【原创】高考理科数学复习第六节 离散型随机变量及其分布列

合集下载

高考数学一轮复习 离散型随机变量及其分布列

高考数学一轮复习   离散型随机变量及其分布列

第6节离散型随机变量及其分布列最新考纲了解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.知识梳理1.离散型随机变量随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,则表称为离散型随机变量X的概率分布列.(2)离散型随机变量的分布列的性质:①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.[常用结论与微点提醒]分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)离散型随机变量的概率分布列中,各个概率之和可以小于1.()(2)离散型随机变量的各个可能值表示的事件是彼此互斥的.()(3)如果随机变量X的分布列由下表给出,则它服从两点分布.( )解析 对于(1),离散型随机变量所有取值的并事件是必然事件,故各个概率之和等于1,故(1)不正确;对于(3),X 的取值不是0,1,故不是两点分布,所以(3)不正确.答案 (1)× (2)√ (3)×2.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是( ) A.至少取到1个白球 B.至多取到1个白球 C.取到白球的个数D.取到的球的个数解析 选项A ,B 表述的都是随机事件,选项D 是确定的值2,并不随机;选项C 是随机变量,可能取值为0,1,2. 答案 C3.(选修2-3P49A4改编)设随机变量X 的分布列如下:则p 为( ) A.16B.13C.14D.112解析 由分布列的性质,112+16+13+16+p =1,∴p =1-34=14. 答案 C4.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是( ) A.ξ=4B.ξ=5C.ξ=6D.ξ≤5解析 “放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6.答案 C5.设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么n=.解析由于随机变量X等可能取1,2,3,…,n.所以取到每个数的概率均为1 n.∴P(X<4)=P(X=1)+P(X=2)+P(X=3)=3n=0.3,∴n=10.答案10考点一离散型随机变量分布列的性质【例1】设离散型随机变量X的分布列为求:(1)2X+1的分布列;(2)|X-1|的分布列.解由分布列的性质知:0.2+0.1+0.1+0.3+m=1,∴m=0.3.首先列表为从而由上表得两个分布列为(1)2X+1的分布列(2)|X-1|的分布列为规律方法(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证两个概率值均为非负数.(2)若X 是随机变量,则η=|X -1|等仍然是随机变量,求它的分布列可先求出相应随机变量的值,再根据互斥事件概率加法求对应的事件概率,进而写出分布列.【训练1】 (2017·丽水月考)设随机变量X 的概率分布列如下表,则P (|X -2|=1)=( )A.712B.12C.512D.16解析 由|X -2|=1得X =1或3,m =1-⎝ ⎛⎭⎪⎫16+14+13=14,∴P (|X -2|=1)=P (X=1)+P (X =3)=16+14=512. 答案 C考点二 离散型随机变量的分布列【例2】 (2016·天津卷节选)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列.解 (1)由已知,有P (A )=C 13C 14+C 23C 210=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2.P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以,随机变量X的分布列为规律方法求离散型随机变量X的分布列的步骤:(1)找出随机变量X的所有可能取值x i(i=1,2,3,…,n);(2)求出各取值的概率P(X=x i)=p i;(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确. 提醒求离散型随机变量的分布列的关键是求随机变量所有取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.【训练2】某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=14;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为基础巩固题组一、选择题1.某射手射击所得环数X 的分布列为则此射手“射击一次命中环数大于7”的概率为( ) A.0.28B.0.88C.0.79D.0.51解析 P (X >7)=P (X =8)+P (X =9)+P (X =10)=0.28+0.29+0.22=0.79. 答案 C2.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( ) A.0B.12C.13D.23解析 由已知得X 的所有可能取值为0,1,且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1, 得P (X =0)=13. 答案 C3.设X 是一个离散型随机变量,其分布列为:则q 的值为( )A.1B.32±336 C.32-336 D.32+336解析 由分布列的性质知⎩⎪⎨⎪⎧2-3q ≥0,q 2≥0,13+2-3q +q 2=1,解得q =32-336. 答案 C4.(2018·绍兴调研)一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为( ) A.1220B.2755C.27220D.2155解析 {X =4}表示从盒中取了2个旧球、1个新球,故P (X =4)=C 23C 19C 312=27220.答案 C 二、填空题5.袋中有4只红球、3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X ,则P (X ≤6)= .解析 P (X ≤6)=P (取到3只红球1只黑球)+P (取到4只红球)=C 34C 13C 47+C 44C 47=1335. 答案 13356.(2018·丽水测试)甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是 . 解析 X =-1,甲抢到一题但答错了.X =0,甲没抢到题,或甲抢到2题,但答时一对一错. X =1时,甲抢到1题且答对或甲抢到3题,且1错2对. X =2时,甲抢到2题均答对.X=3时,甲抢到3题均答对.答案-1,0,1,2,37.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为.解析η的所有可能值为0,1,2.P(η=0)=C11C11C12C12=1 4,P(η=1)=C11C11×2C12C12=12,P(η=2)=C11C11C12C12=1 4.∴η的分布列为答案三、解答题8.某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球、1个黄球、1个白球和1个黑球.顾客不放回地每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(1)求1名顾客摸球3次停止摸奖的概率;(2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列.解(1)设“1名顾客摸球3次停止摸奖”为事件A,则P(A)=A23A34=1 4,故1名顾客摸球3次停止摸球的概率为1 4.(2)随机变量X 的所有取值为0,5,10,15,20. P (X =0)=14,P (X =5)=2A 24=16,P (X =10)=1A 24+A 22A 34=16,P (X =15)=C 12·A 22A 34=16,P (X =20)=A 33A 44=14.所以,随机变量X 的分布列为能力提升题组9.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)等于( ) A.16B.13C.12D.23解析 ∵a ,b ,c 成等差数列,∴2b =a +c .又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23. 答案 D10.随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝ ⎛⎭⎪⎫12<X <52的值为( )A.23B.34C.45D.56解析 因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 1×2+a 2×3+a 3×4+a 4×5=45a =1.∴a =54,故P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=12×54+16×54=56. 答案 D11.盒内有大小相同的9个球,其中2个红色球、3个白色球、4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.(1)求取出的3个球中至少有1个红球的概率; (2)求取出的3个球得分之和恰为1分的概率;(3)设X 为取出的3个球中白色球的个数,求X 的分布列. 解 (1)P =1-C 37C 39=712.(2)记“取出1个红色球、2个白色球”为事件B ,“取出2个红色球、1个黑色球”为事件C ,则P (B +C )=P (B )+P (C )=C 12C 23C 39+C 22C 14C 39=542.(3)X 可能的取值为0,1,2,3,X 服从超几何分布,所以P (X =k )=C k 3C 3-k6C 39,k =0,1,2,3.故P (X =0)=C 36C 39=521,P (X =1)=C 13C 26C 39=1528,P (X =2)=C 23C 16C 39=314,P (X =3)=C 33C 39=184.所以X 的分布列为12.在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x ,y ,记X =|x -2|+|y -x |. (1)求随机变量X 的最大值,并求事件“X 取得最大值”的概率; (2)求随机变量X 的分布列.解 (1)由题意知,x ,y 可能的取值为1,2,3, 则|x -2|≤1,|y -x |≤2,所以X ≤3,且当x =1,y =3或x =3,y =1时,X =3. 因此,随机变量X 的最大值为3.而有放回地抽两张卡片的所有情况有3×3=9(种),所以P (X =3)=29.故随机变量X 的最大值为3,事件“X 取得最大值”的概率为29.(2)X 的所有取值为0,1,2,3.当X=0时,只有x=2,y=2这一种情况,当X=1时,有x=1,y=1或x=2,y=1或x=2,y=3或x=3,y=3四种情况,当X=2时,有x=1,y=2或x=3,y=2两种情况.当X=3时,有x=1,y=3或x=3,y=1两种情况.所以P(X=0)=19,P(X=1)=49,P(X=2)=29,P(X=3)=2 9.则随机变量X的分布列为。

(新)高中理科数学离散型随机变量及分布列

(新)高中理科数学离散型随机变量及分布列

理科数学复习专题 统计与概率 离散型随机变量及其分布列知识点一1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,表示,所有取值可以一一列出的随机变量,称为离散型随机变量。

2、离散型随机变量的分布列及其性质:(1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x X 取每一个值(1,2,,)i x in 的概率为()i i P Xx p ,则表称为离散型随机变量离散型随机变量X ,简称X 的分布列。

(2)分布列的性质:①0,1,2,,ip in ;②11nii p(3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)pP x为成功概率②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M NMn NC C P Xk km C 其中min{,}m M n ,且*,,,,)nN MN n M NN ,称分布列为超几何分布列。

如果随机变量X 的分布列0n M NMn CC1n M NMn C Cm n m M NMn C C、随机变量的数学期望(均值)与方差题型一 由统计数据求离散型随机变量的分布列【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( )A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望是________.题型二 由古典概型求离散型随机变量的分布列(超几何分布)【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列.【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.知识点二1.条件概率及其性质对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用符号P(A|B)来表示,其公式为P(A|B)=P(AB)P(B)(P(B)>0).在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B).2.相互独立事件(1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件.(2)若A与B相互独立,则P(AB)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.题型三 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )= ________.(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.练:某地空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.题型四 由独立事件同时发生的概率求离散型随机变量的分布列(二项分布)例1 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,“求X ≥2”的事件概率.例2在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.练习:一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的概率分布. (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?【误区解密】抽取问题如何区分超几何分布和二项分布?例:某学校10个学生的考试成绩如下:(≥98分为优秀) (1)10人中选3人,求至多1人优秀的概率(2)用10人的数据估计全级,从全级的学生中任选3人,用X 表示优秀人数的个数,求X 的分布列练:18、某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[)10,20,[)20,30,[)30,40,[)40,50,[)50,60的市民进行问卷调查,由此得到样本频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄在[)30,40的人数; (Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5从,求[)50,60年龄段抽取的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽到2人作为本次活动的获奖者,记X 为年龄在[)50,60年龄段的人数,求X 的分布列及数学期望.2、一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25](25,35],(35,45],由此得到样本的重量频率分布直方图,如图.(Ⅰ)求a 的值; (Ⅱ)根据样本数据,试估计盒子中小球重量的平均值; (Ⅲ)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望及方差.。

