2018-2019年石家庄市数学中考数学押题试卷(2套)附答案

合集下载

石家庄市2018年中考数学猜题卷及答案

石家庄市2018年中考数学猜题卷及答案

石家庄市2018年中考数学猜题卷及答案注意事项:1、本试卷满分 120 分,考试时间 100 分钟。

2、本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在 试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.-14的倒数是( )A .4B .-14 C.14D .-42. 下列运算结果正确的是( )A .a 2+a 3=a 5B .a 2·a 3=a6C .a 3÷a 2=aD .(a 2)3=a 53.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm ):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为( ) A .9B .11C .13D .164.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠35.如图所示的是三通管的立体图,则这个几何体的俯视图是( )A .B .C .D .6.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .矩形B .三角形C .平行四边形D .等腰梯形7.如图,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于AC 的长为半径画弧两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )A .65°B .60°C .55°D .45°8.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24C.6 D.129.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有()①A、B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米.A.1个B.2个C.3个D.4个10.如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为S,则S关于t的函数图象为()A.B.C.D.二、填空题(每小题3分,共15分)11. 我国是世界上13个贫水国之一,人均水资源占有量只有2520立方米,用科学记数法表示2520立方米是_____________立方米。

2018年河北省石家庄中考数学试卷含答案-答案在前

2018年河北省石家庄中考数学试卷含答案-答案在前

河北省2018年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】本题考查三角形的稳定性.根据已知四个图形,具有稳定性的是三角形,故选A . 【考点】三角形的稳定性 2.【答案】B【解析】本题考查科学记数法表示较大的数.108.15551081555000000⨯=,原数中有6个“0”,故选B . 【考点】科学记数法 3.【答案】C【解析】本题考查轴对称图形的对称轴.在轴对称图形中,对称轴两旁的图形要完全重合,根据“○”和“□”的排列规律可判断,该图形的对称轴是3l ,故选C . 根据对称轴两旁的图形确定对称轴是解答本题的关键. 【考点】轴对称图形的对称轴 4.【答案】C【解析】本题考查完全平方公式的变形.22229.5(100.5)102100.50.5=-=-⨯⨯+,故选C .【考点】完全平方公式的变形 5.【答案】C【解析】本题考查几何体的三视图.根据四个已知的几何体,它们的三视图如图所示.故选C .分别确定已知几何体的三视图是解答本题的有效方法. 【考点】几何体的三视图 6.【答案】D【解析】本题考查尺规作图.根据已知作图,图①是作角平分线,对应Ⅳ;图②是过直线外一点作直线的垂线,对应Ⅰ;图③是作线段的垂直平分线,对应Ⅱ;图④是过直线上一点作直线的垂线,对应Ⅲ,故选D . 根据基本作图的步骤判定所作直线是解答本题的关键. 【考点】尺规作图 7.【答案】A【解析】本题考查等式的性质.在A 组中2个=3个;在B 组中,两边同时减去2个,则1个=2个;在C 组中,两边同时减去1个,则1个=2个;在D 组中,2个=4个,即1个=2,则由题意可以看出,只有A 组的等式不成立,即A 组中左右两边质量不相等,故选A .根据等式的性质判断左右两边质量是否相等是解答本题的关键. 【考点】等式的性质 8.【答案】B【解析】本题考查辅助线的作法.作图时只能作出“垂直”或“平分”其中一个条件,故选B . 【考点】辅助线的作法 9.【答案】D【解析】本题考查平均数、方差.根据已知条件可知,丁种麦苗的平均数大,方差小,∴丁种麦苗又高又整齐,故选D . 【考点】平均数、方差 10.【答案】B【解析】本题考查判断命题的对错.根据题意,1-的倒数是1-,命题错误,该同学判断正确;|3|3-=,命题正确,该同学判断错误;1,2,3,3的众数是3,命题错误,该同学判断错误;021=,命题正确,该同学判断正确;22()2m m m ÷-=-,命题正确,该同学判断正确.综上所述,该同学做对3道题,故选B . 【考点】判断命题的对错 11.【答案】A【解析】本题考查方位角.如图,根据题意可知,150∠=︒,2150∠=∠=︒,3805030∠=︒-︒=︒∴, ∴快艇航行的方向为北偏东30︒,故选A .根据已知条件求出方位角的度数是解答本题的关键. 【考点】方位角 12.【答案】B【解析】本题考查正方形的性质.如图,每个正方形的顶点处增加2 cm ,则共需增加8 cm ,故选B .找出两全正方形的边长的差值是解答本题的关键. 【考点】正方形的性质 13.【答案】A【解析】本题考查实数的运算.22222n n n n +++=,即422n =,122n =∴,1n =-∴,故选A . 掌握负指数幂的计算是解答本题的关键. 【考点】实数的运算 14.【答案】D【解析】本题考查分式的化简,根据题意,222222222121(2)12()()11111x x x x x x x x x x x x x x x x x x x x x x--------÷==-=-=------, ∴乙同学和丁同学的做法错误,故选D . 【考点】分式的化简 15.【答案】B【解析】本题考查平移的性质、三角形内心的概念、等腰三角形的性质.如图,设平移后三角形的两边与AB 边分别相交于点M ,N ,连接AI ,BI ,由平移性质可知AC IM ∥,CAI AIM ∠=∠∴,又∵I 是ABC △的内心,∴AI 平分GAM ∠,即CAI IAM ∠=∠,AIM IAM ∠=∠∴,AM IM =∴,同理,BN IN =,∴IMN △的周长为4AB =,故选B .作辅助线证明线段相等是解答本题的最佳途径.【考点】平移的性质、三角形内心的概念、等腰三角形的性质 16.【答案】D【解析】本题考查一次函数和二次函数的图象与性质.由题意可知,抛物线(3)(03)y x x c x =--+≤≤是将抛物线(3)y x x =--向上平移c 个单长度而得,∴抛物线(3)(03)y x x c x =--+≤≤与直线2y x =+有唯一交点即抛物线(3)y x x =--与直线2y x c =+-有唯一交点,联立方程组,解得1c =,经检验符合题意;又∴03x ≤≤,且c 为整数∴2c -的值可以是1-,2-,3-,∴c 的值为3,4,5,∴c 的值为1,3,4,5,故选D .将抛物线平移转换为直线平移是解答本题最简洁的方法. 【考点】一次函数和二次函数的图象与性质第Ⅱ卷二.填空题 17.【答案】22==. 掌握开方运算是解答本题的关键. 