2017-2018学年高一数学上学期期末考试及答案(新人教A版 第30套)
【100所名校】江苏省盐城市伍佑中学2017-2018学年高一上学期期末考试数学试题(解析版)
江苏省盐城市伍佑中学2017-2018学年高一上学期期末考试数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第I 卷(非选择题)一、填空题1.函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的最小正周期是________. 2.2.函数()11f x x =+的定义域为_________. 3.若(),0{12,0x x f x x x ≤=->,则12f f⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦_________. 4.若()()1,3,,6a b x ==,且//a b ,则x =___________.5.已知扇形的半径为3cm ,圆心角为2弧度,则扇形的面积为_________ 2cm . 6.lg222110log log 63⎛⎫--= ⎪⎝⎭________.7.已知函数()23log f x x x=-的零点为0x ,若()0,1x k k ∈+,其中k 为整数,则k =_______.8.若函数y =R ,则a 的取值范围为__________. 9.已知函数3sin 2,0,42y x x ππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦的单调增区间为[]0,m ,则实数m 的值为________. 10.若方程()271320x m x m -+--=的一个根在区间()01,上,另一根在区间()12,上,则实数m 的取值范围为________.11.已知角α的终边经过点()1,2P -,则()()sin 2cos 2sin sin 2a παπαπα++-=⎛⎫++ ⎪⎝⎭_________.12.如图,在矩形ABCD 中,已知3,2AB AD ==,且1,2BE EC DF FC ==,则AE BF ⋅=__________.13.已知函数()()1,0sin ,{ ,0x f x x g x xlgx x -<==>,则函数()()()h x f x g x =-在区间[]2,4ππ-内的零点个数为___________.14.若函数()()sin 13f x x πϖω⎛⎫=+> ⎪⎝⎭在区间54ππ⎡⎤⎢⎥⎣⎦,上单调递减,则实数ω的取值范围是________.二、解答题15.已知集合错误!未找到引用源。
新课标人教版高一数学上学期期末试卷及答案2
上学期期末考试高一英语试题第一节听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What did the woman have for lunch?A. French fries.B. Some soup.C. A cheese sandwich.2. When is the man’s flight leaving?A. At 9:15.B. At 10:15.C. At 10:50.3. Where did the conversation take place?A. At a department store.B. At a dry-cleaning shop.C. At a dress-making shop.4. Why can’t the man give the woman a hand?A. He is too heavy to help her.B. He doesn’t know how to help her.C. He is too busy to help her.5. How does the man feel about his job?A. He enjoys it.B. He doesn’t like it at all.C. He wants to find a new job.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各个小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6至8题。
6. How is the relationship between the woman and her parents?A. Good.B. Bad.C. Hard to say.7. How much pocket money does the woman get a week?A. Three pounds.B. Two pounds.C. Four pounds.8. How old might the woman be?A. 16.B.17.C.18.听第7段材料,回答第9至11题。
2013-2014学年高一数学上学期期末考试及答案(新人教A版 第30套)
2013~2014学年度第一学期期末试卷高一数学第Ⅰ卷客观卷(共36分)一、选择题(每小题3分,共36分)1. 设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1 B.3 C.4 D.8 2. 若f(x)=2x+3,g(x+2)=f(x),则g (x)的表达式为( )A.g(x)=2x+1 B.g(x)=2x-1C.g(x)=2x-3 D.g(x)=2x+73.函数f(x)=11+|x|的图象是( )4. 已知f(x)为定义在(-∞,+∞)上的偶函数,且f(x)在[0,+∞)上为增函数,则f(-2),f(-π),f(3)的大小顺序是( )A.f(-π)<f(3)<f(-2)B.f(-π)<f(-2)<f(3)C.f(-2)<f(3)<f(-π)D.f(3)<f(-2)<f(-π)5. 程序框图如图所示:如果输入x=5,则输出结果为( )A.109 B.325C.973 D.2956.右下面为一个求20个数的平均数的程序,则在横线上应填的语句为( ).A.i >20 B.i <20C.i >=20 D.i <=207. 用秦九韶算法计算多项式f(x)=34x +33x +22x +6x +1,当x =0.5时的值,需要做乘法的次数是( )A .9B .14C .4D .58. 某学校有体育特长生25人,美术特长生35人,音乐特长生40人.用分层抽样的方法从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为( )A .8,14,18B .9,13,18C .10,14,16D .9,14,179.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是( )A .31.6岁B .32.6岁C .33.6岁D .36.6岁10.给出以下三个命题:(1) 将一枚硬币抛掷两次,记事件A :“两次都出现正面”,事件B :“两次都出现反面”,则事件A 与事件B 是对立事件;(2) 在命题(1)中,事件A 与事件B 是互斥事件;(3) 在10件产品中有3件是次品,从中任取3件,记事件A :“所取3件中最多有2件是次品”,事件B :“所取3件中至少有2件是次品”,则事件A 与事件B 是互斥事件.其中真命题的个数是( ).A .0B .1C . 2D .311.一个样本的频率分布直方图共有4个小长方形,它们的高的比从左到右依次为2:4:3:1,若第4组的频数为3,则第2组的频率和频数分别为A .0.4,12B .0.6,16C .0.4,16D .0.6,1212.设关于x 的一元二次方程2220x ax b ++=。
2017-2018高一数学上学期期末考试(带答案)
2017-2018学年上学期期末考试 高中一年级 数学 参考答案一、选择题二、填空题13. 1314. {}6,5,2- 15.55-16. {}1,0,1-三、解答题17.解:{}1A aa=-,,{}2,B b =,.................................2分 (Ⅰ)若2a =,则{}12A =,,A B=∴11b a =-=.若12a -=,则3a =,{}23A =,,∴3b =.综上,b的值为1或3.......................................5分 (Ⅱ)∵{|24}C x x =<<,,A C C A C=∴⊆,.................................7分 ∴24,214a a <<⎧⎨<-<⎩∴34a <<. ∴a的取值范围是(3,4).......................................10分 18.解:(I)直线BC的斜率32141BC k +==+.∴BC边上的高线斜率1-=k,........................... ......3分∴BC边上的高线方程为:()23y x-=-+即:10x y++=,......................... ..............6分(II) )2,1(),3,4(--CB由)2,1(),3,4(--CB得直线BC的方程为:10x y--=........................... ......9分A∴到直线BC的距离d==1152ABC S ∆∴=⨯=........................................12分19.解:根据上表销售单价每增加1元日均销售量就减少40桶,设在进价基础上增加x 元后,日均销售利润为y 元,而在此情况下的日均销售量就为()48040152040x x--=-,.......................3分 由于x >,且520x ->,即0x <<,.......................................6分于是,可得()520y x =-240522,x xx =-+-<<.......................9分 易知,当6.5x =时,y有最大值,所以,只需将销售单价定为11.5元,就可获得最大的利润.......................12分 20.证明(Ⅰ)CDEFABCD 平面平面⊥,CDCDEF ABCD =平面平面 ,在正方形CDEF中,ED DC ⊥∴ABCDED 平面⊥,ED BC∴⊥.................................2分取DC的中点G连接BG,12DG DC =,在四边形ABCD中,//,AB DC 12AB DC =,ABGD四边形∴为平行四边形,所以,点B在以DC为直径的圆上,所以DB BC⊥,............................4分 又ED BD D=,所以BBC 平面⊥,......................................6分 (Ⅱ)如图,取DC的中点G,连接AG,在DC上取点P使13DP DC =,连接NP13D ND P D ED C ==,//PN EC ∴,//PN BCE∴面,................8分连接MP,23DM DP G DC DA DG ∴==为中点,,//MP AG ∴.又//,,AB CG AB CG ABCG=∴为平行四边形,//AG BC∴,//MP BC∴,//MP BCE∴面,.................................10分 又MP NP P=,MNP BCE ∴平面//平面. MNPMN 平面⊂ ,所以MN//平面B........................................12分21.解:(Ⅰ)当3m =时, f(x)为R 上的奇函数。
高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
2017-2018学年高一数学上学期期末考试试题及答案(新人教A版 第121套)
x y O x y O x y O xyO2017-2018学年度第一学期高一年级期末考试数学试题第Ⅰ卷(选择题共50分)说明:1、本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试时间120分钟,共150分。