高三数学复习(理):第6讲 离散型随机变量及其分布列

高三数学复习(理):第6讲 离散型随机变量及其分布列

第6讲 离散型随机变量及其分布列[学生用书P216]1.离散型随机变量 (1)随机变量特点:随着试验结果的变化而变化的变量. 表示:常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量的特点 所有取值可以一一列举出来. 2.离散型随机变量的分布列(1)定义:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表X x 1 x 2 … x i … x n Pp 1p 2…p i…p n称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)性质:①p i ≥0(i =1,2,…,n );②∑ni =1p i =1. 3.常见的两类特殊分布列 (1)两点分布若随机变量X 服从两点分布,则其分布列为X 0 1 P1-pp其中p=P(X=1)称为成功概率.(2)超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,即:X01…mP C0M C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.常用结论1.随机变量的线性关系若X是随机变量,Y=aX+b,a,b是常数,则Y也是随机变量.2.分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值.(2)随机变量ξ所取的值分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数.()(2)抛掷均匀硬币一次,出现正面的次数是随机变量.()(3)离散型随机变量的各个可能值表示的事件是彼此互斥的.()(4)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.()(5)从4名男演员和3名女演员中选出4人,其中女演员的人数X服从超几何分布.()(6)由下表给出的随机变量X的分布列服从两点分布.()答案:(1)√(2)√(3)√(4)√(5)√(6)×二、易错纠偏常见误区|K(1)随机变量的概念不清;(2)超几何分布类型掌握不准;(3)分布列的性质不清致误.1.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是() A.至少取到1个白球 B.至多取到1个白球C.取到白球的个数D.取到的球的个数解析:选C.A,B两项表述的都是随机事件,D项是确定的值2,并不随机;C项是随机变量,可能取值为0,1,2.故选C.2.一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)=________.解析:{X=4}表示从盒中取了2个旧球,1个新球,故P(X=4)=C23C19C312=27220.答案:27 2203.设随机变量X的分布列为则P(|X-3|=1)=________.解析:由13+m+14+16=1,解得m=14,P(|X-3|=1)=P(X=2)+P(X=4)=1 4+16=512.答案:5 124.设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)=________.解析:由已知得X的所有可能取值为0,1,且P(X=1)=2P(X=0),由P(X=1)+P(X=0)=1,得P(X=0)=13.答案:1 3[学生用书P217]离散型随机变量的分布列的性质(典例迁移) 设离散型随机变量X的分布列为X01234P0.20.10.10.3m求:(1)2X+1的分布列;(2)P(1<X≤4).【解】由分布列的性质知:0.2+0.1+0.1+0.3+m=1,解得m=0.3.(1)2X+1的分布列:2X+113579P0.20.10.10.30.3(2)P(1<X≤4)=P(X=2)+P(X=3)+P(X=4)=0.1+0.3+0.3=0.7. 【迁移探究】(变问法)在本例条件下,求|X-1|的分布列.解:|X-1|的分布列:|X-1|0123P0.10.30.30.3离散型随机变量的分布列的性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负值.(2)若X为随机变量,则2X+1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.已知随机变量X的分布列为X012345P 110310x310y z则P(X≥2)=()A.0.3B.0.4 C.0.5 D.0.6解析:选D.P(X≥2)=x+310+y+z=1-⎝⎛⎭⎪⎫110+310=0.6.2.设X是一个离散型随机变量,其分布列为X-101P 132-3q q2则q的值为()A.1 B.32±336C.32-336 D.32+336解析:选C.由分布列的性质知⎩⎨⎧2-3q ≥0,q 2≥0,13+2-3q +q 2=1,解得q =32-336.3.离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为________.解析:由⎝ ⎛⎭⎪⎫11×2+12×3+13×4+14×5×a =1,知45a =1,得a =54.故P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=12×54+16×54=56.答案:56超几何分布(典例迁移)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率; (2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列.【解】 (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则P (X =0)=C 56C 510=142,C1021P(X=2)=C36C24C510=1021,P(X=3)=C26C34C510=521,P(X=4)=C16C44C510=142.因此X的分布列为【迁移探究1】(变问法)若用X表示接受乙种心理暗示的男志愿者人数,求X的分布列.解:由题意可知X的取值为1,2,3,4,5,则P(X=1)=C16C44C510=142,P(X=2)=C26C34C510=521,P(X=3)=C36C24C510=1021,P(X=4)=C46C14C510=521,P(X=5)=C56C510=142.因此X的分布列为【迁移探究2】(变问法)若用X表示接受乙种心理暗示的女志愿者人数与男志愿者人数之差,求X的分布列.解:由题意可知X的取值为3,1,-1,-3,-5,则P(X=3)=C44C16C510=142,P(X=1)=C34C26C510=521,P(X=-1)=C24C36C510=1021,P(X=-3)=C14C46C510=521,C51042因此X的分布列为X31-1-3-5P 1425211021521142(1)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.(2)超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布.(3)超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2020年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值的频数分布如下表所示:PM2.5日均值(微克/立方米)[25,35)[35,45)[45,55)[55,65)[65,75)[75,85]频数31111 3(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列.解:(1)记“从这10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A,则P(A)=C13C27C310=21 40.(2)由条件知,ξ服从超几何分布,其中N=10,M=3,n=3,且随机变量ξ的可能取值为0,1,2,3.P(ξ=k)=C k3·C3-k7C310(k=0,1,2,3).所以P(ξ=0)=C03C37C310=7 24,P(ξ=1)=C13C27C310=2140,P(ξ=2)=C23C17C310=740,P(ξ=3)=C33C07C310=1120.故ξ的分布列为ξ0123P72421407401120求离散型随机变量的分布列(师生共研)有编号为1,2,3,…,n的n个学生,入座编号为1,2,3,…,n 的n个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X,已知X=2时,共有6种坐法.(1)求n的值;(2)求随机变量X的概率分布列.【解】(1)因为当X=2时,有C2n种方法,因为C 2n =6,即n (n -1)2=6,也即n 2-n -12=0, 解得n =4或n =-3(舍去),所以n =4.(2)因为学生所坐的座位号与该生的编号不同的学生人数为X , 由题意可知X 的可能取值是0,2,3,4. 所以P (X =0)=1A 44=124,P (X =2)=C 24×1A 44=14,P (X =3)=C 34×2A 44=13,P (X =4)=1-124-14-13=38,所以X 的分布列为X 0 2 3 4 P 124141338求离散型随机变量X 的分布列的步骤(1)理解X 的意义,写出X 可能取的全部值. (2)求X 取每个值的概率.(3)写出X 的分布列.求离散型随机变量的分布列的关键是求随机变量所取的值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后样本的频数分布表.图1:设备改造前样本的频率分布直方图表1:设备改造后样本的频数分布表 质量指标值 [15,20)[20,25)[25,30)[30,35)[35,40)[40,45)频数2184814162(1)请估计该企业在设备改造前的产品质量指标的平均值;(2)该企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元;质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为X (单位:元),求X 的分布列.解:(1)根据题图1可知,设备改造前样本的频数分布表如下: 质量指标数 [15,20)[20,25)[25,30)[30,35)[35,40)[40,45)频数416401218104×17.5+16×22.5+40×27.5+12×32.5+18×37.5+10×42.5=3 020. 样本产品的质量指标平均值为3 020100=30.2.根据样本质量指标平均值估计总体质量指标平均值为30.2.(2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为12,13,16,故从所有产品中随机抽一件,是一、二、三等品的概率分别为12,13,16. 随机变量X 的取值为240,300,360,420,480.P (X =240)=16×16=136,P (X =300)=C 12×13×16=19.P (X =360)=C 12×12×16+13×13=518,P (X =420)=C 12×12×13=13,P (X =480)=12×12=14,所以随机变量X 的分布列为X 240 300 360 420 480 P 136195181314[学生用书P415(单独成册)][A 级 基础练]1.若离散型随机变量X 的分布列如下表,则常数c 的值为( )X 0 1 P9c 2-c 3-8cA.23或13 B .23 C.13D .1解析:选 C.由随机变量的分布列的性质知,0≤9c 2-c ≤1,0≤3-8c ≤1,9c 2-c +3-8c =1,解得c =13.故选C.2.设随机变量ξ的概率分布列为P (ξ=k )=a ⎝ ⎛⎭⎪⎫13k,其中k =0,1,2,那么a的值为( )A.35 B .2713 C.919D.913解析:选D.因为随机变量ξ的概率分布列为P (ξ=k )=a ⎝ ⎛⎭⎪⎫13k,其中k =0,1,2,所以P (ξ=0)=a ⎝ ⎛⎭⎪⎫130=a ,P (ξ=1)=a ⎝ ⎛⎭⎪⎫131=a 3,P (ξ=2)=a ⎝ ⎛⎭⎪⎫132=a9,所以a +a 3+a 9=1,解得a =913.故选D.3.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,则下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:选C.X 服从超几何分布,P (X =k )=C k 7C 10-k 8C 1015,故k =4,故选C.4.一袋中装有5个球,编号为1,2,3,4,5,在袋中同时取出3个,以ξ表示取出的三个球中的最小号码,则随机变量ξ的分布列为( )解析:选C.随机变量ξ的可能取值为1,2,3,P (ξ=1)=C 24C 35=35,P (ξ=2)=C 23C 35=310,P (ξ=3)=C 22C 35=110,故选C. 5.已知在10件产品中可能存在次品,从中抽取2件检查,其中次品数为ξ,已知P (ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为( )A .10%B .20%C .30%D .40%解析:选B.设10件产品中有x 件次品,则P (ξ=1)=C 1x ·C 110-x C 210=x (10-x )45=1645,所以x =2或8.因为次品率不超过40%,所以x =2,所以次品率为210=20%.6.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率是________.解析:设所选女生人数为X ,则X 服从超几何分布,则P (X ≤1)=P (X =0)+P (X =1)=C 02C 34C 36+C 12C 24C 36=45.答案:457. (一题多解)如图所示,A 、B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内通过的最大信息总量为ξ,则P (ξ≥8)=________.解析:方法一:由已知得ξ的取值为7,8,9,10,因为P (ξ=7)=C 22C 12C 35=15,P (ξ=8)=C 22C 11+C 22C 12C 35=310, P (ξ=9)=C 12C 12C 11C 35=25,P (ξ=10)=C 22C 11C 35=110,所以ξ的分布列为ξ 7 8 9 10P1531025110 所以P (ξ≥8)=P (ξ=8)+P (ξ=9)+P (ξ=10)=310+25+110=45.方法二:P(ξ≥8)=1-P(ξ=7)=1-C22C12C35=1-15=45.答案:4 58.随机变量X的分布列如下:其中a,b,c成等差数列,则P(|X|=1)=________,公差d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13,所以P(|X|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤1 3.答案:23[-13,13]9.(2020·福州模拟)某市某超市为了回馈新老顾客,决定在2022年元旦来临之际举行“庆元旦,迎新年”的抽奖派送礼品活动.为设计一套趣味性抽奖送礼品的活动方案,该超市面向该市某高中学生征集活动方案,该中学某班数学兴趣小组提供的方案获得了征用.方案如下:将一个4×4×4的正方体各面均涂上红色,再把它分割成64个相同的小正方体.经过搅拌后,从中任取两个小正方体,记它们的着色面数之和为ξ,记抽奖一次中奖的礼品价值为η.(1)求P(ξ=3);(2)凡是元旦当天在该超市购买物品的顾客,均可参加抽奖.记抽取的两个小正方体着色面数之和为6,设为一等奖,获得价值50元的礼品;记抽取的两个小正方体着色面数之和为5,设为二等奖,获得价值30元的礼品;记抽取的两个小正方体着色面数之和为4,设为三等奖,获得价值10元的礼品,其他情况不获奖.求某顾客抽奖一次获得的礼品价值的分布列与数学期望.解:(1)64个小正方体中,三面着色的有8个,两面着色的有24个,一面着色的有24个,另外8个没有着色,所以P(ξ=3)=C18·C18+C124·C124C264=6402 016=2063.(2)ξ的所有可能取值为0,1,2,3,4,5,6,η的取值为50,30,10,0,P(η=50)=P(ξ=6)=C28C264=282 016=172,P(η=30)=P(ξ=5)=C18·C124C264=1922 016=221,P(η=10)=P(ξ=4)=C224+C18·C124C264=4682 016=1356,P(η=0)=1-172-221-1356=83126.所以η的分布列如下:所以E(η)=50×172+30×221+10×1356+0×83126=37063.10.为了防止受到核污染的产品影响民众的身体健康,某地要求这种产品在进入市场前必须进行两轮苛刻的核辐射检测,只有两轮检测都合格才能上市销售,否则不能销售.已知该产品第一轮检测不合格的概率为14,第二轮检测不合格的概率为19,每轮检测结果只有“合格”“不合格”两种,且两轮检测是否合格相互之间没有影响.(1)求该产品不能上市销售的概率;(2)如果这种产品可以上市销售,则每件产品可获利50元;如果这种产品不能上市销售,则每件产品亏损80元(即获利为-80元).现有这种产品4件,记这4件产品获利的金额为X元,求X的分布列.解:(1)记“该产品不能上市销售”为事件A , 则P (A )=1-⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19=13,所以该产品不能上市销售的概率为13.(2)由已知可知X 的取值为-320,-190,-60,70,200.P (X =-320)=C 44⎝ ⎛⎭⎪⎫134⎝ ⎛⎭⎪⎫230=181,P (X =-190)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫231=881,P (X =-60)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=2481=827,P (X =70)=C 14⎝ ⎛⎭⎪⎫131⎝ ⎛⎭⎪⎫233=3281,P (X =200)=C 04⎝ ⎛⎭⎪⎫130⎝ ⎛⎭⎪⎫234=1681.所以X 的分布列为[B 级 综合练]11.(2021·荆门调研)在测试中,客观题难度的计算公式为P i =R iN ,其中P i 为第i 题的难度,R i 为答对该题的人数,N 为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:测试后,随机抽取了20名学生的答题数据进行统计,结果如下:(1)根据题中数据,估计这240名学生中第5题的实测答对人数;(2)从抽样的20名学生中随机抽取2名学生,记这2名学生中答对第5题的人数为X,求X的分布列;(3)试题的预估难度和实测难度之间会有偏差,设P′i为第i题的实测难度,并定义统计量S=1n[(P′1-P1)2+(P′2-P2)2+…+(P′n-P n)2],若S<0.05,则本次测试的难度预估合理,否则不合理,试检验本次测试对难度的预估是否合理.解:(1)因为20人中答对第5题的人数为4,因此第5题的实测难度为420=0.2,所以,估计240人中有240×0.2=48人实测答对第5题.(2)X的所有可能取值有0,1,2.P(X=0)=C216C220=1219,P(X=1)=C116C14C220=3295,P(X=2)=C24C220=395.X的分布列为(3)将抽样的20名学生测试中第i题的实测难度作为240名学生测试中第i 题的实测难度.列表如下:S =15×[(0.8-0.9)2+(0.8-0.8)2+(0.7-0.7)2+(0.7-0.6)2+(0.2-0.4)2]=0.012.因为S =0.012<0.05,所以该次测试的难度预估是合理的.12.某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x 分布在[50,100)内,且销售量x 的分布频率f (x )=⎩⎪⎨⎪⎧n 10-0.5,10n ≤x <10(n +1),n 为偶数,n 20-a ,10n ≤x <10(n +1),n 为奇数.(1)求a 的值并估计销售量的平均数;(2)若销售量大于或等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自X 个组,求随机变量X 的分布列及数学期望(将频率视为概率).解:(1)由题意知⎩⎪⎨⎪⎧10n ≥50,10(n +1)≤100,解得5≤n ≤9,n 可取5,6,7,8,9,结合f (x )=⎩⎪⎨⎪⎧n10-0.5,10n ≤x <10(n +1),n 为偶数,n 20-a ,10n ≤x <10(n +1),n 为奇数,得⎝ ⎛⎭⎪⎫610-0.5+⎝ ⎛⎭⎪⎫810-0.5+⎝ ⎛⎭⎪⎫520-a +⎝ ⎛⎭⎪⎫720-a +⎝ ⎛⎭⎪⎫920-a =1,则a =0.15. 可知销售量分别在[50,60),[60,70),[70,80),[80,90),[90,100)内的频率分别是0.1,0.1,0.2,0.3,0.3,所以销售量的平均数为55×0.1+65×0.1+75×0.2+85×0.3+95×0.3=81.(2)销售量分布在[70,80),[80,90),[90,100)内的频率之比为2∶3∶3,所以在各组抽取的天数分别为2,3,3.X的所有可能取值为1,2,3,P(X=1)=2C38=256=128,P(X=3)=2×3×3C38=1856=928,P(X=2)=1-128-928=914.X的分布列为X123P 128914928数学期望E(X)=1×128+2×914+3×928=167.[C级提升练]13.某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有N 人参加,现将所有参加者按年龄情况分为[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)共七组,其频率分布直方图如图所示,已知[25,30)这组的参加者是6人.(1)根据频率分布直方图求该校参加秋季登山活动的教职工年龄的中位数;(2)已知[35,40)和[40,45)这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中恰有1名数学教师的概率;(3)组织者从[45,55)这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为X,求X的分布列和均值.解:(1)设年龄在[30,35)表示的矩形的高为x,因为(0.01+0.03+x+0.04+0.03+0.02+0.01)×5=1,所以x=0.06.因为(0.01+0.03+0.06)×5=0.5,所以中位数为35.(2)记事件A为“从年龄在[35,40)和[40,45)两组选出的人中恰有1名数学教师,参加活动总人数N=6÷(0.03×5)=40,年龄在[35,40)的人数为40×(0.04×5)=8,年龄在[40,45)的人数为40×(0.03×5)=6,所以P(A)=C12C16C28×C24C26+C26C28×C12C14C26=1635.(3)年龄在[45,55)的人数为40×(0.02+0.01)×5=6,X的可能取值为1,2,3,因为P(X=1)=C14C22C36=15,P(X=2)=C24C12C36=35,P(X=3)=C34C02C36=15,所以X的分布列为E(X)=1×15+2×35+3×15=2.。

《高考总复习》数学(理科)课件:第九章-第6讲-离散型随机变量及其分布列

《高考总复习》数学(理科)课件:第九章-第6讲-离散型随机变量及其分布列
为12,参加第五项不合格的概率为23. (1)求该考生被录取的概率; (2)设该考生参加考试的项数为 X,求 X 的分布列.
解:(1)若该考生被录取,则前四项最多有一项不合格,并 且第五项必须合格.
记“前四项均合格且第五项合格”为事件 M. “前四项中仅有一项不合格且第五项合格”为事件 N,
则 P(M)=124×1-23=418, P(N)=C14×12×1-123×1-23=112. 因为 M,N 互斥, 所以 p=P(M)+P(N)=418+112=458.
所以ξ的分布列为:
ξ
0
1
2
P
1 6
2 3
1 6
故 ξ 的期望 E(ξ)=0×16+1×23+2×16=1.
(3)在这 100 名患者中,服药者指标 y 数据的方差大于未服 药者指标 y 数据的方差.
【规律方法】对于服从某些特殊分布的随机变量,其分布 列可以直接应用公式给出.超几何分布描述的是不放回抽样问 题,随机变量为抽到的某类个体的个数,超几何分布是一个重 要分布,其理论基础是古典概型,主要应用于抽查产品,摸不 同类别的小球等概率模型.
(2)该考生参加考试的项数 X 可以是 2,3,4,5.
P(X=2)=12×12=14, P(X=3)=C121-12×12×12=14, P(X=4)=C131-12×122×12=136, P(X=5)=1-14-14-136=156. 则 X 的分布列为:
X2
3
4
5
P
1 4
1 4
3
5
16 16
B(n,p),并称 p 为成功概率.其分布列如下表:
X
0
1

