【小初高学习】新课标2018届高考数学二轮复习专题二函数与导数专题能力训练5基本初等函数函数的图象和

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题能力训练5 基本初等函数、函数的图象和性质

能力突破训练

1.(2017湖北六校联考)下列函数在其定义域上既是奇函数又是减函数的是()

A.f(x)=-x|x|

B.f(x)=x sin x

C.f(x)=

D.f(x)=

2.已知a=21.2,b=,c=2log52,则a,b,c的大小关系为()

A.c

B.c

C.b

D.b

3.函数y=的图象大致为()

4.(2017全国Ⅰ,理5)函数f(x)在区间(-∞,+∞)单调递减,且为奇函数,若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()

A.[-2,2]

B.[-1,1]

C.[0,4]

D.[1,3]

5.已知函数f(x)=且f(a)=-3,则f(6-a)=()

A.-

B.-

C.-

D.-

6.(2017安徽池州模拟)已知函数的定义域为R,且满足下列三个条件:

①对任意的x1,x2∈[4,8],当x10;

②f(x+4)=-f(x);

③y=f(x+4)是偶函数.

若a=f(6),b=f(11),c=f(2 017),则a,b,c的大小关系正确的是()

A.a

B.b

C.a

D.c

7.已知a>b>1,若log a b+log b a=,a b=b a,则a=,b=.

8.若函数f(x)=x ln(x+)为偶函数,则a=.

9.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log2a)+f(lo a)≤2f(1),则a的取值范围是.

10.设奇函数y=f(x)(x∈R),满足对任意t∈R都有f(t)=f(1-t),且当x∈时,f(x)=-x2,则f(3)+f的值等于.

11.设函数f(x)=的最大值为M,最小值为m,则M+m=.

12.若不等式3x2-log a x<0在x∈内恒成立,求实数a的取值范围.

思维提升训练

13.函数y=的图象大致为()

14.(2017江西百校联盟联考)已知f(x)是定义在R上的偶函数,当x>0

时,f(x)=若f(-5)

A.(-∞,1)

B.(-∞,2)

C.(-2,+∞)

D.(2,+∞)

15.已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图象的交点为

(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()

A.0

B.m

C.2m

D.4m

16.已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-),则a的取值范围是.

17.设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=其中a,b

∈R.若f=f,则a+3b的值为.

18.(2017山东,理15)若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为.

①f(x)=2-x②f(x)=3-x③f(x)=x3④f(x)=x2+2

19.已知函数f(x)=e x-e-x(x∈R,且e为自然对数的底数).

(1)判断函数f(x)的奇偶性与单调性.

(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.

参考答案

专题能力训练5基本初等函数、

函数的图象和性质

能力突破训练

1.A解析函数f(x)=在其定义域上既是奇函数又是减函数,故选A.

2.A解析∵b==20.8<21.2=a,且b>1,

又c=2log52=log54<1,∴c

3.A解析函数有意义,需使e x-e-x≠0,其定义域为{x|x≠0},排除C,D.因为

y==1+,所以当x>0时函数为减函数.故选A.

4.D解析因为f(x)为奇函数,所以f(-1)=-f(1)=1,于是-1≤f(x-2)≤1等价于f(1)≤f(x-2)≤f(-1).又f(x)在区间(-∞,+∞)单调递减,所以-1≤x-2≤1,即1≤x≤3.所以x 的取值范围是[1,3].

5.A解析∵f(a)=-3,

∴当a≤1时,f(a)=2a-1-2=-3,即2a-1=-1,此等式显然不成立.

当a>1时,f(a)=-log2(a+1)=-3,即a+1=23,解得a=7.

∴f(6-a)=f(-1)=2-1-1-2=-2=-

6.B解析由①得f(x)在区间[4,8]上单调递增;由②得f(x+8)=-f(x+4)=f(x),故f(x)是周期为8的周期函数,所以c=f(2017)=f(252×8+1)=f(1),b=f(11)=f(3);再由③可知f(x)的图象关于直线x=4对称,所以b=f(11)=f(3)=f(5),c=f(1)=f(7).结合f(x)在区间[4,8]上单调递增可知,f(5)

7.42解析设log b a=t,由a>b>1,知t>1.

由题意,得t+,解得t=2,则a=b2.

由a b=b a,得b2b=,即得2b=b2,即b=2,

∴a=4.

8.1解析∵f(x)是偶函数,∴f(-1)=f(1).

相关文档
最新文档