示网球开始运动时与网的水平距离(即运动员离开网的距离),t1表示网球通过网上的时刻,h表示网球通过网上时离地面的高度,由平抛运动规律得到s1=vt1,H-h=(1/2)gt12,消去t1,得v=m/s,v≈23m/s.以t2表示网球落地的时刻,s2表示网球开始运动的地点与落地点的水平距离,s表示网球落地点与网的水平距离,由平抛运动规律得到H=(1/2)gt22,s2=vt2,消去t2,得s2=v2Hg≈16m,网球落地点到网的距离s=s2-s1≈4m.11.解:(1)设卫星质量为m,它在地球附近做圆周运动,半径可取为地球半径R,运动速度为v,有GMm/R2=mv2/R得v=GMR.(2)由(1)得:M=v2R/G==6.0×1024kg.13.解:设木块到B时速度为v0,车与船的速度为v1,对木块、车、船系统,有m1gh=(m1v02/2)+((m2+m3)v12/2),m1v0=(m2+m3)v1,解得v0=5gh15,v1=gh15.木块到B后,船以v1继续向左匀速运动,木块和车最终以共同速度v2向右运动,对木块和车系统,有m1v0-m2v1=(m1+m2)v2,μm1gs=((m1v02/2)+(m2v12/2))-((m1+m2)v22/2),得v2=v1gh152h.图4研究小球的受力情况如图4所示,因为小球做匀速圆周运动,所以切向合力为零,即Fsinθ=f,其中 sinθ=R/22L R +, 联立解得 f=P/ω22L R +.15.解:(1)用v1表示子弹射入木块C后两者的共同速度,由于子弹射入木块C时间极短,系统动量守恒,有 mv0=(m+M)v1,∴ v1=mv0/(m+M)=3m/s, 子弹和木块C在AB木板上滑动,由动能定理得:(1/2)(m+M)v22-(1/2)(m+M)v12=-μ(m+M)gL,解得 v2=21v 2gL -μ=22m/s.(2)用v′表示子弹射入木块C后两者的共同速度,由动量守恒定律,得 mv0′+Mu=(m+M)v1′,解得 v1′=4m/s.木块C及子弹在AB木板表面上做匀减速运动 a=μg.设木块C和子弹滑至AB板右端的时间为t,则木块C和子弹的位移s1=v1′t-(1/2)at2,由于m车≥(m+M),故小车及木块AB仍做匀速直线运动,小车及木板AB的位移 s=ut,由图5可知:s1=s+L,联立以上四式并代入数据得: t2-6t+1=0,解得:t=(3-22)s,(t=(3+22)s不合题意舍去), (11)∴ s=ut=0.18m.16.解:(1)设A滑上B后达到共同速度前并未碰到档板,则根据动量守恒定律得它们的共同速度为v,有图5mv0=(M+m)v,解得v=2m/s,在这一过程中,B的位移为sB=vB2/2aB且aB=μmg/M,解得sB=Mv2/2μmg=2×22/2×0.2×1×10=2m.设这一过程中,A、B的相对位移为s1,根据系统的动能定理,得μmgs1=(1/2)mv02-(1/2)(M+m)v2,解得s1=6m.当s=4m时,A、B达到共同速度v=2m/s后再匀速向前运动2m碰到挡板,B碰到竖直挡板后,根据动量守恒定律得A、B最后相对静止时的速度为v′,则Mv-mv=(M+m)v′,解得v′=(2/3)m/s.在这一过程中,A、B的相对位移为s2,根据系统的动能定理,得μmgs2=(1/2)(M+m)v2-(1/2)(M+m)v′2,解得s2=2.67m.因此,A、B最终不脱离的木板最小长度为s1+s2=8.67m(2)因B离竖直档板的距离s=0.5m<2m,所以碰到档板时,A、B未达到相对静止,此时B的速度vB为vB2=2aBs=(2μmg/M)s,解得vB=1m/s,设此时A的速度为vA,根据动量守恒定律,得mv0=MvB+mvA,解得vA=4m/s,设在这一过程中,A、B发生的相对位移为s1′,根据动能定理得:μmgs1′=(1/2)mv02-((1/2)mvA2+(1/2)MvB2),解得s1′=4.5m.B碰撞挡板后,A、B最终达到向右的相同速度v,根据动能定理得mvA-MvB=(M+m)v,解得v=(2/3)m/s.在这一过程中,A、B发生的相对位移s2′为μmgs2′=(1/2)mvA2+(1/2)(M+m)v2,解得s2′=(25/6)m.B再次碰到挡板后,A、B最终以相同的速度v′向左共同运动,根据动量守恒定律,得Mv-mv=(M+m)v′,解得v′=(2/9)m/s.在这一过程中,A、B发生的相对位移s3′为:μmgs3′=(1/2)(M+m)v2-(1/2)(M+m)v′2,解得s3′=(8/27)m.因此,为使A不从B上脱落,B的最小长度为s1′+s2′+s3′=8.96m.17.解:(1)B与A碰撞后,B相对于A向左运动,A所受摩擦力方向向左,A的运动方向向右,故摩擦力作负功.设B与A碰撞后的瞬间A的速度为v1,B的速度为v2,A、B相对静止后的共同速度为v,整个过程中A、B组成的系统动量守恒,有Mv0=(M+1.5M)v,v=2v0/5.碰撞后直至相对静止的过程中,系统动量守恒,机械能的减少量等于系统克服摩擦力做的功,即Mv2+1.5Mv1=2.5Mv,①(1/2)×1.5Mv12+(1/2)Mv22-(1/2)×2.5Mv2=Mμgl,②可解出v1=(1/2)v0(另一解v1=(3/10)v0因小于v而舍去)这段过程中,A克服摩擦力做功W=(1/2)×1.5Mv12-(1/2)×1.5Mv2=(27/400)Mv02(0.068Mv02).(2)A在运动过程中不可能向左运动,因为在B未与A碰撞之前,A受到的摩擦力方向向右,做加速运动,碰撞之后A受到的摩擦力方向向左,做减速运动,直到最后,速度仍向右,因此不可能向左运动.B在碰撞之后,有可能向左运动,即v2<0.先计算当v2=0时满足的条件,由①式,得v1=(2v0/3)-(2v2/3),当v2=0时,v1=2v0/3,代入②式,得((1/2)×1.5M4v02/9)-((1/2)×2.5M4v02/25)=Mμgl,解得μgl=2v02/15.B在某段时间内向左运动的条件之一是μl<2v02/15g.另一方面,整个过程中损失的机械能一定大于或等于系统克服摩擦力做的功,即(1/2)Mv02-(1/2)2.5M(2v0/5)2≥2Mμgl,解出另一个条件是μl≤3v02/20g,最后得出B在某段时间内向左运动的条件是2v02/15g<μl≤3v02/20g.19.解:(1)开始A、B处于静止状态时,有kx0-(mA+mB)gsin30°=0,①设施加F时,前一段时间A、B一起向上做匀加速运动,加速度为a,t=0.2s,A、B间相互作用力为零,对B有:kx-mBgsin30°=mBa,②x-x0=(1/2)at2,③解①、②、③得:a=5ms-2,x0=0.05m,x=0.15m,初始时刻F最小Fmin=(mA+mB)a=60N.t=0.2s时,F最大Fmax-mAgsin30°=mAa,Fmax=mA(gsin30°+a)=100N,(2)ΔEPA=mAgΔh=mAg(x-x0)sin30°=5J.20.解:当弹簧处于压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和.当弹簧伸长到其自然长度时,弹性势能为零,因这时滑块A的速度为零,故系统的机械能等于滑块B的动能.设这时滑块B的速度为v则有E=(1/2)m2v2,①由动量守恒定律(m1+m2)v0=m2v,②解得E=(1/2)(m1+m2)2v02/m2.③假定在以后的运动中,滑块B可以出现速度为零的时刻,并设此时滑块A的速度为v1.这时,不论弹簧是处于伸长还是压缩状态,都具有弹性势能Ep.由机械能守恒定律得(1/2)m1v12+Ep=(1/2)((m1+m2)2v02/m2),④根据动量守恒(m1+m2)v0=m1v1,⑤求出v1,代入④式得(1/2)((m1+m2)2v02/m1)+Ep=(1/2)((m1+m2)2v02/m2),⑥因为Ep≥0,故得(1/2)((m1+m2)2v02/m1)≤(1/2)((m1+m2)2v02/m2),⑦即m1≥m2,与已知条件m1<m2不符.可见滑块B的速度永不为零,即在以后的运动中,不可能出现滑动B的速度为零的情况.21.解:设恰好物体相对圆盘静止时,弹簧压缩量为Δl,静摩擦力为最大静摩擦力fmax,这时物体处于临界状态,由向心力公式fmax-kΔl=mRw2,①假若物体向圆心移动x后,仍保持相对静止,f1-k(Δl+x)=m(R-x)w2,②由①、②两式可得fmax-f1=mxw2-kx,③所以mxw2-kx≥0,得k≤mw2,④若物体向外移动x后,仍保持相对静止,f2-k(Δl-x)≥m(R+x)w2,⑤由①~⑥式得fmax-f2=kx-mxw2≥0,⑥所以k≥mw2,⑦即若物体向圆心移动,则k≤mw2,若物体向远离圆心方向移动,则k≥mw2.22.解:卫星环绕地球作匀速圆周运动,设卫星的质量为m,轨道半径为r,受到地球的万有引力为F,F=GMm/r2,①式中G为万有引力恒量,M是地球质量.设v是卫星环绕地球做匀速圆周运动的线速度,T是运动周期,根据牛顿第二定律,得F=mv2/r,②由①、②推导出v=GMr.③③式表明:r越大,v越小.人造卫星的周期就是它环绕地球运行一周所需的时间T,T=2πr/v,④由③、④推出T=2π3rGM,⑤⑤式说明:r越大,T越大.23.证:设质点通过A点时的速度为vA,通过C点时的速度为vC,由匀变速直线运动的公式得:s1=vAT+aT2/2,s3=vCT+aT2/2,s3-s1=vCT-vAT.∵vC=vA+2aT,∴s3-s1=(vA-2aT-vA)T=2aT2,a=(s3-s1)/2T2.24.根据:如果在连续的相等的时间内的位移之差相等,则物体做匀变速运动.证明:设物体做匀速运动的初速度为v0,加速度为a,第一个T内的位移为s1=v0T+aT2/2;第二个T内的位移为s2=(v0+aT)T+aT2/2;第N个T内的位移为sN=[v0+(N-1)aT]T+aT2/2.sN-sN-1=aT2,逆定理也成立.25.