【考点】二次根式的运算 18.【答案】0【解析】本题考查相反数的性质.∵a ,b 互为相反数,∴27a b =,∴220a b -=. 【考点】相反数的性质 19.【答案】14 21【解析】本题考查正多边形的性质、设计图案.由图可知,当90BPC ∠=︒时,图案上方是正方形,两边是正八边形,∴它的外轮廓周长为8243214⨯+-⨯=;当60BPC ∠=︒时,图案上方是等边三角形,两边是正十二边形,∴它的外轮廓周长是12233221⨯+-⨯=,当60BPC ∠︒<时,上方图案不是正多边形,∴图案的外轮廓周长最大为21.掌握正多边形内角之间的关系是构成图案的重要因素,也是解答本题的关键. 【考点】正多边形的性质、设计图案 三、解答题 20.【答案】解:(1)原式=22368652x x x x ++---=22 6.x -+(2)设“”为a ,则原式=2268652ax x x x ++---=2(5) 6.a x -+∵结果是常数,∴5a =.【解析】(1)先去括号,再合并同类项;(2)可设系数为a ,合并后2x 的系数为0,可解出a 的值,即为所猜的数值. 【考点】整式的化简 21.【答案】解:(1)62524÷=%(人),245649---=(人). 即被遮盖的数是9; 册数的中位数是5.(2)由条形图知,读书超过5册的学生共有6410+=(人), ∴P (读书超过5册的学生)=1024=512. (3)3.【解析】(1)先根据读6册的学生人数和所占的百分比求出抽查的学生人数,再减去读4册、6册、7册的人数,可求出读5册的学生人数,从而确定中位数;(2)根据概率公式,先求出读书超过5册的学生人数,再根据所抽查学生的总人数即可求出概率; (3)根据“最少的读了6册”和“中位数不变”可确定增加的人数. 【考点】统计知识的应用、求概率 22.【答案】解:尝试 (1)52193--++=.(2)由题意,得5219219x --++=-+++,解得5x =-.应用 与(2)同理,得第6个到第8个台阶上的数依次是:2-,1,9,可见台阶上的数从下到上按5-,2-,1,9四个数依次循环排列.∵31743=⨯+,∴前31个台阶上数的和为73(521)15⨯+--+=. 发现41k -.【解析】尝试:(1)根据题意列出算式,计算出前4个台阶上的数字和; (2)根据(1)求出的和可列出方程,求出x 的值;应用:由题意可知台阶上的数的规律,可根据规律求出31个台阶上的数的和; 发现:用代数式表示“1”所在的台阶数. 【考点】探索规律、有理数的运算、列方程23.【答案】解:(1)证明:如图,∵P 为AB 中点,∴PA PB =.又∵A B ∠=∠,MPA NPB ∠=∠, ∴.APM BPN △≌△(2)由(1)得PM PN =,∴2MN PN =. ∵2MN BN =,∴PN BN =,∴50a B =∠=︒. (3)4090a ︒<<︒.【解析】(1)根据中点定义得AP BP =,结合已知条件,利用“ASA ”判定APM BPN △≌△; (2)根据全等三角形的对应边相等和已知条件,可证明PN =BN ,从而求出a 的度数; (3)根据条件说明三角形是锐角三角形,即可写出a 的取值范围. 【考点】全等三角形的判定和性质、等腰三角形的性质、三角形的外心 24.【答案】解:(1)(,4)C m 在直线152y x =-+上,∴1452m =-+,解得2m =.设2l 的解析式为y kx =,∵(2,4)C 在2l 上,∴42k =,即2k =. ∴2l 的解析式为2y x =.(2)把0y =代入152y x =-+,得10x =,∴=10OA .把0x =代入152y x =-+,得5y =,∴5OB =.∴1104202AOC S =⨯⨯=△, 15252BOC S =⨯⨯=△.∴20515AOC BOC S S -=-=△△. (3)12-,2,32. 【解析】(1)将点C 的坐标代人直线解析式,求出m 的值,再将点C 的坐标代入函数关系式,求出正比例函数的解析式;(2)先求出直线与坐标轴的交点,得线段的长,根据三角形的面积公式求解; (3)根据不能组成三角形的条件,分情况写出k 的值. 【考点】一次函数的图象及其性质、三角形的面积 25.【答案】解:(1)设AOP n ∠=︒,则π2613π180n ⨯=,得90n =︒,即90AOP ∠=︒; ∵l OB ∥,∴426tan tan 3OP PQO AOB OQ x∠=∠===.∴19.5x =.(2)要使x 变小,则l 向左平移.当l 平移到与AB 所在圆相切位置1l 时,如图,O 与l 的距离达到最大值126OP =,此时1Q 所对应的(负)数最小.在11Rt PQ O △中,114tan tan 3PQO AOB ∠=∠=.设113PQ k =,则1426OP k ==,于是15OQ k =, ∴26532.5.4x =-⨯=-最小 此时直线l 与AB 所在圆相切. (3)31.5±,16.5-.过点P 作PH OA ⊥于H .在Rt PNQ △中,由4tan 3HOP ∠=,设4PH k =,3HQ k =,则512.5P Q k ==,∴10PH =,7.5HQ =.在Rt POH △中,24OH ==. ①当点P 在O 右上方时,如图1,31.5x OQ OH HQ ==+=;②当点P 在O 左上方时,如图2,16.5x OQ OH HQ -==-=,∴16.5x =-;③当点P 在O 左下方时,如图3,31.5x OQ OH HQ -==+=,∴=31.5x -.另外,∵54tan tan 123POH AOB ∠==∠<, ∴POH AOB ∠∠<.∴优弧AB 上不存在点P 在O 右下方的情况.【解析】(1)根据弧长公式求出圆心角度数,再根据锐角三角函数求出线段的长,即为x 的值; (2)根据切线性质和锐角三角函数求出线段的长,利用勾股定理求解;(3)根据已知线段的长,利用锐角三角函数和勾股定理求出线段的长,根据线段的长确定点在数轴上的值,即为x 的值.【考点】弧长公式、锐角三角函数、切线的性质、勾股定理26.【答案】解:(1)由题意,点A 为(1,18),代入k y x =,得181k=,∴18k =; 设2h at =,将1t =,5h =代入,得5a =,∴25h t =. (2)∵5v =,1AB =,∴51x t =+; ∵25h t =,18OB =,∴2518y t =-+; 由51x t =+,得1(1)5t x =-.∴2211289(1)18()5555y x y x x =--+=-++或; 当13y =时,2113(1)185x =--+,得6x =或4-.∵1x ≥,∴只取6x =.把6x =代入18y x=,得3y =. ∴运动员与正下方滑道的竖直距离是13310-=(米) (3) 1.8t =;7.5v 乙>.把18y =.代入2518y t =-+,得2 3.24t =(即1825),∴ 1.8t =±(舍去负值).从而10x =. ∴甲为(10,18).恰好落在滑道18y x=上. 此时乙为(1 1.8,1.8)v +乙.由题意,得1 1.8(15 1.8) 4.5v +-+⨯>乙, ∴7.5v 乙>.【解析】(1)将已知点的坐标代入反比例函数解析式,求出k 的值,再根据题意列出h 和t 的函数关系式,将对应值代入即可求出待定系数,从而用t 表示h ;(2)根据题意列出函数关系式,用待定系数表示点的坐标,代入整理后得二次函数关系式,根据函数值列出方程,求解后,取符合题意的值代入反比例函数解析式,从而求出距离; (3)根据题意列出方程,求出t 的值,再确定v 乙的范围. 【考点】反比例函效的图象及其性质、二次函数的应用数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前河北省2018年初中毕业生升学文化课考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共42分)一、选择题(本大题共16小题,1~10小题,每小题3分,11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A B C D2.