初中数学 九年级上 解答题 汇总

合集下载

人教版2019年初中九年级上册数学:圆关系真题汇总(含答案)

人教版2019年初中九年级上册数学:圆关系真题汇总(含答案)

答案:能通过.设圆x,3.9^2-(2+3.9-2.4)^2=(x/2)^2,x=3.44证明:延长CE、DF交圆于接CN、DM交于O点,易证:△3.如图,△ABC 内接于⊙O答案:当P在O点时,∵OA=OC∴∠ACP=∠BAC=30∘;当P在B点时,∵圆的直径所对的圆周角为直角,∴∠ACP=90∘;∴30∘⩽x⩽90∘.故答案为:30∘⩽x⩽90∘.10、如图所示,AB =AC ,AB 为⊙O 的直径,AC 、BC 分别交⊙O 于E 、D ,连结ED 、BE .(1)试判断DE 与BD 是否相等,并说明理由;(2)如果BC =6,AB =5,求BE 的长.证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴ED ˆ=BDˆ,∴DE=BD;(2)∵AB=5,BD=12BC=3,∴AD=4,∵AB=AC=5,∴AC⋅BE=CB⋅AD,∴BE=4.8.11、如图11,半圆的直径AB =10,点C 在半圆上,BC=6.(1)求弦AC 的长;(2)若P 为AB 的中点,PE ⊥AB 交AC 于点E ,求PE 的长.解:(1)是的直径,,,而,,;(2),,而公共,,,即,.12、如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连结BC ,AC ,过点C 作直线CD ⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连结BF ,与直线CD 交于点G .求证:BC2 =BG*BF.证明:∵AB是O的直径,∠ACB=90∘,又CD⊥AB于D,∴∠BCD=∠A,又∠A=∠F.,∴∠F=∠BCD.在△BCG和△BFC中,{∠BCG=∠F∠GBC=∠CBF,∴△BCG∽△BFC.∴BCBF=BGBC.即BC2=BG⋅BF.13、如图,AD 是⊙O 的直径.(1) 如图①,垂直于AD 的两条弦B 1C 1,B 2C 2把圆周4等分,则∠B 1的度数是,∠B 2的度数是;(2) 如图②,垂直于AD 的三条弦B 1C 1,B 2C 2,B 3C 3把圆周6等分,分别求∠B 1,∠B 2,∠B 3的度数;(3) 如图③,垂直于AD 的n 条弦B 1C 1,B 2C 2,B 3 C 3,…,B n C n 把圆周2n 等分,请你用含n 的代数式表示∠B n 的度数(只需直接写出答案).解:(1)∵垂直于AD的两条弦,把圆周4等分,∴弧、弧、弧、弧的度数都是90度,弧弧,∴弧的度数是45度,,, 故答案为:22.5度,67.5度,(2)∵垂直于AD的三条弦,,把圆周6等分∴弧、弧、弧的度数都是60度,弧弧,∴弧的度数是30度,,故答案为:75度。

初中数学九年级上册一元二次方程试卷(含答案)

初中数学九年级上册一元二次方程试卷(含答案)

九年级(上)《一元二次方程》数学试卷(中难度)一.填空题(共4小题)1.已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为.2.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解.3.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一个根,则此三角形的周长是.4.设α、β是方程x2+2013x﹣2=0的两根,则(α2+2016α﹣1)(β2+2016β﹣1)=.二.解答题(共23小题)5.已知关于x的一元二次方程|x2﹣1|=(x﹣1)(kx﹣2):(1)若k=3,求方程的解;(2)若方程恰有两个不同解,求实数k的取值范围.6.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?7.边长为整数的直角三角形若其两直角边长是方程x2﹣(k+2)x+4k=0的两根,求k的值并确定直角三角形三边之长.8.某汽车销售公司2017年10月份销售一种新型低能耗汽车20辆,由于该型号汽车经济适用性强,销量快速上升,12月份该公司销售该型号汽车达45辆.(1)求11月份和12月份的平均增长率;(2)该型号汽车每辆的进价为10万元,且销售a辆汽车,汽车厂队销售公司每辆返利0.03a万元,该公司这种型号汽车的售价为11万元/辆,若使2018年1月份每辆汽车盈利不低于2.6万元,那么该公司1月份至少需要销售该型号汽车多少辆?此时总盈利至少是多少万元?(盈利=销售利润+返利)9.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?10.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?11.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.12.南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的,且乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了,且总费用为6804元,求a的值.13.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.14.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围:(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.15.某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?16.如图1,某小区的平面图是一个占地长500米,宽400米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形,如果要使四周的空地所占面积是小区面积的19%,南北空地等宽,东西空地等宽.(1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为5500平方米,请算出小区道路的宽度.17.随着人民生活水平的不断提高,萧山区家庭轿车的拥有量逐年增加.据统计,某小区2007年底拥有家庭轿车81辆,2009年底家庭轿车的拥有量达到144辆.(1)若该小区2007年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2010年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.18.已知实数a、b满足a2+ab+b2=1,且t=ab﹣a2﹣b2,求t的取值范围.19.已知k为非负实数,关于x的方程x2﹣(k+1)x+k=0和kx2﹣(k+2)x+k=0.(1)试证:前一个方程必有两个非负实数根;(2)当k取何值时,上述两个方程有一个相同的实数根.20.已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.21.某电器商社从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?22.已知实数m、n满足3m2+6m﹣5=0,3n2+6n﹣5=0,求的值.23.已知关于x的方程x2﹣(m﹣2)x﹣=0.(1)求证:无论m为何值,方程总有两个不相等实数根.(2)设方程的两实数根为x1,x2,且满足(x1+x2)2=|x1|﹣|x2|+2,求m的值.24.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).25.已知方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1x2=q,反过来,如果x1+x2=﹣p,x1x2=q,那么以x1,x2为两根的一元二次方程是x2+px+q=0.请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数.(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值.(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值.26.解方程:(1)﹣1(2)4x(x﹣3)=x2﹣927.已知关于x的一元二次方程mx2﹣(4m+1)x+3m+3=0的两个不等实数根分别为x1,x2,n=x2﹣x1﹣2,设点A(1,a),B(b,2)两点在动点P(m,n)所形成的曲线上.(1)求P点所在的曲线解析式;(2)求直线AB的解析式;三.选择题(共3小题)28.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③29.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,530.若关于x的一元二次方程kx2﹣x+1=0有实数根,则k的取值范围是()A.k>且k≠0B.k<且k≠0C.k≤且k≠0D.k<人教版九年级(上)《一元二次方程》数学试卷(中等难度)参考答案与试题解析一.填空题(共4小题)1.已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为3.【解答】解:∵x2﹣2x﹣a=0,∴△=4+4a,∴①当a>﹣1时,△>0,方程有两个不相等的实根,故①正确,②当a>0时,两根之积<0,方程的两根异号,故②错误,③方程的根为x==1±,∵a>﹣1,∴方程的两个实根不可能都小于1,故③正确,④若方程的两个实根一个大于3,另一个小于3.则有32﹣6﹣a<0,∴a>3,故④正确,故答案为3.2.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解x3=0,x4=﹣3.【解答】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.3.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一个根,则此三角形的周长是14.【解答】解:解方程x2﹣7x+12=0得:x=3或4,当腰为3时,三角形的三边为3,3,6,3+3=6,此时不符合三角形三边关系定理,此时不行;当腰为4时,三角形的三边为4,4,6,此时符合三角形三边关系定理,三角形的周长为4+4+6=14,故答案为:14.4.设α、β是方程x2+2013x﹣2=0的两根,则(α2+2016α﹣1)(β2+2016β﹣1)=﹣6056.【解答】解:∵α、β是方程x2+2013x﹣2=0的两实数根,∴α2+2013α﹣2=0,β2+2013β﹣2=0,α+β=﹣2013,αβ=﹣2,则(α2+2016α﹣1)(β2+2016β﹣1)=(α2+2013α﹣2+3α+1)(β2+2013β﹣2+3β+1)=(3α+1)(3β+1)=9αβ+3(α+β)+1=﹣18﹣6039+1=﹣6056.故答案为:﹣6056.二.解答题(共23小题)5.已知关于x的一元二次方程|x2﹣1|=(x﹣1)(kx﹣2):(1)若k=3,求方程的解;(2)若方程恰有两个不同解,求实数k的取值范围.【解答】解:(1)把k=3代入|x2﹣1|=(x﹣1)(kx﹣2)中,得|x2﹣1|=(x﹣1)(3x﹣2),当x2>1,即x>1或x<﹣1时,原方程可化为:x2﹣1=(x﹣1)(3x﹣2),解得,x=1(舍),或x=;当x2≤1,即﹣1≤x≤1时,原方程可化为:1﹣x2=(x﹣1)(3x﹣2),解得,x=1,或x=;综上,方程的解为x1=,x2=1,x3=;(2)∵x=1恒为方程|x2﹣1|=(x﹣1)(kx﹣2)的解,∴当x≠1时,方程两边都同时除以x﹣1得,,要使此方程只有一个解,只需函数y=与函数y=kx﹣2的图象只有一个交点.∵函数:,作出函数图象,由图象可知,当k<0时,直线y=kx﹣2与函数y=图象只有一个交点;当k=0时,直线y=kx﹣2=﹣2与函数y=图象只有一个交点;当k=1时,y=kx﹣2=x﹣2与y=x+1平行,则与函数y=图象只有一个交点;∵当直线y=kx﹣2过(1,2)点时,2=k﹣2,则k=4,∴函数图象可知,当k≥4时,直线y=kx﹣2与函数y=图象也只有一个交点,∴要使函数图象与y=kx﹣2图象有且只有一个交点,则实数k的取值范围是k≤0或k=1或k≥4.综上,实数k的取值范围:k≤0或k=1或k≥4.6.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?【解答】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.7.边长为整数的直角三角形若其两直角边长是方程x2﹣(k+2)x+4k=0的两根,求k的值并确定直角三角形三边之长.【解答】解:设直角边为a,b(a<b),则a+b=k+2,ab=4k,因方程的根为整数,故其判别式为平方数,设△=(k+2)2﹣16k=n2⇒(k﹣6+n)(k﹣6﹣n)=1×32=2×16=4×8,∵k﹣6+n>k﹣6﹣n,∴或或,解得k1=(不是整数,舍去),k2=15,k3=12,当k2=15时,a+b=17,ab=60⇒a=5,b=12,c=13,当k3=12时,a+b=14,ab=48⇒a=6,b=8,c=10.∴当k=15时,三角形三边的长为:5,12,13.当k=12时,三角形三边的长为:6,8,10.8.某汽车销售公司2017年10月份销售一种新型低能耗汽车20辆,由于该型号汽车经济适用性强,销量快速上升,12月份该公司销售该型号汽车达45辆.(1)求11月份和12月份的平均增长率;(2)该型号汽车每辆的进价为10万元,且销售a辆汽车,汽车厂队销售公司每辆返利0.03a万元,该公司这种型号汽车的售价为11万元/辆,若使2018年1月份每辆汽车盈利不低于2.6万元,那么该公司1月份至少需要销售该型号汽车多少辆?此时总盈利至少是多少万元?(盈利=销售利润+返利)【解答】解:(1)设11月份和12月份的平均增长率为x,根据题意得:20(1+x)2=45,解得:x1=0.5=50%,x2=﹣2.5(舍去).答:11月份和12月份的平均增长率为50%.(2)根据题意得:11﹣10+0.03a≥2.6,解得:a≥53.∵a为整数,∴a≥54.∴此时总盈利为54×(11﹣10+0.03×54)=141.48(万元).答:该公司1月份至少需要销售该型号汽车54辆,此时总盈利至少是141.48万元.9.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD.又∵AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,∴△=(﹣m)2﹣4×(﹣)=(m﹣1)2=0,∴m=1,∴当m为1时,四边形ABCD是菱形.当m=1时,原方程为x2﹣x+=0,即(x﹣)2=0,解得:x1=x2=,∴菱形ABCD的边长是.(2)把x=2代入原方程,得:4﹣2m+﹣=0,解得:m=.将m=代入原方程,得:x2﹣x+1=0,∴方程的另一根AD=1÷2=,∴▱ABCD的周长是2×(2+)=5.10.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【解答】解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,得x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:要使每盆的盈利达到10元,每盆应植4株或者5株.11.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)△ABC是等腰三角形,理由:当x=﹣1时,(a+b)﹣2c+(b﹣a)=0,∴b=c,∴△ABC是等腰三角形,(2)△ABC是直角三角形,理由:∵方程有两个相等的实数根,∴△=(2c)2﹣4(a+b)(b﹣a)=0,∴a2+c2=b2,∴△ABC是直角三角形;(3)∵△ABC是等边三角形,∴a=b=c,∴原方程可化为:2ax2+2ax=0,即:x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,即:这个一元二次方程的根为x1=0,x2=﹣1.12.南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的,且乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了,且总费用为6804元,求a的值.【解答】解:(1)设甲种树木的数量为x棵,乙种树木的数量为y棵,由题意得:,解得:,答:甲种树木的数量为40棵,乙种树木的数量为32棵;(2)由题意得甲种树木单价为×80(1+a%)=90(1+a%)元,乙种树木单价为80×(1﹣),由题意得:90(1+a%)×40+80×(1﹣)×32=6804,解得:a=25,答:a的值为25.13.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.【解答】解:(1)∵关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2,∴,解得:m≥﹣且m≠2.(2)由|x1|=|x2|,可得:x1=x2或x1=﹣x2.当x1=x2时,△=(2m+1)2﹣4m(m﹣2)=0,解得:m=﹣,此时x1=x2=﹣=;当x1=﹣x2时,x1+x2=﹣=0,∴m=﹣,∵m≥﹣且m≠2,∴此时方程无解.综上所述:若|x1|=|x2|,m的值为﹣,方程的根为x1=x2=.14.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围:(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.【解答】解:(1)依题意得△=22﹣4(2k﹣4)>0,解得:k<:(2)因为k<且k为正整数,所以k=1或2,当k=1时,方程化为x2+2x﹣2=0,△=12,此方程无整数根;当k=2时,方程化为x2+2x=0 解得x1=0,x2=﹣2,所以k=2,方程的有整数根为x1=0,x2=﹣2.15.某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?【解答】解:(1)设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=16,整理得(1+x)2=16,则x+1=4或x+1=﹣4,解得x1=3,x2=﹣5(舍去).答:每轮感染中平均一台电脑会感染3台电脑;(2)∵n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=3时,43=64,n=4时,44=256.答:4轮感染后机房内所有电脑都被感染.16.如图1,某小区的平面图是一个占地长500米,宽400米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形,如果要使四周的空地所占面积是小区面积的19%,南北空地等宽,东西空地等宽.(1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为5500平方米,请算出小区道路的宽度.【解答】解:(1)建筑区的面积是500×400×(1﹣19%)=162000(平方米).设建筑区的长度为5x米,则宽为4x米.根据题意得:5x•4x=162000,整理得x2=8100,解得x1=90,x2=﹣90(不合题意),则东西两侧道宽:(500﹣5x)÷2=25(米),南北两侧道宽:(400﹣4x)÷2=20(米).答:小区的东西两侧道宽为25米,南北两侧道宽为20米;(2)设小区道路的宽度为z米,则(20﹣z)×300+2×(25﹣z)×200=5500,解得z=15.答:小区道路的宽度是15米.17.随着人民生活水平的不断提高,萧山区家庭轿车的拥有量逐年增加.据统计,某小区2007年底拥有家庭轿车81辆,2009年底家庭轿车的拥有量达到144辆.(1)若该小区2007年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2010年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.【解答】解:(1)设家庭轿车拥有量的年平均增长率为x,根据题意得:81(1+x)2=144,解得:x1=,x2=﹣(不合题意,舍去),∴144×(1+)=192,答:该小区到2010年底家庭轿车将达到192辆;(2)设建造室内车位a个,可建车位总数为w个,则建造室外车位(125﹣3a)个,根据题意得:3a≤125﹣3a≤4.5a,解得:≤a≤∵w=a+125﹣3a=﹣2a+125,∴当整数a取最小值17时,w取最大值,最大值为91,答:该小区最多可建车位总共91个.18.已知实数a、b满足a2+ab+b2=1,且t=ab﹣a2﹣b2,求t的取值范围.【解答】解:由已知得,(a+b)2﹣ab=1,t=﹣(a+b)2+3ab,由此可得:ab=,a+b=(t≥﹣3),∴a,b是关于方程x2x+=0的两个实根,由△=﹣2(t+1)≥0,解得t≤﹣,故t的取值范围是﹣3≤t≤﹣.故答案为:﹣3≤t≤﹣.19.已知k为非负实数,关于x的方程x2﹣(k+1)x+k=0和kx2﹣(k+2)x+k=0.(1)试证:前一个方程必有两个非负实数根;(2)当k取何值时,上述两个方程有一个相同的实数根.【解答】(1)证明:x2﹣(k+1)x+k=0,△=[﹣(k+1)]2﹣4k=k2﹣2k+1=(k﹣1)2≥0,即方程关于x的方程x2﹣(k+1)x+k=0一定有两个实数根;设方程的两根为x1,x2,则根据根与系数的关系得:x1+x2=k+1,x1•x2=k,∵k为非负实数,∴x1+x2=k+1>0,x1•x2=k≥0,∵由x1•x2=k≥0得出方程有同号两个根或有一个根为0;∴由x1+x2=k+1>0,x1•x2=k≥0得出方程有两个正实数根或有一个根为0,所以方程x2﹣(k+1)x+k=0必有两个非负实数根;(2)x2﹣(k+1)x+k=0,△=[﹣(k+1)]2﹣4k=k2﹣2k+1=(k﹣1)2≥0,方程的根为,即方程的根为k和1;当相同的根是k时,把x=k代入方程kx2﹣(k+2)x+k=0得:k3﹣(k+2)k+k=0,解得:k=0或k=或k=,∵k为非负实数,∴k=舍去,k=符合题意;当相同的根是1时,把x=1代入方程kx2﹣(k+2)x+k=0得:k﹣(k+2)+k=0,解得:k=2;所以当k=2或0或时,述两个方程有一个相同的实数根.20.已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1.又∵,且,∴解得m≥﹣3且m≠﹣1.又∵方程mx2﹣3mx+m﹣1=0为一元二次方程,∴m≠0.综上可得:m≥﹣3且m≠﹣1,m≠0(2)∵一元二次方程mx2﹣3mx+m﹣1=0有两个整数根x1、x2,m为整数,∴x1+x2=3,,∴为整数,∴m=1或﹣1,又∵m≥﹣3且m≠﹣1,m≠0,∴m=1,∴方程为x2﹣3x=0,解得:x=3或x=021.某电器商社从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?(1)设每台B型空气净化器的进价为x元,则每台A型净化器的进价为(x+300)【解答】解:元,根据题意得:=,解得:x=1200,经检验,x=1200是原方程的根,∴x+300=1500.答:每台B型空气净化器的进价为1200元,每台A型空气净化器的进价为1500元.(2)设B型空气净化器的售价为x元,根据题意得:(x﹣1200)(4+)=3200,整理得:(x﹣1600)2=0,解得:x1=x2=1600.答:电器商社应将B型空气净化器的售价定为1600元.22.已知实数m、n满足3m2+6m﹣5=0,3n2+6n﹣5=0,求的值.【解答】解:若m≠n,∵实数m、n满足3m2+6m﹣5=0,3n2+6n﹣5=0,∴m、n是方程3x2+6x﹣5=0的两根,∴m+n=﹣=﹣2,mn=﹣,∴====﹣;若m=n,则=1+1=2;综上可知的值为﹣或2.23.已知关于x的方程x2﹣(m﹣2)x﹣=0.(1)求证:无论m为何值,方程总有两个不相等实数根.(2)设方程的两实数根为x1,x2,且满足(x1+x2)2=|x1|﹣|x2|+2,求m的值.【解答】解:(1)∵△=[﹣(m﹣2)]2﹣4(﹣)=2m2﹣4m+4=2(m﹣1)2+2>0,∴方程总有两个不相等的实数根;(2)∵x1•x2=﹣≤0,∴x1,x2至少有一个为0或不同号,当x2<0,∵(x1+x2)2=|x1|﹣|x2|+2,∴(x1+x2)2=x1+x2+2,∴x1+x2=2,或x1+x2=﹣1,∴m﹣2=2,或m﹣2=﹣1,∴m=4,或m=1;当x1<0时,∵(x1+x2)2=|x1|﹣|x2|+2,∴(x1+x2)2=﹣x1﹣x2+2,∴x1+x2=﹣2,或x1+x2=1∴m﹣2=﹣2,或m﹣2=1,∴m=0,或m=3.故m的值为m=4或m=1或m=0或m=3.24.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).【解答】解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.25.已知方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1x2=q,反过来,如果x1+x2=﹣p,x1x2=q,那么以x1,x2为两根的一元二次方程是x2+px+q=0.请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数.(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值.(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值.【解答】解:(1)设x2+mx+n=0(n≠0)的两根为x1,x2,则x1+x2=﹣m,x l x2=n,则所求新方程的两根为,.∵+==﹣,×==.所以,所求的方程为y2+y+=0,即ny2+my+1=0.(2)从a,b满足的同一种关系可知:①当a≠b时,a、b是一元二次方程x2﹣15x﹣5=0的两根,所以a+b=15,ab=﹣5,从而====﹣47.②当a=b时,从而=1+1=2.所以的值为﹣47或2.(3)由a+b+c=0,abc=16,得a+b=﹣c.ab=,因此,由给出的结论,得a、b是方程x2+cx+=0的实数根,所以△=c2﹣4×≥0,因为c>0,所以c3≥64,所以c≥4,故c的最小值为4.26.解方程:(1)﹣1(2)4x(x﹣3)=x2﹣9【解答】解:(1)方程两边都乘以3(x﹣2)得:3(5x﹣4)=4x+10﹣3(x﹣2),解得:x=2,检验:当x=2时,3(x﹣2)=0,所以x=2不是原方程的解,即原方程无解;(2)4x(x﹣3)=x2﹣9,4x(x﹣3)﹣(x+3)(x﹣3)=0,(x﹣3)[4x﹣(x+3)]=0,x﹣3=0,4x﹣(x+3)=0,x1=3,x2=1.27.已知关于x的一元二次方程mx2﹣(4m+1)x+3m+3=0的两个不等实数根分别为x1,x2,n=x2﹣x1﹣2,设点A(1,a),B(b,2)两点在动点P(m,n)所形成的曲线上.(1)求P点所在的曲线解析式;(2)求直线AB的解析式;【解答】解:令y=mx2﹣(4m+1)x+3m+3=0,则mx2﹣(4m+1)x+3m+3=0,∴x=3或x=,①当3﹣=n+2时,即n=﹣,P点所在的曲线解析式为y=﹣,把A(1,a),B(b,2)代入n=﹣中,∴A(1,﹣1),B(﹣,2),设直线AB的解析式为y=kx+b,代入得:,解得:,∴直线AB的解析式为y=﹣2x+1;②当﹣3=n+2时,即n=﹣4,P点所在的曲线解析式为y=﹣4,同理可求A(1,﹣3),B(,2),同理可得:直线AB的解析式为y=﹣6x+3.三.选择题(共3小题)28.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③【解答】解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知△=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴△=b2﹣4ac=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式△=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b=或2ax0+b=﹣∴故④正确.故选:B.29.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,5【解答】解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.30.若关于x的一元二次方程kx2﹣x+1=0有实数根,则k的取值范围是()A.k>且k≠0B.k<且k≠0C.k≤且k≠0D.k<【解答】解:∵关于x的一元二次方程kx2﹣x+1=0有实数根,∴k≠0且△=(﹣1)2﹣4k≥0,解得:k≤且k≠0.故选:C.。

