8五年级奥数题:周期性问题(B)[1]
五年级奥数周期问题
第11讲周期问题一、知识要点周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。
在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。
这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。
二、精讲精练【例题1】有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,红花、黄花、绿花各有多少朵?【思路导航】根据题意可知,这些花按5红、9黄、13绿的顺序轮流排列,即5+9+13=27(朵)花为一个周期,不断循环。
因为249÷27=9……6,也就是经过9个周期还余下6朵花,每个周期中前5朵应该是红花,第6朵应是黄花。
249÷(5+9+13)=9 (6)红花有:5×9+5=50(朵)黄花有:9×9+1=82(朵)绿花有:13×9=117(朵)答:最后一朵是黄花。
红花有50朵,黄花有82朵,绿花有117朵。
练习1:1. 1/7=0.142857142857……,小数点后面第100个数字是多少?2. 有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。
最后一盏灯是什么颜色的?三种颜色的灯各占总数的几分之几?【例题2】下面是一个11位数,每3个相邻数字之和都是17,你知道“?”表示的数字是几吗?【思路导航】因为每相邻的3个数字之和为17,从左数起第一位数字与第二、三位数字之和为17,第二、三位数字与第四位数字之和也是17,所以第四位数字是8。
这样,就找到一条规律:从左向右每3位一循环,每隔两位必出现一个相同的数字。
从最末一位数字“6”开始,自右向左,每隔2位出现一个“6”,所以“?”表示的数字应该是“6”。
答:“?”表示的数字是6。
练习2:1.下面是一个8位数,每3个相邻数字之和都是14,你知道问号表示数字是几吗?2. 下面是一个11位数,每3个相邻数字之和都是15,你知道“?”表示的数字是几吗?这个11位数是多少?【例题3】2012年6月1日是星期五,问9月1日是星期几?【思路导航】一个星期是7天,因此7天为一个周期。
小学五年级奥数周期问题
第三讲 周期问题知识要点:周期问题是指事物在运动变化的发展过程中,某些特征循环往复地出现,其连续两次出现所经过的时间叫做周期。
例1、有249朵花,按5朵红花,9朵黄花,13朵绿化的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,红花、黄花、绿花各有多少朵?分析:这些花按5红、9黄、13绿的顺序轮流排列,即5+9+13=27(朵)花为一周期,不断循环。
练习、71=0.142857142857…小数点后面第100个数字是多少?例2、下面是一个11位数,每3个相邻数字之和都是17,你知道“?”表示的数字是几吗?分析:因为每相邻的3个数字之和为17,从左数起第一位数字与第二、三位数字之和为17,第二、三位数字与第四位数字之和也是17,所以第四位数字是8。
这样,就找到一条规律:从左向右每3位一循环,每隔两位必出现一个相同的数字。
练习、下面是一个8位数,每3个相邻数字之和都是14,你知道问号表示的数例3、2012年6月1日是星期五,问9月1日是星期几?分析:一个星期有7天,因此7天为一个周期。
2013年1月1日是星期二,2013年的6月1日是星期几?例4、将奇数如下图所示排列,各列分别用A、B、C、D、E作为代表,问2001所在的列以哪个字母作为代表?A B C D E1 3 5 715 13 11 917 19 21 2331 29 27 25……………………分析:这些数按每8个数一组有规律地排列着(两行一组)。
2001是这些数中的第1001个数。
练习、将偶数2,4,6,8,…按下图依次排列,2014出现在哪一列?A B C D E8 6 4 210 12 14 1624 22 20 1826 28 30 32……………………例5、888…8÷7,当商是整数时,余数是几?100个8练习、444…4÷3,当商是整数时,余数是几?100个41、有47盏彩灯,按2盏红灯、4盏蓝灯、3盏黄灯的顺序排列着。
(完整word版)小学奥数周期问题(五年级)
周期问题一、知要点周期是指事物在运化的展程中,某些特点循往来出,其两次出所的叫做周期。
在数学上,不有研究周期象的分支,而且平解也常常遇到与周期象有关的。
些数学只要我展某种周期象,并充足加以利用,把要求的和某一周期的等式相,就能找到解关。
二、精精【例 1】流水上生小木球涂色的次序是:先 5 个,再 4 个黄,再 3 个,再 2 个黑,再 1 个白,尔后又依次 5 、 4 黄、 3 、2 黑、 1 白⋯⋯这样涂下去,到 2001 个小球涂什么色?【思路航】依照意可知,小木球涂色的次序是 5 、 4 黄、 3 、 2 黑、 1 白,即5+4+3+2+1=15 个球一个周期,不断循。
因 2001÷15=133⋯⋯ 6,也就是 133 个周期余 6 个,每个周期中第 6 个是黄的,因此第 2001 个球涂黄色。
1:1. 跑道上的彩旗按“三面、两面、一面黄”的律插下去,第50 面插什么色?2. 有一串珠子,按 4 个的, 3 个白的, 2 个黑的序重复排列,第160 个是什么色?⋯⋯,小数点后边第100 个数字是多少?- 1 -【例 2】有 47 灯,按二灯、四灯、三黄灯的序排列着。
最后一灯是什么色的?三种色的灯各占数的几分之几?【思路航】( 1)我把二灯、四灯、三黄灯 9 灯看作一, 47÷ 9=5 ()⋯⋯ 2(),余下的两是第 6 的前两灯,是灯,因此最后一灯是灯;(2)由于 47÷ 9=5()⋯⋯ 2(),因此灯共有 2×5+2=12(),占数的 12/47 ;灯共有4×5=20(),占数的 20/47 ;黄灯共有 3×5=15(),占数的 15/47 。
2:1.有 68 面彩旗,按二面的、一面的、三面黄的排列着,些彩旗中,旗占黄旗的几分之几?2.黑珠和白珠共 2000 ,按律排列着:○●○○○●○○○●○○⋯⋯,第2000珠子是什么色的?其中,黑珠共有多少?3.在 100 米的跑道两每隔 2 米站着一个同学。
五年级奥数周期问题练习题
五年级奥数周期问题练习题问题1:某个班级有30个学生,其中15个是男生,剩下的是女生。
男生和女生一起组成了几对?请在下面作答:解答1:班级有30个学生,其中15个是男生,剩下的是15个女生。
男生和女生是一对一配对的,所以有15对。
问题2:在一个奥数比赛中,一支队伍需要有4个人。
有9个学生报名参赛。
请问一共有多少种不同的组队方式?请在下面作答:解答2:从9个学生中选出4个来组成一支队伍,可以使用组合的方法来计算。
C(9, 4) = 9! / (4! * (9-4)!) = 126所以一共有126种不同的组队方式。
问题3:一个街区有10幢房子,每幢房子都有不同的颜色。
现在有4个人,每个人都要住在不同颜色的房子里。
请问一共有多少种不同的安排方式?请在下面作答:解答3:第一个人有10种选择,第二个人有9种选择,第三个人有8种选择,第四个人有7种选择。
所以一共有10 * 9 * 8 * 7 = 5040种不同的安排方式。
问题4:某个月有31天,现在要将这31天分成3个连续的周期(每个周期可以不完整)。
请问一共有多少种不同的分法?请在下面作答:解答4:将31天分成3个周期,可以使用组合的方法来计算。
C(31+3-1, 3-1) = C(33, 2) = 33! / (2! * (33-2)!) = 528所以一共有528种不同的分法。
问题5:一个四位数的各位数字互不相同,且是4个奇数。
请问一共有多少个满足条件的四位数?请在下面作答:解答5:个位数字只能是1、3、5、7、9中的一个。
百位数字只能是1、3、5、7、9中的一个,并且不能和个位数字相同,所以有4种选择。
千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字相同,所以有3种选择。
千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字、千位数字相同,所以有2种选择。
所以一共有5 * 4 * 3 * 2 = 120个满足条件的四位数。
五年级奥数题及答案:周期问题
以下是为⼤家整理的关于五年级奥数题及答案:周期问题的⽂章,希望⼤家能够喜欢!