解:由匀变速直线运动的公式得小物块的加速度的大小为a1=(v0-vt)/t=2(m/s2).木板的加速度大小为a2=2s/t2=0.25(m/s2).根据牛顿第二定律F=ma对小物块得f′1=ma1=1×2=2N,对木板得f1-μ(m+M)g=Ma2,μ=(f1-Ma2)/(m+M)g=(2-4×0.25)/(1+4)×10=0.02.27.解:当t=0时,aA0=9/3=3m/s2,aB0=3/6=0.5m/s2.aA0>aB0,A、B间有弹力,随t之增加,A、B间弹力在减小,当(9-2t)/3=(3+2t)/6,t=2.5s时,A、B脱离,以A、B整体为研究对象,在t=2.5s内,加速度a=(FA+FB)/(mA+mB)=4/3m/s2,s=at2/2=4.17m.28.解:(1)由mCv0=mCv+(mA+mB)v1,C由A滑至B时,A、B的共同速度是v1=mC(v0-v)/(mA+mB)=0.2m/s.由μmCglA=mCv02/2-mCv2/2-(mA+mB)v12/2,得μ=[mC(v02-v2)-(mA+mB)v12]/2mCglA=0.48.(2)由mCv+mBv1=(mC+mB)v2,C相对B静止时,B、C的共同速度是v2=(mCv+mBv1)/(mC+mB)=0.65m/s.由μmCglB=mCv2/2+mBv12-(mC+mB)v22/2,C在B上滑行距离为lB=[mCv2+mBv12-(mC+mB)v22]/2μmCg=0.25m.(3)由μmCgs=mBv22/2-mBv12/2,B相对地滑行的距离s=[mB(v22-v12)]/2μmCg=0.12m.(4)C在A、B上匀减速滑行,加速度大小由μmCg=mCa,得a=μg=4.8m/s2.C在A上滑行的时间t1=(v0-v)/a=0.21s.C在B上滑行的时间t2=(v-v2)/a=0.28s.所求时间t=t1+t2=0.21s+0.28s=0.49s.29.匀加速下滑时,受力如图1a,由牛顿第二定律,有:mgsinθ-μmgcosθ=ma=mgsinθ/2,sinθ/2=μcosθ,得μ=sinθ/2cosθ.图1静止时受力分析如图1b,摩擦力有两种可能:①摩擦力沿斜面向下;②摩擦力沿斜面向上.摩擦力沿斜面向下时,由平衡条件Fcosθ=f+mgsinθ,N=mgcosθ+Fsinθ,f=μN,解得F=(sinθ+μcosθ)/(cosθ-μsinθ)mg=3sinθcosθ/(2cos2θ-sin2θ)mg.摩擦力沿斜面向上时,由平衡条件Fcosθ+f=mgsinθ,N=mgcosθ+Fsinθ,f=μN.解得F=(sinθ-μcosθ)/(cosθ+μsinθ)mg=sinθcosθ/(2cos2θ+sin2θ)mg.31.解:(1)设刹车后,平板车的加速度为a0,从开始刹车到车停止所经历时间为t0,车所行驶距离为s0,则有v02=2a0s0,v0=a0t0.欲使t0小,a0应该大,作用于木箱的滑动摩擦力产生的加速度a1=μmg/m=μg.当a0>a1时,木箱相对车底板滑动,从刹车到车停止过程中木箱运动的路程为s1,则v02=2a2s1.为使木箱不撞击驾驶室,应有s1-s0≤L.联立以上各式解得:a0≤μgv02/(v02-2μgL)=5m/s2,∴t0=v0/a0=4.4s.(2)对平板车,设制动力为F,则F+k(M+m)g-μmg=Ma0,解得:F=7420N.32.解:对系统a0=[F-μg(m1+m2)]/(m1+m2)=1m/s2.对木块1,细绳断后:│a1│=f1/m1=μg=1m/s2.设细绳断裂时刻为t1,则木块1运动的总位移:s1=2a0t12/2=a0t12.对木块2,细绳断后,a2=(F-μm2g)/m2=2m/s2.木块2总位移s2=s′+s″=a0t12/2+v1(6-t1)+a2(6-t1)2/2,两木块位移差Δs=s2-s1=22(m).得a0t12/2+v1(6-t1)+a2(6-t1)2/2-a0t12=22,把a0,a2值,v1=a0t1代入上式整理得:t12+12t1-28=0,得t1=2s.木块2末速v2=v1+a2(6-t1)=a0t1+a2(6-t1)=10m/s.此时动能Ek=m2v22/2=2×102/2J=100J.图234.解:设m1、m2两物体受恒力F作用后,产生的加速度分别为a1、a2,由牛顿第二定律F=ma,得a1=F/m1,a2=F/m2,历时t两物体速度分别为v1=a1t,v2=v0+a2t,由题意令v1=v2,即a1t=v0+a2t或(a1-a2)t=v0,因t≠0、v0>0,欲使上式成立,需满足a1-a2>0,即F/m1>F/m2,或m1<m2,也即当m1≥m2时不可能达到共同速度,当m1<m2时,可以达到共同速度.35.解:(1)当小球刚好能在轨道内做圆周运动时,水平初速度v最小,此时有mg=mv2/R, 故 v=gR =100.8/2⨯=2m/s.(2)若初速度v′<v,小球将做平抛运动,如在其竖直位移为R的时间内,其水平位移s≥R,小球可进入轨道经过B点.设其竖直位移为R时,水平位移也恰为R ,则R=gt2/2,R=v′t,解得:v′=2gR /2=2m/s.因此,初速度满足2m/s>v′≥2m/s时,小球可做平抛运动经过B点.36.卫星在天空中任何天体表面附近运行时,仅受万有引力F作用使卫星做圆周运动,运动半径等于天体的球半径R.设天体质量为M,卫星质量为m,卫星运动周期为T,天体密度为ρ.根据万有引力定律F=GMm/R2,卫星做圆周运动向心力F′=m4π2R/T2, 因为 F′=F,得GMm/R2=m4π2R/T2,∴T=234R GMπ.又球体质量M=4πR3ρ/3.得T=2334R 4G R3ππ⋅⋅ρ=3G πρ,∴T∝1/ρ,得证.37.解:由于两球相碰满足动量守恒m1v0=m1v1+m2v2,v1=-1.3m/s. 两球组成系统碰撞前后的总动能Ek1+Ek2=m1v02/2+0=2.5J, Ek1′+Ek2′=m1v12/2+m2v22/2=2.8J.可见,Ek1′+Ek2′>Ek1+Ek2,碰后能量较碰撞前增多了,违背了能量守恒定律,这种假设不合理.38.解:(1)由动量守恒,得mv0=mv1+Mv2, 由运动学公式得s=(v1-v2)t,h=gt2/2, 由以上三式得v2=(mv0-smg2h)/(M+m). (2)最后车与物体以共同的速度v向右运动,故有mv0=(M+m)vv=mv0/(M+m).∴ΔE=mv02/2+mgh-(M+m)m2v02/2(M+m)2. 解得ΔE=mgh+Mmv02/2(M+m).39.解:设碰前A、B有共同速度v时,M前滑的距离为s.则mv0=(m+M)v,fs=Mv2/2,f=μmg.由以上各式得s=Mmv02/2μg(M+m)2.当v0=2m/s时,s=2/9m<0.5m,即A、B有共同速度.当v0=4m/s时,s=8/9m>0.5m,即碰前A、B速度不同.40.解:(1)物体由A滑至B的过程中,由三者系统水平方向动量守恒得:mv0=mv0/2+2mvAB.解之得vAB=v0/4.(2)物块由A滑至B的过程中,由三者功能关系得:μmgL=mv02/2-m(v0/2)2/2-2m(v2/2.0/4)解之得L=5v02/16μg.(3)物块由D滑到C的过程中,二者系统水平方向动量守恒,又因为物块到达最高点C时,物块与滑块速度相等且水平,均为v.故得mv0/2+mv0/4=2mv,∴得滑块的动能ECD=mv2/2=9mv02/128.42.解:(1)m速度最大的位置应在O点左侧.因为细线烧断后,m在弹簧弹力和滑动摩擦力的合力作用下向右做加速运动,当弹力与摩擦力的合力为零时,m的速度达到最大,此时弹簧必处于压缩状态.此后,系统的机械能不断减小,不能再达到这一最大速度.(2)选m、M为一系统,由动量守恒定律得mv1=Mv2.设这一过程中弹簧释放的弹性势能为Ep,则Ep=mv12/2+Mv22/2+μmgs,解得v2=mv1/M,Ep=m[(M+m)v12/2M+μgs].(2)m与M最终将静止,因为系统动量守恒,且总动量为零,只要m与M间有相对运动,就要克服摩擦力做功,不断消耗能量,所以,m与M最终必定都静止.43.解:(1)第一颗子弹射入木块过程,系统动量守恒,有mv0=(m+M)v1.射入后,在OBC运动过程中,机械能守恒,有(m+M)v12/2=(m+M)gR,得v0=(M+m)2gR/m.(2)由动量守恒定律知,第2、4、6……颗子弹射入木块后,木块速度为0,第1、3、5……颗子弹射入后,木块运动.当第9颗子弹射入木块时,由动量守恒得:mv0=(9m+M)v9,设此后木块沿圆弧上升最大高度为H,由机械能守恒定律得:(9m+M)v92/2=(9m+M)gH,由以上可得:H=[(M+m)/(M+9m)]2R.44.解:(1)设第一次碰墙壁后,平板车向左移动s,速度变为0.由于体系总动量向右,平板车速度为零时,滑块还在向右滑行.由动能定理-μMgs=0-mv02/2,s=mv02/2μMg=0.33m.(2)假如平板车在第二次碰墙前还未和滑块相对静止,则其速度的大小肯定还是2m/s,因为只要相对运动,摩擦力大小为恒值.滑块速度则大于2m/s,方向均向右.这样就违反动量守恒.所以平板车在第二次碰墙前肯定已和滑块具有共同速度v.此即平板车碰墙前瞬间的速度.Mv0-mv0=(M+m)v,∴v=(M-m)v0/(M+m)=0.4m/s.图3(3)平板车与墙壁第一次碰撞后滑块与平板又达到共同速度v前的过程,可用图3(a)、(b)、(c)表示.图3(a)为平板车与墙碰撞后瞬间滑块与平板车的位置,图3(b)为平板车到达最左端时两者的位置,图3(c)为平板车与滑块再次达到共同速度时两者的位置.在此过程中滑块动能减少等于摩擦力对滑块所做功μΜgs′,平板车动能减少等于摩擦力对平板车所做功μMgs″(平板车从B到A再回到B的过程中摩擦力做功为零),其中s′、s″分别为滑块和平板车的位移.