模电实验一BJT单管共射电压放大电路实验报告
单管共射放大电路实验报告
单管共射放大电路实验报告实验目的,通过实验,了解单管共射放大电路的基本原理和特性,掌握其工作原理和性能参数的测量方法,加深对电子技术的理论知识的理解。
实验仪器和器件,示波器、信号发生器、直流稳压电源、电阻、电容、三极管等。
实验原理,单管共射放大电路是一种常用的放大电路,它由一个三极管和几个外围元件组成。
在这个电路中,三极管的基极接地,发射极接负电源,集电极接负载电阻,形成了一个共射放大电路。
当输入信号加在基极上时,三极管会产生放大效果,输出信号会在集电极上得到放大。
实验步骤:1. 按照电路图连接实验电路,接通直流电源,调节电源电压和电流,使其符合电路要求。
2. 使用信号发生器产生输入信号,接入电路,观察输出信号在示波器上的波形。
3. 调节信号发生器的频率和幅度,观察输出信号的变化。
4. 测量输入信号和输出信号的幅度,计算电压增益。
5. 改变负载电阻的数值,观察输出信号的变化。
实验结果与分析:在实验中,我们观察到输入信号在经过单管共射放大电路后,输出信号得到了明显的放大。
通过调节信号发生器的频率和幅度,我们发现输出信号的波形随着输入信号的变化而变化,但是整体上保持了放大的特性。
通过测量输入信号和输出信号的幅度,我们计算得到了电压增益的数值,验证了单管共射放大电路的放大性能。
在改变负载电阻的数值后,我们也观察到了输出信号的变化,进一步验证了电路的特性。
实验结论:通过本次实验,我们深入了解了单管共射放大电路的工作原理和特性,掌握了测量其性能参数的方法。
实验结果表明,单管共射放大电路具有良好的放大特性,能够将输入信号放大并输出。
同时,我们也发现了一些问题,比如在一定频率下,输出信号会出现失真等。
这些问题需要进一步的分析和解决。
实验的过程中,我们也遇到了一些困难和挑战,但通过认真的实验操作和思考,最终取得了满意的实验结果。
通过本次实验,我们不仅加深了对电子技术的理论知识的理解,还提高了实验操作的能力和实验分析的能力。
单管共射极放大电路实验报告
单管共射极放大电路实验报告一、实验目的:1.了解单管共射极放大电路的基本结构和工作原理;2.掌握单管共射极放大电路的直流工作点的确定方法;3.学习基于单管共射极放大电路设计的放大器;4.通过实验测量并分析单管共射极放大电路的电压增益、输入阻抗和输出阻抗。
二、实验仪器与器件:1.数字万用表;2.函数信号发生器;3.直流稳压电源;4.双踪示波器;5.NPN型晶体管;6.电阻、电容等电子元件。
三、实验原理1.在输出信号的封装之前,输入信号先经过耦合电容CE进入晶体管的基极,经过放大形成输出信号;2.输入信号通过耦合电容CE进入基极后,根据电流放大的原理,使得集电极电流的变化与输入信号在幅度上成正比;3.集电极电流变化引起集电极电压变化,通过电容负载使输出电压变化;4.通过对负载进行选择可以实现不同放大效果,如电阻负载可以使电路具有较好的输出信号功率;电容负载可以实现相位整顿放大等。
四、实验步骤及结果分析1.首先按照实验电路连接图连接实验电路,电源电压选择为12V,电阻和电容的数值按照实验要求选择;2.使用数字万用表测量并记录各个器件正常工作电压,包括集电极电压、基极电压、发射极电压等;3.调节函数信号发生器的输出频率和幅度,通过双踪示波器观察输入电压、输出电压的变化规律,并记录相关数据;4.根据所测得的数据,计算并分析电压增益、输入阻抗和输出阻抗的数值,与理论计算的结果进行对比并给出分析结论。
五、实验结果分析通过实验测量得到的数据,我们可以计算得到单管共射极放大电路的电压增益、输入阻抗和输出阻抗。
其中电压增益可以通过输出电压幅值除以输入电压幅值得到,输入阻抗可以通过理想放大电路的计算公式得到,输出阻抗可以通过输出电压与输出电流的比值得到。
根据实验结果分析,可以得到单管共射极放大电路在一定范围内具有较高的电压增益和较低的输入阻抗,从而可以实现信号的放大和阻抗匹配功能。
同时,在选择合适的负载电阻和负载电容的情况下,还可以实现对输出信号的改变,如形成整流放大等特殊功能。
单管共射放大电路实验报告
一、实验目的1. 掌握单管共射放大电路的基本原理和组成;2. 学习如何调试和测试单管共射放大电路的静态工作点;3. 熟悉单管共射放大电路的电压放大倍数、输入电阻和输出电阻的测量方法;4. 分析静态工作点对放大电路性能的影响。
二、实验原理单管共射放大电路是一种基本的放大电路,由晶体管、电阻和电容等元件组成。
其工作原理是:输入信号通过晶体管的基极和发射极之间的电流放大作用,使输出信号的幅值得到放大。
单管共射放大电路的静态工作点是指晶体管在无输入信号时的工作状态。
