列分式方程解决工程实际问题
【初中数学】人教版八年级上册第2课时 列分式方程解决实际问题(练习题)
人教版八年级上册第2课时列分式方程解决实际问题(348)1.某公司在工程招标时,接到甲、乙两个工程队的投标书.甲工程队每施工一天,需付工程款1.5万元,乙工程队每施工一天,需付工程款1.1万元.工程领导小组根据甲、乙两队的投标书测算,形成下列三种施工方案:方案①:甲队单独完成此项工程刚好如期完工;方案②:乙队单独完成此项工程要比规定工期多用5天;方案③:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工.(1)求甲、乙两队单独完成此项工程各需多少天;(2)如果工程不能如期完工,公司每天将损失3000元,如果你是公司经理,你觉得选哪一种施工方案划算?请说明理由.2.某轻轨工程指挥部,要对某轻轨路段工程进行招标,接到了甲、乙两个工程队的投标书.根据投标书知,甲队单独完成这项工程所需天数是乙队单独.若由甲队先做20天,剩下的工程再由甲、乙两队完成这项工程所需天数的23合作60天可完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)已知甲队每天的施工费用为9.2万元,乙队每天的施工费用为6.8万元.工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,那么预算的施工费用是否够用?若不够用,需追加预算多少万元?3.小明准备利用暑假从距上海2160千米的某地去“上海迪斯尼乐园”参观游览,如图是他在火车站咨询得到的信息,根据图中信息,求小明乘坐城际直达动车到上海所需的时间.4.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.5.为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)6.“郁郁林间桑葚紫,茫茫水面稻苗青”说的就是味甜汁多,酸甜适口的水果——桑葚.4月份,水果店的小李用3000元购进了一批桑葚,随后的两天他很快以高于进价40%的价格卖出150千克,到了第三天,他发现剩余的桑葚卖相已不太好,于是果断地以低于进价20%的价格将剩余的全部售出,小李一共获利750元,设小李共购进桑葚x千克.(1)根据题意完成下表:(用含x的式子表示)(2)求小李共购进多少千克的桑葚.7.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)若每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.8.某乡镇对公路进行补修,甲工程队计划用若干天完成此项目,甲工程队单独工作了3天后,为缩短完成的时间,乙工程队加入此项目,且甲、乙两工程队每天补修的工作量相同,结果提前3天完成,则甲工程队计划完成此项目的天数是()A.6B.7C.8D.99.哈尔滨市政府欲将一块地建成湿地公园,动用了一台甲型挖土机,4天挖完了这块地的13,后又加一台乙型挖土机,两台挖土机同时工作,结果又用两天就挖完了整片地,那么乙型挖土机单独挖完这块地需要天.10.园林部门计划在一定时间内完成植树任务,甲队独做正好按期完成,乙队独做则要误期3天.现两队合作2天后,余下任务由乙队独做,正好按期完成任务.则原计划多少天完成植树任务?11.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为x km/h,则根据题意可列方程为()A.180x −180(1+50%)x=1 B.180(1+50%)x−180x=1C.180x −180(1−50%)x=1 D.180(1−50%)x−180x=112.某村电路发生断电,该地供电局组织电工进行抢修.供电局距离该村15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达.已知吉普车速度是抢修车速度的1.5倍,则抢修车的速度是13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.400x =300x−30B.400x−30=300xC.400x+30=300xD.400x=300x+3014.某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.参考答案1(1)【答案】解:设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.依题意,得4x +4x+5+x−4x+5=1,解得x=20.经检验,x=20是原分式方程的解且符合题意.x+5=25.答:甲队单独完成此项工程需20天,乙队单独完成此项工程需25天.(2)【答案】解:选方案③划算.理由如下:这三种施工方案需要的工程款:方案①:1.5×20=30(万元);方案②:1.1×(20+5)+5×0.3=29(万元);方案③:1.5×4+1.1×20=28(万元).