k

n
P Cn0p0(1-p)n Cn1p1(1-p)n-1 … Cknpk(1-p)n-k … Cnnpn(1-p)0

高三数学考点-离散型随机变量及其分布列

高三数学考点-离散型随机变量及其分布列

10.6离散型随机变量及其分布列1.离散型随机变量的概念(1)随机变量如果随机试验的结果可以用一个随着试验结果变化而变化的变量来表示,那么这样的变量叫做____________,随机变量常用字母X,Y,ξ,η等表示.(2)离散型随机变量所有取值可以__________的随机变量,称为离散型随机变量.2.离散型随机变量的分布列(1)分布列设离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X =x i)=p i,则称表为随机变量X的______________,简称为X的分布列.有时为了简单起见,也可用P(X=x i)=p i,i=1,2,…,n表示X的分布列.(2)分布列的性质①________________________;②________________________.3.常用的离散型随机变量的分布列(1)两点分布(又称0-1分布、伯努利分布)随机变量X的分布列为(0<p<1)则称X服从两点分布,并称p=P(X=1)为成功概率.(2)二项分布如果随机变量X的可能取值为0,1,2,…,n,且X取值的概率P(X=k)=__________(其中k=0,1,2,…,则称X服从二项分布,记为____________.(3)超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为__________________(k=0,1,2,…,m),其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.此时称随机变量X的分布列为超几何分布列,称随机变量X服从______________.自查自纠1.(1)随机变量(2)一一列出2.(1)概率分布列(2)①p i≥0,i=1,2,3,…,n②i=1np i=13.(1)1-p(2)C k n p k q n-k C k n p k q n-k X~B(n,p)(3)C k M C n-kN-MC n N超几何分布某射手射击所得环数X的分布列为X45678910P0.020.040.060.090.280.290.22则此射手“射击一次命中环数大于7”的概率为()A.0.28 B.0.88C.0.79 D.0.51解:P(X>7)=P(X=8)+P(X=9)+P(X=10)=0.28+0.29+0.22=0.79.故选C.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,下列概率中等于C47C68C1015的是()A.P(X=2) B.P(X≤2)C.P(X=4) D.P(X≤4)解:X服从超几何分布P(X=k)=C k7C10-k8C1015,故k=4.故选C.随机变量ξ的所有可能的取值为1,2,3,…,10,且P(ξ=k)=ak(k=1,2,…,10),则a的值为() A.1110 B.155C.110 D.55解:因为随机变量ξ的所有可能的取值为1,2,3,…,10,且P(ξ=k)=ak(k=1,2,…,10),所以a+2a+3a+…+10a=1,则55a=1,即a=155.故选B.已知X的分布列为X-101P1216a设Y=2X+1,则Y的数学期望E(Y)的值是________.解:由分布列的性质,a =1-12-16=13,所以E (X )=-1×12+0×16+1×13=-16,因此E (Y )=E (2X +1)=2E (X )+1=23.故填23.从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布列为________.解:依题意,随机变量X 的可能取值为0,1,2. 则P (X =0)=C 22C 25=0.1,P (X =1)=C 13C 12C 25=0.6,P (X =2)=C 23C 25=0.3,故X 的分布列为X 0 1 2 P0.10.60.3故填X 0 1 2 P0.10.60.3类型一 随机变量的概念与性质(1)设离散型随机变量X 的分布列为X 0 1 2 3 4 P0.20.10.10.3m求:(Ⅰ)2X +1的分布列; (Ⅱ)|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,解得X 0 1 2 3 4 2X +1 1 3 5 7 9 |X -1|1123从而由上表得所求分布列如下. (Ⅰ)2X +1的分布列:2X +1 1 3 5 7 9 P0.20.10.10.30.3(Ⅱ)|X -1|的分布列:|X -1| 0 1 2 3 P0.10.30.30.3(2)随机变量ξ的分布列如下:ξ-1 0 1 Pabc其中a ,b ,c 成等差数列,则P (|ξ|=1)=____________,公差d 的取值范围是____________. 解:因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13,所以P (|ξ|=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.故填23;⎣⎡⎦⎤-13,13. 【点拨】①研究随机变量的取值,关键是准确理解所定义的随机变量的含义.明确随机变量所取的值对应的试验结果是进一步求随机变量取这个值时的概率的基础.②注意离散型随机变量分布列的两个性质:p i ≥0,i =1,2,…,n ;∑i =1np i =1.③随机变量可能取某一区间内任意值,无法一一列出,则称这样的随机变量为连续型随机变量,如“长江水位”“灯管寿命”等;正态分布即是一种重要的连续型随机变量的分布.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么n =________.解:由于随机变量X 等可能取1,2,3,…,n .所以取到每个数的概率均为1n .所以P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n=0.3,因此n =10.故填10.类型二 求离散型随机变量的分布列袋子中有1个白球和2个红球.(1)每次取1个球,不放回,直到取到白球为止,求取球次数X 的分布列;(2)每次取1个球,有放回,直到取到白球为止,但抽取次数不超过5次,求取球次数X 的分布列; (3)每次取1个球,有放回,共取5次,求取到白球次数X 的分布列.解:(1)X =1,2,3.P (X =1)=13;P (X =2)=A 12A 33=13;P (X =3)=A 22A 33=13.所以X 的分布列是X 12 3 P13 13 13(2)X =1,2,3,4,5.P (X =k )=⎝⎛⎭⎫23k -1×13,k =1,2,3,4. P (X =5)=⎝⎛⎭⎫234. 故X 的分布列为X 1 2 3 4 5 P13294278811681(3)因为X ~B ⎝⎛⎭⎫5,13,所以X 的分布列为P (X =k )=C k 5⎝⎛⎭⎫13k⎝⎛⎭⎫235-k,其中k =0,1,2,3,4,5.【点拨】求随机变量的分布列,一要弄清什么是随机变量,建立它与随机事件的关系;二要把随机变量的所有值找出,不要遗漏;三是准确求出随机变量取每个值的概率,确定概率和为1后写出分布列.对于抽样问题,要特别注意放回与不放回的区别.一般地,无放回抽样由排列数公式求随机变量对应的概率,放回抽样由分步计数原理求随机变量对应的概率.(2017·天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解:(1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14, P (X =1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×14=1124, P (X =2)=⎝⎛⎭⎫1-12×13×14+12×⎝⎛⎭⎫1-13×14+12×13×⎝⎛⎭⎫1-14=14, P (X =3)=12×13×14=124.所以,随机变量X 的分布列为X 0 1 2 3 P14112414124随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为 P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0) =P (Y =0)P (Z =1)+P (Y =1)P (Z =0)=14×1124+1124×14=1148. 所以,这2辆车共遇到1个红灯的概率为1148.类型三 超几何分布(2015·天津)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.解:(1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 故事件A 发生的概率为635.(2)随机变量X 的所有可能取值为1,2,3,4.P (X =k )=C k 5C 4-k 3C 48(k =1,2,3,4). 故随机变量X 的分布列为X 12 3 4 P1143737114故随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52.【点拨】①超几何分布的概率计算公式从古典概型的角度加以理解更易记忆:P (X =k )=C k M C n -kN -MC nN,即恰取了k 件次品的概率=次品中取了k 件×正品中取了n -k 件N 件产品中任取n 件.②当n 较小,N 较大时,超几何分布的概率计算可以近似地用二项分布来代替.也就是说虽然超几何分布是不放回抽样,二项分布是放回抽样,但是当n 较小而产品总数N 很大时,不放回抽样近似于放回抽样.③超几何分布在产品检验中经常用到.(2017·山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望E (X ).解:(1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M ,则P (M )=C 48C 510=518.(2)由题意知X 可取的值为:0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142,X 0 1 2 3 4 P1425211021521142X 的数学期望是E (X ) =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0+1×521+2×1021+3×521+4×142=2.1.求离散型随机变量的分布列的步骤(1)明确随机变量的所有可能取值,以及每个值所表示的意义,判断一个变量是否为离散型随机变量,主要看变量的值能否按一定的顺序一一列出.(2)利用概率的有关知识,求出随机变量取每个值的概率.对于古典概率、互斥事件的概率、相互独立事件同时发生的概率、n 次独立重复试验恰有k 次发生的概率等,都要能熟练计算. (3)按规范形式写出分布列,并用分布列的性质∑i =1np i =1验证.2.分布列的结构为两行,第一行为随机变量X 所有可能的取值,第二行是对应于随机变量X 的值的事件发生的概率.在每一列中,上为“事件”,下为事件发生的概率,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.3.可用超几何分布解决的题目涉及的背景多数是生活、生产实践中的问题,且往往由明显的两部分组成,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等.注意弄清楚超几何分布与二项分布的区别与联系.1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10 D .25解:X 的所有可能取值为2,3,4,5,6,7,8,9,10,共9个.故选B. 2.下列表中可以作为离散型随机变量分布列的是( )解:A 中ξ的取值出现了重复性;B 中P (ξ=0)=-14<0;C 中∑i =13P (ξi )=15+25+35=65>1.故选D.3.(2015·合肥模拟)设某项试验的成功率是失败率的2倍,试验一次要么成功要么失败,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13 D.23解:X 可能取值为0或1,而P (X =1)=2P (X =0),且P (X =1)+P (X =0)=1.所以P (X =0)=13.故选C.4.(2015·安徽模拟)一只袋内装有m 个白球,n -m 个黑球,所有的球除颜色外完全相同.连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X 个白球,则下列概率等于(n -m )A 2mA 3n 的是( ) A .P (X =3) B .P (X ≥2) C .P (X ≤3) D .P (X =2)解:由超几何分布知该式对应取球3次,第3次才取到黑球的概率,所以P (X =2)=A 1n -m A 2mA 3n =(n -m )A 2m A 3n.故选D.5.设ξξ-1 0 1 P121-2qq 2则q 的值为( ) A .1 B .1±22C .1+22 D .1-22解法一:由分布列的性质,有 ⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,解得q =1-22. 解法二:由1-2q ≥0q ≤12,可排除A 、B 、C ,故选D. 6.若P (ξ≤x 2)=1-β,P (ξ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤ξ≤x 2)等于( ) A .(1-α)(1-β) B .1-(α+β) C .1-α(1-β)D .1-β(1-α)解:由分布列性质可有:P (x 1≤ξ≤x 2)=P (ξ≤x 2)+P (ξ≥x 1)-1=(1-β)+(1-α)-1=1-(α+β).故选B. 7.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P (ξ=2)=____________. 解:ξ的可能取值为0,1,2,3,所以P (ξ=2)=C 13C 12C 14+C 23C 22C 24C 26=2790=310.故填310. 8.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;如果失败,一年后将丧失全部资金的50%.下表是过去200投资成功 投资失败 192例8例则该公司一年后估计可获收益的期望是____________元.解:由题意知,一年后获利6 000元的概率为0.96,获利-25 000元的概率为0.04,故一年后收益的期望是6 000×0.96+(-25 000)×0.04=4 760(元).故填4 760.9.某高校的一科技小组有5名男生,5名女生,从中选出4人参加全国大学生科技大赛,用X 表示其中参加大赛的男生人数,求X 的分布列. 解:依题意随机变量X 服从超几何分布,所以P (X =k )=C k 5C 4-k 5C 410(k =0,1,2,3,4).所以P (X =0)=C 05C 45C 410=142,P (X =1)=C 15C 35C 410=521,P (X =2)=C 25C 25C 410=1021,P (X =3)=C 35C 15C 410=521,P (X =4)=C 45C 05C 410=142,所以X 的分布列为10.(2017·湖北荆门调考)某市每年中考都要举行实验操作考试和体能测试,初三某班共有30名学生,下表为该班学生的这两项成绩,例如表中实验操作考试和体能测试都为优秀的学生人数为6人.由于部分数据丢失,只知道从这班30人中随机抽取一个,实验操作成绩合格,且体能测试成绩合格或合格以上的概率是15.(1)试确定a 、b 的值;(2)从30人中任意抽取3人,设实验操作考试和体能测试成绩都是良好或优秀的学生人数为ξ,求随机变量ξ的分布列及数学期望Eξ.解:由表格数据可知,实验操作成绩合格、且体能测试成绩合格或合格以上的学生共有(4+a )人,记“实验操作成绩合格、且体能测试成绩合格或合格以上”为事件A ,则P (A )=4+a 30=15,解得a =2,所以b =30-24-a =4.所以a 的值为2,b 的值为4.(2)由于从30位学生中任意抽取3位的结果数为C 330,其中实验操作成绩和体能测试成绩都是良好或优秀的学生人数为15人,从30人中任意抽取3人,其中恰有k 个实验操作考试和体能测试成绩都是良好或优秀的结果数为C k 15C 3-k 15,所以从30人中任意抽取3人,其中恰有k 人实验操作考试和体能测试成绩都是良好或优秀的概率为:P (ξ=k )=C k 15C 3-k15C 330,(k =0,1,2,3),ξ的可能取值为0,1,2,3, 则P (ξ=0)=C 015C 315C 330=13116,P (ξ=1)=C 115C 215C 330=45116,P (ξ=2)=C 215C 115C 330=45116,P (ξ=3)=C 315C 015C 330=13116,所以ξ的分布列为P13116 45116 45116 13116Eξ=0×13116+1×45116+2×45116+3×13116=174116=32.11.(2015·陕西)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T (分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望E (T );(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解:(1)由统计结果可得T T (分钟) 25 30 35 40 频率0.20.30.40.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.20.30.40.1从而E (T )=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在途中的时间不超过70分钟”.解法一:P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91.已知一个口袋中装有n 个红球(n ≥1且n ∈N *)和2个白球,从中有放回地连续摸三次,每次摸出两个球,若两个球颜色不同则为中奖,否则不中奖.(1)当n =3时,设三次摸球(每次摸球后放回)中奖的次数为ξ,求ξ的分布列; (2)记三次摸球(每次摸球后放回)恰有两次中奖的概率为P ,当n 取多少时,P 最大. 解:(1)当n =3时,每次摸出两个球,中奖的概率P =C 13C 12C 25=35.由题意知ξ的可能值为0,1,2,3, 故有P (ξ=0)=C 03×⎝⎛⎭⎫253=8125;P (ξ=1)=C 13×35×⎝⎛⎭⎫252=36125; P (ξ=2)=C 23×⎝⎛⎭⎫352×25=54125;P (ξ=3)=C 33×⎝⎛⎭⎫353=27125.ξ的分布列为ξ0 1 2 3或P (ξ=i )=C i 3×⎝⎛⎭⎫35i ×⎝⎛⎭⎫253-i ,i =0,1,2,3. (2)设每次摸球中奖的概率为p ,则三次摸球(每次摸球后放回)恰有两次中奖的概率为P (ξ=2)=C 23·p 2·(1-p )=-3p 3+3p 2,0<p <1,由P ′=-9p 2+6p =-3p (3p -2)知,在⎝⎛⎭⎫0,23上P 为增函数,在⎝⎛⎭⎫23,1上P 为减函数,所以当p =23时,P 取得最大值.又p =C 1n ·C 12C 2n +2=4n (n +1)(n +2)=23,即n 2-3n +2=0,解得n =1或n =2. 所以当n 取1或2时,P 最大.。

离散型随机变量及其分布列

离散型随机变量及其分布列

教学设计一、教材分析概率是对随机现象统计规律演绎的研究,而统计是对随机现象统计规律归纳的研究,两者是相互渗透、相互联系的。

“离散型随机变量的分布列”作为概率与统计的桥梁与纽带,它既是概率的延伸,也是学习统计学的理论基础,能起到承上启下的作用,是本章的关键知识之一。

引入随机变量的目的是研究随机现象发生的统计规律及所有随机事件发生的概率。

离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象,对随机变量的概率分布的研究,可以实现随机现象数学化的转化。

离散型随机变量的分布列反映了随机变量的概率分布,将实验的各个孤立事件联系起来,从整体上研究随机现象,也是为定义离散型随机变量的数学期望和方差奠定基础。

二、学情分析在必修三的教材中,学生已经学习了有关统计概率的基本知识在本书的第一章也全面学习了排列组合的有关内容,有了知识上的准备。

并且通过古典概型的学习,基本掌握了离散型随机变量取某些值时对应的概率,有了方法上的准备。

但并未系统化。

处于这一阶段的学生,思维活跃,已初步具备自主探究的能力,在日常的学习中也培养了小组合作学习的好习惯,学生的动手能力运算能力也较好,但是个别同学基础上薄弱,处理抽象问题的能力还有待于提高。

三、教学目标从知识上,使学生能了解离散型随机变量的分布列,会求某些简单的离散型随机变量的分布列;从能力上,通过教学渗透“数学化”的研究思想,发展学生的抽象、概括能力;从情感上,通过引导学生对解决问题的过程的参与,使学生进一步感受到生活与数学的“零距离”,从而激发学生学习数学的热情。

四、教学重难点学习重点:离散型随机变量的概念及其分布列的概念学习难点:离散型随机变量分布列的表示及性质五、教学策略分析学生是教学的主体,本节课要给学生提供各种参与机会。

本课以具体情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。

引导学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、解决问题的能力。

专题06 离散型随机变量及其分布列、数字特征(解析版)

专题06 离散型随机变量及其分布列、数字特征(解析版)