静态工作点的设置对放大电路的性能有重要影响,如静态工作点过高或过低,都可能导致放大电路的失真。
电压放大倍数、输入电阻和输出电阻是衡量放大电路性能的重要参数。
电压放大倍数表示输入信号经过放大后的输出信号幅值与输入信号幅值之比;输入电阻表示放大电路对输入信号的阻抗;输出电阻表示放大电路对负载的阻抗。
三、实验仪器与设备1. 晶体管共射放大电路实验板;2. 函数信号发生器;3. 双踪示波器;4. 交流毫伏表;5. 万用电表;6. 连接线若干。
四、实验内容与步骤1. 调试和测试静态工作点(1)将实验板上的晶体管插入电路,连接好电路图中的电阻和电容元件。
(2)使用万用电表测量晶体管的基极和发射极之间的电压,确定静态工作点。
(3)调整偏置电阻,使静态工作点符合设计要求。
(4)测量静态工作点下的晶体管电流和电压,记录数据。
2. 测量电压放大倍数(1)使用函数信号发生器产生一定频率和幅值的输入信号。
(2)将输入信号接入放大电路的输入端。
(3)使用交流毫伏表测量输入信号和输出信号的幅值。
(4)计算电压放大倍数。
3. 测量输入电阻和输出电阻(1)使用交流毫伏表测量放大电路的输入端和输出端的电压。
(2)计算输入电阻和输出电阻。
五、实验结果与分析1. 静态工作点根据实验数据,晶体管的静态工作点为:Vbe = 0.7V,Ic = 10mA。
2. 电压放大倍数根据实验数据,电压放大倍数为:A = 100。
单管共射极放大电路实验报告
单管共射极放大电路实验报告Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT实验一、单管共射极放大电路实验1. 实验目的(1) 掌握单管放大电路的静态工作点和电压放大倍数的测量方法。
(2) 了解电路中元件的参数改变对静态工作点及电压放大倍数的影响。
(3) 掌握放大电路的输入和输出电阻的测量方法。
2. 实验仪器① 示波器② 低频模拟电路实验箱 ③ 低频信号发生器 ④ 数字式万用表 3. 实验原理(图)实验原理图如图1所示——共射极放大电路。
4. 实验步骤 (1) 按图1连接共射极放大电路。
(2)测量静态工作点。
② 仔细检查已连接好的电路,确认无误后接通直流电源。
③ 调节RP1使RP1+RB11=30k④ 按表1测量各静态电压值,并将结果记入表1中。
表1 静态工作点实验数据Rs 4.7K(1)测量电压放大倍数①将低频信号发生器和万用表接入放大器的输入端Ui,放大电路输出端接入示波器,如图2所示,信号发生器和示波器接入直流电源,调整信号发生器的频率为1KHZ,输入信号幅度为20mv左右的正弦波,从示波器上观察放大电路的输出电压UO的波形,分别测Ui和UO的值,求出放大电路电压放大倍数AU。
图2 实验电路与所用仪器连接图②保持输入信号大小不变,改变RL,观察负载电阻的改变对电压放大倍数的影响,并将测量结果记入表2中。
表2 电压放大倍数实测数据(保持U I不变)(4)观察工作点变化对输出波形的影响①实验电路为共射极放大电路②调整信号发生器的输出电压幅值(增大放大器的输入电压U i),观察放大电路的输出电压的波形,使放大电路处于最大不失真状态时(同时调节RP1与输入电压使输出电压达到最大又不失真),记录此时的RP1+RB11值,测量此时的静态工作点,保持输入信号不变。
改变RP1使RP1+RB11分别为25KΩ和100K Ω,将所测量的结果记入表3中。
BJT单管共射放大电路实验报告模板pdf
BJT单管共射放大电路-实验报告模板.pdf标题:BJT单管共射放大电路实验报告一、实验目的1.掌握单管共射放大电路的基本原理和组成。
2.学习并掌握BJT(双极结型晶体管)的基本特性及工作原理。
3.通过实验,观察和分析放大电路的输入、输出电压关系以及放大倍数、频率响应等特性。
4.培养实验操作能力和问题解决能力,提高对电子技术的兴趣和认识。
二、实验原理1.BJT的基本特性:包括输入、输出特性曲线,放大倍数,频率响应等。
2.单管共射放大电路的工作原理:输入信号通过基极进入晶体管,经过放大后从集电极输出,通过调整偏置电压和其他元件参数,实现电路的放大功能。
3.放大电路的性能指标:放大倍数、频率响应、失真度等。
三、实验步骤1.准备实验器材:电源、信号源、电阻器、电容器、电感器、放大器、示波器等。
2.搭建单管共射放大电路:连接电源、信号源、电阻器、电容器、电感器等元件,构成完整的单管共射放大电路。
3.调整电路参数:通过调整偏置电压、电阻器阻值等参数,使电路达到最佳工作状态。
4.测试放大电路的性能:利用示波器等仪器,测量输入、输出电压的关系,计算放大倍数,观察频率响应等特性。
5.分析实验结果:根据实验数据,分析电路性能,与理论预期进行比较,加深对单管共射放大电路的理解。