∵30>29>28,∴方案③最节省工程款.2(1)【答案】解:设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意,得2023x+60(123x+1x)=1,解得x=180.经检验,x=180是原分式方程的解且符合题意.2 3x=23×180=120.答:甲、乙两队单独完成这项工程分别需120天和180天. (2)【答案】解:设甲、乙两队合作完成这项工程需要y天.则y(1120+1180)=1,解得y=72.需要施工费用:72×(9.2+6.8)=1152(万元).∵1152>1000,∴预算的施工费用不够用,需追加预算152万元.3.【答案】:解:设小明乘坐城际直达动车到上海需要x 小时. 根据题意,得2160x=2160x+6×1.6,解得x =10.经检验,x =10是原方程的根且符合题意. 答:小明乘坐城际直达动车到上海需要10小时.4.【答案】:解:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品. 依题意得1200x−12001.5x=10,解得x =40.经检验,x =40是原方程的根,且符合题意.1.5x =60.答:甲工厂每天加工40件新产品,乙工厂每天加工60件新产品.5.【答案】:解:设例子中的A 4厚型纸每页的质量为x 克. 由题意,得400x=2×160x−0.8,解得x =4.经检验,x =4为原方程的解,且符合题意. 答:例子中的A 4厚型纸每页的质量为4克. 6(1)【答案】3000(1+40%)x;3000(1−20%)x;x −150(2)【答案】解:根据题意,得150·3000(1+40%)x+(x −150)·3000(1−20%)x−3000=750解得x =200.经检验,x =200是原方程的解且符合题意. 答:小李共购进200千克桑葚. 7(1)【答案】解:设每本软面笔记本花费x元,则每本硬面笔记本花费(x+1.2)元.由题意,得12 x =21x+1.2,解得x=1.6.此时121.6=211.6+1.2=7.5(不符合题意),所以小明和小丽不能买到相同数量的笔记本.(2)【答案】解:存在.设每本软面笔记本花费m元(1≤m≤12,且m为整数),则每本硬面笔记本花费(m+a)元.由题意,得12m =21m+a,解得a=34m.∵a为正整数,∴m=4,a=3或m=8,a=6或m=12,a=9.当m=8,a=6时,128=2114=1.5(不符合题意).∴a的值为3或9.8.【答案】:D【解析】:设甲工程队计划完成此项目的天数为x天,由题意,得x−3x +x−6x=1,解得x=9,经检验,x=9是原分式方程的根,且符合题意.故选D9.【答案】:4【解析】:∵一台甲型挖土机4天挖完了这块地的13,∴甲型挖土机12天全部挖完这块地,故甲1天完成总工作量的112,设乙型挖土机单独挖这块地需要x天,根据题意可得13+212+2x=1,解得x=4.经检验,x=4是原方程的根,且符合题意.∴乙型挖土机单独挖完这块地需要4天10.【答案】:解:设原计划x天完成植树任务,则乙队单独完成植树任务的时间是(x+3)天.由题意,得2(1x +1x+3)+x−2x+3=1,解得x=6.经检验,x=6是原方程的解且符合题意.答:原计划6天完成植树任务11.【答案】:A12.【答案】:20千米/时【解析】:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意,得15 x −151.5x=1560,解得x=20.经检验,x=20是原方程的解且符合题意.则抢修车的速度为20千米/时13.【答案】:A14.【答案】:解:设骑车学生的速度为x km/h,则汽车的速度为2x km/h.根据题意,得10x =102x+2060,解得x=15.经检验,x=15是原方程的解且符合题意,2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15km/h,30km/h.。
八年级数学上册《列分式方程解应用题工程问题》教案、教学设计
(4)课堂练习:设计不同难度的练习题,让学生独立完成,巩固所学知识,并及时给予反馈。
(5)合作交流:组织学生进行小组讨论,培养学生的团队合作意识和沟通能力。
(6)总结反思:对本节课的学习内容进行总结,引导学生反思学习过程中的收获和不足。
难点:如何让学生在实际问题中灵活运用所学的数学知识,形成解决问题的思路。
3.重点:培养学生的团队合作意识,提高学生在合作交流中的表达能力。
难点:如何调动学生的积极性,使他们在合作交流中充分发挥自己的作用。
(二)教学设想
1.教学方法:
(1)采用情境教学法,创设与学生生活密切相关的工程问题情境,引导学生发现数学元素,激发学生的学习兴趣。
3.鼓励学生相互检查作业,开展互评活动,提高学生的自我评价和同伴评价能力。
4.对于作业中出现的共性问题,教师将在下节课上进行讲解,以帮助学生巩固知识点。
3.教学评价:
(1)过程性评价:关注学生在课堂上的表现,包括问题解决能力、合作交流能力和创新思维能力等方面。