2、请将第Ⅰ卷答案填写在第Ⅱ卷答题卡上,第Ⅱ卷答案用0.5毫米黑色笔写在答题纸指定位置。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知直线经过点)5,1(-A 和点)2,1(B ,则直线AB 的斜率为( )A 、0B 、-3C 、2D 、不存在 2、过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A 、012=-+y xB 、052=-+y xC 、052=-+y xD 、072=+-y x 3、两圆229x y +=和228690x y x y +-++=的位置关系是( )A 、相离B 、相交C 、内切D 、外切 4、圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A 、22(2)5x y -+=B 、22(2)5x y +-=C 、22(2)(2)5x y +++=D 、22(2)5x y ++=5、圆1622=+y x 上的点到直线3=-y x 的距离的最大值为( )A 、 223 B 、 2234- C 、2234+ D 、5 6、在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A 、B 、C 、D 、7、已知半径为5的球的两个平行截面的周长分别为π6、π8,则这两个平行截面间的距离是( )A 、1B 、2C 、1或7D 、2或6 8、已知a 、b 为直线,α为平面,则下面四个命题: ①若α⊥a b a ,//,则α⊥b ;②若αα⊥⊥b a ,,则b a //;D C BB1D 1AC 1A 1③若b a a ⊥⊥,α,则α//b ;④若b a a ⊥,//α,则α⊥b ;其中正确的命题是( ) A 、①② B 、①②③ C 、②③④ D 、①②④ 9、直线 023=-+y x 被圆1)1(22=+-y x 所截得的弦长为( ) A 、1 B 、2 C 、3 D 、2 10、右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、π9B 、π10C 、π11D 、π12第Ⅱ卷(非选择题 共100分) 二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.11、已知两圆1022=+y x 和20)3()1(22=-+-y x 相交于A 、B 两点,则直线AB 的方程12、若(1,2,1),(2,2,2),A B -点P 在z 轴上,且PA PB =,则点P 的坐标为 13、已知直线01)1(=+++y a ax 与直线03)1(2=+++y a x 互相平行,则=a 14、对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图的面积是原三角形面积的 倍 15、如图在正方体1111D C B A ABCD -中,异面直线 D B 1与1BC 所成的角为三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16、(本小题满分12分)一个正四棱台的上、下底面边长分别为4cm 和10cm ,高为4cm ,求正四棱台的侧面积和体积。
山东省淄博市周村区2017-2018学年高一第一学期期末考试数学试题(解析版)
2017-2018学年山东省淄博市周村区高一(上)期末数学试卷一、选择题(本大题共6小题,共30.0分)1.给出下列关系:,0∉N,2{1,2},∅={0};其中结论正确的个数是()A. 0B. 1C. 2D. 32.已知集合M={y|y=x2+1,x R},N={x|y=$\right.\left.{\sqrt{x+1}}\right\}$},则(∁R M)∩N=()A. B. C. D.3.若函数y=f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,则<的解集为()A. B.C. D.4.下列函数中,满足“f(x+y)=f(x)f(y)“的单调递增函数是()A. B. C. D.5.下面说法正确的是()A. 若函数为奇函数,则B. 函数在上单调减函数C. 要得到的图象,只需要将的图象向右平移1个单位D. 若函数的定义域为,则函数的定义域为6.若a=log0.31.2,b=(0.3)1.2,c=1.20.3,则()A. B. C. D.二、填空题(本大题共3小题,共15.0分)7.若幂函数y=(k-2)x m-2015(k,m R)的图象过点,,则k+m=______.8.函数y=log a(x-1)+1(a>1)的图象必过定点______.9.已知定义域为(0,+∞)的函数f(x)满足:对任意x(0,+∞),恒有f(2x)=2f(x)成立;当x(1,2]时,f(x)=2-x.给出如下结论:①对任意m Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n Z,使得f(2n+1)=9;④“若k Z,若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”其中所有正确结论的序号是______.三、解答题(本大题共6小题,共75.0分)10.已知二次函数f(x)=x2-2ax+5(a>1).(Ⅰ)若f(x)的定义域和值域均是[1,a],求实数a的值;(Ⅱ)若f(x)在区间(-∞,2]上是减函数,求f(x)在区间[1,a+1]上的最小值和最大值;(Ⅲ)若f(x)在区间(1,3)上有零点,求实数a的取值范围.11.已知函数f(x)=log2(1-x)-log2(1+x).(1)求函数f(x)的定义域;(2)判断f(x)的奇偶性;(3)方程f(x)=x+1是否有实根?如果有实根x0,请求出一个长度为的区间(a,b),使x0(a,b);如果没有,请说明理由(注:区间(a,b)的长度b-a)12.已知函数f(x)=ka x-a-x(a>0且a≠1)是奇函数,f(1)=.(Ⅰ)求函数f(x)在[1,+∞)上的值域;(Ⅱ)若函数g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求实数m的值.13.已知函数f(x)=|x+|+|x-|.(Ⅰ)判断该函数的奇偶性,并证明你的结论;(Ⅱ)利用绝对值及分段函数知识,将函数解析式写成分段函数形式(不需过程),然后在给定的坐标系中画出函数图象(不需列表);(Ⅲ)若函数f(x)在区间[a-1,2]上单调递增,试确定a的取值范围.14.(Ⅰ)已知lg2=a,lg3=b,试用a,b表示log1615;(Ⅱ)若a>0,b>0.15.某企业去年年底给全部的800名员工共发放2000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加60万元,企业员工每年净增a人设从今年起的第x年今年为第1年该企业人均发放年终奖为y万元写出函数关系式,完成下面的问题.Ⅰ若,在计划时间内,该企业的人均年终奖是否会超过3万元?Ⅱ为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人?答案和解析1.【答案】B【解析】解::∵,∴不正确;∵0∉N,∴不正确∵2{1,2},∴正确∵∅={0},∴不正确;∴结论正确的个数是1.故选:B.利用集合与元素的关系判断.准确判断特殊数集.本题考查了集合的概念,特殊数集的概念,熟记集合与元素即可.2.【答案】C【解析】解:集合M={y|y=x2+1,x R}={y|y≥1},N={x|y=$\right.\left.{\sqrt{x+1}}\right\}$}={x|x+1≥0}={x|x≥-1},∴C R M={x|x<1},∴(C R M)∩N={x|-1≤x<1}.故选:C.先化简集合M、N,再根据补集、交集的定义进行计算即可.本题考查了集合的化简与运算问题,是基础题目.3.【答案】B【解析】解:因为y=f(x)为偶函数,所以,所以不等式等价为.因为函数y=f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,所以解得x>3或-3<x<0,即不等式的解集为(-3,0)(3,+∞).故选:B.利用函数的奇偶性将不等式进行化简,然后利用函数的单调性确定不等式的解集.本题主要考查函数奇偶性的应用,利用数形结合的思想是解决本题的关键.4.【答案】C【解析】解:对于A,f(x)=在定义域上不单调,不符合题意;对于B,f(x+y)=(x+y)3,f(x)f(y)=x3y3,故而f(x+y)≠f(x)f(y),不符合题意;对于C,f(x)=3x是增函数,且f(x+y)=3x+y,f(x)f(y)=3x•3y=3x+y,符合题意;对于D,f(x)=()x是减函数,不符合题意.故选:C.判断各函数的单调性,再计算f(x+y),f(x)f(y)得出结论.本题考查了函数的单调性判断,属于中档题.5.【答案】C【解析】解:A,若函数y=f(x)为奇函数,若定义域为R,则f(0)=0,故A错;B,函数f(x)=(x-1)-1在(-∞,1)和(1,+∞)上单调减函数,故B错;C,要得到y=f(2x-2)=f(2(x-1))的图象,只需要将y=f(2x)的图象向右平移1个单位,正确;D,若函数y=f(2x+1)的定义域为[2,3],由2≤2x+1≤3,解得≤x≤1,则函数y=f(x)的定义域为[0.5,1],故D错.故选:C.由奇函数的性质,可判断A错;运用反比例函数的单调性,可判断B;运用图象平移,即可判断C正确;运用函数的定义域的含义,可得判断D错.不同考查函数的定义域的求法、函数的单调区间和图象平移,以及奇函数的性质,考查运算能力,属于基础题和易错题.6.【答案】A【解析】解:∵a=log0.31.2<0,b=(0.3)1.2(0,1),c=1.20.3>1.∴a<b<c.故选:A.利用指数函数与对数函数的单调性即可得出.本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.7.【答案】2016【解析】解:∵幂函数y=(k-2)x m-2015(k,m R)的图象过点,∴k-2=1,k=3,4=,解得:m=2013,则k+m=2016,故答案为:2016.根据幂函数的定义求出k的值,代入点的坐标求出m的值,从而求出k+m的值.本题考查了幂函数的定义,考查代入求值问题,是一道基础题.8.【答案】(2,1)【解析】【分析】本题主要考查对数函数的图象及性质.直接利用对数函数的性质求出所经过的定点即可.【解答】解:因为函数y=log a(x-1)+1(a>1),令x-1=1,解得x=2,当x=2时y=1.故函数y=log a(x-1)+1(a>1)的图象必过定点(2,1).故答案为(2,1).9.【答案】①②④【解析】解:∵x(1,2]时,f(x)=2-x.∴f(2)=0.f(2×)=2f()=2(2-)=2×=3.即f(1)=3,∵f(2x)=2f(x),∴f(4x)=f(2×2x)=2f(2x)=2×2f(x)=4f(x),f(8x)=f(2×4x)=2f(4x)=2×4f(x)=8f(x),…∴f(2k x)=2k f(x).①f(2m)=f(2•2m-1)=2f(2m-1)=…=2m-1f(2)=0,∴①正确.②设x(2,4]时,则,∴f(x)=2f()=4-x≥0.若x(4,8]时,则(2,4],∴f(x)=2f()=8-x≥0.…一般地当x(2m,2m+1),则(1,2],f(x)=2m+1-x≥0,从而f(x)[0,+∞),∴②正确③由②知当x(2m,2m+1),f(x)=2m+1-x≥0,∴f(2n+1)=2n+1-2n-1=2n-1,假设存在n使f(2n+1)=9,即2n-1=9,∴2n=10,∵n Z,∴2n=10不成立,∴③错误;④由②知当x⊆(2k,2k+1)时,f(x)=2k+1-x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”.∴④正确.故答案为:①②④.依据题中条件注意研究每个选项的正确性,连续利用题中第(1)个条件得到①正确;利用反证法及2x变化如下:2,4,8,16,32,判断②命题错误;连续利用题中第③个条件得到③正确;据①③的正确性可得④是正确的.本题主要考查抽象函数的性质,考查了函数的单调性,以及学生的综合分析能力.10.【答案】解:由题设知:函数化为f(x)=(x-a)2+5-a2,其对称轴为x=a(a>1).…(1分)(Ⅰ)由题设知:f(x)在[1,a]上单调递减,则有,即…(3分)∴a=2…(4分)(Ⅱ)由题设知:a≥2,则有a-1≥1=(a+1)-a;…(5分)又f(x)在[1,a]上单调递减,在[a,a+1]上单调递增;…(6分)∴ ,f(x)max=f(1)=6-2a…(8分)(Ⅲ)由题设知:当a≥3时,f(x)<f(1)≤0,则f(x)在区间(1,3)上无零点;…(9分)当1<a<3时,f(1)>0且f(x)在(1,a]上单调递减,在[a,3)上单调递增;…(10分)∴ ,即…(11分)由上述知:<…(12分)【解析】(Ⅰ)由题设知:f(x)在[1,a]上单调递减,则有,解得实数a的值;(Ⅱ)若f(x)在区间(-∞,2]上是减函数,则a≥2,结合函数的单调性,可得f(x)在区间[1,a+1]上的最小值和最大值;(Ⅲ)若f(x)在区间(1,3)上有零点,则1<a<3,且函数的最小值不大于0,进而得到答案.本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.11.【答案】解:(1)函数f(x)=log2(1-x)-log2(1+x),必有,解可得-1<x<1,则函数f(x)的定义域为(-1,1);(2)函数f(x)=log2(1-x)-log2(1+x),则函数f(-x)=log2(1+x)-log2(1-x)=-[log2(1-x)-log2(1+x)]=-f(x),则函数f(x)为奇函数;(3)根据题意,f(x)=x+1即log2(1-x)-log2(1+x)=x+1,变形可得(x+1)2x+1+x-1=0,设g(x)=(x+1)2x+1+x-1,x(-1,1),g(-)=<0,g(0)=2-1>0,则方程(x+1)2x+1+x-1=0在(-,0)上必有实根,又由g(-)=>0,则方程(x+1)2x+1+x-1=0(-,-)上必有实根,此时区间的长度(-)-(-)=,满足题意,则满足题意的一个区间为(-,-).【解析】(1)根据题意,由函数的解析式可得,解可得x的取值范围,即可得答案;(2)根据题意,求出f(-x)的解析式,由函数奇偶性的定义分析可得答案;(3)根据题意,原方程可以转化为(x+1)2x+1+x-1=0,设g(x)=(x+1)2x+1+x-1,x(-1,1),由二分法分析可得(x+1)2x+1+x-1=0在(-,0)上必有实根,进而由二分法分析可得答案.