2009年1⽉1⽇是星期四,那么,2010年1⽉1⽇是星期⼏?
答案与解析:⼀个星期是7天,因此7天为⼀个周期。
1⽉1⽇是星期⼀,是第⼀个周期的第⼀天,再过7天即1⽉8⽇也是星期⼀。
计算天数时为了⽅便,我们采⽤“算尾不算头”的⽅法,例如1⽉8⽇就⽤(8-1)\7=1,没有余数说明8号仍是星期⼀。
题中说从2009年1⽉1⽇到2010年1⽉1⽇,要经过365天,365\7=52(星期)......1(天),这说明365天中包括52个星期还多1天,所以从1⽉1⽇开始过52个星期,最后⼀天还是星期四,从这最后⼀天起再过1天就应是星期五。
解:从2009年1⽉1⽇到2010年1⽉1⽇,要经过365天
365\7=52(星期)......1(天)
答:2010年1⽉1⽇是星期五。
2010年五年级奥数题:周期性问题(b)
2010年五年级奥数题:周期性问题(B)一、填空题(共10小题,每小题3分,满分30分)1.(3分)1992年1月18日是星期六,再过十年的1月18日是星期_________.2.(3分)黑珠、白珠共102颗,穿成一串,排列如图:这串珠子中,最后一颗珠子应该是_________色的,这种颜色的珠子在这串中共有_________颗.3.(3分)流水线上生产小木珠涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后再依次是5红,4黄,3绿,2黑,1白,…继续下去第1993个小珠的颜色是_________色.4.(3分)把珠子一个一个地如图按顺序往返不断投入A、B、C、D、E、F袋中.第1992粒珠子投在_________袋中.5.(3分)将数列1,4,7,10,13…依次如图排列成6行,如果把最左边的一列叫做第一列,从左到右依次编号,那么数列中的数349应排在第_________行第_________列.6.(3分)分数化成小数后,小数点后面第1993位上的数字是_________.7.(3分)化成小数后,小数点后面1993位上的数字是_________.8.(3分)在一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在_________和_________这两个数字上.9.(3分)1991个9与1990个8与1989个7的连乘积的个位数是_________.10.(3分)算式(367367+762762)×123123的得数的尾数是_________.二、解答题(共4小题,满分0分)11.乘积1×2×3×4×…×1990×1991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?12.有串自然数,已知第一个数与第二个数互质,而且第一个数的恰好是第二个数的,从第三个数开始,每个数字正好是前两个数的和,问这串数的第1991个数被3除所得的余数是几?13.表中,将每列上下两个字组成一组,例如第一组为(共社),第二组为(产会),那么第340组是_________.14.甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为_________厘米.2010年五年级奥数题:周期性问题(B)参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)1992年1月18日是星期六,再过十年的1月18日是星期五.考点:日期和时间的推算.分析:在这十年中有3个闰年,所以这10年的总天数是365×10+3,365被7除余1,所以总天数被7除的余数是13﹣7=6,因此10年后的1月18日是星期五.解答:解:(365×10+3)÷7=3653÷7=521(星期)…6(天),因此10年后的1月18日是星期五.故答案为:五.点评:考查了日期和时间的推算,本题得到从1992年1月18日起再过十年的1月18日的总天数是关键,同时还考查了星期几是7天一个循环.2.(3分)黑珠、白珠共102颗,穿成一串,排列如图:这串珠子中,最后一颗珠子应该是黑色的,这种颜色的珠子在这串中共有26颗.考点:周期性问题.分析:根据图示可知,若去掉第一颗白珠后它们的排列是按“一黑三白”交替循环出现的,也就是这一排列的周期为4,由此即可得出答案.解答:解:因为,(102﹣1)÷4,=101÷4,=25…1,所以,最后一颗珠子是黑色的.又因为,1×25+1=26(颗),所以,这种颜色的珠子在这串中共有26颗;故答案为:黑,26.点评:解答此题的关键是,根据图示,找出珠子排列的周期数,由此即可解答.3.(3分)流水线上生产小木珠涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后再依次是5红,4黄,3绿,2黑,1白,…继续下去第1993个小珠的颜色是黑色.考点:周期性问题.分析:小木球是依次按5红,4黄,3绿,2黑和1白的规律涂色的,把它看成周期性问题,每个周期为15.由1993÷15=132…13,所以第1993个小球是第133周期中的第13个,按规律涂色应该是黑色,所以第1993个小球的颜色是黑色.解答:解:5+4+3+2+1=15,1993÷15=132…13,所以第1993个小球是第133周期中第13个,应该与第一周期的第13个小球颜色相同,是黑色.答:第1993个小珠的颜色是黑色.故答案为:黑.可得出.4.(3分)把珠子一个一个地如图按顺序往返不断投入A、B、C、D、E、F袋中.第1992粒珠子投在B袋中.考点:周期性问题.分析:根据题干,可以将已知图形化出分析示意图如下:这样就把这个题目转变成了一个数字排列的问题,由上图中的数字排列可以看出:右边为第一列,下边为第一行,从1开始依次排列;其规律是:每10个数字为一个周期,这10个数字分别所在的列数依次为A→B→C→D→E→F→E→D→C→B;由此规律,只要求出1992是第几周期的第几个数字,即可得出答案.解答:解:根据题干分析可得:上述数字的排列规律为:每10个数字为一个周期,这10个数字分别所在的列数依次为A→B→C→D→E→F→E→D→C→B;1992÷10=199…2,所以1992是第200个周期的第二个数字,与第一周期的第二个数字相同,即是B.答:第1992粒珠子投在B袋中.故答案为:B点评:此题抓住投珠子的方法,把这个实际操作的问题转化成一个单纯的数字问题,可以使分析简洁明了.5.(3分)将数列1,4,7,10,13…依次如图排列成6行,如果把最左边的一列叫做第一列,从左到右依次编号,那么数列中的数349应排在第24行第4列.考点:周期性问题.分析:根据题干可得:①此题是一个等差数列,公差是3;②从排列可以看出,两行为一个周期,即10个数为一个周期,位置分别在的列数为:2、3、4、5、6、5、4、3、2、1;所以只要求出349是这个数列中的第几个数,在第几周期的第几个数字即可得出答案.解答:解:根据题干分析可得:(349﹣1)÷3+1=117,所以349是这列数中的第117个数.117÷10=11…7,所以这个数是第12周期的第7个数字,那么这个数是第1周期的第二行,所以这个数在第12×2=24行,与第一周期的第7个数字位置相同即:在第4列,答:数列中的数349应排在第24行第4列.故答案为:24;4.点评:此题要从两个方面考虑周期①行数,两行一周期,②列数,即10个数字依次排列的列数.6.(3分)分数化成小数后,小数点后面第1993位上的数字是6.考点:周期性问题.分析:=,很显然小数点后面的数字循环周期是6,由此只要得出1993在第几周期的第几个数字即可解决问题.解答:解:=,它的循环周期是6,因为1993÷6=332…1,即在第333周期的第一个数字,与第一周期的第一个数字相同,是6.故答案案为:6.点评:此题抓住的循环节,即可解决问题.7.(3分)化成小数后,小数点后面1993位上的数字是7.考点:周期性问题.分析:题目要求“小数点后面1993位上的数字是多少”,所以就要从化成小数后寻找规律.解答:解:=从小数点后面第二位开始,它的循环周期是6,因为(1993﹣1)÷6=332,则循环节“142857”恰好重复出现332次.所以小数点后面第1993位上的数字是7.故答案为:7.点评:此题考查了小数化分数的方法以及对循环节的掌握情况,同时培养学生寻找规律的能力.8.(3分)在一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在3和7这两个数字上.考点:循环小数及其分类.分析:表示循环小数的两个小圆点中,后一个小圆点显然应加在7的上面,且数字“5”肯定包含在循环节中,然后分情况讨论前一个循环节的点应放在哪.