(2)终结性评价:通过课后作业和阶段测试,评价学生对本章节知识的掌握程度。
(3)学生自评和互评:鼓励学生自我评价,培养他们的自我反思能力,同时开展同学间的互评,促进共同进步。
4.教学拓展:
(1)鼓励学生在课后寻找生活中的工程问题,运用所学知识进行解决,提高学生的实际应用能力。
八年级数学上册《列分式方程解应用题工程问题》教案、教学设计
一、教学目标
(一)知识与技能
1.理解工程问题的基本概念,掌握工程问题中的数量关系和等量关系。
2.学会运用分式方程解决实际工程问,提高数学应用能力。
分式方程应用题及解题技巧
分式方程应用题及解题技巧分式方程是代数中的重要内容之一,它的应用广泛而且深远。
分式方程常常出现在实际生活中的各种问题中,比如物体的速度、加速度、浓度、比例关系等等。
学习分式方程的应用,不仅可以帮助我们解决实际生活中的问题,还可以提高我们的数学分析和解决问题的能力。
在本文中,我们将介绍分式方程的应用题,并给出解题技巧,希望能够帮助大家更好地掌握这一部分知识。
一、分式方程的应用题1.速度问题小明骑自行车以每小时10公里的速度向前行驶,小李以每小时8公里的速度向前追赶小明,问小李追上小明需要多长时间?解:设小李追上小明需要t小时,那么小明与小李的相对速度为10-8=2公里/小时,根据速度=路程/时间,可得速度的分式方程为:10t = 8t + 8解得t=4,所以小李追上小明需要4小时。
2.浓度问题一瓶含有30%酒精的溶液200毫升,现在加了一些蒸馏水,使得酒精浓度变为20%,问加了多少蒸馏水?解:设加了x毫升的蒸馏水,那么酒精的量为0.3*200,水的量为x,根据浓度=溶质的量/溶液的总量,可得浓度的分式方程为:0.3*200 / (200+x) = 0.2解得x=100,所以加了100毫升的蒸馏水。
二、分式方程的解题技巧1.设未知数在应用题中,需要根据实际情况设立未知数,一般来说,设立一个未知数是最为合适的。
比如速度问题中,可以设小明与小李相对速度t小时后能相遇;浓度问题中,可以设加了x毫升的蒸馏水。
2.建立方程根据实际情况,可以建立出分式方程,一般是根据速度=路程/时间,浓度=溶质的量/溶液的总量等公式建立分式方程。
3.求解方程利用分式方程的性质,将方程化简为一元方程,然后求解,得到未知数的值。
4.检验解将求得的未知数代入原方程中,检验是否符合实际情况,如果符合则说明解是正确的。
通过以上的介绍,相信大家对分式方程的应用题及解题技巧有了一定的了解。
在解决实际问题时,我们可以根据问题中的实际情况设立未知数,建立分式方程,并通过求解方程来得到问题的解。
八年级上册数学15.3第2课时列分式方程解决实际问题
课堂练习
7.为进一步落实“德、智、体、美、劳”五育并举工作,某中学以 体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球 ,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价 格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买 足球的数量是用900元购买篮球数量的2倍. (1)足球和篮球的单价各是多少元?
.
甲队 乙队
工作时间(月) 工作效率
1 1
1
2
3
1
1
2
x
工作总量(1)
(1 1 ) 1 23
11 2x
探索新知
知识点 列分式方程解决实际问题
等量关系: 甲队完成的工作总量+乙队完成的工作总量=“1”
(1 1 ) 1
11
23
2x
列得分式方程:1 1 1 1 1 1.
2 3 2 x
探索新知
解得 x sv
.
50
检验:由v,s都是正数,得 x sv
时,x(x+v)≠0.
50
所以,原分式方程的解为 x sv
.
50
答:提速前列车的平均速度为 sv
50
km/h.
探索新知
知识点 列分式方程解决实际问题
列分式方程解决实际问题的一般步骤 1.审:审清题意,分清题中的已知量、未知量; 2.找:找出题中的相等关系, 3.设:设出恰当的未知数,注意单位和语言的完整性; 4.列:根据题中的相等关系,正确列出分式方程; 5.解:解所列分式方程;
.
﹣
=30
课堂练习
6.某网店开展促销活动,其商品一律按8折销售,促销期间用400元 在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每 件多少元?
15.3+分式方程第2课时+列分式方程解决实际问题课件2024-2025学年人教版八年级数学上册++
能力提升
7.某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.
4.解题方法:可概括为“321”,即3指该类问题中三量关系,如工程问题有工作效率,工作时间,工作量;2指该类问题中的“两个主人公”如甲队和乙队,或“甲单独和两队合作”;1指该问题中的一个等量关系.如工程问题中等量关系是:两个主人公工作总量之和=全部工作总量.
3.弄清基本的数量关系.如本题中的“合作的工效=甲乙两队工作效率的和”.