滑块和平板车动能总减少为μMgl1,其中l1=s′+s″为滑块相对平板车的位移,此后,平板车与墙壁发生多次碰撞,每次情况与此类似,最后停在墙边.设滑块相对平板车总位移为l,则有(M+m)v02/2=μMgl,l=(M+m)v02/2μMg=0.833m.l即为平板车的最短长度.图445.解:如图4,A球从静止释放后将自由下落至C点悬线绷直,此时速度为vC∵vC2=2g×2Lsin30°,∴vC=2gL=2m/s.在线绷直的过程中沿线的速度分量减为零时,A将以切向速度v1沿圆弧运动且v1=vC3A球从C点运动到最低点与B球碰撞前机械能守恒,可求出A球与B球碰前的速度 mAv12/2+mAgL(1-cos60°)=mAv22/2,v2=21v gL +=3100.2+⨯=5m/s.因A、B两球发生无能量损失的碰撞且mA=mB,所以它们的速度交换,即碰后A球的速度为零,B球的速度为v2=5(m/s).对B球和小车组成的系统水平方向动量守恒和机械能守恒,当两者有共同水平速度u时,B球上升到最高点,设上升高度为h. mBv2=(mB+M)u,mBv22/2=(mB+M)u2/2+mBgh.解得h=3/16≈0.19m. 在B球回摆到最低点的过程中,悬线拉力仍使小车加速,当B球回到最低点时小车有最大速度vm,设小球B回到最低点时速度的大小为v3,根据动量守恒定律和机械能守恒定律有mBv2=-mBv3+Mvm,mBv22/2=mBv32/2+Mvm2/2, 解得vm=2mBv2/(m3+M)=5/2m/s=1.12m/s.46.解:(1)小球的角速度与运动的角速度必定相等,则有v=ωR=ω22L r +.(2)人手所提供的功率应等于小球在运动过程中克服摩擦力做功的功率.即有P=fv,∴ f=P/v=P/ω22L r +.48.解:m与A粘在一起后水平方向动量守恒,共同速度设为v1,Mv0=(M+m)v1, 得v1=Mv0/(M+m)=2v0/3. 当弹簧压缩到最大时即有最大弹性势能E,此时系统中各物体有相同速度,设为v2,由动量守恒定律 2Mv0=(2M+m)v2,得v2=2Mv0/(2M+m)=4v0/5. 由能量守恒有 E=Mv02/2+(M+m)v12/2-(2M+m)v22/2,解得E=Mv02/30.。
高考物理力学计算题(十)含答案与解析
高考物理力学计算题(十)组卷老师:莫老师一.计算题(共50小题)1.如图所示,一半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行金属板,两极板间的距离为d,板长为L,t=0时,磁场的磁感应强度B从B0开始匀速增大,同时在板2的左端且非常靠近板2的位置由一质量为m、带电量为﹣q的液滴以初速度v0水平向右射入两板间,该液滴可视为质点,则要使该液滴能从两板间右端的中点射出,磁感应强度B与时间t应满足什么关系?2.如图所示,水平面上有一质量M=18kg的木板,其右端恰好和光滑圆弧轨道AB的底端等高对接,木板右端有一质量m0=3kg的物体C(可视为质点),已知圆弧轨道半径R=0.9m.现将一质量m=6kg的小滑块P(可视为质点)由轨道顶端A点无初速释放,小滑块滑到B端后冲上木板,并与木板右端的物体C粘在一起,沿木板向左滑行,最后恰好没有从木板左端滑出.已知小滑块p与木板上表面的动摩擦因数μ1=0.25,物体c与木板上表面的动摩擦因数μ2=0.5,木板与水平面间的动摩擦因数μ3=0.1,取g=10m/s2.求:(l)小滑块到达B端时,轨道对它支持力的大小;(2)小滑块P与C碰撞结束时共同速度大小;(3)木板的长度.3.风洞是研究空气动力学的实验设备,如图所示,将刚性杆水平固定在风洞内距水平地面高度h=5m处,杆上套一质量m=2kg、可沿杆滑动的小球.将小球所受的风力调节为F=10N,方向水平向右.小球落地时离水平杆右端的水平距离x=12.5m,假设小球所受风力不变,取g=10m/s2求:(1)小球从刚离开杆到落地时所用的时间t;(2)小球离开杆右端时的速度大小v0;(3)小球从离开杆右端到动能为125J的过程中所用的时间t1.4.足球比赛中,经常使用“边路突破,下底传中”的战术,即攻方队员带球沿边线前进,到底线附近进行传中,某足球场长90m、宽60m,如图所示,攻方前锋在中线处将足球沿边线向前踢出,足球的运动可视为在地面上做初速度为8m/s的匀速直线运动,加速度大小为m/s2,试求:(1)足球从开始做匀减速直线运动到底线需要多长时间;(2)足球开始做匀减速直线运动的同时,该前锋队员在边线中点处沿边线向前追赶足球,他的启动过程可以视为从静止出发的匀加速直线运动,能达到的最大速度为6m/s,并能以最大速度匀速运动,该前锋队员要在足球越过底线前追上足球,他加速时的加速度应满足什么条件?5.如图所示,一条水平传送带两个顶点A、B之间的距离为L=10m,配有主动轮O1和从动轮O2构成整个传送装置,轮与传送带不打滑,轮半径为R=0.32m,现用此装置运送一袋面粉,已知这袋面粉与传送带之间的摩擦力因数为μ=0.5,g=10m/s2.(1)当传送带以5.0m/s的速度匀速运动时,将这袋面粉由A点轻放在传送带上后,这袋面粉由A端运B端所用时间为多少?(2)要想尽快将这袋面粉由A端运到B端(设面袋的初速度为零),主动轮O1的转速至少应为多大?(3)由于面粉的渗漏,在运送这袋面粉的过程中会在深色传送带上留下白色的面粉的痕迹,若这袋面粉在传送带上留下的痕迹布满整条传送带时(设面袋的初速度为零),则主动轮的转速应满足何种条件?6.如图所示,将质量为m的小滑块与质量为M=2m的光滑凹槽用轻质弹簧相连.现使凹槽和小滑块以共同的速度v0沿光滑水平面向左匀速滑动,弹簧处于原长,设凹槽长度足够长,且凹槽与墙壁碰撞时间极短.(1)若凹槽与墙壁发生碰撞后速度立即变为零,但与墙壁不粘连,求弹簧第一次压缩过程中的最大弹性势能E P;(2)若凹槽与墙壁发生碰撞后速度立即变为零,但与墙壁不粘连,求凹槽脱离墙壁后的运动过程中弹簧的最大弹性势能△E P;(3)若凹槽与墙壁发生碰撞后立即反弹,且反弹后凹槽滑块和弹簧组成的系统总动量恰为零,问以后凹槽与墙壁能否发生第二次碰撞?并说明理由.7.一小球从离地h=40m高处以初速度v0=24m/s竖直向上抛出,其上升过程中速度﹣时间图象如图所示.已知小球质量m=1kg,整个过程中所受的空气阻力大小不变.求:(g取10m/s2)(1)小球所受的空气阻力是多大?(2)通过计算完成2s后的速度﹣时间图象.8.如图甲所示,竖直平面内的光滑轨道由倾斜直轨道AB和圆轨道BCD组成,AB和BCD相切于B点,OB与OC夹角为37°,CD连线是圆轨道竖直方向的直径(C、D为圆轨道的最低点和最高点),可视为质点的小滑块从轨道AB上高H处的某点由静止滑下,用力传感器测出滑块经过圆轨道最低点C时对轨道的压力为F,并得到如图乙所示的压力F与高度H的关系图象,该图线截距为2N,且过(0.5m,4N)点.取g=10m/s2.求:(1)滑块的质量和圆轨道的半径;(2)若要求滑块不脱离圆轨道,则静止滑下的高度为多少;(3)是否存在某个H值,使得滑块经过最高点D飞出后落在圆心等高处的轨道上.若存在,请求出H值;若不存在,请说明理由.9.如图所示,光滑圆弧轨道与光滑斜面在B点平滑连接,圆弧半径为R=0.4m,一半径很小、质量为m=0.2kg的小球从光滑斜面上A点由静止释放,恰好能通过圆弧轨道最高点D,斜面倾角为53°,求:(1)小球最初自由释放位置A离最低点C的高度h;(2)小球运动到C点时对轨道的压力大小;(3)小球从离开D点至第一次落回到斜面上运动的时间.10.如图所示,装置左边是水平台面,一轻质弹簧左端固定,右端连接轻质挡板A,此时弹簧处于原长且在A右侧台面粗糙,长度l=1.0m,另一物块B与台面动摩擦因数μ1=0.1,中间水平传送带与平台和右端光滑曲面平滑对接,传送带始终以V0=2m/s速率逆时针转动,传送带长度l=1.0m,B与传送带动摩擦因数μ2=0.2,现将质量为1kg的物块B从半径R=2.1m的圆弧上静止释放(g=10m/s2)(1)求物块B与A第一次碰撞前的速度大小;(2)试通过计算证明物块B与A第一次碰撞后能否运动到右边的弧面上?若能回到,则其回到C点时受弧面的支持力为多大?11.某校科技节期间举办“云霄飞车”比赛,小敏同学制作的部分轨道如图(1)所示,倾角θ=37°的直轨道AB,半径R1=1m的光滑圆弧轨道BC,半径R2=0.4m 的光滑螺旋圆轨道CDC′,如图(2)所示,光滑圆轨道CE,水平直轨道FG(与圆弧轨道同心圆O1等高),其中轨道BC、C′E与圆轨道最低点平滑连接且C、C′点不重叠,∠BO1C=∠CO1E=37°.整个轨道在竖直平面内,比赛中,小敏同学让质量m=0.04kg的小球从轨道上A点静止下滑,经过BCDC′E后刚好飞跃到水平轨道F点,并沿水平轨道FG运动.直轨道AB与小球的动摩擦因数μ=0.3,小球可视为质点,sin37°=0.6,cos37°=0.8,g=10m/s2,求:(1)小球运动到F点时的速度大小;(2)小球运动至圆轨道最高点D时对轨道的作用力大小;(3)A点离水平地面的高度.12.质量为10kg的环在F=140N的恒定拉力作用下,沿粗糙直杆由静止从杆的底端开始运动,环与杆之间的动摩擦因数μ=0.5,杆与水平地面的夹角θ=37°,拉力F作用一段时间后撤去,环在杆上继续上滑了0.5s后,速度减为零,取g=10m/s2,sin37°=0.6,cos37°=0.8,杆足够长,求:(1)拉力F作用的时间;(2)环运动到杆底端时的速度大小.13.如图所示,圆筒的内壁光滑,底端固定在竖直转轴OO',圆筒可随轴转动,它与水平面的夹角始终为45°.在圆筒内有两个用轻质弹簧连接的相同小球A、B (小球的直径略小于圆筒内径),A、B质量均为m,弹簧的劲度系数为k.当圆筒静止时A、B之间的距离为L(L远大于小球直径).现让圆筒开始转动,其角速度从零开始缓慢增大,当角速度增大到ω0时保持匀速转动,此时小球B对圆筒底部的压力恰好为零.重力加速度大小为g.