(1)设前一个小圆点加在“5”的上面,这时循环周期是3,(100﹣4)÷3=32,第100位数字是7.(2)设前一个小圆点加在“4”的上面,这时循环周期是4,(100﹣3)÷4=24…1,第100位数字是4.(3)设前一个小圆点加在“3”的上面,这时的循环周期是5,(100﹣2)÷5=19…3,第100位数字正好是5.故答案为:3,7.点评:容易看出后一个小圆点应加在7的上面,但前一个圆点应加在哪个数字上,一下子难以确定,怎么办?唯一的办法就是“试”.因为循环节肯定要包含5,就从数字5开始试.逐步向前移动,直到成功为止.这就像我们在迷宫中行走,不知道该走哪条道才能走出迷宫,唯一的办法就是探索:先试一试这条,再试一试那条.9.(3分)1991个9与1990个8与1989个7的连乘积的个位数是2.考点:周期性问题;乘积的个位数.分析:根据题干,要求它们的连乘积的个位数字,可以先求出它们各自的乘积的个位数字是几,由特例不难归纳出:(1)9的连乘积的个位数字按9,1循环出现,周期为2;(2)8的连乘积的个位数字按8,4,2,6循环出现,周期为4;(3)7的连乘积的个位数字按7,9,3,1循环出现,周期为4.由此即可解决问题.解答:解:根据上述分析可以得出1991个9的乘积个位数字、1990个8的乘积个位数字、1989个7的个位数字分别为:(1)因为1991÷2=995…1,所以1991个9的连乘积的个位数字是第996周期的第一个数,与第一周期的第一个数字相同即是9;(2)因为1990÷4=497…2,所以1990个8的连乘积的个位数字是第498周期的第二个数字,与第一周期的第一个数字相同即是4;(3)因为1989÷4=497…1,所以1989个7的连乘积的个位数字是第498周期的第一个数字,与第一周期的第一个数字相同即是7.所以,9×4×7=252,即1991个9与1990个8与1989年7的连乘积的个位数字是2.答:连乘积的个位数是2.故答案为:2.点评:抓住题干,求出9的连乘积、8的连乘积和7的连乘积的个位数字的规律,是解决本题的关键.10.(3分)算式(367367+762762)×123123的得数的尾数是9.考点:周期性问题.分析:分别找出个位数字7、2、3的连乘积的个位数的循环周期:如7的连乘积,积的尾数以7,9,3,1,循环出现,周期为4,因为367÷4=913,所以,367367的尾数为3;如此类推,…即可解决问题.解答:解:(1)7的连乘积,尾数(个位数字)以7,9,3,1循环出现,周期为4;因为367÷4=91…3,所以,367367的尾数为3.(2)2的连乘积,尾数以2,4,8,6循环出现,周期为4;因为762÷4=190…2,所以,762762的尾数为4.(3)3的连乘积,尾数以3,9,7,1循环出现,周期为4;123÷4=30…3,所以,123123的尾数为7.(4)综上所述,(367367+762762)×123123的尾数就是(3+4)×7的尾数,(3+4)×7=49,答:得数的尾数是9.故答案为:9.点评:此题考查了利用个位数字为7,2,3的连乘积的积的尾数的规律进行解决问题的方法二、解答题(共4小题,满分0分)11.乘积1×2×3×4×…×1990×1991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?考点: 周期性问题.分析: 我们用所有数的乘积除以了495个5之后得到的个位数字是6,那还要除以495个2才可以,因为他们乘到一起变成了495个0,再除以495个2就相当于把末尾的0全部去掉了,那么此时的个位数字就是要求的第一个不为0的数.2的495次方的个位数字是8(2的n 次方的个位数字是2,4,8,6四位一周期495÷4=123…3)那么用刚才我们除以495个5之后得到的个位数字6除以8,就会得到最终的个位数字,6÷8的个位数字是2(就是2×8个位数字是6,当然7×8的个位数字也是6,但是注意了2的个数要远多于495个,所以最终的去掉495个0之后的数一定是个偶数,所以只能是2.解答: 解:此题中是1991个数字的连乘积,原式中去掉所有5的倍数得:1×2×3×4×6×7×8×9×11×12×13×14×16×17×18×19×21×22×23×24×26×27×28×29×…×1981×1982×1983×1984×1986×1987×1988×1989×1991≡(1×2×3×4×6×7×8×9)×(1×2×3×4×6×7×8×9)×…×(1×2×3×4×6×7×8×9)×1≡6×6×…×6×1所有数的乘积除以了495个5之后得到的个位数字是6,那还要除以495个2才可以,因为他们乘到一起变成了495个0,再除以495个2就相当于把末尾的0全部去掉了,那么此时的个位数字就是要求的第一个不为0的数.2的495次方的个位数字是8;2的n 次方的个位数字是2,4,8,6四位一周期,495÷4=123…3;那么用刚才我们除以495个5之后得到的个位数字6除以8,就会得到最终的个位数字,6÷8的个位数字是2(就是2×8个位数字是6,当然7×8的个位数字也是6,但是注意了2的个数要远多于495个,所以最终的去掉495个0之后的数一定是个偶数,所以只能是2.点评: 将原式进行分组整合讨论,根据个位数字是2、5乘积的个位数字特点进行分析,得出从右边数第一位不为0的数字规律;根据2的连乘积的末位数的出现周期解决问题,是本题的关键所在.12.有串自然数,已知第一个数与第二个数互质,而且第一个数的恰好是第二个数的,从第三个数开始,每个数字正好是前两个数的和,问这串数的第1991个数被3除所得的余数是几?考点: 周期性问题.分析: (1)因为第一个数×=第二个数×,所以第一个数:第二个数=:=3:10.又两数互质,所以第一个数为3,第二个数为10,从而这串数为:3,10,13,23,36,59,95,154,249,403,652,1055…(2)要求这串数的第1991个数被3除所得的余数是几,可以先推理出得出这串数字除以3的余数的规律是什么;由此即可解决问题.解答: 解:根据题干分析可得这串数字为:3,10,13,23,36,59,95,154,249,403,652,1055…这串数字被3除所得的余数依次为:0,1,1,2,0,2,2,1,0,1,1,2,所以可以看出这串数字除以3的余数按“0,1,1,2,0,2,2,1”循环,周期为8.因为1991÷8=248…7,所以第1991个数被3除所得余数应是第249周期中的第7个数,即2.答:这串数的第1991个数被3除所得的余数是2.点评: 解答此题应注意以下两个问题:(1)由于两个数互质,所以这两个数只能是最简整数比的两个数;(2)求出这串数被3除所得的余数后,找出余数变化的周期,但这并不是这串数的周期.一般来说,一些有规律的数串,被某一个整数逐个去除,所得的余数也具有周期性.13.表中,将每列上下两个字组成一组,例如第一组为(共社),第二组为(产会),那么第340组是(好,好).考点:周期性问题.分析:此题分成两部分来看:(1)上面一部分的周期为:四字一周期,分别为:共→产→党→好;那么第340个字在340÷4=85周期最后一个,与第一组中第四个字“好”相同;(2)同样的方法可以得出下面的周期为:五字一周期:社→会→主→义→好,由此即可解决问题.解答:解:根据题干分析:(1)上面四字一周期,分别为:共→产→党→好;那么第340个字在340÷4=85周期的最后一个,与第一组中第四个字“好”相同;(2)下面五字一周期,分别为:社→会→主→义→好,那么第340个字在340÷5=68周期最后一个数字,与第一周期的最后一个字“好”相同;答:由上述推理可得:第340组的数字是(好,好),故答案为:(好,好).点评:此题也可以这样考虑:因为“共产党好”四个字,“社会主义好”五个字,4与5的最小公倍数是20,所以在连续写完5个“共产党好”与4个“社会主义好”之后,将重复从头写起,出现周期现象,而且每个周期是20组数.因为340÷20=17,所以第340组正好写完第17个周期,第340组是(好,好).14.甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为75厘米.考点:公约数与公倍数问题.分析:根据题意甲、乙从同一端点开始涂色,甲按黑、白,黑、白交替进行;乙按白、黑,白、黑交替进行,如图所示.由图可知,甲黑、乙白从同一端点起,到再一次甲黑、乙白同时出现,应是5与6的最小公倍数的2倍,即5×6×2=60厘米,也就是它们按60厘米为周期循环出现,据此可以轻松求解.解答:解:按60厘米为周期循环出现,在每一个周期中没有涂色的部分是,1+3+5+4+2=15(厘米);所以,在3米的木棍上没有涂黑色的部分长度总和是,15×(300÷60)=75(厘米).故答案为:75.点评:此题主要考查最小公倍数问题,注意这里的周期是5与6最小公倍数的2倍,而不是5与6的最小公倍数.。