冀教版数学九年级上册综合知识训练100题-含答案

冀教版数学九年级上册综合知识训练100题-含答案

冀教版数学九年级上册综合知识训练100题含答案(单选题、多选题、填空题、解答题)一、单选题1.如图,在O 中,已知22.5OAB ∠=︒,则C ∠的度数为( )A .122.5︒B .135︒C .112.5︒D .115.5︒2.甲、乙两名射击运动员10次射击成绩的平均数均为9.5环,其中甲运动员成绩的方差为0.03,乙运动员成绩的方差为0.05,则下列说法正确的是( ) A .甲的成绩比乙的成绩更稳定 B .乙的成绩比甲的成绩更稳定 C .甲、乙两人的成绩一样稳定 D .甲、乙两人的成绩不能比较【答案】A【分析】方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越集中,各个数据偏离平均数越小,即波动越小,数据越稳定,据此即可作出判断. 【详解】解:∠甲运动员成绩的方差为0.03,乙运动员成绩的方差为0.05,即0.03<0.05,∠甲的成绩比乙的成绩更稳定 故选:A【点睛】本题考查方差的意义,解题的关键是理解方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越集中,各个数据偏离平均数越小,即波动越小,数据越稳定.3.如图,O 是ABC 的外接圆,连结AO ,BO ,则下列选项中与AOB ∠度数一定相等的是( )A .2CAB ∠ B .2ABC ∠ C .2ACB ∠D .2ABO ∠【答案】C【分析】由题意直接依据圆周角定理即同弧所对圆周角等于它所对圆心角的一半进行分析即可得出答案.【详解】解:因为AOB ∠与ACB ∠是AB 所对的圆心角和圆周角, 所以AOB ∠=2ACB ∠. 故选:C.【点睛】本题考查圆周角定理,熟练掌握圆周角定理即同弧所对圆周角等于它所对圆心角的一半是解题的关键.4.一个面积为10的矩形,若长与宽分别为x , y ,则y 与x 之间的关系用图象可大致表示为( )A.B.C.D.5.如果两个相似多边形的相似比为1:5,则它们的面积比为()A.1:25B.1:5C.1:2.5D.【答案】A【分析】根据相似多边形面积的比等于相似比的平方即可得出结论.【详解】解:∠两个相似多边形的相似比为1:5,∠它们的面积比=12:52=1:25.故选:A.【点睛】本题考查的是相似多边形的性质,熟知相似多边形面积的比等于相似比的平方是解答此题的关键.6.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,设每个枝干长出x小分支,列方程为()A.(1+x)2=91B.1+x+x2=91C.(1+x)x=91D.1+x+2x=91【答案】B【分析】设每个枝干长出x个小分支,则主干上长出了x个枝干,根据主干、枝干和小分支的总数是91,即可得出关于x 的一元二次方程,此题得解. 【详解】设每个枝干长出x 个小分支,则主干上长出了x 个枝干, 根据题意得:x 2+x+1=91. 故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,根据主干、枝干和小分支的总数是91,列出关于x 的一元二次方程是解题的关键. 7.如图,已知点A 是函数y=x 与y=的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则∠AOB 的面积为( )A .2B .C .2D .4【答案】C【详解】试题分析:先根据点A 是函数y=x 与y=的图象在第一象限内的交点求得点A 的坐标,再根据OA=OB 及勾股定理即可求得点B 的坐标,最后根据三角形的面积公式求解即可.解:∠点A 是函数y=x 与y=的图象在第一象限内的交点,∠x=,解得x=2(舍负),则A (2,2),又∠OA=OB=2,∠B (-2,0),故选C .考点:函数图象上的点的坐标的特征,勾股定理,三角形的面积公式点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.若关于x 的方程2410ax x ++=有实数根,则a 的取值范围是( ) A .4a ≤ B .4a <C .4a ≤且0a ≠D .4a <且0a ≠【答案】A9.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)形式,则a+b值为()A.25B.17C.29D.21【答案】B【分析】方程配方后判断即可求出a与b的值.【详解】解:方程x2﹣8x﹣5=0,变形得:x2﹣8x=5,配方得:x2﹣8x+16=21,即(x﹣4)2=21,则a=﹣4,b=21,故a+b=﹣4+21=17,故选:B.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.10.某校准备选派甲、乙、丙、丁中的一名队员代表学校参加市直跳绳比赛,表中是这四名队员选拔赛成绩的平均数和方差,你觉得最适合的队员是()A .甲B .乙C .丙D .丁【答案】A【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加即可. 【详解】解:甲、丙成绩的平均数大于乙、丁成绩的平均数, ∴从甲和丙中选择一人参加比赛,22S S <甲丙,∴最适合的队员是甲;故选:A .【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 11.将一个半径为1的圆形纸片,如下图连续对折三次之后,用剪刀沿虚线∠剪开,则虚线∠所对的圆弧长和展开后得到的多边形的内角和分别为( )A .,1802π︒B .,5404π︒C .,10804π︒D .,21603π︒12.如图,AB 为∠O 的直径,点C 、点D 是∠O 上的两点,连接CA ,CD ,AD .若∠CAB =35°,则∠ADC 的度数是( )A.40°B.45°C.55°D.100°【答案】C【分析】连接CB,根据圆周角定理求出∠ACB=90°,根据圆周角定理求出∠ADC=∠B 即可.【详解】解:连接CB,∠AB是∠O的直径,∠∠ACB=90°,∠∠CAB=35°,∠∠B=90°-∠CAB=55°,∠∠ADC=∠B=55°,故选:C.【点睛】本题考查了圆周角定理的推论,能熟记直径所对的圆周角是直角和在同圆或等圆中,同弧所对的圆周角相等是关键.π,则这弧所对圆心角度数是13.如果O的半径为3cm,其中一弧长2cm()A.150B.120C.60D.4514.如图,点A、B、C、D在O上,112AOC∠=︒点B是弧AC的中点,则D∠的度数是()A.56︒B.35︒C.38︒D.28︒15.在反比例函数y=3kx-的图象的每一个象限内,y都随x的增大而减小,则k的取值范围是()A.k>3B.k>0C.k≥3D.k<316.若关于x 的一元二次方程260x x a +-=有两个不相等的实数根,则a 的取值范围是( ) A .9a >- B .9a <- C .9a ≥- D .9a ≤-【答案】A【分析】根据判别式的意义得到2640a ∆=+>,然后解不等式即可. 【详解】解:根据题意得224640b ac a ∆=-=+>, 解得9a >-. 故选:A .【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根. 17.据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是( )A .35码,35码 B .35码,36码C .36码,35码D .36码,36码【答案】D【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36. 故选D.【点睛】考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.18.钟面上的分针的长为1,从3点到3点30分,分针在钟面上扫过的面积是()A.B.C.D.【答案】A【详解】试题分析:分针每分钟旋转6°,30分钟旋转180°,所以分针在钟面上扫过的扇形是半径为1半圆,根据圆的面积公式即可求得分针在钟面上扫过的面积:.考点:扇形面积.19.下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定【答案】D【详解】为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,把数据1、2、5、5、5、3、3从小到大排列1、2、3、3、5、5、5;所以中位数为:3;5出现的次数最多,所以众数是5,故选项B错误,投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D正确,故选:D.【点睛】本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.20.如图,已知ABC,90C∠=︒,按以下步骤作图:∠以点A为圆心,以适当长为半径画弧,分别交边AC,AB于点M,N;∠分别以M,N为圆心,以大于12 MN的长为半径画弧,两弧在ABC的内部相交于点P;∠作射线AP交BC于点D;∠分别以A,D为圆心,以大于12AD的长为半径画弧,两弧相交于点G,H;∠作直线GH,分别交AC,AB于点E,F,若3AF=,1CE=,则ABC的面积是()A.B.C.D.22223122CE,21.下列命题中,正确的是()A.如果一条直线截三角形两边的延长线所得的对应线段成比例,那么这条直线一定平行于三角形的第三边B.有一个内角相等的两个菱形相似C.点O是等边三角形ABC的中心,则向量OA、OB、OC是相等向量D.有一个锐角相等的两个等腰三角形相似【答案】B【分析】根据平行线分线段成比例的逆定理,相似多边形概念,相等向量的概念,相似三角形定义等逐项判断.【详解】A、如果一条直线截三角形两边的延长线所得的对应线段成比例,那么这条直线不一定平行于三角形的第三边,选项错误,不符合题意;B、因为菱形的四条边相等,所以有一角对应相等的两个菱形相似,选项正确,符合题意;C、点O是等边三角形ABC的中心,则|OA OB OC==,但它们不是相等向量,选项错误,不符合题意;D、有一个锐角相等的两个等腰三角形不一定相似,选项错误,不符合题意吧;故选B.【点睛】本题考查命题与定理,解题的关键是掌握相关的概念和定理.22.我国古代数学《九章算术》中,有个“井深几何”问题:今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸(1尺=10寸),问井深几何?其意思如图所示,则井深BD的长为()A.12尺B.56尺5寸C.57尺5寸D.62尺5寸【答案】C【分析】根据平行证△ABC∠∠ADE,再根据相似三角形的性质即可求AD的长,最后减去AB的长即可得到井深.【详解】∠BC∠DE,∠∠ABC∠∠ADE,∠AB:AD=BC:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选C.【点睛】本题考查了相似三角形的判定与性质.解题的关键是得到△ABC∠∠ADE.23.如图,四边形ABCD内接于半径为5的∠O,且AB=6,BC=7,CD=8,则AD 的长度是()AB.C.D.A .45°B .60°C .75°D .105°25.如图,ABCD 中,E ,F 为CD 的三等分点,连接AF ,BE ,相交于点G ,则:EFG ABG S S △△等于( )A .1:2B .1:3C .1:4D .1:9【答案】D【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题; 【详解】∠四边形ABCD 是平行四边形, ∠CD=AB ,CD∠AB , ∠DE=EF=FC , ∠EF :AB=1:3,EFG BAGS S=故选D .【点睛】本题考查平行四边形的性质、相似三角形的性质等知识,解题的关键是灵活26.用配方法解一元二次方程x 2﹣6x ﹣8=0,下列变形正确的是( ) A .(x ﹣6)2=﹣8+36 B .(x ﹣6)2=8+36 C .(x ﹣3)2=8+9D .(x ﹣3)2=﹣8+9 【答案】C【分析】移项,配方,即可得出答案. 【详解】x 2-6x-8=0, x 2-6x=8, x 2-6x+9=8+9, (x-3)2=17, 故选C .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键. 27.多项式22225122451x xy y x y -++-+的最小值为( ) A .41 B .32C .15D .12【答案】C【分析】先将多项式2x 2﹣2xy +5y 2+12x ﹣24y +51分组配方,根据偶次方的非负性可得答案.【详解】2x 2﹣2xy +5y 2+12x ﹣24y +51 =x 2﹣4xy +4y 2+12x ﹣24y +36+x 2+2xy +y 2+15 =(x ﹣2y )2+12(x ﹣2y )+36+(x +y )2+15 =(x ﹣2y +6)2+(x +y )2+15 ∠(x ﹣2y +6)2≥0,(x +y )2≥0, ∠(x ﹣2y +6)2+(x +y )2+15≥15. 故选:C .【点睛】本题考查了配方法在多项式最值中的应用,熟练掌握配方法并灵活运用及恰当分组,是解答本题的关键.28.如图,函数1y x =(x>0)和3y x=(x>0)的图象分别是1l 和2l .设点P 在2l 上,PA∠y 轴交1l 于点A ,PB∠x 轴,交1l 于点B ,△PAB 的面积为( )A .12B .23C .13D .3429.如图,点()0,0A 、()11,0D 是菱形111AB C D 的两个顶点,160B ∠=︒,11B C 与y 轴交于点2D ,以2AD 为边,作第二个菱形222AB C D ,使得260B ∠=︒,22B C 与x 轴交于点3D ,以3AD 为边,作第三个菱形333AB C D ,使得360B ∠=︒,33B C 与y 轴交于点4D ,以4AD 为边,作第四个菱形444AB C D ,使得4B ∠60=︒,…,以此类推,则点2019B 的横坐标为( )A .2018⎝⎭B .2019⎝⎭C .201820192D .2019201822sin 60⎛︒= ⎝3B 中,B ∠的横坐标为()2332二、多选题30.若0°<α<90°,则下列说法正确的是()A.sinα随α的增大而增大B.cosα随α的增大而减小C.tanα随α的增大而增大D.sinα、cosα、tanα的值都随α的增大而增大【答案】ABC【分析】根据锐角三角函数的增减性作答.【详解】解:A、若0°<α<90°,则sinα随α的增大而增大,故本选项正确;B、若0°<α<90°,则cosα随α的增大而减小,故本选项正确;C、若0°<α<90°,则tanα随α的增大而增大,故本选项正确;D、若0°<α<90°,则sinα、tanα的值都随α的增大而增大,而cosα随α的增大而减小,故本选项错误.故选:ABC.【点睛】本题考查了锐角三角函数的增减性:当角度在0°~90°间变化时,∠正弦值随着角度的增大(或减小)而增大(或减小);∠余弦值随着角度的增大(或减小)而减小(或增大);∠正切值随着角度的增大(或减小)而增大(或减小).31.不能说明∠ABC∠∠A’B’C’的条件是()A.AB ACA B A C=''''或BCB C''B.AB A BAC A C''=''且A C'∠=∠C.AB BCA B B C=''''且B B'∠=∠D.AB BCA B A C=''''且B A'∠=∠32.如图,下列条件能判定∠ABC与∠ADE相似的是()A.AE DEAC BC=B.∠B=∠ADE C.AE ACAD AB=D.∠C=∠AED33.如果α、β都是锐角,下面式子中不正确的是( ) A .sin (α+β)=sinα+sinβ B .cos (α+β)=12时,α+β=60°C .若α≥β时,则cosα≥cosβD .若cosα>sinβ,则α+β>90°34.在直角坐标系中,已知点A (6,﹣3),以原点O 为位似中心,相似比为13,把线段OA 缩小为OA ′,则点A ′的坐标为( ) A .(﹣2,﹣1) B .(﹣2,1) C .(2,1) D .(2,﹣1)35.下列各数不是方程21(2)23x +=解的是( )A .6B .2C .4D .0【答案】ACD36.如图,已知楼房AB高为100m,铁塔塔基距楼房基间的水平距离BD为,塔高CD为(100m+,则下面结论中正确的是()A.由楼顶望塔顶角为45︒B.由楼顶望塔基俯角为45︒C.由楼顶望塔顶仰角为30︒D.