(1)求圆筒的角速度从零增大至ω0的过程中,弹簧弹性势能的变化量;(2)用m、g、L、k表示小球A匀速转动的动能E k.14.如图所示,光滑轨道的左端为半径为R=1.8m的圆弧形,右端为水平面,二者相切,水平面比水平地面高H=0.8m,一质量为m1=0.2kg的小球A从距离水平面高h=0.45处由静止开始滑下,与静止水平面上的质量为m2的小球B发生弹性正碰,碰后小球B做平抛运动,落地时发生的水平位移为x=1.6m,重力加速度g=10m/s2.求:(1)A球刚滑到圆弧最低点时受到轨道支持力的大小;(2)碰后瞬间B球的速度大小;(3)B球的质量.15.如图所示为常见的高速公路出口匝道,把AB段和CD段均简化为直线,汽车均做匀减速直线运动,BC段按照四分之一的水平圆周分析,汽车在此段做匀速圆周运动,圆弧段限速v0=36km/h,动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力.已知AB段和CD段长度分别为200m和100m,汽车在出口的速度为v1=108km/h.重力加速度g取l0m/s2.(1)若轿车到达B点速度刚好为36km/h,求轿车在AB下坡段加速度的大小;(2)为保证行车安全,车轮不打滑,求水平圆弧段BC半径R的最小值;(3)轿车恰好停在D点,则A点到D点的时间.16.如图所示,半径为R的光滑圆周轨道AB固定在竖直平面内,O为圆心,OA 与水平方向的夹角为30°,OB 在竖直方向.一个可视为质点的小球从O 点正上方某处以某一水平初速度向右抛出,小球恰好能无碰撞地从 A 点进入圆轨道内侧,此后沿圆轨道运动到达 B 点.已知重力加速度为g,求:(1)小球初速度的大小;(2)小球运动到 B 点时对圆轨道压力的大小.17.如图,在倾角θ=37°的粗糙斜面上距离斜面底端s=1m处,有一质量m=1kg 的物块,在竖直向下的恒力F作用下,由静止开始沿斜面下滑.到达斜面底端时立即撤去F,物块又在水平面上滑动一段距离后停止.不计物块撞击水平面时的能量损失,物块与各接触面之间的动摩擦因数相同,g取10m/s2,sin 37°=0.6,cos 37°=0.8.当F=30N时,物块运动过程中的最大速度为4m/s,求:(1)物块与接触面之间的动摩擦因数;(2)当F=0时,物块运动的总时间;(3)改变F的大小,物块沿斜面运动的加速度a随之改变.当a为何值时,物块运动的总时间最小,并求出此最小值.18.如图所示,在光滑的水平地面的左端连接一半径为R的光滑圆形固定轨道,在水平面质量为M=3m的小球Q连接着轻质弹簧,处于静止状态.现有一质量为m的小球P从B点正上方h=R高处由静止释放,求:(1)小球P到达圆形轨道最低点C时的速度大小和对轨道的压力;(2)在小球P压缩弹簧的过程中,弹簧具有的最大弹性势能;(3)若球P从B上方高H处释放,恰好使P球经弹簧反弹后能够回到B点,则高度H的大小.19.如图所示,在水平地面上固定一个倾角α=45°、高H=4m的斜面,在斜面上方固定放置一段由内壁光滑的细圆管构成的轨道ABCD,圆周部分的半径R=1m (R≥细圆管的管径),倾斜直轨道AB与圆周轨道部分相切于B点,AB长为2m,与水平方向夹角θ=53°,轨道末端竖直,已知圆周轨道最低点C、轨道末端D与斜面顶端处于同一高度。
高中物理经典题库-力学计算题49个
力学计算题集粹(49个)1.在光滑的水平面内,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求:图1-70(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点时的速度.2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F.图1-713.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少?4.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度)图1-725.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m²s2)图1-736.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算:(1)飞机在竖直方向上产生的加速度多大?方向怎样?(2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2)(3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位?(注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅连为一体)7.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出水平射程为L(地面平坦),已知月球半径为R,若在月球上发射一颗月球的卫星,它在月球表面附近环绕月球运行的周期是多少?8.把一个质量是2kg的物块放在水平面上,用12N的水平拉力使物体从静止开始运动,物块与水平面的动摩擦因数为0.2,物块运动2秒末撤去拉力,g取10m/s2.求(1)2秒末物块的即时速度.(2)此后物块在水平面上还能滑行的最大距离.9.如图1-74所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2).求图1-74(1)推力F的大小.(2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离?10.一网球运动员在离开网的距离为12m处沿水平方向发球,发球高度为2.4m,网的高度为0.9m.(1)若网球在网上0.1m处越过,求网球的初速度.(2)若按上述初速度发球,求该网球落地点到网的距离.取g=10/m²s2,不考虑空气阻力.11.地球质量为M,半径为R,万有引力常量为G,发射一颗绕地球表面附近做圆周运动的人造卫星,卫星的速度称为第一宇宙速度.(1)试推导由上述各量表达的第一宇宙速度的计算式,要求写出推导依据.(2)若已知第一宇宙速度的大小为v=7.9km/s,地球半径R=6.4³103km,万有引力常量G=(2/3)³10-10N²m2/kg2,求地球质量(结果要求保留二位有效数字).12.如图1-75所示,质量2.0kg的小车放在光滑水平面上,在小车右端放一质量为1.0kg的物块,物块与小车之间的动摩擦因数为0.5,当物块与小车同时分别受到水平向左F1=6.0N的拉力和水平向右F2=9.0N的拉力,经0.4s同时撤去两力,为使物块不从小车上滑下,求小车最少要多长.(g取10m/s2)图1-7513.如图1-76所示,带弧形轨道的小车放在上表面光滑的静止浮于水面的船上,车左端被固定在船上的物体挡住,小车的弧形轨道和水平部分在B点相切,且AB段光滑,BC段粗糙.现有一个离车的BC面高为h的木块由A点自静止滑下,最终停在车面上BC段的某处.已知木块、车、船的质量分别为m1=m,m2=2m,m3=3m;木块与车表面间的动摩擦因数μ=0.4,水对船的阻力不计,求木块在BC面上滑行的距离s是多少?(设船足够长)图1-7614.如图1-77所示,一条不可伸长的轻绳长为L,一端用手握住,另一端系一质量为m的小球,今使手握的一端在水平桌面上做半径为R、角速度为ω的匀速圆周运动,且使绳始终与半径R的圆相切,小球也将在同一水平面内做匀速圆周运动,若人手做功的功率为P,求:图1-77(1)小球做匀速圆周运动的线速度大小.(2)小球在运动过程中所受到的摩擦阻力的大小.15.如图1-78所示,长为L=0.50m的木板AB静止、固定在水平面上,在AB的左端面有一质量为M=0.48kg的小木块C(可视为质点),现有一质量为m=20g的子弹以v0=75m/s的速度射向小木块C并留在小木块中.已知小木块C与木板AB之间的动摩擦因数为μ=0.1.(g取10m/s2)图1-78(1)求小木块C运动至AB右端面时的速度大小v2.(2)若将木板AB固定在以u=1.0m/s恒定速度向右运动的小车上(小车质量远大于小木块C的质量),小木块C仍放在木板AB的A端,子弹以v0′=76m/s的速度射向小木块C并留在小木块中,求小木块C运动至AB右端面的过程中小车向右运动的距离s.16.如图1-79所示,一质量M=2kg的长木板B静止于光滑水平面上,B的右边放有竖直挡板.现有一小物体A(可视为质点)质量m=1kg,以速度v0=6m/s从B的左端水平滑上B,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞时无机械能损失.图1-79(1)若B的右端距挡板s=4m,要使A最终不脱离B,则木板B的长度至少多长?(2)若B的右端距挡板s=0.5m,要使A最终不脱离B,则木板B的长度至少多长?17.如图1-80所示,长木板A右边固定着一个挡板,包括挡板在内的总质量为1.5M,静止在光滑的水平地面上.小木块B质量为M,从A的左端开始以初速度v0在A上滑动,滑到右端与挡板发生碰撞,已知碰撞过程时间极短,碰后木块B恰好滑到A的左端就停止滑动.已知B与A间的动摩擦因数为μ,B在A板上单程滑行长度为l.求:图1-80(1)若μl=3v02/160g,在B与挡板碰撞后的运动过程中,摩擦力对木板A做正功还是负功?做多少功?(2)讨论A和B在整个运动过程中,是否有可能在某一段时间里运动方向是向左的.如果不可能,说明理由;如果可能,求出发生这种情况的条件.18.在某市区内,一辆小汽车在平直的公路上以速度vA向东匀速行驶,一位观光游客正由南向北从班马线上横过马路.汽车司机发现前方有危险(游客正在D处)经0.7s作出反应,紧急刹车,但仍将正步行至B处的游客撞伤,该汽车最终在C处停下.为了清晰了解事故现场.现以图1-81示之:为了判断汽车司机是否超速行驶,警方派一警车以法定最高速度vm=14.0m/s行驶在同一马路的同一地段,在肇事汽车的起始制动点A紧急刹车,经31.5m后停下来.