初中数学九年级上学期期末练习(1).docx

合集下载

九年级上册期末考试数学试题(有答案)

九年级上册期末考试数学试题(有答案)

九年级上册期末考试数学试题(有答案)以下是查字典数学网为您推荐的九年级上册期末考试数学试题(有答案),希望本篇文章对您学习有所帮助。

九年级上册期末考试数学试题(有答案)一、单项选择题(每题3分,共18分):1. 要使二次根式有意义,字母的取值必须满足的条件是( )A. 1B. 1C. 1D. 12.方程的根是( )(A) (B)(C) (D)3.在一个不透明的口袋中有若干个只有颜色不同的球,如果口袋中装有4个黄球,且摸出黄球的概率为,那么袋中共有球的个数为( )A.6个B.7个C.9个D.12个4.在Rt△ABC中,锐角A的对边为y,邻边为x,且x-2+(y-1)2=0,则有( )A.sinA= ,cosA=B. sinA= ,cosA=C.sinA= ,cosA=D. sinA= ,cosA=5、如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m , CA=0.8m, 则树高度为( )A、4.8mB、6.4mC、8mD、10m图1 图26. 如图2,△ABC,AB=12,AC=15,D为AB上一点,且AD= AB,若在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于( )A. 16B. 10C. 16或10D. 以上答案都不对二、填空题(每题3分,共27分):7.若二次根式与是同类二次根式,则ab =______________________8、__________.9 . 关于的一元二次方程的解为_________________.10.已知关于的方程-p +q=0的两个根是0和-3,则P=______ , q= __ .11.某坡面的坡度为1: ,则坡角是_________度.12.在Rt△ABC中,斜边AB=10cm,tanA= ,则Rt△ABC 的周长为cm13.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是。

2020初三数学九年级上册期末试题和答案(1)

2020初三数学九年级上册期末试题和答案(1)

2020初三数学九年级上册期末试题和答案(1)一、选择题1.圆锥的底面半径为2,母线长为6,它的侧面积为( ) A .6πB .12πC .18πD .24π2.下列方程中,是关于x 的一元二次方程的为( ) A .2210x x += B .220x x --=C .2320x xy -=D .240y -=3.sin 30°的值为( ) A .3B .32C .12D .224.如图,△ABC 的顶点在网格的格点上,则tanA 的值为( )A .12B .10 C .3 D .10 5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm6.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1 B .54-≤b ≤1 C .94-≤b ≤12D .94-≤b ≤1 7.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( ) A .42 B .45C .46D .488.若25x y =,则x y y+的值为( ) A .25B .72 C .57D .759.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤10.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12 B .13 C .14 D .1511.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .3412.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( ) A .1B .2C .3D .413.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值314.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3πC .23π-D .223π-15.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值:x … ﹣1 ﹣120 121322523 …y … 2 m﹣1﹣74 ﹣2 ﹣74﹣1 142 …可以推断m 的值为( ) A .﹣2B .0C .14D .2二、填空题16.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.17.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.18.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)19.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.20.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm . 21.数据2,3,5,5,4的众数是____.22.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.23.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+这个正方形的边长为_____________24.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r cm=,扇形的圆心角1202θ=,则该圆锥的母线长l为___cm.25.数据8,8,10,6,7的众数是__________.26.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.27.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD 和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.28.将抛物线 y=(x+2)2-5向右平移2个单位所得抛物线解析式为_____.29.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.30.已知二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),则y1_____y2.(填“>”“<”或“=”)三、解答题31.如图1,AB、CD是圆O的两条弦,交点为P.连接AD、BC.OM⊥ AD,ON⊥BC,垂足分别为M、N.连接PM、PN.图1 图2 (1)求证:△ADP ∽△CBP ;(2)当AB ⊥CD 时,探究∠PMO 与∠PNO 的数量关系,并说明理由; (3)当AB ⊥CD 时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON 的面积. 32.对于代数式ax 2+bx +c ,若存在实数n ,当x =n 时,代数式的值也等于n ,则称n 为这个代数式的不变值.例如:对于代数式x 2,当x =0时,代数式等于0;当x =1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A =0. (1)代数式x 2﹣2的不变值是 ,A = . (2)说明代数式3x 2+1没有不变值;(3)已知代数式x 2﹣bx +1,若A =0,求b 的值.33.如图,抛物线y=-x 2+bx+3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0).过点A 作直线y=x+c 与抛物线交于点D ,动点P 在直线y=x+c 上,从点A 出发,以每秒2个单位长度的速度向点D 运动,过点P 作直线PQ ∥y 轴,与抛物线交于点Q ,设运动时间为t (s ).(1)直接写出b ,c 的值及点D 的坐标;(2)点 E 是抛物线上一动点,且位于第四象限,当△CBE 的面积为6时,求出点E 的坐标;(3)在线段PQ 最长的条件下,点M 在直线PQ 上运动,点N 在x 轴上运动,当以点D 、M 、N 为顶点的三角形为等腰直角三角形时,请求出此时点N 的坐标.34.如图,在Rt ABC ∆中,90BAC ∠=︒,点G 是BC 中点.连接AG .作BD AG ⊥,垂足为F ,ABD ∆的外接圆O 交BC 于点E ,连接AE .(1)求证:AB AE =;(2)过点D 作圆O 的切线,交BC 于点M .若14GM GC =,求tan ABC ∠的值; (3)在(2)的条件下,当1DF =时,求BG 的长.35.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次 第二次 第三次 第四次 甲 9 8 8 7 乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.四、压轴题36.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?37.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.38.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.39.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为(5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.40.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积. 【详解】根据圆锥的侧面积公式:πrl =π×2×6=12π, 故选:B . 【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.B解析:B 【解析】 【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程. 【详解】 解:A.2210x x +=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程, 故选B 【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.3.C解析:C 【解析】 【分析】直接利用特殊角的三角函数值求出答案. 【详解】 解:sin 30°=12故选C 【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.4.A解析:A 【解析】 【分析】根据勾股定理,可得BD 、AD 的长,根据正切为对边比邻边,可得答案. 【详解】解:如图作CD ⊥AB 于D,,tanA=12CD AD ==, 故选A.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.6.B解析:B【解析】【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PA NA NC=,设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围.【详解】 解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA ,∴PB PA NA NC=, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94, ∵﹣1<0,14≤x≤3, ∴x =32时,y 有最大值94,此时b =1﹣94=﹣54, x =3时,y 有最小值0,此时b =1, ∴b 的取值范围是﹣54≤b≤1. 故选:B .【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.7.C解析:C【解析】【分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为4646462+=.故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.8.D解析:D【解析】【分析】由已知可得x与y的关系,然后代入所求式子计算即可.【详解】解:∵25xy=,∴25x y =,∴2755y yx yy y++==.故选:D.【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键. 9.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线l与半径为5的O相离,∴圆心O与直线l的距离d满足:5d>.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.10.D解析:D 【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键. 11.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB 的长,然后根据正弦的定义求解.【详解】如图,∵∠C =90°,AC =8,BC =6,∴AB 222268BC AC +=+10,∴sin B =84105AC AB ==. 故选:A .【点睛】 本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.12.B解析:B【解析】【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.13.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.14.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,∴△ABC的面积为12BC•AD=122⨯S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣﹣,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.15.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.二、填空题16.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.17.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的解析:相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的距离为2,∵4>2,即:d <r ,∴直线L 与⊙O 的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d <r ,则直线与圆相交;若d>r ,则直线与圆相离;若d=r ,则直线与圆相切.18.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴AP 2AB ==故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.19.50【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形, ∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径 ∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 20.2-2【解析】根据黄金分割点的定义,知AP 是较长线段;则AP=AB ,代入运算即可.【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×=cm , 故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AB ,代入运算即可. 【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×12=)21cm ,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=,难度一般. 21.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.22.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.23.【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E 2【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE绕点A旋转60°至△AGF的位置,连接EF,GC,BG,过点G作BC 的垂线交CB的延长线于点M.设正方形的边长为2m,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB +EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+, 即:222(32)(13)m m m ++=+, 解得:2m =, ∴边长为22m =2.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.24.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 25.8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解解析:8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解题的关键.26.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机解析:3 5【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35.故答案为35.,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键. 27.(,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=解析:(32,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.28.y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5解析:y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5.故答案是:y=x2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.29.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.30.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题31.(1)证明见解析;(2)∠PMO=∠PNO,理由见解析;(3)S平行四边形PMON=63【解析】【分析】(1)利用同弧所对的圆周角相等即可证明相似,(2)由OM⊥ AD,ON⊥BC得到M、N为AB、CD的中点,再由直角三角形斜边中线等于斜边一半即可解题,(3)由三角形中位线性质得∠QBC=90°,进而证明∠QCB=∠PBD,得到四边形MONP为平行四边形即可解题.【详解】(1)因为同弧所对的圆周角相等,所以∠A=∠C, ∠D=∠B,所以△ADP∽△CBP.(2)∠PMO=∠PNO因为OM⊥ AD,ON⊥BC,所以点M、N为AB、CD的中点,又AB⊥CD,所以PM=12AD,PN=12BC,所以,∠A=∠APM,∠C=∠CPN,所以∠AMP=∠CNP,得到∠PMO与∠PNO. (3)连接CO并延长交圆O于点Q,连接BD.因为AB⊥CD,AM=12AD,CN=12BC,所以PM=12AD,PN=12BC.由三角形中位线性质得,ON=1BQ 2.因为CQ为圆O直径,所以∠QBC=90°,则∠Q+∠QCB=90°,由∠DPB=90°,得∠PDB+∠PBD=90°,而∠PDB=∠Q,所以∠QCB=∠PBD,所以BQ=AD,所以PM=ON.同理可得,PN=OM.所以四边形MONP为平行四边形. S平行四边形3【点睛】本题考查了相似三角形的判定和性质,圆的基本知识,圆周角的性质,直角三角形的性质,平行四边形的判定,综合性强,熟悉圆周角的性质是求解(1)的关键,利用斜边中线等于斜边一半这一性质是求解(2)的关键,证明四边形MONP为平行四边形是求解(3)的关键. 32.(1)﹣1和2;3;(2)见解析;(3)﹣3或1【解析】【分析】(1)根据不变值的定义可得出关于x的一元二次方程,解之即可求出x的值,再做差后可求出A的值;(2)由方程的系数结合根的判别式可得出方程3x2﹣x+1=0没有实数根,进而可得出代数式3x2+1没有不变值;(3)由A=0可得出方程x2﹣(b+1)x+1=0有两个相等的实数根,进而可得出△=0,解之即可得出结论.【详解】解:(1)依题意,得:x2﹣2=x,即x2﹣x﹣2=0,解得:x1=﹣1,x2=2,∴A=2﹣(﹣1)=3.故答案为﹣1和2;3.(2)依题意,得:3x2 +1=x,∴3x2﹣x+1=0,∵△=(﹣1)2﹣4×3×1=﹣11<0,∴该方程无解,即代数式3x2+1没有不变值.(3)依题意,得:方程x2﹣bx+1= x即x2﹣(b+1)x+1=0有两个相等的实数根,∴△=[﹣(b+1)]2﹣4×1×1=0,∴b1=﹣3,b2=1.答:b的值为﹣3或1.【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.33.(1)b=2,c=1,D(2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【解析】【分析】(1)将点A分别代入y=-x2+bx+3,y=x+c中求出b、c的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D的坐标;(2))过点E作EF⊥y轴,设E(x,-x2+2x+3),先求出点B、C的坐标,再利用面积加减关系表示出△CBE的面积,即可求出点E的坐标.(3)分别以点D、M、N为直角顶点讨论△MND是等腰直角三角形时点N的坐标.【详解】。

2020初三数学九年级上册期末试题和答案(1)

2020初三数学九年级上册期末试题和答案(1)

2020初三数学九年级上册期末试题和答案(1)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3 B .2:3 C .4:9 D .16:81 2.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( ) A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=03.下列是一元二次方程的是( ) A .2x +1=0 B .x 2+2x +3=0C .y 2+x =1D .1x=1 4.若25x y =,则x y y+的值为( ) A .25 B .72C .57D .755.已知52x y =,则x y y-的值是( ) A .12 B .2C .32D .236.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数7.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°8.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x9.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--10.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .223311.若两个相似三角形的相似比是1:2,则它们的面积比等于( )A .1:2B .1:2C .1:3D .1:4 12.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-313.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度14.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°15.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或二、填空题16.一元二次方程290x 的解是__.17.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.18.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.19.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.20.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;21.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.22.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.23.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 24.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.25.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.26.已知3a =4b ≠0,那么ab=_____.27.如图,圆形纸片⊙O半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出4个最大的小正方形,则 4 个小正方形的面积和为_______.28.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.29.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S乙,且22S S>甲乙,则队员身高比较整齐的球队是_____.30.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB 上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.三、解答题31.已知关于的方程,若方程的一个根是–4,求另一个根及的值. 32.定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°<α<90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C 是函数4y x=(x >0)图象上的一个动点,过点C 的直线CD 分别交x 轴和y 轴于点A ,B 两点,且满足BC =3CA ,∠AOB 的“相关角”为∠APB ,请直接写出OP 的长及相应点P 的坐标.33.如图,小明家窗外有一堵围墙AB ,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C 射进房间的地板F 处,中午太阳光恰好能从窗户的最低点D 射进房间的地板E 处,小明测得窗子距地面的高度OD =1m ,窗高CD =1.5m ,并测得OE =1m ,OF =5m ,求围墙AB 的高度.34.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 . 35.如图,已知一次函数3y x =-+分别交x 、y 轴于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,与x 轴的另一交点为C .(1)求b 、c 的值及点C 的坐标;(2)动点P 从点O 出发,以每秒1个单位长度的速度向点A 运动,过P 作x 轴的垂线交抛物线于点D ,交线段AB 于点E .设运动时间为(0)t t >秒. ①当t 为何值时,线段DE 长度最大,最大值是多少?(如图1)②过点D 作DF AB ⊥,垂足为F ,连结BD ,若BOC 与BDF 相似,求t 的值(如图2)四、压轴题36.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”.理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)37.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求ab的值. 38.如图,B 是O 的半径OA 上的一点(不与端点重合),过点B 作OA 的垂线交O 于点C ,D ,连接OD ,E 是O 上一点,CE CA =,过点C 作O 的切线l ,连接OE 并延长交直线l 于点F.(1)①依题意补全图形. ②求证:∠OFC=∠ODC . (2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长.39.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<,设线段AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据面积比为相似比的平方即可求得结果. 【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为23. 故选B. 【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2.D解析:D 【解析】 【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程. 【详解】A 、△=0-4×1×1=-4<0,没有实数根;B 、△=22-4×1×1=0,有两个相等的实数根;C 、△=22-4×1×3=-8<0,没有实数根;D 、△=22-4×1×(-3)=16>0,有两个不相等的实数根, 故选D . 【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B、方程x2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C、方程y2+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程1x=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.4.D解析:D【解析】【分析】由已知可得x与y的关系,然后代入所求式子计算即可.【详解】解:∵25xy=,∴25x y =,∴2755y yx yy y++==.故选:D.【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键. 5.C【解析】【分析】设x=5k(k≠0),y=2k(k≠0),代入求值即可.【详解】解:∵52 xy=∴x=5k(k≠0),y=2k(k≠0)∴52322 x y k ky k--==故选:C.【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.6.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差7.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】 本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.9.A解析:A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 10.C解析:C【解析】【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b ,∴a +b ==; 故选C .【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.11.D解析:D【解析】【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D .【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.12.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-3x,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.13.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.14.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.15.C解析:C【解析】【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,0),∴抛物线与x轴的另一个交点为(−3,0),∴当−3<x<1时,y>0.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.二、填空题16.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】x-=∵290∴2x=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键. 17.720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019 解析:720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).18.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.19.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED ∽△BDF ,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接D 解析:45【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED ∽△BDF ,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC 是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.20.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开解析:6【解析】【分析】现将函数解析式配方得221266(1)6h t t t =--=+﹣,即可得到答案.【详解】221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.21.4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt △OBD 中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=12BC=3, ∵OB=12AB=5,∴在Rt △OBD 中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.22.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.23.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去). 解析:(625)-【解析】【分析】 根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,444x x x -=-, 整理为:212160x x -+=, 利用求根公式解方程得:121444161245x 625±-⨯±===±, ∴1625x =-,26254x =+>(舍去).故答案为:625-.【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.24.8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可. 由题意得,解得 考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x 轴只有一个公共点;时,抛物线与x 轴没有公共点. 25.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围. 26..【解析】【分析】根据等式的基本性质将等式两边都除以3b ,即可求出结论.【详解】解:两边都除以3b ,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此 解析:43. 【解析】【分析】 根据等式的基本性质将等式两边都除以3b ,即可求出结论.【详解】解:两边都除以3b ,得a b =43, 故答案为:43. 【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键. 27.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB ,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A 为上面小正方形边的中点,点B 为小正方形与圆的交点,D 为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD 为等腰直角三角形,∵⊙O 半径为,根据垂径定理得:∴=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中,OA 2+AB 2=OB 2,即()(22215=2x x ⎛⎫++ ⎪⎝⎭, 解得x=2,∴四个小正方形的面积和=242=16⨯.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.28.相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离解析:相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离29.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S 甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量30.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题31.1,-2【解析】【分析】把方程的一个根–4,代入方程,求出k ,再解方程可得.【详解】【点睛】考察一元二次方程的根的定义,及应用因式分解法求解一元二次方程的知识.32.(1)见解析;(2)19180,sin 22MON MPN S αα∠=︒-=△;(3)3OP =,P点坐标为33⎛ ⎝⎭或33⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】(1)由角平分线求出∠MOP =∠NOP =12∠AOB =30°,再证出∠OMP =∠OPN ,证明△MOP ∽△PON ,即可得出结论;(2)由∠MPN 是∠AOB 的“相关角”,判断出△MOP ∽△PON ,得出∠OMP =∠OPN ,即可得出∠MPN =180°﹣12α;过点M 作MH ⊥OB 于H ,由三角形的面积公式得出:S △MON =12ON •MH ,即可得出结论; (3)设点C (a ,b ),则ab =3,过点C 作CH ⊥OA 于H ;分两种情况:①当点B 在y 轴正半轴上时;当点A 在x 轴的负半轴上时,BC =3CA 不可能;当点A 在x 轴的正半轴上时;先求出14CA AB =,由平行线得出△ACH ∽△ABO ,得出比例式:14CH AH AC OB OA AB ===,得出OB ,OA ,求出OA •OB ,根据∠APB 是∠AOB 的“相关角”,得出OP ,即可得出点P 的坐标;②当点B 在y 轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB =60°,P 为∠AOB 的平分线上一点,∴∠AOP =∠BOP =12∠AOB =30°, ∵∠MOP +∠OMP +∠MPO =180°,∴∠OMP +∠MPO =150°,∵∠MPN =150°,∴∠MPO +∠OPN =150°,∴∠OMP =∠OPN ,∴△MOP ∽△PON , ∴OM OP OP ON=, ∴OP 2=OM •ON ,∴∠MPN 是∠AOB 的“相关角”;(2)解:∵∠MPN 是∠AOB 的“相关角”,∴OM •ON =OP 2, ∴OM OP OP ON=, ∵P 为∠AOB 的平分线上一点,。