一个整数8155500…用科学记数法表示为108.155510⨯,则原数中“0”的个数为( )A .4B .6C .7D .103.如图是由“”和“”组成轴对称图形,该图形的对称轴是直线 ( )A .1lB .2lC .3lD .4l4.将29.5变形正确的是 ( )A .2229.590.5=+B .29.5=(10+0.5)(100.5)-C .2229.5102100.50.5=-⨯⨯+D .2229.5=9+90.5+0.5⨯5.如图,三视图对应的几何体是( )ABCD6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB .①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC .①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD .①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ 7.有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等.现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( )ABCD8.已知:如图,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不正确的是 ( ) A .作APB ∠的平分线PC AB C 交于点 B .过点P 作PC AB ⊥于点C 且AC BC = C .取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为13x x ==甲丙,15x x ==乙丁,22 3.6s s ==甲丁,226.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)10.如图中的手机截屏内容是某同学完成的作业,他做对的题数是( )A .2个B .3个C .4个D .5个11.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为( )A .北偏东30︒B .北偏东80︒C .北偏西30︒D .北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按如图的方向外等距扩1(单位:cm ),得到新的正方形,则这根铁丝需增加( ) A .4cmB .8cmC .(4)cm a +D .(8)cm a + 13.若22222nnnn+++=,则n =( ) A .1-B .2-C .0D .1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁15.如图,点I 为ABC △的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为 ( ) A .4.5 B .4 C .3D .216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =.乙的结果是3c =或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确第Ⅱ卷(非选择题 共78分)二、填空题(本大题共3小题,共12分.17,18小题,每小题3分;19小题共6分.请把答案填在题中的横线上) 17.= . 18.若a ,b 互为相反数,则22a b -= . 19.如图1,作BPC ∠平分线的反向延长线P A ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ︒∠=,而90452︒︒=是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .数学试卷 第5页(共8页) 数学试卷 第6页(共8页)三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)20.(本小题满分8分)嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++.发现系数“”印刷不清数. (1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(本小题满分9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(l )求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率; (3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.22.(本小题满分9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着5-,2-,1,9,且任意相邻四个台阶上数的和都相等. 尝试 (1)求前4个台阶上数的和是多少? (2)求第5个台阶上的数x 是多少? 应用 求从下到上前31个台阶上数的和.发现 试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.23.(本小题满分9分)如图,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN a ∠=. (1)求证:APM BPN △≌△; (2)当2MN BN =时,求a 的度数;(3)若BPN △的外心在该三角形的内部,直接写出a 的取值范围.24.(本小题满分10分)如图,直角坐标系xOy 中,一次函数152y x =-+的图象1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点(,4)C m .(1)求m 的值及2l 的解析式; (2)求AOC BOC S S -△△的值;-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共8页) 数学试卷 第8页(共8页)(3)一次函数1y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.25.(本小题满分10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,0A 为半径作优弧AB ,使点B 在O 右下方,且4tan 3AOB ∠=,在优弧AB 上任取一点P ,且能过P 作直线l OB ∥交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(本小题满分11分)如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)ky x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间t (秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用t 表示h ;(2)设5v =,用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及13y =时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t 的值及v 乙的范围.。