由楼顶望塔基俯角为30︒Rt ABD中,利用锐角三角函数,即可得到【详解】解:如图,过点100m,Rt ACE 中,CE CAE AE∠=45CAE =︒即由楼顶望塔顶角为ADE △ 中,37.如图,90ABC BDA ∠=∠=︒,下列线段比值等于cos A 的是( )A .BD AB B .BC AB C .BD BC D .AB AC【答案】CD【分析】根据余弦等于邻边比斜边,可得答案.【详解】90ABC BDA ︒∠=∠=38.下列方程中,有实数根的方程是()A.(x﹣1)2=2B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0D.x2+2x+4=0C.3a=,b24∴∆=-b方程有实数根,D.1a=,b24∴∆=-b方程无实数根,故选:ABC【点睛】本题考查了一元二次方程根的判断,熟练掌握根的判别式是解题的关键.39.下列命题正确的是()A.垂直于弦的直径平分弦所对的两条弧B.弦的垂直平分线经过圆心C.平分弦的直径垂直于弦D.平分弦所对的两条弧的直线垂直于弦【答案】ABD【分析】根据垂径定理及其推论进行判断即可.【详解】A、垂直于弦的直径平分弦所对的两条弧,正确;B、弦的垂直平分线经过圆心,正确;C、平分弦(不是直径)的直径垂直于弦,故错误;D、平分弦所对的两条弧的直线垂直于弦,正确;故选ABD.【点睛】本题考查了垂径定理:熟练掌握垂径定理及其推论是解决问题的关键.40.下列生活中的做法与其背后的数学原理对应正确的是()A.砌墙时,在两端钉钉子,沿中间的拉线砌墙(两点确定一条直线)B.在景区两景点之间设计“曲桥”(垂线段最短)C.工人师傅砌门时,常用一根木条固定长方形门框(三角形具有稳定性)D.车轱辘设计为圆形(圆上的点到圆心的距离相等)【答案】ACD【分析】A.根据公理“两点确定一条直线”进行判断;B.根据线段的性质即可判断;C.根据三角形的稳定性判断;D.根据圆的性质进行判断.【详解】解:A.砌墙时,在两端钉钉子,沿中间的拉线砌墙(两点确定一条直线),故本选项正确,符合题意;B.在景区两景点之间设计“曲桥”,即是增加了桥的长度,即蕴含的数学知识是:两点之间线段最短,而不是垂线段最短,故本选项错误,不符合题意;C.工人师傅砌门时,常用一根木条固定长方形门框(三角形具有稳定性),故本选项正确,符合题意;D.车轱辘设计为圆形(圆上的点到圆心的距离相等),故本选项正确,符合题意;故选:ACD.【点睛】本题主要考查了直线的性质,线段公理等知识,三角形的稳定性以及圆的认识,将实际问题数学化是解决问题的关键.41.若函数kyx的图象经过点(3,-7),那么它一定不经过点()A.(3,7)B.(-3,-7)C.(-3,7)D.(2,-7)【答案】ABD42.如图,在Rt∠ABC 中,∠A =90°,AD ∠BC ,垂足为D .则下列结论中正确的是( )A .sin α=sin BB .sin α=cos βC .AD 2=BD •DC D .AB 2=BD •BC 【答案】ABCD 【分析】根据同角的余角相等判断A ;根据三角函数的定义判断B ;根据相似三角形的判定和性质判断C 、D .【详解】解:∠∠A =90°,AD ∠BC ,∠∠B =∠α=90°−∠C ,∠sin α=sin B ,A 正确;∠α+β=90°,∠sin α=cos β,B 正确;∠,90ABD CBA ADB CAB ∠=∠∠=∠=︒,,∠ B =∠α,∠ADB =∠CDA =90°,∠~ADB CAB ∆∆,~ADB CDA ∆∆,∠AD 2=BD •DC ,AB 2=BD •BC ,C 、D 正确;故选:ABCD .【点睛】本题考查的是相似三角形的判定与性质、锐角三角函数的性质,熟练掌握相关知识是解题关键.43.如图,在O 中,AB 为直径,80AOC ∠=,点D 为弦AC 的中点,点E 为BC 上任意一点,则CED ∠的大小不可能是( )A.20︒B.30︒C.10︒D.40︒知识点,能求出CN的范围是解此题的关键.44.如图所示是∠ABC位似图形的几种画法,正确的是()A.B.C.D.【答案】ABCD【分析】利用位似图形的画法:∠确定位似中心;∠分别连接并延长位似中心和能代表原图的关键点;∠根据位似比,确定能代表所作的位似图形的关键点;∠顺次连接上述各点,得到放大或缩小的图形.【详解】解:第一个图形中的位似中心为A点,第二个图形中的位似中心为BC上的一点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:ABCD.【点睛】本题主要考查了位似变换,正确把握位似图形的定义是解题关键.45.如图,若ACD ABC△∽△,以下4个等式正确的是()A.AC ABCD BC=B.CD BCAD AC=C.2CD AD DB=⋅D.2AC AD AB=⋅46.如图,在平面直角坐标系中,平行四边形ABCO的顶点A,C的坐标分别(8,0),(3,4).点D,E三等分线段OB,延长CD,CE交OA,AB于点F,G,连接FG.对于以下结论:∠F是OA的中点;∠OFD与BEG相似;∠四边形DEGF的面积是20;∠OD=.正确的是()3A.∠B.∠C.∠D.∠CDE CFG S S = DEGF CFG S S 四边形四边形DEGF ∠结论正确;性质、勾股定理、三角形的中位线定理、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.47.如图,点E 是ABC 的内心,连接AE 并延长交BC 于点F ,交ABC 的外接圆于点D ,连接BD .以下结论中正确的有( )A .AE 平分BAC ∠B .BD DC = C .DBC BAD ∠=∠ D .DFB DBA ∆∆∽【答案】ABCD【分析】根据三角形的内心的性质和圆周角定理判断即可. 【详解】解:A 、点E 是ABC ∆的内心,AE ∴平分BAC ∠,正确,符合题意;B 、AE 平分BAC ∠,BAD DAC ∴∠=∠,∴BD DC =,正确,符合题意;C 、BD DC =,DBC BAD ∴∠=∠,正确,符合题意;D 、D D ∠=∠,DBC BAD ∠=∠,DFB DBA ∴∆∆∽,正确,符合题意;故选:ABCD .【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形的判定定理. 48.如图,已知AOB ∠,按以下步骤作图:∠在射线OA 上取一点,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ;∠连接CD ,分别以点C 、D 为圆心,CD 长为半径作弧,交PQ 于点M 、N ;∠连接OM ,MN .根据以上作图过程及所作图形,下列结论中正确的是( )A .COM COD ∠=∠B .点M 与点D 关于直线OA 对称C .若20AOB ∠=︒MN = D .//MN CD∠//MN CD,∠D正确;故选:ABD.【点睛】本题考查了几何作图,三角形全等,线段的垂直平分线,等腰三角形的性质,圆心角与圆周角的关系定理,熟练掌握作图,理解作图的意义,活用相关知识是解题的关键.49.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中正确的是()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是2吨、6吨出现了吨,故选项正确,符合题意;++++456、把这些数从小到大排列,则中位数是、这组数据的方差为1[(46三、填空题50.把方程2x2=3x﹣1化为一般形式得:_____【答案】2x2﹣3x+1=0.【分析】直接利用一元二次方程的一般形式分析得出答案.【详解】将一元二次方程2x2=3x−1化为一般形式之后,变为2x2﹣3x+1=0,故答案是:2x2﹣3x+1=0.【点睛】此题主要考查了一元二次方程的一般形式,正确把握定义是解题关键.51.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是_______.【答案】15.6【详解】试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(∠),则这六个整点时气温的中位数是15.6∠.考点:折线统计图;中位数52.已知y与2x成反比例,且当x=3时,y=16,那么当x=2时,y=_________,当y=2时,x=_________.53.如图,在ABC ∆中,D 是AB 边上的点,如果________或________,则.ABC ACD ∆∆∽【答案】 B ACD ∠=∠ ACB ADC ∠=∠ 【分析】利用三角形相似的判定求解即可.【详解】由图可知BAC DAC ∠=∠,根据相似三角形的判定,再加一个对应角相等即可,所以,可以为:B ACD ∠=∠或ACB ADC ∠=∠使得ABC ACD ∆∆∽ 故答案为B ACD ∠=∠或ACB ADC ∠=∠【点睛】此题主要考查学生对相似三角形的判定定理的理解和掌握. 54.如图,在平面直角坐标系中,点A 、B 在函数y kx=(k ≠0,x >0)的图象上,点B 在点A 的右侧,点A 的坐标为(2,4),过点A 作AD ∠x 轴于点D ,过点B 作BC ∠x 轴于点C ,连接OA 、AB ,若D 为OC 的中点,则四边形OABC 的面积为___.【答案】10【分析】将(2,4)代入解析式可得k =8,根据线段中点的定义可得OC 的长,从而确55.如图,Rt△ABC中,∠C=90°,AC=6,AB=10,D为BC上一点,将AC沿AD 折叠,使点C落在AB上点C1处,则CD的长为__________.【答案】3【分析】翻折前后,对应线段、对应角不变,据此构建直角三角形,根据勾股定理,列方程解答即可.【详解】解:∠∠C=90°,AC=6,AB=10,∠BC=8,由折叠可得AC1=AC=6,∠BC 1=10﹣6=4, 设CD =x ,则BD =8﹣x ,在Rt △DBC 1中,42+x 2=(8﹣x )2, ∠x =3. ∠CD =3, 故答案为:3.【点睛】本题考查的知识点是图形的折叠变换以及勾股定理,解题关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.56.在一张复印出来的纸上,一个多边形的一条边由原图中的2cm 变成了6cm ,这次复印的放缩比例是________ . 【答案】1:3【详解】由题意可知,相似多边形的边长之比=相似比=2:6=1:3, 故答案为1:3.【点睛】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比.在本题中,要注意放缩前后两个多边形是相似多边形,然后根据相似多边形的性质求解即可.57.关于x 的方程22(2)320m m x x -+-+=是关于x 一元二次方程,则m ______. 【答案】2【分析】根据一元二次方程的定义列得222m -=,且20m +≠,求解即可. 【详解】解:由题意得222m -=,且20m +≠, 解得m=2, 故答案为:2.【点睛】此题考查一元二次方程的定义:只含有一个未知数并且未知数的最高次数为2的方程叫一元二次方程,熟记定义是解题的关键.58.一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______. 【答案】1【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解. 【详解】解:2430x x -+= 243101x x -++=+2441x x -+=()221x -=∠1k = 故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键.59.在ABC 中,6AB =,8AC =,ABC 绕点A 旋转后能与11AB C △重合,那么1ABB 与1ACC △的周长之比是______.【答案】3:4##34【分析】根据旋转的性质可知1ABB 与1ACC △是顶角相等的两个等腰三角形,易证它们相似,利用相似三角形的性质解题. 【详解】解:如图,由旋转的性质可知,1AB AB =,1AC AC =,旋转角11BAB CAC ∠=∠,所以,11BAB CAC ∽△△,相似比34AB AC =::, 根据相似三角形的周长比等于相似比可知, 1ABB 与1ACC △的周长之比为3:4,故答案为:3:4.【点睛】本题利用旋转的性质,证明相似三角形,再用相似三角形的性质求周长的比.60.如图,在半径为4的∠O 中,弦AB∠OC ,∠BOC =30°,则AB 的长为_____.30角的直角三角形的性质,平行线的性61.一个两位数等于它的个位数字的平方,且个位数字比十位数字大3,则这个两位数为________. 【答案】25或36【详解】设这个两位数的十位数字为x ,则个位数字为(3x +). 依题意得:2103(3)x x x ++=+, 解得:122,3x x ==.∠ 这个两位数为25或36.62.若α为锐角,且sin 250°+sin 2α=1,则α=__. 【答案】40°【分析】根据sin 2α+cos 2α=1可得cos 250°= sin 2α即cos50°= sinα,再根据互余两角的三角函数值相等即可得出答案.【详解】解:∠sin 250°+cos 250°=1,sin 250°+sin 2α=1, ∠cos 250°= sin 2α, ∠α为锐角, ∠sinα=cos50°, 则α+50°=90°,解得,α=40°, 故答案为:40°.【点睛】本题考查的是互余两角三角函数的关系,在直角三角形中,∠A+∠B =90°时,sinA =cos (90°﹣∠A ),sin 2A+cos 2A =1.63.如图,在矩形ABCD 中,4AB =,6BC =,E 为CD 的中点,G 为AE 的中点,F 为CB 上的一个动点,当12FG AE =时,BF 的长为___________.【答案】2或4##4或2【分析】连接,AF EF 根据已知条件可得90AFE ∠=︒,再根据矩形的性质得到164.已知平行四边形ABCD的周长为28,自顶点A作AE∠DC于点E,AF∠BC于点F,若AE=3,AF=4,则CE-CF=_____65.对于一个三角形,设其三个内角的度数为x°,y°,z°,若x,y,z满足x2+y2=z2我们定义这个三角形为美好三角形.已知△ABC为美好三角形,∠A<∠B<∠C,∠B=60°,则∠A的度数为__________.【答案】45°【分析】利用美好三角形的定义结合三角形内角和定理得出∠A的度数.【详解】解:设∠A=x°,则∠C=180°-60°-x°=(120-x)°,∠∠A<∠B<∠C,根据美好三角形定义,∠C为最大角,∠222x+60=(120-x),解得:x=45,即∠A=45°,故答案为:45°.【点睛】此题考查三角形内角和定理、二次函数综合应用,解题关键在于掌握三角形内角和定理.66.如图,在直径为8的弓形ACB中,弦AB=C是弧AB的中点,点M为弧上动点,CN∠AM于点N,当点M从点B出发逆时针运动到点C,点N所经过的路径长为___.6022,1803367.“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的丰要动力.2010年全省全年旅游总收入大约1000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,那么年平均增长率应为___________.【答案】20%【详解】根据题意设年平均增长率为x ,列出一元二次方程,解方程即可得出答案.设年平均增长率为x , 则1000(1+x )2=1440,解得x 1=0.2或x 2=-2.2(舍去),所以年平均增长率为20%;故答案为20% .68.如图,菱形ABCD 中,AB AC =,点E 、F 分别为边AB 、BC 上的点,且AE BF =,连接CE 、AF 交于点H ,连接DH 交AC 于点O ,60.CHD ∠=︒则下列结论:∠ABF △∠CAE ,∠120AHC ∠=︒,∠AH CH DH +=,∠2AD OD DH =⋅中,正确的是______.【答案】∠∠∠∠【分析】由菱形ABCD 中,AB =AC ,易证得△ABC 是等边三角形,则可得∠B =∠EAC =60°,由SAS 即可证得△ABF ∠∠CAE ;则可得∠BAF =∠ACE ,利用三角形外角的性质,即可求得∠AHC =120°;在HD 上截取HK =AH ,连接AK ,易得点A ,H ,C ,D 四点共圆,则可证得△AHK 是等边三角形,然后由AAS 即可证得△AKD ∠∠AHC ,则可证得AH +CH =DH ;易证得△OAD ∠∠AHD ,由相似三角形的对应。