在事故现场测得AB=17.5m、BC=14.0m、BD=2.6m.问图1-81该肇事汽车的初速度vA是多大?游客横过马路的速度大小?(g取10m/s2)19.如图1-82所示,质量mA=10kg的物块A与质量mB=2kg的物块B放在倾角θ=30°的光滑斜面上处于静止状态,轻质弹簧一端与物块B连接,另一端与固定挡板连接,弹簧的劲度系数k=400N/m.现给物块A施加一个平行于斜面向上的力F,使物块A沿斜面向上做匀加速运动,已知力F在前0.2s内为变力,0.2s后为恒力,求(g取10m/s2)图1-82(1)力F的最大值与最小值;(2)力F由最小值达到最大值的过程中,物块A所增加的重力势能.20.如图1-83所示,滑块A、B的质量分别为m1与m2,m1<m2,由轻质弹簧相连接,置于水平的气垫导轨上.用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧.两滑块一起以恒定的速度v0向右滑动.突然,轻绳断开.当弹簧伸长至本身的自然长度时,滑块A的速度正好为零.问在以后的运动过程中,滑块B是否会有速度等于零的时刻?试通过定量分析,证明你的结论.图1-8321.如图1-84所示,表面粗糙的圆盘以恒定角速度ω匀速转动,质量为m的物体与转轴间系有一轻质弹簧,已知弹簧的原长大于圆盘半径.弹簧的劲度系数为k,物体在距转轴R处恰好能随圆盘一起转动而无相对滑动,现将物体沿半径方向移动一小段距离,若移动后,物体仍能与圆盘一起转动,且保持相对静止,则需要的条件是什么?图1-8422.设人造地球卫星绕地球作匀速圆周运动,根据万有引力定律、牛顿运动定律及周期的概念,论述人造地球卫星随着轨道半径的增加,它的线速度变小,周期变大.23.一质点做匀加速直线运动,其加速度为a,某时刻通过A点,经时间T通过B点,发生的位移为s1,再经过时间T通过C点,又经过第三个时间T通过D点,在第三个时间T内发生的位移为s3,试利用匀变速直线运动公式证明:a=(s3-s1)/2T2.24.小车拖着纸带做直线运动,打点计时器在纸带上打下了一系列的点.如何根据纸带上的点证明小车在做匀变速运动?说出判断依据并作出相应的证明.25.如图1-80所示,质量为1kg的小物块以5m/s的初速度滑上一块原来静止在水平面上的木板,木板的质量为4kg.经过时间2s以后,物块从木板的另一端以1m/s相对地的速度滑出,在这一过程中木板的位移为0.5m,求木板与水平面间的动摩擦因数.图1-80 图1-8126.如图1-81所示,在光滑地面上并排放两个相同的木块,长度皆为l=1.00m,在左边木块的最左端放一小金属块,它的质量等于一个木块的质量,开始小金属块以初速度v0=2.00m/s向右滑动,金属块与木块之间的滑动摩擦因数μ=0.10,g取10m/s2,求:木块的最后速度.27.如图1-82所示,A、B两个物体靠在一起,放在光滑水平面上,它们的质量分别为mA=3kg、mB=6kg,今用水平力FA推A,用水平力FB拉B,FA和FB随时间变化的关系是FA=9-2t(N),FB=3+2t(N).求从t=0到A、B脱离,它们的位移是多少?图1-82 图1-8328.如图1-83所示,木块A、B靠拢置于光滑的水平地面上.A、B的质量分别是2kg、3kg,A的长度是0.5m,另一质量是1kg、可视为质点的滑块C以速度v0=3m/s沿水平方向滑到A上,C与A、B间的动摩擦因数都相等,已知C由A滑向B的速度是v=2m/s,求:(1)C与A、B之间的动摩擦因数;(2)C在B上相对B滑行多大距离?(3)C在B上滑行过程中,B滑行了多远?(4)C在A、B上共滑行了多长时间?29.如图1-84所示,一质量为m的滑块能在倾角为θ的斜面上以a=(gsinθ)/2匀加速下滑,若用一水平推力F作用于滑块,使之能静止在斜面上.求推力F的大小.图1-84 图1-8530.如图1-85所示,AB和CD为两个对称斜面,其上部足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R=2.0m,一个质量为m=1kg的物体在离弧高度为h=3.0m处,以初速度4.0m/s沿斜面运动,若物体与两斜面间的动摩擦因数μ=0.2,重力加速度g=10m/s2,则(1)物体在斜面上(不包括圆弧部分)走过路程的最大值为多少?(2)试描述物体最终的运动情况.(3)物体对圆弧最低点的最大压力和最小压力分别为多少?31.如图1-86所示,一质量为500kg的木箱放在质量为2000kg的平板车的后部,木箱到驾驶室的距离L=1.6m,已知木箱与车板间的动摩擦因数μ=0.484,平板车在运动过程中所受阻力是车和箱总重的0.20倍,平板车以v0=22.0m/s恒定速度行驶,突然驾驶员刹车使车做匀减速运动,为使木箱不撞击驾驶室.g取1m/s2,试求:(1)从刹车开始到平板车完全停止至少要经过多长时间.(2)驾驶员刹车时的制动力不能超过多大.图1-86 图1-8732.如图1-87所示,1、2两木块用绷直的细绳连接,放在水平面上,其质量分别为m1=1.0kg、m2=2.0kg,它们与水平面间的动摩擦因数均为μ=0.10.在t=0时开始用向右的水平拉力F=6.0N拉木块2和木块1同时开始运动,过一段时间细绳断开,到t=6.0s时1、2两木块相距Δs=22.0m(细绳长度可忽略),木块1早已停止.求此时木块2的动能.(g取10m/s2)33.如图1-88甲所示,质量为M、长L=1.0m、右端带有竖直挡板的木板B静止在光滑水平面上,一个质量为m的小木块(可视为质点)A以水平速度v0=4.0m/s滑上B的左端,之后与右端挡板碰撞,最后恰好滑到木板B的左端,已知M/m=3,并设A与挡板碰撞时无机械能损失,碰撞时间可以忽略不计,g取10m/s2.求(1)A、B最后速度;(2)木块A与木板B之间的动摩擦因数.(3)木块A与木板B相碰前后木板B的速度,再在图1-88乙所给坐标中画出此过程中B相对地的v-t图线.图1-8834.两个物体质量分别为m1和m2,m1原来静止,m2以速度v0向右运动,如图1-89所示,它们同时开始受到大小相等、方向与v0相同的恒力F的作用,它们能不能在某一时刻达到相同的速度?说明判断的理由.图1-89 图1-90 图1-9135.如图1-90所示,ABC是光滑半圆形轨道,其直径AOC处于竖直方向,长为0.8m.半径OB处于水平方向.质量为m的小球自A点以初速度v水平射入,求:(1)欲使小球沿轨道运动,其水平初速度v的最小值是多少?(2)若小球的水平初速度v小于(1)中的最小值,小球有无可能经过B点?若能,求出水平初速度大小满足的条件,若不能,请说明理由.(g取10m/s2,小球和轨道相碰时无能量损失而不反弹)36.试证明太空中任何天体表面附近卫星的运动周期与该天体密度的平方根成反比.37.在光滑水平面上有一质量为0.2kg的小球,以5.0m/s的速度向前运动,与一个质量为0.3kg的静止的木块发生碰撞,假设碰撞后木块的速度为4.2m/s,试论证这种假设是否合理.38.如图1-91所示在光滑水平地面上,停着一辆玩具汽车,小车上的平台A是粗糙的,并靠在光滑的水平桌面旁,现有一质量为m的小物体C以速度v0沿水平桌面自左向右运动,滑过平台A后,恰能落在小车底面的前端B处,并粘合在一起,已知小车的质量为M,平台A离车底平面的高度OA=h,又OB=s,求:(1)物体C刚离开平台时,小车获得的速度;(2)物体与小车相互作用的过程中,系统损失的机械能.39.一质量M=2kg的长木板B静止于光滑水平面上,B的右端离竖直挡板0.5m,现有一小物体A(可视为质点)质量m=1kg,以一定速度v0从B的左端水平滑上B,如图1-92所示,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞前后速度大小不变.①若v0=2m/s,要使A最终不脱离B,则木板B的长度至少多长?②若v0=4m/s,要使A最终不脱离B,则木板B又至少有多长?(g取10m/s2)图1-92 图1-9340.在光滑水平面上静置有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,动摩擦因数为μ,滑块CD上表面为光滑的1/4圆弧,它们紧靠在一起,如图1-93所示.一可视为质点的物块P质量也为m,它从木板AB右端以初速v0滑入,过B点时速度为v0/2,后又滑上滑块,最终恰好滑到最高点C处,求:(1)物块滑到B处时,木板的速度vAB;(2)木板的长度L;(3)物块滑到C处时滑块CD的动能.41.一平直长木板C静止在光滑水平面上,今有两小物块A和B分别以2v0和v0的初速度沿同一直线从长木板C两端相向水平地滑上长木板,如图1-94所示.设A、B两小物块与长木板C间的动摩擦因数均为μ,A、B、C三者质量相等.①若A、B两小物块不发生碰撞,则由开始滑上C到静止在C上止,B通过的总路程是多大?经过的时间多长?②为使A、B两小物块不发生碰撞,长木板C的长度至少多大?图1-94 图1-9542.在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与一轻弹簧固定相连,弹簧的另一端与小车左端固定连接,将弹簧压缩后用细线将m栓住,m静止在小车上的A点,如图1-95所示.设m与M间的动摩擦因数为μ,O点为弹簧原长位置,将细线烧断后,m、M开始运动.(1)当物体m位于O点左侧还是右侧,物体m的速度最大?简要说明理由.(2)若物体m达到最大速度v1时,物体m已相对小车移动了距离s.求此时M的速度v2和这一过程中弹簧释放的弹性势能Ep?(3)判断m与M的最终运动状态是静止、匀速运动还是相对往复运动?并简要说明理由.43.如图1-96所示,AOB是光滑水平轨道,BC是半径为R的光滑1/4圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一质量为m的小子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,恰能到达圆弧最高点C(小木块和子弹均可看成质点).