06离散型随机变量及其分布列、数字特征知识点1随机变量(1)定义:一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X(ω)与之对应,我们称X为随机变量.随机变量的取值X(ω)随着随机试验结果ω的变化而变化.(2)离散型随机变量:可能取值为有限个或可以一一列举的随机变量称之为离散型随机变量.(2)表示:随机变量通常用大写英文字母表示,例如X,Y,Z;随机变量的取值用小写英文字母表示,例如x,y,z.知识点2离散型随机变量的分布列的定义(1)定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x i,…,x n,我们称X取每一个值x i 的概率P(X=x i)=p i,i=1,2,…,n为X的概率分布列,简称分布列.(2)表示方法:①表格;②概率分布图.知识点3离散型随机变量的分布列的性质(1)p i ≥0,i =1,2,…,n ;(2)p 1+p 2+…+p n =1.知识点4离散型随机变量的均值与方差一般地,若离散型随机变量X 的分布列如下表所示,X x 1x 2…x n Pp 1p 2…p n(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n =i ii 1nx P =∑为随机变量X 的均值或数学期望,数学期望简称期望.(2)方差:称D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =i 1n=∑(x i -E (X ))2p i 为随机变量X的方差,有时也记为Var (X ),并称D (X )为随机变量X 的标准差,记为σ(X ).(3)均值的意义:均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.(4)方差和标准差的意义:随机变量的方差和标准差都可以度量随机变量取值与其均值E (X )的偏离程度,反映了随机变量取值的离散程度.方差或标准差越小,随机变量的取值越集中;方差或标准差越大,随机变量的取值越分散.知识点5均值与方差的性质若Y =aX +b ,其中X 是随机变量,a ,b 是常数,随机变量X 的均值是E (X ),方差是D (X ).则E (Y )=E (aX +b )=aE (X )+b ;D (Y )=D (aX +b )=a 2D (X ).(a ,b 为常数).知识点6分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值.(2)随机变量ξ所取的值分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率.知识点7均值与方差的四个常用性质(1)E (k )=k ,D (k )=0,其中k 为常数.(2)E (X 1+X 2)=E (X 1)+E (X 2).(3)D (X )=E (X 2)-(E (X ))2.(4)若X1,X 2相互独立,则E (X 1X 2)=E (X 1)·E (X 2).考点1离散型随机变量分布列的性质(1)求a的值;(2)求;(3)求X.【答案】(1)由分布列的性质,得++++P(X=1)=a+2a+3a+4a+5a=1,所以a=115.(2)=++P(X=1)=3×115+4×115+5×115=45.(3)X=++=115+215+315=25.【总结】离散型随机变量分布列性质的应用(1)利用“总概率之和为1”可以求相关参数的取值范围或值;(2)利用“离散型随机变量在一范围内的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率;(3)可以根据性质判断所得分布列结果是否正确.【变式1-1】设随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,C为常数,则P(X<3)=__________.【答案】89【解析】随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,∴C2+C6+C12=1,即6C+2C+C12=1,解得C=43,∴P(X<3)=P(X=1)+P(X=2)=43=89.【变式1-2】设离散型随机变量X的分布列为X01234P0.20.10.10.3m(1)求随机变量Y=2X+1的分布列;(2)求随机变量η=|X-1|的分布列;(3)求随机变量ξ=X2的分布列.【解析】(1)由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.首先列表为:X012342X+113579从而Y=2X+1的分布列为:Y13579P0.20.10.10.30.3(2)列表为:X01234|X-1|10123∴P(η=0)=P(X=1)=0.1,P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的分布列为:η0123P0.10.30.30.3(3)首先列表为:X01234X2014916从而ξ=X2的分布列为:ξ014916P0.20.10.10.30.3【变式1-3】设随机变量X的分布列如下:X12345P 112161316p则p为()A.1 6B.13C.14D.112【答案】C【解析】由分布列的性质知,112+16+13+16+p=1,∴p=1-34=14.【变式1-4】设X是一个离散型随机变量,其分布列为X-101P 121-q q-q2则q等于()A.1 B.22或-22C.1+22D.2 2【答案】D【解析】1-q+q-q2=1,1-q≤12,q-q2≤12,解得q=22.【变式1-5】(多选)设随机变量ξ的分布列为ak(k=1,2,3,4,5),则()A.a=115B.ξ=15C.ξ=215D.P(ξ=1)=310【答案】AB【解析】对于选项A,∵随机变量ξ的分布列为ak(k=1,2,3,4,5),∴P(ξ=1)=a+2a+3a+4a+5a=15a=1,解得a=115,故A正确;对于B,易知ξ3×115=15,故B正确;对于C,易知ξ=115+2×115=15,故C错误;对于D,易知P(ξ=1)=5×115=13,故D错误.【变式1-6】设X是一个离散型随机变量,其分布列为X01P9a2-a3-8a则常数a的值为()A.13B.23C.13或23D.-13或-23【答案】A【解析】≤9a 2-a ≤1,≤3-8a ≤1,a 2-a +3-8a =1,解得a =13.【变式1-7】离散型随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P X 的值为()A.23B.34C.45D.56【答案】D【解析】因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a 20=1,所以a =54,所以X P (X =1)+P (X =2)=54×12+54×16=56.【变式1-8】若随机变量X 的分布列如下表,则mn 的最大值是()X 024Pm0.5n A.116B.18C.14D.12【答案】A【解析】由分布列的性质,得m +n =12,m ≥0,n ≥0,所以mn =116,当且仅当m =n =14时,等号成立.【变式1-9】随机变量X 的分布列如下:X -101Pabc其中a ,b ,c 成等差数列,则P (|X |=1)=______,公差d 的取值范围是______.【答案】23-13,13【解析】因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.考点2求离散型随机变量的分布列【例2】双败淘汰制是一种竞赛形式,与普通的单败淘汰制输掉一场即被淘汰不同,参赛者只有在输掉两场比赛后才丧失争夺冠军的可能.在双败淘汰制的比赛中,参赛者的数量一般是2的次方数,以保证每一轮都有偶数名参赛者.第一轮通过抽签,两人一组进行对阵,胜者进入胜者组,败者进入负者组.之后的每一轮直到最后一轮之前,胜者组的选手两人一组相互对阵,胜者进入下一轮,败者则降到负者组参加本轮负者组的第二阶段对阵;负者组的第一阶段,由之前负者组的选手(不包括本轮胜者组落败的选手)两人一组相互对阵,败者被淘汰(已经败两场),胜者进入第二阶段,分别对阵在本轮由胜者组中降组下来的选手,胜者进入下一轮,败者被淘汰.最后一轮,由胜者组最终获胜的选手(此前从未败过,记为A)对阵负者组最终获胜的选手(败过一场,记为B),若A胜则A获得冠军,若B胜则双方再次对阵,胜者获得冠军.某围棋赛事采用双败淘汰制,共有甲、乙、丙等8名选手参赛.第一轮对阵双方由随机抽签产生,之后每一场对阵根据赛事规程自动产生对阵双方,每场对阵没有平局.(1)设“在第一轮对阵中,甲、乙、丙都不互为对手”为事件M,求M的概率;(2)已知甲对阵其余7名选手获胜的概率均为23,解决以下问题:①求甲恰在对阵三场后被淘汰的概率;②若甲在第一轮获胜,设甲在该项赛事的总对阵场次为随机变量ξ,求ξ的分布列.【分析】(1)先求出8人平均分成四组的方法数,再求出甲,乙,丙都不分在同一组的方法数,从而可求得答案;(2)①甲恰在对阵三场后淘汰,有两种情况:“胜,败,败”和“败,胜,败”,然后利用互斥事件的概率公式求解即可;②由题意可得ξ∈{3,4,5,6,7},然后求出各自对应的概率,从而可得ξ的分布列.【解析】(1)8人平均分成四组,共有C28C26C24C22A44种方法,其中甲,乙,丙都不分在同一组的方法数为A35,所以P(A)=A35C28C26C24C22A44=4 7.(2)①甲恰在对阵三场后淘汰,这三场的结果依次是“胜,败,败”或“败,胜,败”,故所求的概率为23×13×13+13×23×13=427.②若甲在第一轮获胜,ξ∈{3,4,5,6,7}.当ξ=3时,表示甲在接下来的两场对阵都败,即P(ξ=3)=13×13=19.当ξ=4时,有两种情况:(ⅰ)甲在接下来的3场比赛都胜,其概率为23×23×23=827;(ⅱ)甲4场对阵后被淘汰,表示甲在接下来的3场对阵1胜1败,且第4场败,概率为C12·23×13×13=427,所以P (ξ=4)=827+427=49.当ξ=5时,有两种情况:(ⅰ)甲在接下来的2场对阵都胜,第4场败,概率为23×23×13=427;(ⅱ)甲在接下来的2场对阵1胜1败,第4场胜,第5场败,概率为C12·23×13×23×13=881;所以P (ξ=5)=427+881=2081.当ξ=6时,有两种情况:(ⅰ)甲第2场胜,在接下来的3场对阵为“败,胜,胜”,其概率为23×132=881;(ⅱ)甲第2场败,在接下来的4场对阵为“胜,胜,胜,败”,其概率为133×13=8243;所以P (ξ=6)=881+8243=32243.当ξ=7时,甲在接下来的5场对阵为“败,胜,胜,胜,胜”,即P (ξ=7)=134=16243.所以ξ的分布列为:ξ34567P194920813224316243【总结】离散型随机变量分布列的求解步骤【变式2-1】为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X ,求X 的分布列.【解析】(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为20×1+100×2+80×3200=2.3.(2)从该公司任选两名司机,记“这两人中一人送考1次,另一人送考2次”为事件A ,“这两人中一人送考2次,另一人送考3次”为事件B ,“这两人中一人送考1次,另一人送考3次”为事件C ,“这两人送考次数相同”为事件D .由题意知X 的所有可能取值为0,1,2,则P (X =0)=P (D )=C 220+C 2100+C 280C 2200=83199,P (X =1)=P (A )+P (B )=C 120C 1100C 2200+C 1100C 180C 2200=100199.P (X =2)=P (C )=C 120C 180C 2200=16199.∴X 的分布列为:X 012P8319910019916199【变式2-2】(多选)设离散型随机变量X 的分布列为X 01234Pq0.40.10.20.2若离散型随机变量Y 满足Y =2X +1,则下列结果正确的有()A .q =0.1B .E (X )=2,D (X )=1.4C .E (X )=2,D (X )=1.8D .E (Y )=5,D (Y )=7.2【答案】ACD【解析】因为q +0.4+0.1+0.2+0.2=1,所以q =0.1,故A 正确;由已知可得E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,故C 正确;因为Y =2X +1,所以E (Y )=2E (X )+1=5,D (Y )=4D (X )=7.2,故D 正确.考点3求离散型随机变量的均值与方差【例3】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列与数学期望E (ξ),方差D (ξ).【解析】(1)两人所付费用相同,相同的费用可能为0,40,80元,两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3-14--16-=124.则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)ξ可能取值为0,40,80,120,160,则P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124.所以,随机变量ξ的分布列为ξ04080120160P1241451214124∴E (ξ)=0×124+40×14+80×512+120×14+160×124=80,D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=40003.【总结】求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ全部的可能取值;(2)求ξ取每个值的概率;(3)写出ξ的分布列;(4)由均值的定义求E (ξ),由方差的定义求D (ξ).【变式3-1】据有关权威发布某种传染病的传播途径是通过呼吸传播,若病人(患了某种传染病的人)和正常人(没患某种传染病的人)都不戴口罩而且交流时距离小于一米90%的机率被传染,若病人不戴口罩正常人戴口罩且交流时距离小于一米时60%的机率被传染,若病人戴口罩而正常人不戴口罩且交流距离小于一米时30%的机率被传染上,若病人和正常人都带口罩且交流距离大于一米时不会被传染.为此对某地经常出入某场所的人员通过抽样调查的方式对戴口罩情况做了记录如下表:男士女士戴口罩不戴口罩戴口罩不戴口罩甲地40203010乙地10304515假设某人是否戴口罩互相独立(1)求去甲地的男士带口罩的概率,用上表估计所有去甲地的人戴口罩的概率.(2)若从所有男士中选1人,从所有女士中选2人,用上表的频率估计概率,求戴口罩人数X 的分布列和期望.(3)上表中男士不戴口罩记为“ξ=0”,戴口罩记为“ξ=1”,确定男士戴口罩的方差为Dξ,和女士不戴口罩记为“η=0”,戴口罩记为“η=1”确定女士戴口罩的方差为Dη.比较Dξ和Dη的大小,并说明理由.【解析】(1)设“去甲地的男士带口罩”为事件M ,则P (M )=4040+20=23,设“去甲地的人戴口罩”为事件N ,则P (N )=40+3040+20+30+10=710,(2)设“男士带口罩”为事件A ,则P (A )=40+1040+20+10+30=12,设“女士带口罩”为事件B ,则P (B )=30+4530+10+45+15=34,所有男士中选1人,从所有女士中选2人,戴口罩人数X =0,1,2,3,P (X =0)=12×14×14=132,P (X =1)=12×14×14+12×34×14+12×14×34=732,P (X =2)=12×34×14+12×14×34+12×34×34=1532,P (X =3)=12×34×34=932分布列为:X123P1327321532932E (X )=0×132+1×732+2×1532+3×932=2(3)E (ξ)=0×12+1×12=12,D (ξ)=(0-12)2×12+(1-12)2×12=14,E (η)=0×14+1×34=34,D (η)=(0-34)2×14+(1-34)2×34=316.100名男士中有50人戴口罩,50人不戴口罩,100名女士中有75人戴口罩,25人不戴口罩,从数据分布可看出来女士戴口罩的集中程度要好于男士,所以其方差偏小.【变式3-2】已知X 的分布列为X -101P121316设Y =2X +3,则E (Y )的值为()A .73B .4C .-1D .1【答案】A【解析】∵E (X )=-12+16=-13,∴E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-3】已知离散型随机变量X 的分布列为X 012P0.51-2qq 2则常数q =________.【答案】1-22【解析】由分布列的性质得0.5+1-2q +q 2=1,解得q =1-22或q =1+22(舍去).【变式3-4】设随机变量X 的分布列为P (X =k )=a k,k =1,2,3,则a 的值为__________.【答案】2713【解析】因为随机变量X 的分布列为P (X =k )=a k,k =1,2,3,所以根据分布列的性质有a ·13+a 2+a 3=1,所以a +19+=a ×1327=1,所以a =2713.【变式3-5】已知随机变量X 的分布列如下:X -101P121316若Y =2X +3,则E (Y )的值为________.【答案】73【解析】E (X )=-12+16=-13,则E (Y )=E (2X +3)=2E (X )+3=-23+3=73.【变式3-6】若随机变量X 满足P (X =c )=1,其中c 为常数,则D (X )的值为________.【答案】0【解析】因为P (X =c )=1,所以E (X )=c ×1=c ,所以D (X )=(c -c )2×1=0.【变式3-7】(2022·昆明模拟)从1,2,3,4,5这组数据中,随机取出三个不同的数,用X 表示取出的数字的最小数,则随机变量X 的均值E (X )等于()A.32B.53C.74D.95【答案】A【解析】由题意知,X 的可能取值为1,2,3,而随机取3个数的取法有C 35种,当X =1时,取法有C 24种,即P (X =1)=C 24C 35=35;当X =2时,取法有C 23种,即P (X =2)=C 23C 35=310;当X =3时,取法有C22种,即P (X =3)=C 22C 35=110;∴E (X )=1×35+2×310+3×110=32.【变式3-8】已知随机变量X ,Y 满足Y =2X +1,且随机变量X 的分布列如下:X 012P1613a则随机变量Y 的方差D (Y )等于()A.59B.209C.43D.299【答案】B【解析】由分布列的性质,得a =1-16-13=12,所以E (X )=0×16+1×13+2×12=43,所以D (X )×16+×13+×12=59,又Y =2X +1,所以D (Y )=4D (X )=209.【变式3-9】已知m ,n 为正常数,离散型随机变量X 的分布列如表:X -101Pm14n若随机变量X 的均值E (X )=712,则mn =________,P (X ≤0)=________.【答案】11813【解析】+n +14=1,-m =712,=112,=23,所以mn =118,P (X ≤0)=m +14=13.【变式3-10】(2022·邯郸模拟)小张经常在某网上购物平台消费,该平台实行会员积分制度,每个月根据会员当月购买实物商品和虚拟商品(充话费等)的金额分别进行积分,详细积分规则以及小张每个月在该平台消费不同金额的概率如下面的表1和表2所示,并假设购买实物商品和购买虚拟商品相互独立.表1购买实物商品(元)(0,100)[100,500)[500,1000)积分246概率141214表2购买虚拟商品(元)(0,20)[20,50)[50,100)[100,200)积分1234概率13141416(1)求小张一个月购买实物商品和虚拟商品均不低于100元的概率;(2)求小张一个月积分不低于8分的概率;(3)若某个月小张购买了实物商品和虚拟商品,消费均低于100元,求他这个月的积分X 的分布列与均值.【解析】(1)小张一个月购买实物商品不低于100元的概率为12+14=34,购买虚拟商品不低于100元的概率为16,因此所求概率为34×16=18.(2)根据条件,积分不低于8分有两种情况:①购买实物商品积分为6分,购买虚拟商品的积分为2,3,4分;②购买实物商品积分为4分,购买虚拟商品的积分为4分,故小张一个月积分不低于8分的概率为14×+12×16=14.(3)由条件可知X 的可能取值为3,4,5.P (X =3)=1313+14+14=25,P (X =4)=P (X =5)=1413+14+14=310,即X 的分布列如下:X 345P25310310E (X )=3×25+4×310+5×310=3910.考点4均值与方差在决策中的作用【例4】2021年3月5日李克强总理在政府作报告中特别指出:扎实做好碳达峰,碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.某环保机器制造商为响应号召,对一次购买2台机器的客户推出了两种超过机器保修期后5年内的延保维修方案:方案一:交纳延保金5000元,在延保的5年内可免费维修2次,超过2次每次收取维修费1000元;方案二:交纳延保金6230元,在延保的5年内可免费维修4次,超过4次每次收取维修费t 元;制造商为制定收取标准,为此搜集并整理了200台这种机器超过保修期后5年内维修的次数,统计得到下表:维修次数0123机器台数20408060以这200台机器维修次数的频率代替1台机器维修次数发生的概率,记X 表示2台机器超过保修期后5年内共需维修的次数.(1)求X 的分布列;(2)以所需延保金与维修费用之和的均值为决策依据,为使选择方案二对客户更合算,应把t 定在什么范围?【分析】(1)由题设描述确定2台机器超过保修期后5年内共需维修的次数的可能值,并确定对应的基本事件,进而求各可能值的概率,写出分布列.(2)根据(1)所得分布列,由各方案的费用与维修次数的关系写出费用的分布列,并求期望,通过期望值的大小关系求参数的范围.【解析】(1)由题意得,X =0,1,2,3,4,5,6,P (X =0)=110×110=1100,P (X =1)=110×15×2=125,P (X =2)=110×25×2+15×15=325,P (X =3)=110×310×2+15×25×2=1150,P (X =4)=310×15×2+25×25=725,P (X =5)=310×25×2=625,P (X =6)=310×310=9100,∴X 的分布列为X 0123456P110012532511507256259100(2)选择方案一:所需费用为Y 1元,则X ≤2时,Y 1=5000,X =3时,Y 1=6000;X =4时,Y 1=7000;X =5时,Y 5=8000,X =6时,Y 1=9000,∴Y 1的分布列为Y 150006000700080009000P1710011507256259100E (Y 1)=5000×17100+6000×1150+7000×725+8000×625+9000×9100=6860,选择方案二:所需费用为Y 2元,则X ≤4时,Y 2=6230;X =5时,Y 2=6230+t ;X =6时,Y 2=6230+2t ,则Y 2的分布列为Y 262306230+t 6230+2t P671006259100E (Y 2)=6230×67100+(6230+t )×625+(6230+2t )×9100=6230+21t50,要使选择方案二对客户更合算,则E (Y 2)<E (Y 1),∴6230+21t50<6860,解得t <1500,即t 的取值范围为[0,1500).【总结】利用均值、方差进行决策的2个方略(1)当均值不同时,两个随机变量取值的水平可见分歧,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.【变式4-1】直播带货是扶贫助农的一种新模式,这种模式是利用主流媒体的公信力,聚合销售主播的力量助力打通农产品产销链条,切实助力贫困地区农民脱贫增收.某贫困地区有统计数据显示,2020年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示.若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,则“经常使用直播销售用户”中有56是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,并根据列联表判断是否有85%的把握认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2021年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售.根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不赔不赚,且这三种情况发生的概率分别为710,15,110;方案二:线上直播销售.根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为35,310,110.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.0500.0250.010x α2.0722.7063.8415.0246.635其中,χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .【解析】(1)由图1知,“年轻人”占比为45.5%+34.5%=80%,即有200×80%=160(人),“非年轻人”有200-160=40(人),由图2知,“经常使用直播销售用户”占比为30.1%+19.2%+10.7%=60%,即有200×60%=120(人),“不常使用直播销售用户”有200-120=80(人).“经常使用直播销售用户的年轻人”有120×56=100(人),“经常使用直播销售用户的非年轻人”有120-100=20(人).∴补全的列联表如下:年轻人非年轻人合计经常使用直播销售用户10020120不常使用直播销售用户602080合计16040200于是a =100,b =20,c =60,d =20.∴χ2=200×(100×20-60×20)2120×80×160×40=2512≈2.083>2.072,即有85%的把握认为经常使用网络直播销售与年龄有关.(2)若按方案一,设获利X 1万元,则X 1可取的值为300,-150,0,X 1的分布列为:X 1300-1500p71015110E (X 1)=300×710+(-150)×15+0×110=180(万元),D(X1)=(300-180)2×710+(-150-180)2×15+(0-180)2×110=1202×710+3302×15+1802×110=35100若按方案二,设获利X2万元,则X2可取的值为500,-300,0,X2的分布列为:X2500-3000p 35310110E(X2)=500×35+(-300)×310+0×110=210(万元),D(X2)=(500-210)2×35+(-300-210)2×310+(0-210)2×110=2902×35+5102×310+2102×110=132900∵E(X1)<E(X2),D(X1)<D(X2),由方案二的均值要比方案一的均值大,从获利角度来看方案二更大,故选方案二.由方案二的方差要比方案一的方差大得多,从稳定性方面看方案一线下销售更稳妥,故选方案一.【变式4-2】某班体育课组织篮球投篮考核,考核分为定点投篮与三步上篮两个项目.每个学生在每个项目投篮5次,以规范动作投中3次为考核合格,定点投篮考核合格得4分,否则得0分;三步上篮考核合格得6分,否则得0分.现将该班学生分为两组,一组先进行定点投篮考核,一组先进行三步上篮考核,若先考核的项目不合格,则无需进行下一个项目,直接判定为考核不合格;若先考核的项目合格,则进入下一个项目进行考核,无论第二个项目考核是否合格都结束考核.已知小明定点投篮考核合格的概率为0.8,三步上篮考核合格的概率为0.7,且每个项目考核合格的概率与考核次序无关.(1)若小明先进行定点投篮考核,记X为小明的累计得分,求X的分布列;(2)为使累计得分的均值最大,小明应选择先进行哪个项目的考核?并说明理由.【解析】(1)由已知可得,X的所有可能取值为0,4,10,则P(X=0)=1-0.8=0.2,P(X=4)=0.8×(1-0.7)=0.24,P(X=10)=0.8×0.7=0.56,所以X的分布列为X0410P0.20.240.56(2)小明应选择先进行定点投篮考核,理由如下:由(1)可知小明先进行定点投篮考核,累计得分的均值为E(X)=0×0.2+4×0.24+10×0.56=6.56,若小明先进行三步上篮考核,记Y为小明的累计得分,则Y的所有可能取值为0,6,10,P(Y=0)=1-0.7=0.3,P (Y =6)=0.7×(1-0.8)=0.14,P (Y =10)=0.7×0.8=0.56,则Y 的均值为E (Y )=0×0.3+6×0.14+10×0.56=6.44,因为E (X )>E (Y ),所以为使累计得分的均值最大,小明应选择先进行定点投篮考核.【变式4-3】为加快某种病毒的检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和均值E (X );(2)若采用“5合1检测法”,检测次数Y 的均值为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).【解析】(1)①对每组进行检测,需要10次;再对结果为阳性的一组每个人进行检测,需要10次,所以总检测次数为20.②由题意,X 可以取20,30,P (X =20)=111,P (X =30)=1-111=1011,则X 的分布列为X 2030P1111011所以E (X )=20×111+30×1011=32011.(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为P 1=C 120C 22C 398C 5100=499,不在同一组的概率为P 1=9599,则E (Y )=25×499+30×9599=295099>E (X ).【变式4-4】(2022·莆田质检)某工厂生产一种精密仪器,由第一、第二和第三工序加工而成,三道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.三道工序的加工结果直接决定该仪器的产品等级:三道工序的加工结果均为A 级时,产品为一等品;第三工序的加工结果为A 级,且第一、第二工序至少有一道工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示:表一工序第一工序第二工序第三工序概率0.50.750.8表二等级一等品二等品三等品利润2385(1)用η表示一件产品的利润,求η的分布列和均值;(2)因第一工序加工结果为A 级的概率较低,工厂计划通过增加检测成本对第一工序进行改良,假如改良过程中,每件产品检测成本增加x (0≤x ≤4)万元(即每件产品利润相应减少x 万元)时,第一工序加工结果为A 级的概率增加19x .问该改良方案对一件产品利润的均值是否会产生影响?并说明理由.【解析】(1)由题意可知,η的所有可能取值为23,8,5,产品为一等品的概率为0.5×0.75×0.8=0.3,产品为二等品的概率为(1-0.5×0.75)×0.8=0.5,产品为三等品的概率为1-0.3-0.5=0.2,所以η的分布列为η2385P0.30.50.2E (η)=23×0.3+8×0.5+5×0.2=11.9.(2)改良方案对一件产品的利润的均值不会产生影响,理由如下:在改良过程中,每件产品检测成本增加x (0≤x ≤4)万元,第一工序加工结果为A 级的概率增加19x ,设改良后一件产品的利润为ξ,则ξ的所有可能取值为23-x,8-x,5-x ,+19x 0.75×0.8=0.3+x15,二等品的概率为10.75×0.8=0.5-x15,三等品的概率为10.2,所以E (ξ)-x )-x )+0.2×(5-x )=6.9-0.3x +2315x -115x 2+4-0.5x -815x +1152+1-0.2x =11.9,因为E (ξ)=E (η),所以改良方案对一件产品的利润的均值不会产生影响.1.(多选)设离散型随机变量X 的分布列如下表:X 12345Pm0.10.2n0.3若离散型随机变量Y =-3X +1,且E (X )=3,则()A .m =0.1B .n =0.1C .E (Y )=-8D .D (Y )=-7.8【答案】BC【解析】由E (X )=1×m +2×0.1+3×0.2+4×n +5×0.3=3得m +4n =0.7,又由m +0.1+0.2+n +0.3=1得m +n =0.4,从而得m =0.3,n =0.1,故A 选项错误,B 选项正确;E (Y )=-3E (X )+1=-8,故C 选项正确;因为D (X )=0.3×(1-3)2+0.1×(2-3)2+0.1×(4-3)2+0.3×(5-3)2=2.6,所以D (Y )=(-3)2D (X )=23.4,故D 选项错误.2.已知随机变量ξ的分布列如下表,D (ξ)表示ξ的方差,则D (2ξ+1)=___________.ξ012pa1-2a14【答案】2【解析】由题意可得:a +1-2a +14=1,解得a =14,ξ012p141214所以E (ξ)=0×14+1×12+2×14=1,D (ξ)=14(0-1)2+12×(1-1)2+14×(2-1)2=12,D (2ξ+1)=22D (ξ)=2.3.京西某地到北京西站有阜石和莲石两条路,且到达西站所用时间互不影响.下表是该地区经这两条路抵达西站所用时长的频率分布表:时间(分钟)10~2020~3030~4040~5050~60莲石路(L 1)的频率0.10.20.30.20.2阜石路(L 2)0.10.40.40.1的频率若甲、乙两人分别有40分钟和50分钟的时间赶往西站(将频率视为概率)(1)甲、乙两人应如何选择各自的路径?(2)按照(1)的方案,用X表示甲、乙两人按时抵达西站的人数,求X的分布列和数学期望.【解析】(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B1表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率,则有P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),所以甲应选择路径L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B1)<P(B2),所以乙应选择路径L2;(2)用A,B分别表示针对(1)的选择方案,甲,乙在各自的时间内到达火车站,由(1)知P(A)=0.6,P(B)=0.9,且A,B相互独立,X的取值是0,1,2,P(X=0)=P(A-B-)=0.1×0.4=0.04,P(X=1)=P(A-B+A B-)=0.4×0.9+0.6×0.1=0.42,P(X=2)=P(AB)=0.9×0.6=0.54,所以X的分布列为:X012P0.040.420.54E(X)=0×0.04+1×0.42+2×0.54=1.5.4.品酒师需定期接受酒味鉴别功能测试,通常采用的测试方法如下:拿出n(n∈N*且n≥4)瓶外观相同但品质不同的酒让品酒师品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序.这称为一轮测试,根据一轮测试中的两次排序的偏离程度的高低为其评分.现分别以a1,a2,a3,…,a n表示第一次排序时被排在1,2,3,…,n的n种酒在第二次排序时的序号,并令X=|1-a1|+|2-a2|+|3-a3|+...+|n-a n|,则X是对两次排序的偏离程度的一种描述.下面取n=4研究,假设在品酒师仅凭随机猜测来排序的条件下,a1,a2,a3,a4等可能地为1,2,3,4的各种排列,且各轮测试相互独立.(1)直接写出X的可能取值,并求X的分布列和数学期望;(2)若某品酒师在相继进行的三轮测试中,都有X≤2,则认为该品酒师有较好的酒味鉴别功能.求出现这种现象的概率,并据此解释该测试方法的合理性.【解析】(1)X的可能取值为0,2,4,6,8P(X=0)=1A44=124,。