五年级奥数:周期问题
五年级奥数:周期问题专题简析:在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。
我们把这种特殊的规律性问题称为周期问题。
解答周期问题的关键是找规律,找出周期。
确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。
例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。
(1)□△□△□△□△……(2)□△△□△△□△△……分析与解答:第(1)题排列规律是“□△”两个图形重复出现,20÷2=10,即“□△”重复出现10次,所以第20个图形是△。
第(2)题的排列规律是“□△△”三个图形重复出现,20÷3=6…2,即“□△△”重复出现6次后又出现了两个图形“□△”,所以第20个图形是△。
例2:有一列数,按5、6、2、4、5、6、2、4…排列。
(1)第129个数是多少?(2)这129个数相加的和是多少?分析与解答:(1)从排列可以看出,这组数是按“5、6、4、2”一个循环依次重复出现进行排列,那么一个循环就是4个数,则129÷4=32…1,可知有32个“5、6、4、2”还剩一个。
所以第129个数是5。
(2)每组四个数之和是5+6+4+2=17,所以,这129个数相加的和是17×32+5=549。
例3:假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89…分析与解答:从排列情况可以知道,这些自然数是按从小到大4个数一个循环,我们可以根据这些数除以4所得的余数来分析。
39÷4=9…3 88÷4=22所以,39应排在第10个循环的第三个字母C下面,88应排在第22个循环的第四个字母D下面。
小学奥数周期问题(五年级)
周期问题一、知识要点周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。
在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。
这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。
二、精讲精练【例题1】流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白……如此涂下去,到2001个小球该涂什么颜色?【思路导航】根据题意可知,小木球涂色的次序是5红、4黄、3绿、2黑、1白,即5+4+3+2+1=15个球为一个周期,不断循环。
因为2001÷15=133……6,也就是经过133个周期还余6个,每个周期中第6个是黄的,所以第2001个球涂黄色。
练习1:1.跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?2.有一串珠子,按4个红的,3个白的,2个黑的顺序重复排列,第160个是什么颜色?3.1/7=0.142857142857……,小数点后面第100个数字是多少?【例题2】有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。
最后一盏灯是什么颜色的?三种颜色的灯各占总数的几分之几?【思路导航】(1)我们把二盏红灯、四盏蓝灯、三盏黄灯这9盏灯看作一组,47÷9=5(组)……2(盏),余下的两盏是第6组的前两盏灯,是红灯,所以最后一盏灯是红灯;(2)由于47÷9=5(组)……2(盏),所以红灯共有2×5+2=12(盏),占总数的12/47;蓝灯共有4×5=20(盏),占总数的20/47;黄灯共有3×5=15(盏),占总数的15/47。
练习2:1.有68面彩旗,按二面红的、一面绿的、三面黄的排列着,这些彩旗中,红旗占黄旗的几分之几?2.黑珠和白珠共2000颗,按规律排列着:○●○○○●○○○●○○……,第2000颗珠子是什么颜色的?其中,黑珠共有多少颗?3.在100米长的跑道两侧每隔2米站着一个同学。
五年级数学奥数题周期问题练习题带答案
1、1÷7=0.142857142857......小数点后面第100位是多少?
答案:100÷6=16(组)......4(个)
答:小数点后面第100位是8。
2、0.53728937289......间,小数点后面第2000位上的数字是多少? 前2000位上的数字之和是多少?
答案:(2000-1)÷5=399(组)......4(个)
3+7+2+8+9=29
29×399+3+7+2+8+5=11596
答:小数点后面第2000位上的数字是8,前2000位上的数字之和是11596。
3、请同学们伸出左手,如下图所示那样,从大拇指开始依次数数字,.. 问数到2014时,你数在哪个手指上?
答案:2014÷8=251(组)......6(个)
答:无名指。
4、如下图所示,每列上、下一个字和一一个字母组成一一组,例如:
第一组是(我、A),第二组是(们、B),那么第62组是什么?
我们爱科学我们爱科学...
A B C D E F G A B C ...
如下图所示,每列上、下一个字和一一个字母组成一一组,例如:第一组是(我、A),第二组是(们、B),那么第62组是什么?
答案:62÷5=12(组)......2(个)们
62÷7=8(组)......6(个) F
答:第62个数是“们、F”。
5、7×7×7×......×7积的个位数字是几?
202个7
答案:202÷4=50(组)……2(个)
答:积的个位数字是9。
五年级奥数专题:周期性问题(含答案)
周期性问题在日常生活中,有一些现象按照一定的规律不断重复出现。
如:人调查十二生肖:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪;一年有春夏秋冬四个季节;一个星期有七天等。
像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。
这类问题一般要利用余数的知识来解决。
在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,如果正好有个整数周期,结果为周期里的最后一个;如果不是从第一个开始循环,利用除法算式求出余数,最后根据余数的大小得出正确的结果。
一、例题与方法指导例1. 某年的二月份有五个星期日,这年六月一日是星期_____.思路导航:因为7⨯4=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了 31+30+31+1=93(天).因为93÷7=13…2,所以这年6月1日是星期二.例2. 1989年12月5日是星期二,那么再过十年的12月5日是星期_____.思路导航:依题意知,这十年中1992年、1996年都是闰年,因此,这十年之中共有365⨯10+2=3652(天)因为(3652+1)÷7=521…6,所以再过十年的12月5日是星期日.[注]上述两题(题1—题2)都是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.例3. 按下面摆法摆80个三角形,有_____个白色的.……思路导航:从图中可以看出,三角形按“二黑二白一黑一白”的规律重复排列,也就是这一排列的周期为6,并且每一周期有3个白色三角形.因为80÷6=13…2,而第十四期中前两个三角形都是黑色的,所以共有白色三角形13⨯3=39(个).例4. 节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_____灯.思路导航:依题意知,电灯的安装排列如下:白,红,黄,绿,白,红,黄,绿,白,……这一排列是按“白,红,黄,绿”交替循环出现的,也就是这一排列的周期为4.由73÷4=18…1,可知第73盏灯是白灯.例5. 时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_____.思路导航:分针旋转一周为1小时,旋转1991周为1991小时.一天24小时,1991÷24=82…23,1991小时共82天又23小时.现在是14时正,经过82天仍然是14时正,再过23小时,正好是13时.