四、实验结果与分析1.数据记录:记录实验过程中测量的输入、输出电压数据,计算放大倍数、频率响应等特性指标。
2.结果分析:根据实验数据,分析单管共射放大电路的性能表现,与理论预期进行比较,找出误差原因,提出改进措施。
3.问题解答:针对实验过程中遇到的问题,进行深入分析和解答,巩固所学知识。
五、结论总结1.通过本次实验,我们深入了解了BJT单管共射放大电路的原理和性能特点,掌握了其组成和测试方法。
2.通过实际操作,我们学会了如何调整电路参数和测试仪器使用,提高了实验操作能力和问题解决能力。
3.通过与理论预期的比较和分析,我们认识到实际电路与理想模型的差异和局限性,为今后深入学习和实践打下基础。
单管共射极放大电路实验报告
单管共射极放大电路实验报告单管共射极放大电路实验报告一、引言在电子电路实验中,单管共射极放大电路是一种常见的基础电路。
它具有放大效果好、输入输出阻抗适中等优点,被广泛应用于放大电路设计中。
本实验旨在通过搭建单管共射极放大电路并对其性能进行测试,深入了解该电路的工作原理和特点。
二、实验原理单管共射极放大电路由一个NPN型晶体管、电阻、电容等元器件组成。
其工作原理如下:当输入信号加到基极时,晶体管的集电极电流将随之变化,从而使输出电压发生相应的变化。
通过调整偏置电压和负载电阻,可以使输出信号放大。
三、实验步骤1. 准备实验所需的元器件:NPN型晶体管、电阻、电容等。
2. 按照电路图搭建单管共射极放大电路。
3. 连接信号发生器和示波器,分别将输入信号和输出信号接入示波器。
4. 调整偏置电压和负载电阻,使电路工作在合适的工作点。
5. 通过信号发生器输入不同频率的正弦波信号,观察输出信号的变化情况。
6. 记录实验数据,并进行分析。
四、实验结果与分析通过实验观察和数据记录,我们得到了如下结果和分析:1. 输出电压随输入信号的变化而变化,呈现出放大的效果。
输入信号的幅值越大,输出信号的幅值也越大。
2. 输出信号的相位与输入信号相位一致,没有发生反相变化。
3. 随着输入信号频率的增加,输出信号的幅值逐渐减小,这是由于晶体管的频率响应特性导致的。
4. 在一定范围内,调整偏置电压和负载电阻可以使电路工作在合适的工作点,以获得最佳的放大效果。
五、实验总结通过本次实验,我们深入了解了单管共射极放大电路的工作原理和特点。
该电路具有放大效果好、输入输出阻抗适中等优点,适用于各种放大电路设计。
同时,我们也了解到了电路中各个元器件的作用和调整方法。
通过调整偏置电压和负载电阻,可以使电路工作在合适的工作点,以获得最佳的放大效果。
此外,我们还观察到了输入信号频率对输出信号幅值的影响,这对于电路设计和应用也具有一定的指导意义。
六、展望本次实验只是对单管共射极放大电路进行了初步的实验研究,还有许多其他方面的内容有待进一步探索。
单管共射极放大电路实验报告
单管共射极放大电路实验报告实验目的:1.了解单管共射极放大电路的工作原理和特性。
2.学习如何设计和搭建单管共射极放大电路。
3.利用实际测量得到的数据,分析电路的放大性能。
实验器材:1.射极共射放大电路实验箱2.双踪示波器3.不同值的电阻、电容4.信号发生器5.数字万用表实验原理:单管共射极放大电路是一种常用的放大电路结构,它由一个NPN型晶体管、射极电阻和负反馈电路构成。
该电路的输入信号被加到基极上,输出信号则从集电极上得到。
通过适当选择电阻和电容的参数,可以实现对输入信号的放大。
在电路中加入负反馈,可以提高电路的稳定性和线性度。
实验步骤:1.先利用真实的电阻、电容值设计所需要的电路,画出电路图。
2.在实验箱中按照电路图搭建电路。
3.将信号发生器的信号输入电路的输入端,同时将示波器的探头接在电路的输出端口上。
4.调节信号发生器的幅度和频率,观察输出波形在示波器上的显示。
5.通过调整电阻和电容的数值,观察电路的放大信号变化。
6.通过改变负反馈电阻和电容的数值,观察电路的稳定性和线性度的改变。
实验结果:根据实验数据的实际测量和实验现象的观察,可以得到如下结果:1.单管共射极放大电路可以将输入的信号进行放大。
2.通过适当选择电阻和电容的参数,可以调节电路的放大倍数。
3.负反馈可以提高电路的稳定性和线性度。
4.改变负反馈电阻和电容的数值可以改变电路的稳定性和线性度。
实验分析:在实验中,我们观察到单管共射极放大电路的输出波形与输入波形相比发生了放大。
通过改变电路中的电阻和电容数值,可以调节电路的放大倍数。
另外,我们还观察到在添加相应的负反馈电路后,电路的稳定性和线性度得到了提高。
这是因为负反馈将一部分输出信号返回至输入端口,通过控制反馈的比例,可以减小电路的非线性失真和噪声。