高中理科数学-离散型随机变量和分布列

高中理科数学-离散型随机变量和分布列

理科数学复习专题 统计与概率 离散型随机变量及其分布列知识点一1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。

2、离散型随机变量的分布列及其性质:(1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表称为离散型随机变量离散型随机变量X ,简称X 的分布列。

(2)分布列的性质:①0,1,2,,i p in ?g g g ;②11ni i p ==å(3)常见离散型随机变量的分布列:①两点分布:若随机变量X 的分布列为,则称X 服从两点分布,并称(1)p P x ==为成功概率②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X件次品,则()(0,1,2,,k n k M N MnNC C P X k k m C --===g g g g 其中m i n {,m M n =,且*,,,,)n N M N n MN N #?,称分布列为超几何分布列。

如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( )A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望是________.题型二 由古典概型求离散型随机变量的分布列(超几何分布)【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列.【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.知识点二1.条件概率及其性质对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用符号P(A|B)来表示,其公式为P(A|B)=P(AB)P(B)(P(B)>0).在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B).2.相互独立事件(1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件.(2)若A与B相互独立,则P(AB)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.题型三 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )= ________.(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.练:某地空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.题型四 由独立事件同时发生的概率求离散型随机变量的分布列(二项分布)例1 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,“求X ≥2”的事件概率.例2在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.练习:一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的概率分布. (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?【误区解密】抽取问题如何区分超几何分布和二项分布?例:某学校10个学生的考试成绩如下:(≥98分为优秀) (1)10人中选3人,求至多1人优秀的概率(2)用10人的数据估计全级,从全级的学生中任选3人,用X 表示优秀人数的个数,求X 的分布列练:18、某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[)10,20,[)20,30,[)30,40,[)40,50,[)50,60的市民进行问卷调查,由此得到样本频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄在[)30,40的人数; (Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5从,求[)50,60年龄段抽取的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽到2人作为本次活动的获奖者,记X 为年龄在[)50,60年龄段的人数,求X 的分布列及数学期望.2、一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25](25,35],(35,45],由此得到样本的重量频率分布直方图,如图.(Ⅰ)求a 的值; (Ⅱ)根据样本数据,试估计盒子中小球重量的平均值; (Ⅲ)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望及方差.。

高三总复习数学课件 离散型随机变量及其分布列

高三总复习数学课件 离散型随机变量及其分布列
解析:由1×1 2+2×1 3+3×1 4+4×1 5×a=1,知45a=1,得 a=54.故 P12<X<52= P(X=1)+P(X=2)=12×54+16×54=56. 答案:56
1.随机变量的取值与随机试验的结果之间的关系 明确离散型随机变量的所有可能取值及取每一个值所对应的随机试验的结果, 同时也要明确一个随机变量的取值对应一个或多个随机试验的结果,解答过程中不 要漏掉某些试验结果. 2.离散型随机变量分布列性质的应用 (1)利用“总概率之和为 1”可以求相关参数的取值范围或值; (2)利用“离散型随机变量在一范围内的概率等于它取这个范围内各个值的概 率之和”求某些特定事件的概率; (3)可以根据性质判断所得分布列结果是否正确.
(2)顾客摸奖一次获得的奖金数额设为 Y,
Y 的可能取值 0,10,20,30,40, 则 P(Y=0)=14,P(Y=10)=AA1224=16, P(Y=20)=A124+AA2234=16,P(Y=30)=CA12·A34 22=16,P(Y=40)=AA3344=14. 所以 1 名顾客 5 次摸奖获得奖金数额 X=5Y 的分布列为
[逐点清] 3.(选择性必修第三册 79 页例 6 改编)一盒中有 12 个乒乓球,其中 9 个新的、3 个
旧的,从盒中任取 3 个球来用,用完后装回盒中,此时盒中旧球个数 X 是一个 随机变量,则 P(X=4)的值为________. 解析:由题意知取出的 3 个球必为 2 个旧球、1 个新球,故 P(X=4)=CC23C31219=22270. 答案:22270
02
考点 分类突破 课堂讲练
理解透 规律明 变化究其本
离散型随机变量分布列的性质
1.(多选)已知随机变量 X 的分布列如下表(其中 a 为常数):

高中理科数学-离散型随机变量及分布列汇编

高中理科数学-离散型随机变量及分布列汇编

理科数学复习专题 统计与概率 离散型随机变量及其分布列知识点一1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。

2、离散型随机变量的分布列及其性质:(1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表称为离散型随机变量离散型随机变量X ,简称X 的分布列。

(2)分布列的性质:①0,1,2,,i p in ?g g g ;②11ni i p ==å(3)常见离散型随机变量的分布列:①两点分布:若随机变量X 的分布列为,则称X 服从两点分布,并称(1)p P x ==为成功概率②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X件次品,则()(0,1,2,,k n k M N MnNC C P X k k m C --===g g g g 其中m i n {,m M n =,且*,,,,)n N M N n MN N #?,称分布列为超几何分布列。

如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( )A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望是________.题型二 由古典概型求离散型随机变量的分布列(超几何分布)【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列.【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.知识点二1.条件概率及其性质对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用符号P(A|B)来表示,其公式为P(A|B)=P(AB)P(B)(P(B)>0).在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B).2.相互独立事件(1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件.(2)若A与B相互独立,则P(AB)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.题型三 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )= ________.(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.练:某地空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.题型四 由独立事件同时发生的概率求离散型随机变量的分布列(二项分布)例1 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,“求X ≥2”的事件概率.例2在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.练习:一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的概率分布.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?【误区解密】抽取问题如何区分超几何分布和二项分布?例:某学校10个学生的考试成绩如下:(≥98分为优秀) (1)10人中选3人,求至多1人优秀的概率(2)用10人的数据估计全级,从全级的学生中任选3人,用X 表示优秀人数的个数,求X 的分布列练:18、某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[)10,20,[)20,30,[)30,40,[)40,50,[)50,60的市民进行问卷调查,由此得到样本频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄在[)30,40的人数; (Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5从,求[)50,60年龄段抽取的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽到2人作为本次活动的获奖者,记X 为年龄在[)50,60年龄段的人数,求X 的分布列及数学期望.2、一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25](25,35],(35,45],由此得到样本的重量频率分布直方图,如图.(Ⅰ)求a 的值;(Ⅱ)根据样本数据,试估计盒子中小球重量的平均值;(Ⅲ)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望及方差.。

离散型随机变量及其分布列知识点

离散型随机变量及其分布列知识点

离散型随机变量及其分布列知识点离散型随机变量及其分布列知识点离散型随机变量是指在有限个或无限个取值中,只能取其中一个数值的随机变量。

离散型随机变量可以用分布列来描述其概率分布特征。

离散型随机变量的概率分布列概率分布列是描述离散型随机变量的概率分布的表格,通常用符号P 表示。

其一般形式如下:P(X=x1)=p1P(X=x2)=p2P(X=x3)=p3…P(X=xn)=pn其中,Xi表示随机变量X的取值,pi表示随机变量X取值为Xi的概率。

离散型随机变量的特点1. 离散型随机变量只取有限或无限个取值中的一个,变化不连续。

2. 取值之间具有间隔或间距。

3. 每个取值对应一个概率,概率分布可用概率分布列来体现。

4. 概率之和为1。

离散型随机变量的常见分布1. 0-1分布0-1分布是指当进行一次伯努利试验时,事件发生的概率为p,不发生的概率为1-p的离散型随机变量的分布。

其分布列为:P(X=0)=1-pP(X=1)=p2. 二项分布二项分布是进行n次伯努利试验中,事件发生的概率为p,不发生的概率为1-p时,恰好出现k次事件发生的离散型随机变量的分布。

其分布列为:P(X=k)=C(n,k)p^k(1-p)^(n-k)其中,C(n,k)为从n中选出k个的组合数。

3. 泊松分布泊松分布是指在某个时间段内,某一事件发生的次数符合泊松定理的离散型随机变量的分布。

其分布列为:P(X=k)=λ^ke^(-λ)/k!其中,λ为这段时间内事件的平均发生次数。

总结离散型随机变量及其分布列是概率论中的重要基础概念之一,具有广泛的应用。

掌握离散型随机变量及其分布列的知识点对于深入理解概率论及其实际应用有重要意义。

2020年高考数学专题复习离散型随机变量及其分布列

2020年高考数学专题复习离散型随机变量及其分布列

离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果的变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量的分布列及其性质(1)概念:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n );②∑ni =1p i =1. 3.常见的离散型随机变量分布列 (1)两点分布若随机变量X 服从两点分布,则其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即:其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.判断正误(正确的打“√”,错误的打“×”)(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数.( ) (2)抛掷均匀硬币一次,出现正面的次数是随机变量.( ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(4)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.( )(5)从4名男演员和3名女演员中选出4人,其中女演员的人数X 服从超几何分布.( ) (6)由下表给出的随机变量X 的分布列服从两点分布.( )答案:(1)√ (2)√ (3)√ (4)√ (5)√ (6)×(教材习题改编)设随机变量X 的分布列如下表所示,则p 4的值是( )A.1 B .12 C .14D .18解析:选D.由分布列的性质,得12+14+18+p 4=1,所以p 4=18.设随机变量X 的分布列为P (X =k )=k 15,k =1,2,3,4,5,则P ⎝ ⎛⎭⎪⎫12<X <52=________.解析:P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=115+215=15. 答案:15在含有3件次品的10件产品中任取4件,则取到次品数X 的分布列为________. 解析:由题意知,X 服从超几何分布,其中N =10,M =3,n =4,所以分布列为P (X =k )=C k3·C 4-k7C 410,k =0,1,2,3.答案:P(X =k )=C k 3·C 4-k7C 410,k =0,1,2,3离散型随机变量的分布列的性质设离散型随机变量X 的分布列为求:(1)2X +1的分布列; (2)|X -1|的分布列.【解】 由分布列的性质知:0.2+0.1+0.1+0.3+m =1, 解得m =0.3. (1)2X +1的分布列为(2)|X -1|的分布列为在本例条件下,求P (1<X ≤4). 解:由本例知,m =0.3,P (1<X ≤4)=P (X =2)+(X =3)+P (X =4)=0.1+0.3+0.3=0.7.离散型随机变量分布列的性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负值;(2)若X 为随机变量,则2X +1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.设随机变量X 等可能地取1,2,3,…,n ,若P (X <4)=0.3,则n 的值为( ) A .3 B .4 C .10D .不确定解析:选C.“X <4”的含义为X =1,2,3,所以P (X <4)=3n=0.3,所以n =10.2.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 解析:因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. 答案:23 ⎣⎢⎡⎦⎥⎤-13,13离散型随机变量的分布列(高频考点)离散型随机变量的分布列是高考命题的热点,多以解答题的形式出现,试题难度不大,多为容易题或中档题.主要命题角度有:(1)用频率代替概率的离散型随机变量的分布列; (2)古典概型的离散型随机变量的分布列;(3)与独立事件(或独立重复试验)有关的分布列的求法.(下一讲内容)角度一 用频率代替概率的离散型随机变量的分布列某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列. 【解】 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为角度二 古典概型的离散型随机变量的分布列(2019·浙江省名校协作体高三联考)一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).(1)求取出的3个小球中,含有编号为4的小球的概率;(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列. 【解】 (1)“设取出的3个小球中,含有编号为4的小球”为事件A , P (A )=C 12C 24+C 22C 14C 36=45,所以取出的3个小球中,含有编号为4的小球的概率为45. (2)X 的可能取值为3,4,5.P (X =3)=1C 36=120;P (X =4)=C 12C 23+C 22C 13C 36=920; P (X =5)=C 35C 36=12,所以随机变量X 的分布列为离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义. (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率. (3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.[提醒] 求随机变量某一范围内取值的概率,要注意它在这个范围内的概率等于这个范围内各概率值的和.某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列. 解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1),则12(n -6)n (n -1)≥12,化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为超几何分布一个袋中有大小相同的黑球和白球共10个.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列. 【解】 (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,其中N =10,M =5,n =3, P (X =k )=C k 5C 3-k5C 310,k =0,1,2,3.于是可得其分布列为在本例条件下,若从袋中任意摸出4个球,记得到白球的个数为X ,求随机变量X 的分布列.解:X 服从超几何分布,其中N =10,M =5,n =4, P (X =k )=C k 5C 4-k5C 410,k =0,1,2,3,4,于是可得其分布列为超几何分布的特点(1)对于服从某些特殊分布的随机变量,其分布列可直接应用公式给出.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列. 解:(1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以,随机变量X 的分布列为对于随机变量X 的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X 的取值范围以及取这些值的概率.求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.易错防范(1)确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的. (2)对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n ),其作用可用于检验所求离散型随机变量的分布列是否正确.[基础达标]1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0B .12C .13D .23解析:选C.设X 的分布列为即“X =0”表示试验失败,“X =1”表示试验成功.由p +2p =1,得p =13,故应选C.2.(2019·绍兴调研)在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:选C.X 服从超几何分布,P (X =k )=C k 7C 10-k8C 1015,故k =4,故选C.3.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A .14B .12C .34D .23解析:选C.依题意知,14+m +14=1,则m =12.故P ⎝ ⎛⎭⎪⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34.4.设随机变量X 的概率分布列如下表所示:若F (x )=P (X ≤x ),则当x 的取值范围是[1,2)时,F (x )等于( ) A .13 B .16 C .12D .56解析:选D.由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.5.已知离散型随机变量X 的分布列为则P (X ∈Z )=( ) A .0.9 B .0.8 C .0.7D .0.6解析:选A.由分布列性质得0.5+1-2q +13q =1,解得q =0.3,所以P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________. 解析:抛掷2颗骰子有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4)=136+236+336=16.答案:167.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.解析:设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,所以a =13,由⎩⎪⎨⎪⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎢⎡⎦⎥⎤-13,138.若离散型随机变量X 的分布列为则常数c =________,P (X =1)=________. 解析:依分布列的性质知,⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,解得c =13,故P (X =1)=3-8×13=13.答案:13 139.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.解析:X 的所有可能值为0,1,2. P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为答案:10.(2019·温州市高考模拟)袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是________,设摸取的这三个球中所含的黑球数为X ,则P (X =k )取最大值时,k 的值为________.解析:袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是:n =C 26C 13=45.设摸取的这三个球中所含的黑球数为X ,则X 的可能取值为0,1,2,3, P (X =0)=C 33C 39=184,P (X =1)=C 16C 23C 39=1884,C 984P (X =3)=C 36C 39=2084,所以P (X =k )取最大值时,k 的值为2. 答案:45 211.抛掷一枚质地均匀的硬币3次. (1)写出正面向上次数X 的分布列; (2)求至少出现两次正面向上的概率. 解:(1)X 的可能取值为0,1,2,3. P (X =0)=C 0323=18;P (X =1)=C 1323=38;P (X =2)=C 2323=38;P (X =3)=C 3323=18.所以X 的分布列为(2)至少出现两次正面向上的概率为P (X ≥2)=P (X =2)+P (X =3)=38+18=12. 12.(2019·台州高三质检)在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张.(1)求该顾客中奖的概率;(2)求该顾客获得的奖品总价值X (元)的分布列. 解:(1)该顾客中奖的概率P =1-C 04C 26C 210=1-1545=23.(2)X 的所有可能取值为0,10,20,50,60,且 P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,C 1015故X 的分布列为[能力提升]1.(2019·浙江高中学科基础测试)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X 为取出的3个球中编号的最小值,求X 的分布列.解:(1)设“取出的3个球编号都不相同”为事件A ,“取出的3个球中恰有两个球编号相同”为事件B ,则P (B )=C 14C 17C 39=2884=13,所以P (A )=1-P (B )=23.(2)X 的取值为1,2,3,4,P (X =1)=C 12C 27+C 22C 17C 39=4984,P (X =2)=C 12C 25+C 22C 15C 39=2584, P (X =3)=C 12C 23+C 22C 13C 39=984,P (X =4)=1C 39=184. 所以X 的分布列为2.(2019·惠州市第三次调研考试)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3. P (X =k )=C k4·C 3-k6C 310(k =0,1,2,3). 所以随机变量X 的分布列为3.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图),这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28(种),当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为4.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用X 表示终止时所需要的取球次数.(1)求袋中原有白球的个数; (2)求随机变量X 的分布列; (3)求甲取到白球的概率. 解:(1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6,所以n (n -1)=6,解得n =3或n =-2(舍去). 即袋中原有3个白球.(2)由题意知X 的可能取值为1,2,3,4,5.P (X =1)=37; P (X =2)=4×37×6=27; P (X =3)=4×3×37×6×5=635;P (X =4)=4×3×2×37×6×5×4=335;P (X =5)=4×3×2×1×37×6×5×4×3=135.所以取球次数X 的分布列为(3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A , 则P (A )=P (X =1或X =3或X =5).因为事件“X =1”“X =3”“X =5”两两互斥,所以P (A )=P (X =1)+P (X =3)+P (X =5)=37+635+135=2235.。