上学期期末考试九年级数学(word含答案)

上学期期末考试九年级数学(word含答案)

2019-2020学年上学期期末考试九年级数学一、选择题:(本题共10个小题,每小题3分,共计30分.每小题只有一取值范围是A.2->m B .2-<m C .2>m D .2<m 2.若tan(a+10°)=1,则锐角a 的度数是A 、20°B 、30°C 、35°D 、50°3.关于二次函数的最大(小)值,叙述正确的是 A.当 =2时,函数有最大值 B. =2时,函数有最小值 C.当 =-1时,函数有最大值 D.当 =-2时,函数有最小值 4.把方程 的左边配成完全平方,正确的变形是A .B .C .D . 6.某农场粮食产量是:2013年为1200万千克,2015年为1452万千克,•如果平均每年增长率为x ,则x 满足的方程是A .1200(1+)2 =1452 B .2000(1+ )=1452 C .1200(1+ %)2 =1452 D .1200(1+ %)=1452 B9)3(2=-x 13)3(2=-x 5)3(2=-x 5)3(2=+x x x x x x x x 742-+=x x y 0462=+-x x x 22y ax bx c =++7.如果二次函数( >0)的顶点在x 轴上方,那么 A.B. C. D. 8.如图,由下列条件不能判定△ABC 与△ADE 相似的是(2,)M m , (1,)N n -,若12y y >,则的取值范围是A .102x x <-<<或B .12x x <->或C .1002x x -<<<<或D .102x x -<<>或10.如图,O 为矩形ABCD 的中心,将直角三角板的直角顶点与O 点重合,转动三角板使两直角边始终与BC ,AB 相交,交点分别为M ,N .如果AB=4,AD=6,OM=x ,ON=y , 则y 与x 的关系是 二、填空题(每小题3分,共24分)12.已知关于 的一元二次方程有两个不相等的实数根,则实数的取值范围是__________ 13.函数 的对称轴是 ,且经过点 (3,0),则 _____.14.如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,15.课本上用“描点法”画二次函数的图象时,列了如下表格:x… 2- 1-0 1 2 …y…4- 2- … NOA B D C Mx xc bx ax y ++=22=x 23x =P =++c b a y ax bx c =++2a 042≥-ac b 042<ac b -042>ac b -042=-ac b x 8题图9题图10题图 2210kx x +-=kA D EC B Ftan EFC∠2y ax bx c =++在3x =时,根据表格上的信息回答问题:该二次函数16. 把抛物线的图象向左平移2个单位,再向上平移3个单位,17.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知AB=8,BC=10,则的值为___________.2604cos 30+sin 45tan 60-⋅20.(10分)解方程:(1)01242=--x x (2)03722=-+x x432-=x y 17题图21.(7分)已知:关于x 的方程有两个不同的实根. (1)求k 的取值范围;(2)当k 为小于3的整数时,求方程的解.22.(6分)学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B :反对;C :赞成),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(2)将图①补充完整;(3)根据抽样调查结果,请你估计该市城区80000名中学生家长中有多少名家长持赞成态度?2(1)220k x kx k -++-=次函数的图象的一个交点为 . (1)求这个一次函数的解析式;(2)若P 是x 轴上一点,且满足45APO ∠=︒, 求点P 的坐标.24.(8分)如图,△ABC 中,∠C=90°,BC=8cm ,AC=6cm ,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动。

九年级(上)数学期末考试题及答案

九年级(上)数学期末考试题及答案

九年级(上)数学期末考试题及答案一.选择题(共10小题,满分30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 2.计算﹣|﹣5|﹣(+1)=( )A .6B .﹣6C .+6或﹣6D .以上都不对 3.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A .8×1012B .8×1013C .8×1014D .0.8×1013 4.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是( )A .B .C .D .5.在、﹣(﹣2)、,﹣|﹣|中,最小的数是( )A .B .﹣(﹣2)C .D .﹣|﹣| 6.一个圆锥的底面半径是5cm ,其侧面展开图是圆心角是150°的扇形,则圆锥的母线长为( )A .9cmB .12cmC .15cmD .18cm7.如图,正八边形ABCDEFGH 内接于⊙O ,则∠ADB 的度数为( )A.45°B.25°C.22.5°D.20°8.下列各图能表示y是x的函数是()A.B.C.D.9.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.10.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10 cm B.16 cm C.24 cm D.26 cm二.填空题(共5小题,满分15分,每小题3分)11.因式分解:﹣2x2y+8xy﹣6y=.12.已知一组数据1,2,x,5,6的平均数是4,这组数据的中位数是.13.如图:已知DE∥BC,AD=1,DB=2,DE=3,则BC=,△ADE和△ABC的面积之比为.14.某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售,则平均每次下调的百分率是.15.如图图形是由相同的小五角星按一定的规律排列组合而成,其中第一个图形有6个五角星,第二个图形有10个五角星,第三个图形有16个五角星,第四个图形有24个五角星……则第十个图形有个五角星.三.解答题(共8小题,满分75分)16.(8分)(1)计算:(3.14﹣π)0+﹣2sin45°+()﹣1(2)解方程:+1=(3)先化简,再求值,(1+)÷,其中x=﹣1.17.(12分)为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.18.(5分)如图,在由边长为1的小正方形组成的网格图中,有一个格点三角形ABC.(注:顶点均在网格线交点处的三角形称为格点三角形.)(1)△ABC是三角形(填“锐角”、“直角”或“钝角”);(2)若P、Q分别为线段AB、BC上的动点,当PC+PQ取得最小值时,①在网格中用无刻度的直尺,画出线段PC、PQ.(请保留作图痕迹.)②直接写出PC+PQ的最小值:.19.(10分)如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).20.(10分)如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.21.(8分)如图,AB是⊙O的直径,AP是⊙O的切线,点A为切点,BP与⊙O交于点C,点D是AP的中点,连结CD.(1)求证:CD是⊙O的切线;(2)若AB=2,∠P=30°,求阴影部分的面积.22.(10分)某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,为提高利润,欲对该商品进行涨价销售.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,将销售价定为多少时,才能使每天所获销售利润最大?最大利润是多少?23.(12分)如图,已知正比例函数和反比例函数的图象都经过点A(﹣3,﹣3).(1)求正比例函数和反比例函数的表达式;(2)把直线OA向上平移后与反比例函数的图象交于点B(﹣6,m),与x轴交于点C,求m的值和直线BC的表达式;(3)在(2)的条件下,直线BC与y轴交于点D,求以点A,B,D为顶点的三角形的面积;(4)在(3)的条件下,点A,B,D在二次函数的图象上,试判断该二次函数在第三象限内的图象上是否存在一点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确;故选:D.2.解:原式=﹣5+(﹣1)=﹣6.故选:B.3.解:80万亿用科学记数法表示为8×1013.故选:B.4.解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.5.解:∵﹣(﹣2)=2、=﹣2,﹣|﹣|=﹣,﹣2<﹣<<2,∴<﹣|﹣|<<﹣(﹣2),即最小的数是.故选:C.6.解:设圆锥的母线长为R,根据题意得2π•5=,解得R=12.即圆锥的母线长为12cm.故选:B.7.解:连接OA、OB,∵八边形ABCDEFGH是⊙O内接正八边形,∴∠AOB==45°,由圆周角定理得,∠ADB=∠AOB=22.5°,故选:C.8.解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.9.解:由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,故选:B.10.解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:原式=﹣2y(x2﹣4x+3)=﹣2y(x﹣1)(x﹣3),故答案为:﹣2y(x﹣1)(x﹣3)12.解:∵数据1,2,x,5,6的平均数是4,∴(1+2+x+5+6)÷5=4,解得:x=6,将数据从小到大重新排列:1,2,5,6,6,所以这组数据的中位数是5.故答案为:5.13.解:设△ADE和△ABC的高分别为:h1,h2,则:∵DE∥BC∴∠ADE=∠ABC,∠AEC=∠ACB(两直线平行,同位角相等)∴△ADE∽△ABC∴=,即:==,==∴BC=9,h1=h2∴△ADE和△ABC的面积之比为:(×h1×DE):(×h2×BC)===1:9所以,BC=9,△ADE和△ABC的面积之比为:1:9.14.解:设平均每次降价的百分率是x,根据题意列方程得,6000(1﹣x)2=4860,解得:x1=10%,x2=(不合题意,舍去);答:平均每次降价的百分率为10%.故答案是:10%15.解:∵第一个图形中五角星的个数6=4+1×2,第二个图形中五角星的个数10=4+2×3,第三个图形中五角星的个数16=4+3×4,……∴第十个图形中五角星的个数为4+10×11=114,故答案为:114.三.解答题(共8小题,满分75分)16.解:(1)原式=1+2﹣2×+3=1+2﹣+3=4+;(2)方程两边都乘以x﹣2,得:x﹣3+x﹣2=﹣3,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,所以分式方程的解为x=1;(3)原式=•=,当x=﹣1时,原式===.17.(1)近五年获奖总人数=7÷35%=20(人)该社团2013年获奖占近五年获奖总人数的百分比==5%,所以该社团2017年获奖占近五年获奖总人数的百分比=25%﹣5%=20%,所以该社团2017年获奖总人数=20×20%=4,补全折线统计图为:故答案为20%;(2)画树状图为:(用A表示初一学生、用B表示初二学生,用C、C表示初三学生)共有12种等可能的结果数,其中所抽取两名学生恰好都来自初三年级的结果数为2,所以所抽取两名学生恰好都来自初三年级的概率==.18.解:(1)结论:直角三角形;理由:∵AC=,BC=2,AB=5,∴AB2=AC2+BC2,∴∠ACB=90°,故答案为直角.(2)①线段PC、PQ如图所示;②设AB交CC′于O.由△AOC∽△CQC′,可得=,∴C′Q=.∴PC+PQ的最小值=C′Q=.故答案为.19.解:设山高BC=x,则AB=x,由tan37°==0.75,得:=0.75,解得x=120,经检验,x=120是原方程的根.答:山的高度是120米.20.解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).21.解:(1)连结OC,AC,如图所示:∵AB是⊙O的直径,AP是切线,∴∠BAP=90°,∠ACP=90°,∵点D是AP的中点,∴DC═AP=DA,∴∠DAC=∠DCA,又∵OA=OC,∴∠OAC=∠OCA,∴∠OCD=∠OCA+∠DCA=∠OAC+∠DAC=90°,即OC⊥CD,∴CD是⊙O的切线;(2)∵在Rt△ABP中,∠P=30°,∴∠B=60°,∴∠AOC=120°,∴OA=1,BP=2AB=4,,∴=.22.解:设销售单价定为x元(x≥10),每天所获利润为y元,则y=[100﹣10(x﹣10)]•(x﹣8)=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360所以将销售定价定为14元时,每天所获销售利润最大,且最大利润是360元.23.解:(1)设正比例函数的解析式是y=kx,代入(﹣3,﹣3),得:﹣3k=﹣3,解得:k =1,则正比例函数的解析式是:y=x;设反比例函数的解析式是y=,把(﹣3,﹣3)代入解析式得:k1=9,则反比例函数的解析式是:y=;(2)m==﹣,则点B的坐标是(﹣6,﹣),∵y=k3x+b的图象是由y=x平移得到,∴k 3=1,即y =x +b ,故一次函数的解析式是:y =x +;(3)∵y =x +的图象交y 轴于点D ,∴D 的坐标是(0,),作AM ⊥y 轴于点M ,作BN ⊥y 轴于点N .∵A 的坐标是(﹣3,﹣3),B 的坐标是(6,﹣),∴M 的坐标是(0,﹣3),N 的坐标是(0,﹣).∴OM =3,ON =.则MD =3+=,DN =+=6,MN =3﹣=.则S △ADM =×3×=,S △BDN =×6×6=18,S 梯形ABNM =×(3+6)×=.则S 四边形ABDM =S 梯形ABNM +S △BDN =+18=,S △ABD =S 四边形ABDM ﹣S △ADM =﹣=;(4)设二次函数的解析式是y =ax 2+bx +,则,解得:,则这个二次函数的解析式是:y =x 2+4x +;点C 的坐标是(﹣,0).则S =×6﹣×6×6﹣×3×﹣×3×=45﹣18﹣﹣=.假设存在点E (x 0,y 0),使S 1=S =×=.∵四边形CDOE 的顶点E 只能在x 轴的下方,∴y 0<0,∴S 1=S △OCD +S △OCE =××﹣×y 0=﹣y 0,∴﹣y 0=,∴y 0=﹣,∵E (x 0,y 0)在二次函数的图象上,∴x 02+4x 0+=﹣, 解得:x 0=﹣2或﹣6.当x 0=﹣6时,点E (﹣6,﹣)与点B 重合,这时CDOE 不是四边形,故x 0=﹣6(舍去).∴E 的坐标是(﹣2,﹣).九年级(上)期末考试数学试题(答案)一、选择题(1--10小题每题3分,11--16每题2分共42分)1.下列生态环保标志中,是中心对称图形的是()A.B.C.D.2.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的3.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅度增加退休人员退休金.企业退休职工刘师傅2017年月退休金为2500元,2019年月退休金达到了3280元.设刘师傅的月退休金从2017年到2019年平均增长率设为x,可列方程为()A.2500(1﹣x)2=3280B.2500(1+x)2=3280C.3280(1﹣x)2=2500D.2500+2500(1+x)+2500(1+x)2=32804.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a 的值是()A.B.﹣C.4D.﹣15.对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y26.如图,某学校数学课外活动小组的同学们,为了测量一个小湖泊两岸的两棵树A和B之间的距离,在垂直AB的方向AC上确定点C,如果测得AC=75米,∠ACB=55°,那么A和B之间的距离是()米.A.75•sin55°B.75•cos55°C.75•tan55°D.7.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.58.如图,正方形ABCD的对角线相交于点O,正方形EFGO绕点旋转,若两个正方形的边长相等,则两个正方形的重合部分的面积()A.由小变大B.由大变小C.始终不变D.先由大变小,然后又由小变大9.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.10.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130°B.100°C.50°D.65°11.如图,是由几个相同的小正方体组合而成的立体图形的三视图,则这个几何体的小正方体的个数是()A.5B.6C.7D.812.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10B.18C.20D.2213.二次函数的部分图象如图所示,对称轴是x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 14.如图,点O是△ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD=2OA,BE=2OB,CF=2OC,连接DE,EF,FD.若△ABC的面积是3,则阴影部分的面积是()A.6B.15C.24D.2715.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为()A.1B.2C.4D.无法计算16.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个二、填空题(没空2分共12分)17.如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则迎水坡面AB的长度是:.18.如图,在一张正方形纸片上剪下一个半径为r的圆形和一个半径为R的扇形,使之恰好围成图中所示的圆锥,则R与r之间的关系是.19.请你根据已有的学习经验和策略,试着研究函数y=,并提出这个函数的两条性质①②20.如图①,正三角形和正方形内接于同一个圆;如图②,正方形和正五边形内接于同一个圆;如图③,正五边形和正六边形内接于同一个圆;…;则对于图①来说,BD可以看作是正边形的边长;若正n边形和正(n+1)边形内接于同一个圆,连接与公共顶点相邻同侧两个不同正多边形的顶点可以看做是边形的边长.三、解答题21.(12分)基本计算:(1)计算:2sin30°﹣4sin45°•cos45°+tan260°.(2)解方程(x﹣1)(x﹣3)=8(3)若==,求的值22.(6分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC绕点O逆时针旋转90°后的△A1B1C1;并写出A1、B1、C1三点的坐标.(2)求出(1)中C点旋转到C1点所经过的路径长(结果保留π).23.(7分)一个不透明的口袋里装有分别标有汉字“道”、“德”、“青”、“县”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“德”的概率为多少?(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出两个球上的汉字能组成“道德”或“青县”的概率.24.(8分)在平面直角坐标系xOy中,反比例函数y=的图象过点A(6,1).(1)求反比例函数的表达式;(2)过点A 的直线与反比例函数y =图象的另一个交点为B ,与y 轴交于点P ,若AP =3PB ,求点B 的坐标.25.(10分)如图,AC 是⊙O 的直径,点D 是⊙O 上一点,⊙O 的切线CB 与AD 的延长线交于点B ,点F 是直径AC 上一点,连接DF 并延长交⊙O 于点E ,连接AE . (1)求证:∠ABC =∠AED ;(2)连接BF ,若AD =,AF =6,tan ∠AED =,求BF 的长.26.(11分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y (千克)与售价x (元/千克)满足一次函数关系,对应关系如下表:(1)求y 与x 的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w (元)最大?此时的最大利润为多少元?27.(12分)如图,已知∠MON=120°,点A,B分別在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°,且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD.(1)求证:AD=CD;(2)如图1,当0°<α<60°时,试证明∠ACD的大小是一个定值;(3)当60°<α<120°时,(2)中的结论还成立吗?请补全图形并说明理由;(4)△ACD面积的最大值为.(直接写出结果)2018-2019学年河北省沧州市青县九年级(上)期末数学试卷参考答案与试题解析一、选择题(1--10小题每题3分,11--16每题2分共42分)1.下列生态环保标志中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B、连续抛一均匀硬币10次都可能正面朝上,是一个随机事件,有可能发生,故此选项正确;C、大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选:A.【点评】此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.3.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅度增加退休人员退休金.企业退休职工刘师傅2017年月退休金为2500元,2019年月退休金达到了3280元.设刘师傅的月退休金从2017年到2019年平均增长率设为x,可列方程为()A.2500(1﹣x)2=3280B.2500(1+x)2=3280C.3280(1﹣x)2=2500D.2500+2500(1+x)+2500(1+x)2=3280【分析】设刘师傅的月退休金从2017年到2019年平均增长率设为x,根据刘师傅2017年及2019年的月退休金,即可得出关于x的一元二次方程,此题得解.【解答】解:设刘师傅的月退休金从2017年到2019年平均增长率设为x,根据题意得:2500(1+x)2=3280.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a 的值是()A.B.﹣C.4D.﹣1【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故选:A.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【解答】解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.故选:D.【点评】本题考查了反比例函数的性质,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.6.如图,某学校数学课外活动小组的同学们,为了测量一个小湖泊两岸的两棵树A和B之间的距离,在垂直AB的方向AC上确定点C,如果测得AC=75米,∠ACB=55°,那么A和B之间的距离是()米.A.75•sin55°B.75•cos55°C.75•tan55°D.【分析】根据题意,可得Rt△ABC,同时可知AC与∠ACB.根据三角函数的定义解答.【解答】解:根据题意,在Rt△ABC,有AC=75,∠ACB=55°,且tanα=,则AB=AC×tan55°=75•tan55°,故选:C.【点评】本题考查了解直角三角形的应用,要熟练掌握三角函数的定义.7.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.5【分析】平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.【点评】本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.8.如图,正方形ABCD的对角线相交于点O,正方形EFGO绕点旋转,若两个正方形的边长相等,则两个正方形的重合部分的面积()A.由小变大B.由大变小C.始终不变D.先由大变小,然后又由小变大【分析】根据正方形的性质得出OB=OC,∠OBC=∠OCD=45°,∠BOC=∠EOG=90°,推出∠BON=∠MOC,证出△OBN≌△OCM.【解答】解:重叠部分面积不变,总是等于正方形面积的.理由如下:∵四边形ABCD和四边形OEFG都是正方形,∴OB=OC,∠OBC=∠OCD=45°,∠BOC=∠EOG=90°,∴∠BON=∠MOC.在△OBN与△OCM中,,∴△OBN≌△OCM(ASA),∴四边形OMCN的面积等于三角形BOC的面积,即重叠部分面积不变,总是等于正方形面积的.故选:C.【点评】本题考查对正方形的性质,全等三角形的性质和判定等知识点的理解和掌握,能推出四边形OMCN的面积等于三角形BOC的面积是解此题的关键.9.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:C.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.10.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130°B.100°C.50°D.65°【分析】由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线,利用三角形内角和定理和角平分线的性质可得∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.【解答】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣80°)=50°,∴∠BOC=180°﹣50°=130°.故选:A.【点评】本题通过三角形内切圆,考查切线的性质.11.如图,是由几个相同的小正方体组合而成的立体图形的三视图,则这个几何体的小正方体的个数是()A.5B.6C.7D.8【分析】根据该几何体的俯视图可确定该几何体共有两行三列,再结合主视图,即可得出该几何体的小正方体的个数.【解答】解:综合三视图可知,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选:A.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.12.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10B.18C.20D.22【分析】根据切线长定理得出PA=PB=10,CA=CE,DE=DB,求出△PCD的周长是PC+CD+PD=PA+PB,代入求出即可.【解答】解:∵PA、PB切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=10,CA=CE,DE=DB,∴△PCD的周长是PC+CD+PD=PC+AC+DB+PD=PA+PB=10+10=20.故选:C.【点评】本题考查了切线长定理的应用,关键是求出△PCD的周长=PA+PB.13.二次函数的部分图象如图所示,对称轴是x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3【分析】由抛物线的对称轴为直线x=﹣1设解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入求出a、k的值即可得.【解答】解:由图象知抛物线的对称轴为直线x=﹣1,过点(﹣3,0)、(0,3),设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.【点评】本题主要考查待定系数法求函数解析式,解题的关键是根据题意设出合适的二次函数解析式.14.如图,点O是△ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD=2OA,BE=2OB,CF=2OC,连接DE,EF,FD.若△ABC的面积是3,则阴影部分的面积是()A.6B.15C.24D.27【分析】根据三边对应成比例,两三角形相似,得到△ABC∽△DEF,再由相似三角形的性质即可得到结果.【解答】解:∵AD =2OA ,BE =2OB ,CF =2OC ,∴===,∴△ABC ∽△DEF ,∴==,∵△ABC 的面积是3, ∴S △DEF =27,∴S 阴影=S △DEF ﹣S △ABC =24. 故选:C .【点评】本题考查了相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.15.如图,两个反比例函数y =和y =在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,PA ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为( )A .1B .2C .4D .无法计算【分析】根据反比例函数y =(k ≠0)系数k 的几何意义得到S △POA =×4=2,S △BOA=×2=1,然后利用S △POB =S △POA ﹣S △BOA 进行计算即可. 【解答】解:∵PA ⊥x 轴于点A ,交C 2于点B ,∴S △POA =×4=2,S △BOA =×2=1, ∴S △POB =2﹣1=1. 故选:A .【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k ≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个【分析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=﹣2a,则3a+b =a,于是可对①进行判断;利用2≤c≤3和c=﹣3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n﹣1有两个交点可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a<0,所以①正确;∵2≤c≤3,而c=﹣3a,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n﹣1有两个交点,∴关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:D.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(没空2分共12分)17.如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则迎水坡面AB的长度是:100m.【分析】根据题意可得=,把BC=50m,代入即可算出AC的长,再利用勾股定理算出AB的长即可【解答】解:∵堤坝横断面迎水坡AB的坡比是1:,∴=,∵BC=50m,∴AC=50m,∴AB==100m,故答案为:100m.【点评】此题主要考查了解直角三角形的应用﹣坡度问题,关键是掌握坡度是坡面的铅直高度h和水平宽度l的比.18.如图,在一张正方形纸片上剪下一个半径为r的圆形和一个半径为R的扇形,使之恰好围成图中所示的圆锥,则R与r之间的关系是R=4r.。