实验结论:通过这个实验,我们初步了解了单管共射极放大电路的工作原理和特性。
我们实验中搭建的电路通过调整电阻和电容数值,能够实现对输入信号的放大。
单管共射放大器实验报告
单管共射放大器实验报告单管共射放大器实验报告一、引言单管共射放大器是一种常见的电子电路,广泛应用于各种电子设备中。
本实验旨在通过搭建一个单管共射放大器电路并进行实验,探究其工作原理和性能特点。
二、实验原理单管共射放大器是一种基于晶体管的放大电路。
其工作原理是将输入信号接到晶体管的基极,通过晶体管的放大作用,将输入信号放大后输出到负载电阻上。
具体来说,当输入信号为正半周时,晶体管的基极电压上升,使得晶体管导通,电流从集电极流向发射极,此时晶体管处于放大状态;当输入信号为负半周时,晶体管的基极电压下降,使得晶体管截止,电流无法流过,此时晶体管处于截止状态。
通过这种方式,输入信号得以放大。
三、实验步骤1. 按照电路图搭建单管共射放大器电路,确保连接正确无误。
2. 将信号源接入电路的输入端,调节信号源的频率和幅度。
3. 接入示波器,观察输入信号和输出信号的波形。
4. 测量输入信号和输出信号的幅度,计算增益。
5. 调节电路参数,如电阻、电容等,观察对电路性能的影响。
四、实验结果与分析通过实验,我们观察到输入信号和输出信号的波形,并测量了其幅度。
根据测量数据,我们计算出了电路的增益。
通过对比输入信号和输出信号的幅度,可以看出信号经过放大器后得到了增强。
增益的大小取决于电路参数的选择,如集电极电阻的大小等。
同时,我们还观察到当电路参数发生变化时,输出信号的波形和幅度也会发生变化。
这说明单管共射放大器的性能受到电路参数的影响。
五、实验总结通过本次实验,我们对单管共射放大器有了更深入的了解。
我们了解到了单管共射放大器的工作原理和性能特点。
通过实验,我们搭建了一个单管共射放大器电路,并观察了输入信号和输出信号的波形,测量了其幅度,并计算了电路的增益。
我们还通过调节电路参数,观察了对电路性能的影响。
通过这些实验结果,我们更加熟悉了单管共射放大器的工作方式和性能特点。
六、展望本次实验只是对单管共射放大器的基本原理和性能进行了初步的了解。
BJT单管共射放大电路-实验报告模板
实验一BJT单管共射放大电路姓名:____________学号:____________班级:____________一、实验目的1、掌握放大电路静态工作点的测试方法,分析静态工作点对放大器性能的影响。
2、掌握放大电路动态性能(电压增益、输入电阻、输出电阻、最大不失真输出电压及幅频特性等)的测试方法。
3、进一步熟练常用电子仪器的使用。
二、实验原理1、电路图图一2、通电观察:接好电路之后,在确认安装正确无误后,才可以把经过准确测量的电源电压接入电路。
电源接入电路之后,也不应急于观察数据,而应先观察有无异常现象。
3、静态测试:(1)测量放大电路的静态工作点,应在输入信号Vi=0的情况下进行。
分别测量VB、VC、VE,然后通过Ic≈IE=VE/RE可算出Ic,同时可算出VBE=VB-VE,VCE=Vc-VE。
(2)静态工作点的调试:指对管子集电极电流Ic或VCE的调整与测试。
静态工作点是否合适,对放大电路的性能及输出波形都有很大的影响,偏高或偏低的静态工作点都会使输出波形出现失真。
而静态工作点本身也会影响管子的性能。
改变电路的Vcc、Rc、RB都会引起静态工作点的变化,但通常采用调节偏置电阻Rb1来改变静态工作点。
4、动态指标测试(1)电压增益Av的测量:测出vi和vo的有效值,则Av=Vo/Vi.图二(2)输入电阻Ri:如图2在被测放大电路的输入端与信号源之间串入一测量辅助电阻R,在放大电路正常工作的情况下,用交流毫伏表测出Vs和Vi,则输入电阻可由Ri=ViR/(Vs-Vi)算出。
(3)输出电阻Ro:在放大电路正常工作的条件下,测出输出端不接负载RL输出电压Vo和接入负载后的输出电压VL,根据Ro=[(Vo/VL)-1]RL求出输出电阻。
(4)最大不失真输出电压Vo(p-p)的测量(最大动态范围):在放大电路正常工作的情况下,逐步增大输入信号的幅度,并同时调节Rw(改变静态工作点),用示波器观察Vo,当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点,然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出Vo有效值,则动态范围等于22Vo,或用示波器直接读出Vo(p-p)。
单级共射放大电路 实习报告
vo+Vcc+12V实验一 单级共射放大电路 实习报告1.实验原理对单级放大器的研究为高级放大器的研究与应用奠定了理论基础,由于单级放大器在多级放大器中所处位置不同,以及性能要求也不相同,但它们的最基本任务是相同的——放大,要不失真地稳定地放大。