高中理科数学离散型随机变量及分布列

高中理科数学离散型随机变量及分布列

理科数学复习专题 统计与概率离散型随机变量及其分布列知识点一1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。

2、离散型随机变量的分布列及其性质:(1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表(2)分布列的性质:①0,1,2,,i p i n ?g g g ;②11ni i p ==å(3)常见离散型随机变量的分布列:①两点分布:若随机变量X 的分布列为,则称X 服从两点分布,并称(1)p P x ==为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C --===g g g g 其中min{,}m M n =,且*,,,,)n N M N n M N N #?,称分布列为超几何分布列。

如果随机变量X 的分布列具有下表的形式,则称随机变量题型一 由统计数据求离散型随机变量的分布列【例1】已知一随机变量的分布列如下,且E (ξ)=,则a 值为( )A. 5【变式1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望是________.题型二由古典概型求离散型随机变量的分布列(超几何分布)【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X元的概率分布列.【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.知识点二1.条件概率及其性质对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用符号P(A|B)来表示,其公式为P(A|B)=P(AB)(P(B)>0).P(B)在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB).n(B)2.相互独立事件(1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件.(2)若A与B相互独立,则P(AB)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.题型三条件概率例1(1)从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)=________.(2)如图所示,EFGH是以O为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则P(B|A)=________.练:某地空气质量监测资料表明,一天的空气质量为优良的概率是,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.题型四由独立事件同时发生的概率求离散型随机变量的分布列(二项分布)例1 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,“求X≥2”的事件概率.例2在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.练习:一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则,且各次击扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的概率分布.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?【误区解密】抽取问题如何区分超几何分布和二项分布?例:某学校10个学生的考试成绩如下:(≥98分为优秀)(1)10人中选3人,求至多1人优秀的概率(2)用10人的数据估计全级,从全级的学生中任选3人,用X 表示优秀人数的个数,求X 的分布列练:18、某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[)10,20,[)20,30,[)30,40,[)40,50,[)50,60的市民进行问卷调查,由此得到样本频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄在[)30,40的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5从,求[)50,60年龄段抽取的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽到2人作为本次活动的获奖者,记X 为年龄在[)50,60年龄段的人数,求X 的分布列及数学期望.2、一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25](25,35],(35,45],由此得到样本的重量频率分布直方图,如图.(Ⅰ)求a 的值;(Ⅱ)根据样本数据,试估计盒子中小球重量的平均值;(Ⅲ)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望及方差.。

高考数学专题复习:离散型随机变量及其分布列

高考数学专题复习:离散型随机变量及其分布列

高考数学专题复习:离散型随机变量及其分布列一、单选题1.已知离散型随机变量X 的概率分布列如下:则实数a 等于( ) A .0.6B .0.7C .0.1D .0.42.已知随机变量X 的分布列是则P(X>1)=( ) A .23B .32C .1D .343.随机变量X 的分布列为()15kP X k ==,1k =,2,3,4,5,则(3)P X <=( ) A .15B .13C .12D .234.随机变量X 的分布列如下表所示:则()2P X ≤=( ) A .0.1B .0.2C .0.3D .0.45.若随机变量η的分布列如表:则()1P η≤=( ) A .0.5B .0.2C .0.4D .0.36.从装有2个白球、3个黑球的袋中任取2个小球,下列可以作为随机变量的是( ) A .至多取到1个黑球 B .至少取到1个白球 C .取到白球的个数D .取到的球的个数7.已知离散型随机变量X 的分布列如表:则实数c 等于( ) A .0.2B .0.3C .0.6D .0.78.若随机变量X 的分布列如下表所示,则a 的值为( )A .0.1B .0.2C .0.3D .0.49.设随机变量x 的分布列为()(),2,3,4,51===-kP X m m m m ,其中k 为常数,则()2log 3log P X 3<<80的值为( )A .23B .34C .45D .5610.随机变量X 所有可能取值的集合是{}2,0,3,5-,且()()()1112,3,54212P X P X P X =-=====,则()14P X -<<的值为( )A .13B .12C .23D .3411.若随机变量X 的分布列如下表,则(3)P X ≥=( )A .14B .13C .34D .11212.口袋中有5个球,编号为1,2,3,4,5,从中任意取出3个球,用X 表示取出球的最小号码,则X 的取值为( ) A .1B .1,2C .1,2,3D .1,2,3,4二、填空题13.若随机变量ξ的分布列为则a =__________.14.设随机变量ξ的分布列为()(1)C P k k k ξ==+,1,2,3k =,其中C 为常数,则1522P ξ⎛⎫<<=⎪⎝⎭__________.15.设随机变量X 的分布列为()()1CP X k k k ==+,1k =,2,3,C 为常数,则()3P X <=____.16.一串5把外形相似的钥匙,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X 的最大可能取值为__________. 三、解答题17.在10件产品中,有8件合格品,2件次品,从这10件产品中任意抽取2件,试求: (1)取到的次品数的分布列; (2)至少取到1件次品的概率.18.某闯关游戏分为初赛和复赛两个阶段,甲、乙两人参加该闯关游戏.初赛分为三关,每关都必须参与,甲通过每关的概率均为23,乙通过每关的概率依次为311,,.423初赛三关至少通过两关才能够参加复赛,否则直接淘汰;在复赛中,甲、乙过关的概率分别为1,314.若初赛和复赛都通过,则闯关成功.甲、乙两人各关通过与否互不影响. (1)求乙在初赛阶段被淘汰的概率;(2)记甲本次闯关游戏通过的关数为X ,求X 的分布列; (3)试通过概率计算,判断甲、乙两人谁更有可能闯关成功.19.在一个不透明的盒中,装有大小,质地相同的两个小球,其中一个是黑色,一个是白色,甲、乙进行取球游戏,两人随机地从盒中各取一球,两球都取出之后再一起放回盒中,这称为一次取球,约定每次取到白球者得1分,取到黑球者得0分,一人比另一人多2分或取满6次时游戏结束,并且只有当一人比另一人多2分时,得分高者才能获得游戏奖品.(1)求甲获得游戏奖品的概率;(2)设X表示游戏结束时所进行的取球次数,求X的分布列及数学期望.20.某校高二年级举行班小组投篮比赛,小组是以班级为单位,每小组均由1名男生和2名女生组成,比赛中每人投篮1次、每个人之间投篮都是相互独立的.已知女生投篮命中的概率均为13,男生投篮命中的概率均为23.(1)求小组共投中2次的概率;(2)若三人都投中小组获得30分,投中2次小组获得20分,投中1次小组获得10分,三人都不中,小组减去60分,随机变量X表示小组总分,求随机变量X的分布列及数学期望.21.一黑色袋里装有除颜色不同外其余均相同的8个小球,其中白球与黄球各3个,红球与绿球各1个.现甲、乙两人进行摸球得分比赛,摸到白球每个记1分、黄球每个记2分、红球每个记3分、绿球每个记4分,以得分高获胜.比赛规则如下:(1)只能一个人摸球;(2)摸出的球不放回;(3)摸球的人先从袋中摸出1球:①若摸出的是绿球,则再从袋子里摸出2个球;②若摸出的不是绿球,则再从袋子里摸出3个球.他的得分为两次摸出的球的记分之和;(4)剩下的球归对方,得分为剩下的球的记分之和.(Ⅰ)若甲第一次摸出了绿球,求甲的得分不低于乙的得分的概率;(Ⅱ)如果乙先摸出了红球,求乙得分X的分布列.22.袋中有4个红球,()14,n n n N ≤≤∈个黑球,若从袋中任取3个球,恰好取出3个红球的概率为435. (1)求n 的值.(2)若从袋中任取3个球,取出一个红球得1分,取出一个黑球得3分,记取出的3个球的总得分为随机变量X ,求随机变量X 的分布列.参考答案1.D 【分析】利用分布列的性质,求a 的值. 【详解】据题意得0.20.30.11a +++=,所以0.4a =. 故选:D 2.A 【分析】直接根据离散型随机变量的分布列的性质求解即可得答案. 【详解】根据离散型随机变量的分布列的概率和为1得:113a b ++=, 所以23a b +=,所以()()()21=233P X P X P X a b >=+==+=,故选:A. 3.A 【分析】根据互斥事件的概率公式计算. 【详解】()()1231(3)121515155P X P X P X <==+==+==, 故选:A . 4.C 【分析】利用分布列的性质求出m 的值,然后由概率的分布列求解概率即可. 【详解】解:由分布列的性质可得,0.10.321m m +++=,可得0.2m =,所以(2)(1)(2)0.10.20.3P X P X P X ==+==+=. 故选:C . 5.C 【分析】利用分布列可求得()1P η≤的值. 【详解】由分布列可得()()()()11010.10.10.20.4P P P P ηηηη≤==-+=+==++=. 故选:C. 6.C 【分析】根据随机变量的定义,判断选项. 【详解】根据随机变量的定义可知,随机变量的结果都可以数量化,不确定的,由实验结果决定,满足条件的只有C ,取到白球的个数,可以是0,1,2. 故选:C 7.B 【分析】根据概率之和等于1,得0.10.240.361c +++=,解方程即可求出结果. 【详解】据题意,得0.10.240.361c +++=,解得0.3c =. 故选:B. 8.B 【分析】由概率和为1可得a 值. 【详解】由题意0.231a a ++=,解得0.2a =. 故选:B . 9.D 【分析】首先利用分布列中概率之和等于1求得k 的值,再计算()()23P X P X =+=即可求解. 【详解】由分布列的性质可知:()()()()23451P X P X P X P X =+=+=+==, 即12324354k k k k+++=⨯⨯⨯,解得:54k =,所以()5228k P X ===,()53624k P X ===, ()541248k P X ===,()152016k P X ===, 所以()()()2555log 3log 238246P X P X P X 3<<80==+==+=, 故选:D. 10.C 【分析】 先求得1(0)6P X ==,再由(14)(0)(3)P X P X P X -<<==+=可得结果. 【详解】依题意可得1111(0)1(2)(3)(5)142126P X P X P X P X ==-=--=-==---=,所以112(14)(0)(3)623P X P X P X -<<==+==+=. 故选:C. 11.A 【分析】分布列中概率之和等于1可得x 的值,再计算(3)(3)(4)3P X P X P X x ≥==+==即可. 【详解】由分布列中概率的性质可知:3621x x x x +++=,可得:112x =, 所以1(3)(3)(4)34P X P X P X x ≥==+=== 故选:A. 12.C 【分析】根据题意写出随机变量的可能取值. 【详解】根据条件可知任意取出3个球,最小号码可能是1,2,3. 故选:C 13.0.25 【分析】根据概率之和等于1,即可求得答案. 【详解】解因为0.20.31,a a +++= 所以0.25a =. 故答案为:0.25. 14.89【分析】根据分布列的性质求出C ,即可解出. 【详解】因为111311223344C C ⎛⎫=⋅++= ⎪⨯⨯⨯⎝⎭.故43C =,所以15228(1)(2)22399P P P ξ⎛⎫<<=+=+= ⎪⎝⎭.故答案为:89.15.89【分析】首先根据概率和为1可得c 的值,再由()()()312P X P X P X <==+=即可得结果. 【详解】随机变量X 的分布列为()()1CP X k k k ==+,1k =,2,3,∴ 16122c c c ++=,即62 112c c c ++=,解得43c =, ∴()()()41183123269P X P X P X ⎛⎫<==+==+= ⎪⎝⎭,故答案为:89.16.4 【分析】结合题意找出试验次数X 最大的情况即可. 【详解】由题意可知,前4次都打不开锁,最后一把钥匙一定能打开锁, 故试验次数X 的最大可能取值为4. 故答案为:4.17.(1)分布列见解析;(2)1745【分析】(1)记取到的次品数为X ,则X 的可能值为0,1,2,分别计算概率,可得X 的分布列; (2)由(1)根据互斥事件的概率公式可得(1)(2)P P X P X ==+=; 【详解】解:(1)从这10件产品中任意抽取2件,共21045C =种情况;记取到的次品数为X ,取到的次品数X 值可能为0,1,2,其中282102(0845)C P X C ===;121821016(1)45C C P X C ===;222101)5(24C P X C ===;∴取到的次品数X 的分布列为:(2)由(1)得:至少取到1件次品的概率17(1)(2)45P P X P X ==+==. 18.(1)1124;(2)答案见解析;(3)甲更有可能闯关成功. 【分析】(1)乙初赛被淘汰的事件是乙初赛三关都没过的事件与恰过一关的事件和,再利用概率加法公式计算而得;(2)写出X 的可能值,计算出对应的概率即可得解; (3)分别计算出甲、乙闯关成功的概率即可作答. 【详解】(1)若乙初赛三关一关都没有通过或只通过一个,则被淘汰,于是得乙在初赛阶段被淘汰的概率:1121113121121142342342342324P =⋅⋅+⋅⋅+⋅⋅+⋅⋅=; (2)X 的可能取值为0,1,2,3,4,()3110()327P X ===,()1232121()339P X C ==⋅⋅=,()22321282()33327P X C ==⋅⋅⋅=,()322322211283()()3333381P X C ==⋅+⋅⋅⋅=,()32184()3381P X ==⋅=则X 的分布列为:(3)甲闯关成功的概率32232121120()()33333811P C =⋅+⋅⋅⋅=, 乙闯关成功的事件是初赛不被淘汰和复赛过关的事件积,而这两个事件相互独立,其概率22411113(1)496P =-⋅=, 显然有12P P >,所以甲更有可能闯关成功. 19.(1)716;(2)分布列见解析;期望为72.【分析】(1)甲获得游戏奖品有3种情况:①共取球2次,即第1次和第2次甲都取到白球,从而甲获奖的概为1122⨯;②共取球4次,即第4次取到白球,第3次取到白球,第1次和第2次有一次取到白球,从而甲获奖的概为4122⎛⎫⨯ ⎪⎝⎭;③共取球6次,即第6次为白球,第5次取白球,若第4次取白球,则第3次取黑球,第1,2次中有1次取白球;若第4次取黑球,则第3次白球,第1,2次有一次取白球,从而甲获奖的概为6142⎛⎫⨯ ⎪⎝⎭,再由互斥事件的概率公式可得答案;(2)由(1)的求解中可知,X 可能取2,4,6,用(1)的方法先分别求出X 等于2,4的概率,从而可得X 为6的概率,然后列出分布列即可,然后根据期望的概念求出结果即可.【详解】解:(1)设甲获得游戏奖品为事件A ,()641111724212226P A ⎛⎫=⨯+⨯+⨯= ⎪⎛⎫⎪⎝⎭⎝⎭.所以甲获得游戏奖品的概率为716(2)X 的可能取值为2,4,6, ()11122222P X ==⨯⨯=()41142224P X ⎛⎫==⨯⨯= ⎪⎝⎭,()()()161244P X P X P X ==-=-==. X 的分布列为11172462442EX =⨯+⨯+⨯=20.(1)13;(2)分布列见解析;期望为409.【分析】(1)小组投中两次分为两种情况,两次都是女生投中,和一次男生一次女生投中,从而求得概率;(2)根据题意,X 的可能取值为-60,10,20,30,分别求得各取值对应的概率,列出分布列,求得期望. 【详解】解:(1)一个小组共投中2次的概率 2122211212911133333273P C C ⎛⎫⎛⎫⎛⎫=⋅-⋅+⋅-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)X 的可能取值为-60,10,20,30, 2214(60)113327P X ⎛⎫⎛⎫=-=--= ⎪⎪⎝⎭⎝⎭, ()212212111241011133333279P X C ⎛⎫⎛⎫⎛⎫==-+--== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2122112191(20)1133333273P X C ⎛⎫⎛⎫⎛⎫==-+-== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 2212(30)3327P X ⎛⎫===⎪⎝⎭, X 的分布列为所以441212040()(60)102030279327279E X =-⨯+⨯+⨯+⨯==. 21.(Ⅰ)37,(Ⅱ)分布列见解析.【分析】(Ⅰ)记甲的得分不低于乙的得分为事件A ,则事件A 发生就是甲再摸出的两个球全是黄球或一红一个其他球,由此可求得概率.(Ⅱ)如果乙先摸出了红球,得3分,则还可以从袋子中摸3个球,那么得分情况有:6分,7分,8分,9分,10分,11分.分别计算概率后可得分布列. 【详解】(Ⅰ)记甲的得分不低于乙的得分为事件A ,则事件A 发生就是甲再摸出的两个球全是黄球或一红一个其他球,所以112163273()7C C C P A C +==; (Ⅱ)如果乙先摸出了红球,则还可以从袋子中摸3个球,得分情况有:6分,7分,8分,9分,10分,11分.33371(6)35C P C ξ===,2133379(7)35C C P C ξ===;1233379(8)35C C P C ξ===;213313374(9)35C C C P C ξ+===;111331379(10)35C C C P C ξ===; 2131373(11)35C C P C ξ===.ξ的分布列如下:22.(1)3;(2)详见解析. 【分析】(1)依题意得3434C 4C 35n +=,解方程可得结果;(2)X 的可能取值为3,5,7,9,求出相应的概率可得结果. 【详解】(1)依题意得3434C 4C 35n +=,又14n ≤≤,所以3n =;(2)X 的可能取值为3,5,7,9,3X =即取出的3个球都是红球,则()3437C 43C 35P X ===; 5X =即取出的3个球中2个红球1个黑球,则()214337C C 185C 35P X ===; 7X =即取出的3个球中1个红球2个黑球,则()124337C C 127C 35P X ===;9X =即取出的3个球都是黑球,则()3337C 19C 35P X ===. 所以,随机变量X 的分布列为。