初中数学沪科版九年级上册第二十一章《二次函数的应用》练习题(解析版)

初中数学沪科版九年级上册第二十一章《二次函数的应用》练习题(解析版)

初中数学沪科版九年级上册第二十一章21.4二次函数的应用练习题一、选择题1.如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A. 25min~50min,王阿姨步行的路程为800mB. 线段CD的函数解析式为s=32t+400(25≤t≤50)C. 5min~20min,王阿姨步行速度由慢到快D. 曲线段AB的函数解析式为s=−3(t−20)2+1200(5≤t≤20)2.二次函数y=x2−8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于1的点P共有()2A. 1个B. 2个C. 3个D. 4个3.某畅销书的售价为每本30元,每星期可卖出200本,书城准备开展“读数节活动”,决定降价促销,经调研,如果调整书籍的售价,每降价2元,每星期可多卖出40本,设每件商品降价x元后,每星期售出此畅销书的总销售额为y元,则y与x之间的函数关系式为()A. y=(30−x)(200+40x)B. y=(30−x)(200+20x)C. y=(30−x)(200−40x)D. y=(30−x)(200−20x)4.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x元,月销售利润为y元,则y与x的函数关系式为()A. y=(x−40)(500−10x)B. y=(x−40)(10x−500)C. y=(x−40)[500−10(x−50)]D. y=(x−40)[500−10(50−x)]5.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为()A. y=2a(x−1)B. y=2a(1−x)C. y=a(1−x2)D. y=a(1−x)26.为解决药价虚高给老百姓带来的求医难问题,国家决定对药品价格分两次降价,若设平均每次降价的百分率为x,该药品的原价是18元/盒,降价后的价格为y元/盒,则y与x之间的函数关系式是()A. y=36(1−x)B. y=36(1+x)C. y=18(1−x)2D. y=18(1+x2)7.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是()A. y=x2B. y=4−x2C. y=x2−4D. y=4−2x8.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()A. y=−x2+6x(3<x<6)B. y=−x2+6x(0<x<6)C. y=−x2+12x(6<x<12)D. y=−x2+12x(0<x<12)9.长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A. y=x2B. y=(12−x)2C. y=(12−x)xD. y=2(12−x)10.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(x2+6x(0≤x≤4),米)关于水珠和喷头的水平距离x(米)的函数解析式是y=−32那么水珠的高度达到最大时,水珠与喷头的水平距离是()A. 1米B. 2米C. 5米D. 6米二、填空题11.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=________.12.据权威部门发布的消息,2021年第一季度安徽省城镇居民人均可支配收入约为0.75万元,若第三季度安徽省城镇居民人均可支配收人为y万元,平均每个季度城镇居民人均可支配收入增长的百分率为x,则y与x之间的函数表达式是____.13.如图,用一段长为40m的篱笆围成一个一边靠墙的矩形菜园ABCD,墙长为18m,设AD的长为x m,菜园ABCD的面积为y m2,则y关于自变量x的函数关系式是___________________________.14.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件,商品进价为每件40元,若设涨价x(x>0)元,总利润为y元,则y与x的函数关系式为______.15.某工厂今年一月份生产防疫护目镜的产量是20万件,计划之后两个月增加产量,如果月平均增长率为x,那么第一季度防疫护目镜的产量万件与x之间的关系应表示为______.三、解答题16.已知抛物线y=−x2+bx+c的对称轴为直线x=1,其图象与x轴相交于A,B两点,与y轴相交于点C(0,3).(1)求b,c的值;(2)直线1与x轴相交于点P.①如图1,若l//y轴,且与线段AC及抛物线分别相交于点E,F,点C关于直线x=1的对称点为点D,求四边形CEDF面积的最大值;②如图2,若直线1与线段BC相交于点Q,当△PCQ∽△CAP时,求直线1的表达式.17.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx−5与x轴交于A(−1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)如图2,CE//x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.18.在平面直角坐标系中,函数y=x2−2ax−1(a为常数)的图象与y轴交于点A.(1)求点A的坐标.(2)当此函数图象经过点(1,2)时,求此函数的表达式,并写出函数值y随x的增大而增大时x的取值范围.(3)当x≤0时,若函数y=x2−2ax−1(a为常数)的图象的最低点到直线y=2a的距离为2,求a的值.(4)设a<0,Rt△EFG三个顶点的坐标分别为E(−1,−1)、F(−1,a−1)、G(0,a−1).当函数y=x2−2ax−1(a为常数)的图象与△EFG的直角边有交点时,交点记为点P.过点P作y轴的垂线,与此函数图象的另一个交点为P′(P′与P不重合),过点A 作y轴的垂线,与此函数图象的另一个交点为A′.若AA′=2PP′,直接写出a的值.答案和解析1.【答案】C【解析】【分析】本题考查了二次函数的应用,一次函数的应用,正确的识别图象、数形结合是解题的关键.根据函数图象中的信息,利用数形结合求相关线段的解析式解答即可.【解答】解:A.25min ~50min ,王阿姨步行的路程为2000−1200=800m ,故A 正确;B .设线段CD 的函数解析式为s =kt +b ,把(25,1200),(50,2000)代入得,{1200=25k +b 2000=50k +b, 解得:{k =32b =400, ∴线段CD 的函数解析式为s =32t +400(25≤t ≤50),故B 正确;C .在A 点的速度为5255=105m/min ,在B 点的速度为1200−52520−5=67515=45m/min ,速度从快变慢,故C 错误;D .当t =5,20时,由图象可得s =525,1200m ,将t =5,20分别代入s =−3(t −20)2+1200(5≤t ≤20)得s =525,s =1200,故D 正确.故选C .2.【答案】D【解析】【分析】本题结合图象的性质考查二次函数的综合应用,难度中等.要注意函数求出的各个解是否符合实际.由题可求出MN 的长,即△MNP 的底边已知,要求面积为12,那么根据面积即可求出高,只要把相应的y 值代入即可解答.【解答】解:y =x 2−8x +15的图象与x 轴交点(3,0)和(5,0),|MN|=2,设p 点(x,y),y =x 2−8x +15,面积=12=12|MN|⋅|y|,可得y 1=12,或者y 2=−12,当y =12时,x =8±√62; 当y =−12时,x =8±√22, 所以共有四个点.故选:D .3.【答案】B【解析】【分析】本题考查由实际问题列二次函数关系式,解答本题的关键是明确题意,列出相应的函数关系式.根据降价x 元,则售价为(30−x)元,销售量为(200+20x)本,由题意可得等量关系:总销售额为y =销量×售价,根据等量关系列出函数解析式即可.【解答】解:设每本降价x 元,则售价为(30−x)元,销售量为(200+20x)本,根据题意得,y =(30−x)(200+20x),故选B .4.【答案】C【解析】【分析】此题主要考查了根据实际问题抽象出二次函数关系式,正确表示出销量是解题关键.直接利用每千克利润×销量=总利润,进而得出关系式.【解答】解:设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为:y =(x −40)[500−10(x −50)].故选:C .5.【答案】D【解析】解:由题意得第二次降价后的价格是a(1−x)2.则函数解析式是y=a(1−x)2.故选D.原价为a,第一次降价后的价格是a×(1−x),第二次降价是在第一次降价后的价格的基础上降价的,为a×(1−x)×(1−x)=a(1−x)2.本题需注意第二次降价是在第一次降价后的价格的基础上降价的.6.【答案】C【解析】【分析】此题主要考查了根据实际问题抽象出二次函数关系式,本题需注意第二次降价是在第一次降价后的价格的基础上降价的.原价为18,第一次降价后的价格是18(1−x),第二次降价是在第一次降价后的价格的基础上降价的为:18(1−x)×(1−x)=18(1−x)2,则函数关系式即可求得.【解答】解:原价为18,第一次降价后的价格是18(1−x);第二次降价是在第一次降价后的价格的基础上降价的为:18(1−x)×(1−x)=18(1−x)2.则函数解析式是:y=18(1−x)2.故选C.7.【答案】B【解析】解:设剩下部分的面积为y,则:y=−x2+4(0<x<2),故选:B.根据剩下部分的面积=大正方形的面积−小正方形的面积得出y与x的函数关系式即可.此题主要考查了根据实际问题列二次函数关系式,利用剩下部分的面积=大正方形的面积−小正方形的面积得出是解题关键.8.【答案】B【解析】【分析】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般.已知一边长为xcm,则另一边长为(6−x)cm,根据矩形的面积公式即可解答.【解答】解:已知一边长为xcm,则另一边长为(6−x).则y=x(6−x)化简可得y=−x2+6x,(0<x<6),故选:B.9.【答案】C【解析】【分析】本题考查列二次函数关系式,得到长方形的另一边长是解决本题的关键点.先得到长方形的另一边长,那么面积=一边长×另一边长.【解答】解:∵长方形的周长为24cm,其中一边为x(其中x>0),∴长方形的另一边长为12−x,∴y=(12−x)⋅x.故选C.10.【答案】B【解析】【分析】本题考查了二次函数的应用,解决本题的关键是掌握二次函数的顶点式.根据二次函数的顶点式即可求解.【解答】解:方法一:根据题意,得y=−32x2+6x(0≤x≤4),=−32(x−2)2+6所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.方法二:因为对称轴x=−62×(−32)=2,所以水珠的高度达到最大时,水珠与喷头的水平距离是2米.故选:B.11.【答案】a(1+x)2【解析】【分析】本题考查根据实际问题列二次函数关系式,关键是由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.【解答】解:∵一月份新产品的研发资金为a元,二月份起,每月新产品的研发资金与上月相比增长率都是x,∴二月份新产品的研发资金为a(1+x)元,∴三月份新产品的研发资金为a(1+x)(1+x)=a(1+x)2元,即y=a(1+x)2.12.【答案】y=0.75(1+x)2【解析】【分析】此题主要考查了根据实际问题列二次函数关系式,属于中考常考题型.第一季度安徽省城镇居民人均可支配收入约为0.75万元,第二季度安徽省城镇居民人均可支配收入是0.75(1+x)元,第三季度安徽省城镇居民人均可支配收人为0.75(1+x)2元,则函数解析式即可求得.【解答】解:平均每个季度城镇居民人均可支配收入增长的百分率为x,根据题意可得:y与x之间的函数关系为:y=0.75(1+x)2.故答案为y=0.75(1+x)2.13.【答案】y=−2x2+40x(11≤x<20)【解析】【分析】本题考查了根据实际问题列二次函数关系式、矩形的面积公式的运用,利用篱笆的总长用含x的代数式表示出平行于墙的边长是解题的关键.先用含x的代数式表示出平行于墙的边长,再由矩形的面积公式就可以得出结论;【解答】解:根据题意,AD边的长为x米,则AB边的长为(40−2x)米,∴y=x(40−2x),即y与x之间的函数关系式为y=−2x2+40x;0<40−2x≤18,11≤x<20,故答案为y=−2x2+40x(11≤x<20).14.【答案】y=10x2−500x+6000【解析】解:设涨价x(x>0)元,总利润为y元,则y与x的函数关系式为:y=(60−40−x)(300−10x)=10x2−500x+6000.故答案为:y=10x2−500x+6000.直接利用销量×每件利润=总利润,进而得出函数关系式.此题主要考查了根据实际问题列二次函数关系式,正确表示出销量和每件利润是解题关键.15.【答案】y=20+20(x+1)+20(x+1)2【解析】解:y与x之间的关系应表示为:y=20+20(x+1)+20(x+1)2.故答案为:y=20+20(x+1)+20(x+1)2.根据平均增长问题,可得答案.本题考查了根据实际问题列二次函数关系式,利用增长问题获得函数解析式是解题关键. 16.【答案】解:(1)由题意得:{b2=1c =3, ∴b =2,c =3,(2)①如图1,∵点C 关于直线x =1的对称点为点D ,∴CD//OA ,∴3=−x 2+2x +3,解得:x 1=0,x 2=2,∴D(2,3),∵抛物线的解析式为y =−x 2+2x +3,∴令y =0,解得x 1=−1,x 2=3,∴B(−1,0),A(3,0), 设直线AC 的解析式为y =kx +b ,∴{3k +b =0b =3,解得:{k =−1b =3, ∴直线AC 的解析式为y =−x +3,设F(a,−a 2+2a +3),E(a,−a +3),∴EF =−a 2+2a +3+a −3=−a 2+3a ,四边形CEDF 的面积=S △EFC +S △EFD =12EF ⋅CD =12×(−a 2+3a)×2=−a 2+3a =−(a −32)2+94, ∴当a =32时,四边形CEDF 的面积有最大值,最大值为94.②当△PCQ∽△CAP 时,∴∠PCA =∠CPQ ,∠PAC =∠PCQ ,∴PQ//AC ,∵C(0,3),A(3,0),∴OA =OC ,∴∠OCA=∠OAC=∠PCQ=45°,∴∠BCO=∠PCA,如图2,过点P作PM⊥AC交AC于点M,∴tan∠PCA=tan∠BCO=OBOC =13,设PM=b,则CM=3b,AM=b,∵AC=√OC2+OA2=3√2,∴b+3b=3√2,∴b=34√2,∴PA=34√2×√2=32,∴OP=OA−PA=3−32=32,∴P(32,0),设直线l的解析式为y=−x+n,∴−32+n=0,∴n=32.∴直线l的解析式为y=−x+32.【解析】(1)根据抛物线的对称轴及抛物线与y轴的交点坐标可求出b、c的值;(2)由题意先求出D点坐标为(2,3),求出直线AC的解析式,设F(a,−a2+2a+3),E(a,−a+3),则EF=−a2+3a,四边形CEDF的面积可表示为12EF⋅CD,利用二次函数的性质可求出面积的最大值;(3)当△PCQ∽△CAP时,可得∠PCA=∠CPQ,∠PAC=∠PCQ=∠OCA=45°,则PQ//AC,∠BCO=∠PCA,过点P作PM⊥AC交AC于点M,可求出PM、PA、OP的长,用待定系数法可求出函数解析式.本题考查了二次函数的综合题:熟练掌握二次函数的性质和轴对称的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,会利用相似三角形的性质解题;要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.17.【答案】解:(1)∵点A(−1,0),B(5,0)在抛物线y =ax 2+bx −5上,∴{a −b −5=025a +5b −5=0,解得{a =1b =−4,∴抛物线的表达式为y =x 2−4x −5,(2)设H(t,t 2−4t −5),∵CE//x 轴,∴点E 的纵坐标为−5,∵E 在抛物线上,∴x 2−4x −5=−5,∴x =0(舍)或x =4,∴E(4,−5),∴CE =4,∵B(5,0),C(0,−5),∴直线BC 的解析式为y =x −5,∴F(t,t −5),∴HF =t −5−(t 2−4t −5)=−(t −52)2+254,∵CE//x 轴,HF//y 轴,∴CE ⊥HF ,∴S 四边形CHEF =12CE ⋅HF =−2(t −52)2+252,∴H(52,−354);(3)如图2,∵K 为抛物线的顶点,∴K(2,−9),∴K 关于y 轴的对称点K′(−2,−9),∵M(4,m)在抛物线上,∴M(4,−5),∴点M关于x轴的对称点M′(4,5),∴直线K′M′的解析式为y=73x−133,∴P(137,0),Q(0,−133).【解析】(1)根据待定系数法直接确定出抛物线解析式;(2)先求出直线BC的解析式,进而求出四边形CHEF的面积的函数关系式,即可求出;(3)利用对称性找出点P,Q的位置,进而求出P,Q的坐标.此题是二次函数综合题,主要考查了待定系数法,四边形的面积的计算方法,对称性,解的关键是利用对称性找出点P,Q的位置,是一道中等难度的题目.18.【答案】解:(1)当x=0时,y=x2−2ax−1=−1,∴点A的坐标为:(0,−1);(2)将点(1,2)代入y=x2−2ax−1,得:2=1−2a−1,解得:a=−1,∴函数的表达式为:y=x2+2x−1,∵y=x2+2x−1=(x+1)2−2,∴抛物线的开口向上,对称轴为x=−1,如图1所示:∴当x>−1时,y随x的增大而增大;(3)抛物线y=x2−2ax−1=(x−a)2−a2−1的对称轴为:x=a,顶点坐标为:(a,−a2−1),当a>0时,对称轴在y轴右侧,如图2所示:∵x≤0,∴最低点就是A(0,−1),∵图象的最低点到直线y=2a的距离为2,∴2a−(−1)=2,解得:a=12;当a<0,对称轴在y轴左侧,顶点(a,−a2−1)就是最低点,如图3所示:∴2a −(−a 2−1)=2,整理得:(a +1)2=2,解得:a 1=−1−√2,a 2=−1+√2(不合题意舍去);综上所述,a 的值为12或−1−√2;(4)∵a <0,Rt △EFG 三个顶点的坐标分别为E(−1,−1)、F(−1,a −1)、G(0,a −1), ∴直角边为EF 与FG ,∵抛物线y =x 2−2ax −1=(x −a)2−a 2−1的对称轴为:x =a ,A(0,−1), ∴AA′=−2a ,当点P 在EF 边上时,如图4所示:则x p =−1,∵EA =OA =1,∴点P 在对称轴x =a 的左侧,∴PP′=2(a +1),∵AA′=2PP′,∴−2a =2×2(a +1),解得:a =−23;当点P 在FG 边上时,如图5所示:则y p =a −1,∴x 2−2ax −1=a −1,解得:x 1=a +√a 2+a ,x 2=a −√a 2+a ,∴PP′=a +√a 2+a −(a −√a 2+a)=2√a 2+a ,∵AA′=2PP′,∴−2a =4√a 2+a ,解得:a 1=−43,a 2=0(不合题意舍去);综上所述,a 的值为−23或−43.【解析】(1)当x =0时,代入y =x 2−2ax −1,即可得出结果;(2)将点(1,2)代入y =x 2−2ax −1,得a =−1,则函数的表达式为y =x 2+2x −1,由y =x 2+2x −1=(x +1)2−2,得出抛物线的开口向上,对称轴为x =−1,则当x >−1时,y 随x 的增大而增大;(3)抛物线y =x 2−2ax −1=(x −a)2−a 2−1的对称轴为x =a ,顶点坐标为(a,−a 2−1),当a >0时,对称轴在y 轴右侧,最低点就是A(0,−1),则2a −(−1)=2,即可得出结果;当a <0,对称轴在y 轴左侧,顶点(a,−a 2−1)就是最低点,则2a −(−a 2−1)=2,即可得出结果;(4)易证直角边为EF 与FG ,由抛物线的对称轴为x =a ,A(0,−1),则AA′=−2a ,当点P 在EF 边上时,PP′=2(a +1),则−2a =2×2(a +1),即可得出结果;当点P 在FG 边上时,求出PP′=2√a 2+a ,则−2a =4√a 2+a ,即可得出结果.本题是二次函数综合题,主要考查了二次函数图象与性质、待定系数法求解析式、直角三角形的性质、解一元二次方程、分类讨论等知识;熟练掌握二次函数图象与性质是解题的关键.1、最困难的事就是认识自己。

人教版初中数学-学年九年级上学期期末专题复习 专题1:一元二次方程 解析版

人教版初中数学-学年九年级上学期期末专题复习 专题1:一元二次方程 解析版

人教版初中数学2019-2020学年九年级上学期期末专题复习专题1:一元二次方程一、单选题1.下列方程中,关于x的一元二次方程是()A. x2+2y=1B. ﹣2=0C. ax2+bx+c=0D. x2+2x=12.一元二次方程x2-x-4=0的一次项系数和常数项分别是()A. 1,-1B. 1,-4C. -1,-4D. -1,43.将一元二次方程化为一般形式,正确的是()A. B. C. D.4.方程的解是()A. B. C. , D.5.关于x的一元二次方程kx2-2x-1=0有实数根,则k的取值范围是( )A. k>-1或k≠0B. k≥-1C. k≤-1或k≠0D. k≥-1且k≠06.一元二次方程x2+4x+2=0的根的判别式的值为()A. 8B. 24C.D.7.已知x1、x2、是一元二次方程x2+x-2=0的两个根,则x1+x2+x1x2的值为()A. 1B. -3C. 3D. -2二、填空题8.方程x2-2ax+3=0有一个根是1,a的值是________。

9.若代数式可化为,则=________,=________.10.定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a,如:min{1,-2)=-2,min{-3,-2)=-3,则方程min{x,-x}=x2-1的解是________.三、计算题11.解下列方程。

(1)x2-5x+6=0(2)(2x+1)(x-4)=5.12.(1)先化简,再求值:(x-2y)2-x(x+3y)-4y2,其中x=-4,y= .(2)已知:x+y=6,xy=4,求下列各式的值x2+y213.按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.(5)(6x-1)2=25;四、解答题14.如图,在宽为20m,长为27m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为450 ,求道路的宽.15.要组织一次篮球邀请比赛,参赛的队伍每两个队都要比赛一场.赛程安排7天,每天比赛4场,问组织者应该邀请多少个队参赛?五、综合题16.已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.17.在一次聚会上,规定每两个人见面必须握手,且握手1次.(1)若参加聚会的人数为3,则共握手________次;若参加聚会的人数为5,则共握手________次;(2)若参加聚会的人数为n(n为正整数),则共握手________次;(3)若参加聚会的人共握手28次,请求出参加聚会的人数.(4)嘉嘉由握手问题想到了一个数学问题:若线段AB上共有m个点(不含端点A,B),线段总数为多少呢?请直接写出结论.答案解析部分一、单选题1. D解:A、含有两个未知数,不是一元二次方程,故本选项不符合题意;B、分母中含有未知数,是分式方程,故本选项不符合题意;C、当a=0时不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意;故答案为:D.【分析】一元二次方程是指含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,根据定义判断即可.2. C解:一元二次方程x2-x-4=0的一次项系数时-1,常数项是-4,故C正确。

人教版初中数学九年级上册第二十一章《实际问题与一元二次方程》同步练习题(解析版)

人教版初中数学九年级上册第二十一章《实际问题与一元二次方程》同步练习题(解析版)

当 BP=2 时,AP=
=;
当 BP=8 时,AP=
=.
故答案为: 或 . 【点睛】 本题主要考查了矩形的性质和勾股定理及一元二次方程,学会利用方程的思想求线段的长是 关键. 10.25% 【解析】 【分析】 设运动商城的自行车销量的月平均增长率为 x,根据该商城一月份、三月份销售自行车的数 量,即可列出关于 x 的一元二次方程,解之取其正值即可得出结论. 【详解】 解:设运动商城的自行车销量的月平均增长率为 x, 根据题意得:64(1+x)2=100, 解得:x1=0.25=25%,x2=-2.25(舍去). 故答案为:25%. 3;CD, ∴CD=5-x, ∵AC 2+AD 2= DC 2, ∴(2+x)2+32=(5-x) 2,
∴x= ,
AC=2+ =2 m. 故选 B. 【点睛】 本题考查了一元二次方程的应用,勾股定理及数形结合的思想,通过图形找到等量关系然后 列方程求解. 6.C 【解析】 分析:设平均每次下调的百分率为 x,则两次降价后的价格为 6000(1-x)2,根据降低率问 题的数量关系建立方程求出其解即可. 详解:设平均每次下调的百分率为 x,由题意,得 6000(1-x)2=4860, 解得:x1=0.1,x2=1.9(舍去). 答:平均每次下调的百分率为 10%. 故选:C. 点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解 法的运用,解答时根据降低率问题的数量关系建立方程是关键. 7.C 【解析】 【分析】 设参加酒会的人数为 x 人,根据每两人都只碰一次杯,如果一共碰杯 55 次,列出一元二次 方程,解之即可得出答案. 【详解】 设参加酒会的人数为 x 人,依题可得:
3 / 13

初中数学人教版九年级上学期 第二十五章 25.2用列举法求概率

初中数学人教版九年级上学期 第二十五章 25.2用列举法求概率

初中数学人教版九年级上学期第二十五章25.2用列举法求概率一、单选题(共4题;共8分)1.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A. B. C. D.2.如图,随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为()A. B. C. D.3.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是;两次摸出的球都是红球的概率是4.如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A. B. C. D.二、填空题(共3题;共8分)5.两个人做游戏:每个人都从-1,0,1这三个整数中随机选择一个写在纸上,则两人所写整数的绝对值相等的概率为________.6.在如图所示的电路图中,当随机闭合开关, , 中的两个时,能够让灯泡发光的概率为________.7.A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里班抽取一张卡、抽到的卡片上标有数字为奇数的概率是________;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.三、解答题(共2题;共10分)8.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物,如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片.请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.9.现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为、,图案为“保卫和平”的卡片记为B)四、综合题(共4题;共41分)10.小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪个人先下棋,规则如下:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;解:树状图为:(2)求出一个回合能确定两人下棋的概率.11.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.12.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为________.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).13.为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.答案解析部分一、单选题1.【答案】A【解析】【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为.故答案为:A.【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.2.【答案】C【解析】【解答】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴,故答案为:C.【分析】画出树状图,找出所有等可能的结果,计算即可.3.【答案】A【解析】【解答】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故不符合题意;B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故符合题意;C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故符合题意;D、第一次摸出的球是红球的概率是;两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2)9种等可能的情况,两次摸出的球都是红球的有1种,∴两次摸出的球都是红球的概率是,故符合题意;故答案为:A.【分析】根据摸出球的颜色可能出现的情形及概率依次分析即可得到答案.4.【答案】B【解析】【解答】解:根据题意列树状图得:∵共有25可能出现的情况,两个指针同时指在偶数上的情况有6种,∴两个指针同时指在偶数上的概率为:,故答案为:B【分析】根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案.二、填空题5.【答案】【解析】【解答】由题可得到树状图如下图所示:∴.故答案为.【分析】画出树状图进行求解即可;6.【答案】【解析】【解答】分析电路图知:要让灯泡发光,必须闭合,同时, 中任意一个关闭时,满足:一共有:, ,、, 、, 三种情况,满足条件的有, 、, 两种,∴能够让灯泡发光的概率为:故答案为:.【分析】分析电路图知:要让灯泡发光,必须闭合,同时, 中任意一个关闭时,满足条件,从而求算概率.7.【答案】(1)(2)解:根据题意可列表格如下:总共有9种结果,每种结果出现的可能性相同,其中两张卡片数字之和大于7的有三种:,(两张卡片数字之和大于7).【解析】【解答】解:(1)A盒里有三张卡片上,有两张是奇数,∴抽到的卡片上标有数字为奇数的概率是,故答案为:;【分析】(1)根据简单的概率公式进行计算即可;(2)用列表法列出所有等可能的情况,即可得出概率.三、解答题8.【答案】解:解法一:画树状图,根据题意,画树状图结果如下:由树状图可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P (小吉抽到两张卡片中有A卡片)= .解法二:用列表法,根据题意,列表结果如下:结果为:(第一次抽取情况,第二次抽取情况)由表可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P(小吉抽到两张卡片中有A卡片)= .【解析】【分析】分别使用树状图法或列表法将小吉同学抽取卡片的结果表示出来,第一次共有3种不同的抽取情况,第二次同样也有3种不同的抽取情况,所有等可能出现的结果有9种,找出含有A卡片的抽取结果,即可算出概率.9.【答案】解:树状图如下:P(两次抽取的卡片上图案都是“保卫和平”).列表法如下表:第B一张结果第二张P(两次抽取的卡片上图案都是“保卫和平”).【解析】【分析】根据题意,采用树状图或利用列表法,表示出符合题意的所有可能,根据概率公式进行计算得到答案即可。

浙教版2019-2020学年初中数学九年级上学期期末复习专题8正多边形

浙教版2019-2020学年初中数学九年级上学期期末复习专题8正多边形

浙教版2019-2020学年初中数学九年级上学期期末复习专题8正多边形姓名:班级:成绩:一、单选题(共10题;共30分)1. (3 分)(2018 •广东模拟)正六边形ABCDEF 内接于©O .正六边形的周长是12,则©O 的半径是(A .B .2C .站2. (3 分)(2018 •莱芜模拟)如图.BC 是(DA 的内接正十边形的一边.BD 平分匕ABC 交AC 于点D,则下列结论不成立的是(A ・ BC=BD=ADB . BC2二DC・ACD . BC 二ACC ・的三边之长为1: 1:3.(3分)如图,为。

0的内接三角形,此L 匕C 二30° ,则。

的内接正方形的面积为()A .2B . 4C . 8D .164. (3 分)如图.正六边形ABCDEF 内接于。

0,若直线PA 与。

相切于点A.则ZPAB-( )A .30°B .35c. 45°・60°5. (3 分)(2016九上•罗平开学考)如图.AD. BE, CF 是正六边形ABCDEF 的对角线,图中平行四边形的个C D 数有(B CB . 4个C .6个D . 8个6.(3分)(2012•柳州)如图,小红做了一个实验,将正六边形ABCDEF绕点F顺时针旋转后到达A'B'C‘D f E‘F'的位置,所转过的度数是()A .60°B .72°C ・108°D .120°7.(3分)如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点0重合,点A在xk)・=—轴上,点B在反比例函数-'位于第一象限的图象上,则k的值为()A .MB .9/D .M8.(3分)正六边形的外接圆的半径与内切圆的半径之比为()A .1:"B .反2C .2:正D .反19.(3分)(2017•贵港模拟)若一个正多边形的中心角为10°.则这个名边形的边数是(A .9B .8C .7D .610.(3分)以下说法正确的是()A .每个内角都是120。