初三数学九年级上册期末试卷及答案

初三数学九年级上册期末试卷及答案

初三数学九年级上册期末试卷及答案一、选择题1.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .22.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.3.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76°4.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20205.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( )A .30πcm 2B .15πcm 2C .152πcm 2 D .10πcm 2 6.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π7.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC= C .12DE BC = D .2ACAE= 8.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .433B .23C .334D .3229.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x < B .2x > C .0x < D .0x > 10.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定11.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 7212.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .233π-B .233π- C .3π-D .3π-13.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40B .60C .80D .10014.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A .点B .点C .点D .点15.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .19二、填空题16.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.17.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________. 18.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____. 19.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.20.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.21.如图,平行四边形ABCD 中,60A ∠=︒,32AD AB =.以A 为圆心,AB 为半径画弧,交AD 于点E ,以D 为圆心,DE 为半径画弧,交CD 于点F .若用扇形ABE 围成一个圆维的侧面,记这个圆锥的底面半径为1r ;若用扇形DEF 围成另一个圆锥的侧面,记这个圆锥的底面半径为2r ,则12r r 的值为______.22.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm .23.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm .24.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .25.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.26.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.27.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.28.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________. 29.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .30.如图,一次函数y =x 与反比例函数y =kx(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题31.(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.(不写作法,但保留作图痕迹)32.现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64m的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3m处达到最高,高度为1m.(1)求喷灌出的圆形区域的半径;(2)在边长为16m的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)33.如图1,矩形OABC的顶点A的坐标为(4,0),O为坐标原点,点B在第一象限,连接AC, tan∠ACO=2,D是BC的中点,(1)求点D的坐标;(2)如图2,M是线段OC上的点,OM=23OC,点P是线段OM上的一个动点,经过P、D、B三点的抛物线交x轴的正半轴于点E,连接DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时点P的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M 时,点G也随之运动,请直接写出点G运动的路径的长.34.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:成绩/分888990919596979899学生人数2132121数据分析:样本数据的平均数、众数和中位数如下表:平均数众数中位数9391得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.35.如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm ,开始的时候BD=1cm ,现在三角板以2cm/s 的速度向右移动.(1)当点B 于点O 重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B 点和E 点重合时,AC 与半圆相切于点F ,连接EF ,如图2所示.①求证:EF 平分∠AEC ; ②求EF 的长.四、压轴题36.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.37.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<). (1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.38.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________39.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)40.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.2.A解析:A【解析】【分析】根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC ,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.4.C解析:C【解析】【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题.【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1,∴a−b+4=0,∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019.故选C.【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.5.B解析:B【解析】试题解析:∵底面半径为3cm ,∴底面周长6πcm∴圆锥的侧面积是12×6π×5=15π(cm 2), 故选B . 6.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.7.D解析:D【解析】【分析】 只要证明AC AB AE AD =,即可解决问题. 【详解】解:A.12AE EC = ,可得AE :AC=1:1,与已知2AB AD =不成比例,故不能判定 B. 2EC AC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2AB AD =,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;12DE BC = D. 2AC AB AE AD==,可得DE//BC , 故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴1333322ABCS=⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.9.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x的取值范围.【详解】222(1)1y x x x=-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x1<时,y随着x的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a0a0<时,对称轴左增右减,当>时,对称轴左减右增. 10.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A .【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.11.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.12.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,2{34AAB BD∠=∠=∠=∠,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF-S△ABD=26021233602π⨯-⨯=233π故选B.13.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.14.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC 的长度,即可解题.【详解】解:如下图,连接AC,∵圆A 的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D 在圆A 内,B 在圆上,C 在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC 的长是解题关键.15.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=.故选:B.【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.二、填空题16.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.17.-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x=1,当x>1时,y随x的增大而增大,当x<1时,y随解析:-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x ≤4时,函数的最小值.【详解】解:∵二次函数222y x x -=-,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵−1≤x≤4,∴当x =1时,y 取得最小值,此时y =-3,故答案为:-3.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.18.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1 解析:12- 【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x 1+x 2═12b a -=- 故答案为12-. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 19.【解析】【分析】 连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵,∴∠BOC=90°,∵的长是,∴,解得:解析:52【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC 的长是54π, ∴9051804OB ππ⋅=, 解得:52OB =. 故答案为:52.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.20.【解析】【分析】设BC=EC=a,根据相似三角形得到,求出a 的值,再利用tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF ,∴,即解得a=(-舍去)∴解析:12 【解析】【分析】设BC=EC=a,根据相似三角形得到222a a =+,求出a 的值,再利用tan DAE ∠=tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF , ∴AB EC BF CF =,即222a a =+解得1(-1舍去)∴tan DAE ∠=tanF=2EC a CF =故答案为:12. 【点睛】 此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义. 21.1【解析】【分析】设AB=a ,根据平行四边形的性质分别求出弧长EF 与弧长BE ,即可求出的值.【详解】设AB=a ,∵∴AD=1.5a ,则DE=0.5a ,∵平行四边形中,,∴∠D=120解析:1【分析】设AB=a ,根据平行四边形的性质分别求出弧长EF 与弧长BE ,即可求出12r r 的值. 【详解】设AB=a , ∵32AD AB = ∴AD=1.5a ,则DE=0.5a ,∵平行四边形ABCD 中,60A ∠=︒,∴∠D=120°,∴l 1弧长EF=12020.5360a π⨯⨯⨯=13a π l 2弧长BE=602360a π⨯⨯⨯=13a π ∴12r r =12l l =1 故答案为:1.【点睛】此题主要考查弧长公式,解题的关键是熟知弧长公式及平行四边形的性质.22.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键. 23.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm ,∴c2=ab =2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm , ∴a c =c b, ∴c 2=ab =2×8=16,∴c 1=4,c 2=﹣4(舍去),∴线段c =4cm .故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.24.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则: 1204180R ππ⨯=,解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 25.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围. 26.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 ,故答案为13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.27.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 28.0【解析】把x =1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.解析:0【解析】把x =1代入方程得,2110k k -+-=,即20k k -=,解得120,1k k ==.此方程为一元二次方程,10k ∴-≠,即1k ≠,0.k ∴=故答案为0.29.【解析】【分析】设AB =x ,则AD =8﹣x ,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB =AD =4时,BD 的值最小,根据条件可知A ,B ,C ,D 四点在以BD 为直径的圆上.解析:【解析】【分析】设AB =x ,则AD =8﹣x ,由勾股定理可得BD 2=x 2+(8﹣x )2,由二次函数的性质可求出AB =AD =4时,BD 的值最小,根据条件可知A ,B ,C ,D 四点在以BD 为直径的圆上.则AC 为直径时最长,则最大值为.【详解】解:设AB =x ,则AD =8﹣x ,∵∠BAD =∠BCD =90°,∴BD 2=x 2+(8﹣x )2=2(x ﹣4)2+32.∴当x =4时,BD 取得最小值为.∵A ,B ,C ,D 四点在以BD 为直径的圆上.如图,∴AC为直径时取得最大值.AC的最大值为2.故答案为:2.【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.30.或【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB 中,AD=m,BD=解析:9yx=或16yx=【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.三、解答题31.(1)相切,证明见解析;(2)答案见解析【解析】【分析】(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON⊥CD,连接OA,OC∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD∴∠AMO=∠ONC=90°,AM=12AB,CN12CD,∴AM=CN又∵OA=OC∴△AOM≌△CON ∴ON=OM∴CD 与小圆O 相切(2)如图FH 即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.32.(1)8m ;(2)不可以,水管高度调整到0.7m ,理由见解析.【解析】【分析】(1)根据题意设最远的抛物线形水柱的解析式为2(3)1y a x =-+,然后将(0,0.64)代入解析式求得a 的值,然后求解析式y=0时,x 的值,从而求得半径;(2)利用圆与圆的位置关系结合正方形,作出三个等圆覆盖正方形的图形,然后利用勾股定理求得圆的半径,从而使问题得解.【详解】解:(1)由题意,设最远的抛物线形水柱的解析式为2(3)1y a x =-+,将(0,0.64)代入解析式,得910.64a +=解得:125a =- ∴最远的抛物线形水柱的解析式为21(3)125y x =--+ 当y=0时,21(3)1025x --+= 解得:128;2x x ==-所以喷灌出的圆形区域的半径为8m ;(2)如图,三个等圆覆盖正方形设圆的半径MN=NB=ME=DE=r ,则2r 2r∴在Rt△AMN 中,22216)(162)r r r -+-=(2(162)2560r r -++= 解得:8828221r =+-(其中882+822116+->,舍去) ∴88282218.5r =+-≈设最远的抛物线形水柱的解析式为2(3)1y a x =-+,将(8.5,0)代入25.51=0a + 解得: 4=121a - ∴24(3)1121y x =--+ 当x=0时,y=850.7121≈ ∴水管高度约为0.7m 时,喷灌区域恰好可以完全覆盖该绿化带【点睛】本题考查待定系数法求二次函数解析式,根据题意设抛物线为顶点式是本题的解题关键.33.(1)D (2,2);(2)①P (0,0);②13【解析】【分析】(1)根据三角函数求出OC 的长度,再根据中点的性质求出CD 的长度,即可求出D 点的坐标;(2)①证明在该种情况下DE 为△ABC 的中位线,由此可得F 为AB 的中点,结合三角形全等即可求得E 点坐标,结合二次函数的性质可设二次函数表达式(此表达式为交点式的变形,利用了二次函数的平移的特点),将E 点代入即可求得二次函数的表达式,根据表达式的特征可知P 点坐标;。