解:设运输公司用大货车 辆,小货车 辆,依题意 由②得 ,把④代入③得 解得 .方案一:当 时, ,费用为 元;方案二:当 时, ,费用为 元, 方案二费用最低,最低运输费用是15 900元.
中考链接
8.(2022·北部湾经济区)《千里江山图》是宋代王希孟的作品,它的局部画面装裱前是一个长为 ,宽为 的矩形,装裱后,整幅画宽与长的比是 ,且四周边衬宽度相等,则边衬的宽度应是多少米?设边衬的宽度为 ,根据题意可列方程( ) .
5.某瓶装饮料每箱价格是26元,某商店对该饮料进行“买一送三”的促销活动,即买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,该品牌饮料每瓶多少元?设该品牌饮料每瓶是 元,则可列方程为_ _____________.
6.自行车运动深受市民的喜爱.A地、B地间有一条自行车道.小明从A地出发骑行去B地,小军从B地出发骑行去A地.
(1)小明和小军相约上午8时同时从各自出发地出发,匀速骑行,到上午10时,他们相距 ,到中午12时,两人又相距 .求A,B两地间的自行车道的距离.
八下数学课件: 分式方程( 利用解分式方程解决实际问题)
3
=2
解得: = 100
经检验: = 100是原方程的解,
∴高铁的平均速度是每小时3×100=300千米.
答:高铁的平均速度是每小时300千米.
情景引入(销售问题)
某商场经市场调查,预计一款夏季童装能获得市场青睐,便花费15000元购
进了一批此款童装,上市后很快售罄.该店决定继续进货,由于第二批进货数量是
解得a=
检验,由S、v都是正数,当a=
所以,原分式方程的解为a=
≠0
。答:略
练一练(距离问题)
小刚家(点A)、王老师家(点B)、学校(点C)在同一条路上,小刚家到王老师家的
路程为3千米,王老师家到学校的路程为1千米。为了使小刚能按时到校,王老师每天
骑自行车接小刚上学。已知王老师骑自行车的速度是步行的3倍,每天比平时步行上
1)本题等量关系为_______________________________________;
2)设提速前平均速度为a km/h。
S
3)提速前行驶距离___________,提速前时间表示为____________;
+
S+50
4)提速后行驶距离___________,提速后时间表示为____________;
解:设第一次该干果的进货价是每千克x元,
则第二次购进干果的进货价是每千克(x+5)元,
9000
5000
1.5
根据题意得: × = +5
,
解得:x=25,
经检验,x=25是所列方程的解.
答:该种干果的第一次进价是每千克25元.
课后回顾
人教版八年级数学上册教案:15.3.2 列分式方程解决实际问题
在数字问题中要掌握十进制数的表示法.
(3)工程问题
基本公式:________________;
(4)顺水逆水问题
顺水速度=____________;逆水速度=____________.
温故知新,唤醒学生的已有知识体系,为本节课作知识的铺垫.
活动
一:
创设
情境
导入
新课
【课堂引入】问题:一艘轮船顺水航行40千米所用的时间与逆水航行30千米所用的时间相同,若水流速度为3千米/时,求轮船在静水中的速度.分析:设轮船在静水中的速度为x千米/时,则顺水航行的速度为________千米/时,逆水航行的速度为________千米/时,顺水航行的时间为________时,逆水航行的时间为________时,根据题意,可得方程________________________________.1.利用课件提出实际应用问题:求出车速.
解得x=1.
检验:当x=1时,6x≠0.所以,原分式方程的解为x=1.
由上可知,若乙队单独施工1个月可以完成全部任务,对比甲队1个月完成任务的 ,可知乙队的施工速度快.
1.通过例题教学使学生掌握基础知识、基本的运算方法,掌握解决数学问题的基本技能,增强学生解决问题的能力.2.通过例题教学使学生掌握基本的数学语言、规范其解题书写格式.3.通过例题教学提高学生分析问题解决问题的能力.
(4)列车提速前行驶skm所用的时间与列车提速后行驶(s+50)km所用的时间相同;(5) , ;(6) =
解:设提速前这次列车的平均速度为xkm/h,则提速前它行驶skm所用时间为 h;提速后列车的平均速度为(x+v)km/h,提速后它行驶(s+50)km所用时间为 h.根据行驶时间的等量关系,得 = .