问:(1)子弹入射前的速度?(2)若每当小木块返回或停止在O点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧能上升的最大高度为多少?图1-96 图1-9744.如图1-97所示,一辆质量m=2kg的平板车左端放有质量M=3kg的小滑块,滑块与平板车间的动摩擦因数μ=0.4.开始时平板车和滑块共同以v0=2m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反,平板车足够长,以至滑块不会滑到平板车右端.(取g=10m/s2)求:(1)平板车第一次与墙壁碰撞后向左运动的最大距离.(2)平板车第二次与墙壁碰撞前瞬间的速度v.(3)为使滑块始终不会从平板车右端滑下,平板车至少多长?(M可当作质点处理)45.如图1-98所示,质量为0.3kg的小车静止在光滑轨道上,在它的下面挂一个质量为0.1kg的小球B,车旁有一支架被固定在轨道上,支架上O点悬挂一个质量仍为0.1kg的小球A,两球的球心至悬挂点的距离均为0.2m.当两球静止时刚好相切,两球心位于同一水平线上,两条悬线竖直并相互平行.若将A球向左拉到图中的虚线所示的位置后从静止释放,与B球发生碰撞,如果碰撞过程中无机械能损失,求碰撞后B球上升的最大高度和小车所能获得的最大速度.图1-98 图1-9946.如图1-99所示,一条不可伸缩的轻绳长为l,一端用手握着,另一端系一个小球,今使手握的一端在水平桌面上做半径为r、角速度为ω的匀速圆周运动,且使绳始终与半径为r的圆相切,小球也将在同一水平面内做匀速圆周运动.若人手提供的功率恒为P,求:(1)小球做圆周运动的线速度大小;(2)小球在运动过程中所受到的摩擦阻力的大小.47.如图1-100所示,一个框架质量m1=200g,通过定滑轮用绳子挂在轻弹簧的一端,弹簧的另一端固定在墙上,当系统静止时,弹簧伸长了10cm,另有一粘性物体质量m2=200g,从距框架底板H=30cm的上方由静止开始自由下落,并用很短时间粘在底板上.g取10m/s2,设弹簧右端一直没有碰到滑轮,不计滑轮摩擦,求框架向下移动的最大距离h多大?图1-100 图1-101 图1-10248.如图1-101所示,在光滑的水平面上,有两个质量都是M的小车A和B,两车之间用轻质弹簧相连,它们以共同的速度v0向右运动,另有一质量为m=M/2的粘性物体,从高处自由落下,正好落在A车上,并与之粘合在一起,求这以后的运动过程中,弹簧获得的最大弹性势能E.49.一轻弹簧直立在地面上,其劲度系数为k=400N/m,在弹簧的上端与盒子A连接在一起,盒子内装物体B,B的上下表面恰与盒子接触,如图1-102所示,A和B的质量mA=mB=1kg,g=10m/s2,不计阻力,先将A向上抬高使弹簧伸长5cm后从静止释放,A和B一起做上下方向的简谐运动,已知弹簧的弹性势能决定于弹簧的形变大小.(1)试求A的振幅;(2)试求B的最大速率;(3)试求在最高点和最低点A对B的作用力.参考解题过程与答案1.解:设经过时间t,物体到达P点(1)xP=v0t,yP=(1/2)(F/m)t2,xP/yP=ctg37°,联解得t=3s,x=30m,y=22.5m,坐标(30m,22.5m)(2)vy=(F/m)t=15m/s,tgα=vy/v0=15/10=3/2,α=arctg(3/2),α为v与水平方向的夹角.2.解:在0~1s内,由v-t图象,知a1=12m/s2,由牛顿第二定律,得F-μmgcosθ-mgsinθ=ma1,①在0~2s内,由v-t图象,知a2=-6m/s2,因为此时物体具有斜向上的初速度,故由牛顿第二定律,得-μmgcosθ-mgsinθ=ma2,②式代入①式,得F=18N.3.解:在传送带的运行速率较小、传送时间较长时,物体从A到B需经历匀加速运动和匀速运动两个过程,设物体匀加速运动的时间为t1,则(v/2)t1+v(t-t1)=L,所以t1=2(vt-L)/v=(2³(2³6-10)/2)s=2s.为使物体从A至B所用时间最短,物体必须始终处于加速状态,由于物体与传送带之间的滑动摩擦力不变,所以其加速度也不变.而a=v/t=1m/s2.设物体从A至B所用最短的时间为t2,则(1/2)at22=L,t22vmin=at2m/s=传送带速度再增大1倍,物体仍做加速度为1m/s2的匀加速运动,从A至B的传送时间为4.解:启动前N1=mg,升到某高度时N2=(17/18)N1=(17/18)mg,对测试仪N2-mg′=ma=m(g/2),g′=(8/18)g=(4/9)g,GmM/R2=mg,GmM/(R+h)2=mg′,解得:h=(1/2)R.5.解:由匀加速运动的公式v2=v02+2as得物块沿斜面下滑的加速度为a=v2/2s=1.42/(2³1.4)=0.7ms-2,由于a<gsinθ=5ms-2,可知物块受到摩擦力的作用.图3分析物块受力,它受3个力,如图3.对于沿斜面的方向和垂直于斜面的方向,由牛顿定律有mgsinθ-f1=ma,mgcosθ-N1=0,分析木楔受力,它受5个力作用,如图3所示.对于水平方向,由牛顿定律有f2+f1cosθ-N1sinθ=0,由此可解得地面的作用于木楔的摩擦力f2=mgcosθsinθ-(mgsinθ-ma)cosθ=macosθ=1³0.7³(/2)=0.61N.此力的方向与图中所设的一致(由指向).6.解:(1)飞机原先是水平飞行的,由于垂直气流的作用,飞机在竖直方向上的运动可看成初速度为零的匀加速直线运动,根据h=(1/2)at2,得a=2h/t2,代入h=1700m,t=10s,得a=(2³1700/102)(m/s2)=34m/s2,方向竖直向下.(2)飞机在向下做加速运动的过程中,若乘客已系好安全带,使机上乘客产生加速度的力是向下重力和安全带拉力的合力.设乘客质量为m,安全带提供的竖直向下拉力为F,根据牛顿第二定律F+mg=ma,得安全带拉力F=m(a-g)=m(34-10)N=24m(N),∴安全带提供的拉力相当于乘客体重的倍数n=F/mg=24mN/m²10N=2.4(倍).(3)若乘客未系安全带,飞机向下的加速度为34m/s2,人向下加速度为10m/s2,飞机向下的加速度大于人的加速度,所以人对飞机将向上运动,会使头部受到严重伤害.7.解:设月球表面重力加速度为g,根据平抛运动规律,有h=(1/2)gt2,①水平射程为L=v0t,②联立①②得g=2hv02/L2.③根据牛顿第二定律,得mg=m(2π/T)2R,④联立③④得T=(πL/v0h).⑤8.解:前2秒内,有F-f=ma1,f=μN,N=mg,则a1=(F-μmg)/m=4m/s2,vt=a1t=8m/s,撤去F以后a2=f/m=2m/s,s=v12/2a2=16m.9.解:(1)用力斜向下推时,箱子匀速运动,则有Fcosθ=f,f=μN,N=G+Fsinθ,联立以上三式代数据,得F=1.2³102N.(2)若水平用力推箱子时,据牛顿第二定律,得F合=ma,则有F-μN=ma,N=G,联立解得a=2.0m/s2.v=at=2.0³3.0m/s=6.0m/s,s=(1/2)at2=(1/2)³2.0³3.02m/s=9.0m,推力停止作用后a′=f/m=4.0m/s2(方向向左),s′=v2/2a′=4.5m,则s总=s+s′=13.5m.10.解:根据题中说明,该运动员发球后,网球做平抛运动.以v表示初速度,H表示网球开始运动时离地面的高度(即发球高度),s1表示网球开始运动时与网的水平距离(即运动员离开网的距离),t1表示网球通过网上的时刻,h表示网球通过网上时离地面的高度,由平抛运动规律得到s1=vt1,H-h=(1/2)gt12,消去t1,得v=m/s,v≈23m/s.以t2表示网球落地的时刻,s2表示网球开始运动的地点与落地点的水平距离,s表示网球落地点与网的水平距离,由平抛运动规律得到H=(1/2)gt22,s2=vt2,消去t2,得s2网球落地点到网的距离s=s2-s1≈4m.11.解:(1)设卫星质量为m,它在地球附近做圆周运动,半径可取为地球半径R,运动速度为v,有GMm/R2=mv2/R(2)由(1)得:M=v2R/G==6.0³1024kg.12.解:对物块:F1-μmg=ma1,6-0.5³1³10=1²a1,a1=1.0m/s2,s1=(1/2)a1t2=(1/2)³1³0.42=0.08m,v1=a1t=1³0.4=0.4m/s,对小车:F2-μmg=Ma2,9-0.5³1³10=2a2,a2=2.0m/s2,s2=(1/2)a2t2=(1/2)³2³0.42=0.16m,v2=a2t=2³0.4=0.8m/s,撤去两力后,动量守恒,有Mv2-mv1=(M+m)v,v=0.4m/s(向右),∵((1/2)mv12+(1/2)Mv22)-(1/2)(m+M)v2=μmgs3,s3=0.096m,∴l=s1+s2+s3=0.336m.13.解:设木块到B时速度为v0,车与船的速度为v1,对木块、车、船系统,有m1gh=(m1v02/2)+((m2+m3)v12/2),m1v0=(m2+m3)v1,解得v0=1木块到B后,船以v1继续向左匀速运动,木块和车最终以共同速度v2向右运动,对木块和车系统,有m1v0-m2v1=(m1+m2)v2,μm1gs=((m1v02/2)+(m2v12/2))-((m1+m2)v22/2),得v2=v12h.14.解:(1)小球的角速度与手转动的角速度必定相等均为ω.设小球做圆周运动的半径为r,线速度为v.由几何关系得,v=ω·r,解得v=(2)设手对绳的拉力为F,手的线速度为v,由功率公式得P=Fv=F²ωR,∴F=P/ωR.图4研究小球的受力情况如图4所示,因为小球做匀速圆周运动,所以切向合力为零,即Fsinθ=f,其中sinθ联立解得f=P/15.解:(1)用v1表示子弹射入木块C后两者的共同速度,由于子弹射入木块C时间极短,系统动量守恒,有mv0=(m+M)v1,v1=mv0/(m+M)=3m/s,子弹和木块C在AB木板上滑动,由动能定理得:(1/2)(m+M)v22-(1/2)(m+M)v12=-μ(m+M)gL,解得v2(2)用v′表示子弹射入木块C后两者的共同速度,由动量守恒定律,得mv0′+Mu=(m+M)v1′,解得v1′=4m/s.木块C及子弹在AB木板表面上做匀减速运动a=μg.设木块C和子弹滑至AB板右端的时间为t,则木块C和子弹的位移s1=v1′t-(1/2)at2,由于m车≥(m+M),故小车及木块AB仍做匀速直线运动,小车及木板AB的位移s=ut,由图5可知:s1=s+L,联立以上四式并代入数据得:t2-6t+1=0,。