本题考查函数零点的判定定理,涉及函数的奇偶性、定义域的求法,属于综合题.12.【答案】解:(Ⅰ) 由题设知:得∴f (x )=2x -2-x∵y =2x 是增函数,y =2-x是减函数∴f (x )=2x -2-x在[1,+∞)上单调递增∴所求值域为[f (1),+∞),即, ). (Ⅱ) 设t =f (x ),由(Ⅰ)及题设知: y =g (x )=f 2(x )-2mf (x )+2=t 2-2mt +2即y =(t -m )2+2-m 2在上的最小值为-2,∴当时,t =m , ,得m =2;当 <时,,,得>舍 ; ∴m =2 【解析】本题考查了函数的值域的求解,属于中档题.(Ⅰ)先求出参数k 、a ,再根据y=2x 是增函数,y=2-x 是减函数,则f (x )=2x -2-x在[1,+∞)上单调递求解.(Ⅱ)设t=f (x ),由(Ⅰ)及题设知:y=g (x )=f 2(x )-2mf (x )+2=t 2-2mt+2,再根据含参数二次函数性质求解. .13.【答案】解:(Ⅰ) 由函数f (x )=|x +|+|x -|,得x ≠0,∴函数f (x )的定义域为(-∞,0) (0,+∞), 且f (-x )=|(-x )+|+|(-x )-|=|x +|+|x - |=f (x ); ∴函数f (x )是定义域上的偶函数; …(4分) (Ⅱ)令x -=0,解得x =±1, ∴当x ≥1时,f (x )=(x +)+(x -)=2x , 0<x <1时,f (x )=(x +)-(x -)=, -1<x <0时,f (x )=-(x +)+(x -)=-, x ≤-1时,f (x )=-(x +)-(x - )=-2x ;综上,< << <;…(6分)画出函数f(x)的图象,如图所示;…(8分)(Ⅲ)由图象可知:f(x)在[1,+∞)上单调递增,…(9分)要使f(x)在[a-1,2]上单调递增,只需1≤a-1<2,…(11分)解得2≤a<3.…(12分)【解析】(Ⅰ)根据函数f(x)分母不为0求出它的定义域,根据奇偶性的定义判断f(x)是定义域上的偶函数;(Ⅱ)根据绝对值的定义用分段函数写出f(x)的解析式并画出图象;(Ⅲ)由图象结合函数的单调性,即可求出满足条件的a的取值范围.本题考查了函数的定义域、奇偶性以及单调性的应用问题,也考查了分段函数以及函数图象的应用问题,是综合性题目.14.【答案】解:(Ⅰ).(Ⅱ)原式=.【解析】(I)利用对数的换底公式即可得出.(II)利用指数幂的运算性质即可得出.本题考查了对数的换底公式、指数幂的运算性质,考查了推理能力与计算能力,属于基础题.15.【答案】解:由题设知:+且,+(Ⅰ)由a=9及x N*且1≤x≤10知:<所以,该企业在10年内不能实现人均至少3万元年终奖的目标.(Ⅱ)若人均年终奖年年有增长,则函数y=f(x)为增函数.设x1,x2N*且1≤x1<x2≤10,则有<,∴a<24,由上述知若人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.【解析】(1)利用已知条件列出,推出,然后求解即可.(Ⅱ)若人均年终奖年年有增长,则函数y=f(x)为增函数.列出不等式,转化求解该企业每年员工的净增量不能超过23人.本题考查函数的实际应用,函数的单调性的应用,考查分析问题解决问题的能力.。
2017-2018学年高一数学上学期期末考试试题(含解析)及答案(新人教A版 第124套)
黑龙江省大庆铁人中学2017-2018学年高一上学期期末数学试题
满分:150分 考试时间:120分钟
第Ⅰ卷(选择题 满分60分)
一、选择题(每小题5分,共60分)
1. 非空集合{}{}135,116X x a x a Y x x =+≤≤-=≤≤,使得()X X Y ⊆⋂成立的所有
a 的集合是( ) A. {}37a a ≤≤ B. {}07a a ≤≤ C.{}37a a <≤ D.{}7a a ≤
考点:对数函数,含绝对值的函数图像
3. 将函数g()3sin 26x x π⎛⎫=+
⎪⎝⎭图像上所有点向左平移6π个单位,再将各点横坐标缩短为 原来的12
倍,得到函数()f x ,则( ) A .()f x 在0,4π⎛⎫ ⎪⎝⎭单调递减 B .()f x 在3,44
ππ⎛⎫ ⎪⎝⎭单调递减 C .()f x 在0,4π⎛⎫ ⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫ ⎪⎝⎭
单调递增
5.下列函数中最小正周期为2
π的是( ) A. sin4y x = B. sin cos()6
y x x π
=+ C. sin(cos )y x = D. 42sin cos y x x =+
6. 已知P 是边长为2的正ABC ∆的边BC 上的动点,则()
AP AB AC + ( ) A.最大值为8 B.是定值6 C.最小值为6 D.是定值3
7. 在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC a = ,BD b = ,则AF = ( ) A.1142a b + B.1233a b + C.1124a b + D.2133a b +。
2017-2018学年高一数学上学期期末考试试题及答案(新人教A版 第71套)
2017-2018学年度第一学期期末高一数学试题注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,时间120分钟。
2、全部答案在答题卡上完成,答在本试题上无效。
3.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第I 卷一 、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{2,3,4}U =,若集合{2,3}A =,则U C A =A .1B .2C .3D .42.过点)A 且倾斜角为60 的直线方程为A.2y =- B.2y =+ C. 23y x =- D.23y x =+ 3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,之后增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用A .一次函数B .二次函数C .指数型函数D .对数型函数4.点(3,4)M -和点(,)N m n 关于直线y x =对称,则A .4,3m n =-=-B .4,3m n ==-C .4,3m n =-=D .4,3m n ==5.已知某几何体的三视图如图,则该几何体的体积是A .80 B.64 C .104 D.80+主视图侧视图俯视图6.已知直线l 上两点,A B 的坐标分别为(3,5),(,2)a ,且直线l 与直线3450x y +-=垂直,则a 的值为A .34-B .34C .43-D .437.函数()1xf x =-e 的图象大致是A B C D8.函数1()ln 2f x x =+的零点所在的区间是 A .42(,)e e -- B .2(,1)e - C .2(1,)e D .24(,)e e9.下列函数中既是奇函数又是(1,)+∞上的增函数的是A .()22x x f x -=+B .()22x x f x -=-C .()ln f x x x =+D .()ln ||f x x x =10.已知一个正三棱锥的三条侧棱两两垂直且相等,底面边长为2,则该三棱锥的外接球的表面积是A .6πB .12πC .18πD .24π11.已知函数2()log f x x =,0.3222,log 5,0.3a b c ===,则下列选项正确的是A .()f a >()f b >()f cB .()f b >()f a >()f cC .()f c >()f b >()f aD .()f c >()f a >()f b12.已知函数()241(4)log (4)x f x xx x ⎧+≥⎪=⎨⎪<⎩,若关于x 的方程()f x k =有两个不同的根,则实数k 的取值范围是A .(,1)-∞B .(,2)-∞C .(1,2)D .[1,2)第Ⅱ卷二.填空题:本大题共4小题,每小题5分.13.函数()(1)x f x a a =>在[1,2]上的最大值比最小值大2a,则a = 14.正方体1111ABCD A BC D -中,异面直线BD 与1AD 所成角度为 15.已知两条直线1:3420l x y ++=,2:340l x y m ++=之间的距离为2,则m = 16.设l 、m 、n 表示不同的直线,α,β,γ表示不同的平面,则下列四个命题正确的是①若m ∥l ,且m α⊥,则l α⊥;②若m ∥l ,且m ∥α,则l ∥α;③若,,l m n αββγγα=== ,则m ∥l ∥n ;④若,,m l n αββγγα=== ,且n ∥β,则m ∥l .三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题10分)已知函数()log (2)log (2),0a a f x x x a =+-->且1a ≠. (Ⅰ)求函数()f x 的定义域;(Ⅱ)判断()f x 的奇偶性并予以证明. 18. (本小题12分)如图,已知在四棱锥S ABCD -中, 底面四边形ABCD 是直 角梯形, 90ABC ∠=,SA ABCD ⊥平面,2SA AB BC ===. (Ⅰ)求证:SAB ⊥平面平面SBC ; (Ⅱ)求直线SC 与底面ABCD 所成角的正切值. 19. (本小题12分)已知直线1l 过点(2,1),(0,3)A B ,直线2l 的斜率为3-且过点(4,2)C . (Ⅰ)求1l 、2l 的交点D 的坐标;。
新课标人教版高一数学上学期期末试卷及答案
上学期期末考试卷年级:高一科目:英语注意事项: 1.答第I卷前,考生务必将自己的姓名、考生号填写在答题卡上。
2.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在本试卷上,否则无效。
(试卷总分:150分;考试时间:120分钟)第I卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
听力结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10称钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19.15.B. £9.15.C. £9.18.答案是B。
1. What would the man like?A. A cold drink.B. Sleeping pills.C. A cup of coffee.2. Where is the bus station?A. Opposite a stadium.B. Next to a car park.C. On the left of a bridge.3. What does the man dislike about the sweater?A. The price.B. The material.C. The color.4. What does the man think of the course?A. Easy.B. Interesting.C. Difficult.5. What are the speakers mainly talking about?A. A sports game.B. An animal.C. An actor.第二节 (共15小题; 每小题1.5分, 满分22.5分)听下面5段对话或独白。
人教版数学高一第三章直线与方程单元测试精选(含答案)3
d
Ax0 By0 C A2 B2
.已知点 P1, P2
到直线 l
的有向距离分别是 d1, d2 ,给出以下命题:
试卷第 6页,总 10页
①若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ②若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ③若 d1 d2 0 ,则直线 P1P2 与直线 l 垂直;④若 d1d2 0 ,则直线 P1P2 与直线 l 相交;
25.直线 l1:x+my+6=0 与 l2:(m-2)x+3y+2m=0,若 l1//l2 则 m =__________;
【来源】[中学联盟]山东省栖霞市第一中学 2017-2018 学年高一上学期期末测试数学试 题
【答案】 1 1
26.直线 y= x 关于直线 x=1 对称的直线方程是________;
则 m 的倾斜角可以是:①15°;② 30°;③ 45°;④ 60°;⑤ 75°. 其中正确答案的序号是______.(写出所有正确答案的序号) 【来源】2011 届陕西省师大附中、西工大附中高三第七次联考文数
【答案】①或⑤
30.定义点 P(x0 , y0 ) 到直线 l : Ax By C 0( A2 B 2 0) 的有向距离为
评卷人 得分
二、填空题
22.在四边形 ABCD 中,AB = DC = (1,1),且 BA + BC =
|BA| |BC|
|B3BDD| ,则四边形 ABCD 的面积
为
.