河北省石家庄市十八中2018-2019学年中考数学二模考试试卷及参考答案

河北省石家庄市十八中2018-2019学年中考数学二模考试试卷及参考答案

20. 两个多项式A和B,A=
,B=x2+4x+4.A-B=3x2-4x-20.其中A被墨水污染了.
(1) 求多项式A. (2) x取其中适合的一个数:2,-2,0,求 的值.
21. 某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将
结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:
A.
B.
C.
D.
3. 下列计算正确的是( ) A . (-a3)2=-a6 B . 3x+2y=6xy C . 3 -2 = D . =3 4. 河北省“十三五”规划新建农林发电2.1×106千瓦.则2.1×106千瓦原数是( ) A . 0.0000021千瓦 B . 210000千瓦 C . 2100000千瓦 D . 0.000021千瓦 5. 下图是由多个相同小立方体搭成的几何体,则它的左视图为( )
(1) 本次调查的学生总数为人,被调查学生的课外阅读时间的中位数是小时,众数是 小时; (2) 请你补全条形统计图 ,在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是 :
(3) 若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人? (4) 若学校选取A、B、C、D四人参加阅读比赛,两人一组分为两组,求A与C是一组的概率。(列表或树状图) 22. 已知P1=-2,P2=(-2)×(-2),P3=(-2)×(-2)×(-2),…,Pn=(-2)×(-2)x.…x(-2). (1) 计算P2+P3的值. (2) 猜想2P2018+P2019. (3) 猜想2PN+Pn+1· 23. 如图,直线a∥b,点M,N分别为直线a和直线b上的点,连接M,N,∠1=70°,点P是线段MN上一动点,直线DE始 终经过点P,且与直线a,b分别交与点D,E,设∠NPE=a.