[注]在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.二、巩固训练1992”在_____列.2. 把分数7化成小数后,小数点第110位上的数字是_____. 3. 循环小数7992511.0 与74563.0 .这两个循环小数在小数点后第_____位,首次同时出现在该位中的数字都是7.4. 一串数: 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4,……共有1991个数.(1)其中共有_____个1,_____个9_____个4;(2)这些数字的总和是_____.10. 7⨯7⨯7⨯……⨯7所得积末位数是_____.50个答案:6. 3仔细观察题中数表.1 2 3 4 5 (奇数排)第一组 9 8 7 6 (偶数排)10 11 12 13 14 (奇数排)第二组 18 17 16 15 (偶数排)19 20 21 22 23 (奇数排)第三组 27 26 25 24 (偶数排)可发现规律如下:(1)连续自然数按每组9个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9除余数为1,第2列用9除余数为2,…,第5列用9除余数为5.(3)10÷9=1…1,10在1+1组,第1列19÷9=2…1,19在2+1组,第1列因为1992÷9=221…3,所以1992应排列在(221+1)=222组中奇数排第3列数的位置上. 7. 774=0.57142857…… 它的循环周期是6,具体地六个数依次是5,7,1,4,2,8110÷6=18 (2)因为余2,第110个数字是上面列出的六个数中的第2个,就是7.8. 35 因为0.1992517的循环周期是7,0.34567的循环周期为5,又5和7的最小公倍数是35,所以两个循环小数在小数点后第35位,首次同时出现在该位上的数字都是7.9. 853,570,568,8255.不难看出,这串数每7个数即1,9,9,1,4,1,4为一个循环,即周期为7,且每个周期中有3个1,2个9,2个4.因为1991÷7=284…3,所以这串数中有284个周期,加上第285个周期中的前三个数1,9,9.其中1的个数是:3⨯284+1=853(个),9的个数是2⨯284+2=570(个),4的个数是2⨯284=568(个).这些数字的总和为1⨯853+9⨯570+4⨯568=8255.三、拓展提升1. 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8⨯9=72,在9后面写2,9⨯2=18,在2后面写8,……得到一串数字:1 9 8 92 8 6……这串数字从1开始往右数,第1989个数字是什么?2. 1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?3. 设n =2⨯2⨯2⨯……⨯2,那么n 的末两位数字是多少?1991个4.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?答案:11. 依照题述规则多写几个数字:1989286884286884……可见1989后面的数总是不断循环重复出现286884,每6个一组,即循环周期为6.因为(1989-4)÷6=330…5,所以所求数字是8.12. 1991个1990相乘所得的积末两位是0,我们只需考察1990个1991相乘的积末两位. . . .数即可.1个1991末两位数是91,2个1991相乘的积末两位数是81,3个1991相乘的积末两位数是71,4个至10个1991相乘的积的末两位数分别是61,51,41,31,21,11,01,11个1991相乘积的末两位数字是91,……,由此可见,每10个1991相乘的末两位数字重复出现,即周期为10.因为1990÷10=199,所以1990个1991相乘积的末两位数是01,即所求结果是01.13. n 是1991个2的连乘积,可记为n =21991,首先从2的较低次幂入手寻找规律,列表如下:n n 的十位数字 n 的个位数字 n n 的十位数字 n 的个位数字21 0 2 212 9 622 0 4 213 9 223 0 8 214 8 424 1 6 215 6 825 3 2 216 3 626 6 4 217 7 227 2 8 218 4 428 5 6 219 8 829 1 2 220 7 6210 2 4 221 5 2211 4 8 222 0 4观察上表,容易发现自22开始每隔20个2的连乘积,末两位数字就重复出现,周期为20.因为1990÷20=99…10,所以21991与211的末两位数字相同,由上表知211的十位数字是4,个位数字是8.所以,n 的末两位数字是48.14. 因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如下图所示.由图示可知长1厘米的短木棍,每一周期中有两段,如第1周期中,6-5=1,5⨯5-6⨯4=1.剩余10厘米中有一段.所以锯开后长1厘米的短木棍共有7段.综合算式为:2⨯[(100-10)÷30]+1=2⨯3+1=7(段)[注]解决这一问题的关键是根据整除性把自右向左每隔5厘米的染色,转化为自左向右的染色,便于利用最小公倍数发现周期现象,化难为易.. . . . . . 6 12 18 24 30 5 10 15 20 25 95 96 100 . 90。
五年级奥数 周期性问题
五年级奥数周期性问题
【知识导学】
在日常生活中,有一些现象按照一定的规律周而复始,不断重复出现。
例如:一周有7天,从星期一开始到星期日结束;一天有24小时,从0时开始到24时结束;一年有春、夏、秋、冬四季等。
我们把这种特殊的规律性问题称为周期问题。
例如:循环小数问题、余数问题、星期问题、末位数字问题等。
解决周期问题的关键是找出规律,确定循环周期。
周期确定后,用总量除以周期,如果正好有几个周期,结果就为周期里的最后一个;如果比整个周期多几个,那么就为下一个周期的第几个;如果不是从第一个开始循环,可以从总量中减掉不是循环的个数后,再继续算,从而达到解决问题的目的。
【例题精讲】
例1、上海儿童彩球公司流水线上生产小木球的涂色次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后依次5红、4黄、3绿、2黑、1白⋯⋯如此涂下去,到第2009个小球该涂什么颜色?
例2、2008年5月12日四川发生“汶川大地震”时刚好是星期一,那么胡锦涛主席主持的2009年5月12日“汶川大地震一周年”纪念日是星期几呢?
例3、43×43×43×⋯×43的积的个位数字是几?
100个43
【巩固提高】
1、黑珠子和白珠子共2000颗,按下列规律排列着:○●○○○●○○○●○○○●○○⋯⋯,第2000颗珠子是什么颜色的?其中,黑珠子共有多少颗?
2、2009年2月1日是星期日,这一年的6月1日是星期几?
3、2×2×2×⋯×2−1的末位数字是几?
67个2。
优质文档精选小学奥数周期问题
什么是周期问题?
鼠 牛 虎 兔龙蛇马 羊猴 鸡 狗 猪
星期一 星期二 星期三 星期四 星期五 星期六 星期日
例如:星期三 星期四 星期五 星期六 星期日 星期一 星期二
什么是周期问题?
• 有一些现象是按照一定的规律、依次不断重复出 现的,我们把这种特殊的规律性问题叫做周期问 题,而重复出现的一节个数叫做周期(周期是一 个数) 。
【例2】有一列数按“125691256912569······”排列,那么 第48个数字是多少?前48个数字之和是多少?
解析:观察例题数列,重复出现的循环是1、2、5、6、9。
48 ÷5=9(组)······3(个)
周期=5
1+2+5+6+9=23
23 ×9+1+2+5=215
答:第48个数字是5,前48个数字之和是215。
答:第100枚是1分硬币,前100枚硬币一共是2.65元。
【例3】 24个2相乘,积末位数字是几?
解析:
2=2
2×2=4
2×2×2=8
2×2×2×2=16
2×2×2×2×2×2=32
2×2×2×2×2×2×2=64
···················
周期顺序:2、4、8、6
周期=4
24 ÷4=6(组) 答: 24个2相乘,积末位数字是6。
巩固练习:小明和小华做游戏,将存钱罐里的硬币拿出来, 按一枚1分硬币,一枚2分硬币,一枚5分硬币,再一枚1 分硬币,一枚2分硬币,一枚5分硬币......,这样的顺序往 下摆,请你算一算第100枚是几分硬币?前100枚硬币一 共是多少元?