【来源】2015 高考数学(理)一轮配套特训:4-3 平面向量的数量积及应用(带解析)
【答案】 3
23.直线 ax+2y-4=0 与直线 x+y-2=0 互相垂直,那么 a=______________ ;
山东省淄博市周村区2017-2018学年高一第一学期期末考试数学试题(含精品解析)
2017-2018学年山东省淄博市周村区高一(上)期末数学试卷一、选择题(本大题共6小题,共30.0分)1.给出下列关系:√2∈Q,0∉N,2∈{1,2},∅={0};其中结论正确的个数是()A. 0B. 1C. 2D. 32.已知集合M={y|y=x2+1,x∈R},N={x|y=$\right.\left.{\sqrt{x+1}}\right\}$√x+1},则(∁R M)∩N=()A. {x|−1≤x≤1}B. {x|0≤x≤1}C. {x|−1≤x<1}D. {x|0≤x<1}3.若函数y=f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,则f(x)+f(−x)2x<0的解集为()A. (−3,3)B. (−3,0)∪(3,+∞)C. (−∞,−3)∪(0,3)D. (−∞,−3)∪(3,+∞)4.下列函数中,满足“f(x+y)=f(x)f(y)“的单调递增函数是()A. f(x)=1x B. f(x)=x3 C. f(x)=3x D. f(x)=(12)x5.下面说法正确的是()A. 若函数y=f(x)为奇函数,则f(0)=0B. 函数f(x)=(x−1)−1在(−∞,1)∪(1,+∞)上单调减函数C. 要得到y=f(2x−2)的图象,只需要将y=f(2x)的图象向右平移1个单位D. 若函数y=f(2x+1)的定义域为[2,3],则函数y=f(x)的定义域为[0.5,3]6.若a=log0.31.2,b=(0.3)1.2,c=1.20.3,则()A. a<b<cB. a<c<bC. b<c<aD. b<a<c二、填空题(本大题共3小题,共15.0分)7.若幂函数y=(k-2)x m-2015(k,m∈R)的图象过点(12,4),则k+m=______.8.函数y=log a(x-1)+1(a>1)的图象必过定点______.9.已知定义域为(0,+∞)的函数f(x)满足:对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;当x∈(1,2]时,f(x)=2-x.给出如下结论:①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“若k∈Z,若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”其中所有正确结论的序号是______.三、解答题(本大题共6小题,共75.0分)10.已知二次函数f(x)=x2-2ax+5(a>1).(Ⅰ)若f(x)的定义域和值域均是[1,a],求实数a的值;(Ⅱ)若f(x)在区间(-∞,2]上是减函数,求f(x)在区间[1,a+1]上的最小值和最大值;(Ⅲ)若f(x)在区间(1,3)上有零点,求实数a的取值范围.11.已知函数f(x)=log2(1-x)-log2(1+x).(1)求函数f(x)的定义域;(2)判断f(x)的奇偶性;(3)方程f(x)=x+1是否有实根?如果有实根x0,请求出一个长度为14的区间(a,b),使x0∈(a,b);如果没有,请说明理由(注:区间(a,b)的长度b-a)12.已知函数f(x)=ka x-a-x(a>0且a≠1)是奇函数,f(1)=32.(Ⅰ)求函数f(x)在[1,+∞)上的值域;(Ⅱ)若函数g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求实数m的值.13.已知函数f(x)=|x+1x |+|x-1x|.(Ⅰ)判断该函数的奇偶性,并证明你的结论;(Ⅱ)利用绝对值及分段函数知识,将函数解析式写成分段函数形式(不需过程),然后在给定的坐标系中画出函数图象(不需列表);(Ⅲ)若函数f(x)在区间[a-1,2]上单调递增,试确定a的取值范围.14.(Ⅰ)已知lg2=a,lg3=b,试用a,b表示log1615;(Ⅱ)若a>0,b>0,化简(2a 23b12)(−6a12b−13−3ab6−(4a−1).15.某企业去年年底给全部的800名员工共发放2000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加60万元,企业员工每年净增a人.设从今年起的第x年(今年为第1年)该企业人均发放年终奖为y万元.写出函数关系式y=f(x),完成下面的问题.(Ⅰ)若a=9,在计划时间内,该企业的人均年终奖是否会超过3万元?(Ⅱ)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人?答案和解析1.【答案】B【解析】解::∵,∴不正确;∵0∉N,∴不正确∵2∈{1,2},∴正确∵∅={0},∴不正确;∴结论正确的个数是1.故选:B.利用集合与元素的关系判断.准确判断特殊数集.本题考查了集合的概念,特殊数集的概念,熟记集合与元素即可.2.【答案】C【解析】解:集合M={y|y=x2+1,x∈R}={y|y≥1},N={x|y=$\right.\left.{\sqrt{x+1}}\right\}$}={x|x+1≥0}={x|x≥-1},∴C R M={x|x<1},∴(C R M)∩N={x|-1≤x<1}.故选:C.先化简集合M、N,再根据补集、交集的定义进行计算即可.本题考查了集合的化简与运算问题,是基础题目.3.【答案】B【解析】解:因为y=f(x)为偶函数,所以,所以不等式等价为.因为函数y=f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,所以解得x>3或-3<x<0,即不等式的解集为(-3,0)∪(3,+∞).故选:B.利用函数的奇偶性将不等式进行化简,然后利用函数的单调性确定不等式的解集.本题主要考查函数奇偶性的应用,利用数形结合的思想是解决本题的关键.4.【答案】C【解析】解:对于A,f(x)=在定义域上不单调,不符合题意;对于B,f(x+y)=(x+y)3,f(x)f(y)=x3y3,故而f(x+y)≠f(x)f(y),不符合题意;对于C,f(x)=3x是增函数,且f(x+y)=3x+y,f(x)f(y)=3x•3y=3x+y,符合题意;对于D,f(x)=()x是减函数,不符合题意.故选:C.判断各函数的单调性,再计算f(x+y),f(x)f(y)得出结论.本题考查了函数的单调性判断,属于中档题.5.【答案】C【解析】解:A,若函数y=f(x)为奇函数,若定义域为R,则f(0)=0,故A错;B,函数f(x)=(x-1)-1在(-∞,1)和(1,+∞)上单调减函数,故B错;C,要得到y=f(2x-2)=f(2(x-1))的图象,只需要将y=f(2x)的图象向右平移1个单位,正确;D,若函数y=f(2x+1)的定义域为[2,3],由2≤2x+1≤3,解得≤x≤1,则函数y=f(x)的定义域为[0.5,1],故D错.故选:C.由奇函数的性质,可判断A错;运用反比例函数的单调性,可判断B;运用图象平移,即可判断C 正确;运用函数的定义域的含义,可得判断D错.不同考查函数的定义域的求法、函数的单调区间和图象平移,以及奇函数的性质,考查运算能力,属于基础题和易错题.6.【答案】A【解析】解:∵a=log0.31.2<0,b=(0.3)1.2∈(0,1),c=1.20.3>1.∴a<b<c.故选:A.利用指数函数与对数函数的单调性即可得出.本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.7.【答案】2016【解析】解:∵幂函数y=(k-2)x m-2015(k,m∈R)的图象过点,∴k-2=1,k=3,4=,解得:m=2013,则k+m=2016,故答案为:2016.根据幂函数的定义求出k的值,代入点的坐标求出m的值,从而求出k+m的值.本题考查了幂函数的定义,考查代入求值问题,是一道基础题.8.【答案】(2,1)【解析】【分析】本题主要考查对数函数的图象及性质.直接利用对数函数的性质求出所经过的定点即可.【解答】解:因为函数y=log a(x-1)+1(a>1),令x-1=1,解得x=2,当x=2时y=1.故函数y=log a(x-1)+1(a>1)的图象必过定点(2,1).故答案为(2,1).9.【答案】①②④【解析】解:∵x∈(1,2]时,f(x)=2-x.∴f(2)=0.f(2×)=2f()=2(2-)=2×=3.即f(1)=3,∵f(2x)=2f(x),∴f(4x)=f(2×2x)=2f(2x)=2×2f(x)=4f(x),f(8x)=f(2×4x)=2f(4x)=2×4f(x)=8f(x),…∴f(2k x)=2k f(x).①f(2m)=f(2•2m-1)=2f(2m-1)=…=2m-1f(2)=0,∴①正确.②设x∈(2,4]时,则,∴f(x)=2f()=4-x≥0.若x∈(4,8]时,则∈(2,4],∴f(x)=2f()=8-x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1-x≥0,从而f(x)∈[0,+∞),∴②正确③由②知当x∈(2m,2m+1),f(x)=2m+1-x≥0,∴f(2n+1)=2n+1-2n-1=2n-1,假设存在n使f(2n+1)=9,即2n-1=9,∴2n=10,∵n∈Z,∴2n=10不成立,∴③错误;④由②知当x⊆(2k,2k+1)时,f(x)=2k+1-x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”.∴④正确.故答案为:①②④.依据题中条件注意研究每个选项的正确性,连续利用题中第(1)个条件得到①正确;利用反证法及2x 变化如下:2,4,8,16,32,判断②命题错误;连续利用题中第③个条件得到③正确;据①③的正确性可得④是正确的.本题主要考查抽象函数的性质,考查了函数的单调性,以及学生的综合分析能力. 