2018年河北省石家庄中考数学试卷(含答案与解析)

2018年河北省石家庄中考数学试卷(含答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前河北省2018年初中毕业生升学文化课考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共42分)一、选择题(本大题共16小题,1~10小题,每小题3分,11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A B C D2.一个整数8155500…用科学记数法表示为108.155510⨯,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.如图是由“”和“”组成轴对称图形,该图形的对称轴是直线 ( )A .1lB .2lC .3lD .4l4.将29.5变形正确的是 ( )A .2229.590.5=+B .29.5=(10+0.5)(100.5)-C .2229.5102100.50.5=-⨯⨯+D .2229.5=9+90.5+0.5⨯5.如图,三视图对应的几何体是( )ABCD6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB .①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC .①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD .①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ 7.有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等.现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( )ABCD8.已知:如图,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不正确的是 ( ) A .作APB ∠的平分线PC AB C 交于点 B .过点P 作PC AB ⊥于点C 且AC BC = C .取AB 中点C ,连接PC D .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为13x x ==甲丙,15x x ==乙丁,223.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)10.如图中的手机截屏内容是某同学完成的作业,他做对的题数是( )A .2个B .3个C .4个D .5个11.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为( )A .北偏东30︒B .北偏东80︒C .北偏西30︒D .北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按如图的方向外等距扩1(单位:cm ),得到新的正方形,则这根铁丝需增加( ) A .4cmB .8cmC .(4)cm a +D .(8)cm a + 13.若22222nnnn+++=,则n =( ) A .1-B .2-C .0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁15.如图,点I 为ABC △的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为 ( ) A .4.5 B .4 C .3D .216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =.乙的结果是3c =或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确第Ⅱ卷(非选择题 共78分)二、填空题(本大题共3小题,共12分.17,18小题,每小题3分;19小题共6分.请把答案填在题中的横线上) 17.计算:123-=- . 18.若a ,b 互为相反数,则22a b -= . 19.如图1,作BPC ∠平分线的反向延长线P A ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ︒∠=,而90452︒︒=是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .数学试卷 第5页(共28页) 数学试卷 第6页(共28页)三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)20.(本小题满分8分)嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++.发现系数“”印刷不清数. (1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(本小题满分9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(l )求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率; (3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.22.(本小题满分9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着5-,2-,1,9,且任意相邻四个台阶上数的和都相等. 尝试 (1)求前4个台阶上数的和是多少? (2)求第5个台阶上的数x 是多少? 应用 求从下到上前31个台阶上数的和.发现 试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.23.(本小题满分9分)如图,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN a ∠=. (1)求证:APM BPN △≌△; (2)当2MN BN =时,求a 的度数;(3)若BPN △的外心在该三角形的内部,直接写出a 的取值范围.24.(本小题满分10分)如图,直角坐标系xOy 中,一次函数152y x =-+的图象1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点(,4)C m .(1)求m 的值及2l 的解析式; (2)求AOC BOC S S -△△的值;-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共28页) 数学试卷 第8页(共28页)(3)一次函数1y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.25.