就低频放大器而言,它要对几十赫兹几百赫兹的信号给予不失真的放大,单级放大器的能力一般可达几十倍到几百倍。
2.单级共射放大电路单级共射放大电路如图1-1所示。
3.静态工作点图1-1为电阻分压式单管放大器。
它利用RB1、RB2组成的分压电路,发射极中接有电阻RF 、RE ,以稳定放大器的静态工作点。
为了得到最大不失真输出幅度,其静态工作点应设在交流负载线的中间位置,过高或过低都会产生非线性失真。
在图1-1电路中,当流过偏置电阻RB1、RB2的电流远大于基极电流IB 时,(一般为5-10倍),则静态工作点可用下列公式估算CC B2B1B1B V R R R V +≈(1-1) EF BEB C E R R V V I I +-=≈(1-2) )R R (R I V V E F C C CC CE ++-=(1-3)4.电压放大倍数在图1-1电路中,其电压放大倍数:Fbe L C β)R (1r )R //β(R v A ++-=(1-4) (mA)I 26(mv)β)(1200r EQ be ++=(1-5)可见,当静态工作点确定后,电压放大倍数与下列三个因素有关:(1)集电极电阻Rc 越大,Av 越大,但增加Rc 并不能使Av 增加很多,因为还有RL 的影响。
而且,Rc 过大,其上的直流电压降也大,造成Vce 偏小,放大器很容易进入饱和区。
(2)外接负载RL 的大小对放大倍数的影响和Rc 有类似之处。
但改变RL 不会影响静态工作点。
(3)去掉射极电阻RE 的旁路电容CE ,使RE 对交流信号起负反馈作用,则电压放大倍数降为:Ebe L C β)R (1r )R //β(R v A++-=显然RE 对电压放大倍数的影响较大。
单管共射放大电路实验报告
单管共射放大电路实验报告单管共射放大电路实验报告引言:单管共射放大电路是电子学中常见的一种电路结构,它可以将输入信号放大并输出。
本实验旨在通过搭建单管共射放大电路并进行实验观察,深入理解其工作原理和特性。
实验设备:1. NPN型晶体管2. 直流电源3. 信号发生器4. 电阻、电容等元器件5. 示波器6. 万用表实验步骤:1. 按照实验电路图搭建单管共射放大电路。
2. 将直流电源接入电路,调整电源电压为合适的数值。
3. 连接信号发生器,调节频率和幅度。
4. 使用示波器观察输入和输出信号波形。
5. 测量电路中各个元器件的电压和电流数值。
实验结果:通过实验观察和测量,我们得到了以下结果:1. 输入信号经过放大后,输出信号的幅度明显增大。
2. 输入信号的频率对放大效果有一定影响,不同频率下放大倍数可能有所不同。
3. 输出信号的波形与输入信号的波形基本一致,只是幅度发生了变化。
4. 在特定的输入信号幅度范围内,输出信号的幅度变化基本线性。
讨论与分析:单管共射放大电路的放大效果和特性与电路中的元器件参数有关。
在实验中,我们可以通过调整电源电压、改变电阻和电容的数值来观察其对放大效果的影响。
此外,晶体管的工作状态也会对放大效果产生影响,如静态工作点的选择和偏置电流的设置等。
在实际应用中,单管共射放大电路常用于音频放大、信号处理等领域。
通过调整电路中的元器件参数,可以实现对不同频率和幅度的信号的放大。
然而,单管共射放大电路也存在一些问题,例如频率响应范围有限、输出波形失真等。
因此,在实际应用中需要根据具体需求选择合适的电路结构。
结论:通过本次实验,我们成功搭建了单管共射放大电路,并观察了其放大效果和特性。
实验结果表明,单管共射放大电路能够有效地放大输入信号,并输出相应的放大信号。
通过进一步的实验和研究,可以深入了解电路的工作原理和优化方法,为实际应用提供参考。
总结:单管共射放大电路是电子学中重要的电路结构之一,通过本次实验我们深入理解了其工作原理和特性。
模电实验一
1.列表整理测量结果,并把实测的静态工作点、电压增益、输入电阻、输出电阻之值与理论计算值比较,分析产生误差的原因
静态工作点:当Ic=2mA时,Ve测量值为2.003V,与理论计算值2V基本一致。
VBE测量值为0.619V,在理论值0.6-0.7V之间。
电压增益:当Rc=2KΩ、RL断开时,电压增益测量值为-128.8,与理论值140有一定差距。产生原因可能是①Ic并不是准确的2mA②测量时读数问题(忽略的数值对结果有影响)③电路中电阻与理论值有差距
当Rb1减小时,Ube增大,波形出现饱和失真,VCE减小
当Rb1增大时,Ube减小,波形出现截止失真,VCE增大
6、改变静态工作点对放大电路的输入电阻Ri是否有影响?改变外接电阻RL对输出电阻是否有影响?