理论力学期末前复习题-1.计算题
六)计算题1101】一圆轮以匀速v0沿直线作纯滚动,如图所示,设初始时刻P 点与坐标原点O 重合,轮半径为r,求轮缘上一点P 的运动学方程以及P 点的速度、加速度大小。
1201】质点沿x轴运动,加速度x k 2x,0, ,求质k为常数,且 t 0时,x b, x点的运动学方程。
1202】质点作平面运动时,其速率v 为常数C,位矢旋转的角速度为常数,设t 0时, r 0和= 0 求质点的运动学方程和轨道方程。
1301】某人以一定的功率划船,逆流而上,当船经过一桥时,船上的鱼竿不慎掉入河中。
两分钟后,此人才发觉,立即返棹追赶。
追到鱼竿之处是在桥的下游600 米的地方,问河水的流速是多大1302】一人手持5cm 成和两端开口的管子在雨中站立,管顶向北倾斜4ccm,雨点直线穿过此管;如此人向南以s 的速度行走,则管顶向北倾斜3cm 就可以使雨点穿过,求雨点速度。
1501】一质点受力 F mk3,此力指向坐标原点O,试求质点沿x 轴从距原x点为l 处由静止开始运动,达到原点所需要的时间。
【1502】有孔小珠穿在光滑的抛物线形钢丝上且能自由滑动,抛物线的正交弦为4a,其轴沿铅直方向而顶点位于下方,小珠从顶点开始运动时具有某一速率,这个速率使它恰能达到过焦点的水平面,试求小珠在顶点上方高为y(<Q)时受到的约束力。
1503】船在水中航行,停机时的速度为v0 ,水的阻力为 f kmv2,问经过多少时间后航速减至v0。
2【1504】质量为m 的小球,在重力的作用下,在空气中竖直下落,其运动规律为s At B(1 e 3t),求空气阻力(以v 的函数表示之)【1901】求质量为m 的质点在反立方引力场中的运动轨道。
【1902】质点在有心力的作用下作双纽线r 2 a2 cos2 运动,试求有心力。
【 2101】求半径为 R 的均质半球体的质心。
【2701】总长度为 a 的均质链条的一段 b (0<b<a)挂在光滑桌面 AB 边缘上,另一 端躺在桌面上。
高考物理力学计算题(三)含答案与解析
高考物理力学计算题(三)组卷老师:莫老师评卷人得分一.计算题(共50小题)1.如图所示AB和CDO都是处于竖直平面内的光滑圆弧形轨道,OA处于水平位置。
AB是半径为R=1m的圆周轨道,CDO是半径为r=0.5m的半圆轨道,最高点O处固定一个竖直弹性档板(可以把小球弹回不损失能量)图中没有画出,D 为CDO轨道的中点。
BC段是水平粗糙轨道,与圆弧形轨道平滑连接。
已知BC 段水平轨道长L=2m,与小球之间的动摩擦因数μ=0.2.现让一个质量为m=1Kg 的小球P从A点的正上方距水平线OA高H处自由落下:(取g=10m/s2)(1)当H=2m时,问此时小球第一次到达D点对轨道的压力大小;(2)为使小球仅仅与弹性板碰撞一次,且小球不会脱离CDO轨道,问H的取值范围。
2.如图所示,小球A系在细线的一端,线的另一端固定在O点,O到光滑水平面的距离为h=0.8m,已知A的质量为m,物块B的质量是小球A的5倍,置于水平传送带左端的水平面上且位于O点正下方,传送带右端有一带半圆光滑轨道的小车,小车的质量是物块B的5倍,水平面、传送带及小车的上表面平滑连接,物块B与传送带间的动摩擦因数为μ=0.5,其余摩擦不计,传送带长L=3.5m,以恒定速率v0=6m/s顺时针运转。
现拉动小球使线水平伸直后由静止释放,小球运动到最低点时与物块发生弹性正碰,小球反弹后上升到最高点时与水平面的距离为,若小车不固定,物块刚好能滑到与圆心O1等高的C点,重力加速度为g,小球与物块均可视为质点,求:(1)小球和物块相碰后物块B的速度V B大小。
(2)若滑块B的质量为m B=1kg,求滑块B与传送带之间由摩擦而产生的热量Q。
及带动传送带的电动机多做的功W电(3)小车上的半圆轨道半径R大小。
3.一质量M=6kg的木板B静止于光滑水平面上,物块A质量m=6kg,停在B的左端.质量为m0=1kg的小球用长为L=0.8m的轻绳悬挂在固定点.O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A发生碰撞后反弹,反弹所能达到的最大高度为h=0.2m,物块与小球可视为质点,不计空气阻力.已知A、B间的动摩擦因数μ=0.1(g=10m/s2),求:(1)小球运动到最低点与A碰撞前瞬间,小球的速度:(2)小球与A碰撞后瞬间,物块A的速度;(3)为使A、B达到共同速度前A不滑离木板,木板B至少多长.4.汉中天坑群是全球较大的天坑群地质遗迹,如图是镇巴三元圈子崖天坑,最大深度320m,在某次勘察中,探险队员利用探险绳从坑沿到坑底仅用89s(可认为是竖直的),若队员先以加速度a从静止开始做匀加速运动,经过40s速度为5m/s,然后以此速度匀速运动,最后匀减速到达坑底速度恰好为零。
高三物理第一轮复习 力学专练(3)计算题
2009届高三第一轮复习 力学专练(3)计算题1.一路灯距地面的高度为h ,身高为l 的人以速度v 匀速行走,如图所示.(1)证明人的头顶的影子做匀速度运动;(2)求人影的长度随时间的变化率.解:(1)设t=0时刻,人位于路灯的正下方O 处,在时刻t ,人走到S 处,根据题意有vt OS =,过路灯P 和人头顶的直线与地面的交点M 为t 时刻人头顶影子的位置,如图所示.OM 为人头顶影子到O 点的距离.由几何关系,有 OSOM l OM h -=,即t l h hv OM -=. 因OM 与时间t 成正比,故人头顶的影子做匀速运动.(2)由图可知,在时刻t ,人影的长度为SM ,由几何关系,有OS OM SM -=,则=SM t lh lv -. 可见影长SM 与时间t 成正比,所以影长随时间的变化率为k t l h lv -=。
2.如图所示,物体A 的质量m=3 kg ,用两根轻绳B,C连接于竖直墙上,要使两绳都能绷直,即物体A 在如图所示位置保持平衡,现施加一个力F 作用于物体,力F 的方向如图69所示,若夹角8=600,求力F 的大小应满足的条件.(取g=10 m/s')解:A 球受力如图所示,则有水平方向:C B F F F +=θθcos cos ①竖直方向:mg F F B =+θθsin sin ② 由②式得N N mg F mg F B 6.34320sin sin ==≤-=θθ 由①、②式得N N F mg F C 3.17310cos 2sin 2=≥+=θθ 所以力F 大小应满足的条件是17.3 N ≤F ≤34. 6 N.3.如图所示,质量为M 的木板放在倾角为θ的光滑斜面上,质量为m 的人在木板上跑,假如脚与板接触处不打滑.(1)要保持木板相对斜面静止,人应以多大的加速度朝什么方向跑动?(2)要保持人相对于斜面的位置不变,人在原地跑而使木板以多大的加速度朝什么方向运动?解(1)要保持木板相对斜面静止,木板要受到沿斜面向上的摩擦力与木板的下滑力平衡,即F Mg =θsin根据作用力与反作用力的性质可知,人受到木板对他沿斜面向下的摩擦力,所以人受到的合力为m Mg mg a ma F mg θθθsin sin ,sin +==+ 方向沿斜面向下.(2)要保持人相对于斜面的位置不变,对人有F mg =θsin ,F 为人受到的摩擦力且沿斜面向上,因此木板受到向下的摩擦力,木板受到的合力为Ma F Mg =+θsin ,解得 MMg mg a θθsin sin +=,方向沿斜面向下. 4.放在水平地面上的一物块,受到方向不变的水平推力F 的作用,力F 的大小与时间t的关系和物块速度v 与时间t 的关系如图所示.取重力加速度g=10 m/s 2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.解:由v -t 图象可知,物块在0~3s 内静止,3 s ~6 s 内做匀加速运动,加速度为a ,6 s ~9 s 内做匀速运动,结合F -t 图象可知f=4 N=μmg ,F 3一f=2 N=ma , v 2=6 m/s=at =3a ,由以上各式得m=1 kg ,μ=0.4.5.如图所示的装置可以测量飞行器在竖直方向上做匀加速直线运动的加速度.该装置是在矩形箱子的上、下壁上各安装一个可以测力的传感器,分别连接两根劲度系数相同(可拉伸可压缩)的轻弹簧的一端,弹簧的另一端都固定在一个滑块上,滑块套在光滑竖直杆上.现将该装置固定在一飞行器上,传感器P 在上,传感器Q 在下.飞行器在地面静止时,传感器P 、Q 显示的弹力大小均为10 N .求:(1)滑块的质量.(地面处的g=10 m/s 2)(2)当飞行器竖直向上飞到离地面4R 处,此处的重力加速度为多大?(R 是地球的半径) (3)若在此高度处传感器P 显示的弹力大小为F'=20 N ,此时飞行器的加速度是多大? 解:(1)kg kg g F g G m 2101022=⨯=== (2) 22,)4(R Mm G mg R R Mm G g m =+=' 解之得222/4.6)4(s m g R R R g =+=' (3)由牛顿第二定律,得ma g m F ='-'2,所以2/6.132s m mg m F a ='-'=. 6.如图所示,一个人用与水平方向成θ= 300角的斜向下的推力F 推一个质量为20 kg的箱子匀速前进,如图(a )所示,箱子与水平地面间的动摩擦因数为μ=0.40.