北师大版数学九年级上册第三章测试题及答案解析(2套)

北师大版数学九年级上册第三章测试题及答案解析(2套)

北师大版数学九年级上册第三章测试题(一)(概率的进一步认识测试卷)一、选择题1.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A. B.C. D.2.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A. B.C. D.3.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A. B.C. D.二、填空题4.袋中装有一个红球和一个白球,他们除了颜色外其它都相同,随机从中摸出一个球,记录下颜色后放回袋中充分摇匀后,再随机摸出一个球,两次都摸到红球的概率是.5.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是.6.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是.7.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.8.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是.9.已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是.三、解答题10.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.11.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.12.现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;。

2022-2023学年人教版九年级上册数学期末必刷常考题-旋转

2022-2023学年人教版九年级上册数学期末必刷常考题-旋转

2022-2023学年上学期初中数学人教版九年级期末必刷常考题之旋转一.选择题(共5小题)1.(2021春•万山区期末)如图所示,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,那么∠AOB'的度数是()A.15°B.30°C.45°D.60°2.(2021春•金台区期末)在平面直角坐标系中,点P(3,﹣1)关于坐标原点中心对称的点P′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(﹣1,3)3.(2021春•榆阳区期末)如图,AC、BD为四边形ABCD的对角线,将△ACD绕点A顺时针旋转60°,得到△AEB(点C、D的对应点分别为点E、B),若点C、B、E在一条直线上,则下列说法错误的是()A.∠ABC+∠ADC=180°B.∠BCD=120°C.AC=BC+CD D.AE=BD4.(2021春•曹县期末)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△A′B′C′,若点B′恰好落在BC边上,AB′=CB′,则∠C′的度数为()A.18°B.20°C.22°D.24°5.(2021春•西山区期末)如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是()A.(3038,1)B.(3032,1)C.(2021,0)D.(2021,1)二.填空题(共5小题)6.(2021春•锦州期末)如图,这个正六边形是由Rt△ABC绕点O经过多次旋转变换得到,则∠ABC=.7.(2020秋•綦江区期末)如图,正方形ABCD中,点E,F分别在BC和AB上,BE=2,AF=2,BF=4,将△BEF绕点E顺时针旋转,得到△GEH,当点H落在CD边上时,F,H两点之间的距离为.8.(2021春•靖边县期末)如图,将△ABC绕点A逆时针旋转得到△AB′C′,延长CB 交B′C′于点D,若∠BAB′=40°,则∠C′DC的度数是°.9.(2021春•广陵区校级期末)如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是.10.(2020秋•兰陵县期末)如图,正方形ABCD中,E为DC边上一点,且DE=2,将AE绕点E逆时针旋转90°得到EF,连接AF、FC,则线段FC的长度是.三.解答题(共5小题)11.(2021春•武陵区期末)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC 绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,连接BE、DF、BF.(1)证明:△CFD≌△ABC;(2)证明:四边形BEDF是平行四边形.12.(2021春•曹县期末)如图,四边形ABCD是矩形,以点B为中心,顺时针旋转矩形ABCD得到矩形GBEF,点A,D,C的对应点分别为点G,F,E,点D恰好在FG的延长线上,BG与CD相交于点H,求证:DH=BH.13.(2020秋•铁西区期末)如图,是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A、B、C、D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D;(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)写出所画图形围成的面积.(结果保留π)14.(2020秋•斗门区期末)如图1,在△ABC中,BA=BC,D、E是AC边上的两点,且满足∠DBE=∠ABC.以点B为旋转中心,将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.15.(2020秋•铁西区期末)在平面直角坐标系中,已知点A(2,0),点B在y轴正半轴上,且∠BAO=60°,点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B 旋转后的对应点为A',B',记旋转角为α.(1)如图1,A'B'恰好经过点A时,①求此时旋转角α的度数;②求出此时点B'的坐标;(2)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,猜测AA'与BB'的位置关系,并说明理由.2022-2023学年上学期初中数学人教版九年级期末必刷常考题之旋转参考答案与试题解析一.选择题(共5小题)1.(2021春•万山区期末)如图所示,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,那么∠AOB'的度数是()A.15°B.30°C.45°D.60°【考点】旋转的性质.【专题】平移、旋转与对称;推理能力.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.2.(2021春•金台区期末)在平面直角坐标系中,点P(3,﹣1)关于坐标原点中心对称的点P′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(﹣1,3)【考点】关于原点对称的点的坐标.【专题】平面直角坐标系;平移、旋转与对称;模型思想;应用意识.【分析】根据关于原点对称的两个点的坐标之间的关系,即纵横坐标均互为相反数,可得答案.【解答】解:点P(3,﹣1)关于坐标原点中心对称的点P′的坐标为(﹣3,1),故选:C.【点评】本题考查关于原点对称的点的坐标,掌握关于原点对称的两个点坐标之间的关系是得出正确答案的前提.3.(2021春•榆阳区期末)如图,AC、BD为四边形ABCD的对角线,将△ACD绕点A顺时针旋转60°,得到△AEB(点C、D的对应点分别为点E、B),若点C、B、E在一条直线上,则下列说法错误的是()A.∠ABC+∠ADC=180°B.∠BCD=120°C.AC=BC+CD D.AE=BD【考点】全等三角形的判定与性质;旋转的性质.【专题】平移、旋转与对称;运算能力;推理能力.【分析】由旋转的性质可得出∠ADC=∠ABE,AC=AE,AD=AB,∠ACD=∠AEB,∠CAE=∠DAB=60°,得出△CAE和△DAB都是等边三角形,可判断A,B,C选项正确,则可得出结论.【解答】解:∵将△ACD绕点A顺时针旋转60°,得到△AEB,∴∠ADC=∠ABE,∵∠ABE+∠ABC=180°,∴∠ADC+∠ABC=180°,故选项正确,不符合题意,∵将△ACD绕点A顺时针旋转60°,得到△AEB,∴AC=AE,AD=AB,∠ACD=∠AEB,∠CAE=∠DAB=60°,∴△CAE和△DAB都是等边三角形,∴∠ACD=∠AEB=60°,∠ACE=60°,∴∠BCD=120°,故B选项正确,不符合题意;∵△ACE为等边三角形,∴AC=CE=BE+BC,又∵BE=CD,∴AC=CD+BC,故C选项正确,不符合题意,∵BD=AB,AB≠AE,∴AE≠BD,故D选项错误,符合题意.故选:D.【点评】本题主要考查旋转的性质,等边三角形的判定与性质,熟练掌握旋转的性质是解题的关键.4.(2021春•曹县期末)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△A′B′C′,若点B′恰好落在BC边上,AB′=CB′,则∠C′的度数为()A.18°B.20°C.22°D.24°【考点】等腰三角形的性质;旋转的性质.【专题】图形的相似;应用意识.【分析】根据图形的旋转性质,得AB=AB′,已知AB′=CB′,结合等腰三角形的性质及三角形的外角性质,得∠B、∠C的关系为解决问题的关键.【解答】解:∵AB′=CB′,∴∠C=CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴C=24°,∴∠C′=∠C=24°,故选:D.【点评】本题主要考查了等腰三角形的性质及图形的旋转性质.5.(2021春•西山区期末)如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是()A.(3038,1)B.(3032,1)C.(2021,0)D.(2021,1)【考点】规律型:点的坐标;坐标与图形变化﹣旋转.【专题】规律型;平移、旋转与对称;几何直观;运算能力;推理能力.【分析】分析A1,A2,A3,A4,A5点坐标,找到规律求解.【解答】解:根据图形分析,从A开始旋转,当旋转到A4,时,A回到矩形的起始位置,所以为一个循环,故坐标变换规律为4次一循环.A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0),A7(9,0),A8(11,2),A9(14,1),A10(15,0),A11(15,0),A12(17,2),A4n+1(6n+2,1),A4n+2(6n+3,0),A4n+3(6n+3,0),A4n+4(6n+5,0),当A2021时,即4n+1=2021,解得n=505,∴横坐标为6n+2=6×505+2=3032,纵坐标为1,则A2021的坐标(3032,1),故选:B.【点评】本题主要考查图形的旋转变换,解题关键是找到图形在旋转的过程中,点坐标变化规律进而求解.二.填空题(共5小题)6.(2021春•锦州期末)如图,这个正六边形是由Rt△ABC绕点O经过多次旋转变换得到,则∠ABC=30°.【考点】多边形内角与外角;旋转对称图形.【专题】平移、旋转与对称;几何直观.【分析】依据多边形内角和公式求得正六边形每个角的度数,再根据角的和差关系进行计算即可.【解答】解:由旋转可得,该多边形是正六边形,∴该正六边形每个角为=120°,∴∠ABC=120°﹣90°=30°,故答案为:30°.【点评】本题主要考查了旋转对称图形,如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.7.(2020秋•綦江区期末)如图,正方形ABCD中,点E,F分别在BC和AB上,BE=2,AF=2,BF=4,将△BEF绕点E顺时针旋转,得到△GEH,当点H落在CD边上时,F,H两点之间的距离为2.【考点】勾股定理;正方形的性质;旋转的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】连接FH,由正方形的性质得出∠B=∠C=90°,AB=BC,由旋转的性质得出EF=EH,证明Rt△EBF≌Rt△HCE(HL),得出∠EFB=∠HEC,证出∠FEH=90°,由勾股定理可得出答案.【解答】解:连接FH,∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC,∵AF=2,BF=4,∴AB=6,∵BE=2,∴CE=4,∴BF=CE,∵将△BEF绕点E顺时针旋转,得到△GEH,∴EF=EH,在Rt△EBF和Rt△HCE中,,∴Rt△EBF≌Rt△HCE(HL),∴∠EFB=∠HEC,∵∠EFB+∠BEF=90°,∴∠BEF+∠CEH=90°,∴∠FEH=90°,∵BF=4,BE=2,∴EF===2,∴FH=EF=2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质,勾股定理.8.(2021春•靖边县期末)如图,将△ABC绕点A逆时针旋转得到△AB′C′,延长CB 交B′C′于点D,若∠BAB′=40°,则∠C′DC的度数是40°.【考点】旋转的性质.【专题】平移、旋转与对称;推理能力.【分析】由旋转的性质得到∠BAC=∠B′AC′,∠C=∠C′,进而推出∠CAC′=40°,根据三角形内角和定理证得∠C′DC=∠CAC′,即可求得∠C'DC的度数.【解答】解:∵将△ABC绕点A逆时针旋转得到△AB'C',∴△ABC≌△AB'C',∴∠BAC=∠B′AC′,∠C=∠C′,∵∠BAB'=40°,∴∠CAC′=40°,∵∠C'DC=180°﹣∠DEC′﹣∠C′,∠CAC′=180°﹣C﹣∠AEC,∠DEC′=∠AEC,∠C′DC=∠CAC′=40°,故答案为:40.【点评】本题主要考查了旋转的性质,三角形内角和定理,能灵活运用旋转的性质是解决问题的关键.9.(2021春•广陵区校级期末)如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是4.【考点】正方形的性质;轴对称﹣最短路线问题;旋转的性质.【专题】图形的全等;平移、旋转与对称;推理能力.【分析】连接BF,过点F作FG⊥AB交AB延长线于点G,通过证明∴△AED≌△GFE (AAS),确定F点在BF的射线上运动,作点C关于BF的对称点C',由三角形全等得到∠CBF=45°,从而确定C'点在AB的延长线上,当D,F,C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=4,AC'=8,求出DC'=4即可.【解答】解:连接BF,过点F作FG⊥AB交AB延长线于点G,∵将ED绕点E顺时针旋转90°到EF,∴EF⊥DE,且EF=DE,∴∠EDA=∠FEG,在△AED与△GFE中,,∴△AED≌△GFE(AAS),∴FG=AE,∴F点在BF的射线上运动,作点C关于BF的对称点C',∵EG=DA,FG=AE,∴AE=BG,∴BG=FG,∴∠FBG=45°,∴∠CBF=45°,∴BF是∠CBC'的角平分线,即F点在∠CBC'的角平分线上运动,∴C'点在AB的延长线上,当DF+CF=DC'最小,在Rt△ADC'中,AD=4,AC'=8,∴DC'===4,故答案为4.【点评】本题考查了旋转的性质,正方形的性质,轴对称求最短路径,能够将线段和通过轴对称转化为共线线段是解题的关键.10.(2020秋•兰陵县期末)如图,正方形ABCD中,E为DC边上一点,且DE=2,将AE绕点E逆时针旋转90°得到EF,连接AF、FC,则线段FC的长度是2.【考点】勾股定理;正方形的性质;旋转的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】过点F作FH⊥CD于H,如图,利用正方形的性质得DA=CD,∠D=90°,再根据旋转的性质得EA=EF,∠AEF=90°,接着证明△ADE≌△EHF得到DE=FH=2,AD=EH,所以EH=DC,则DE=CH=2,然后利用勾股定理计算FC的长.【解答】解:过点F作FH⊥CD于H,如图,∵四边形ABCD为正方形,∴DA=CD,∠D=90°,∵AE绕点E顺时针旋转90°得到EF,∴EA=EF,∠AEF=90°,∵∠DAE+∠AED=90°,∠FEH+∠AED=90°,∴∠EAD=∠FEH,在△ADE和△EHF中,,∴△ADE≌△EHF(AAS),∴DE=FH=2,AD=EH,∴EH=DC,即DE+CE=CH+EC,∴DE=CH=2,在Rt△CFH中,FC===2,【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三.解答题(共5小题)11.(2021春•武陵区期末)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC 绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,连接BE、DF、BF.(1)证明:△CFD≌△ABC;(2)证明:四边形BEDF是平行四边形.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定;旋转的性质.【专题】图形的全等;多边形与平行四边形;推理能力.【分析】(1)由旋转的性质可得CB=CE,AB=DE=BF,由“SSS”可证△ABC≌△CFD;(2)延长BF交CE于点G,可证BF∥ED,由一组对边平行且相等可证四边形BEDF 是平行四边形.【解答】证明:(1)∵点F是边AC中点,∴CF=AC,∵∠BCA=30°,∴BA=AC,∠A=60°,∴AB=CF,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴AC=CD,∠ACD=60°,∴∠ACB=∠DCE,在△ABC和△CFD中,,∴△ABC≌△CFD(SAS);(2)延长BF交CE于点G,由(1)得,FC=BF,∴∠BCF=∠FBC=30°,∵∠BCE=60°,∴∠BCE+∠CBG=∠BGE=90°,∵∠DEC=∠ABC=90°∴∠BGE=∠DEC,∴BF∥ED,∵,AB=DE,∴BF=DE,∴四边形BEDF是平行四边形.【点评】本题考查了旋转的性质,全等三角形的判定和性质,平行四边形的判定等知识,灵活运用这些知识进行推理是本题的关键.12.(2021春•曹县期末)如图,四边形ABCD是矩形,以点B为中心,顺时针旋转矩形ABCD得到矩形GBEF,点A,D,C的对应点分别为点G,F,E,点D恰好在FG的延长线上,BG与CD相交于点H,求证:DH=BH.【考点】全等三角形的判定与性质;矩形的性质;旋转的性质.【专题】图形的全等;矩形菱形正方形;平移、旋转与对称;推理能力.【分析】证明Rt△BDA≌Rt△BDG,得到∠ABD=∠GBD,再利用矩形性质求解.【解答】证明:∵旋转矩形ABCD得到矩形GBEF,∴AB=BG,∠A=∠DGB=90°,在Rt△BDA和Rt△BDG中,,∴Rt△BDA≌Rt△BDG(HL),∴∠ABD=∠GBD,∵四边形ABCD是矩形,∴∠ABD=∠BDH,∴∠BDH=∠HBD,∴DH=BH.【点评】本题主要考查了旋转的性质、矩形的性质、解题关键是证明Rt△BDA≌Rt△BGA,得到∠ABD=∠GBD,再利用矩形性质求解.13.(2020秋•铁西区期末)如图,是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A、B、C、D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D;(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称图形;(3)写出所画图形围成的面积.(结果保留π)【考点】作图﹣旋转变换.【专题】平移、旋转与对称;几何直观;运算能力.【分析】(1)根据要求画出图形即可.(2)根据轴对称图形的定义判断即可.(3)根据所画图形的面积=S半圆+S+S﹣S矩形,利用扇形的面积公式计算可得.【解答】解:(1)点D→D1→D2→D经过的路径如图所示.(2)所画图形是轴对称图形;故答案为:轴.(3)所画图形的面积=S半圆+S+S﹣S矩形=•π•42+×2﹣4×8=8π+4π+4π﹣32=16π﹣32.【点评】本题考查作图﹣旋转变换,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(2020秋•斗门区期末)如图1,在△ABC中,BA=BC,D、E是AC边上的两点,且满足∠DBE=∠ABC.以点B为旋转中心,将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.【考点】全等三角形的判定与性质;等腰三角形的性质;勾股定理;旋转的性质.【专题】图形的全等;等腰三角形与直角三角形;平移、旋转与对称;推理能力.【分析】(1)先根据∠DBE=∠ABC可知∠ABD+∠CBE=∠DBE=∠ABC,再由图形旋转的性质可知BE=BF,∠ABF=∠CBE,故可得出∠DBF=∠DBE,由全等三角形的性质即可得出△DBE≌△DBF,故可得出结论;(2)把△CBE逆时针旋转90°,由于△ABC是等腰直角三角形,故可知图形旋转后点C与点A重合,∠F AB=∠BCE=45°,所以∠DAF=90°,由(1)证DE=DF,再根据勾股定理即可得出结论.【解答】(1)证明:∵∠DBE=∠ABC,∴∠ABD+∠CBE=∠DBE=∠ABC,∵△ABF由△CBE旋转而成,∴BE=BF,∠ABF=∠CBE,∴∠DBF=∠DBE,在△DBE与△DBF中,,∴△DBE≌△DBF(SAS),∴DF=DE;(2)证明:∵将△CBE按逆时针方向旋转得到△ABF,∴BA=BC,∠ABC=90°,∴∠BAC=∠BCE=45°,∴图形旋转后点C与点A重合,CE与AF重合,∴AF=EC,∴∠F AB=∠BCE=45°,∴∠DAF=90°,在Rt△ADF中,DF2=AF2+AD2,∵AF=EC,∴DF2=EC2+AD2,同(1)可得DE=DF,∴DE2=AD2+EC2.【点评】本题考查的是图形的旋转及勾股定理,熟知旋转前、后的图形全等是解答此题的关键.15.(2020秋•铁西区期末)在平面直角坐标系中,已知点A(2,0),点B在y轴正半轴上,且∠BAO=60°,点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B 旋转后的对应点为A',B',记旋转角为α.(1)如图1,A'B'恰好经过点A时,①求此时旋转角α的度数;②求出此时点B'的坐标;(2)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,猜测AA'与BB'的位置关系,并说明理由.【考点】含30度角的直角三角形;坐标与图形变化﹣旋转.【专题】等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】(1)①根据旋转的性质得到OA=OA',∠A'=∠BAO=60°,推出△OAA'是等边三角形,于是得到α=∠AOA'=60°;②如图1,过B'作B'C⊥x轴于C,根据三角形的内角和定理得到∠OBA=30,根据勾股定理得到,求得,得到,于是得到答案;(2)如图2,等腰三角形的性质得到,推出∠BP A'=360°﹣(180°﹣α)﹣(90°+α)=90°,由垂直的定义得到结论.【解答】解:(1)①由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°;②如图1,过B'作B'C⊥x轴于C,∵∠BAO=60°,∴∠OBA=30°,在Rt△OAB中,∠OBA=30°,∴AB=2OA=4,∴,∴,又∵∠AOA'=60°,∴∠B'OC=90°﹣∠AOA'=30°,∵∠B'CO=90°,∴,∴,∴;(2)AA'⊥BB',理由:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴,∵∠BOA'=90°﹣α,四边形OBP A'的内角和为360°,∴∠BP A'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB'.【点评】主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和定理,解决问题的关键是熟练掌握旋转的性质.考点卡片1.规律型:点的坐标规律型:点的坐标.2.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.3.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.4.含30度角的直角三角形(1)含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;②应用时,要注意找准30°的角所对的直角边,点明斜边.5.直角三角形斜边上的中线(1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)(2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.该定理可以用来判定直角三角形.6.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.7.多边形内角与外角(1)多边形内角和定理:(n﹣2)•180°(n≥3且n为整数)此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法.(2)多边形的外角和等于360°.①多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.②借助内角和和邻补角概念共同推出以下结论:外角和=180°n﹣(n﹣2)•180°=360°.8.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.9.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.10.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.11.轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L 的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.12.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.13.旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.14.关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.15.坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(﹣x,﹣y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.16.作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等。