改变静态工作点会影响Rbe的大小,进而影响输入电阻Ri的大小
输出电阻Ro与RL无关
7、在测试Av,Ri和Ro时怎样选择输入信号的大小和频率?为什么信号频率一般选1kHz,而不选100kHz或更高?
对于交流毫伏表:原先的正电流显示为负电流,原先的负电流显示为正电流。
对于示波器:显示的波形较原先波形反相。
1、+12直流稳压电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表
5、万用电表 6、频率计 7、晶体三极管、电阻器、电容器若干
四、实验内容
1、调试静态工作点
表1-1Ic = 2.0 mA
VCE≈Vcc-Ic(Rc+Re)=12V-2mA*(1KΩ+2KΩ)=6V
VBE≈0.7V
2、测量电压放大倍数
表1-2Ic = 2.0 mAVi=5mV(rms)
3、观察静态工作点对电压放大倍数的影响
模电实验-BJT单管共射电压放大电路
预习操作记录实验报告总评成绩学院:电子与信息工程学院专业:年级:实验人姓名(学号):参加人姓名:日期:2017 年月日室温:相对湿度:实验一BJT单管共射电压放大电路一、实验目的1、掌握放大电路静态工作点的测试方法,分析静态工作点对放大器性能的影响。
2、掌握放大电路动态性能(电压增益、输入电阻、输出电阻、最大不失真输出电压以及幅频特性等) 的测试方法。
3、进一步熟练常用电子仪器的使用。
二、实验原理图1-1为射极偏置单管放大电路。
它由Rbl 和Rb2 组成分压电路,并在发射极中接有电阻Re,以稳定放大器的静态工作点。
当在放大电路的输入端加入输入信号Vi后,在放大电路的输出端便可得到一个与vi相位相反,幅值被放大了的输出信号vo,从而实现电压放大。
c o R R在设计和制作放大电路前,应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。
实践表明,新安装的电路板,往往难于达到预期的效果。
这是因为在设计时,不可能周全地考虑到电子器件性能的分散性及元件值的误差、寄生参数等各种复杂的客观因素的影响等,此外,电路板安装中仍有可能存在没有被查出来的错误。
通过电路板的调整和测试,可发现利纠正设计方案的不足,并查出电路安装中的错误,然后采取措施加以纠正和改进,才能使之达到预定的技术要求。
一个优质放大器,必定是理论设计与实验调整相结合的产物。
放大电路的测前和调试一般包括:放大电路静态工作点的测量与调试,消除干扰与自激振荡及放大电路各项动态参数的测量与调试等。
放大电路的测量与调试 1. 通电观察对于新安装好的线路板,在确认安装正确无误后,才可把经过准确测量的电源电压接人路,电源接入电路之后,也不应急于测量数据,而应先观察有无异常现象,这包括电源输出是否正常(有无短路现象)、电路中有无冒烟、有无异常气味以及元器件是否发烫等。
如出现异常现象,则应立即切断电源,检查电路,排除故障,待故障排除后方可重新接通电源,然后再进行测试。
BJT单管共射电压放大电路实验报告
BJT单管共射电压放大电路--实验报告【实验目的】1、掌握放大电路静态工作点的测量方法,并分析静态工作点对放大器性能的影响2、掌握放大电路动态性能,包括电压增益、输入电阻、输出电阻、最大不失真输出电压以及幅频响应特性的测试方法。
3、熟练掌握常用电子仪器的使用【实验原理】1、BJT单管共射放大电路可以实现对输入交流信号的反相放大,放大倍数为Av=-β(Rc//RL)/rbe。
2、BJT单管共射放大电路静态工作点的计算:Vb=Vcc*Rb2/(Rb1+Rb2),Ic=Ve/Re,Vbe=Vb-Ve,Vce=Vc-Ve。
3、BJT单管共射放大电路静态工作点测量时需注意函数信号发生器不能接入放大电路输入端,且要用直流电压表测量。
4、输入电阻的测量方法见实验指导书,计算式为Ri=Rb1//Rb2//rbe,本实验计算中可取rbe大约为2.2千欧。
5、输出电阻的测量方法见实验指导书,计算式为Ro=Rc。
6、测量放大电路幅频响应特性的方法:要先调节信号源频率,使示波器显示输出信号幅度达到最大,并记录此时的Vo峰峰值。
然后将信号源频率按照表格所示从小到大调节,找到0.707倍的Vo峰峰值最大值对应的信号源频率fL和fH。
【实验设备】1、1个直流稳压电源2、1台函数信号发生器3、1台双踪示波器4、1个交流毫伏表5、1个万用电表6、1个晶体三极管90137、电阻器、电容器若干【实验内容】步骤1.按照图1-1连接电路,先不接函数信号发生器,只接通12V直流电源,将Rw从最大开始缓慢调小,同时用直流电压表测量三极管e级对地电压,当Ve=2V时,即此时Ic=Ie=2mA,测量并计算放大电路的静态工作点,并填写下表。
步骤1分析说明:计算值和其测量值在误差允许范围内相等。