(本小题满分10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,0A 为半径作优弧AB ,使点B 在O 右下方,且4tan 3AOB ∠=,在优弧AB 上任取一点P ,且能过P 作直线l OB ∥交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(本小题满分11分)如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)ky x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间t (秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用t 表示h ;(2)设5v =,用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及13y =时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t 的值及v 乙的范围.5 / 14河北省2018年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】本题考查三角形的稳定性.根据已知四个图形,具有稳定性的是三角形,故选A . 【考点】三角形的稳定性 2.【答案】B【解析】本题考查科学记数法表示较大的数.108.15551081555000000⨯=,原数中有6个“0”,故选B . 【考点】科学记数法 3.【答案】C【解析】本题考查轴对称图形的对称轴.在轴对称图形中,对称轴两旁的图形要完全重合,根据“○”和“□”的排列规律可判断,该图形的对称轴是3l ,故选C . 根据对称轴两旁的图形确定对称轴是解答本题的关键. 【考点】轴对称图形的对称轴 4.【答案】C【解析】本题考查完全平方公式的变形.22229.5(100.5)102100.50.5=-=-⨯⨯+,故选C .【考点】完全平方公式的变形 5.【答案】C【解析】本题考查几何体的三视图.根据四个已知的几何体,它们的三视图如图所示.故选C .分别确定已知几何体的三视图是解答本题的有效方法.【考点】几何体的三视图 6.【答案】D【解析】本题考查尺规作图.根据已知作图,图①是作角平分线,对应Ⅳ;图②是过直线外一点作直线的垂6线,对应Ⅰ;图③是作线段的垂直平分线,对应Ⅱ;图④是过直线上一点作直线的垂线,对应Ⅲ,故选D .根据基本作图的步骤判定所作直线是解答本题的关键. 【考点】尺规作图 7.【答案】A【解析】本题考查等式的性质.在A 组中2个=3个;在B 组中,两边同时减去2个,则1个=2个;在C 组中,两边同时减去1个,则1个=2个;在D 组中,2个=4个,即1个=2,则由题意可以看出,只有A 组的等式不成立,即A 组中左右两边质量不相等,故选A .根据等式的性质判断左右两边质量是否相等是解答本题的关键. 【考点】等式的性质 8.【答案】B【解析】本题考查辅助线的作法.作图时只能作出“垂直”或“平分”其中一个条件,故选B . 【考点】辅助线的作法 9.【答案】D【解析】本题考查平均数、方差.根据已知条件可知,丁种麦苗的平均数大,方差小,∴丁种麦苗又高又整齐,故选D . 【考点】平均数、方差 10.【答案】B【解析】本题考查判断命题的对错.根据题意,1-的倒数是1-,命题错误,该同学判断正确;|3|3-=,命题正确,该同学判断错误;1,2,3,3的众数是3,命题错误,该同学判断错误;021=,命题正确,该同学判断正确;22()2m m m ÷-=-,命题正确,该同学判断正确.综上所述,该同学做对3道题,故选B .【考点】判断命题的对错 11.【答案】A【解析】本题考查方位角.如图,根据题意可知,150∠=︒,2150∠=∠=︒,3805030∠=︒-︒=︒∴, ∴快艇航行的方向为北偏东30︒,故选A .7 / 14根据已知条件求出方位角的度数是解答本题的关键. 【考点】方位角 12.【答案】B【解析】本题考查正方形的性质.如图,每个正方形的顶点处增加2 cm ,则共需增加8 cm ,故选B .找出两全正方形的边长的差值是解答本题的关键. 【考点】正方形的性质 13.【答案】A【解析】本题考查实数的运算.22222n n n n +++=,即422n=,122n =∴,1n =-∴,故选A . 掌握负指数幂的计算是解答本题的关键. 【考点】实数的运算 14.【答案】D【解析】本题考查分式的化简,根据题意,222222222121(2)12()()11111x x x x xx x x x x x x x x x x x x x x x x--------÷==-=-=------, ∴乙同学和丁同学的做法错误,故选D . 【考点】分式的化简 15.【答案】B【解析】本题考查平移的性质、三角形内心的概念、等腰三角形的性质.如图,设平移后三角形的两边与AB8边分别相交于点M ,N ,连接AI ,BI ,由平移性质可知AC IM ∥,CAI AIM ∠=∠∴,又∵I 是ABC △的内心,∴AI 平分GAM ∠,即CAI IAM ∠=∠,AIM IAM ∠=∠∴,AM IM =∴,同理,BN IN =,∴IMN △的周长为4AB =,故选B .作辅助线证明线段相等是解答本题的最佳途径.【考点】平移的性质、三角形内心的概念、等腰三角形的性质 16.【答案】D【解析】本题考查一次函数和二次函数的图象与性质.由题意可知,抛物线(3)(03)y x x c x =--+≤≤是将抛物线(3)y x x =--向上平移c 个单长度而得,∴抛物线(3)(03)y x x c x =--+≤≤与直线2y x =+有唯一交点即抛物线(3)y x x =--与直线2y x c =+-有唯一交点,联立方程组,解得1c =,经检验符合题意;又∴03x ≤≤,且c 为整数∴2c -的值可以是1-,2-,3-,∴c 的值为3,4,5,∴c 的值为1,3,4,5,故选D .将抛物线平移转换为直线平移是解答本题最简洁的方法. 【考点】一次函数和二次函数的图象与性质第Ⅱ卷二.填空题 17.【答案】22==. 掌握开方运算是解答本题的关键. 【考点】二次根式的运算 18.【答案】0【解析】本题考查相反数的性质.∴a ,b 互为相反数,∴27a b =,∴220a b -=. 【考点】相反数的性质 19.【答案】14 21【解析】本题考查正多边形的性质、设计图案.由图可知,当90BPC ∠=︒时,图案上方是正方形,两边是9 / 14正八边形,∴它的外轮廓周长为8243214⨯+-⨯=;当60BPC ∠=︒时,图案上方是等边三角形,两边是正十二边形,∴它的外轮廓周长是12233221⨯+-⨯=,当60BPC ∠︒<时,上方图案不是正多边形,∴图案的外轮廓周长最大为21.掌握正多边形内角之间的关系是构成图案的重要因素,也是解答本题的关键. 