九年级数学上全册练习题(有答案)

九年级数学上全册练习题(有答案)

第二十一章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______;(5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( )(2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)第二十二章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若x x m -m+-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3)542=-x (4)2122=+x x A .1个B .2个C .3个D .4个 8.在方程:3x 2-5x =0,,5312+=+x x 7x 2-6xy +y 2=0,322,052222--=+++xx x x ax =0,3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13..25)1(412=+x14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______. 17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,,01=+xx ,5)3(21,42122=+=-+x x x 其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关 20.如果21=x 是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ). A .5±B .±1C .±2D .2±21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ).A .k k +B .k k -C .k k -±D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24..063)4(22=--x25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确 28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1.+-x x 82_________=(x -__________)2. 2.x x 232-+_________=(x -_________)2. 3.+-px x 2_________=(x -_________)2.4.x ab x -2+_________=(x -_________)2. 5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______. 二、选择题7.用配方法解方程01322=--x x 应该先变形为( ).A .98)31(2=-xB .98)31(2-=-x C .910)31(2=-xD .0)32(2=-x8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2 B .x 1=-10,x 2=8 C .x 1=10,x 2=-8 D .x 1=-4,x 2=29.用公式法解一元二次方程x x 2412=-,正确的应是( ). A .252±-=xB .252±=x C .251±=x D .231±=x 10.方程mx 2-4x +1=0(m <0)的根是( ).A .41 B .m m-±42 C .mm-±422D .mm m -±42 三、解答题(用配方法解一元二次方程)11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0.14..03232=--x x五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3.16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或6 20.4x 2+49y 2配成完全平方式应加上( ).A .14xyB .-14xyC .±28xyD .0 21.关于x 的一元二次方程ax a x 32222=+的两根应为( ).A .22a±-B .a 2,a 22C .422a± D .a 2±三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程)24.2x -1=-2x 2.25.x x 32132=+26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac , (1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7 B .25 C .±5 D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数 B .负数 C .非负数 D .零 7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0 B .9x 2=4(3x -1) C .x 2+7x +15=0D .02322=--x x8.方程03322=++x x 有( ).A .有两个不等实根B .有两个相等的有理根C .无实根D .有两个相等的无理根 三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-mx m x 都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .242ac b b -±-B .ac b 42-C .b 2-4ac D .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ).A .k <1B .k <-1C .k ≥1D .k >1 14.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .21或32- 15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .23<m B .23<m 且m ≠1 C .23≤m 且m ≠1 D .23>m16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c为边长的三角形是( ). A .锐角三角形 B .钝角三角形 C .直角三角形 D .任意三角形 二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.18.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.19.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.20.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.拓广、探究、思考21.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______ 2.(2x -7)(x +2)=0.______ 3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5..03222=-x x ______ 6..)21()21(2x x -=+______7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=b D .x 1=-a ,x 2=-b 10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,.1,3221==∴x x 三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2).12..32x x =*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18.0222=-x x .______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,2 21.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程0)43)(21()43(2=--+-x x x 的较小的根为( ).A .43-B .21C .85D .43 三、用因式分解法解下列关于x 的方程 23..2152x x =-24.4(x +3)2-(x -2)2=0.25..04222=-+-b a ax x26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2 B .x 1=x 2=2 C .x =4 D .x 1=x 2=46.5.27.0512=+x 的根是( ).A .x =3B .x =±3C .x =±9D .3±=x7.072=-x x 的根是( ). A .77=x B .77,021==x x C .x 1=0,72=xD .7=x8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1 D .x =1或x =2 三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0. 12.2a 2x 2-5ax +2=0.(a ≠0)四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式1872+--x x x 的值是0,则x =______. 21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________.二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ).A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ).A .b a x a b x 2,221==B .ba x ab x ==21, C .0,2221=+=x abb a x D .以上都不正确 三、解下列方程24.(x +1)2+(x +2)2=(x +3)2.25.(y -5)(y +3)+(y -2)(y +4)=26.26..02322=+-x x27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求yx y x +-的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________.32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,24,221aac b b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值: ①;1121x x + ②;2221x x + ③|x 1-x 2|; ④;221221x x x x + ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。

人教版初中九年级数学上册第二十三章《旋转》知识点(含答案解析)

人教版初中九年级数学上册第二十三章《旋转》知识点(含答案解析)

一、选择题1.如图,在△ABC 中,AB =AC ,∠BAC =45°,点D 在AC 边上.将△ABD 绕点A 逆时针旋转45°得到△ACD ′,且D ′、D 、B 三点在同一条直线上,则∠ABD 的大小为( )A .15°B .22.5°C .25°D .30°2.下面四个图案是常用的交通标志,其中为中心对称图形的是( )A .B .C .D . 3.如图,OAB 绕点O 逆时针旋转80°到OCD 的位置,已知45AOB ∠=︒,则AOD ∠等于( )A .45°B .35°C .25°D .15° 4.如图,将△ABC 绕点C(0,1)旋转180°得到△A′B′C′,设点A 的坐标为(,)a b ,则点A′的坐标为( )A .(,)a b --B .2(),a b --+C .(),1a b --+D .(,1)a b --- 5.如图所示,把ABC 绕C 点旋转35︒,得到A B C ''',A B ''交AC 于点D ,若90A DC '∠=︒,则A ∠等于( )A .35︒B .65︒C .55︒D .45︒6.如图,正方形ABCD 的边长为1,将其绕顶点C 旋转,得到正方形CEFG ,在旋转过程中,则线段AE 的最小值为( )A .32-B .2-1C .0.5D .512- 7.如图,将一个含30角的直角三角尺AOB 放在平面直角坐标系中,两条直角边分别与坐标轴重叠.已知30OAB ∠=︒,12AB =,点D 为斜边AB 的中点,现将三角尺AOB 绕点O 顺时针旋转90︒,则点D 的对应点D 的坐标为( )A .(33,3)B .(63,6)-C .(3,33)-D .(33,3)- 8.已知Rt ABC ∆中,两条直角边4AC =,3BC =,将ABC ∆绕斜边中点O 旋转,使直角顶点与点B 重合,得到与ABC ∆全等的EDB ∆,BE 边和AC 相交于点F ,则EF 的值是( )A .78B .1C .45D .239.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .10.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是()A.B.C.D.11.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能12.已知等边△ABC的边长为8,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是( )A.22B.4 C.23D.不能确定13.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转90 得到月牙②,则点A的对应点A’的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)14.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.15.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .二、填空题16.若点M (3,a ﹣2),N (b ,a )关于原点对称,则ab =_____.17.如图,O 是正方形ABCD 的中心,M 是ABCD 内一点,90DMC ∠=︒,将DMC 绕O 点旋转180°后得到BNA .若3MD =,4CM =,则MN 的长为______.18.如图,在ABC 中,AB AC =,30B ∠=︒,将ABC 绕点A 沿顺时针方向旋转一周,当BC 边的对应边与AC 平行时,旋转角为______度.19.在Rt ABC △中,90ACB ∠=︒,将ABC 绕顶点C 顺时针旋转得到A B C '',点M 是BC 的中点,点P 是A B ''的中点,连接PM .若4BC =,30A ∠=︒,则在旋转一周的过程中线段PM 长度的最大值等于_____.20.如图所示,把一个直角三角尺ACB 绕30角的顶点B 顺时计旋转,使得点A 落在CB 的延长线上的点E 处,则BCD ∠的度数为______.21.如图,把△ABC 绕点C 顺时针旋转得到△A 'B 'C ',此时A ′B ′⊥AC 于D ,已知∠A =50°,则∠B ′CB 的度数是_____°.22.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件_____,使四边形ABCD 为矩形.23.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.24.如图,小正方形方格的边长都是1,点A 、B 、C 、D 、O 都是小正方形的顶点.若COD 是由AOB 绕点O 按顺时针方向旋转一次得到的,则至少需要旋转______°.25.如图,正方形ABCD 的边长为2,BE 平分∠DBC 交CD 于点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,延长BE 交DF 于G ,则BF 的长为_____.26.如图,O 是正△ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',下列结论正确有______.(请填序号)①点O 与O '的距离为4;②150AOB ∠=︒;③633AOBO S '=+四边形④9634AOC AOB S S +=+△△.三、解答题27.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-1,1)、B (-3,1)、C (-1,4).(1)画出△ABC 绕点C 顺时针旋转90°后得到的△A 1B 1C ;(2)画出△ABC 关于点P (1,0)对称的△A 2B 2C 2.28.在ABC ∆中,AB AC =,BAC α∠=.(1)直接写出ABC ∠的大小为______.(用含α的式子表示)(2)当060α︒<<︒时,将线段BC 绕点B 逆时针旋转60︒得到线段BD ,连接AD 、CD .①求证:ABD ACD ∆≅∆;②当40α=︒,求ACD ∠的度数.29.在平面直角坐标系中,四边形AOBC 是矩形,点(0 0)O ,,点(10 0)A ,,点(0 6)B ,.以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为点D ,E , F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB △≌BCA ;②求出ABH 面积.30.某学习小组在探究三角形全等时,发现了下列两种基本图形,请给予证明.(1)如图1,AC 与BD 交于点O ,AB ∥CD ,AB=CD ,求证:OA=OC .(2)如图2,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .求证:BD =AE .(3)数学老师赞赏了他们的探索精神,并鼓励他们用图1或图2的基本图形来解决问题:如图3,把一块含45°的直角三角板ABC (即ABC ∆是等腰直角三角形,90C =∠,AC BC =)绕点A 逆时针旋转后成为ADE ∆,已知点B 、C 的对应点分别是点D 、E .连结BD ,并作射线CE 交BD 于点F ,试探究在旋转过程中,DF 与BF 的大小关系如何,并证明.。

浙教版-学年初中数学九年级上学期期末复习专题8 正多边形 解析版

浙教版-学年初中数学九年级上学期期末复习专题8 正多边形 解析版

浙教版2019-2020学年初中数学九年级上学期期末复习专题8 正多边形一、单选题1.若正六边形的边长为6,则其外接圆半径为()A. 3B. 3C. 3D. 62.如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A. 60°B. 70°C. 72°D. 144°3.如图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形翻折起来后,就能形成一个圆形桌面(可以近似看作正方形的外接圆),正方形桌面与翻折成圆形桌面的面积之比最接近()A. B. C. D.4.知圆的半径是,则该圆的内接正六边形的面积是()A. B. C. D.5.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为()A. 3B. 4C. 6D. 86.如图,正八边形ABCDEFGH中,∠EAG大小为()A. 30°B. 40°C. 45°D. 50°7.边长为2的正方形内接于,则的半径是A. 1B. 2C.D.8.从一个半径为10 的圆形纸片上裁出一个最大的正六边形,此正六边形的边心距是( )A. 5B. 10C. 5D. 109.正多边形的内切圆与外接圆的周长之比为∶2,则这个正多边形为( )A. 正十二边形B. 正六边形C. 正四边形D. 正三角形10.以半径为1的圆内接正三角形,正方形,正六边形的边心距为三边作三角形,则该三角形的面积是()A. B. C. D.二、填空题11.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是________.12.在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为________ .13.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积来近似估计的面积,设的半径为1,则________.14.若弦AB是⊙O的内接正十二边形的一边,弦AC是⊙O的内接正方形的一边,弦CB是⊙O的内接正n边形一边,则n的值是________.15.如图,作半径为2的⊙O的内接正四边形ABCD,然后作正四边形ABCD的内切圆,得第二个圆,再作第二个圆的内接正四边形A1B1C1D1,又作正四边形A1B1C1D1的内切圆,得第三个圆…,如此下去,则第六个圆的半径为________.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为________cm.三、解答题17.如图,已知正三角形ABC内接于,AD是的内接正十二边形的一条边长,连接CD,若,求的半径.18.如图,某圆形场地内有一个内接于⊙O的正方形中心场地,若⊙O的半径为10米,求图中所画的一块草地的面积.(计算结果保留π)19.如图,正五边形ABCD中,点F、G分别是BC、CD的中点,AF与BG相交于H.(1)求证:△ABF≌△BCG;(2)求∠AHG的度数.20.尺规作图:如图,AC为⊙O的直径.(1)求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹);(2)当直径AC=4时,求这个正方形的边长.21.如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;(2)求正六边形T1,T2的面积比S1:S2的值.22.如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t=________s时,四边形PBQE为菱形;②当t=________s时,四边形PBQE为矩形.23.如图,10-1、10-2、10-3、…、10-n分别是⊙O的内接正三角形ABC,正四边形ABCD,正五边形ABCDE,、…、正n边形ABCD…,点M、N分别从点B,C开始以相同的速度在⊙O上逆时针运动(1)求图10-1中∠APN的度数;(2)图10-2中,∠APN的度数是________,图10-3中∠BPN的度数是________。