人教版九年级(上)期末数学试卷(含答案)

人教版九年级(上)期末数学试卷(含答案)

人教版九年级(上)期末数学试卷第I卷(选择题)一、选择题(本大题共16小题,共48.0分。

在每小题列出的选项中,选出符合题目的一项)1.一元二次方程x2+6x+5=0的常数项是( )A. 0B. 1C. 5D. 都不对2.如图所示图形中是中心对称图形的是( )A. 正三角形B. 等腰三角形C. 直角三角形D. 圆3.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是( )A. ∠D=∠BB. ∠E=∠CC. ADAB =AEACD. ADAB =DEBC4.将抛物线y=−3x2平移,得到抛物线y=−3(x−1)2−2,下列平移方式中,正确的是( )A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位5.如图,在△ABC中,DE//BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为( )A. 23B. 12C. 34D. 356.下列事件中,是随机事件的是( )第2页,共18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. 太阳从西边升起B. △ABC 中,AB 与AC 的和比BC 大C. 两个负数相乘,积为正D. 两个数相加,和大于其中的一个加数7. 如图,在一块宽为20m ,长为32m 的矩形空地上,修筑宽相等的两条小路,两条路分别与矩形的边平行,如图,若使剩余(阴影)部分的面积为560m 2,问小路的宽应是多少?设小路的宽为xcm ,根据题意得( )A. 32x +20x =20×32−560B. 32×20−20x ×32x =560C. (32−x)(20−x)=560D. 以上都不正确8. 一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是( )A. 摸到红球是必然事件B. 摸到黄球是不可能事件C. 摸到白球与摸到黄球的可能性相等D. 摸到红球比摸到黄球的可能性小9. 如图,已知⊙O 的半径为4,则它的内接正方形ABCD 的边长为( )A. 1B. 2C. 4√2D. 2√210. 如图,在平面直角坐标系xOy 中,点P 为函数y =4x(x <0)图象上任意一点,过点P 作PA ⊥x 轴于点A ,则△PAO 的面积是( )A. 8B. 4C. 2D. −211. 如图,PA ,PB 是⊙O 的切线,A ,B 是切点,若∠P =70°,则∠ABO =( )A. 30°B. 35°C. 45°D. 55°12.下列关于二次函数y=2x2的说法正确的是( )A. 它的图象经过点(−1,−2)B. 它的图象的对称轴是直线x=2C. 当x<0时,y随x的增大而减小D. 当x=0时,y有最大值为013.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC= 150cm,CD=800cm,则树高AB等于( )A. 300cmB. 400cmC. 550cmD. 都不对14.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有白球( )A. 10B. 15C. 20D. 都不对15.如图,若△ABC与△A1B1C1是位似图形,则位似中心的坐标为( )A. (1,0)B. (0,1)C. (−1,0)D. (0,−1)16.如图,△ABC和阴影三角形的顶点都在小正方形的顶点上,则与△ABC相似的阴影三角形为( )A. B. C. D.第II卷(非选择题)二、填空题(本大题共3小题,共12.0分)17.二次函数y=2(x−1)2−5的开口方向______,最小值是______.18.如图,△ABC∽△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的高,若AD=2,A′D′=3,则△ABD与△A′B′D′的周长之比为______.△ABC与△A′B′C′的面积之比为______.第4页,共18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………19. 已知一次函数y 1=kx +m(k ≠0)和二次函数y 2=ax 2+bx +c(a ≠0)部分自变量与对应的函数值如下表x … −1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…−159…当y 2=y 1时,自变量x 的取值是______,当y 2>y 1时,自变量x 的取值范围是______.三、解答题(本大题共7小题,共66.0分。

人教版九年级数学第一学期期末质量检测试题含答案

人教版九年级数学第一学期期末质量检测试题含答案

人教版九年级数学第一学期期末质量检测试题第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.反比例函数y=−3在平面直角坐标系中的图象可能是( )xA. B.C. D.2.如果两个相似三角形的面积之比为9:4,那么这两个三角形对应边上的高之比为( )A. 9:4B. 3:2C. 2:3D. 81:163.某中学为了解九年级学生数学学习情况,在一次考试中,从全校500名学生中随机抽取了100名学生的数学成绩进行统计分析,统计结果这100名学生的数学平均分为91分,由此推测全校九年级学生的数学平均分( )A. 等于91分B. 大于91分C. 小于91分D. 约为91分4.用配方法解方程x2−2x−3=0时,可变形为( )A. (x−1)2=2B. (x−1)2=4C. (x−2)2=2D. (x−2)2=45.某商品经过两次连续降价,每件售价由原来的60元降到了48.6元,设平均每次降价的百分率为x,则下列方程正确的是( )A. 60(1+x)2=48.6B. 48.6(1+x)2=60C. 60(1−x)2=48.6D. 48.6(1−x)2=606.若关于x的一元二次方程kx2−2x−1=0有两个实数根,则k的取值范围是( )A. k≠0B. k≥−1C. k≥−1且k≠0D. k>−1且k≠07.已知点A(m,1)和B(n,3)在反比例函数y=k(k>0)的图象上,则( )xA. m<nB. m>nC. m=nD. m与n大小关系无法确8.在△ABC中,若|tanA−1|+(2cosB−√2)2=0,则△ABC是( )A. 等腰三角形B. 等腰直角三角形C. 直角三角形D. 一般锐角三角形9.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与如图的三角形相似的是( )第2页,共21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. B. C. D.10. 如图,正比例函数y 1=k 1x 和反比例函数y 2=k2x的图象交于A(−1,2)、B(1,−2)两点,若y 1<y 2,则x 的取值范围是( )A. x <−1或x >1B. x <−1或0<x <1C. −1<x <0或0<x <1D. −1<x <0或x >111. 如图,在矩形ABCD 中,AB =2,AD =3,点E 是CD 的中点,点F 在BC 上,且FC =2BF ,连接AE ,EF ,则cos ∠AEF 的值是( )A. 12B. 1C. √22D. √3212. 如图,在正方形ABCD 中,△ABP 是等边三角形,AP 、BP 的延长线分别交CD 于点E 、F ,连接AC 、CP ,AC 与BF 相交于点H.有下列结论: ①AE =2DE ; ②tan∠CPE =1; ③△CFP ∽△APH ; ④CP 2=PH ⋅PB . 其中正确的有( )A. ①②③B. ①②④C. ①③④D. ①②③④第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)13. 某人沿着坡度i =1:√3的山坡走了50米,则他离地面的高度上升了______米.14. 甲、乙两台机床在相同的条件下,同时生产一种直径为10mm 的滚珠.现在从中各抽测100个进行检测,结果这两台机床生产的滚珠平均直径均为10mm ,但S 甲2=0.288,S 乙2=0.024,则______机床生产这种滚珠的质量更稳定.15. 如图,在△ABC 中点D 、E 分别在边AB 、AC 上,请添加一个条件:______ ,使△ABC∽△AED .16. 若m ,n 是一元二次方程x 2−4x −7=0的两个实数根,则1m +1n =______.17. 如图,在△ABC 中,sinB =13,tanC =√22,AB =3,则AC 的长为______.18. 如图,菱形ABCD 顶点A 在函数y =3x (x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =______.三、解答题(本大题共8小题,共66.0分。

九年级(上)期末数学试卷(含答案)

九年级(上)期末数学试卷(含答案)

九年级(上)期末数学试卷(含答案)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒2.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒3.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①② B .②③ C .①③ D .①②③ 4.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( ) A .1B .2C .0,1D .1,25.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .6.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .7.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .158.如图,△ABC 内接于⊙O ,若∠A=α,则∠OBC 等于( )A .180°﹣2αB .2αC .90°+αD .90°﹣α9.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16B .15,15C .15,15.5D .16,1510.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-11.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位12.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒13.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 14.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣115.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .3C .32D .2二、填空题16.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.17.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.18.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.19.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.20.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.21.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________22.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm . 23.若32x y =,则x y y+的值为_____. 24.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 25.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.26.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB =10米,则该圆锥的侧面积是_____平方米(结果保留π).27.已知3a =4b ≠0,那么ab=_____. 28.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.29.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.30.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.三、解答题31.某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x 件时,该网店从中获利y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值? 32.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x 元时,日盈利为w 元.据此规律,解决下列问题:(1)降价后每件商品盈利 元,超市日销售量增加 件(用含x 的代数式表示); (2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?33.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点、、,设运动时间为t(秒).到达终点时,另一点也停止运动.连接DP DQ PQ∆得面积最小?①当t为何值时,DPQ∆为直角三角形?若存在,直接写出t的值;若不存在,②是否存在某一时刻t,使DPQ请说明理由.34.如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°,使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?⊥于点,A B是OA上一点,O是以O为圆心,OB为半径的圆.C是35.如图,OA lO上的点,连结CB并延长,交l于点D,且AC AD=.(1)求证:AC是O的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);BC=,求线段AC的长.(2)若O的半径为5,6四、压轴题36.如图1,Rt△ABC两直角边的边长为AC=3,BC=4.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.37.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.38.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足(256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.39.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.40.如图,在⊙O中,弦AB、CD相交于点E,AC=BD,点D在AB上,连接CO,并延长CO交线段AB于点F,连接OA、OB,且OA=5,tan∠OBA=12.(1)求证:∠OBA=∠OCD;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】直接利用圆内接四边形的对角互补计算∠C的度数.【详解】∵四边形ABCD内接于⊙O,∠A=400,∴∠C=1800-400=1400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.C解析:C【解析】【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.3.C解析:C【解析】【分析】①根据对称轴及增减性进行判断;②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断.解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确. 故选C. 【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.4.C解析:C 【解析】 【分析】分两种情况讨论,当m=0和m ≠0,函数分别为一次函数和二次函数,由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,列式求解即可. 【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点; ②若m ≠0,则函数y=mx 2+2x+1,是二次函数. 根据题意得:b 2-4ac=4-4m=0, 解得:m=1. ∴m=0或m=1 故选:C. 【点睛】本题考查了一次函数的性质与抛物线与x 轴的交点,抛物线与x 轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.5.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.6.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A .【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.7.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.8.D解析:D【解析】连接OC,则有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.9.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为(1516)2+÷=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.10.C解析:C【解析】【分析】利用两个根和的关系式解答即可.【详解】两个根的和=1122ba,【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 11.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.12.A解析:A【解析】【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.13.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFCABCDS S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.14.C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.15.D解析:D【解析】【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD AB,再证明△CBD为等边三角形得到BC=BD AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,×1.故选D.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.二、填空题16.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.17.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.18.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛解析:-1<x<3【分析】根据图象,写出函数图象在y=3下方部分的x 的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x <3时,y <3,故答案为:-1<x <3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.19.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.20.1【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴∠ABC=45°∴tan∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB=90°是解此题的关键.21.【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E 2【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+, 即:222(32)(13)m m m ++=+, 解得:2m =, ∴边长为22m =2.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.22.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm∴较小的三角形的周长为643484cm ⨯=故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.23..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.解析:52.【解析】【分析】根据比例的合比性质变形得:325.22 x yy++==【详解】∵32xy=,∴325.22x y y ++== 故答案为:52. 【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.24.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.25.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,()22223323AB AC BC =+=+=,然后根据PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,3BC =, ∴()22223323AB AC BC =+=+=∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴()2222237OC OB BC =+=+= ∴72CP OC OP =-=-故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.26.【解析】【分析】根据勾股定理求得OB ,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S =lr ,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的解析:60【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=12lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=12lr=12×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=12lr是解题的关键.27..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.28.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.29.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm ,则:1:2000=12:x ,解得x =24000,24000cm =240m .故答案为240m .【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.30.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S >甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量三、解答题31.(1)y=100x (010x ≤≤的整数) y=2-3130x +x(1030x <≤的整数);(2)购买22件时,该网站获利最多,最多为1408元.【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当010x ≤≤的整数时,y 与x 的关系式为y=100x ;当1030x <≤的整数时, 1030062002x y x , y=2-3130x x + (1030x <≤的整数),∴y 与x 的关系式为:y=100x (010x ≤≤的整数), y=2-3130x +x(1030x <≤的整数)(2)当(010x ≤≤的整数),y=100x,当x=10时,利润有最大值y=1000元;当10˂x≤30时,y=23130x x -+, ∵a=-3<0,抛物线开口向下,∴y 有最大值,当x=22123b a -=时,y 取最大值, 因为x 为整数,根据对称性得:当x=22时,y 有最大值=1408元˃1000元,所以顾客一次性购买22件时,该网站获利最多.【点睛】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x 的取值范围及取值要求是解答此题的关键之处.32.(1)(30-x );10x ;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【解析】【分析】(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x 元,超市平均每天可多售出10x 件;(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w ,化为一般式后,再配方可得出结论.【详解】解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x 件;(2)设每件商品降价x 元时,利润为w 元根据题意得:w =(30-x )(100+10x )= -10x 2+200x +3000=-10(x -10)2+4000∵-10<0,∴w 有最大值,当x =10时,商场日盈利最大,最大值是4000元;。