而Ic可以通过测量电压Ve或Vc得出,Ic~Ie=Ve/Re。
步骤2.保持步骤1的Rw阻值不变(即静态工作点不变),将函数信号发生器输出调为1KHz,示波器上观察输出峰峰值为10mV的正弦波信号作为放大电路的输入信号Vi,在波形不失真的情况下用示波器观察下表所列三种条件下信号Vo的峰峰值,并计算放大电路的放大倍数Av,填写下表。
模电共射放大电路实验报告记录
模电共射放大电路实验报告记录————————————————————————————————作者:————————————————————————————————日期:实验一BJT单管共射电压放大电路实验报告自动化一班李振昌一、实验目的(1)掌握共射放大电路的基本调试方法。
(2)掌握放大电路电压放大倍数、输入电阻、输出电阻的基本分析方法。
(3)进一步熟练电子仪器的使用。
二、实验内容和原理仿真电路图静态工作点变化而引起的饱和失真与截止失真静态工作点的调整和测量 : 调节RW1,使Q 点满足要求(ICQ =1.5mA)。
测量个点的静态电压值RL =∞及RL =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器监视输出波形,交流毫伏表测出有效值。
装 订RL=∞时,最大不失真输出电压V omax(有效值)≥3V : 增大输入信号幅度与调节RW1,用示波器监视输出波形、交流毫伏表测出最大不失真输出电压V omax 。
输入电阻和输出电阻的测量: 采用分压法或半压法测量输入、输出电阻。
放大电路上限频率fH、下限频率fL的测量: 改变输入信号频率,下降到中频段输出电压的0.707倍。
观察静态工作点对输出波形的影响: 饱和失真、截止失真、同时出现。
三、主要仪器设备示波器、函数信号发生器、12V稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等四、操作方法和实验步骤准备工作:修改实验电路将K1用连接线短路(短接R7);RW2用连接线短路;在V1处插入NPN型三极管(9013);将RL接入到A为RL=2k,不接入为RL=∞(开路) 。
开启直流稳压电源,将直流稳压电源的输出调整到12V,并用万用表检测输出电压。
确认输出电压为12V后,关闭直流稳压电源。
用导线将电路板的工作电源与12V直流稳压电源连接。
开启直流稳压电源。
此时,放大电路已处于工作状态。
实验步骤1.测量并调整放大电路的静态工作点调节电位器RW1,使电路满足ICQ=1.5mA。
实验一 BJT单管共射电压放大电路
实验一BJT单管共射电压放大电路一、实验目的1.掌握放大电路静态工作点的测试方法,分析静态工作点对放大器性能的影响。
2.掌握放大电路动态性能(电压增益、输入电阻、输出电阻、最大不失真输出电压以及幅频特性等)测试方法3、进一步熟练常用电子仪器的使用二、实验原理1.射极偏置单管放大电路由Rb1和Rb2组成分压电路,并在发射极中接有电阻Re,以稳定放大器的静态工作点。
当在放大电路的输入端加入输入信号后,在放大电路的输出端便可得到一个与输入信号相位相反,幅值被放大了的输出信号,从而实现电压放大。
2.放大电路的测量与调试:a. 通电观察b.静态测试:(1)静态工作点的测量:将放大电路输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流以及各电极对地的电位。
(2)静态工作点的调试:对管子集电极电流的调整与测试(3)动态指标测试:动态调试的目的是为了使放大电路增益、输出电压动态范围、波形失真、输入、输出电阻、通频带等性能达到要求a.电压增益Av的测量Av=Vo/Vib.输入电阻Ri的测量Ri=ViR/Vs-Vic.输出电阻Ro的测量Ro=((Vo/VL)-1)/RLd.最大不失真输出电压的测量:在放大电路正常工作情况下,逐步增大输入信号的幅度,并同时调节Rw,用示波器观察Vo,直到输出波形同时出现削底和缩顶现象e.放大电路幅频特性的测量:fbw=fh-fl改变频率时,要保持输入信号的幅度不变,输出波形不能失真三、实验设备与器件1.+12V直流稳压电源2. 函数信号发生器3.双踪示波器4.交流毫伏表5.万用电表6.频率计7. 晶体三极管电阻器,电容器若干四、实验内容1.调试静态工作点接通直流电源前,先将Rw调至最大,函数信号发生器输出旋钮选至零。
接通+12V电源,调节Rw,是Ic=2mA(VE=2v),测量VB,VE,VC及RB1值。
2.测量电压放大倍数在放大电路输入端加入平率为1KHZ的正弦型号Vs,调节函数信号发生器的输出旋钮使放大电路的输入电压vi=5mV, 同时用示波器观察放大电路输出电压Vo波形,在波形不失真的条Rc=2KΩ RL=2KΩ Vi=2.7mV饱和失真正常像后,无法再进行变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一BJT 单管共射电压放大电路