人教版九年级数学上册期末必刷常考题之一元二次方程附答案

人教版九年级数学上册期末必刷常考题之一元二次方程附答案

人教版九年级数学上册期末必刷常考题之一元二次方程附答案一.选择题(共5小题)1.已知一元二次方程x2+kx+3=0有一个根为3,则k的值为()A.﹣4B.4C.﹣2D.22.若m、n是一元二次方程x2+2x﹣2021=0的两个实数根,则2m+2n﹣mn的值为()A.2021B.2019C.2017D.20153.已知一元二次方程x2+4x﹣3=0,下列配方正确的是()A.(x+2)2=3B.(x﹣2)2=3C.(x+2)2=7D.(x﹣2)2=7 4.某校为落实“光盘行动”,对每天的剩饭菜进行称重,第一周的剩余量为20kg,第三周为9.8kg,设每周剩余量的平均减少率为x,则可列方程()A.20(1﹣x)2=9.8B.20(1+x)2=9.8C.20(1﹣2x)=9.8D.20(1+2x)=9.85.一元二次方程y2+2(y﹣1)=3y的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根二.填空题(共5小题)6.若将x2+6x=﹣1改写成(x+p)2=q的形式,则q=.7.一元二次方程x2+bx+2021=0的一个根为x=﹣1,则b的值为.8.一元二次方程2x2﹣4x+1=0的两个根为x1,x2,则2x22﹣4x2+x1x2的值为.9.若关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,则k的取值范围是.10.随着网络的发展,某快递公司的业务增长迅速.完成快递件数从六月份的10万件增长到八月份的14.4万件.假定每月增长率相同,且设每月增长率为x.则可列方程为.三.解答题(共5小题)11.(2021春•济宁期末)解方程:(1)x2﹣x﹣3=0;(2)x2+7x=24+2x.12.某种病毒传播非常快,如果一个人被感染,经过两轮感染后就会有121个人被感染.(1)每轮感染中平均一个人会感染几个人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过1300人?13.一家水果店以每斤3元的价格购进“官地洼”甜瓜若干斤,然后以每斤5元的价格出售,每天可售出100斤,通过调查发现,这种甜瓜每斤的售价每降低0.1元,每天可多售出20斤.(1)若将“官地洼”甜瓜每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);(2)销售这批“官地洼”甜瓜要想每天盈利300元,且保证每天至少售出280斤,那么水果店需将每斤的售价降低多少元?14.某商店将进价为8元的商品按每件10元售出,每天可售出200件,如果这种商品每件的销售价每提高0.5元,其销售量就减少10件.问(1)应将每件售价定为多少元时,才能使每天利润为640元?(2)店主想要获得每天800元的利润,小红同学认为不可能.如果你同意小红同学的说法吗?(说明理由)15.某商城在2021年端午节期间促销海尔冰箱,每台进货价为2500元,标价为3000元.(1)商城举行了“新老用户粽是情”摸奖活动,中奖者商城将冰箱连续两次降价,每次降价的百分率相同,最后以2430元售出,求每次降价的百分率;(2)市场调研表明:当每台售价为2900元时,平均每天能售出8台,当每台售价每降50元时,平均每天就能多售出4台,若商城要想使海尔冰箱的销售利润平均每天达到5000元,则每台冰箱的定价应为多少元?2022-2023学年上学期初中数学人教版九年级期末必刷常考题之一元二次方程参考答案与试题解析一.选择题(共5小题)1.(2021春•昆明期末)已知一元二次方程x2+kx+3=0有一个根为3,则k的值为()A.﹣4B.4C.﹣2D.2【考点】一元二次方程的解.【专题】一元二次方程及应用;运算能力.【分析】把x=3代入方程计算即可求出k的值.【解答】解:把x=3代入方程得:9+3k+3=0,移项合并得:3k=﹣12,解得:k=﹣4.故选:A.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.(2021春•济宁期末)若m、n是一元二次方程x2+2x﹣2021=0的两个实数根,则2m+2n ﹣mn的值为()A.2021B.2019C.2017D.2015【考点】根与系数的关系.【专题】整体思想;一元二次方程及应用;数据分析观念.【分析】利用根与系数的关系,得到m+n和mn的值,直接代入计算即可.【解答】解:∵m,n是一元二次方程x2+2x﹣2021=0 的两个实数根,∴m+n=﹣2,mn=﹣2021,∴2m+2n﹣mn=2(m+n)﹣mn=﹣4+2021=2017,故选:C.【点评】本题考查了根与系数的关系,利用根与系数的关系得到两根之和和两根之积是解决本题的关键.3.(2020秋•铁西区期末)已知一元二次方程x2+4x﹣3=0,下列配方正确的是()A.(x+2)2=3B.(x﹣2)2=3C.(x+2)2=7D.(x﹣2)2=7【考点】解一元二次方程﹣配方法.【专题】一元二次方程及应用;运算能力.【分析】方程常数项移到右边,两边加上4配方得到结果,即可做出判断.【解答】解:方程移项得:x2+4x=3,配方得:x2+4x+4=7,即(x+2)2=7,故选:C.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.(2021春•衢州期末)某校为落实“光盘行动”,对每天的剩饭菜进行称重,第一周的剩余量为20kg,第三周为9.8kg,设每周剩余量的平均减少率为x,则可列方程()A.20(1﹣x)2=9.8B.20(1+x)2=9.8C.20(1﹣2x)=9.8D.20(1+2x)=9.8【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】根据第一周的剩余量为20kg,第三周为9.8kg,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得:20(1﹣x)2=9.8.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.(2021春•招远市期末)一元二次方程y2+2(y﹣1)=3y的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【专题】判别式法;运算能力.【分析】先化为一般形式,判断一元二次方程的根的情况,只要看方程根的判别式Δ=b2﹣4ac的值的符号就可以了.【解答】解:y2+2(y﹣1)=3y,y2+2y﹣2=3y,y2﹣y﹣2=0,∵a=1,b=﹣1,c=﹣2,∴Δ=b2﹣4ac=(﹣1)2﹣4×1×(﹣2)=9>0,∴有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式,总结一元二次方程根的情况与判别式Δ的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.二.填空题(共5小题)6.(2020秋•宜宾期末)若将x2+6x=﹣1改写成(x+p)2=q的形式,则q=8.【考点】解一元二次方程﹣配方法.【专题】一元二次方程及应用;运算能力.【分析】方程两边加上9变形后,确定出所求即可.【解答】解:方程x2+6x=﹣1,配方得:x2+6x+9=8,即(x+3)2=8,则q=8.故答案为:8.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.(2021春•衢州期末)一元二次方程x2+bx+2021=0的一个根为x=﹣1,则b的值为2022.【考点】一元二次方程的解.【专题】一元二次方程及应用;运算能力.【分析】一元二次方程x2+bx+2021=0的一个根为x=﹣1,那么就可以把x=﹣1代入方程,从而可直接求b的值.【解答】解:把x=﹣1代入x2+bx+2021=0中,得1﹣b+2021=0,解得b=2022,故答案是:2022.【点评】本题考查了一元二次方程的解,解题的关键是理解根与方程的关系.8.(2021春•昆明期末)一元二次方程2x2﹣4x+1=0的两个根为x1,x2,则2x22﹣4x2+x1x2的值为﹣.【考点】根与系数的关系.【专题】一元二次方程及应用;运算能力.【分析】先根据一元二次方程根的定义得到2x22﹣4x2=﹣1,再利用根与系数的关系得到x1x2=,然后利用整体代入的方法计算.【解答】解:∵x2为方程2x2﹣4x+1=0的根,∴2x22﹣4x2+1=0,∴2x22﹣4x2=﹣1,∵一元二次方程2x2﹣4x+1=0的两个根为x1,x2,∴x1x2=,∴原式=﹣1+=﹣.故答案为﹣.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的定义.9.(2021春•宁乡市期末)若关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,则k 的取值范围是k≤4且k≠2.【考点】一元二次方程的定义;根的判别式.【专题】一元二次方程及应用;运算能力.【分析】因为一元二次方程有实数根,所以△≥0,得关于k的不等式,求解即可.【解答】解:∵关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,∴△≥0且k﹣2≠0,即42﹣4(k﹣2)×2≥0且k﹣2≠0解得k≤4且k≠2.故答案为:k≤4且k≠2.【点评】本题考查了一元二次方程根的判别式.解决本题的关键是能正确计算根的判别式.本题易忽略二次项系数不为0.10.(2021春•青秀区校级期末)随着网络的发展,某快递公司的业务增长迅速.完成快递件数从六月份的10万件增长到八月份的14.4万件.假定每月增长率相同,且设每月增长率为x.则可列方程为10(1+x)2=14.4.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】设每月增长率为x,根据该快递公司六月份及八月份完成快递件数,即可得出关于x的一元二次方程,此题得解.【解答】解:设每月增长率为x,依题意得:10(1+x)2=14.4,故答案为:10(1+x)2=14.4.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.三.解答题(共5小题)11.(2021春•济宁期末)解方程:(1)x2﹣x﹣3=0;(2)x2+7x=24+2x.【考点】解一元二次方程﹣公式法;解一元二次方程﹣因式分解法.【专题】计算题;一元二次方程及应用;运算能力.【分析】(1)利用公式法解一元二次方程即可;(2)利用因式分解法解一元二次方程即可.【解答】解:(1)x2﹣x﹣3=0,∵△=b2﹣4ac=6+12=18,∴x=,==,∴x1=,x2=;(2)x2+7x=24+2x,x2+5x﹣24=0,(x﹣3)(x+8)=0,(x﹣3)=0或(x+8)=0,∴x1=3,x2=﹣8.【点评】本题考查了解一元二次方程﹣公式法,因式分解法,解决本题的关键是掌握公式法,因式分解法解一元二次方程.12.(2021春•青秀区校级期末)某种病毒传播非常快,如果一个人被感染,经过两轮感染后就会有121个人被感染.(1)每轮感染中平均一个人会感染几个人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过1300人?【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】(1)设每轮感染中平均一个人会感染x个人,根据“如果一个人被感染,经过两轮感染后就会有121个人被感染”,即可得出关于x的一元二次方程,解之取其正值即可得出每轮感染中平均一个人感染的人数;(2)利用经过三轮感染后被感染的人数=经过两轮感染后被感染的人数×(1+每轮感染中平均一个人感染的人数),即可求出经过三轮感染后被感染的人数,再将其与1300比较后可得出:若病毒得不到有效控制,3轮感染后,被感染的人会超过1300人.【解答】解:(1)设每轮感染中平均一个人会感染x个人,依题意得:1+x+x(1+x)=121,整理得:(x+1)2=121,解得:x1=10,x2=﹣12(不合题意,舍去).答:每轮感染中平均一个人会感染10个人.(2)121×(1+10)=1331(人),∵1331>1300,∴若病毒得不到有效控制,3轮感染后,被感染的人会超过1300人.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.(2021春•招远市期末)一家水果店以每斤3元的价格购进“官地洼”甜瓜若干斤,然后以每斤5元的价格出售,每天可售出100斤,通过调查发现,这种甜瓜每斤的售价每降低0.1元,每天可多售出20斤.(1)若将“官地洼”甜瓜每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);(2)销售这批“官地洼”甜瓜要想每天盈利300元,且保证每天至少售出280斤,那么水果店需将每斤的售价降低多少元?【考点】列代数式;一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】(1)利用每天的销售量=100+降低的价格÷0.1×20,即可用含x的代数式表示出每天的销售量;(2)利用每天销售“官地洼”甜瓜的利润=每斤的销售利润×每天的销售量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合要保证每天至少售出280斤,即可确定x的值,进而可得出每斤的售价降低的钱数.【解答】解:(1)100+×20=100+200x(斤).答:每天的销售量是(100+200x)斤.(2)依题意得:(5﹣3﹣x)(100+200x)=300,整理得:2x2﹣3x+1=0,解得:x1=,x2=1.当x=时,100+200x=100+200×=200<280,不合题意,舍去;当x=1时,100+200x=100+200×1=300>280,符合题意.∴x=1.答:水果店需将每斤的售价降低1元.【点评】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出每天的销售量;(2)找准等量关系,正确列出一元二次方程.14.(2021春•射阳县校级期末)某商店将进价为8元的商品按每件10元售出,每天可售出200件,如果这种商品每件的销售价每提高0.5元,其销售量就减少10件.问(1)应将每件售价定为多少元时,才能使每天利润为640元?(2)店主想要获得每天800元的利润,小红同学认为不可能.如果你同意小红同学的说法吗?(说明理由)【考点】根的判别式;一元二次方程的应用.【专题】判别式法;一元二次方程及应用;应用意识.【分析】(1)设售价定为x元,则每件的销售利润为(x﹣8)元,每天的销售量为(400﹣20x)件,利用总利润=每件的销售利润×每天的销售量,即可得出关于x的一元二次方程,解之即可得出每件商品的售价;(2)利用总利润=每件的销售利润×每天的销售量,即可得出关于x的一元二次方程,由根的判别式Δ=﹣16<0,即可得出该方程没有实数根,即小红的说法正确.【解答】解:(1)设售价定为x元,则每件的销售利润为(x﹣8)元,每天的销售量为200﹣10×=(400﹣20x)件,依题意得:(x﹣8)(400﹣20x)=640,整理得:x2﹣28x+192=0,解得:x1=12,x2=16.答:应将每件售价定为12元或16元时,才能使每天利润为640元.(2)同意,理由如下:依题意得:(x﹣8)(400﹣20x)=800,整理得:x2﹣28x+200=0.∵Δ=(﹣28)2﹣4×1×200=﹣16<0,∴该方程没有实数根,∴小红的说法正确.【点评】本题考查了一元二次方程的应用以及根的判别式,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)牢记“当Δ<0时,方程无实数根”.15.(2021春•广饶县期末)某商城在2021年端午节期间促销海尔冰箱,每台进货价为2500元,标价为3000元.(1)商城举行了“新老用户粽是情”摸奖活动,中奖者商城将冰箱连续两次降价,每次降价的百分率相同,最后以2430元售出,求每次降价的百分率;(2)市场调研表明:当每台售价为2900元时,平均每天能售出8台,当每台售价每降50元时,平均每天就能多售出4台,若商城要想使海尔冰箱的销售利润平均每天达到5000元,则每台冰箱的定价应为多少元?【考点】一元二次方程的应用.【专题】应用题;一元二次方程及应用;运算能力;应用意识.【分析】(1)设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是60(1﹣x)元,第二次后的价格是60(1﹣x)2元,据此即可列方程求解;(2)假设下调a个50元,销售利润=一台冰箱的利润×销售冰箱数量,一台冰箱的利润=售价﹣进价,降低售价的同时,销售量就会提高,“一减一加”,根据每台的盈利×销售的件数=5000元,即可列方程求解.【解答】解:(1)设每次降价的百分率为x,依题意得:3000(1﹣x)2=2430,解得x1=0.1=10%,x2=1.9(不合题意,舍去)答:每次降价的百分率是10%;(2)假设下调a个50元,依题意得:5000=(2900﹣2500﹣50a)(8+4a).解得a1=a2=3.所以下调150元,因此定价为2750元.【点评】本题主要考查一元二次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.考点卡片1.列代数式(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.(2)列代数式五点注意:①仔细辨别词义.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分.②分清数量关系.要正确列代数式,只有分清数量之间的关系.③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.【规律方法】列代数式应该注意的四个问题1.在同一个式子或具体问题中,每一个字母只能代表一个量.2.要注意书写的规范性.用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写.3.在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.4.含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.2.一元二次方程的定义(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.3.一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).4.解一元二次方程-配方法(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.5.解一元二次方程-公式法(1)把x=(b2﹣4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(2)用求根公式解一元二次方程的方法是公式法.(3)用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.6.解一元二次方程-因式分解法(1)因式分解法解一元二次方程的意义因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).(2)因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.7.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.8.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.9.由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.10.一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.5.验:检验所求出的根是否符合所列方程和实际问题.6.答:写出答案。

2023-2024学年北京市石景山区九年级上学期期末数学试题+答案解析

2023-2024学年北京市石景山区九年级上学期期末数学试题+答案解析

2023-2024学年北京市石景山区九年级上学期期末数学试题一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若,则的值是()A.B. C.D.2.如图,在中,,,则为()A. B. C.D.3.如图,四边形ABCD 内接于,AB 是直径,D 是的中点.若,则的大小为()A.B. C. D.4.将抛物线向左平移1个单位长度,平移后抛物线的解析式为()A.B.C.D.5.若抛物线与x 轴只有一个交点,则m 的值为()A.3B.C.D.6.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能:“平距以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方”.其中“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”AFE 的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得,若“矩”的边,边,则树高CD 为()A.4mB.C.D.16m7.在平面直角坐标系xOy 中,若点,在抛物线上,则下列结论正确的是()A.B.C.D.8.如图,在中,于点D ,给出下面三个条件:①;②;③添加上述条件中的一个,即可证明是直角三角形的条件序号是()A.①②B.①③C.②③D.①②③二、填空题:本题共8小题,每小题3分,共24分。

9.如图,在矩形ABCD 中,E 是边AD 的中点,连接BE 交对角线AC 于点若,则AF 的长为__________.10.在平面直角坐标系xOy中,若点,在反比例函数的图象上,则__________填“>”“=”或“<”11.如图,正六边形ABCDEF内接于,,则的长为__________.12.如图,PA,PB分别与相切于A、两点,,,则的半径为__________.13.如图,线段AB,CD分别表示甲、乙建筑物的高,两座建筑物间的距离BD为若在点A处测得点D的俯角为,点C的仰角为,则乙建筑物的高CD约为__________结果精确到;参考数据:,14.如图,点A,B在上,若C为上任一点不与点A,B重合,则的大小为__________.15.如图,E是正方形ABCD内一点,满足,连接CE,若,则CE长的最小值为__________.16.在平面直角坐标系xOy中,抛物线的顶点为,且经过点,其部分图象如图所示,下面四个结论中,①;②;③若点在此抛物线上,则;④若点在此抛物线上且,则所有正确结论的序号是__________.三、解答题:本题共12小题,共96分。

九年级上册数学实际问题与一元二次方程-比赛和传播 附答案教师版

九年级上册数学实际问题与一元二次方程-比赛和传播 附答案教师版

初中数学人教版九年级上册——21.3实际问题与一元二次方程-比赛和传播一、单选题1.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A. x(x+1)=28B. 12x(x−1)=28 C. x(x−1)=28 D. 12x(x+1)=28【答案】B【解析】【解答】解:每支球队都需要与其他球队赛(x-1)场,但2队之间只有1场比赛,∴方程为12x(x-1)=28.故答案为:B.【分析】首先计算出比赛的总场数,然后根据球队总数×每支球队比赛的场数÷2就可列出方程.2.某同学参加了学校统一组织的实验培训,回到班上后,第一节课他教会了若干同学,第二节课会做的同学每人又教会了同样多的同学,这样全班共有36人会做这项实验,设每节课每位同学教会x名同学做实验,则x的值为()A. 5B. 6C. 7D. 8【答案】A【解析】【解答】解:设平均每节课一人教会x人,根据题意可得:1+x+x(1+x)=36,解得:x1=5,x2=-7(不合题意舍去)答:平均每节课一人教会5人.故答案为:A.【分析】设平均每节课一人教会x人,根据题意表示出两节课教会的人数,进而得出答案.3.2020年12月29日,贵阳轨道交通2号线实现试运行,从白云区到观山湖区轨道公司共设计了132种往返车票,则这段线路有多少个站点?设这段线路有x个站点,根据题意,下面列出的方程正确的是()A. x(x+1)=132B. x(x−1)=132C. 12×(x+1)=132 D. 12x(x−1)=132【答案】B【解析】【解答】设这段线路有x个站点,每个站点售其它各站一张往返车票,共有(x-1)张票,根据题意,列方程得x(x−1)=132.故答案为:B.【分析】由题意可知每个站点售其它各站一张往返车票,可得到一共有的票数,然后根据往返车票一共有132张,建立关于x的方程即可.4.某小组有若干人,新年大家互相发一条微信祝福,已知全组共发微信72条,则这个小组的人数为()A. 7人B. 8人C. 9人D. 10人【答案】C【解析】【解答】解:设这个小组的人数为x人,则每人需发送(x﹣1)条微信,依题意得:x(x﹣1)=72,整理得:x2﹣x﹣72=0,解得:x1=﹣8(不合题意,舍去),x2=9.故答案为:C.【分析】根据相等关系“人数×每一个人发送微信的数量= 全组共发微信的条数72”可列方程求解.5.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有()A. 6人B. 7人C. 8人D. 9人【答案】B【解析】【解答】解:设参加活动的同学有x人,由题意得:x(x−1)=42,解得x=7或x=−6(不符题意,舍去),即参加活动的同学有7人,故答案为:B.【分析】设参加活动的同学有x人,从而可得每位同学赠送的贺卡张数为(x−1)张,再根据“共送贺卡42张”建立方程,然后解方程即可得.6.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A. 12x(x+1)=110 B. 12x(x﹣1)=110 C. x(x+1)=110 D. x(x﹣1)=110【答案】 D【解析】【解答】解:设有x个队参赛,则x(x﹣1)=110.故答案为:D.【分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行两场场比赛,共要比赛110场,可列出方程.二、填空题7.2019年元旦节期间班上数学兴趣小组的同学互发微信祝贺,每两个同学都互相发一次,小明统计全组共互发了90次微信,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为________.【答案】x(x-1)=90【解析】【解答】解:设数学兴趣小组的人数为x∴每人要赠送(x-1)张贺卡,有x个人∴全班共送x(x-1)=90【分析】根据题意,由贺卡的总数量列出方程,即可得到答案。

人教版九年级上册数学实际问题与二次函数 应用题专题训练(带答案)

人教版九年级上册数学实际问题与二次函数 应用题专题训练(带答案)