【考点】正多边形的性质、设计图案 三、解答题 20.【答案】解:(1)原式=22368652x x x x ++---=22 6.x -+(2)设“”为a ,则原式=2268652ax x x x ++---=2(5) 6.a x -+∵结果是常数,∴5a =.【解析】(1)先去括号,再合并同类项;(2)可设系数为a ,合并后2x 的系数为0,可解出a 的值,即为所猜的数值. 【考点】整式的化简 21.【答案】解:(1)62524÷=%(人),245649---=(人). 即被遮盖的数是9; 册数的中位数是5.(2)由条形图知,读书超过5册的学生共有6410+=(人), ∴P (读书超过5册的学生)=1024=512. (3)3.【解析】(1)先根据读6册的学生人数和所占的百分比求出抽查的学生人数,再减去读4册、6册、7册的人数,可求出读5册的学生人数,从而确定中位数;(2)根据概率公式,先求出读书超过5册的学生人数,再根据所抽查学生的总人数即可求出概率; (3)根据“最少的读了6册”和“中位数不变”可确定增加的人数. 【考点】统计知识的应用、求概率 22.【答案】解:尝试 (1)52193--++=.(2)由题意,得5219219x --++=-+++,解得5x =-.10应用 与(2)同理,得第6个到第8个台阶上的数依次是:2-,1,9,可见台阶上的数从下到上按5-,2-,1,9四个数依次循环排列.∵31743=⨯+,∴前31个台阶上数的和为73(521)15⨯+--+=. 发现41k -.【解析】尝试:(1)根据题意列出算式,计算出前4个台阶上的数字和; (2)根据(1)求出的和可列出方程,求出x 的值;应用:由题意可知台阶上的数的规律,可根据规律求出31个台阶上的数的和; 发现:用代数式表示“1”所在的台阶数. 【考点】探索规律、有理数的运算、列方程23.【答案】解:(1)证明:如图,∴P 为AB 中点,∴PA PB =.又∴A B ∠=∠,MPA NPB ∠=∠, ∴.APM BPN △≌△(2)由(1)得PM PN =,∴2MN PN =. ∴2MN BN =,∴PN BN =,∴50a B =∠=︒. (3)4090a ︒<<︒.【解析】(1)根据中点定义得AP BP =,结合已知条件,利用“ASA ”判定APM BPN △≌△; (2)根据全等三角形的对应边相等和已知条件,可证明PN =BN ,从而求出a 的度数; (3)根据条件说明三角形是锐角三角形,即可写出a 的取值范围. 【考点】全等三角形的判定和性质、等腰三角形的性质、三角形的外心 24.【答案】解:(1)(,4)C m 在直线152y x =-+上,∴1452m =-+,解得2m =.设2l 的解析式为y kx =,∴(2,4)C 在2l 上,∴42k =,即2k =. ∴2l 的解析式为2y x =.(2)把0y =代入152y x =-+,得10x =,∴=10OA .把0x =代入152y x =-+,得5y =,∴5OB =.11 / 14∴1104202AOC S =⨯⨯=△, 15252BOC S =⨯⨯=△. ∴20515AOC BOC S S -=-=△△.(3)12-,2,32. 【解析】(1)将点C 的坐标代人直线解析式,求出m 的值,再将点C 的坐标代入函数关系式,求出正比例函数的解析式;(2)先求出直线与坐标轴的交点,得线段的长,根据三角形的面积公式求解;(3)根据不能组成三角形的条件,分情况写出k 的值.【考点】一次函数的图象及其性质、三角形的面积25.【答案】解:(1)设AOP n ∠=︒,则π2613π180n ⨯=,得90n =︒,即90AOP ∠=︒; ∴l OB ∥, ∴426tan tan 3OP PQO AOB OQ x ∠=∠===.∴19.5x =.(2)要使x 变小,则l 向左平移.当l 平移到与AB 所在圆相切位置1l 时,如图,O 与l 的距离达到最大值126OP =,此时1Q 所对应的(负)数最小.在11Rt PQ O △中,114tan tan 3PQ O AOB ∠=∠=.设113PQ k =,则1426OP k ==,于是15OQ k =, ∴26532.5.4x =-⨯=-最小 此时直线l 与AB 所在圆相切.(3)31.5±,16.5-.过点P 作PH OA ⊥于H .在Rt PNQ △中,由4tan 3HOP ∠=,设4PH k =,3HQ k =,则512.5PQ k ==,∴10PH =,7.5HQ =.在Rt POH △中,24OH ==.①当点P 在O 右上方时,如图1,31.5x OQ OH HQ ==+=;②当点P 在O 左上方时,如图2,16.5x OQ OH HQ -==-=,∴16.5x =-;③当点P 在O 左下方时,如图3,31.5x OQ OH HQ -==+=,∴=31.5x -.另外,∴54tan tan 123POH AOB ∠==∠<, ∴POH AOB ∠∠<.∴优弧AB 上不存在点P 在O 右下方的情况.【解析】(1)根据弧长公式求出圆心角度数,再根据锐角三角函数求出线段的长,即为x 的值;13 / 14(2)根据切线性质和锐角三角函数求出线段的长,利用勾股定理求解;(3)根据已知线段的长,利用锐角三角函数和勾股定理求出线段的长,根据线段的长确定点在数轴上的值,即为x 的值.【考点】弧长公式、锐角三角函数、切线的性质、勾股定理26.【答案】解:(1)由题意,点A 为(1,18),代入k y x =,得181k =,∴18k =; 设2h at =,将1t =,5h =代入,得5a =,∴25h t =.(2)∴5v =,1AB =,∴51x t =+;∵25h t =,18OB =,∴2518y t =-+;由51x t =+,得1(1)5t x =-. ∴2211289(1)18()5555y x y x x =--+=-++或; 当13y =时,2113(1)185x =--+,得6x =或4-. ∴1x ≥,∴只取6x =.把6x =代入18y x=,得3y =. ∴运动员与正下方滑道的竖直距离是13310-=(米)(3) 1.8t =;7.5v 乙>.把18y =.代入2518y t =-+,得2 3.24t =(即1825),∴ 1.8t =±(舍去负值).从而10x =. ∴甲为(10,18).恰好落在滑道18y x=上. 此时乙为(1 1.8,1.8)v +乙. 由题意,得1 1.8(15 1.8) 4.5v +-+⨯>乙,∴7.5v 乙>.【解析】(1)将已知点的坐标代入反比例函数解析式,求出k 的值,再根据题意列出h 和t 的函数关系式,将对应值代入即可求出待定系数,从而用t 表示h ;(2)根据题意列出函数关系式,用待定系数表示点的坐标,代入整理后得二次函数关系式,根据函数值列出方程,求解后,取符合题意的值代入反比例函数解析式,从而求出距离;(3)根据题意列出方程,求出t 的值,再确定v 乙的范围.【考点】反比例函效的图象及其性质、二次函数的应用。