10.【答案】解:由题设知:函数化为f (x )=(x -a )2+5-a 2,其对称轴为x =a (a >1).…(1分)(Ⅰ)由题设知:f (x )在[1,a ]上单调递减, 则有{f(a)=1f(1)=a, 即{5−a 2=16−2a=a …(3分)∴a =2…(4分)(Ⅱ) 由题设知:a ≥2,则有a -1≥1=(a +1)-a ;…(5分)又f (x )在[1,a ]上单调递减,在[a ,a +1]上单调递增; …(6分) ∴f(x)min =f(a)=5−a 2,f (x )max =f (1)=6-2a …(8分)(Ⅲ)由题设知:当a ≥3时,f (x )<f (1)≤0,则f (x )在区间(1,3)上无零点; …(9分) 当1<a <3时,f (1)>0且f (x )在(1,a ]上单调递减,在[a ,3)上单调递增;…(10分) ∴f(x)min =f(a)=5−a 2≤0,即a ≥√5…(11分) 由上述知:√5≤a <3…(12分) 【解析】(Ⅰ)由题设知:f (x )在[1,a]上单调递减,则有,解得实数a 的值;(Ⅱ)若f (x )在区间(-∞,2]上是减函数,则a≥2,结合函数的单调性,可得f (x )在区间[1,a+1]上的最小值和最大值;(Ⅲ) 若f (x )在区间(1,3)上有零点,则1<a <3,且函数的最小值不大于0,进而得到答案. 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.11.【答案】解:(1)函数f (x )=log 2(1-x )-log 2(1+x ),必有{1+x >01−x>0,解可得-1<x <1,则函数f (x )的定义域为(-1,1);(2)函数f (x )=log 2(1-x )-log 2(1+x ),则函数f (-x )=log 2(1+x )-log 2(1-x )=-[log 2(1-x )-log 2(1+x )]=-f (x ), 则函数f (x )为奇函数;(3)根据题意,f (x )=x +1即log 2(1-x )-log 2(1+x )=x +1, 变形可得(x +1)2x +1+x -1=0,设g (x )=(x +1)2x +1+x -1,x ∈(-1,1), g (-12)=√2−32<0,g (0)=2-1>0,则方程(x +1)2x +1+x -1=0在(-12,0)上必有实根, 又由g (-14)=3√84−54>0,则方程(x +1)2x +1+x -1=0(-12,-14)上必有实根, 此时区间的长度(-14)-(-12)=14,满足题意, 则满足题意的一个区间为(-12,-14). 【解析】(1)根据题意,由函数的解析式可得,解可得x 的取值范围,即可得答案;(2)根据题意,求出f (-x )的解析式,由函数奇偶性的定义分析可得答案;(3)根据题意,原方程可以转化为(x+1)2x+1+x-1=0,设g (x )=(x+1)2x+1+x-1,x ∈(-1,1),由二分法分析可得(x+1)2x+1+x-1=0在(-,0)上必有实根,进而由二分法分析可得答案. 本题考查函数零点的判定定理,涉及函数的奇偶性、定义域的求法,属于综合题.12.【答案】解:(Ⅰ) 由题设知:{f(0)=k −1=0f(1)=ka −1a =32得{k =1a =2∴f (x )=2x -2-x∵y =2x 是增函数,y =2-x 是减函数∴f (x )=2x -2-x 在[1,+∞)上单调递增∴所求值域为[f (1),+∞),即[32,+∞). (Ⅱ) 设t =f (x ),由(Ⅰ)及题设知: y =g (x )=f 2(x )-2mf (x )+2=t 2-2mt +2 即y =(t -m )2+2-m 2在[32,+∞)上的最小值为-2, ∴当m ≥32时,t =m ,y min =2−m 2=−2,得m =2;当m <32时,t =32,y min =94−3m +2=−2,得m =2512>32(舍); ∴m =2 【解析】本题考查了函数的值域的求解,属于中档题.(Ⅰ)先求出参数k 、a ,再根据y=2x 是增函数,y=2-x 是减函数,则f (x )=2x -2-x 在[1,+∞)上单调递求解.(Ⅱ)设t=f (x ),由(Ⅰ)及题设知:y=g (x )=f 2(x )-2mf (x )+2=t 2-2mt+2,再根据含参数二次函数性质求解. .13.【答案】解:(Ⅰ) 由函数f (x )=|x +1x |+|x -1x |,得x ≠0,∴函数f (x )的定义域为(-∞,0)∪(0,+∞), 且f (-x )=|(-x )+1−x |+|(-x )-1−x |=|x +1x |+|x -1x |=f (x ); ∴函数f (x )是定义域上的偶函数; …(4分) (Ⅱ)令x -1x =0,解得x =±1, ∴当x ≥1时,f (x )=(x +1x )+(x -1x )=2x , 0<x <1时,f (x )=(x +1x )-(x -1x )=2x , -1<x <0时,f (x )=-(x +1x )+(x -1x )=-2x , x ≤-1时,f (x )=-(x +1x )-(x -1x )=-2x ;综上,f(x)={ 2xx ≥12x 0<x <1−2x−1<x <0−2xx ≤−1;…(6分)画出函数f (x )的图象,如图所示;…(8分)(Ⅲ) 由图象可知:f (x )在[1,+∞)上单调递增,…(9分) 要使f (x )在[a -1,2]上单调递增,只需1≤a -1<2,…(11分) 解得2≤a <3.…(12分) 【解析】(Ⅰ)根据函数f (x )分母不为0求出它的定义域,根据奇偶性的定义判断f (x )是定义域上的偶函数;(Ⅱ)根据绝对值的定义用分段函数写出f(x)的解析式并画出图象;(Ⅲ)由图象结合函数的单调性,即可求出满足条件的a的取值范围.本题考查了函数的定义域、奇偶性以及单调性的应用问题,也考查了分段函数以及函数图象的应用问题,是综合性题目.14.【答案】解:(Ⅰ)log1615=lg15lg16=lg3+lg15lg24=lg3+1−lg24lg2=1+b−a4a.(Ⅱ)原式=2(−6)a 23+12b12−13−3a 16b16−(4a−1)=4a−4a+1=1.【解析】(I)利用对数的换底公式即可得出.(II)利用指数幂的运算性质即可得出.本题考查了对数的换底公式、指数幂的运算性质,考查了推理能力与计算能力,属于基础题.15.【答案】解:由题设知:y=f(x)=2000+60x800+ax(x∈N∗且1≤x≤10),(Ⅰ)由a=9及x∈N*且1≤x≤10知:y−3=2000+60x800+9x −3=33x−400800+9x<0所以,该企业在10年内不能实现人均至少3万元年终奖的目标.(Ⅱ)若人均年终奖年年有增长,则函数y=f(x)为增函数.设x1,x2∈N*且1≤x1<x2≤10,则有f(x1)−f(x2)=2000+60x1800+ax1−2000+60x2800+ax2=2000(24−a)(x1−x2)(800+ax1)(800+ax2)<0,∴a<24,由上述知若人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.【解析】(1)利用已知条件列出,推出,然后求解即可.(Ⅱ)若人均年终奖年年有增长,则函数y=f(x)为增函数.列出不等式,转化求解该企业每年员工的净增量不能超过23人.本题考查函数的实际应用,函数的单调性的应用,考查分析问题解决问题的能力.。
高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题
某某省实验中学2017-2018学年高一数学上学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】则故选2. 直线的倾斜角是()A. B. C. D.【答案】C【解析】直线的斜率为直线的倾斜角为:,可得:故选3. 计算,其结果是()A. B. C. D.【答案】B【解析】原式故选4. 已知四面体中,,分别是,的中点,若,,,则与所成角的度数为()A. B. C. D.【答案】D【解析】如图,取的中点,连接,,则,(或补角)是与所成的角,,,,,而故选5. 直线在轴上的截距是()A. B. C. D.【答案】B【解析】直线在轴上的截距就是在直线方程中,令自变量,直线在轴上的截距为故选6. 已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A. 1B. 2C. 3D. 4【答案】B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7. 已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是()A. B. C. D.【答案】B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选8. 经过点的直线到,两点的距离相等,则直线的方程为()A. B.C. 或D. 都不对【答案】C【解析】当直线的斜率不存在时,直线显然满足题意;当直线的斜率存在时,设直线的斜率为则直线为,即由到直线的距离等于到直线的距离得:,化简得:或(无解),解得直线的方程为综上,直线的方程为或故选9. 已知函数的图象与函数(,)的图象交于点,如果,那么的取值X围是()A. B. C. D.【答案】D【解析】由已知中两函数的图象交于点,由指数函数的性质可知,若,则,即,由于,所以且,解得,故选D.点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于的不等式是解答的关键,试题比较基础,属于基础题.10. 矩形中,,,沿将矩形折成一个直二面角,则四面体的外接球的体积是()A. B. C. D.【答案】B【解析】由题意知,球心到四个顶点的距离相等,球心在对角线上,且其半径为长度的一半为故选11. 若关于的方程在区间上有解,则实数的取值X围是()A. B. C. D.【答案】A【解析】由题意可得:函数在区间上的值域为实数的取值X围是故选点睛:本小题考查的是学生对函数最值的应用的知识点的掌握。