初三数学九年级上册期末试题及答案

初三数学九年级上册期末试题及答案

初三数学九年级上册期末试题及答案一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( )A .平均数B .方差C .中位数D .极差2.对于二次函数2610y x x =-+,下列说法不正确的是( )A .其图象的对称轴为过(3,1)且平行于y 轴的直线.B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.3.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( )A .小于12B .等于12C .大于12D .无法确定4.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1 B .a =1 C .a =﹣1 D .无法确定5.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .6.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+ 7.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 8.sin60°的值是( )A .B .C .D .9.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y => 10.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位11.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( ) ①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个12.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( )A .12.36cmB .13.6cmC .32.386cmD .7.64cm 13.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC的度数等于( )A .50°B .49°C .48°D .47°14.2的相反数是( )A .12-B .12C .2D .2- 15.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .23(1)3y x =--+ B .23(1)3y x =-+C .23(1)3y x =+-D .23(1)3y x =-++ 二、填空题16.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.17.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.18.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)19.如图,四边形的两条对角线AC 、BD 相交所成的锐角为60︒,当8AC BD +=时,四边形ABCD 的面积的最大值是______.20.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2.21.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.22.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .23.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.24.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.25.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.26.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.27.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.28.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 29.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.30.已知二次函数y =ax 2+bx +c 的图象如图,对称轴为直线x =1,则不等式ax 2+bx +c >0的解集是_____.三、解答题31.某校举行秋季运动会,甲、乙两人报名参加100 m 比赛,预赛分A 、B 、C 三组进行,运动员通过抽签决定分组.(1)甲分到A 组的概率为 ;(2)求甲、乙恰好分到同一组的概率.32.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.(1)求二次函数的表达式;(2)当12y y >时,直接写出x 的取值范围;(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标.33.如图,已知抛物线214y x bx c =++经过ABC 的三个顶点,其中点(0,3)A ,点(12,15)-B ,//AC x 轴,点P 是直线AC 下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交与点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与ABC 相似,若存在,直接写出点Q 的坐标;若不存在,请说明理由.34.为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种4种和5种帮扶措施的贫困户分别称为A 、B 、C 、D 类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题:(1)本次抽样调查了 户贫困户;(2)本次共抽查了 户C 类贫困户,请补全条形统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?35.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.()1求一次函数y kx b =+的表达式;()2若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?四、压轴题36.如图1,△ABC 中,AB=AC=4,∠BAC=100,D 是BC 的中点.小明对图1进行了如下探究:在线段AD 上任取一点E ,连接EB .将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ,连接BF ,小明发现:随着点E 在线段AD 上位置的变化,点F 的位置也在变化,点F 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F 在直线AD 上时,连接CF ,猜想直线CF 与直线AB 的位置关系,并说明理由.(2)若点F 落在直线AD 的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E 在线段AD 上运动时,直接写出AF 的最小值.37.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x = (1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长.(3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.38.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A C B →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示)(2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.39.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线;(2)若10,6AB AF ==,求AE 的长.40.如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C .【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.D解析:D【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 3.B解析:B【解析】【分析】利用概率的意义直接得出答案.【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于12, 前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:12, 故选:B .【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键. 4.C解析:C【解析】【分析】将(0,0)代入y =(a ﹣1)x 2﹣x+a 2﹣1 即可得出a 的值.【详解】解:∵二次函数y =(a ﹣1)x 2﹣x+a 2﹣1 的图象经过原点,∴a 2﹣1=0,∴a =±1,∴a≠1,∴a 的值为﹣1.故选:C .【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.5.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.6.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.7.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴42x ±= ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.8.C解析:C【解析】【分析】根据特殊角的三角函数值解答即可.【详解】sin60°=,故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键. 9.D解析:D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.10.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得BC=12AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 12.A解析:A【解析】【分析】根据黄金分割的比值约为0.618列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.618=12.36cm.故选:A.【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.13.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.14.D解析:D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.15.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同,3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题16.3【解析】【分析】根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x ,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.【详解】由题意可知:∠AOB =2∠ACB =2×40°=80°,设扇形半径为x ,故阴影部分的面积为πx 2×80360=29×πx 2=2π, 故解得:x 1=3,x 2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.17.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.18.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P是线段AB的黄金分割点(AP>BP)∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】计算即可.【详解】解:∵点P是线段AB的黄金分割点(AP>BP)∴1AP 22AB =⨯=故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.19.【解析】【分析】设AC=x,根据四边形的面积公式,,再根据得出,再利用二次函数最值求出答案.【详解】解:∵AC 、BD 相交所成的锐角为∴根据四边形的面积公式得出,设AC=x ,则BD=8-解析:【解析】【分析】设AC=x,根据四边形的面积公式,1S sin 602AC BD =⨯⨯︒,再根据sin 60︒=()1 S 82x x =-. 【详解】解:∵AC 、BD 相交所成的锐角为60︒ ∴根据四边形的面积公式得出,1S sin 602AC BD =⨯⨯︒ 设AC=x ,则BD=8-x所以,())21S 842x x x =-=-+∴当x=4时,四边形ABCD 的面积取最大值故答案为:【点睛】本题考查的知识点主要是四边形的面积公式,熟记公式是解题的关键.20.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 21.-1<x <3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x 的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x <3时,y <3,故答案为:-1<x <3.【点睛解析:-1<x <3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x 的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x <3时,y <3,故答案为:-1<x <3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.22.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,∴圆锥的底面半径为cm ,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,6=cm ,∴底面周长为2π×6=12πcm ,即这张扇形纸板的弧长是12πcm ,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长. 23.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG,先求出AB 的长,延长BE 交AC 于H 点,作HM⊥AB 于M ,根据圆的性质可知BH 平分∠ABC,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9, ∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC ,∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB ,故EF FG BC AC =,即6912FG = 解得FG=8 ∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.24.【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对应边的比值相等可求出x 的解析:103【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则2x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴222BM BE+=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,22x=,解得:x=4 3∴22410AD DF+=故答案为4103.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,25.3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA ,∵PA 切⊙O 于点A ,∴OA解析:3【解析】【分析】由题意连接OA ,根据切线的性质得出OA ⊥PA ,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,即可求解.【详解】解:连接OA ,∵PA 切⊙O 于点A ,∴OA ⊥PA ,∴∠OAP=90°,∵∠APO=45°, ∴OA=PA=3,故答案为:3.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.26.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)2AC (8-AC)+≥⋅2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围. 27.【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛解析:【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛】此题考查的是求一组数据的众数,掌握众数的定义是解决此题的关键.28.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.29.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.30.﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个解析:﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x<3时,y>0,∴不等式ax2+bx+c>0的解集为﹣1<x<3.故答案为﹣1<x<3.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x轴的另一个交点.三、解答题31.(1)13;(2)13【解析】【分析】(1)直接利用概率公式求出甲分到A组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【详解】解:(1)1 3(2)甲乙两人抽签分组所有可能出现的结果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A )的结果有3种,所以P (A )=13. 【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.32.(1)2y x 2x 3=-++;(2)2x <-或3x >;(3)()4,5D -.【解析】【分析】(1)先求出A,B 的坐标,再代入二次函数即可求解;(2)根据函数图像即可求解;(3)先求出C 点坐标,再根据平移的性质得到3EF FD ==,设点(),3E a a -,则()3,6D a a +-,把D 点代入二次函数即可求解.【详解】解:(1)令0y =,得3x =,∴()3,0A .把()2,B m -代入3y x =-,解得()2,5B --. 把()3,0A ,()2,5B --代入2y x bx c =-++, 得093542b c b c =-++⎧⎨-=--+⎩,∴23b c =⎧⎨=⎩, ∴二次函数的表达式为2y x 2x 3=-++.(2)由图像可知,当12y y >时,2x <-或3x >.(3)令0x =,则3y =,∴()0,3C .∵平移,∴AOC DFE ∆≅∆,∴3EF FD ==.设点(),3E a a -,则()3,6D a a +-,∴()()263233a a a -=-++++,∴11a =,26a =-(舍去). ∴()4,5D -.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的运用.33.(1)21234y x x =++;(2)(6,0)P -;(3)存在,116(,3)3Q - ,2(4,3)Q 【解析】【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P (m ,21234m m ++),表示出PE =2134m m --,再用S 四边形AECP =S △AEC +。

人教版九年级数学上册期末考试试题及答案精选6套

人教版九年级数学上册期末考试试题及答案精选6套

人教版九年上期末测试题01一、细心填一填(每小题3分,共36分) 1、已知式子31+-x x有意义,则x 的取值范围是 2、计算20102009)23()23(+-=3、若关于x 的一元二次方程(a +1)x 2+4x +a 2—1=0的一根是0,则a = 。

4、成语“水中捞月”用概率的观点理解属于不可能事件,请你仿照它写出一个必然事件 。

5、点P 关于原点对称的点Q 的坐标是(—1,3),则P 的坐标是6、已知圆锥的底面半径为9cm,母线长为10cm ,则圆锥的全面积是 cm 27、已知:关于x 的一元二次方程041)(22=++-d x r R x 有两个相等的实数根,其中R 、r 分别是⊙O 1 ⊙O 2的半径,d 为两圆的圆心距,则⊙O 1 与⊙O 2的位置关系是 8、中国象棋中一方16个棋子,按兵种不同分布如下:1个帅,5个兵、士、象、马、车、炮各2个.若将这16个棋子反面朝上放在棋盘中,任取1个是兵的概率是 。

9、如图,过圆心O 和图上一点A 连一条曲线,将OA 绕O 点按同一 方向连续旋转90°, 把圆分成四部分,这四部分面积 .(填“相等”或“不相等”) 二、选择题(每小题3分,共15分)10、下列二次根式中,与35-是同类二次根式的是( )(A ) 18 (B)3.0 (C ) 30 (D )30011、已知关于x 的一元二次方程(m —2)2x 2+(2m +1)x +1=0有两个实数根,则m 的取值范围是( )(A )43>m (B )43≥m (C )43>m 且2≠m (D )43≥m 且2≠m 12、如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )A B C13、如图,⊿ABC 内接于⊙O,若∠OAB=28°则∠C 的大小为( )(A)62° (B )56° (C)60° (D )28°D19、(7分)在一个不透明的袋子中装有三个完全相同的小球,分别标有数字2,3,4。

九年级(上)期末数学试卷(含答案)

九年级(上)期末数学试卷(含答案)

九年级(上)期末数学试卷(含答案)一、选择题1.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内 D .无法确定2.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=3.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .34.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A .15B .25 C .35 D .455.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤6.已知OA ,OB 是圆O 的半径,点C ,D 在圆O 上,且//OA BC ,若26ADC ∠=︒,则B 的度数为( )A .30B .42︒C .46︒D .52︒7.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数8.下列说法中,不正确的是( ) A .圆既是轴对称图形又是中心对称图形 B .圆有无数条对称轴 C .圆的每一条直径都是它的对称轴 D .圆的对称中心是它的圆心 9.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1B .0C .1D .210.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤11.sin60°的值是( ) A .B .C .D .12.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°13.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1214.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A.50°B.80°C.100°D.110°15.下列方程中,有两个不相等的实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=0二、填空题16.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.17.在一块边长为30 cm的正方形飞镖游戏板上,有一个半径为10 cm的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.18.二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是____.19.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.20.如图,四边形ABCD内接于⊙O,AD∥BC,直线EF是⊙O的切线,B是切点.若∠C=80°,∠ADB=54°,则∠CBF=____°.21.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 22.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.23.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.24.一组数据:2,5,3,1,6,则这组数据的中位数是________. 25.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.26.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.27.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____. 28.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.29.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.30.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.三、解答题31.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值,把x 、y 分别作为点A 的横坐标和纵坐标. (1)用适当的方法写出点A (x ,y )的所有情况. (2)求点A 落在第三象限的概率.32.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒).①当t 为何值时,DPQ ∆得面积最小?②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.33.如图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,D 为AC 的中点,过点D 作DE ∥AC ,交BC 的延长线于点E .(1)判断DE 与⊙O 的位置关系,并说明理由; (2)若CE =163,AB =6,求⊙O 的半径.34.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).35.如图,AD、A′D′分别是△ABC和△A′B′C′的中线,且AB BD ADA B B D A D==''''''.判断△ABC和△A′B′C′是否相似,并说明理由.四、压轴题36.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(3,4),一次函数23y x b=-+的图像与边OC、AB分别交于点D、E,并且满足OD BE=,M是线段DE上的一个动点(1)求b的值;(2)连接OM,若ODM△的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.37.如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.①若AD=6,BD=8,求弦CD的长为;②若AD+BD=14,求2AD BD CD2⎛⎫⋅+⎪⎪⎝⎭的最大值,并求出此时⊙O的半径.38.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.39.如图,B是O的半径OA上的一点(不与端点重合),过点B作OA的垂线交O于点C,D,连接OD,E是O上一点,CE CA=,过点C作O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形.②求证:∠OFC=∠ODC.(2)连接FB,若B是OA的中点,O的半径是4,求FB的长.40.如图,一次函数122y x=-+的图象交y轴于点A,交x轴于点B点,抛物线2y x bx c=-++过A、B两点.(1)求A,B两点的坐标;并求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】求出P点到圆心的距离,即OP长,与半径长度5作比较即可作出判断.【详解】解:∵()8,6P -,∴10= , ∵O 的直径为10,∴r=5, ∵OP>5, ∴点P 在O 外.故选:B. 【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.2.B解析:B 【解析】 【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断. 【详解】解:∵四边形ABCD 是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90° ∴AO=CO=BO=DO, ∴∠OCD=∠ODC=β,A 、BDC DCA β∠=∠=∠,故A 选项正确;B 、在Rt △ADC 中,cos ∠ACD=DCAC , ∴cos β=2a AO,∴AO=2cos a ,故B 选项错误;C 、在Rt △BCD 中,tan ∠BDC=BC DC , ∴ tan β=BCa∴BC=atan β,故C 选项正确; D 、在Rt △BCD 中,cos ∠BDC=DCDB , ∴ cos β=a BD∴cos a BD β=,故D 选项正确.故选:B. 【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.3.B解析:B 【解析】 【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P 点应该在以BC 为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决. 【详解】如图,∵四边形ABCD 为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.4.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.5.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线l与半径为5的O相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.6.D解析:D【解析】【分析】连接OC ,根据圆周角定理求出∠AOC ,再根据平行得到∠OCB ,利用圆内等腰三角形即可求解.【详解】连接CO ,∵26ADC ∠=︒∴∠AOC=252ADC ∠=︒∵//OA BC∴∠OCB=∠AOC=52︒∵OC=BO ,∴B =∠OCB=52︒故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.7.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差8.C解析:C【解析】【分析】圆有无数条对称轴,但圆的对称轴是直线,故C 圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C ,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大9.C解析:C【解析】【分析】根据根与系数的关系即可求出αβ+的值.【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C .【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=b a-是解决此题的关键. 10.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴41642t x ±-= ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.11.C解析:C【解析】【分析】根据特殊角的三角函数值解答即可.【详解】sin60°=,故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键. 12.C解析:C【解析】【分析】连接OD ,根据∠AOD =2∠ACD ,求出∠AOD ,利用等腰三角形的性质即可解决问题.【详解】连接OD .∵∠ACD =20°,∴∠AOD =2∠ACD =40°.∵OA =OD ,∴∠BAD =∠ADO =12(180°﹣40°)=70°. 故选C .【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.13.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.14.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.15.A解析:A【解析】【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.二、填空题16.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.17.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.18.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛解析:-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.19.、、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=解析:83、103、54【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB=2234+=5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴BE BDBC AB=,即:5153x x-+=,解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.20.46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠AD B=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.21.(6,4).【解析】【分析】作BQ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD⊥AC 于D ,PF⊥AB 于F ,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴AB=2213AQ BQ +=,CQ=AC-AQ=9,∴BC=2215BQ CQ +=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P 的坐标是解题的关键.22.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.23.【解析】【分析】作AB 的中点E,连接EM,CE,AD 根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM 和CE 长,再根据三角形的三边关系确定CM 长度的范围,从而确定CM 的最小值.【 解析:32【解析】【分析】作AB 的中点E,连接EM,CE,AD 根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM 和CE 长,再根据三角形的三边关系确定CM 长度的范围,从而确定CM 的最小值.【详解】解:如图,取AB 的中点E ,连接CE,ME,AD,∵E 是AB 的中点,M 是BD 的中点,AD=2,∴EM 为△BAD 的中位线, ∴112122EM AD , 在Rt △ACB 中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.24.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.25.【解析】【分析】【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.26.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.27.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB=2268+=10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.28.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 =,故答案为13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式. 29.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.30.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:1 4【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14. 【点睛】 本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.三、解答题31.(1)(﹣7,﹣2),(﹣1,﹣2),(3,﹣2),(﹣7,1),(﹣1,1),(3,1),(﹣7,6),(﹣1,6),(3,6);(2)29. 【解析】【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率.(1)直接利用表格或树状图列举即可解答.(2)利用(1)中的表格,根据第三象限点(-,-)的特征求出点A 落在第三象限共有两种情况,再除以点A 的所有情况即可.【详解】解:(1)列表如下:(2)∵点A 落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)两种情况,∴点A 落在第三象限的概率是29. 32.(1)233384y x x =-++;(2)① 32t =;②1234531724,3,,,2617t t t t t ===== 【解析】【分析】(1)根据点B 的坐标可得出点A ,C 的坐标,代入抛物线解析式即可求出b ,c 的值,求得抛物线的解析式;(2)①过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,推出△QFA ∽△CBA ,△CGP ∽△CBA ,用含t 的式子表示OF ,PG ,将三角形的面积用含t 的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A (0,3),C (4,0),∵抛物线经过A 、B 两点, ∴3316408c b c =⎧⎪⎨-⨯++=⎪⎩,解得,343b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:233384y x x =-++. (2)① ∵四边形ABCD 是矩形,∴∠B =90O , ∴AC 2=AB 2+BC 2=5; 由2333384x x -++=,可得120,2x x ==,∴D (2,3). 过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,∵∠FAQ =∠BAC , ∠QFA =∠CBA ,∴△QFA ∽△CBA . ∴AQ QF AC BC=, ∴5335AQ QF BC t t AC =⋅=⋅=. 同理:△CGP ∽△CBA , ∴PG CP AB AB =∴CP PG AB AB =⋅,∴45PG t =, 1154162(5)2(3)22352DPQ ABC QAD PQC PBD S S S S S t t t t ∆∆∆∆∆=---=-⨯⨯-⨯-⨯-⨯⨯-222229323323(3)3()3342322t t t t t =-+=-+-+=-+ 当32t =时,△DPQ 的面积最小.最小值为32. ② 由图像可知点D 的坐标为(2,3),AC=5,直线AC 的解析式为:3y 34x =-+. 三角形直角的位置不确定,需分情况讨论:当DPG 90∠=︒时,根据勾股定理可得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-+-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理,解方程即可得解;当DGP 90∠=︒时,可知点G 运动到点B 的位置,点P 运动到C 的位置,所需时间为t=3;。