班级:姓名:学号: 2015.11.11
一、 实验目的
1.掌握放大电路静态工作点的测试方法,并分析静态工作点对放大器性能的影响。
2. 掌握放大电路动态性能(电压增益、输入电阻、输出电阻、最大不失真输出电压以及幅频特性等)的测试方法。
3. 进一步熟练常用电子仪器的使用。
二、 实验仪器及器件
三、 实验原理
图1-1为射极偏置单管放大电路。
图1-1
静态工作点可用下式估算:
CC b2
b1b2
B V R R R V +≈
e
BE
B E
C R V V I I -=
≈
)R (R I V R I R I V V e C C CC e E C C CC CE +-≈--=
电压增益
be
L
C
i 0V r R R βV V A ∥-==
输入电阻
R i =R b1∥R b1∥r be R V -V V R
V V I V R i S i
R i i i i ===
输出电阻
R o ≈R c L L
1)R -V V R (o = I c 的测量
E
E
E C R V I I =
≈ 四、 实验内容及实验步骤
实验电路如图1-1所示。
为防止干扰,各电子仪器的公共端必须连在一起,同时信号源、交流毫伏表和示波器的引线应采用专用电缆线或屏蔽线,如使用屏蔽线,则屏蔽线的外包金属网应接在公共接地端上。
1.调试静态工作点。
接通直流电源前,先将R W 调至最大,函数信号发生器输出旋钮旋至零。
接通+12V 电源、调节R W ,使I C = 2.0mA (即V E =2.0V ),测量V B 、V E 、V C 及R B1值。
计入表1-1。
表1-1I
2.测量电压放大倍数。
在放大电路输入端加入频率为1KHz 的正弦信号v s ,调节函数信号发生器的输出旋钮使放大电路的输入电压v i ≈5mV ,同时用示波器观察放大电路输入电压v 0波形,在波形不失真的条件下用交流毫伏表测量下述三种情况下的v 0值,并用双踪示波器观察V 0和V i 的相位关系,计入表1-2.
表1-1I
3.观察静态工作点对电压放大倍数的影响
置R C =2KΩ,R L =∞,V i 适量,调节R W ,用示波器见识输出电压波形,在v 0不失真的条件下,测量数组I C 和V 0值,记入表1-3。
表1-3 R 测量时,要先将信号源输出旋钮旋至零(即使V i =0)。
4.观察静态工作点对输出波形失真的影响
置R C =2KΩ,R L =2KΩ,v i =0,调节R W 使得I C =2.0mA ,测出V CE 值,再逐步加入输入信号,使得输出电压v 0足够大但不失真。
然后保持输入信号不变,分别增大和减小R W ,使波形出现失真,绘出v 0的波形,并测出失真情况下的I C 和V CE 值,记入表1-4中。
每次测量I C 和V CE 时都要将信号源的输出旋钮旋至零。
表1-4R
5.测量最大不失真输出电压
置R C=2KΩ,R L=2KΩ,按照实验原理4中所述方法,同时调节输入信号的幅度和电位器R W,用示波器和交流毫伏表测量V OPP及V0值,记入表1-5。
表1-5R
6.测量输入电阻和输出电阻
置R C=2 KΩ,R L=2 KΩ,I C= 2.0mA。
输入f=1KHz的正弦信号,在输出电压v0不失真的情况下,用交流毫伏表测出V S、V i和V L记入表1-6。
保持V S不变,断开R L,测量输出电压v0,记入表1-6。
五、实验总结
1.列表整理测量结果,并把实测的静态工作点、电压增益、输入电阻、输出电阻之值与理论值比较(取一组数据进行比较),分析产生误差的原因。
误差分析:从表中数据对比可以看出,理论值和测量值有一定的偏差,但是在可以接受的范围内。
误差原因:1.由于实验设备使用时间的关系,实验电路板的电阻的实际阻值和标注的阻值存在误差,电路中的其他元件老化等对电路也有一定的误差;
2.由于我们测量时三极管等元器件一直处于工作状态,长时间的工作也会对数据的测量产生一定的影响;
3.在用万用表测量实验数据时,首先万用表本身存在误差,其次在测量有些数据时。
万用
表显示的数值一直在跳动难以稳定,这也对数据的读出造成不能忽视的影响。
2. 总结R C、R L及静态工作点对放大器电压增益、输入电阻、输出电阻的影响。
a. R C越大,电压放大倍数越大、输入电阻不受影响、输出电阻越大。
b.R L越大,电压放大倍数越大、输入电阻不受影响、输出电阻不受影响。
c. 静态工作点中电流越大,电压放大倍数越大、输入电阻越小、输出电阻不受影响。
但静态工作点
太大或太小容易导致三极管进入饱和或截止区。