五年级奥数找规律、周期性问题.docx
找规律、周期性问题一、填空题1.某年的二月份有五个星期日, 年六月一日是星期 _____.2. 1989 年 12 月 5 日是星期二 , 那么再 十年的 12 月 5 日是星期 _____.3. 按下面 法 80 个三角形 , 有_____个白色的 .⋯⋯4. 日的校园内挂起了一 小 灯, 小明看出每两个白灯之 有 、 黄、 各一 彩灯 . 也就是 , 从第一 白灯起 , 每一 白灯后面都 接着有 3 彩灯 , 小明想第 73 灯是 _____灯.5. 在表示的 是 14 正 , 那么分 旋 1991 周后 , 表示的 是 _____.6. 把自然数 1,2,3,4,5 ⋯⋯如表依次排列成 5 列,那么数“ 1992”在 ___列.第一列第二列第三列第四列第五列12 3 4 59 8 7 6 1011 12 13 1418 17 16 15 ⋯⋯⋯ ⋯ ⋯⋯⋯⋯⋯7. 把分数 4化成小数后,小数点第 110 位上的数字是 _____.78. 循 小数 0.1992517 与 0.34567 . 两个循 小数在小数点后第 _____位,首次同 出 在 位中的数字都是 7.9. 一串数 : 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4,⋯⋯共有 1991 个 数 .(1) 其中共有 _____个 1,_____ 个 9_____个 4;(2) 些数字的 和是 _____.10. 7 7 7 ⋯⋯ 7 所得 末位数是 _____.50 个二、解答题11. 接着 1989 后面一串数字, 写下的每个数字都是它前面两个数字的乘 的个位数 . 例如 8 9=72, 在 9 后面写 2,9 2=18, 在 2 后面写 8, ⋯⋯得到一串数字 :1 9 8 9 2 8 6⋯⋯ 串数字从 1 开始往右数,第 1989个数字是什么?12. 1991 个 1990 相乘所得的 与 1990 个 1991 相乘所得的 ,再相加的和末两位数是多少?13. n=2 2 2 ⋯⋯ 2,那么 n 的末两位数字是多少?1991 个14.在一根 100 厘米的木棍上,自左至右每隔 6 厘米染一个 点,同 自右至左每隔 5 厘米也染一个 点, 然后沿 点 将木棍逐段 开, 那么 度是1 厘米的短木棍有多少根?———————————————答案——————————————————————1.二因 7 4=28,由某年二月份有五个星期日,所以年二月份是29天,且 2 月 1 日与 2月 29 日均星期日, 3 月 1 日是星期一,所以从年 3 月1 日起到年 6 月 1日共了31+30+31+1=93(天).因 93 7=13⋯2,所以年 6 月 1 日是星期二 .2.日依意知,十年中1992 年、 1996 年都是年,因此,十年之中共有365 10+2=3652(天)因( 3652+1)7=521⋯6,所以再十年的12 月 5 日是星期日 .[ 注 ] 上述两题 ( 题 1—题 2) 都是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答. 在计算天数时一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是是闰年,公历年数为整百数时,必须是400 的倍数才是闰年., 要根据“四年4 的倍数就3. 39从中可以看出 , 三角形按“二黑二白一黑一白”的律重复排列,也就是一排列的周期 6,并且每一周期有 3 个白色三角形 .因 80 6=13⋯ 2,而第十四期中前两个三角形都是黑色的,所以共有白色三角形13 3=39(个) .4.白依意知 , 灯的安装排列如下 :白, , 黄 , , 白 , , 黄, , 白, ⋯⋯一排列是按“白,,黄,”交替循出的,也就是一排列的周期 4.由 73 4=18⋯1, 可知第 73 灯是白灯 .5. 13.分旋一周 1 小 , 旋 1991 周 1991 小 . 一天 24 小,1991 24=82⋯ 23,1991 小共 82 天又 23 小 . 在是 14 正 , 82 天仍然是 14 正 , 再 23 小 , 正好是 13 .[ 注 ] 在圆面上 , 沿着圆周把 1 到 12 的整数等距排成一个圈, 再加上一根长针和一根短针,就组成了我们天天见到的钟面 . 钟面虽然是那么的简单平常 , 但在钟面上却包含着十分有趣的数学问题 , 周期现象就是其中的一个重要方面 .6.3仔察中数表 .1 2 3 45(奇数排 )第一98 76(偶数排 )10 11 12 13 14(奇数排 )第二18 1716 15 (偶数排 )19 20 21 22 23(奇数排 )第三27 2625 24 (偶数排 )可律如下 :(1)自然数按每 9 个数 , 且奇数排自左往右五个数 , 偶数排自右往左四个数的律循排列;(2)察第二 , 第三 , 奇数排的数如果用 9 除有如下律 : 第 1 列用 9 除余数 1,第 2 列用 9 除余数 2, ⋯,第 5 列用 9 除余数 5.(3)10 9=1⋯ 1, 10 在 1+1 ,第 1 列199=2⋯ 1, 19 在 2+1 ,第 1 列因 1992 9=221⋯3,所以 1992 排列在( 221+1)=222 中奇数排第 3 列数的位置上 .7. 74=0. ⋯⋯7它的循周期是 6,具体地六个数依次是5,7,1,4,2, 8110 6=18⋯2因余 2,第 110 个数字是上面列出的六个数中的第 2 个,就是 7.8.35 ....因的循周期是 7, 的循周期 5, 又 5 和 7 的最小公倍数是 35, 所以两个循小数在小数点后第 35 位, 首次同出在位上的数字都是 7.9.853,570,568,8255.不看出 , 串数每 7 个数即 1,9,9,1,4,1,4一个循 , 即周期 7, 且每个周期中有 3 个 1,2 个 9,2 个 4. 因1991 7=284⋯3,所以串数中有284 个周期,加上第 285 个周期中的前三个数1,9,9. 其中 1 的个数是 :3284+1=853(个),9 的个数是 2284+2=570(个),4 的个数是2284=568(个). 些数字的和 1853+9 570+4 568=8255.10. 9先找出的末位数的化律:123454+17 末位数 7,7 末位数 9,7 末位数 3, 7末位数1;7 =7末位数由此可,的末位依次 7,9,3,1,7, 9, 3, 1⋯⋯,以 4 周期循出 .因 50 4=12⋯2,即 750=74 12 2,所以 750与 72末位数相同,也就是的末位数是 9.11.依照述多写几个数字 :884⋯⋯可 1989 后面的数是不断循重复出286884,每 6 个一,即循周期6. 因 (1989-4)6=330⋯5,所以所求数字是 8.12. 1991个 1990相乘所得的末两位是 0, 我只需考察 1990 个 1991 相乘的末两位数即可 .1个 1991 末两位数是 91,2 个 1991 相乘的末两位数是81,3 个 1991 相乘的末两位数是 71,4 个至 10 个 1991 相乘的的末两位数分是61,51,41,31,21,11,01,11 个 1991 相乘的末两位数字是 91,⋯⋯,由此可,每 10 个 1991相乘的末两位数字重复出,即周期 10. 因 1990 10=199, 所以1990 个 1991 相乘的末两位数是 01, 即所求果是 01.13.n 是 1991 个 2 的乘 , 可 n=21991, 首先从 2 的低次入手找律 , 列表如下 :n n 的十n 的个nn 的十n 的个位数字位数字位数字位数字212120296220421392230821484241621568253221636266421772272821844285621988291222076210242215221148222042察上表 , 容易自 2 开始每隔 20 个 2 的乘 , 末两位数字就重复出 , 周期 20. 因 1990 20=99⋯ 10,所以 21991与 211的末两位数字相同,由上表知211的十位数字是 4,个位数字是 8. 所以 , n 的末两位数字是48.14. 因 100 能被 5 整除 , 所以自右至左染色也就是自左至右染色 . 于是我可以看作是从同一端点染色 .6 与 5 的最小公倍数是 30, 即在 30 厘米的地方 , 同染上色 , 染色就会出循 , 每一周的度是 30 厘米 , 如下所示 .612.182430.96100.....5101520259095由示可知 1 厘米的短木棍 , 每一周期中有两段 , 如第 1 周期中 ,6-5=1,5 5-64=1. 剩余 10 厘米中有一段 . 所以开后 1 厘米的短木棍共有7 段 . 合算式 :2[(100-10)30]+1=23+1=7( 段)[ 注 ] 解决这一问题的关键是根据整除性把自右向左每隔 5 厘米的染色 , 转化为自左向右的染色 , 便于利用最小公倍数发现周期现象, 化难为易 .。
五年级奥数专题 周期性问题(学生版)
周期性问题学生姓名授课日期教师姓名授课时长知识定位本讲是小升初的热点内容。
通过本讲的学习,主要是锻炼学生观察和总结的能力。
要求学生能够发现问题的周期,并且能够确定周期。
本讲除了讲解一般排序的周期问题外,还将讲解数表、末尾数字和圆周上的周期问题。
在学习这部分内容时应当注意:数字或图形或事物是从什么位置开始循环的,能够确定周期。
并且会处理余数问题,能够准确的根据余数确定问题中的事物所在的位置。
重点难点:1.找准变化的规律2.确定解题的突破口知识梳理【授课批注】在给学生讲解周期性问题时,要结合具体的事例(比如星期问题),让学生更深刻的理解周期性问题,并带领学生总结出最后的余数如何处理才能正确的解决问题。
【授课批注】在给学生讲解周期性问题时,要结合具体的事例(比如星期问题),让学生更深刻的理解周期性问题,并带领学生总结出最后的余数如何处理才能正确的解决问题。