九年级(上)期末数学试卷(含答案)

九年级(上)期末数学试卷(含答案)

九年级(上)期末数学试卷(含答案)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30° B .45° C .30°或150° D .45°或135°2.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O 的位置关系是( )A .点P 在O 上B .点P 在O 外C .点P 在O 内D .无法确定3.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76° 4.抛物线223y x x =++与y 轴的交点为( )A .(0,2)B .(2,0)C .(0,3)D .(3,0)5.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( )A .甲、乙两队身高一样整齐B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐6.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB 上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或67.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒;②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ;③sin ∠ABS =32; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④8.sin30°的值是( )A .12B .22C .32D .1 9.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--10.二次函数2(1)3y x =-+图象的顶点坐标是( )A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)-- 11.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 12.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100° 13.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm15.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.18.数据2,3,5,5,4的众数是____.19.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 20.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.21.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)22.一组数据:2,5,3,1,6,则这组数据的中位数是________.23.数据8,8,10,6,7的众数是__________.24.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .25.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.26.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.27.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.28.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .29.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.30.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.三、解答题31.(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP=时,△APB∽△ABC;(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)32.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD、CE是△ABC的高,M是BC的中点,点B、C、D、E是否在以点M为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B、C、D、E在以点M为圆心的同一个圆上”,在连接MD、ME的基础上,只需证明.(2)初步思考:如图②,BD、CE是锐角△ABC的高,连接DE.求证:∠ADE=∠ABC,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD、CE、AF是锐角△ABC的高,三条高的交点G叫做△ABC的垂心,连接DE、EF、FD,求证:点G是△DEF的内心.33.解方程:(1)(x+1)2﹣9=0(2)x2﹣4x﹣45=034.如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在点A处用高1.5米∠为45︒,此时教学楼顶端点G恰好在视线DH 的测角仪测得古树顶端点H的仰角HDE∠为60︒,点A、上,再向前走7米到达点B处,又测得教学楼顶端点G的仰角GEFB、C点在同一水平线上.(1)计算古树BH的高度;(2)计算教学楼CG的高度.(结果精确到0.1米,参考数据:2 1.4≈,3 1.7≈).35.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明.四、压轴题36.如图,在平面直角坐标系中,直线1l:162y x=-+分别与x轴、y轴交于点B、C,且与直线2l:12y x=交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内里否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.37.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE ⊥x 轴于点E ,连接ED 并延长交y 轴于点F .(1)如图(1),点P 为线段EF 上一点,点Q 为x 轴上一点,求AP +PQ 的最小值. (2)将直线l 进行平移,记平移后的直线为l 1,若直线l 1与直线AC 相交于点M ,与y 轴相交于点N ,是否存在这样的点M 、点N ,使得△CMN 为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.38.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示);(2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.39.(2015秋•惠山区期末)如图,在平面直角坐标系中,半径为1的⊙A 的圆心与坐标原点O 重合,线段BC 的端点分别在x 轴与y 轴上,点B 的坐标为(6,0),且sin ∠OCB=.(1)若点Q 是线段BC 上一点,且点Q 的横坐标为m .①求点Q 的纵坐标;(用含m 的代数式表示)②若点P 是⊙A 上一动点,求PQ 的最小值;(2)若点A从原点O出发,以1个单位/秒的速度沿折线OBC运动,到点C运动停止,⊙A 随着点A的运动而移动.①点A从O→B的运动的过程中,若⊙A与直线BC相切,求t的值;②在⊙A整个运动过程中,当⊙A与线段BC有两个公共点时,直接写出t满足的条件.40.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA 2+OB 2=AB 2,∴∠AOB =90°,∴劣弧AB 的度数是90°,优弧AB 的度数是360°﹣90°=270°,∴弦AB 对的圆周角的度数是45°或135°,故选:D .【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数.2.B解析:B【解析】【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断.【详解】解:∵()8,6P -,∴10= ,∵O 的直径为10,∴r=5,∵OP>5,∴点P 在O 外.故选:B.【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断. 3.D解析:D【解析】【分析】连接OC ,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.4.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.5.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】 此题考查方差,掌握波动越小,数据越稳定是解题关键 6.D 解析:D【解析】 【分析】 分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴CMB CAB CAN ∠>∠>∠,AB=10,CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽,∴CN AC AC CB =, ∴3668k =, 32k ∴=, 6BM ∴=.②当CAN MCB ∠=∠时,如图2中,过点M 作MH CB ⊥,可得BMH BAC ∆∆∽,∴BM MH BH BA AC BC ==, ∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒,ACN CHM ∴∆∆∽, ∴CN MH AC CH=, ∴123516685k k k =-, 1k ∴=,4BM ∴=.综上所述,4BM =或6.故选:D .【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.7.C解析:C【解析】【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题.【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确.设AB CD acm ==,BC AD bcm ==, 由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确,2.5BS k =, 1.5SD k =, ∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=, 2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.8.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12. 故选:A .【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键. 9.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 10.A解析:A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).11.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.12.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC ,如图,∵AB 为⊙O 的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A .考点:圆周角定理.13.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x ++=,289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键. 14.B解析:B【解析】【分析】由CD ⊥AB ,可得DM=4.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案.【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M ,∴DM=12CD=4cm ,OM=R-2, 在RT △OMD 中, OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB 的长为:2×5=10cm .故选B .【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.15.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛解析:-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.18.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.19.3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:12123x x +=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个, 根据题意得:12123x x +=++, 解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 20.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】 由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.21.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可. 由题意得圆锥的母线长∴圆锥的侧面积. 考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 22.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.23.8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8 故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解解析:8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解题的关键.24.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.25.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数解析:3k<【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.26.120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.27.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.28.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm,设圆锥的母线长为,则:,解得,故答案为. 【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 29.【解析】【分析】作OH⊥AB,延长OH 交于E ,反向延长OH 交CD 于G ,交于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB∥CD,所以四边形ABCD 是平行解析:163【解析】【分析】作OH ⊥AB ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,根据折叠的对称性及三角形全等,证明AB=CD ,又因AB ∥CD ,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH ⊥AB ,垂足为H ,延长OH 交O 于E ,反向延长OH 交CD 于G ,交O 于F ,连接OA 、OB 、OC 、OD ,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:==∴AB=∴四边形ABCD的面积=AB×GH=故答案为:.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.30.【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然解析:【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……∴OA1=A1A2=A2A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),把P(2020,m)代入得m=﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题31.(1)2mn;(2)见解析.【解析】【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB∽△ABC成立,∠A是公共角,则AB ACAC AP=,即m nn AP=,∴AP=2mn.(2)解:作∠DEQ=∠F,如图点Q就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.32.(1)ME=MD=MB=MC;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)要证四个点在同一圆上,即证明四个点到定点距离相等.(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE为圆内接四边形,故有对角互补.(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E 四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.【详解】解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上故答案为:ME=MD=MB=MC(2)证明:连接MD、ME∵BD、CE是△ABC的高∴BD⊥AC,CE⊥AB∴∠BDC=∠CEB=90°∵M 为BC 的中点∴ME =MD =12BC =MB =MC ∴点B 、C 、D 、E 在以点M 为圆心的同一个圆上∴∠ABC +CDE =180°∵∠ADE +∠CDE =180°∴∠ADE =∠ABC(3)证明:取BG 中点N ,连接EN 、FN∵CE 、AF 是△ABC 的高∴∠BEG =∠BFG =90°∴EN =FN =12BG =BN =NG ∴点B 、F 、G 、E 在以点N 为圆心的同一个圆上∴∠FBG =∠FEG∵由(2)证得点B 、C 、D 、E 在同一个圆上∴∠FBG =∠CED∴∠FEG =∠CED同理可证:∠EFG =∠AFD ,∠EDG =∠FDG∴点G 是△DEF 的内心【点睛】本题考查了直角三角形斜边中线定理、中点的性质、三角形内心的判定、圆周角定理、角平分线的定义,综合性较强,解决本题的关键是熟练掌握三角形斜边中线定理、圆周角定理,能够根据题意熟练掌握各个角之间的内在联系.33.(1)12x =,24x =-;(2)19x =,25x =-.【解析】【分析】。

初三数学九年级上册期末试题及答案(1)

初三数学九年级上册期末试题及答案(1)

初三数学九年级上册期末试题及答案(1)一、选择题1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( ) A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=02.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人 C .4人 D .8人 3.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( )A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)4.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10 B .10,9C .8,9D .9,105.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交B .相切C .相离D .无法确定6.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .7.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-8.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C 2D .29.方程2x x =的解是( ) A .x=0B .x=1C .x=0或x=1D .x=0或x=-110.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.511.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.412.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( ) ①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0). A .1 B .2 C .3D .413.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣114.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( ) A .12×108B .1.2×108C .1.2×109D .0.12×10915.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°二、填空题16.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.17.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.18.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m . 19.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)20.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.21.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.22.数据2,3,5,5,4的众数是____.23.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.24.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.25.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 26.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.27.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.28.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____. 29.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.30.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .三、解答题31.在平面直角坐标系中,已知抛物线24y x x =-+.(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线24y x x =-+的“方点”的坐标;(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与x 轴相交于A 、B 两点(A 在B 左侧),与y 轴相交于点C ,连接BC .若点P 是直线BC 上方抛物线上的一点,求PBC ∆的面积的最大值;(3)第(2)问中平移后的抛物线上是否存在点Q ,使QBC ∆是以BC 为直角边的直角三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,说明理由. 32.解方程(1)x 2-6x -7=0; (2) (2x -1)2=9.33.如图,在矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取一点O,以点O 为圆心,OF 为半径作⊙O 与AD 相切于点P .AB=6,BC=33(1)求证:F 是DC 的中点. (2)求证:AE=4CE. (3)求图中阴影部分的面积.34.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y (个)与销售单价x (元)符合一次函数关系,如图所示:(1)根据图象,直接写出y 与x 的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元 (3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?35.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 .四、压轴题36.阅读理解:如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)①ABM ;②AOP ;③ACQ(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为12,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于32,请直接写出圆心B 的横坐标B x 的取值范围.37.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.38.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB与弦CD交于点F;②如图3,弦AB与弦CD不相交:③如图4,点B与点C重合.39.如图,在Rt△ABC中,∠A=90°,0是BC边上一点,以O为圆心的半圆与AB边相切于点D,与BC边交于点E、F,连接OD,已知BD=3,tan∠BOD=34,CF=83.(1)求⊙O的半径OD;(2)求证:AC是⊙O的切线;(3)求图中两阴影部分面积的和.40.如图,一次函数122y x=-+的图象交y轴于点A,交x轴于点B点,抛物线2y x bx c=-++过A、B两点.(1)求A,B两点的坐标;并求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.2.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.4.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.5.B解析:B【解析】【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.6.B解析:B【解析】 【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解. 【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B . 【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.7.C解析:C 【解析】 【分析】利用两个根和的关系式解答即可. 【详解】 两个根的和=1122b a , 故选:C. 【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 8.A解析:A 【解析】 【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案. 【详解】 令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+, ∵20>,∴当5m =时,2PB 有最小值为:2,即PB , ∵A 、B 为抛物线的对称点,对称轴为y 轴, ∴O 为线段AB 中点,且Q 为AP 中点,∴122OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.9.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x =,方程整理,得,x 2-x=0因式分解得,x (x-1)=0,于是,得,x=0或x-1=0,解得x 1=0,x 2=1,故选:C .【点睛】本题考查了解一元二次方程,因式分解法是解题关键.10.C解析:C【解析】【分析】 因为OCP 和ODQ 为直角三角形,根据勾股定理可得OP 、DQ 、PQ 的长度,又因为CP //DQ ,两直线平行内错角相等,∠PCE=∠EDQ ,且∠CPE=∠DQE=90°,可证CPE ∽DQE ,可得CP DQ =PE EQ,设PE=x ,则EQ=14-x ,解得x 的取值,OE= OP-PE ,则OE 的长度可得.【详解】解:∵在⊙O 中,直径AB=20,即半径OC=OD=10,其中CP ⊥AB ,QD ⊥AB , ∴OCP 和ODQ 为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP ⊥AB ,QD ⊥AB ,垂直于用一直线的两直线相互平行,∴CP //DQ ,且C 、D 连线交AB 于点E ,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故CP DQ=PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.11.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.12.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.【详解】①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x=221-⨯=﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.13.C解析:C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.14.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】120 000 000=1.2×108,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.二、填空题16.3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=223534+=厘米,∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.18.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,19.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】根据黄金比值为12计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴1AP 22AB =⨯=故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.20.y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为解析:y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y=2(x-2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.21.2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=解析:2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,(7-r)2+(2r)2=52,解得r=2或1.5.故答案为:2或1.5.【点睛】本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.22.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.23.【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.解析:π【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为603 180π⨯=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.24.720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019 解析:720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).25.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠m解析:2【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.26.8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.27.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,解析:5【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC =, ∴3AB =∴AB =【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.28.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m ﹣1=0,∴2m2﹣3m =1,∴原式=3(2m2﹣3m )+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.29.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.30.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.三、解答题31.(1)抛物线的方点坐标是()0,0,()3,3;(2)当32m =时,PBC ∆的面积最大,最大值为278;(3)存在,()1,4Q 或()2,5-- 【解析】【分析】(1)由定义得出x=y ,直接代入求解即可(2)作辅助线PD 平行于y 轴,先求出抛物线与直线的解析式,设出点P 的坐标,利用点坐标求出PD 的长,进而求出面积的二次函数,再利用配方法得出最大值(3)通过抛物线与直线的解析式可求出点B ,C 的坐标,得出△OBC 为等腰直角三角形,过点C 作CM BC ⊥交x 轴于点M ,作BN BC ⊥交y 轴于点N ,得出M ,N 的坐标,得出直线BN 、MC 的解析式然后解方程组即可.【详解】解:(1)由题意得:x y =∴24x x x -+=解得10x =,23x =∴抛物线的方点坐标是()0,0,()3,3.(2)过P 点作y 轴的平行线交BC 于点D .易得平移后抛物线的表达式为2y x 2x 3=-++,直线BC 的解析式为3y x =-+. 设()2,23P m m m -++,则(),3D m m -+. ∴()222333PD m m m m m =-++--+=-+()03m << ∴()2213327332228PBC S m m m ∆⎛⎫=-+⨯=--+ ⎪⎝⎭()03m << ∴当32m =时,PBC ∆的面积最大,最大值为278. (3)如图所示,过点C 作CM BC ⊥交x 轴于点M ,作BN BC ⊥交y 轴于点N由已知条件得出点B 的坐标为B(3,0),C 的坐标为C(0,3),∴△COB 是等腰直角三角形,∴可得出M 、N 的坐标分别为:M(-3,0),N(0,-3)直线CM 的解析式为:y=x+3直线BN 的解析式为:y=x-3由此可得出:2233y x x y x ⎧=-++⎨=+⎩或2233y x x y x ⎧=-++⎨=-⎩解方程组得出:14x y =⎧⎨=⎩或25x y =-⎧⎨=-⎩∴()1,4Q 或()2,5--【点睛】本题是一道关于二次函数的综合题目,解题的关键是根据题意得出抛物线与直线的解析式.32.(1)x 1=7,x 2=-1;(2)x 1=2,x 2=-1【解析】【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x 2-6x +9-9-7=0(x -3) 2=16x -3=±4x 1=7,x 2=-1(2)2x -1=±32x =1±3x 1=2,x 2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解.33.(1)见解析;(2)见解析;(3)2 【解析】【分析】(1)易求DF 长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF ,EF=2CE 即可得;(3)先证明△OFG 为等边三角形,△OPG 为等边三角形,即可确定扇形圆心角∠POG 和∠GOF 的大小均为60°,所以两扇形面积相等, 通过割补法得出最后阴影面积只与矩形OPDH 和△OGF 有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=∴DF=3,∴CF=DF=3,∴F 是CD 的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP ,OG,作OH ⊥FG,∵∠AFD=60°,OF=OG,∴△OFG 为等边三角形,同理△OPG 为等边三角形,∴∠POG=∠FOG=60°,OH=33OG , ∴S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH -S 扇形OPG -S △OGH )+(S 扇形OGF -S △OFG )=S 矩形OPDH -32S △OFG =3132323222 , 即图中阴影部分的面积3.【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.34.(1)y =﹣2x +260;(2)销售单价为80元;(3)销售单价为90元时,每天获得的利润最大,最大利润是3200元.【解析】【分析】(1)由待定系数法可得函数的解析式;(2)根据利润等于每件的利润乘以销售量,列方程可解;(3)设每天获得的利润为w 元,由题意得二次函数,写成顶点式,可求得答案.【详解】(1)设y =kx +b (k ≠0,b 为常数)将点(50,160),(80,100)代入得1605010080k b k b=+⎧⎨=+⎩ 解得2260k b =-⎧⎨=⎩∴y 与x 的函数关系式为:y =﹣2x +260(2)由题意得:(x ﹣50)(﹣2x +260)=3000化简得:x 2﹣180x +8000=0解得:x 1=80,x 2=100∵x ≤50×(1+90%)=95∴x 2=100>95(不符合题意,舍去)答:销售单价为80元.(3)设每天获得的利润为w 元,由题意得w =(x ﹣50)(﹣2x +260)=﹣2x 2+360x ﹣13000=﹣2(x ﹣90)2+3200∵a =﹣2<0,抛物线开口向下∴w 有最大值,当x =90时, w 最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元.【点睛】本题综合考查了待定系数法求一次函数的解析式、一元二次方程的应用、二次函数的应用等知识点,难度中等略大.35.(1)见解析;(2)4.【解析】【分析】(1)先证∠AGD=∠B ,再根据∠ADG=∠BEF=90°,即可证明;(2)由(1)得ADG ∆∽FEB ∆,则△ADG 面积与△BEF 面积的比=2AD EF ⎛⎫ ⎪⎝⎭=4. 【详解】(1)证:在矩形DEFG 中,GDE FED ∠=∠=90°∴GDA FEB ∠=∠=90°∵C GDA ∠=∠=90°∴A AGD A B ∠+∠=∠+∠=90°∴AGD B ∠=∠在ADG ∆和FEB ∆中∵AGD B ∠=∠,GDA FEB ∠=∠=90°∴ADG ∆∽FEB ∆(2)解:∵四边形DEFG 为矩形,∴GD=EF ,∵△ADG ∽△FEB , ∴224ADG BEF S AD AD S EF GD ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故答案为4.【点睛】。