人教版数学高三期末测试精选(含答案)4
人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。
浙江省宁波市九校2017-2018学年高一上学期期末联考数学试题+Word版含答案
浙江省宁波市九校2017-2018学年高一上学期期末联考数学试题+Word版含答案2017学年宁波市九校联考高一数学试题第一学期选择题部分(共40分)2018.01一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{1,2a\}$,$B=\{a,b\}$,若 $A\capB=\{1\}$,则 $AB$ =()。
A。
$\{\frac{1}{2},1,b\}$。
B。
$\{-1,1,b\}$。
C。
$\{1,b\}$。
D。
$\{-1,1\}$改写:已知集合 $A=\{1,2a\}$,$B=\{a,b\}$,且 $A\capB=\{1\}$,则 $AB$ 的元素为 $\{1,b\}$ 或 $\{-1,1\}$。
2.已知向量 $a=3$,$b=2\pi/3$,$c=5\pi/3$,且$b\perp(a+b)$,则 $a$ 与 $b$ 的夹角为()。
A。
$\pi/3$。
B。
$2\pi/3$。
C。
$\pi$。
D。
$2\pi/3$改写:已知向量 $a=3$,$b=2\pi/3$,$c=5\pi/3$,且$b$ 与 $a+b$ 垂直,则 $a$ 与 $b$ 的夹角为 $2\pi/3$。
3.已知 $A$ 是 $\triangle ABC$ 的内角且 $\sin A+2\cos A=-1$,则 $\tan A$ =()。
A。
$-\frac{3}{4}$。
B。
$-\frac{4}{3}$。
C。
$-\frac{1}{3}$。
D。
$-\frac{4}{5}$改写:已知 $\triangle ABC$ 中 $A$ 角的正弦和余弦之和为 $-1$,则 $\tan A$ 等于 $-\frac{4}{3}$。
4.若当 $x\in R$ 时,函数 $f(x)=a$ 始终满足 $-1<f(x)\leq 1$,则函数 $y=\log_a\frac{1}{x}$ 的图象大致为()。
湖南省长沙市长郡中学2017-2018学年高一上学期期末考试数学试题
湖南省长沙市长郡中学2017-2018学年高一上学期期末考试数学试题长郡中学2017-2018学年度高一第一学期期末考试数学一、选择题:1.设集合$A=\{1,3\}$,集合$B=\{1,2,4,5\}$,则集合$A\cup B=$()。
A。
$\{1,3,1,2,4,5\}$B。
$\{1\}$C。
$\{1,2,3,4,5\}$D。
$\{2,3,4,5\}$2.已知$\tan\alpha=-3$,$\frac{\pi}{2}<\alpha<\pi$,则$\sin\alpha$的值为()。
A。
$\frac{1}{2}$B。
$-\frac{3}{2}$C。
$-\frac{1}{2}$D。
$-\frac{\sqrt{3}}{2}$3.已知$a=4$,$b=3$,且$\vec{a}$与$\vec{b}$不共线,若向量$\vec{a}+k\vec{b}$与$\vec{a}-k\vec{b}$互相垂直,则$k$的值为()。
A。
$\pm\frac{4}{3}$B。
$\pm\frac{3}{4}$C。
$\pm\frac{2\sqrt{3}}{3}$D。
$\pm2$4.如果奇函数$f(x)$在区间$[2,8]$上是减函数且最小值为6,则$f(x)$在区间$[-8,-2]$上是()。
A。
增函数且最小值为-6B。
增函数且最大值为-6C。
减函数且最小值为-6D。
减函数且最大值为-65.方程$2x+3x-7=0$的解所在的区间为()。
A。
$(-1,0)$B。
$(0,1)$C。
$(1,2)$D。
$(2,3)$6.$\triangle ABC$中,内角$A,B,C$所对的边分别是$a,b,c$,若$a^2-c^2+b^2=ab$,则$\angle C=$()。
A。
$30^\circ$B。
$60^\circ$C。
$120^\circ$D。
$60^\circ$或$120^\circ$7.$\triangle ABC$中,内角$A,B,C$所对边的长分别为$a,b,c$,若$\frac{\cos A}{\cos B}=\frac{b}{a}$,则$\triangle ABC$为()。
高中数学 专题01 流程图与算法语句分项汇编(含解析)新人教A版必修3-新人教A版高一必修3数学试题
专题01 流程图与算法语句一、选择题1.【某某自治区北方重工业集团某某第三中学2017-2018学年高二3月月考】如图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是A. B. C. D.【答案】B第九次,,满足条件,,第十次,,满足条件,;由条件知不满足条件.故判断框内应填入的条件是.选B.2.【某某八中乌兰察布分校2017-2018学年高二下学期第一次调考】以下是一个算法的程序框图,当输入的x值为3时,输出y的结果恰好是,则处的关系式是( )A . y =x 3B . y =3-xC . y =3xD . y =【答案】C3.【某某某某市第三中学2017-2018学年高二下学期第一次月考】如图所示,程序框图的输出值S =( )A . 15B . 22C . 24D . 28【答案】C【解析】由程序框图,数据初始化: 1,020i S ==<; 第一次循环: 3,320i S ==<;第二次循环: 5,820i S ==<; 第三次循环: 7,15i S ==20<; 第四次循环: 9,2420i S ==>; 此时结束循环,输出S 值为24. 本题选择C 选项.4.【某某省某某市2018届高三教学质量检查第二次统考】执行下面的程序框图,如果输入1a =, 1b =,则输出的S =( )A . 7B . 20C . 22D . 54【答案】B5.【某某省外国语学校2017-2018学年高二下学期入学考试】阅读如图所示的程序框图,若运行相应的程序输出的结果为0,则判断框中的条件不可能是( )A . 2014n ≤B . 2015n ≤C . 2016n ≤D . 2018n ≤【答案】A故选A .6.【人教B 版高中数学必修三同步测试】给出一个算法的程序框图如图所示,该程序框图的功能是( )A . 求出a ,b ,c 三数中的最小数B . 求出a ,b ,c 三数中的最大数C . 将a ,b ,c 从小到大排列D . 将a ,b ,c 从大到小排列【答案】A【解析】由图框可知,第一步判断中的较小数,第二步判断中的较小数与的比较后的较小数。
2017-2018学年湖北省孝感高中高一(上)期末数学试卷(word版含答案)
2017-2018学年湖北省孝感高中高一(上)期末数学试卷一、选择题(本大题共12小题,共60.0分)1.已知全集为R,集合M={-1,1,2,4},N={x|<<8},则M∩N=()A. 1,B.C.D.2.cos85°cos25°-sin(-85°)sin155°的值是()A. B. C. D. 03.已知函数f(x)=cos(3x+α)的图象关于原点对称,则α=()A. ,B. ,C. D.4.如图,=2,=,=,=,下列等式中成立的是()A.B.C.D.5.若△ABC的内角A,B,C所对的边分别为a,b,c,已知a=4,b=2,A=45°,则B=()A. 或B.C.D.6.若函数f(x)=ax2+2x-1在区间(-∞,6)上单调递增,则实数a的取值范围是()A. B. C. D.7.设x,y R,向量=(x,1),=(2,y),=(1,-2),,,则||=()A. 5B.C.D. 108.已知函数,则下列说法正确的是A. 在定义域内是增函数B. 的最小正周期是C. 的对称中心是,D. 的对称轴是9.已知函数,若a,b,c互不相等,且,则的取值范围是A. B. C. D.10.已知f(x)=,当<<时,f(sin2θ)-f[sin(-2θ)]的值为()A. B. C. D.11.在直角梯形ABCD中,AB AD,DC AB,AD=DC=2,AB=4,E,F分别为AB,BC的中点,以A为圆心,AD为半径的圆弧DE的中点为P(如图所示).若=,其中,λ,μR,则λ-μ的值是()A. B. C. D.12.定义在R上的函数f(x)满足:f(x-2)的对称轴为x=2,f(x+1)=(f(x)≠0),且f(x)在区间(1,2)上单调递增,已知α,β是钝角三角形中的两锐角,则f (sinα)和f(cosβ)的大小关系是()A. B.C. D. 以上情况均有可能二、填空题(本大题共4小题,共20.0分)13.已知||=1,||=,且(-),则向量与向量的夹角是______.14.若sin()=,则cos()=______.15.若函数f(x)=,若f(f())=4,则b=______.16.已知函数f(x)=A sin(2x+φ)-(A>0,0<φ<),g(x)=,f(x)的图象在y轴上的截距为1,且关于直线x=对称.若对于任意的x1[-1,2],存在x2[0,],使得g(x1)≥f(x2),则实数m的取值范围为______.三、解答题(本大题共6小题,共70.0分)17.f(α)=.(1)求f()的值;(2)若α(0,),且sin()=,求f(α)的值.18.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC的面积为.(1)求函数f(x)的解析式;(2)将函数y=f(x)的图象向右平移个单位,再将所得图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在x[0,π]上的单调递增区间.19.在△ABC中,角A,B,C的对边分别为a,b,c,=.(1)求角A的大小;(2)若a=,bc=2,求△ABC的周长.20.若向量=(sin x,cos x),=(cos x,-cos x),f(x)=+t的最大值为.