用分式方程解决实际问题优课一等奖课件
=
x xv
方程两边同乘 x( x v),得 s( x v) = x(s 50)
去括号,得 sx sv xs 50x 解得 x = sv . 50
检验:由于v,s 都是正数,当x = sv 时 50
x(x+v)≠0,
所以,x = sv 是原分式方程的解,且符合题意. 50
答:提速前列车的平均速度为 sv km/h. 50
分析:这里的字母 v,s表示已知数据,设
提速前列车的平均速度为 x km/h,那么提速前
s
列车行驶 s km所用时间为___x____h,提速后列
车的平均速度为_(_x___v_)_ km/h,提速后列车运行
s 50
(s+50)km据行驶时间的等量关系,得
由上可知,若乙队单独工作1个月可以完
成全部任务,对比甲队1个月完成任务的 1 ,
可知乙队施工速度快.
3
练习1 某工厂准备加工600个零件,在加工了100 个零件后,采取了新技术,使每天加工的效率是 原来的2倍,结果共用了7天完成了任务,求该厂 原来每天加工多少个零件?
解:设该厂原来每天加工x个零件,则采用新技 术后,每天加工2x个零件,
D. 30 30 2
x3 x 3
2.甲、乙两人分别从两地同时出发,若相
向而行,则a小时相遇;若同向而行,则b
小时甲追上乙.那么甲的速度是乙的速度的
ba
____b__倍a .
3.为了支持爱心捐款活动,某校师生自愿捐款, 已知第一天捐款4800元,第二天捐款6000元,第 二天捐款的人数比第一天捐款的人数多50人,且 两天人均捐款数相等,那么两天共参加捐款的人 数是多少?人均捐款多少元?
分式方程及其应用
分式方程是一种常见的数学方程,用于描述两个有关的量之间的关系。
常见的分式方程的形式如下:
ax+b = cy+d
其中,a、b、c、d是常数,x、y是未知数。
分式方程的应用
解决实际问题:例如,你想知道跑步消耗卡路里的规律,可以通过分式方程来描述跑步距离与卡路里之间的关系。
计算不同条件下的结果:例如,你想知道不同温度下水的沸点,可以通过分式方程来描述温度与沸点之间的关系,并计算不同温度下的沸点。
绘制函数图像:分式方程可以用来描述函数的规律,通过绘制函数图像,可以更直观地理解函数的特征。
分式方程是一种重要的数学工具,能够帮助我们解决实际问题、计算结果、绘制图像等。
分式方程的求解
在解决分式方程时,需要注意以下几点:
先将分式方程化简,去掉分母,使得方程的形式更简单。
解决未知数的值,即求解未知数的数值解。
检查解的正确性,即将求得的解代回原方程,看是否满足原方程。
下面是一个具体的例子:
例如,求解方程:2x+3 = x+1。
解:
首先,将方程化简,得:x=1。
然后,代回原方程,得:2*1+3=1+1。
因此,x=1是方程的一个数值解。
注意,有些分式方程可能有多个解,因此需要计算多个解,并检查解的正确性。
希望以上内容能够帮助你更好地理解分式方程的求解方法。
人教版八年级上册数学:列分式方程解决工程实际问题(公开课课件)
___12_0_0_天可加工完成;如果比原来快了10 天完1.5成x ,则可列方程: _____________1_1_2._50__x0____1__0_____1_2_x_0.0
3、甲、乙二人做某种机械零件.已知甲每 小时比乙多做6个,甲做90个所用的时间与 乙做60个所用的时间相等.求甲、乙每小时 个做零件多少个? 解:设甲每小时做零件x个,则乙每小时做 零件(x-6)个,根据题意,得
3600 3600 20 x 1.8 x
3600 3600 20 x 1.8 x
解得
x=80
经检验:x=80是原分式方程的解.
答:原计划每天修水渠80米.
四、归纳小结 1、列分式方程解应用题的一般步骤: ①_审__题__意________________________ ②_设__未__知__数______________________ ③列__分__式__方__程_____________________ ④_解__分__式__方__程____________________ ⑤__检__验_________________________ ⑥__答___________________________.
作业: 1.《教学案》课后习题 2.《百分闯关》104~105
我相信,只要大家勤 于思考,勇于探索,一定 会获得很多的发现,增长 更多的见识,谢谢大家, 再见!
(思考题1)学校在假期内对教室内的黑板 进行整修,需在规定期限内完成.如果 由甲工程小组做,恰好如期完成;如果 由乙工程小组做,则要超过规定期限3 天.结果两队合作了2天,余下部分由 乙组独做,正好在规定期限内完成,问 规定期限是几天?
(1)甲、乙两个工程队单独完成此项工程各需多少天?