初三数学九年级上册期末试题及答案

初三数学九年级上册期末试题及答案

初三数学九年级上册期末试题及答案一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒2.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人B .6人C .4人D .8人3.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76° 4.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,25.若25x y =,则x y y+的值为( ) A .25 B .72 C .57 D .756.sin30°的值是( ) A .12B .22C 3D .17.一元二次方程x 2-x =0的根是( ) A .x =1B .x =0C .x 1=0,x 2=1D .x 1=0,x 2=-18.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( )A .12B .13C .14D .159.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°10.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒11.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③12.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( ) A .12×108 B .1.2×108 C .1.2×109 D .0.12×109 13.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( ) A .a <2B .a >2C .a <﹣2D .a >﹣214.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 15.用配方法解方程2250x x --=时,原方程应变形为( ) A .2(1)6x -=B .2(1)6x +=C .2(1)9x +=D .2(1)9x -=二、填空题16.已知∠A =60°,则tan A =_____.17.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.18.若a b b -=23,则ab的值为________. 19.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____. 20.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.21.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)22.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____.23.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.24.方程290x 的解为________.25.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 26.如图,已知△ABC 是面积为3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).27.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.28.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.29.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.30.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题31.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t (件)与每件的销售价x(元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y(元)与每件售价x(元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?32.如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=8.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设 AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.33.如图,在△ABC中,BC的垂直平分线分别交BC、AC于点D、E,BE交AD于点F,AB =AD.(1)判断△FDB与△ABC是否相似,并说明理由;(2)BC=6,DE=2,求△BFD的面积.34.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=23∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.35.如图,点P 是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由.②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.四、压轴题36.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.37.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 . 问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值; 问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值. 38.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)39.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.40.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用圆内接四边形的对角互补计算∠C的度数.【详解】∵四边形ABCD内接于⊙O,∠A=400,∴∠C=1800-400=1400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.4.C解析:C【解析】【分析】分两种情况讨论,当m=0和m≠0,函数分别为一次函数和二次函数,由抛物线与x轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:b2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.5.D解析:D【解析】【分析】由已知可得x与y的关系,然后代入所求式子计算即可.【详解】解:∵25xy=,∴25x y =,∴2755y yx yy y++==.故选:D.【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键. 6.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.7.C解析:C【解析】【分析】利用因式分解法解方程即可解答.【详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x 1=0,x 2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.8.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键. 9.A解析:A【解析】【分析】先依据切线的性质求得∠CAB 的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD 的度数.【详解】解:∵AC 是圆O 的切线,AB 是圆O 的直径,∴AB ⊥AC ,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A .【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.10.A解析:A【解析】【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=. 故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.11.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1,∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x 轴没有交点.12.B解析:B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】120 000 000=1.2×108,故选:B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.B解析:B【解析】【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论.【详解】∵1a =,2b =-,1c a =-,由题意可知:()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2,故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.14.C解析:C【解析】【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2, ∴∠ODC =30°,CD =2223OD OC +=∴∠COD =60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.15.A解析:A【解析】【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x 2−2x =5,配方得:x 2−2x +1=6,即(x−1)2=6.故选:A .【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.二、填空题16.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.18.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.19.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1 解析:12- 【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x 1+x 2═12b a -=- 故答案为12-. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 20.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.21.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A ,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯解析:∠B=∠1或AE AD AC AB = 【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A =∠A ,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B =∠1或AD AE AB AC=. ∵∠B =∠1,∠A =∠A ,∴△ADE ∽△ABC ; ∵AD AE AB AC=,∠A =∠A , ∴△ADE ∽△ABC ;故答案为∠B=∠1或AD AE AB AC【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 22.2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,∴15m﹣3m+2010=3(5m﹣1m)+2010=9+2010=2019,故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键. 23.40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠解析:40°:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°24.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这x=±解析:3【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.x=±.故答案为3【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.25.6【解析】【分析】将方程的根-2代入原方程求出m的值,再解方程即可求解.解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.26.【解析】【分析】如图,过点F 作FH⊥AE 交AE 于H ,过点C 作CM⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH =HF =x ,利用∠EFH 的正确可用x 表示出EH 的长,根据AE=EH+AH 列方程可求出x 的值,根据三角形面积公式即可得答案.【详解】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,∵△ABC CM ⊥AB ,∴12×AB×CM ,∠BCM =30°,BM=12AB ,BC=AB ,∴AB ,∴12×AB×3AB=3,解得:AB=2,(负值舍去)∵△ABC∽△ADE,△ABC是等边三角形,∴△ADE是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF=∠BAD=45°,∵FH⊥AE,∴∠AFH=45°,∠EFH=30°,∴AH=HF,设AH=HF=x,则EH=xtan30°=33x.∵AB=2AD,AD=AE,∴AE=12AB=1,∴x+3x=1,解得x=33 33-=+.∴S△AEF=12×1×33-=334-.故答案为:334-.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.27.【解析】【分析】△ABF和△ABE等高,先判断出,进而算出,△ABF和△ AFD等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD∥BC,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF ∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形,故答案为:25.【点睛】本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.28.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.29.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟 解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 30.【解析】【分析】设AB =x ,则AD =8﹣x ,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB =AD =4时,BD 的值最小,根据条件可知A ,B ,C ,D 四点在以BD 为直径的圆上.解析:42【解析】【分析】设AB =x ,则AD =8﹣x ,由勾股定理可得BD 2=x 2+(8﹣x )2,由二次函数的性质可求出AB =AD =4时,BD 的值最小,根据条件可知A ,B ,C ,D 四点在以BD 为直径的圆上.则AC 为直径时最长,则最大值为42.【详解】解:设AB =x ,则AD =8﹣x ,∵∠BAD =∠BCD =90°,∴BD 2=x 2+(8﹣x )2=2(x ﹣4)2+32.∴当x =4时,BD 取得最小值为42.∵A ,B ,C ,D 四点在以BD 为直径的圆上.如图,∴AC 为直径时取得最大值.AC的最大值为.故答案为:.【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.三、解答题31.(1)y= -3x2+330x-8568;(2)每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【解析】【分析】(1)根据毛利润=销售价−进货价可得y关于x的函数解析式;(2)将(1)中函数关系式配方可得最值情况.【详解】(1)根据题意,y=(x-42)(204-3x)= -3x2+330x-8568;(2)y=-3x2+330x-8568= -3(x-55)2+507因为-3<0,所以x=55时,y有最大值为507.答:每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【点睛】本题主要考查二次函数的应用,理解题意根据相等关系列出函数关系式,并熟练掌握二次函数的性质是解题的关键.32.(1)见解析;(2)①当m=0时,存在1个矩形EFGH;②当0<m<95时,存在2个矩形EFGH;③当m=95时,存在1个矩形EFGH;④当95<m≤185时,存在2个矩形EFGH;⑤当185<m<5时,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【解析】【分析】(1)以O点为圆心,OE长为半径画圆,与菱形产生交点,顺次连接圆O与菱形每条边的同侧交点即可;(2)分别考虑以O为圆心,OE为半径的圆与每条边的线段有几个交点时的情形,共分五种情况.【详解】(1)如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)(2)∵O到菱形边的距离为125,当⊙O与AB相切时AE=95,当过点A,C时,⊙O与AB交于A,E两点,此时AE=95×2=185,根据图像可得如下六种情形:①当m=0时,如图,存在1个矩形EFGH;②当0<m<95时,如图,存在2个矩形EFGH;③当m=95时,如图,存在1个矩形EFGH;④当95<m≤185时,如图,存在2个矩形EFGH;⑤当185<m<5时,如图,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【点睛】本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O与菱形的边的交点个数,综合性较强.33.(1)相似,理由见解析;(2)94.【解析】【分析】(1)根据线段垂直平分线的性质得出BE=CE,根据等腰三角形的性质得出∠EBC=∠ECB,∠ABC=∠ADB,根据相似三角形的判定得出即可;(2)根据△FDB∽△ABC得出FDAB=BDBC=12,求出AB=2FD,可得AD=2FD,DF=AF,根据三角形的面积得出S△AFB=S△BFD,S△AEF=S△EFD,根据DE为BC的垂直平分线可得S△BDE=S△CDE,可求出△ABC的面积,再根据相似三角形的性质求出答案即可.【详解】(1)△FDB与△ABC相似,理由如下:∵DE是BC垂直平分线,∴BE=CE,∴∠EBC =∠ECB ,∵AB =AD ,∴∠ABC =∠ADB ,∴△FDB ∽△ABC .(2)∵△FDB ∽△ABC , ∴FD AB =BD BC =12, ∴AB =2FD ,∵AB =AD ,∴AD =2FD ,∴DF =AF ,∴S △AFB =S △BFD ,S △AEF =S △EFD ,∴S △ABC =3S △BDE =3×12×3×2=9, ∵△FDB ∽△ABC , ∴BFD ABC S S =(DB BC )2=(12)2=14, ∴S △BFD =14S △ABC =14×9=94. 【点睛】 本题考查线段垂直平分线的性质及相似三角形的判定与性质,线段存在平分线上的点到线段两端的距离相等;熟练掌握相似三角形的面积比等于相似比的平方是解题关键.34.(1) 2 ;(2)π-2.【解析】【分析】(1)因为AB ⊥DE ,求得CE 的长,因为DE 平分AO ,求得CO 的长,根据勾股定理求得⊙O 的半径(2)连结OF ,根据S 阴影=S 扇形– S △EOF 求得【详解】解:(1)∵直径AB ⊥DE∴12CE DE ==∵DE 平分AO ∴1122CO AO OE == 又∵90OCE ︒∠=∴30CEO ︒∠=在Rt △COE 中,2OE =∴⊙O 的半径为2。