一、周期问题的一般定义和解题思路周期问题的定义:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.阳历中有闰日的年份叫闰年,相反就是平年,平年为365天,闰年为366天. 在公历纪年中,平年的二月为28天,闰年的二月为29天. 闰年的2月29日为闰日.一般的,能被4整除的年份是闰年,不能被4整除的年份是平年.如:1988年2008年是闰年;2005年2006年2007年是平年.但是如果是世纪年(也就是整百年),就只有能被400整除才是闰年,否则就是平年.如:2000年就是闰年,1900年就是平年.解题思路:周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
二、竞赛考点:同余知识的应用 例题精讲【试题来源】【题目】今天是星期_________ ;那么80天后是星期______________ 。
五年级奥数分册第11周 周期问题-精华版
第11周周期问题专题简析:周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。
在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。
这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。
例题1 流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白……如此涂下去,到2001个小球该涂什么颜色?分析根据题意可知,小木球涂色的次序是5红、4黄、3绿、2黑、1白,即5+4+3+2+1=15个球为一个周期,不断循环。
因为2001÷15=133……6,也就是经过133个周期还余6个,每个周期中第6个是黄的,所以第2001个球涂黄色。
练习一1,跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?2,有一串珠子,按4个红的,3个白的,2个黑的顺序重复排列,第160个是什么颜色?3,1/7=0.142857142857……,小数点后面第100个数字是多少?例题2 有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。
最后一盏灯是什么颜色的?三种颜色的灯各占总数的几分之几?分析(1)我们把二盏红灯、四盏蓝灯、三盏黄灯这9盏灯看作一组,47÷9=5(组)……2(盏),余下的两盏是第6组的前两盏灯,是红灯,所以最后一盏灯是红灯;(2)由于47÷9=5(组)……2(盏),所以红灯共有2×5+2=12(盏),占总数的1247;蓝灯共有4×5=20(盏),占总数的2047;黄灯共有3×5=15(盏),占总数的1547。
练习二1,有68面彩旗,按二面红的、一面绿的、三面黄的排列着,这些彩旗中,红旗占黄旗的几分之几?2,黑珠和白珠共2000颗,按规律排列着:○●○○○●○○○●○○……,第2000颗珠子是什么颜色的?其中,黑珠共有多少颗?3,在100米长的跑道两侧每隔2米站着一个同学。
小学奥数周期问题解析(精编文档).doc
【最新整理,下载后即可编辑】第十四讲:周期问题知识点说明周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类:1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.板块一、图形中的周期问题【例 1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【解析】仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330÷=,正好有30个周期,第90个是白球.100333÷=…1,有33个周期还多1个,所以,第100个是黑球.【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【例 2】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【解析】⑴这些珠子是按红、黄、蓝、绿、白的顺序排列,每一组有5颗.73514÷=(组)……3(颗),第73颗是第15组的第3颗,所以是蓝色的.⑵第10颗黄珠子前面有完整的9组,一共有5945⨯=(颗)珠子.第10颗黄珠子是第l0组的第2颗,所以它是从头数的第47颗.列式:=(颗)=+47⨯+452592⑶第8颗红珠子与第11颗红珠子之间一共有14颗珠子.第8颗红珠子与第11颗红珠子之间有完整的两组(第9、10组),共l0颗珠子,第8颗红珠子后面还有4颗珠子,所以是14颗.列式:524=+=(颗).⨯+10414【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?【解析】这道题是按“北京欢迎你”的规律重复排列,即5个字为一个周期.因为2855÷=…3,所以28个字里含有5个周期还多3个字,即第28个字就是所列一个周期中的第3个字,所以第28个字是“欢”字.【巩固】节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯?【解析】从第一盏白灯开始,每隔三盏彩灯就又出现一盏白灯,不难看出白灯的编号依次是:1,5,9,13,……,这些编号被4除所得的余数都是1.734181=⨯+,即73被4除的余数是1,因此第73盏灯是白灯.【例 3】节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜色?⑵前200盏彩灯中有多少盏蓝灯?【解析】⑴街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,这样一个周期变化的,实际上一个周期就是54110++=(盏)灯.150(541)15÷++=,150盏灯刚好15个周期,所以第150盏应该是这个周期的最后一盏,是黄色的灯.⑵如果是200盏灯,就是200(541)20÷++=的周期.每个周期都有4盏蓝灯,20480⨯=(盏)前200盏彩灯中有80盏蓝灯.【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【解析】50(225) 5÷++=…5.52212⨯+=(个).【巩固】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【解析】⑴每个周期有3216++=枚硬币,要求最后一枚,用这个数除以6,根据余数来判断÷=……2,所以最后一枚是1分硬币200633⑵每个周期中6枚硬币共价值13221512⨯+⨯+⨯=(分),用这个数乘以周期次数再加上余下的,就可以得到一共价值多少了12332398⨯+=(分),所以,这200枚硬币一共价值398分.【巩固】桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【解析】1963÷=…2,所以,第19枚硬币是一角的,第14枚硬币是五角÷=…1,1462的.【巩固】有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵?【解析】这些花按5红、9黄、13绿的顺序轮流排列,它的一个周期内有591327÷=……6,所以,这249朵花中含有++=(朵)花.因为2492799个周期还余下6朵花.按花的排列规律,这6朵花中前5朵应是红花,最后一朵应是黄花.在这一个周期里,绿花最多,红花最少,所以在249朵花中,自然也是绿花最多,红花最少.少几朵呢?有两种解法:(方法1)249(5913)9÷++= (6)红花有:59550⨯+=(朵)绿花有:139117⨯=(朵)红花比绿花少:1175067-=(朵)(方法2)249(5913)9÷++=……6,一个周期少的:1358-=(朵),9872⨯=(朵),余下的6朵中还有5朵红花,所以72567-=(朵).【例 4】 如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A ”,第二组是“们,B ”……⑵如果“爱,C ”代表1991年,那么“科,D ”代表1992年……问2008年对应怎样的组?【解析】 (1)要求第62组是什么数,我们要分别求出上、下两行是什么字(字母),上面一行是以“我们爱科学”五个字为一个周期,下面一行则是以“ABCDEFG ”七个字母为一个周期62512÷=……2 ,6278÷=……6,所以第62组是“们,F ”⑵2008是1991之后的第17组,现在上面一行按“科学我们爱”五个字为一个周期,下面一行则按“DEFGABC ” 七个字母为一个周期:2008199117-=(组),1753÷= (2)1772÷=……3,所以2008年对应的组为“学,F ”.【巩固】 在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北林),那么第50组是什么?【解析】 要知道第50组是哪两个数,我们首先要弄清楚第一行和第二行的第50个字分别应该是什么.第一行“新北京新奥运”是6个字一个周期,5068÷=…2,第50个字就是北.再看第二行“奥林匹克运动会”是7个字一个周期,5077÷=…1,第50个字就是奥.把第一行和第二行合在一起,第50组就是“北奥”.【例 5】如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周期性问题作业
一、填空题
1. 1992年1月18日是星期六,再过十年的1月18日是星期_____.
2. 黑珠、白珠共102颗,穿成一串,排列如下图:
……
这串珠子中,最后一颗珠子应该是_____色的,这种颜色的珠子在这串中共有_____颗.