人教版八年级数学上册15.3.2《列分式方程解决实际问题》教学设计
人教版八年级数学上册15.3.2《列分式方程解决实际问题》教学设计一. 教材分析人教版八年级数学上册15.3.2《列分式方程解决实际问题》这一节主要讲述了如何利用分式方程来解决实际问题。
学生在学习了分式方程的知识后,需要运用这些知识解决一些实际问题,从而加深对分式方程的理解和应用。
本节内容是分式方程应用的一个例子,通过解决实际问题,让学生掌握分式方程在实际问题中的应用。
二. 学情分析学生在学习这一节之前,已经掌握了分式方程的基本知识,能够熟练地列出分式方程。
但是对于如何选择合适的等量关系,以及如何将实际问题转化为分式方程,可能还存在一些困难。
因此,在教学过程中,需要引导学生正确地选择等量关系,并将实际问题转化为分式方程。
三. 教学目标1.理解分式方程在解决实际问题中的应用。
2.能够正确选择等量关系,并将实际问题转化为分式方程。
3.通过解决实际问题,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:分式方程在解决实际问题中的应用。
2.教学难点:如何选择合适的等量关系,并将实际问题转化为分式方程。
五. 教学方法采用问题驱动的教学方法,通过解决实际问题,引导学生运用分式方程的知识。
在教学过程中,注重启发式教学,引导学生主动思考,提高学生解决问题的能力。
六. 教学准备1.准备相关的实际问题,用于引导学生运用分式方程。
2.准备多媒体教学设备,用于展示问题和解答过程。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何利用分式方程来解决问题。
例如:甲、乙两地相距100公里,甲地有一批货物需要运往乙地,如果每小时运60公里,则4小时可以运完。
如果每小时运80公里,则需要多少时间才能运完?2.呈现(10分钟)呈现更多的实际问题,让学生独立思考如何列出分式方程。
例如:一个长方形的周长是36厘米,长是10厘米,求宽是多少厘米?3.操练(15分钟)让学生分组讨论,尝试解决呈现的问题。
列分式方程解决工程实际问题(20201018173209)
《分式方程的应用-- 工程问题》教案科目数学设计者吴瑞芬单位(学校)殷都区磊口乡第一初级中学授课班级八(1 )探究新知例题精讲随堂练习小组合作检测反馈两个工程队共冋参与一项筑路工程,甲队单独施工1个月1完成总工程的3,这时增加了乙队,两队又共同工作了半个月,3总工程全部完成.哪个队的施工速度快?【分析】由题意可知甲队单独施工i个月完成工程量是3,如果3能知道乙队单独施工1个月所完成的工程量,就可以比较两边的施工速度•因此可以设出乙队单独施工1个月完成的工程量1为-,进而列出方程。
x解:设乙队单独施工1个月能完成总工程的1.由题意得111,3 6 2x方程两边乘6x,得2x+ x + 3= 6x.解得x = 1.检验:当x = 1时,6x丰0.所以,原分式方程的解为x= 1.由上可知,若乙队单独施工1个月可以无成全部任务,对比甲队1个月完成任务的3,可知乙队的施工速度快.某工程队需要在规定日期内完成,若甲队单独做正好按时完成;若乙队单独做,超过规定日期三天才能完成。
现由甲、乙合作两天,余下工程由乙队单独做,恰好按期完成,问规定日期是多少天?1. 练一练:甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x棵,则根据题意列出的方程是(8° 亠)x x -52. 想一想:某车间加工1200个零件,原来每天可加工x个,如果采用新工艺,工效是原来的 1.5倍,冋样多的零件比原来快了10天完成,则可列方程(12°°=12°°-10)1.5x x3. 做一做:某工厂加工某种产品,机器每小时加工产品的数量以学生为主体,先自学,同桌小组交流困惑,大胆展示,教师为主导,适时点拨学生展示自我检测新知学生分组选择自己的吉祥物,合作练习并讲解展示10分钟5分钟16分钟。
怎样列分式方程解应用题
怎样列分式方程解应用题列分式方程解决实际问题和列一元一次方程解决实际问题的思考和处理过程是类似的,只是多了对分式方程的根的检验。
这里的检验应包括两层含义:第一,检验得到的根是不是分式方程的增根;第二,检验得到的根是不是使实际问题有意义。
下面介绍怎样找等量关系从而列出分式方程进行解决几种常见的实际问题。
一、路程问题这类问题涉及到三个数量:路程、速度和时间。
它们的数量关系是:路程=速度*时间。
列分式方程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。
例1 某校学生到离校15千米的科技馆去参观。
男同学骑自行车出发2/3小时后,女同学才乘汽车前往,结果男、女同学同时到达。