高考数学选修知识讲解离散型随机变量及其分布列(理)

高考数学选修知识讲解离散型随机变量及其分布列(理)

离散型随机变量及其分布列编稿:赵雷 审稿:李霞【学习目标】1.了解离散型随机变量的概念.2.理解取有限个值的离散型随机变量及其分布列的概念.3.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单问题.4. 理解两个特殊的分布列:“两点分布”和“超几何分布”。

【要点梳理】要点一、随机变量和离散型随机变量1. “随机试验”的概念一般地,一个试验如果满足下列条件:a .试验可以在相同的情形下重复进行.B .试验的所有可能结果是明确可知的,并且不止一个.c .每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随机变量的定义一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ξ,η,ζ)等表示。

要点诠释:(1)所谓随机变量,即是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的。

例如,任意掷一枚硬币,可能出现正面向上、反面向上这两种结果,虽然这个随机试验的结果不具有数量性质,但仍可以用数量来表示它,比如,我们用ξ来表示这个随机试验中出现正面向上的次数,则ξ=0,表示试验结果为反面向上,ξ=1,表示试验结果为正面向上。

(2)随机变量实质是将随机试验的结果数量化 。

3.离散型随机变量的定义如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。

离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….4. 随机变量的分类随机变量有以下两种:(1)离散型随机变量:(2)连续型随机变量: 如果随机变量可以取其一区间内的一切值,这样的随机变量叫做连续型随机变量.要点诠释:离散型随机变量和连续型随机变量的区别:离散型随机变量,它所可能取的值为有限个或至多可列个,或者说能将它的可能取值按一定次序一一列出.连续性随机变量可取某一区间内的一切值,我们无法将其中的值一一列举.例如,抛掷一枚骰子,可能出现的点数就是一个离散型随机变量;某人早晨在出租车站等出租车的时间(单位:秒)就不是一个离散型随机变量.5. 若是随机变量,其中a,b 是常数,则也是随机变量,并且不改变其属性(离散型、连续型)。

高考总复习离散型随机变量的分布列

高考总复习离散型随机变量的分布列

离散型随机变量的分布列一、知识梳理 1.随机变量的概念如果随机试验的结果可以用一个变量表示,那么这样的变量叫做随机变量,它常用希腊字母ηξ,等表示. (1)离散型随机变量.如果对于随机变量可能取的值,可以按一定次序一一列出,那么这样的随机变量叫做离散型随机变量.(2)若ξ是随机变量,,b a +=ξη其中b a ,是常数,则η也是随机变量. 2.离散型随机变量的分布列(1)概率分布(分布列).设离散型随机变量ξ可能取的值为ξ,,,,,21 i x x x 取每一个值),2,1( =i x i 的概率,)(i i p x P ==ξ则称表(2)二项分布.如果在一次试验中某事件发生的概率是,P 那么在n 次独立重复试验中这个事件恰好发生k 次的概率是kn k k n q p C k P -==)(ξ.其中,1,,,2,1,0p q n k -== 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作),,(~p n B ξ其中p n ,为参数,并记),,(p n k B q p C k n k k n =-.二、点击双基1.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是( D ) A.一颗是3点,一颗是1点 B.两颗都是2点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点A.1B.1±22 C.1+22 D.1-223.已知随机变量ξ的分布列为,,2,1,21)( ===k k P kξ则=≤<)42(ξP (A ) A.163 B.41 C.161 D.51 4.某批数量较大的商品的次品率为10%,从中任意地连续取出5件,其中次品数ξ的分布列为_____________.5.某射手有5发子弹,射击一次命中目标的概率为0.9,如果命中就停止射击,否则一直到子弹用尽,则耗用子弹数ξ的分布列为___________________________. 解析:ξ可以取1,2,3,4,5,P(ξ=1)=0.9,P(ξ=2)=0.1×0.9=0.09,P(ξ=3)=0.12×0.9=0.009,P(ξ=4)=0.13×0.9=0.000 9,P(ξ=5)=0.14=0.000 1.例题分析:【例1】 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的三只球中的最小号码,写出随机变量ξ的分布列.解:随机变量ξ的可能取值为1,2,3.当ξ=1时,即取出的三只球中最小号码为1,则其他两只球只能在编号为2,3,4,5的四只球中任取两只,故有P (ξ=1)=3524C C =106=53;当ξ=2时,即取出的三只球中最小号码为2,则其他两只球只能在编号为3,4,5的三只球中任取两只,故有P (ξ=2)=3523C C =103;当ξ=3时,即取出的三只球中最小号码为3,则其他两只球只能在编号为4,5的两只球中任取两只,故有P (ξ=3)=3522C C =101.概率、n 次独立重复试验有k 次发生的概率等.本题中基本事件总数,即n=C 35,取每一个球的概率都属古典概率(等可能性事件的概率).【例2】甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32.(1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ; (2)求乙至多击中目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.剖析:(1)甲射击有击中目标与击不中目标两个结果,且3次射击是3次独立重复试验.∴ξ—B(3,21).(2)“乙至多击中目标2次”的对立事件是“乙击中目标3次”.(3)“甲恰好比乙多击中目标2次”即“甲击中2次乙没击中目标或甲击中目标3次乙击中1次”. 解:(1)P(ξ=0)=C 03(21)3=81; P(ξ=1)=C 13(21)3=83; P(ξ=2)=C 23(21)3=83; P(ξ=3)=C 33(21)3=81. ξ的概率分布如下表:∵ξ—B(3,2), ∴E ξ=3×21=1.5.(2)乙至多击中目标2次的概率为1-C 33(32)3=2719. (3)设甲恰好比乙多击中目标2次为事件A,甲恰好击中目标2次且乙恰好击中目标0次为事件B 1,甲恰好击中目标3次且乙恰好击中目标1次为事件B 2,则A=B 1+B 2,B 1、B 2为互斥事件,∴P(A)=P(B 1)+P(B 2)=83×271+81×92=241. ∴甲恰好比乙多击中目标2次的概率为241. 讲评:求离散型随机变量的概率分布的步骤为:(1)找出随机变量ξ的所有可能的值x i (i=1,2,…);(2)求出各值的概率P(ξ=x i )=p i ;(3)列成表格.【例3】(2005广东高考)箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为s ∶t.现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n 次.以ξ表示取球结束时已取到白球的次数. (1)求ξ的分布列; (2)求ξ的数学期望.解:(1)ξ的可能取值为0,1,2,…,n.(2)ξ的数学期望为E ξ=0×t s s ++1×2)(t s st++2×32)(t s st ++…+(n-1)×n n t s st )(1+-+n ×n n t s t )(+. ① t s t +E ξ=3)(t s st ++42)(2t s st ++…+n n t s st n )()2(1+--+1)()1(++-n n t s st n +11)(+++n n t s nt . ② ①-②,得E ξ=s t +1)()1(-+-n n t s s t n -n n t s t n )()1(+--nn t s s nt )(1++.讲评:本题是几何分布问题,其中用到数列的错位相减法求和,注意运算的严谨性. 习题精练:1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是( )A.5B.9C.10D.25 解析:号码之和可能为2,3,4,5,6,7,8,9,10,共9种. 答案:B2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( )A.C 1012(83)10·(85)2 B.C 911(83)9(85)2·83 C.C 911(85)9·(83)2 D.C 911(83)9·(85)2 解析:P(ξ=12)表示第12次为红球,前11次中有9次为红球,从而P (ξ=12)=C 911·(83)9(85)2×83.答案:B3.现有一大批种子,其中优质良种占30%,从中任取5粒,记ξ为5粒中的优质良种粒数,则ξ的分布列是________________________.解析:ξ~B(5,0.3),ξ的分布列是P (ξ=k)=C k 50.3k 0.75-k ,k=0,1,…,5. 答案:P (ξ=k )=C k 50.3k 0.75-k ,k=0,1,…,54.(2005全国高考卷Ⅲ,理)设l 为平面上过点(0,1)的直线,l 的斜率等可能地取-22,-3,-25,0,25,3,22,用ξ表示坐标原点到l 的距离,则随机变量ξ的数学期望E ξ=______________________. 解析:当l 的斜率为±22时,直线方程为±22x-y+1=0,此时d 1=31;k=±3时,d 2=±25;k=±25时,d 3=2;k=0时,d 4=1,由等可能事件的概率可得分布列如下: ∴E ξ=3×7+2×7+3×7+7×1=7.答案:745.某射手对目标进行射击,直到第一次命中或将子弹打光为止,每次命中率为0.6,现共有子弹4颗,命中后尚剩余子弹数目ξ的数学期望是_________________.解析:P(ξ=0)=0.43,P(ξ=1)=0.42×0.6=0.096,P(ξ=2)=0.4×0.6=0.24,P(ξ=3)=0.6, ∴E ξ=0.096+0.24×2+0.6×3=2.376.6.(2004天津,理)从4名男生和2名女生中任选3人参加演讲比赛.设随机变量ξ表示所选3人中女生的人数.求 (1)ξ的分布列; (2)ξ的数学期望;(3)“所选3人中女生人数ξ≤1”的概率. 解:(1)ξ的可能取值为0,1,2.P (ξ=k )=36342C C C k k -∙,k=0,1,2. (2)由(1),可知E ξ=0×51+1×53+2×51=1. (3)“所选3人中女生人数ξ≤1”的概率为 P (ξ≤1)=P (ξ=0)+P(ξ=1)=54. 7.(2005湖南高考)某城市有甲、乙、丙3个旅游景点,一位客人游览这3个景点的概率分别是0.4、0.5、0.6,且客人是否游览哪个景点互不影响.设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值. (1)求ξ的分布列及数学期望;(2)记“函数f(x)=x 2-3ξx+1在区间[2,+∞)上单调递增”为事件A ,求事件A 的概率. (1)解:分别设“客人游览甲景点”“客人游览乙景点”“客人游览丙景点”为事件A 1、A 2、A 3.由已知A 1、A 2、A 3相互独立,P(A 1)=0.4,P(A 2)=0.5,P(A 3)=0.6.客人游览的景点数的可能取值为0、1、2、3,相应地,客人没有游览的景点数的可能取值为3、2、1、0,所以ξ的可能取值为1、3.P(ξ=3)=P(A 1·A 2·A 3)+P(1A ·2A ·3A )=P(A 1)P(A 2)P(A 3)+P(1A )P(2A )P(3A ) =2×0.4×0.5×0.6=0.24, P(ξ=1)=1-0.24=0.76.(2)解:ξ的可能取值为1、3.当ξ=1时,函数f(x)=x 2-3x+1在区间[2,+∞]上单调递增; 当ξ=3时,函数f(x)=x 2-9x+1在区间[2,+∞]上不单调递增. 所以P(A)=P(ξ=1)=0.76.8.甲与乙两人掷硬币,甲用一枚硬币掷3次,记正面朝上的次数为m;乙用一枚硬币掷2次,记正面朝上的次数为n..你认为这种规定合理吗?为什么?(2)m>n 时,甲胜的概率为P(m>n)=81+83(21+41)+83×41=21.同理,n ≥m 时,乙胜的概率为P(n ≥m)=21. 故P(m>n)=P(n ≥m),即甲胜与乙胜的机会是均等的,从而此种规定公平合理.9.(全新创编题)袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p.(1)从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止.①求恰好摸5次停止的的概率;②记5次内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ.(2)若A 、B 两个袋子中的球数之比为1∶2,将A 、B 中的球装在一起后,从中摸出一个红球的概率是52,求p 的值. 解:(1)①C 24(31)2×(32)2×31=818.②随机变量ξ的取值为0,1,2,3.由n 次独立重复试验概率公式得P(ξ=0)=C 05(1-31)5=24332. P(ξ=1)=C 1531×(32)4=24380,P(ξ=2)=C 25(31)2(32)3=24380,P(ξ=3)=1-24328032⨯+=8117.∴E ξ=0×243+1×243+2×243+3×81=81.(2)设A 袋中有m 个球,则B 袋中有2m 个球,由mmpm 3231+=52,得p=3013.10.盒中装有一打(12个)乒乓球,其中9个新的,3个旧的(用过的球即为旧的),从盒中任取3个使用,用完后放回盒中,此时盒中旧球个数ξ是一个随机变量,求ξ的分布列.剖析:从盒中任取3个,这3个可能全是旧的,2个旧的1个新的,1个旧的2个新的或全是新的,所以用完放回盒中,盒中旧球个数可能是3个,4个,5个,6个,即ξ可以取3,4,5,6. 解:ξ的所有可能取值为3,4,5,6.P(ξ=3)=31233C C =2201; P(ξ=4)=3122319C C C =22027; P(ξ=5)=3121329C C C =5527; P(ξ=6)=31239C C =5521.求随机变量η=sin(2ξ)的分布列. 剖析:ξ取不同的值时,η不一定是不同的值,故需先看η取哪些不同的值及对应的概率.解:因为sin(2πn )=⎪⎩⎪⎨⎧=-=-=-,2,0,34,1,14,1时当时当时当k n k n k n (k=0,1,2,…) 所以η=sin(2πξ)的取值为-1,0,1.P(η=-1)=321+721+1121+…=)1611(81-=152, P(η=0)=221+421+…=)411(41-=31,P(η=1)=21+521+921+…=)161(21-=158.。