(1)求t的值及图象的对称中心;(2)若不等式m2在x[,]上恒成立,求m的取值范围.21.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的建康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社会每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P、种黄瓜的年收入Q与投入a(单位:万元)满足P=80+4,Q=a+120,设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元).(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?22.已知.设,,若函数存在零点,求a的取值范围;若是偶函数,设,若函数与的图象只有一个公共点,求实数b的取值范围.答案和解析1.【答案】C【解析】解:∵全集为R,集合M={-1,1,2,4},N={x|<8}={x|-1<x<3},∴M∩N={1,2}.故选:C.利用交集定义直接求解.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.【答案】A【解析】解:cos85°cos25°-sin(-85°)sin155°=cos85°cos25°+sin85°sin25°=cos(85°-25°)=cos60°=,故选:A.根据两角和的余弦公式,原式等于cos60°,再根据特殊角的三角函数值即可算出所求式子的值.本题求一个三角函数式子的值,着重考查了诱导公式、特殊角的三角函数值与两角和的余弦公式等知识,属于基础题.3.【答案】D【解析】解:∵函数f(x)=cos(3x+α)的图象关于原点对称,可得f(x)为奇函数,则f(x)=±sin3x的形式,∴α=kπ+,k Z,故选:D.由题意可得可得f(x)为奇函数,则f(x)=±sin3x的形式,故有α=kπ+,k Z.本题主要考查诱导公式,三角函数的奇偶性,属于基础题.4.【答案】B【解析】解:∵=2,=,=,=,故-=2(-),∴=-,即=,故选:B.由已知中=2,结合向量减法的三角形法则,可得答案.本题考查的知识点是平面向量的基本定理,难度中档.5.【答案】D【解析】解:根据题意,△ABC中,a=4,b=2,A=45°,则有sinB===,又由a>b=,则A>B,则B=30°,故选:D.根据题意,由正弦定理可得sinB===,又由三角形的角边关系,分析可得A>B,即可得B的值,即可得答案.本题考查正弦定理的应用,关键是掌握正弦定理的形式,属于基础题.6.【答案】D【解析】解:当a=0时,函数f(x)=2x-1在区间(-∞,6)上单调递增,满足题意;当a≠0时,若函数f(x)=ax2+2x-1在区间(-∞,6)上单调递增,则,解得:a[,0),综上:a[,0]故选:D.若函数f(x)=ax2+2x-1在区间(-∞,6)上单调递增,则,解得答案.本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.7.【答案】A【解析】解:∵,,∴x-2=0,y=-4,即x=2,y=-4.∴=(4,-3),∴||==5.故选:A.根据平行向量位置关系与坐标的关系列方程求出x,y的值,再根据模长公式得出结论.本题考查了平面向量的坐标运算,属于基础题.8.【答案】C【解析】解:函数f(x)=tan(2x+)的定义域是(-+,+),k Z;在定义域内的每一个区间上是单调增函数,整个定义域上没有单调性,A错误;函数f(x)=tan(2x+)的最小正周期为T=,B错误;对于C,令2x+=,k Z,解x=-,k Z,∴f(x)的对称中心是(-,0),k Z,C正确;对于D,正切函数不是轴对称函数,f(x)=tan(2x+)图象没有对称轴,D错误.故选:C.根据正切函数的图象与性质,对选项中的命题进行分析、判断正误即可.本题考查了正切函数的图象与性质的应用问题,是基础题.9.【答案】B【解析】解:作函数的图象如图,不妨设a<b<c,则结合图象可知,a+b=1,0<log2018c<1,故1<c<2018,故2<a+b+c<2019,故选:B.作函数的图象,从而可得a+b=1,0<log2018c<1,从而解得.本题考查了分段函数的应用及数形结合的思想应用,同时考查了函数的零点与函数的图象的交点的关系应用.10.【答案】B【解析】解:由题意可得,当θ(,)时,则2θ(,π),f(sin2θ)==|cosθ+sinθ|=cosθ+sinθ.f(-sin2θ)==|sinθ-cosθ|=sinθ-cosθ.∴f(sin 2θ)-f(-sin 2θ)=cosθ+sinθ-(sinθ-cosθ)=2cosθ,故选:B.利用二倍角公式的应用,以及三角函数在各个象限中的符号,化简f(sin 2θ)=cosθ+sinθ,f(-sin 2θ)=sinθ-cosθ,从而求得f(sin 2θ)-f(-sin 2θ)的解析式.本题主要考查同角三角函数的基本关系,二倍角公式的应用,以及三角函数在各个象限中的符号,属于中档题.11.【答案】A【解析】解:∵以A为圆心,AD为半径的圆弧DE的中点为P,故=+,又由直角梯形ABCD中,AB AD,DC AB,AD=DC=2,AB=4,E,F分别为AB,BC的中点,故=+=+=+=+,=-+,若=,则,解得:,故λ-μ=,故选:A .由已知可得=+,=+,=-+,结合=,求出λ,μ值,可得答案.本题考查的知识点是平面向量的基本定理,难度中档. 12.【答案】A【解析】解:根据题意,f (x-2)的对称轴为x=2,可得y=f (x )的对称轴为x=0,即函数f (x )为偶函数, 又f (x+1)=,即f (x )f (x+1)=4,则有f (x+1)f (x+2)=4,即为f (x+2)=f (x ), 函数f (x )为最小正周期为2的偶函数.若f (x )在区间(1,2)上单调递增,则f (x )在(-1,0)上递增,则函数f (x )在(0,1)上递减,α,β是钝角三角形中的两锐角,则α+β<,则α<-β,则有sinα<sin (-β),即sinα<cosβ,且0<sinα<1,0<cosβ<1, 则有f (sinα)>f (cosβ); 故选:A .根据题意,分析可得y=f (x )的对称轴为x=0,即函数f (x )为偶函数,又f (x+1)=,即f (x )f (x+1)=4,分析可得f (x+2)=f (x ),函数f (x )为最小正周期为2的偶函数,据此分析可得函数f (x )在(0,1)上递减,又由α,β是钝角三角形中的两锐角,则α+β<,结合正弦函数的单调性分析可得sinα<sin(-β),即sinα<cosβ,结合函数的单调性分析可得答案.本题考查抽象函数的性质以及英,涉及函数的对称性和周期性的运用,属于综合题.13.【答案】【解析】解:设向量与向量的夹角是θ,则由题意可得•(-)=-=1-1××cosθ=0,求得cosθ=,可得θ=,故答案为:.由条件利用两个向量垂直的性质、两个向量的数量积的定义求得cosθ的值,可得向量与向量的夹角θ的值.本题主要考查两个向量的数量积的定义,两个向量垂直的性质,属于基础题.14.【答案】-【解析】解:sin()==cos[-(-α)]=cos(+α),即cos(+α)=,则cos()=2-1=2×-1=-,故答案为:-.利用诱导公式求得即cos(+α)的值,再利用二倍角公式求得cos()的值.本题主要考查诱导公式、二倍角公式的应用,属于基础题.15.【答案】【解析】解:∵函数f(x)=,∴f()=,若<1,即b>,则f(f())=f()==4,解得:b=(舍去),若≥1,即b≤,则f(f())=f()==4,解得:b=,综上所述:b=,故答案为:由函数f(x)=,f(f())=4,构造关于b的方程,解得答案.本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.16.【答案】,【解析】解:f(x)的图象在y轴上的截距为1,且关于直线x=对称.∴f(0)=Asinφ-=1,sin(2×+φ)=±1.又A>0,0<φ<,∴φ=,A=.∴f(x)=sin(2x+)-,x[0,],∴(2x+),∴sin(2x+),∴f(x).∴f(x)min=1.g(x)==-m,∵x[-1,2],∴g(x)min=-m.若对于任意的x1[-1,2],存在x2[0,],使得g(x1)≥f(x2),则g(x1)min≥f(x2)min,∴-m≥1,解得m≤-.∴实数m的取值范围为.故答案为:.f(x)的图象在y轴上的截距为1,且关于直线x=对称.可得f(0)=Asinφ-=1,sin(2×+φ)=±1.根据A>0,0<φ<,可得φ,A.利用三角函数的单调性可得f(x)min.g(x)==-m,利用函数的单调性可得g(x)min.若对于任意的x1[-1,2],存在x2[0,],使得g(x1)≥f(x2),可得g(x1)min≥f (x2)min,即可得出.本题考查了函数的单调性、三角函数的图象与性质、等价转化方法、任意性与存在性问题,考查了推理能力与计算能力,属于难题.17.【答案】解:(1)∵f(α)===-cosα,∴f()=-cos=-.(2)若α(0,),∴(-,),∵sin()=,∴cos()==,∴f(α)=-cosα=-cos[()+]=-cos()cos+sin()sin=-•+•=.【解析】(1)利用诱导公式化简f(x)的解析式,可得f()的值.(2)利用同角三角函数的基本关系求得cos()的值,再利用两角和差的三角公式求得f(α)=-cosα=-cos[()+]的值.本题主要考查诱导公式,同角三角函数的基本关系,两角和差的三角公式,属于中档题.18.【答案】解:(1)∵点F(0,)在图象上,可得:=sinφ∵0<φ<,∴φ=∵由题意,M的纵坐标为2,△MBC的面积为.即|BC|×2=∴|BC|=周期:T=|BC|,∴T=π得.故得函数f(x)的解析式为:f(x)=2sin(2x+)(2)由(1)知f(x)=2sin(2x+)f(x)向右平移个单位,得到y=2sin(2(x)+)=2sin(2x+)再将所得图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到y=2sin(x+).