如果汽车的速度是自行车速度的3倍,那么自行车和汽车的速度各是多少?分析:本题中的等量关系是男同学所用的时间-2/3小时=女同学所用的时间如果设自行车的速度为x千米/小时,则汽车的速度为3 x 千米/小时,男同学所用的时间为15/x小时,女同学所用的时间为15/3x小时,由此我们可列出方程。
解:设自行车的速度是x千米/小时,则汽车的速度是15/3x千米/小时,根据题意,得15/x-2/3=15/3x解这个方程,得x=15经检验,x=15是原方程的根。
∴ 3x=3*15=45(千米/小时)答:自行车的速度是15千米/小时,汽车的速度是45千米/小时。
[练一练]A、B两地相距60千米。
甲骑自行车从A地出发到B地,出发1小时后,乙骑摩托车也从A地出发到B地,且比甲早到3小时。
已知乙的速度是甲的3倍,求甲、乙的速度。
二、工程问题这类问题也涉及三个数量:工作量、工作效率和工作时间。
它们的数量关系是:工作量=工作效率*工作时间。
列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。
特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。
例2 某项工作,甲、乙两人合作3天后,剩下的工作由乙单独来做,用1天即可完成。
列分式方程解决工程实际问题课件 (一)
列分式方程解决工程实际问题课件 (一)
列分式方程解决工程实际问题课件
随着科学技术的不断发展以及工程技术的快速进步,越来越多的工程
问题需要使用数学方法进行解决。
在这样的背景下,列分式方程成为
了解决工程实际问题的重要工具之一。
本课件着重介绍了列分式方程
的基本概念和解题方法,并通过大量实例进行了说明,旨在帮助学生
更好地理解和运用列分式方程解决工程问题。
一、列分式方程的基本概念
列分式方程是指将实际问题转化为数学问题,以分式形式表示解决问
题的方法。
在列分式方程时,应考虑变量和数值之间的关系,以及各
变量之间的相互依赖关系。
二、列分式方程的解题方法
1.明确问题:将问题描述清楚,确定所求的未知量。
2.归纳变量:通过对问题描述的分析,找出与所求未知量有关的变量,并明确其含义。
3.列出方程:将变量之间的关系转化为等式,并消去分母。
4.解方程:通过运用代数方法解方程,求出所求未知量的值。
三、实例分析
1.问题描述:一条长为L的木杆,将其平均分成n段,每段长度为x,求x和n。
2.归纳变量:L为已知量,x和n为未知量。
3.列出方程:根据题目要求,有x=L/n,将其变形为n=L/x。
4.解方程:将已知量L=20cm代入,求得x=2cm,n=10段。
四、总结
列分式方程是解决实际工程问题的一种基本方法,通过本课件的学习,可以掌握列分式方程的基本概念和解题方法,并在实际工程问题中灵
活运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m为何值时 x 3 m 有增根呢? x 1 x 1
一化二解三检验
1、解分式方程的思路是:
分式方程 去分母
整式方程
2、解分式方程的一般步骤:
1、在方程的两边都乘以最简公分母,约去分母,化成整 式方程.
2、解这个整式方程.
3、 把整式方程的解代入最简公分母,如果最简公分母的 值不为0,则整式方程的解是原分式方程的解;否则,这个 解不是原分式方程的解,必须舍去.
分式两边同乘了不为0的式子,所得整式方程的
解与分式方程的解相同.
= 1
x-5
10 x2-25
两边同乘(x+5)(x-5) 当x=5时, (x+5)(x-5)=0
x+5=10
分式两边同乘了等于,这个整式方程的解就不是原分式
方程的解.
2、怎样检验所得整式方程的解是否是 原分式方程的解?
例3:
k为何值时,分式方程 有增根?
x k x 0 x 1 x 1 x 1
解: 方程两边都乘以(x-1)(x+1),得
x(x+1)+k(x+1)-x(x-1)=0
• 把x=1代入上式,则k=-1 • 把x=-1带入上式,k值不存在
∴当k=-1,原方程有增根。
1、指出下列方程中的分式方程:
1、上面两个分式方程中,为什么
100 20+V
=
60 20-V
去分母后得到的整式方程的解就是它的解,而
1 x-5
=
10 x2-25
去分母后得到的整式方程的解却不
是原分式方程的解呢?我们来观察去分母的过程
= 100
20+V
2600-V当两v=边5时同,乘(2(02+0v+)v()2(02-0v-)v≠)0100(20-v)=60(20+v)
解:方程两边同乘以最简公分母(x-5)(x+5),得:
解得:
x+5=10
增根
从去分母后所得的整式方程
x=5 中解出的
检验:
能使分式方程的分母为0的解
将x=5代入x-5、x2-25的值都为0,相应
分式无意义。所以x=5不是原分式方程的解。
∴原分式方程无解。
增根的定义
增根:由去分母后所得的整式方程解出的, 使分·母·为·零·的·根·.