实际问题与二次函数应用题专题训练1.某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1) 饲养场的长为米(用含a的代数式表示).(2) 若饲养场的面积为288m2,求a的值.(3) 当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?2.在新秦淮区的对口扶贫活动中,企业甲将经营状况良好的某消费品专卖店,以188万元的优惠价转让给了尚有120万无息贷款还没有偿还的小型福利企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支 5.6万元后,逐步偿还转让费(不计利息).如果维持乙企业的正常运转每月除职工最低生活费外,还需其他开支 2.4万元,并且从企业甲提供的相关资料中可知这种热门消费品的进价是每件12元,月销售量y(万件)与销售单价x(元)之间的函数关系式是y=−x+20.(1) 当商品的销售单价为多少元时,扣除各类费用后的月利润余额最大?(2) 企业乙依靠该店,能否在3年内偿还所有债务?3.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=−2x+ 240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1) 求y与x的关系式;(2) 当x取何值时,y的值最大?(3) 如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?4.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1) 求出y与x之间的函数关系式;(2) 如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3) 写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?5.某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果毎件童装降价1元,那么平均每天可多售出2件,设每件降价x元(x>0),平均每天可盈利y元.(1) 写出y与x的函数关系式;(2) 当该专卖店每件童装降价多少元时,平均每天盈利400元?(3) 该专卖店要想平均每天盈利600元,可能吗?请说明理由.6.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=−x+60(30≤x≤60).设这种双肩包每天的销售利润为ω元.(1) 求ω与x之间的函数表达式;(2) 这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3) 如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?7.某商店出售一款商品,商店规定该商品的销售单价不低于68元.经市场调查反映,该商品的日销售量y(件)与销售单价x(元)之间满足一次函数关系.关于该商品的销售单价,日销售量,日销售利润的部分对应数据如下表:[注:日销售利润=日销售量×(销售单价−成本单价)]销售单价x(元)757882日销售量y(件)15012080日销售利润w(元)52504560m(1) 求y关于x的函数关系式,并直接写出自变量的取值范围;(2) ①根据以上信息,填空:该产品的成本单价是元,表中m的值是;②求w关于x的函数关系式;(3) 求该商品日销售利润的最大值.8.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=−x+26.(1) 求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2) 该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3) 第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.9.某公司经过市场调查发现,该公司生产的某商品在第x天的销售单价为(x+20)元/件(1≤x≤50),且该商品每天的销量满足关系式y=200−4x.已知该商品第10天的售价按8折出售,仍然可以获得20%的利润.(1) 求公司生产该商品每件的成本为多少元?(2) 问销售该商品第几天时,每天的利润最大?最大利润是多少?(3) 该公司每天还需要支付人工、水电和房租等其它费用共计a元,若公司要求每天的最大利润不低于2200元,且保证至少有46天盈利,则a的取值范围是(直接写出结果).10.某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1) 商家一次购买这种产品多少件时,销售单价恰好为2600元?(2) 设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数解析式,并写出自变量x的取值范围.(3) 该公司的销售人员发现:当商家一次购买这种产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其他销售条件不变)11.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲,宾馆需对游客居住的每个房间每天支出20元的各种费用.(1) 当每个房间的定价增加120元时,求一天订出的房间数;(2) 设每个房间的房价定价增加x元(x为10的正整数倍),宾馆一天的利润为w元,求w与x的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?12.某种蔬菜每千克售价y1(元)与销售月份x之间的关系如图①所示,每千克成本y2(元)与销售月份x之间的关系如图②所示,其中图①中的点在同一条线段上,图②中的点在对称轴平行于y轴的同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1) 求出y1与x函数关系式.(2) 求出y2与x函数关系式.(3) 设这种蔬菜每千克收益为ω元,试问在哪个月份岀售这种蔬菜,ω将取得最大值?并求出此最大值.(收益=售价−成本)13.A,B两书店都有同版《英汉小词典》一书出售,封底标价为20元,现两书店都同时进行促销活动,A书店一律按标价的7折销售;B书店若只购1本则按标价销售,若一次性购买多于1本,但不多于20本时,每多购1本,每本售价在标价的基础上优惠2%(例如买两本,每本价优惠2%;买3本每本价优惠4%,依此类推),若多于20本时,每本售价为12元;设在A,B两书店购此书总价分别为y A,y B.(1) 试分别写出y A,y B与购书本数x之间的函数关系式.(2) 如果老师给你176元钱,要你去B书店买该书,问一次性最多能购买此书多少本?若要你去A书店最多又能购买此书多少本呢?(3) 若要分别在A,B两书店一次性购买此书相同本数(x本)时,问当x(0<x≤20)为多少,购此书总价y A与y B相差最大,最大值是多少?14.某货车销售公司,分别试销售两种型号货车各一个月,并从中选择一种长期销售,设每月销售量为x辆,若销售甲型货车,每月销售的利润为y1(万元),已知每辆甲型货车的利润为(m+6)万元,(m是常数,9≤m≤11),每月还需支出其他费用8万元,受条件限制每月最多能销售甲型货车25辆;若销售乙型货车,每月的利润y2(万元)与x的函数关系式为y2=ax2+bx−25,且当时x=10,y2=20,当x=20时,y2=55,受条件限制每月最多能销售乙型货车40辆.(1) 分别求出y1,y2与x的函数关系式,并确定x的取值范围;(2) 分别求出销售这两种货车的最大月利润;(最大利润能求值的求值,不能求值的用式子表示)(3) 为获得最大月利润,该公司应该选择销售哪种货车?请说明理由.15.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1) 写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2) 求销售单价为多少元时,该文具每天的销售利润最大;(3) 商场的营销部结合上述情况,提出了A,B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元,请比较哪种方案的最大利润更高,并说明理由.16.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1) 直接写出y与x之间的函数关系式;(2) 如何确定销售价格才能使月利润最大?求最大月利润;(3) 为了使每月利润不少于6000元应如何控制销售价格?17.2021年3月南山区在深圳湾举办风筝节,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个.请回答以下问题:(1) 用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2) 王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3) 当售价定为多少时,王大伯获得利润最大,最大利润是多少?18.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx−75,其图象如图所示.时,二次函数y=ax2+bx+c(a≠0)有最小(大)值)(参考公式:当x=−b2a(1) 求a与b的值;(2) 销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(3) 销售单价定在多少时,该种商品每天的销售利润为21元?结合图象,直接写出销售单价定在什么范围时,该种商品每天的销售利润不低于21元?19.通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y 越大表示注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10<x≤20和20<x≤40时,图象是线段.(1) 当0≤x≤10时,求注意力指标数y与时间x的函数关系式;(2) 一道数学综合题,需要讲解24分钟.问老师能否经过适当安排,使学生听这道题时,注意力的指标数都不低于36?20.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1) 请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?答案一、解答题1. 【答案】(1) 60−3a(2) 依题意,列方程 a (60−3a )=288,解得 a 1=12;a 2=8(舍去),∴a =12.(3) a (60−3a )=−3a 2+60a =−3(a −10)2+300,∵2<60−3a ≤27,当 a =11 时,最大面积是 297 m 2.2. 【答案】(1) 设扣除各类费用后的月利润余额 W 万元.根据题意,得W =(x −12)y −5.6−2.4=(x −12)(−x +20)−5.6−2.4=−x 2+32x −248=−(x −16)2+8.当 x =16 时,W 最大值=8. 答:当商品的销售单价为 16 元时,扣除各类费用后的月利润余额最大.(2) 按扣除各类费用后的月利润余额最大值 8 万元计算,3 年总利润为:8×12×3=288 万元.所有债务为:188+120=308 万元.∵288<308,∴ 不能在 3 年内偿还所有债务.3. 【答案】(1) y =(x −50)⋅w=(x −50)⋅(−2x +240)=−2x 2+340x −12000,∴y 与 x 的关系式为 y =−2x 2+340x −12000.(2) y =−2x 2+340x −12000=−2(x −85)2+2450,∴ 当 x =85 时,y 的值最大.(3) 当 y =2250 时,可得方程 −2(x −85)2+2450=2250.解这个方程,得 x 1=75,x 2=95.根据题意,x 2=95 不合题意应舍去.∴ 当销售单价为 75 元时,可获得销售利润 2250 元.4. 【答案】(1) 设 y 与 x 之间的函数关系式为 y =kx +b (k ≠0),由所给函数图象可知:{130k +b =50,150k +b =30,解得:{k =−1,b =180,故 y 与 x 的函数关系式为 y =−x +180.(2) 根据题意,得:(x −100)(−x +180)=1500.整理,得:x 2−280x +19500=0.解得:x =130.或x =150.答:每件商品的销售价应定为 130 元或 150 元.(3) ∵y =−x +180,∴W =(x −100)y =(x −100)(−x +180)=−x 2+280x −18000=−(x −140)2+1600,∴ 当 x =140 时,W 最大=1600,∴ 售价定为 140 元/件时,每天最大利润 W =1600 元.5. 【答案】(1) 根据题意y =(20+2x )(60−40−x ),y =−2x 2+20x +400(0<x <20).(2) 当 y =400 时,−2x 2+20x +400=400,解得 x 1=10,x 2=0(舍).答:当每件童装降价 10 元时平均每天盈利 400 元.(3) 不可能盈利 600 元.当 y =600 时,600=−2x 2+20x +400,x 2−10x +100=0,Δ=(−10)2−4×1×100=−300<0.方程无实数根.答:不可能盈利 600 元.6. 【答案】(1) ω=(x −30)⋅y=(−x +60)(x −30)=−x 2+30x +60x −1800=−x 2+90x −1800.ω 与 x 之间的函数表达式为 ω=−x 2+90x −1800.(2) 根据题意得,ω=−x 2+90x −1800=−(x −45)2+225.∵−1<0,当 x =45 时,ω 有最大值,最大值是 225.即这种双肩包销售单价定为 45 元时,每天的销售利润最大,最大利润是 225 元.(3) 当 ω=200 时,−x 2+90x −1800=200,解得 x 1=40,x 2=50.∵50>48,∴x 2=50 不符合题意,舍去.故该商店销售这种双肩包每天要获得 200 元的销售利润,销售单价应定为 40 元.7. 【答案】(1) 设 y =kx +b ,将 (75,150),(78,120) 代入,{75k +b =150,78k +b =120,∴{k =−10,b =900.∴y =−10x +900(68≤x ≤90).(2) ① 40;3360② w =y (x −40)=(−10x +900)(x −40)=−10x 2+1300x −36000.(3) w =−10(x −65)2+6250,∵a =−10<0,∴w 有最大值,∵ 当 x ≥65 时,w 随 x 的增大而减小,而 68≤x ≤90,∴ 当 x =68 时,w max =−10(68−65)2+6250=6160,即该商品日销售利润的最大值为 6160 元.8. 【答案】(1) W 1=(x −6)(−x +26)−80=−x 2+32x −236.(2) 由题意:20=−x 2+32x −236.解得:x =16,答:该产品第一年的售价是 16 元.(3) 由题意:7≤x ≤16,W 2=(x −5)(−x +26)−20=−x 2+31x −150,∵7≤x ≤16,∴x =7 时,W 2 有最小值,最小值 =18(万元),答:该公司第二年的利润 W 2 至少为 18 万元.9. 【答案】(1) 设成本为 m 元,10+20=30,30×0.8=24,24−m m =20%,解得m =20,答:公司生产该商品每件成本为 20 元.(2) 设利润为 Z ,则利润 Z =(200−4x )x =−4x 2+200x ,当 x =25 时,利润最大,最大利润为:2500 元,答:第 25 天时利润最大,最大利润为 2500 元.(3) 0<a ≤30010. 【答案】(1) 设商家一次购买这种产品 x 件时,销售单价恰好为 2600 元.由题意,得3000−10(x −10)=2600,解得x =50.故商家一次购买这种产品 50 件时,销售单价恰好为 2600 元.(2) 当 0≤x ≤10 时,y =(3000−2400)x =600x ;当 10<x ≤50 时,y =x [3000−10(x −10)−2400]=−10x 2+700x ;当 x >50 时,y =(2600−2400)x =200x .故 y 与 x 之间的函数解析式为y ={600x,0≤x ≤10,且x 为整数−10x 2+700x,10<x ≤50,且x 为整数200x,x >50,且x 为整数. (3) 若要满足一次购买的数量越多,公司所获的利润越大,则 y 应随 x 的增大而增大.y =600x 及 y =200x 均是 y 随 x 的增大而增大,二次函数 y =−10x 2+700x =−10(x −35)2+12250,当 10<x ≤35 时,y 随 x 的增大而增大;当 35<x ≤50 时,y 随 x 的增大而减小,因此 x 的取值范围只能为 10<x ≤35,即一次购买的数量为 35 件时的销售单价应为调整后的最低销售单价.当 x =35 时,销售单价为 3000−10×(35−10)=2750(元).故公司应将最低销售单价调整为 2750 元.11. 【答案】(1) 50−12010=38(间). (2) w =(50−x 10)×(180+x −20)=−110x 2+34x +8000.(3) ∵−110<0,∴ 抛物线开口向下,抛物线有最高点,函数有最大值,∴ 当 x =−b 2a =34−2×(−110)=170 时, w 最大值=4ac−b 24a =4×(−110)×8000−3424×(−110)=10890. 50−170÷10=33 间.答:一天订住 33 个房间利润最大,最大为 10890 元.12. 【答案】(1) 设 y 1=kx +b ,∵ 直线经过 (3,5),(6,3),{3k +b =5,6k +b =3,解得:{k=−23, b=7.∴y1=−23x+7(3≤x≤6,且x为整数)(2) 设y2=a(x−6)2+1,把(3,4)代入得:4=a(3−6)2+1,解得a=13,∴y2=13(x−6)2+1.(3) 由题意得ω=y1−y2=−23x+7−[13(x−6)2+1]=−13(x−5)2+73,当x=5时,ω最大值=73.故5月出售这种蔬菜,每千克收益最大.13. 【答案】(1) 在A书店购书的总费用为:y A=20×0.7x=14x,在B书店购书的总费用为:y B={20×[1−2%(x−1)]×x,0<x≤20 12x,x>20化简整理得:y B={1025x−25x2,0<x≤20 12x,x>20(2) B书店:当x>20时,12×20=240(元)>176元,∴在B书店购买的本数不多于20件,∴1025x−25x2=176,解得:x1=11或x2=40(舍),∴在B书店,176元钱最多购买此书11本.A书店:14x=176,解得:x=1247≈12,∴在A书店,176元钱最多购买此书12本.(3) ∵当0<x≤20时,设y=y A −y B =14x −1025x +25x 2=25x 2−325x =25(x −8)2−1285, ∵25>0,开口向上,且对称轴为 x =8,∴ 当 x =20 时,y 有最大值,最大值 y =32.14. 【答案】(1) 根据题意,得y 1=(m +6)x −8,(0≤x ≤25).将 x =10,y 2=20,x =20,y 2=55 代入 y 2=ax 2+bx −25,{100a +10b −25=20,400a +20b −25=55, 解得:{a =−120,b =5.∴y 2=−120x 2+5x −25,(0≤x ≤40).(2) ∵m 是常数,(9≤m ≤11),∴m +6>0,∴y 1 随 x 的增大而增大,∴ 当 x =25 时,y 1 取得最大值,最大值为 25m +142.∵y 2=−120(x −50)2+100,∴ 当 x <50 时,y 随 x 的增大而增大,∵0≤x ≤40,∴ 当 x =40 时,y 2 有最大值,最大值为 95.(3) ∵y 1 的最大值为 25m +142.且 9≤m ≤11,∴367≤y 1≤417,y 2 有最大值为 95,∴95<367.故应选择甲种货车.15. 【答案】(1) 由题意得,销售量 =250−10(x −25)=−10x +500,则w =(x −20)(−10x +500)=−10x 2+700x −10000.(2) w =−10x 2+700x −10000=−10(x −35)2+2250.因为 −10<0,所以函数图象开口向下,w 有最大值,当 x =35 时,w 最大=2250,故当单价为 35 元时,该文具每天的利润最大.(3) A 方案利润高,理由如下:A 方案中:20<x ≤30,故当 x =30 时,w 有最大值,此时 w A =2000;B 方案中:{−10x +500≥10,x −20≥25,故 x 的取值范围为:45≤x ≤49,因为函数 w =−10(x −35)2+2250,对称轴为直线 x =35,所以当 x =45 时,w 有最大值,此时 w B =1250,因为 w A >w B ,所以A 方案利润更高.16. 【答案】(1) 由题意可得y ={300−10x (0≤x ≤30),300−20x (−20≤x <0);(2) 由题意可得w ={(20+x )(300−10x )(0≤x ≤30),(20+x )(300−20x )(−20≤x <0).化简得w ={−10x 2+100x +6000(0≤x ≤30),−20x 2−100x +6000(−20≤x <0).即w ={−10(x −5)2+6250(0≤x ≤30),−20(x +52)2+6125(−20≤x <0).由题意可知 x 应取整数,故当 x =−2 或 x =5 时,w <6125<6250,故当销售价格为 65 元时,利润最大,最大利润为 6250 元;(3) 由题意 w ≥6000,如图,令 w =6000,即6000=−10(x −5)2+6250,6000=−20(x +52)2+6125,解得x 1=−5,x 2=0,x 3=10,所以−5≤x ≤10,故将销售价格控制在 55 元到 70 元之间(含 55 元和 70 元)才能使每月利润不少于 6000 元.17. 【答案】(1) 设蝙蝠型风筝售价为 x 元时,销售量为 y 个,据题意可知:y =180−10(x −12)=−10x +300(12≤x ≤30).(2) 设王大伯获得的利润为 W ,则 W =(x −10)y =−10x 2+400x −3000, 令 W =840,则−10x 2+400x −3000=840,解得:x 1=16,x 2=24,答:王大伯为了让利给顾客,并同时获得 840 元利润,售价应定为 16 元.(3) ∵W =−10x 2+400x −3000=−10(x −20)2+1000,∵a =−10<0,∴ 当 x =20 时,W 取最大值,最大值为 1000.答:当售价定为 20 元时,王大伯获得利润最大,最大利润是 1000 元.18. 【答案】(1) y =ax 2+bx −75 图象过点 (5,0),(7,16),所以 {25a +5b −75=0,49a +7b −75=16,解得:{a =−1,b =20.(2) 因为 y =−x 2+20x −75=−(x −10)2+25,所以当 x =10 时,y 最大=25.答:销售单价为 10 元时,该种商品每天的销售利润最大,最大利润为 25 元.(3) 销售单价在 8≤x ≤12 时,销售利润不低于 21 元.19. 【答案】(1) 设 0≤x ≤10 时的抛物线为 y =ax 2+bx +c .由图象知抛物线过 (0,20),(5,39),(10,48) 三点,∴{c =20,25a +5b +c =39,100a +10b +c =48, 解得 {a =−15,b =245,c =20,∴y =−15x 2+245x +20(0≤x ≤10).(2) 由图象知,当 20<x ≤40 时,y =−75x +76,当 0≤x ≤10 时,令 y =36,得 36=−15x 2+245x +20, 解得 x 1=4,x 2=20(舍去);当 20<x ≤40 时,另 y =36,得 36=−75x +76,解得 x =2007=2847. ∵2847−4=2447>24,∴ 老师可以通过适当的安排,在学生的注意力指标数不低于 36 时,讲授完这道数学综合题.20. 【答案】(1) y =300−10(x −44)=−10x +740,44≤x ≤52.(2) w=(x−40)(−10x+740)=−10(x−57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,∴当x=52时,w有最大值,最大值为2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润2640元.。

(必考题)初中数学九年级数学上册(有答案解析)

(必考题)初中数学九年级数学上册(有答案解析)

专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长是____cm。

A. 16cmB. 18cmC. 26cmD. 28cm2. 下列函数中,哪个函数在其定义域内是增函数?A. y = x^2B. y = x^3C. y = 2xD. y = 1/x3. 已知a, b为实数,且a < b,则下列哪个不等式一定成立?A. a^2 < b^2B. a + 1 < b + 1C. a^3 < b^3D. a > b4. 若一个等差数列的前三项分别为2, 5, 8,则这个数列的第10项是____。

A. 29B. 30C. 31D. 325. 在平面直角坐标系中,点P(2, 3)关于y轴的对称点是____。

A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)二、判断题(每题1分,共5分)1. 任何两个等边三角形都是相似的。

()2. 若两个函数的图像关于y轴对称,则这两个函数一定是偶函数。

()3. 任何两个实数的和的平方一定大于或等于这两个实数的平方和。

()4. 在等差数列中,若公差为0,则这个数列的所有项都相等。

()5. 任何两个锐角互余。

()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长是____cm。

2. 若函数y = 2x + 3的图像不经过第二象限,则实数k的取值范围是____。

3. 在平面直角坐标系中,点P(3, 4)到x轴的距离是____,到y轴的距离是____。

4. 若一个等差数列的前5项和为35,公差为2,则这个数列的第1项是____。

5. 若一个正方形的边长为6cm,则这个正方形的对角线长是____cm。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是函数的单调性?如何判断一个函数在其定义域内是增函数还是减函数?3. 简述等差数列的通项公式。

2022人教版初中数学九年级上册练习题--实际问题与一元二次方程

2022人教版初中数学九年级上册练习题--实际问题与一元二次方程

初中数学·人教版·九年级上册——第二十一章一元二次方程21.3 实际问题与一元二次方程测试时间:25分钟一、选择题1.(2021山东济南历下期末)某商店于今年元旦期间举行促销活动,元旦当天的销售额是2000元,1月3日的销售额是4500元,从元旦到1月3日,该店销售额平均每天的增长率是()A.15%B.20%C.25%D.50%2.(2020黑龙江哈尔滨南岗月考)直角三角形两条直角边长的和为7,面积是6,则斜边长是()A.√37B.5C.√38D.73.(2021浙江台州仙居期末)某商场销售一批衬衣,平均每天可售出30件,每件衬衣盈利50元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利2000元,则每件衬衣应降价()A.10元B.15元C.20元D.25元4.(2021陕西西安莲湖期中)如图1,有一张长32cm,宽16cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2所示的有盖纸盒.若纸盒的底面积是130cm2,则纸盒的高为()A.2cmB.2.5cmC.3cmD.4cm二、填空题5.(2021广西桂林灌阳期中)有一人患流感,经过两轮传染后,共有49人患了流感,如果不及时控制,第三轮被传染的人数为(三轮传染速度相同).6.(2020贵州遵义汇川模拟)《九章算术》中有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又向东北方向走了一段后与乙相遇,问甲、乙各走了多少步?”请回答:乙走的步数是.三、解答题7.(2021云南临沧云县期末)某种植物的一个主干长出若干数目的支干,每个支干又长出同样数目的小分支,若主干、支干和小分支的总数是43,那么每个支干长出多少个小分支?8.(2021湖南郴州期末)如图,某居民小区改造,计划在居民小区的一块长50米,宽20米的矩形空地内修建两块相同的矩形绿地,使得两块矩形绿地之间及周边留有宽度相等的人行通道,且两块矩形绿地的面积之和为原矩形空地面积的3,那么人行通道的宽度是多少米?49.(2021陕西西安莲湖期末)某商店销售一款工艺品,每件的成本是30元,为了合理定价,投放市场进行试销.据市场调查,当销售单价是40元时,每天的销售量是80件,而销售单价每提高1元,每天就少售出2件,但要求销售单价不得超过55元.(1)若销售单价为45元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1200元,那么每件工艺品售价应为多少元?10.(2021四川资阳雁江期末)全球新冠疫情爆发时,医疗物资极度匮乏,中国许多企业都积极地生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线来生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同,试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线的产能是1500万个/天,若每增加1条生产线,每条生产线的产能将减少50万个/天.①现该厂要保证每天生产口罩6500万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能增加生产线,使得每天生产口罩15000万个?若能,应该增加几条生产线?若不能,请说明理由.一、选择题1.D设该店销售额平均每天的增长率是x,依题意得2000(1+x)2=4500,解得x1=0.5=50%,x2=-2.5(不合题意,舍去).故选D.x(7-x)=6,解得x1=3,x2=4,∴两直角2.B设其中一条直角边的长为x,则另一条直角边的长为(7-x),由题意,得12边长分别为3和4,由勾股定理,得斜边长为√9+16=5.故选B.3.D设每件衬衣应降价x元.根据题意,得(50-x)(30+2x)=2000,整理,得x2-35x+250=0,解得x1=10,x2=25.∵要“增加盈利,尽快减少库存”,∴x1=10应舍去,∴x=25.故选D.×(16-2x)=130,整理,得x2-24x+63=0,解得x1=3,x2=21.当x=3 4.C设纸盒的高为x cm,依题意,得32-2x2时,16-2x=10>0,符合题意;当x=21时,16-2x=-26<0,不符合题意,∴纸盒的高为3cm.故选C.二、填空题5.答案294解析设每轮传染中1人可传染x人,依题意,得(1+x)2=49,解得x1=6,x2=-8(不合题意,舍去),∴第三轮被传染的人数为49×6=294.6.答案212解析设甲、乙两人从开始到相遇经过的时间为t,则乙走了3t步,甲向东北方向走了(7t-10)步,依题意得102+(3t)2=(7t-10)2,整理得40t2-140t=0,解得t1=72,t2=0(不合题意,舍去),∴3t=212.三、解答题7.解析设每个支干长出小分支x个,根据题意列方程,得x2+x+1=43,解得x=6或x=-7(不合题意,舍去).答:每个支干长出6个小分支.8.解析设人行通道的宽度是x米,则两块绿地可合成长为(50-3x)米、宽为(20-2x)米的矩形,根据题意,得(50-3x)(20-2x)=3×50×20,4整理得3x2-80x+125=0,解得x1=25(舍去),x2=5,3.∴x=53米.答:人行通道的宽度是539.解析(1)(45-30)×[80-(45-40)×2]=1050(元).答:每天的销售利润为1050元.(2)设每件工艺品售价为x元,则每天的销售量是[80-2(x-40)]件,依题意,得(x-30)[80-2(x-40)]=1200,整理,得x2-110x+3000=0,解得x1=50,x2=60(不合题意,舍去).答:每件工艺品售价应为50元.10.解析(1)设每天增长的百分率为x,依题意,得500(1+x)2=720,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:每天增长的百分率为20%.(2)①设应该增加m条生产线,则每条生产线的产能为(1500-50m)万个/天,依题意,得(1+m)(1500-50m)=6500,解得m1=4,m2=25,∵要增加产能同时又要节省投入,∴m=4.答:应该增加4条生产线.②不能.理由:设增加a条生产线,则每条生产线的产能为(1500-50a)万个/天,依题意,得(1+a)(1500-50a)=15000,化简得a2-29a+270=0,∵Δ=(-29)2-4×1×270=-239<0,∴方程无解.∴不能通过增加生产线,使得每天生产口罩15000万个.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档