∴g(x)=2sin(x+).令x+,k Z得:≤x≤,k Z∵x[0,π]上∴f(x)的单调递增区间为[0,].【解析】(1)由题意,可得M的纵坐标为2,△MBC的面积为.可得BC,即T=|BC|,即可求解ω,点F(0,)带入求解φ,可得函数f(x)的解析式;(2)根据三角函数的平移变换规律求解g(x)的解析式;再求解在x[0,π]上的单调递增区间.本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.19.【答案】解:(1)△ABC中,由=得sin A cos C+sin A cos B=cos A sin C+cos A sin B,即sin(C-A)=sin(A-B),又A(0,π),B(0,π),C(0,π),则C-A=A-B,即2A=C+B,又A+B+C=π,∴A=;…(6分)(2)由余弦定理可得:7=b2+c2-2bc cos,即(b+c)2-3bc=7,又bc=2,∴b+c=;∴△ABC的周长为:a+b+c=+.…(12分)【解析】(1)由题意,利用正弦定理和三角恒等变换求得角A的值;(2)由余弦定理求得b+c的值,再计算△ABC的周长.本题考查了正弦、余弦定理的应用问题,也考查了三角恒等变换应用问题,是基础题.20.【答案】解:(1)f(x)=+t=sin x cosx-cos2x+t=sin2x-cos2x-+t=sin(2x-)+t-,∵f(x)的最大值为,∴+t-=,∴t=;由2x-=kπ(k Z)得:x=+,k Z,∴f(x)的对称中心为(+,0),k Z,(2)∵x[,],∴2x-[,],∴sin(2x-)[,1],∴sin(2x-)[,],即f(x)[,],∵不等式m2在x[,]上恒成立,∴m2-m≤f(x)min=,即2m2-m-1≤0,解得-≤m≤1,m的取值范围为-≤m≤1.【解析】(1)先利用向量的数量积公式和倍角公式对函数式进行化简,再利用两角和公式整理,进而根据正弦函数的性质求得函数的对称中心.(2)跟x的范围确定函数f(x)的范围,要不等式m2在x[]上恒成立,只要m2-m≤f(x)min=即可.本题主要考查了三角函数的对称性质和单调性,两角和与差的公式,倍角公式等,向量的数量积,属于中档题21.【答案】解:(1)∵甲大棚投入50万元,则乙大投棚入150万元,∴万元.(2),依题意得,故.令,,则,当,即x=128时,f(x)max=282万元.所以投入甲大棚128万元,乙大棚72万元时,总收益最大,且最大收益为282万元.【解析】(1)由甲大棚投入50万元,则乙大投棚入150万元,把a的值代入即可得出.(2),依题意得,通过换元利用二次函数的单调性即可得出.本题考查了函数的应用、二次函数的单调性,考查了换元方法、推理能力与计算能力,属于中档题.22.【答案】解:(1)由题意函数g(x)存在零点,即f(x)=a-1有解.又f(x)=log2(4x+1)-2x=log2()=log2(1+),易知f(x)在(-∞,+∞)上是减函数,又1+>1,log2()>0,即f(x)>0,所以a-1(0,+∞),所以a的取值范围是a(1,+∞).(2)∵f(x)=log2(4x+1)-kx的定义域为R,f(x)是偶函数,∴f(-1)=f(1),∴log2(+1)+k=log2(4+1)-k,∴k=1检验f(x)=log2(4x+1)-x=log2(2x+2-x),f(-x)=log2(4-x+1)+x=log2(2x+2-x),∴f(x)=f(-x),∴f(x)为偶函数,函数f(x)与h(x)的图象有且只有一个公共点,即方程log2(2x+)-log2(b•2x)有且只有一个实根,化简得:方程2x+=b•2x-b有且只有一个实根,令t=2x>0,则方程(b-1)t2-bt-1=0有且只有一个正根,①b=1t=-,不合题意,②△=0b=或-3,若b=,不合题意;若b=-3t=,③若一个正根和一个负根,则<0,即b>1时,满足题意,∴实数a的取值范围为{b|b>1或b=-3}.【解析】(1)由题意函数g(x)存在零点,即f(x)=a-1有解,转化为利用函数的单调性求出a的范围;(2)先根据偶函数的性质求出k的值,再根据函数f(x)与h(x)的图象有且只有一个公共点,则方程f(x)=h(x)有且只有一个实根,化简可得方程2x+=b•2x-b有且只有一个实根令t=2x>0,则转化才方程(b-1)t2-bt-1=0有且只有一个正根,讨论b=1,以及△=0与一个正根和一个负根,三种情形,即可求出实数b的取值范围.本题主要考查了偶函数的性质,以及对数函数图象与性质的综合应用,同时考查了分类讨论的思想,由于综合考查了多个函数的难点,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年度第一学期期末试卷
高一数学
第Ⅰ卷客观卷(共36分)
一、选择题(每小题3分,共36分)
1. 设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )
A.1 B.3 C.4 D.8 2. 若f(x)=2x+3,g(x+2)=f(x),则g (x)的表达式为( )
A.g(x)=2x+1 B.g(x)=2x-1
C.g(x)=2x-3 D.g(x)=2x+7
3.函数f(x)=
1
1+|x|
的图象是( )
4. 已知f(x)为定义在(-∞,+∞)上的偶函数,且f(x)在[0,+∞)上为增函数,则f(-
2),f(-π),f(3)的大小顺序是( )
A.f(-π)<f(3)<f(-2)
B.f(-π)<f(-2)<f(3)
C.f(-2)<f(3)<f(-π)
D.f(3)<f(-2)<f(-π)
5. 程序框图如图所示:如果输入x=5,则输出
结果为( )
A.109 B.325
C.973 D.295
6.右下面为一个求20个数的平均数的程序,则在横线
上应填的语句为( ).
A.i >20 B.i <20
C.i >=20 D.i <=20
7. 用秦九韶算法计算多项式
f(x)=34x +33x +22
x +6x +1,当x =0.5时的值,
需要做乘法的次数是( )
A .9
B .14
C .4
D .5
8. 某学校有体育特长生25人,美术特长生35人,音乐特长生40人.用分层抽样的方法
从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为( )
A .8,14,18
B .9,13,18
C .10,14,16
D .9,14,17
9.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到
的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直
方图如图所示,利用这个残缺的频率
分布直方图估计该市出租车司机年龄的中
位数大约是( )
A .31.6岁
B .32.6岁
C .33.6岁
D .36.6岁
10.给出以下三个命题:
(1) 将一枚硬币抛掷两次,记事件A :“两次都出现正面”,事件B :“两次都出现反面”,
则事件A 与事件B 是对立事件;
(2) 在命题(1)中,事件A 与事件B 是互斥事件;
(3) 在10件产品中有3件是次品,从中任取3件,记事件A :“所取3件中最多有2件是次
品”,事件B :“所取3件中至少有2件是次品”,则事件A 与事件B 是互斥事件.
其中真命题的个数是( ).
A .0
B .1
C . 2
D .3
11.一个样本的频率分布直方图共有4个小长方形,它们的高的比从左到右依次为2:4:3:
1,若第4组的频数为3,则第2组的频率和频数分别为
A .0.4,12
B .0.6,16
C .0.4,16
D .0.6,12
12.设关于x 的一元二次方程22
20x ax b ++=。
若a 是从区间[]0,3 任取一个数,b 是从区间[]0,2 任取一个数,上述方程有实根的概率是( ).
A .14
B .12
C .34
D .23
第II 卷 主观卷(共64分)
二、填空题:本大题共4小题,每小题3分,共12分。
13.函数y =log (1)a x -2+ (0a >,1a ≠)的图象恒过定点________.
14.已知不等式2log 0a x x -<,当x ∈(0,12
)时恒成立,则实数a 的取值范围是 ________.
15已知样本数据n x x x ,,,,21 的方差为4,则数据32,,32,3221+++n x x x 的标准差是
________.
16.已知集合A ={1,2,3},B ={7,8},现从A 、B 中各取一个数字,组成无重复数字的二位
数,在这些二位数中,任取一个数,则恰为奇数的概率是________.
三、解答题:本大题共5小题,共52分。
要求写出解答过程和演算步骤。
17.(10分)(1)把五进制数123(5)化为二进制数。
(2)用辗转相除法求175与100的最大公约数。
18.(10分)某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技
工加工的合格零件数的统计数据的茎叶图如图所示, 已知两组技工在单位时间内加工
的合格零件数的平均数都为10。
(I )分别求出m ,n 的值;
(Ⅱ)分别求出甲、乙两组技工在单位时
间内加工的合格零件数的方差2S 甲和
2S 乙
,并由此分析两组技工的加工水平; 19.(10分)已知函数24()log (23)f x ax x =++.
(1)若(1)1f =,求()f x 的单调区间;
(2)是否存在实数a ,使()f x 的最小值为0?若存在,求出a 的值;若不存在,说明理
由.
20.(10分)某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x 的值;
(2)从成绩不低于80分的学生中随机选取2人,
该2人成绩恰好一个落在[80,90)这个区
间,一个落在[90,100]这个区间的概率是大?。