使最简公分母值为零的根 产生的原因:
(2)约去分母后,分子是多项式时, 没 有注意添括号.(因分数线有括号的作用) (3)增根不舍掉。
1.当m=0时,方程 x 2 m 会产
生增根吗?
x3
x3
2.当m=1时,方程 x 2 m 会产
生增根吗?
x3
x3
3.当m为何值时,方程 x
x
3
2
m x3
会
产生增根呢?
答:把含字母k的分式方程转化成含k的整式方 程,求出的解是含k的代数式,当这个代数式等 于2时可求出k值。
例2:k为何值时,方程
k 3 1 x 产生增根? x2 2x
解:方程两边都乘以x-2,约去分母,得
k+3(x-2)=x-1
把x=2代入以上方程得: K=1
所以当k=1时,方程 k 3 1 x 产生增根。 x2 2x
100(20 v) 6(0 20 v)
解得: v 5
检验:将v=5代入分式方程,左边=4=右边, 所以v=5是原分式方程的解。
在解分式方程的过程中体现了一个非常重要的数 学思想方法:转化的数学思想(化归思想)。
解分式方程: 1 10
x 5 x2 25
解:方程两边同乘以最简公分母(x-5)(x+5),得:
将整式方程的解代入最简公分母,如果 最简公分母的值不为0,则整式方程的 解是原分式方程的解,否则这个解就不
是原分式方程的解.
分式方程
解分式方程的思路是:
去分母
整式方程
解分式方程的一般步骤
分式方程 去分母 整式方程
一化
解整式方程
二解
目标
X=a
检验
三检验
a是分式 最简公分母不为0 最简公分母为0 a不是分式
2 (1)
3
x1 x3
(2) x 2 4x 3
(3)• 2 3 0
x1
(4)•x 3 3x 4
2x 4 9x 14
(5)•xx2 1 1 (6)•x 1
y
(7)•x 2 1
解分式方程:x
1
5
10 x2 25
分式方程有意义的条件是_X_≠_±__5_.
根据题意,得
100 60 20 v 20 v
说说两方程 有何异同
1 x 3 x 62
100 60 20 v 20 v
像这样,分母中含有未知数的方程叫 做分式方程。
下面我们一起研究下怎么样来解分式方程:
100 60 20 v 20 v
一元一次方程
方程两边同乘以(20+v)(20-v) ,得:
方程的解
方程的解
( 1) 3 2 x x3
(2) 3 x 1
(x 1)(x 2) x 1
点此播放题解视频
练习:解分式方程
(1) x 3 2 x 1 2x 2
(2)x 3 1 3 x2 2x
解分式方程容易犯的错误有:
(1)去分母时,原方程的整式部分漏乘.
知识回顾: 1.观察这是个什么方程?
1 x 3 x 62
①只含有一个未知数x
2.什么叫一元一次方程? ②未知数x的次数为1
③各项都是整式
3.解一元一次方程的一般步骤有哪些?
解: 6 (x 3) 3x 去分母
6 x 3 3x 去括号
x 3x 3 6
4x 3
x 3 4
移项 合并同类项
系数化1
一艘轮船在静水中的最大航速为20千米/时, 它沿江以最大航速顺流航行100千米所用时间,与 以最大航速逆流航行60千米所用时间相等,江水 的流速为多少?
解:设江水的流速为 v 千米/时,则顺水速度为_2_0__ v
千米/时;逆水速度为_2_0___v_千米/ 时;
4、写出原方程的根.
(1) 2x 1 2 2x 1 x 2
2)解关于x的方程:x
a
a
b
1(b
1)
(3) m n o x x 1
例2:k为何值时,方程 增根?
k 3 1 x x2 2x
产生
问:这个分式方程何时有增根?
答:这个分式方程产生增根,则增根一定是使 方程中的分式的分母为零时的未知数的值,即 x=2。 问:当x=2时,这个分式方程产生增根怎样利用 这个条件求出k值?