3. 流水线上生产小木珠涂色的次序是:先5个红,再4个黄,再3
个绿,再2个黑,再1个白,然后再依次是5红,4黄,3绿,2黑,1白,……继续下去第1993个小珠的颜色是_____色.
4. 把珠子一个一个地如下图按顺序往返不断投入A 、B 、C 、D 、E 、F 袋中.第1992粒珠子投在_____袋中.
5. 将数列1,4,7,10,13…依次如图排列成6行,如果把最左边的一列叫做第一列,从左到右依次编号,那么数列中的数349应排在第_____行第_____列.
1 4 7 10 13
28 25 22 19 16
31 34 37 40 43
58 55 52 49 46
………………………………
………………………………
6.分数
139化成小数后,小数点后面第1993位上的数字是_____. 7. 143
化成小数后,小数点后面1993位上的数字是_____.
8. 在一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在_____和_____这两个数字上.
9. 1991个9与1990个8与1989个7的连乘积的个位数是_____.
10. 算式(367367+762762) 123123的得数的尾数是_____.
1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18
……
二、解答题
11. 乘积1⨯2⨯3⨯4⨯……⨯1990⨯1991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?
12.有串自然数,已知第一个数与第二个数互质,而且第一个数的
65恰好是第二个数的41
,从第三个数开始,每个数字正好是前两个数的和,问这串数的第
1991个数被3除所得的余数是几?
上表中,将每列上下两个字组成一组,例如第一组为(共社),第二组为(产会),那么第340组是_____.
14. 甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为_____厘米.
———————————————答 案——————————————————————
1. 五
在这十年中有3个闰年,所以这10年的总天数是365⨯10+3,365被7除余1,所以总天数被7除的余数是(13-7=)6,因此10年后的1月18日是星期五.
2. 黑,26
根据图示可知,若去掉第一颗白珠后它们的排列是按“一黑三色”交替循环出现的,也就是这一排列的周期为4.
由(102-1)÷4=25…1,可知循环25个周期,最后一颗珠子是黑色的.黑色珠子共有
1⨯25+1=26(颗).
3. 黑
小木球是依次按5红,4黄,3绿,2黑和1白的规律涂色的,把它看成周期性问题,每个周期为15.
由1993÷15=132…13知,第1993个小球是第133周期中的第13个,按规律涂色应该是黑色,所以第1993个小球的颜色是黑色.
4. B
通过观察可以发现,第11次到第20次投进的袋子依次与第1次到第10次投进的袋子相同,即当投的次数被10除余1,2,3,…,8,9,0,分别投进A ,B ,C ,……D ,C ,B 袋中,1992被10除余2,所以第1992粒珠子投在B 袋中.
5. 24,2
这个数列从第2项起,每一项都比前一项多3,(349-1)÷3+1=117,所以349是这列数中的第117个数.
从排列可以看出,每两排为一个周期,每一周期有10个数.
因为117÷10=11…7,所以数“349”是第11个周期的第7个数,也就是在第24行第2列. 6. 6
139
=792306
.0 它的循环周期是6,因为1993=6⨯332+1,所以化成小数后,其小数点后面第1993位上的数字是6. 7. 7
143
=742851
2.0 它的循环周期是6,因为(1993-1)÷6=332,则循环节“142857”恰好重复出现332次.所以小数点后面第1993位上的数字是7.
8. 3,7
表示循环小数的两个小圆点中,后一个小圆点显然应加在7的上面,且数字“5”肯定包含在循环节中,设前一个小圆点加在“5”的上面,这时循环周期是3,(100-4)÷3=32,第100位数字是7.设前一个小圆点加在“4”的上面,这时循环周期是4,(100-3)÷4=24…1,第100位数字是4.设前一个小圆点加在“3”的上面,这时的循环周期是5,(100-2)÷5=19…3,第100位数字正好是5.
[注]拿到此题后容易看出后一个小圆点应加在7的上面,但前一个圆点应加在哪个数字上,一下子难以确定,怎么办?唯一的办法就是“试”.因为循环节肯定要包含5,就从数字5开始试.逐步向前移动,直到成功为止.这就像我们在迷宫中行走,不知道该走哪条道才能走
出迷宫,唯一的办法就是探索:先试一试这条,再试一试那条.
9. 2
由特例不难归纳出:
(1)9的连乘积的个位数字按9,1循环出现,周期为2;
(2)8的连乘积的个位数字按8,4,2,6循环出现,周期为4;
(3)7的连乘积的个位数字按7,9,3,1循环出现,周期为4.
因为1991=995⨯2+1,所以1991个9的连乘积的个位数字是9;因为
1990=497⨯4+2,所以1990个8的连乘积的个位数字是4;因为1989=497⨯4+1,所以1989个7的连乘积的个位数字是7.9⨯4⨯7的个位数字是2,即1991个9与1990个8与1989年7的连乘积的个位数字是2.
10. 9
7的连乘积,尾数(个位数字)以7,9,3,1循环出现,周期为4.因为
367÷4=91…3,所以,367367的尾数为3.
2的连乘积,尾数以2,4,8,6循环出现,周期为4.因为762÷4=190…2,所以,762762的尾数为4.
3的连乘积,尾数以3,9,7,1循环出现,周期为4.123÷4
=30…3,所以,123123的尾数为7.
所以,(367367+762762)⨯123123的尾数为(3+4)⨯7=49的尾数,所求答案为9.
11. 从1开始,将每10个数分为一组,每一组10个数从右到左第一个不等于零的数字是乘积1⨯2⨯3⨯4⨯5⨯6⨯7⨯8⨯9⨯10=3628800从右到左第一个不等于零的数字是8,1~1991可分为1~10,11~20,21~30,…,1981~1990,1991;8的连乘积末位数字8、4,2,6重复出现,199÷4=49…3,所以199个8相乘的末位数字是2,1991个位数字是1,所以,乘积1⨯2⨯3⨯…⨯1990⨯1991从右到左第一个不等于零的数字是2.
12. 因为第一个数⨯65
=第二个数⨯41
,所以第一个数:第二个数=41:65
=3:10.又两数互质,所以第一个数为3,第二个数为10,从而这串数为:
3,10,13,23,36,59,95,154,249,403,652,1055……
被3除所得的余数为:
0,1,1,2,0,2,2,1,0,1,1,2,……按“0,1,1,2,0,2,2,1”循环,周期为8.
因为1991÷8=248…7,所以第1991个数被3除所得余数应是第249周期中的第7个数,即2.
[注]解答此题应注意以下两个问题:
(1)由于两个数互质,所以这两个数只能是最简整数比的两个数;
(2)求出这串数被3除所得的余数后,找出余数变化的周期,但这并不是这串数的周期.一般来说,一些有规律的数串,被某一个整数逐个去除,所得的余数也具有周期性.
13. 因为“共产党好”四个字,“社会主义好”五个字,
4与5的最小公倍数是20,所以在连续写完5个“共产党好”与4个“社会主义好”之后,将重复从头写起,出现周期现象,而且每个周期是20组数.
因为340÷20=17,所以第340组正好写完第17个周期,第340组是(好,好).
[注]此题从题面上看是一个文字游戏,其实质是一个周期的问题:
四个四个地数
0 1 2 3 4 5 6 7 8 9 10
五个五个地数
14. 根据题意甲、乙从同一端点开始涂色,甲按黑、白,黑、白……交替进行;乙按白、黑,白、黑……交替进行,如下图所示.
由上图可知,甲黑、乙白从同一端点起,到再一次甲黑、乙白同时出现,应是5与6的最小公倍数的2倍,即5⨯6⨯2=60厘米,也就是它们按60厘米为周期循环出现.并且在每一个周期中没有涂色的部分是
1+3+5+4+2=15(厘米)
所以,在3米的木棍上没有涂黑色的部分长度总和是
15⨯(300÷60)=75(厘米)
[注]请注意这里的周期是5与6最小公倍数的2倍,而不是5与6的最小公倍数.这是同学们容易犯的错误.
甲
乙。