求:(1)推力F 的大小;(2)若该人不改变力F 的大小,只把力的方向变为与水平方向成300角斜向上去拉这个静止的箱子,如图(b)所示,拉力作用2.0 s 后撤去,箱子最多还能运动多长距离?(g 取10 m/s 2).解:(1)在图(a )情况下,对箱子有11,sin ,cos N f N mg F f F μθθ==+=由以上三式得F=120 N.(2)在图(b )情况下,物体先以加速度a 1做匀速运动,然后以加速度a 2做匀减速运动直到停止.对物体有,),sin (cos cos 11121t a v F mg F N F ma =--=-=θμθμθ,2122322,v s a mg N ma ===μμ,解之得s 2=13.5 m.12.如图所示,三个物体质量C B A m m m ==,物体A 与斜面间动摩擦因数为83,斜面体与水平地面间摩擦力足够大,物体C 距地面的高度为0. 8 m,斜面倾角为300.求:(1)若开始时系统处于静止状态,斜面体与水平地面之间有无摩擦力?如果有,求出这个摩擦力;如果没有,请说明理由.(2)若在系统静止时,去掉物体B ,求物体C 落地时的速度.解:(1)以A 、B 、C 和斜面整体为研究对象,处于静止平衡,合外力为零,因水平方向没有受到其他外力,所以斜面和地面间没有摩擦力. (2)s m /210 13.在建筑工地上,我们常常看到工人用重锤将柱桩打入地下的情景.对此,我们可以建立这样一个力学模型:重锤质量为m ,从高H 处自由下落,柱桩质量为M ,重锤打击柱桩的时间极短且不反弹.不计空气阻力,桩与地面间的平均阻力为f 。
理论力学计算题复习
习题1-1 图中设AB=l ,在A 点受四个大小均等于F 的力1F 、2F 、3F 和4F 作用。
试分别计算每个力对B 点之矩。
【解答】:11()sin 452B M F F l F l =-⋅⋅︒=-⋅ 22()B M F F l F l =-⋅=-⋅33()sin 452B M F F l F l =-⋅⋅︒=-⋅ 4()0B M F = 。
习题1-2 如图所示正平行六面体ABCD ,重为P F =100N ,边长AB=60cm ,AD=80cm 。
今将其斜放使它的底面与水平面成30ϕ=︒角,试求其重力对棱A 的力矩。
又问当ϕ等于多大时,该力矩等于零。
【解法1——直接计算法】:设AC 与BD 的交点为O ,∠BAO=α,则:cos()cos cos sin sin 3410.1196552αϕαϕαϕ+=-=⨯=150cm=0.5m 2AO == ()cos()1000.50.1196 5.98N mA P P P M F F d F AO αϕ=⋅=⨯⨯+=⨯⨯=⋅ 当()0A P M F = 时,重力P F 的作用线必通过A 点,即90αβ+=︒,所以:令cos()cos cos sin sin 0αϕαϕαϕ+=-=→34cos sin 055ϕϕ⨯-⨯=,得: 3tan 4ϕ=→3652ϕ'=︒。
【解法2——利用合力矩定理】:将重力P F 分解为两个正交分力1P F 和2P F ,其中:1P F AD ,2P F AB ,则:1cos P P F F ϕ=⨯,2sin P P F F ϕ=⨯根据合力矩定理:1212()()()22cos 0.3sin 0.411000.31000.4 5.98N m 22A P A P A P P P P P AB AD M F M F M F F F F F ϕϕ=+=⨯-⨯=⨯⨯-⨯⨯=⨯-⨯⨯=⋅ 确定ϕ等于多大时,()0A P M F =令()0A P M F = ,即:cos 0.3sin 0.40P P F F ϕϕ⨯⨯-⨯⨯=→100cos 0.3100sin 0.40ϕϕ⨯⨯-⨯⨯=→3tan 4ϕ=→3652ϕ'=︒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力学计算题
1.如图所示,质量为m 的小物块在粗糙水平面上做直线运动,经距离L 后以速度v 飞离桌面,最终落在水平地面上。
已知L=1.4m ,0.3=v m/s ,m=0.10kg ,物块与桌面间的动摩擦因数25.0=μ,桌面高h=0.45m 。
不计空气阻力,重力加速度10=g m/s 2。
求:
(1)小物块落地点距飞出点的水平距离s ;
(2)小物块落地时的动能k E ;
(3)小物块的初速度0v 。
2. 如图所示,
长度为
l 的轻绳上端固定在O 点,下端系一质量为m 的小球(小球的大小可以忽略)。
(1)在水平拉力F 的作用下,轻绳与竖直方向的夹角为α,小球
保持静止。
画出此时小球的受力图,并求力F 的大小;
(2)由图示位置无初速释放小球,求当小球通过最低点时的速度
大小及轻绳对小球的拉力。
不计空气阻力。
3. 如图,跳台滑雪运动员经过一段加速滑行后从O点
水平飞出,经过3.0s落到斜坡上的A点。
已知O点是
斜坡的起点,斜坡与水平面的夹角θ=37°,运动员
的质量m=50kg.不计空气阻力。
(取sin37°=0.60,
cos37°=0.80;g 取10m/s 2)。
求
(1) A 点与O 点时的速度大小;
(2) 运动员离开0点时的速度大小;
(3) 运动员落到A 点时的动能。
l s h
v 0 v
4. 下图是简化后的跳台滑雪的雪道示意图。
整个雪道由倾斜的助滑雪道AB 和着陆雪道DE ,以及水平的起跳平台CD 组成,AB 与CD 圆滑连接。
运动员从助滑雪道AB 上由静止开始,在重力作用下,滑到D 点水平飞出,不计飞行中的空气阻力,经2s 在水平方向飞行了60m ,落在着陆雪道DE 上,已知从B 点到D 点运动员的速度大小不变。
(g 取10m/s 2)求
(1)运动员在AB 段下滑到B 点的速度大小;
(2)若不计阻力,运动员在AB 段下滑过程中下降的高
度;
(3)若运动员的质量为60kg ,在AB 段下降的实际高度
是50m ,此过程中他克服阻力所做的功。
5. AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
一小球自A 点起由静止开始沿轨道下滑。
已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。
求
(1)小球运动到B 点时的动能
(2)小球下滑到距水平轨道的高度为12
R 时的速度大小和方向 (3)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大?
O m A B C
R
6. 蹦床比赛分成预备运动和比赛动作。
最初,运动员静止站在蹦床上在预备运动阶段,他经过若干次蹦跳,逐渐增加上升高度,最终达到完成比赛动作所需的高度;此后,进入比赛动作阶段。
把蹦床简化为一个竖直放置的轻弹簧,弹力大小F=kx (x 为床面下沉的距离,k 为常量)。
质量m=50kg 的运动员静止站在蹦床上,床面下沉x 0=0.10m ;在预备运动中,家丁运动员所做的总共W 全部用于其机械能;在比赛动作中,把该运动员视作质点,其每次离开床面做竖直上抛运动的腾空时间均为△t=2.0s ,设运动员每次落下使床面压缩的最大深度均为x l 。
取重力加速度g=I0m/s 2,忽略空气阻力的影响。
(1) 求常量k ,并在图中画出弹力F 随x 变化的示意图;
(2) 求在比赛动作中,运动员离开床面后上升的最大高度h m ;
(3) 借助F-x 图像可以确定弹性做功的规律,在此基础上,求 x 1 和W 的值
7. 摩天大楼中一部直通高层的客运电梯,行程超过百米,电梯的简化模型如图1所示,考虑安全舒适、省时等因素,电梯的加速度a 随时间t 是变化的。
已知电梯在0=t 时由静止开始上升,t a -图像如图2所示。
电梯总质量3
102⨯=m kg ,忽略一切阻力,重力加速度10=g m/s 2。
(1)求电梯在上升过程中受到的最大拉力1F 和最小拉力2F ;
(2)类比是一种常用的研究方法,对于直线运动,教科书中讲解了由t v -图像求位移的方法。
请你借鉴此方法对比加速度和速度的定义,根据图2所示t a -图像,求电梯在第1s 内的速度改变量1v ∆和第2s 末的速度2v ;
(3)求电梯以最大速度上升时,拉力做功的功率P ,再求0~11s 时间内,拉力和重力对电梯所做的总功W 。
a/m ∙s -2 t/s
1.0
-1.0 1 2 10 11 30 31
40 41 图 2 图1 拉力
电梯
8 .一般来说,正常人从距地面1.5m 高处跳下,落地时速度较小,经过腿部的缓冲,这个速度对人是安全的,称为安全着地速度。
如果人从高空跳下,必须使用降落伞才能安全着陆,其原因是,张开的降落伞受到空气对伞向上的阻力作用。
经过大量实验和理论研究表明,空气对降落伞的阻力f 与空气密度ρ、降落伞的迎风面积S 、降落伞相对空气速度v 、阻力系数c 有关(由伞的形状、结构、材料等决定),其表达式是f=2
1cρSv 2。
根据以上信息,解决下列问题。
(取g=10m/s 2)
(1)在忽略空气阻力的情况下,计算人从1.5m 高处跳下着地时的速度大小(计算时人可视为质点);
(2)在某次高塔跳伞训练中,运动员使用的是有排气孔的降落伞,其阻力系数c=0.90,空气密度取ρ=1.25kg/m 3。
降落伞、运动员总
质量m=80kg ,张开降落伞后达到匀速下降
时,要求人能安全着地,降落伞的迎风面积
S 至少是多大? (3)跳伞运动员和降落伞的总质量
m=80kg ,从h=65m 高的跳伞塔上跳下,在
下落过程中,经历了张开降落伞前自由下
落、张开降落伞后减速下落和匀速下落直至落地三个阶段。
图12是通过固定在跳伞运
动员身上的速度传感器绘制出的从张开降
落伞开始做减速运动至达到匀速运动时的v-t 图像。
根据图像估算运动员做减速运动的过程中,空气阻力对降落伞做的功。
t/s
0 v/m •s -1 1.0
2.0
3.0 图12 10
20。