第6节 离散型随机变量及其分布列

第6节 离散型随机变量及其分布列

第6节离散型随机变量及其分布列考试要求 1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;2.理解超几何分布及其导出过程,并能进行简单应用.知识梳理1.离散型随机变量随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,则表X x1x2…x i…x nP p1p2…p i…p n的概率分布列.(2)离散型随机变量的分布列的性质:①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.3.常见离散型随机变量的分布列(1)两点分布:若随机变量X服从两点分布,其分布列为X 0 1P 1-p p,其中p=P(X=1)(2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称随机变量X服从超几何分布.X 01…mP C0M C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N[常用结论与微点提醒]随机变量的线性关系若X是随机变量,Y=aX+b,a,b是常数,则Y也是随机变量.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)离散型随机变量的概率分布列中,各个概率之和可以小于1.()(2)对于某个试验,离散型随机变量的取值可能有明确的意义,也可能不具有实际意义.()(3)如果随机变量X的分布列由下表给出,X 2 5P 0.30.7则它服从两点分布.()(4)一个盒中装有4个黑球、3个白球,从中任取一球,若是白球则取出来,若是黑球则放回盒中,直到把白球全部取出来,设取到黑球的次数为X,则X服从超几何分布.()解析对于(1),离散型随机变量所有取值的并事件是必然事件,故各个概率之和等于1,故(1)不正确;对于(2),因为离散型随机变量的所有结果都可用数值表示,其中每一个数值都有明确的实际的意义,故(2)不正确;对于(3),X的取值不是0和1,故不是两点分布,(3)不正确;对于(4),因为超几何分布是不放回抽样,所以试验中取到黑球的次数X不服从超几何分布,(4)不正确.答案(1)×(2)×(3)×(4)×2.(老教材选修2-3P49练习2改编)抛掷一枚质地均匀的硬币2次,则正面向上次数X的所有可能取值是______.答案0,1,23.(多选题)(老教材选修2-3P77A1改编)已知随机变量ξ的分布如下:ξ 1 23 P141-32a2a 2则实数a 的值为( ) A.-12B.12C.14D.-14解析 由随机变量ξ的分布知⎩⎪⎨⎪⎧0≤1-32a ≤1,0≤2a 2≤1,14+1-32a +2a 2=1,解得a =12或a =14. 答案 BC4.(2020·广州调研)若随机变量X 的分布列为X -2 -1 0 1 2 3 P0.10.20.20.30.10.1则当P (X <a )=A.(-∞,2] B.[1,2] C.(1,2]D.(1,2)解析 由随机变量X 的分布列知:P (X <-1)=0.1,P (X <0)=0.3,P (X <1)=0.5,P (X <2)=0.8,则当P (X <a )=0.8时,实数a 的取值范围是(1,2]. 答案 C5.(2020·菏泽联考)一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为( ) A.1220B.2755C.27220D.2155解析 {X =4}表示从盒中取了2个旧球,1个新球,故P (X =4)=C 23C 19C 312=27220.答案 C6.(2019·福州二模)设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)=________. 解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1, 得P (X =0)=13. 答案 13考点一 离散型随机变量分布列的性质【例1】 (1)离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝ ⎛⎭⎪⎫12<X <52的值为( )A.23B.34C.45D.56(2)(2019·南宁二模改编)设随机变量X 的概率分布列为X 1 2 3 4 P13m1416则P (|X -3|=1)=解析 (1)因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 2+a 6+a 12+a20=1,所以a =54,所以P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=54×12+54×16=56.(2)由13+m +14+16=1,解得m =14,P (|X -3|=1)=P (X =2)+P (X =4)=14+16=512. 答案 (1)D (2)512规律方法分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性.(2)随机变量X所取的值分别对应的事件是两两互斥的,利用这一点可以求随机变量在某个范围内的概率.【训练1】(1)已知随机变量X的分布列为P(X=k)=12k,k=1,2,…,则P(2<X≤4)=()A.316 B.14 C.116 D.516(2)已知随机变量X的分布列为则P(X≥2)=(A.0.3B.0.4C.0.5D.0.6解析(1)P(2<X≤4)=P(X=3)+P(X=4)=123+124=316.(2)P(X≥2)=x+310+y+z=1-⎝⎛⎭⎪⎫110+310=0.6.答案(1)A(2)D考点二离散型随机变量的分布列【例2】(2019·冀州期末)有编号为1,2,3,…,n的n个学生,入座编号为1,2,3,…,n的n个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X,已知X=2时,共有6种坐法.(1)求n的值;(2)求随机变量X的概率分布列.解(1)因为当X=2时,有C2n种方法,因为C2n=6,即n(n-1)2=6,也即n2-n-12=0,解得n=4或n=-3(舍去),所以n=4.(2)因为学生所坐的座位号与该生的编号不同的学生人数为X,由题意可知X的可能取值是0,2,3,4,所以P(X=0)=1A44=124,P(X=2)=C24×1A44=14,P(X=3)=C34×2A44=13,P(X=4)=1-124-14-13=38,所以X的概率分布列为X 023 4P 124141338规律方法求随机变量分布列的主要步骤:(1)明确随机变量的取值,并确定随机变量服从何种概率分布;(2)求每一个随机变量取值的概率;(3)列成表格.对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列数公式求随机变量对应的概率,放回抽样由分步乘法计数原理求随机变量对应的概率. 【训练2】(2020·济南调研)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后样本的频数分布表:图1:设备改造前样本的频率分布直方图表1:设备改造后样本的频数分布表质量指标值[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)(2)该企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元;质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为X(单位:元),求X的分布列.样本产品的质量指标平均值为3 020100=30.2.根据样本质量指标平均值估计总体质量指标平均值为30.2.(2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为12,13,1 6,故从所有产品中随机抽一件,是一、二、三等品的概率分别为12,13,16.随机变量X的取值为240,300,360,420,480.P(X=240)=16×16=136,P(X=300)=C12×13×16=19.P(X=360)=C12×12×16+13×13=518,P(X=420)=C12×12×13=13,P(X=480)=12×12=14,所以随机变量X的分布列为考点三【例3】(2020·荆门调研)在测试中,客观题难度的计算公式为P i=R iN,其中P i为第i题的难度,R i为答对该题的人数,N为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:(1)(2)从抽样的20名学生中随机抽取2名学生,记这2名学生中答对第5题的人数为X ,求X 的分布列;(3)试题的预估难度和实测难度之间会有偏差,设P i ′为第i 题的实测难度,并定义统计量S =1n [(P 1′-P 1)2+(P 2′-P 2)2+…+(P n ′-P n )2],若S <0.05,则本次测试的难度预估合理,否则不合理,试检验本次测试对难度的预估是否合理. 解 (1)因为20人中答对第5题的人数为4, 因此第5题的实测难度为420=0.2,所以,估计240人中有240×0.2=48人实测答对第5题. (2)X 的所有可能取值是0,1,2.P (X =0)=C 216C 220=1219,P (X =1)=C 116C 14C 220=3295,P (X =2)=C 24C 220=395.X 的分布列为(3)将抽样的20i 题的实测难度. 列表如下:S =15×[(0.8-0.9)2+(0.8-0.8)2+(0.7-0.7)2+(0.7-0.6)2+(0.2-0.4)2]=0.012. 因为S =0.012<0.05,所以,该次测试的难度预估是合理的.规律方法 1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体数X的概率分布.2.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.【训练3】某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行数据统计,具体情况如下表:60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体分配到“经常使用单车”和“偶尔使用单车”中去,(1)求这60人中“年龄达到35岁且偶尔使用单车”的人数.(2)为听取对发展共享单车的建议,调查小组专门组织所抽取的“年龄达到35岁且偶尔使用单车”的人员召开座谈会.会后共有3份礼品赠送给其中3人,每人1份(其余人员仅赠送骑行优惠券).已知参加座谈会的人员中有且只有4人来自A 组,求A组这4人中得到礼品的人数X的分布列.解(1)从300人中抽取60人,其中“年龄达到35岁”的人数为100×60300=20,再将这20人用分层抽样法按“是否经常使用单车”进行名额划分,其中“年龄达到35岁且偶尔使用单车”的人数为20×45100=9.(2)A组这4人中得到礼品的人数X的可能取值为0,1,2,3,相应概率为P(X=0)=C35C39=542,P(X=1)=C14C25C39=1021,P(X=2)=C24C15C39=514,P(X=3)=C34C39=121.故其分布列为X 012 3P 5421021514121A级基础巩固一、选择题1.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是()A.至少取到1个白球B.至多取到1个白球C.取到白球的个数D.取到的球的个数解析选项A,B表述的都是随机事件,选项D是确定的值2,并不随机;选项C是随机变量,可能取值为0,1,2.答案 C2.抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ≥5”表示的试验结果是()A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点C.第一枚1点,第二枚6点D.第一枚6点,第二枚1点解析第一枚的点数减去第二枚的点数不小于5,即只能等于5.故选D.答案 D3.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是()A.ξ=4B.ξ=5C.ξ=6D.ξ≤5解析 “放回5个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案 C4.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ) A.15B.25C.35D.45解析 P (ξ≤1)=1-P (ξ=2)=1-C 14C 22C 36=45.答案 D5.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是( ) A.435B.635C.1235D.36343解析 如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为p =C 23C 14C 37=1235.答案 C 二、填空题6.若离散型随机变量X 的分布列为则常数c 的值为________.解析 根据离散型随机变量分布列的性质知 ⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,得c =13. 答案 137.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________.解析 P (ξ≤6)=P (取到3只红球1只黑球)+P (取到4只红球)=C 34C 13C 47+C 44C 47=1335.答案 13358.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是________.解析 X =-1,甲抢到一题但答错了.X =0,甲没抢到题,或甲抢到2题,但答时一对一错. X =1时,甲抢到1题且答对或甲抢到3题,且1错2对. X =2时,甲抢到2题均答对. X =3时,甲抢到3题均答对. 答案 -1,0,1,2,3 三、解答题9.设随机变量X 的分布列为P ⎝ ⎛⎭⎪⎫X =k 5=ak (k =1,2,3,4,5). (1)求a 的值; (2)求P ⎝ ⎛⎭⎪⎫X ≥35;(3)求P ⎝ ⎛⎭⎪⎫110<X ≤710. 解 (1)由分布列的性质,得P ⎝ ⎛⎭⎪⎫X =15+P ⎝ ⎛⎭⎪⎫X =25+P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P (X =1)=a+2a +3a +4a +5a =1,所以a =115.(2)P ⎝ ⎛⎭⎪⎫X ≥35=P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P (X =1)=3×115+4×115+5×115=45. (3)P ⎝ ⎛⎭⎪⎫110<X ≤710=P ⎝ ⎛⎭⎪⎫X =15+P ⎝ ⎛⎭⎪⎫X =25+P ⎝ ⎛⎭⎪⎫X =35=115+215+315=25.10.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列.解(1)由已知,有P(A)=C22C23+C23C23C48=635.所以事件A发生的概率为6 35.(2)随机变量X服从超几何分布,X的所有可能取值为1,2,3,4.P(X=k)=C k5C4-k3C48(k=1,2,3,4).故P(X=1)=C15C33C48=114,P(X=2)=C25C23C48=37,P(X=3)=C35C13C48=37,P(X=4)=C45C03C48=114,所以随机变量X的分布列为11.若P(ξ≤x2)=1-β,P(ξ≥x1)=1-α,其中x1<x2,则P(x1≤ξ≤x2)等于()A.(1-α)(1-β)B.1-(α+β)C.1-α(1-β)D.1-β(1-α)解析由分布列的性质得P(x1≤ξ≤x2)=P(ξ≤x2)+P(ξ≥x1)-1=(1-β)+(1-α)-1=1-(α+β).答案 B12.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P(ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为()A.10%B.20%C.30%D.40%解析设10件产品中有x件次品,则P(ξ=1)=C1x·C110-xC210=x(10-x)45=1645,所以x=2或8.因为次品率不超过40%,所以x=2,所以次品率为210=20%.答案 B13.(一题多解)如图所示,A、B两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内通过的最大信息总量为ξ,则P(ξ≥8)=________.解析法一由已知得ξ的取值为7,8,9,10,∵P(ξ=7)=C22C12C35=15,P(ξ=8)=C22C11+C22C12C35=310,P(ξ=9)=C12C12C11C35=25,P(ξ=10)=C22C11C35=110,∴ξ的概率分布列为ξ78910P 1531025110∴P(ξ≥8)=P(ξ=8)+P(ξ=9)+P(ξ=10)=310+25+110=45.法二P(ξ≥8)=1-P(ξ=7)=1-C22C12C35=1-15=45.答案4 514.(2020·东北三省四校联考)甲、乙两家外卖公司,其“骑手”的日工资方案如下:甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元.假设同一公司的“骑手”日送餐单数相同,现从两家公司各随机抽取一名“骑手”并记录其100天的日送餐单数,得到如下条形图:(1)求乙公司“骑手”的日工资y (单位:元)与日送餐单数n (n ∈N *)的函数关系; (2)若将频率视为概率,回答以下问题:①记乙公司“骑手”的日工资为X (单位:元),求X 的分布列;②小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日工资的角度考虑,请你利用所学的统计学知识为他做出选择,并说明理由.解 (1)乙公司每天的底薪100元,前45单无抽成,超出45单部分每单抽成6元, 故日工资y =⎩⎨⎧100,n ≤45,n ∈N *,6n -170,n >45,n ∈N *. (2)①根据题意及条形图得,乙公司“骑手”的日送餐单数为42,44时,X =100,频率为20100=0.2,日送餐单数为46时,X =106,频率为30100=0.3, 日送餐单数为48时,X =118,频率为40100=0.4, 日送餐单数为50时,X =130,频率为10100=0.1, 故乙公司“骑手”的日工资X 的分布列如表所示:X 100 106 118 130 P0.20.30.40.1②根据条形图得,甲公司“骑手”的日平均送餐单数为42×20100+44×40100+46×20100+48×10100+50×10100=45,所以甲公司“骑手”的日平均工资为70+45×1=115(元). 由①可知,乙公司“骑手”的日平均工资为112元,故推荐小明去甲公司应聘.C 级 创新猜想15.(多选题)(2020·烟台质检)某人参加一次测试,在备选的10道题中,他能答对其中的5道.现从备选的10道题中随机抽出3道题进行测试,规定至少答对2题才算合格.则下列选项正确的是( ) A.答对0题和答对3题的概率相同,都为18 B.答对1题的概率为38 C.答对2题的概率为512 D.合格的概率为12解析 设此人答对题目的个数为ξ,则ξ=0,1,2,3,P (ξ=0)=C 05C 35C 310=112,P (ξ=1)=C 15C 25C 310=512,P (ξ=2)=C 25C 15C 310=512,P (ξ=3)=C 35C 05C 310=112,则答对0题和答对3题的概率相同,都为112,故A 错误;答对1题的概率为512,故B 错误;答对2题的概率为512,故C 正确;合格的概率p =P (ξ=2)+P (ξ=3)=512+112=12,故D 正确.故选CD. 答案 CD16.(多填题)随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则d 的取值范围是________. 解析 因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.答案 23 ⎣⎢⎡⎦⎥⎤-13,13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


15 28
,P(X
=2)=CC23C38 15=1556,P(X=3)=CC33C38 05=516.所以X的分布列为
X
0
1
2
3
P
5 28
15 28
15 56
1 56
返回
考点三 求离散型随机变量的分布列 [师生共研过关]
返回
[典例精析] 已知2件次品和3件正品混放在一起,现需要通过检测将其区 分,每次随机检测一件产品,检测后不放回,直到检测出2件次 品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率; (2)已知每检测一件产品需要费用100元,设X表示直到检测出2 件次品或者检测出3件正品时所需要的检测费用(单位:元),求 X的分布列.
(3)可以根据性质判断所得分布列结果是否正确.
返回
考点二
超几何分布 [师生共研过关]
返回
[典例精析] 在心理学研究中,常采用对比试验的方法评价不同心理暗示对 人的影响,具体方法如下:将参加试验的志愿者随机分成两 组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过 对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示 的作用.现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿 者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5 人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率; (2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列.
3.设离散型随机变量X的分布列为
X
0
1
2
3
P
0.2
0.1
0.1
0.3
(1)求随机变量Y=2X+1的分布列;
(2)求随机变量η=|X-1|的分布列;
(3)求随机变量ξ=X2的分布列.
解:(1)由分布列的性质知,
0.2+0.1+0.1+0.3+m=1,
X 2X+1
0 1
1 3
得m=0.3.首先列表为:
返回
考点一
离散型随机变量的分布列 的性质[基础自学过关]
[题组练透]
1.设X是一个离散型随机变量,其分布列为
X -1
0
1
P
1 3
2-3q
q2
则q的值为
返回
( C)
A.1
3 33 B.2± 6
C.32-
33 6
D.32+
33 6
2-3q≥0, 解析:由分布列的性质知q2≥0,
13+2-3q+q2=1,
不同结果,故选D.
返回
2.设随机变量X的分布列如下:
X
1
2
3
4
5
P
1 12
1
1
6
3
1 6
p
则p为
( C)
1
1
1
1
A.6
B.3
C.4
D.12
解析:由分布列的性质知,112+16+13+16+p=1,
∴p=1-34=14.
返回
3.某射手射击所得环数X的分布列为
X4
5
6
7
8
9 10
P 0.02 0.04 0.06 0.09 0.28 0.29 0.22
X 200
300
400
P
1 10
3 10
3 5
返回
[解题技法]
离散型随机变量分布列的求解步骤
2,3,…,n的n个学生,入座编号为1,2,3,…,n
的n个座位,每个学生规定坐一个座位,设学生所坐的座位
号与该生的编号不同的学生人数为X,已知X=2时,共有6
种坐法.
(1)求n的值;
X01
2
3
4
P
15 42 21
10 21
5 21
1 42
[解题技法]
返回
1.随机变量是否服从超几何分布的判断
若随机变量X服从超几何分布,则满足如下条件:(1)该 试验是不放回地抽取n次;(2)随机变量X表示抽取到的次品 件数(或类似事件),反之亦然.
2.求超几何分布的分布列的步骤 第一步,验证随机变量服从超几何分布,并确定参数
(2)离散型随机变量:所有取值可b以(a,一b一为列常出数的)也随是机随变机量变.量.
2.离散型随机变量分布列的概念及性质
(1)概念:若离散型随机变量X可能取的不同值为x1, x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概 率P(X=xi)=pi,以表格的形式表示如下:
X x1 x2 … xi … xn ❷此表称为离散型随机变量X的
则此射手“射击一次命中环数大于7”的概率为 ( C )
A.0.28
B.0.88
C.0.79
D.0.51
解析:P(X>7)=P(X=8)+P(X=9)+P(X=10)=0.28+
0.29+0.22=0.79.
返回
4.已知随机变1量X的分布规律为P(X=i)=2ia(i=1,2,3),则P(X =2)=____3____. 解析:由分布列的性质知21a+22a+23a=1,∴a=3,
超 个在 品体几含 ,的何有 则个分数布MP(.件描X=超述次k几的品)=何是的分不NC布放件kMCC的回产nNnN数特-抽-品kM,征样中即是,问,:nk题>任=,M取0随,1时n,机2件,,变,k…量的其,为最中m抽大恰,到值有其的为X中某m件类m=次=M.
超m几in何{分M布,主n}要,用且于n≤抽检N,产M品≤、摸N,不n同,类M别,的N小∈球N等*❺概. 率模型,
N,M,n的值; 第二步,根据超几何分布的概率计算公式计算出随机变
量取每一个值时的概率;
第三步,用表格的形式列出分布列.
[过关训练]
返回
某项大型赛事,需要从高校选拔青年志愿者,某大学学生实
践中心积极参与,从8名学生会干部(其中男生5名,女生3名)
中选3名参加志愿者服务活动.若所选3名学生中的女生人数为
返回
[解] (1)记接受甲种心理暗示的志愿者中包含A1但不包含B1
的事件为M,则P(M=CC51480=158.
(2)由题意知X可取的值为0,1,2,3,4,则
P(X=0)=CC51560=412,P(X=1)=CC46C15014=251, P(X=2)=CC36C51024=1201,P(X=3)=CC26C51034=251, P(X=4)=CC16C51044=412.因此X的分布列为
X0
234
P
1 24
1 4
1 3
3 8
“课时跟踪检测”见“课时跟踪检测(六十八)” (单击进入电子文档)
解得q=32- 633.
返回
2.离散型随机变量X的概率分布规律为P(X=n)=
a nn+1
(n=
1,2,3,4),其中a是常数,则P12<X<52的值为
2
3
4
A.3
B.4
C.5
(D ) 5 D.6
解析:由1×1 2+2×1 3+3×1 4+4×1 5×a=1,知45a=1, 得a=54. 故P12<X<52=P(X=1)+P(X=2)=12×54+16×54=56.
(2)求随机变量X的分布列.
解:(1)因为当X=2时,有C2n种坐法, 所以C2n=6,即nn2-1=6,
n2-n-12=0,解得n=4或n=-3(舍去),所以n=4.
返回
(2)因为学生所坐的座位号与该生的编号不同的学生人数为X, 由题意知X的可能取值是0,2,3,4, 所以P(X=0)=A144=214, P(X=2)=C24A×44 1=264=14,P(X=3)=C34A×44 2=284=13, P(X=4)=A944=38,所以随机变量X的分布列为
返回
(1)两点分布列
X
0
1
若随m机=变m量inX{M的,分n布}的列理具解有左表的形式, 则称mX为服k从的两最点大分取布值❸,,当并抽称取p=的P产X品=件1数为不
P 1-p p (2)超几何分布列❹
成功大取n概;于的率当总样.抽体本取两 个中中的点 可次次产分 能品品品布 性件的件的 ,数件数试 其,数大验 概即)的于结 率n最总≤果 之大体M只 和值时中有 为为,次两1.mk品(=抽件
第六节 离散型随机变量及其分布列
目录
基础——在批注中理解透
单纯识记无意义,深刻理解提能力
课时跟踪检测
考点——在细解中明规律
题目千变总有根,梳干理枝究其本
返回
基础——在批注中理解透
单纯识记无意义,深刻理解提能力
1.随机变量的有关概念
返回
(1)随机变量:随着试验结果变化而变化的变量,常用字母
X,Y,ξ,η,…表示❶. 若X是随机变量,则Y=aX+
P p1 p2 … pi … pn 概率分布列,简称为X的分布列.
(2)分布列的性质 ①表p中i≥第0一,行i=表1示,2,随3,机…变,量n的;取
值;n 第二行对应变量的概率.
② pi=1.
i=1
有时也用等式PX=xi=pi,i= 1,2,…,n表示X的分布列.
3.常见的离散型随机变量的分布列
4 m
23 57
返回
4 9
从而Y=2X+1的分布列为 Y 1 3 5 7 9 P 0.2 0.1 0.1 0.3 0.3
返回
(2)列表为
X
01234
|X-1| 1 0 1 2 3
∴P(η=0)=P(X=1)=0.1, P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3, P(η=2)=P(X=3)=0.3, P(η=3)=P(X=4)=0.3. 故η=|X-1|的分布列为
相关文档
最新文档