初三数学九年级上册期末试题及答案

初三数学九年级上册期末试题及答案

初三数学九年级上册期末试题及答案一、选择题1.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=2.已知3sin α=,则α∠的度数是( ) A .30° B .45°C .60°D .90°3.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =4.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .105.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠06.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐 7.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( )A .2020B .﹣2020C .2021D .﹣20218.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .129.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8 B .9 C .10 D .11 10.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交 B .相切 C .相离 D .无法判断 11.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10012.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm13.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表: x…134 …y … 2 4 2 ﹣2…则下列判断中正确的是( ) A .抛物线开口向上 B .抛物线与y 轴交于负半轴C .当x=﹣1时y >0D .方程ax 2+bx+c=0的负根在0与﹣1之间 14.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3) 15.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是A .相离B .相切C .相交D .无法判断二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 .18.一元二次方程290x 的解是__.19.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.20.抛物线286y x x =++的顶点坐标为______.21.如图,二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1,则方程ax 2+bx +c =0的根为____.22.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 23.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.24.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.25.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .26.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin 13BAC B ∠=∠=,则线段OC 的最大值为_____.27.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.x+=x这样的方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=28.像233,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x1=3时,9=3满足题意;当x2=﹣1时,1=﹣1不符合题意;所以原方程的解是x=3.运用以上x+=1的解为_____.经验,则方程x+529.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,△BEF是直角三角形.30.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB 上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.三、解答题31.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cm B.6cm×4.5cm C.7cm×4cm D.7cm×4.5cm32.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB.(1)证明:△ADC∽△ACB;(2)若AD=2,BD=6,求边AC的长.33.已知关于的方程,若方程的一个根是–4,求另一个根及的值. 34.解方程:3x2﹣4x+1=0.(用配方法解)35.如图,转盘A中的6个扇形的面积相等,转盘B中的3个扇形的面积相等.分别任意转动转盘A、B各1次,当转盘停止转动时,将指针所落扇形中的2个数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)用表格列出这样的点所有可能的坐标;(2)求这些点落在二次函数y=x2﹣5x+6的图象上的概率.四、压轴题36.如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.37.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C 但不包括点B),以P为圆心PB为半径作⊙P交AB于点D过点D作⊙P的切线交边AC于点E ,(1)求证:AE=DE ; (2)若PB=2,求AE 的长;(3)在P 点的运动过程中,请直接写出线段AE 长度的取值范围.38.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.39.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c , ①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值.40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断. 【详解】解:∵四边形ABCD 是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90° ∴AO=CO=BO=DO, ∴∠OCD=∠ODC=β,A 、BDC DCA β∠=∠=∠,故A 选项正确;B 、在Rt △ADC 中,cos ∠ACD=DCAC , ∴cos β=2a AO,∴AO=2cos a ,故B 选项错误;C 、在Rt △BCD 中,tan ∠BDC=BC DC , ∴ tan β=BCa∴BC=atan β,故C 选项正确; D 、在Rt △BCD 中,cos ∠BDC=DCDB , ∴ cos β=a BD∴cos a BD β=,故D 选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.2.C解析:C 【解析】 【分析】根据特殊角三角函数值,可得答案. 【详解】解:由sin α=,得α=60°, 故选:C . 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3.B解析:B 【解析】 【分析】根据两内项之积等于两外项之积对各项分析判断即可得解. 【详解】 解:由34a b=,得出,3b=4a, A.由等式性质可得:3b=4a ,正确; B.由等式性质可得:4a=3b ,错误; C. 由等式性质可得:3b=4a ,正确; D. 由等式性质可得:4a=3b ,正确. 故答案为:B. 【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.4.A解析:A 【解析】 【分析】作辅助线,连接OA ,根据垂径定理得出AE=BE=4,设圆的半径为r ,再利用勾股定理求解即可. 【详解】解:如图,连接OA ,设圆的半径为r ,则OE=r-2, ∵弦AB CD ⊥, ∴AE=BE=4,由勾股定理得出:()22242r r =+-, 解得:r=5, 故答案为:A. 【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.5.D解析:D 【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=b 2﹣4ac=4+4k >0,且k≠0. 解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.6.B解析:B 【解析】 【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】∵S 2甲=1.7,S 2乙=2.4, ∴S 2甲<S 2乙, ∴甲队成员身高更整齐; 故选B. 【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键7.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键8.C解析:C【解析】【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=8,∴△OBC是等边三角形,∴OB=BC=8.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.9.D解析:D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.10.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.11.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.12.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 13.D解析:D【解析】【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解.【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++∵1a =-,抛物线开口向下;∴选项A 错误;∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误;令0y =,得2320x x -++=,解得:132x +=,232x =∵10-,方程20ax bx c ++=的负根在0与-1之间; 故选:D .【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.14.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.15.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.a>0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.解析:a>0.【解析】试题分析:∵方程20+=没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.x a考点:根的判别式.18.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】x-=∵290∴2x=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键. 19.【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC∠的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=15 2AB= ,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=15 2MN,∵DM⊥BC,DC=DB,∴CM=BM=13 2BC=,∴EM=CE-CM=5-3=2,∵DM=14 2AC,∴由勾股定理得,DE=∵CD=CE=5,CN⊥DE,∴∴由勾股定理得,CN=∴sin ∠DEC=25CNCE .25. 【点睛】 本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.20.【解析】【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为解析:()4,10--【解析】【分析】 直接利用公式法求解即可,横坐标为:2b a -,纵坐标为:244ac b a-. 【详解】 解:由题目得出:抛物线顶点的横坐标为:84221b a -=-=-⨯; 抛物线顶点的纵坐标为:22441682464104414ac b a -⨯⨯--===-⨯ 抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.21.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.22.(6,4).【解析】【分析】作BQ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD⊥AC 于D ,PF⊥AB 于F ,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴13=,CQ=AC-AQ=9,∴BC=2215BQ CQ+=设⊙P的半径为r,根据三角形的面积可得:r=14124 141315⨯=++过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴点P的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键.23.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.24.20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m.解析:20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,=:10,根据相同时刻的物高与影长成比例,得到160:80x=.解得x20故答案是:20m.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.25.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=.147考点:概率公式.26.【解析】【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE的最大值,则答案即可求出.解析:413833+【解析】【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明ABC AEO∆∆,由三角函数可得出23AOAE=,进而求得6AE=,再通过证明AEB AOC∆∆,可得出23OC BE=,根据三角形三边关系可得:BE OE OB≤+,由勾股定理可得213OE=,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵OAE BACAEO ABC∠=∠⎧⎨∠=∠⎩,∴ABC AEO∆∆,∴tanAC AOBAB AE∠==,∵213sin B∠=,∴2213313cos11313B⎛⎫∠=-=⎪⎪⎝⎭,∴213sin213tancos3313BBn B∠∠===∠,∴23AO AE =, 又∵4AO =,∴6AE =,∵90,90EAB BAO OAC BAO ∠+∠=︒∠+∠=︒, ∴ =EAB OAC ∠∠, 又∵AC AO AB AE=, ∴AEB AOC ∆∆, ∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,∵OE ===,∴4OE OB +=,∴BE 的最大值为:4,∴OC 的最大值为:()284333=+. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 27.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 28.x =﹣1【解析】【分析】根据等式的性质将x 移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x 移到等号右边得到:=1﹣x ,两边平方,得x+5=1﹣2x解析:x =﹣1【解析】【分析】根据等式的性质将x 移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x 1﹣x ,两边平方,得x +5=1﹣2x +x 2,解得x 1=4,x 2=﹣1,检验:x =4时,=5,左边≠右边,∴x =4不是原方程的解,当x =﹣1时,﹣1+2=1,左边=右边,∴x =﹣1是原方程的解,∴原方程的解是x =﹣1,故答案为:x =﹣1.【点睛】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.29.1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到解析:1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.30.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A,P,D分别与点B,C,P对应,与若点A,P,D分别与点B,P,C对应,分别分析得出AP的长度即可.【详解】解:设AP=xcm.则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A,P,D分别与点B,C,P对应,与若点A,P,D 分别与点B,P,C对应,分别分析得出AP的长度即可.【详解】解:设AP=xcm.则BP=AB﹣AP=(5﹣x)cm以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题31.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n 度,则2π×2=3180n π⨯ 解得:n=240°, 如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm ,宽为4.5cm ,故选:B .【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.32.(1)见解析; (2)4.【解析】【分析】(1)根据两角对应相等的两个三角形相似即可证明;(2)利用相似三角形的对应边对应成比例列式求解即可.【详解】(1)证明:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB.(2)解:∵△ADC∽△ACB,∴ACAB =ADAC,AB=AD+DB=2+6=8∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.33.1,-2【解析】【分析】把方程的一个根–4,代入方程,求出k,再解方程可得.【详解】【点睛】考察一元二次方程的根的定义,及应用因式分解法求解一元二次方程的知识.34.x1=1,x2=1 3【解析】【分析】首先把系数化为1,移项,把常数项移到等号的右侧,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方公式,右边是常数项,即可求解.【详解】3x2﹣4x+1=03(x2﹣43x)+1=0(x﹣23)2=19∴x﹣23=±13∴x1=1,x2=1 3【点睛】本题考查解一元二次方程的方法,解题的关键是熟练掌握用配方法解一元二次方程的一般步骤.35.(1)见解析;(2)1 9【解析】【分析】(1)根据题意列表,展示出所有等可能的坐标结果;(2)由(1)可求得点落在二次函数y=x2﹣5x+6的图象上的结果数,再根据概率公式计算即可解答.【详解】(1)根据题意列表如下:(2)由上表可知,点(1,2)、(4,2)都在二次函数y=x2﹣5x+6的图象上,所以P(这些点落在二次函数y=x2﹣5x+6的图象上)=218=19.【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.四、压轴题36.(1)30°;(2)EF=;(3)CO的长为或时,△PEB为等腰三角形.【解析】试题分析:(1)利用圆周角定理以及三角形内角和定理得出即可;(2)首先证明△HBO≌△COD(AAS),进而利用△COD∽△CBF,得出比例式求出EF的长;(3)分别利用①当PB=PE,不合题意舍去;②当BE=EP,③当BE=BP,求出即可.试题解析:(1)如图1,连接EO,∵∴∠BOE=∠EOD,∵DO∥BF,∴∠DOE=∠BEO,∵BO=EO,∴∠OBE=∠OEB,∴∠OBE=∠OEB=∠BOE=60°,∵CF⊥AB,∴∠FCB=90°,∴∠F=30°;(2)如图1,作HO⊥BE,垂足为H,∵在△HBO和△COD中,∴△HBO≌△COD(AAS),∴CO=BH=a,∴BE=2a,∵DO∥BF,∴△COD∽△CBF,∴∴,∴EF=;(3)∵∠COD=∠OBE,∠OBE=∠OEB,∠DOE=∠OEB,∴∠COD=∠DOE,∴C关于直线OD的对称点为P在线段OE上,若△PEB为等腰三角形,设CO=x,∴OP=OC=x,则PE=EO-OP=4-x,由(2)得:BE=2x,①当PB=PE,不合题意舍去;②当BE=EP,2x=4-x,解得:x=,③当BE=BP,作BM⊥EO,垂足为M,∴EM=PE=,∴∠OEB=∠COD,∠BME=∠DCO=90°,∴△BEM∽△DOC,∴,∴,整理得:x2+x-4=0,解得:x=(负数舍去),综上所述:当CO的长为或时,△PEB为等腰三角形.考点:圆的综合题.37.(1)详见解析;(2)AE=194;(3)74≤AE<254.【解析】【分析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB得∠EDA=∠A进而得出答案;(2)利用勾股定理得出ED2+PD2=EC2+CP2=PE2,求出AE即可;(3)分别根据当D(P)点在B点时以及当P与C重合时,求出AE的长,进而得出AE的取值范围.【详解】(1)证明:如图1,连接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(2)解:如图1,连接PE,设DE=AE=x,则EC=8-x,∵PB=PD=2,BC=6.∴PC=4.∵∠PDE=∠C=90°,∴ED2+PD2=EC2+CP2=PE2.∴x2+22=(8-x)2+42.解得x=194.∴AE=194;(3)解:如图2,当P点在B点时,此时点D也在B点,。

初三(上)期末考试数学试题(含答案)

初三(上)期末考试数学试题(含答案)

初三(上)期末考试数学试题一、填空题:1. -|-3|=-( )2. 平面直角坐标系中,两点P 1(-3,5),P 2(1,2) 间的距离是( )3. 计算:=--324121418( ) 4. 已知扇形的圆心角为150°,弧长为20πcm ,则此扇形的面积为( )πcm 2 5. 当k =( )时,方程x 2-2kx+k 2+k-1=0 有两个相等的实数根.6. 等腰梯形一底角为60°,面积为2318cm ,中位线长6cm ,则此梯形的周长为 ( ) cm二、选择题:1. 计算:O)23()21()833(231+++-,正确的结果是( )A∶ 216B∶215 C∶ 432 D∶ 415 2.函数 12-+=x x y 中,自变量 x 的取值范围是( ) A∶x >-2且x ≠-1 B∶x >2C∶x ≥-2且x ≠1 D∶x ≤2且x ≠-13. 已知⊙O1 和⊙O2 的半径分别为r 1=3cm ,r 2=4cm ,O1O2=1cm , 那么⊙O1与⊙O2的位置关系为( )A∶外切 B∶内切. C∶内含 D∶相交 4. 如图,若∠1=∠2=45°,∠3=70°, 5. 某饲料厂今年一月份生产饲料500 吨,三月份生产饲料720 吨,若二、三两个月平均每月增长的百分率为 x ,则有( ) A∶500 (1+2x)=720 B∶500 (1+x 2)=720 C∶500 (1+x) 2=720 D∶720 (1+x) 2=5006. 不等式|x-1|<2 的解集是( )A∶-2<x <2. B∶x <-1 或 x >3. C∶-3<x <1. D∶-1<x <3 7. 下列命题中,真命题是( )则∠4 等于( )A∶70° B∶110° C∶45° D∶135°A∶菱形的对角线相等. B∶平行四边形的对角相等C∶矩形的对角线互相垂直. D∶四个角都是直角的四边形是正方形8. 某班一次数学测验的成绩如下: 得100 分的 7 人,90 分的 14 人,80 分的17 人,70 分的 8 人,60 分的 3 人,50 分的 1 人,那么这次测验全班的平均成绩 (结果保留到个位)是( ) A∶80 分 B∶81 分. C∶82 分 D∶83 分 9. 函数xk y 1=与b x k y +=2在同一平面直角坐标系 C∶k 1>0,k 2>0,b <0,D∶k 1>0,k 2<0,b <0。

(完整word版)九年级上册数学期末试卷(含答案)

(完整word版)九年级上册数学期末试卷(含答案)

九年级上学期期末试卷一、选择题:1. 如图是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是( )A 。

内含B. 相交C. 外切D. 外离 2. 抛物线()21212+--=x y 的顶点坐标是( ) A 。

()2,1 B 。

()2,1- C 。

()2,1- D 。

()2,1--3。

在ABC ∆中, 90=∠C ,若23cos =B ,则A sin 的值为( ) A. 3 B 。

23 C. 33 D. 21 4. ⊙O 的半径是5cm ,O 到直线l 的距离cm OP 3=,Q 为l 上一点且2.4=PQ cm ,则点Q ( )A. 在⊙O 内B. 在⊙O 上C. 在⊙O 外 D 。

以上情况都有可能5. 把抛物线22x y -=向上平移2个单位,得到的抛物线是( )A. ()222+-=x yB. ()222--=x yC. 222--=x y D 。

222+-=x y6。

如图,A 、B 、C 三点是⊙O 上的点, 50=∠ABO 则BCA ∠的度数是( )A 。

80B 。

50 C. 40 D. 257. 如图,在ABC ∆中, 30=∠A ,23tan =B ,32=AC , 则AB 的长为( )A 。

34+B 。

5 C. 32+ D. 68. 已知直线()0≠+=a b ax y 经过一、三、四象限,则抛物线bx ax y +=2一定经过( )A. 第一、二、三象限B 。

第一、三、四象限 C. 第一、二、四象限 D. 第三、四象限9. 如图是一台54英寸的液晶电视旋转在墙角的俯视图,设α=∠DAO ,电视后背AD 平行于前沿BC ,且与BC 的距离为cm 60,若cm AO 100=,则墙角O 到前沿BC 的距离OE 是( )A. ()cm αsin 10060+B. ()cm αcos 10060+C 。

()cm αtan 10060+D 。

以上都不对 10. 二次函数()0122≠-++=a a x ax y 的图象可能是( )11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为( )
A.15º与30º B.20º与35º C.20º与40º D.30º与35º
试题9:
如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向行走。按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α的度数是( )
交于点B。小圆的切线AC与大圆相交于点D,且CO平分∠ACB。
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;
(3)若 ,求大圆与小圆围成的圆环的面积。(结果保留π)
试题22:
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。为了扩大销售,
( )
A.8 B.7 C.9 D.
试题2:
若关于 的一元二次方程 的常数项为0,则 的值等
于( )
A.1 B.2边长分别为3和6,第三边的长是方程 的一个根,则这个三角
形的周长是( )
A.9 B.11 C.13 D、14
试题4:
过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为( )
A.52° B.60° C.72° D.76°
试题10:
如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为 的中点,P是直径
AB上一动点,则PC+PD的最小值为( )
A. B. C. D.
试题11:
一个三角形的三边长分别为 , , 则它的周长是______
试题12:
一条弦把圆分为2∶3的两部分,那么这条弦所对的圆周角度数为_____________
试题17:
以△ABC的AB、AC为边分别作正方形ADEB、ACGF,连接DC、BF:
(1)CD与BF相等吗?请说明理由。
(2)CD与BF互相垂直吗?请说明理由。
(3)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的。
试题18:
如图,⊙A、⊙B、⊙C两两不相交,且半径都是2cm,图中的三个扇形(即三个阴影部分)的面积之和是多少?弧长的和为多少?
xx学校xx学年xx学期xx试卷
姓名:_____________ 年级:____________ 学号:______________
题型
选择题
填空题
简答题
xx题
xx题
xx题
总分
得分
评卷人
得分
一、xx题
(每空xx 分,共xx分)
试题1:
一个直角三角形的两条直角边分别为a=2 ,b=3 ,那么这个直角三角形的面积是
增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬
衫每降价1元,商场平均每天可多售出2件。
⑴ 若商场平均每天要盈利1200元,每件衬衫应降价多少元?
⑵每件衬衫降价多少元,商场平均每天盈利最多?
试题23:
如图,在△ABC中,∠C=90°, AD是∠BAC的平分线,O是AB上一点, 以OA为半径的
有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( )
A.6 B.16 C.18 D.24
试题8:
如图,四边形ABCD内接于⊙O,BC是直径,AD=DC,∠ADB=20º,则∠ACB,∠DBC分别
试题19:
如图所示,PA、PB是⊙O的切线,A、B为切点, ,点C是⊙O上不同于A、
B的任意一点,求 的度数。
试题20:
如图,⊙O分别切△ABC的三条边AB、BC、CA于点D、E、F、若AB=5,AC=6,
BC=7,求AD、BE、CF的长。
试题21:
如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相
试题17答案:
A.3cm B.6cm C. cm D.9cm
试题5:
图中∠BOD的度数是( )
A.55° B.110° C.125° D.150°
试题6:
如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则
∠DFE的度数是( )
A.55° B.60° C.65° D.70°
试题7:
试题13:
顶角为 的等腰三角形的腰长为4cm,则它的外接圆的直径为_______
试题14:
如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10 cm,母线OE(OF)长为10 cm.在母线OF上的点A处有一块爆米花残渣,且FA = 2 cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离为____________
___4cm。
试题14答案:
cm。
试题15答案:
解:两边都除以2,得 。
移项,得 。
配方,得 ,

或 。
, 。
试题16答案:
不公平。
∵P(奇)= , P(偶)= ,P(奇)<P(偶),∴不公平。
新规则:
⑴同时自由转动转盘A与B;
⑵转盘停止后,指针各指向一个数字,用所指的两个数字作和,如果得到的和是偶数,那么甲胜;如果得到的和是奇数,那么乙胜.理由:∵P(奇)= , P(偶)= ,P(奇)=P(偶),∴公平。
试题15:
用配方法解方程: 。
试题16:
如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成4等份,每份分别标上1、2、3、4四个数字;转盘B被均匀地分成6等份,每份分别标上1、2、3、4、5、6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:
⑴同时自由转动转盘A与B;
⑵转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针停留在某一数字为止),用所指的两个数字作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3×5=15,按规则乙胜)。你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由.
⊙O经过点D。
(1)求证: BC是⊙O切线;
(2)若BD=5, DC=3, 求AC的长。
试题1答案:
C
试题2答案:
B
试题3答案:
C
试题4答案:
A
试题5答案:
B
试题6答案:
C
试题7答案:
B
试题8答案:
B
试题9答案:
A
试题10答案:
B
试题11答案:
cm。
试题12答案:
___ 72°或108°。
试题13答案:
相关文档
最新文档