河北省石家庄市十八中2018-2019学年中考数学二模考试试卷

河北省石家庄市十八中2018-2019学年中考数学二模考试试卷

第1页,总21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………河北省石家庄市十八中2018-2019学年中考数学二模考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共16题)x ,下列关于年龄的统计量不会发生改变的是( )年龄/岁 131415 16 频数 5 15 x 10- xA . 平均数、中位数B . 众数、方差C . 平均数、方差D . 众数、中位数2. 下列各数中,小于-3的数是( )A . 1B . 0C . -4D . -23. 下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4. 下列计算正确的是( )A . (-a 3)2=-a 6B . 3x+2y=6xyC . 3 -2 =D . =35. 河北省“十三五”规划新建农林发电2.1×106千瓦.则2.1×106千瓦原数是( ) A . 0.0000021千瓦 B . 210000千瓦 C . 2100000千瓦 D . 0.000021千瓦6. 下图是由多个相同小立方体搭成的几何体,则它的左视图为( )答案第2页,总21页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .7. 已知反比例函数y= 的图象过二、四象限,则一次函数y=kx+k 的图象大致是( )A .B .C .D .8. 已知方程组 的解为 ,则O 、□分别为( )A . 1,2B . 1,5C . 5,1D . 2,49. 证明:平行四边形对角线互相平分。

石家庄市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

石家庄市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

石家庄市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列生活现象中,属于平移的是()A. 足球在草地上滚动B. 拉开抽屉C. 投影片上的文字经投影转换到屏幕上D. 钟摆的摆动【答案】B【考点】生活中的平移现象【解析】【解答】解:拉开抽屉是平移。

【分析】根据平移的定义,平移只改变图形的位置,不改变图形的大小,方向,即可得出结论。

2、(2分)下列各组数中①;②;③;④是方程的解的有()A.1个B.2个C.3个D.4个【答案】B【考点】二元一次方程的解【解析】【解答】解:把①代入得左边=10=右边;把②代入得左边=9≠10;把③代入得左边=6≠10;把④代入得左边=10=右边;所以方程的解有①④2个.故答案为:B【分析】能使二元一次方程的左边和右边相等的未知数的值就是二元一次方程的解,二元一次方程有无数个解,根据定义将每一对x,y的值分别代入方程的左边算出答案再与右边的10比较,若果相等,x,y的值就是该方程的解,反之就不是该方程的解。

3、(2分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠2度数为()A. 45°B. 60°C. 90°D. 120°【答案】C【考点】垂线,平行线的性质【解析】【解答】解:∵c⊥a,∴∠1=90°,∵a∥b,∴∠2=∠1=90°.故答案为:C.【分析】根据垂直的定义求出∠1度数,再根据平行线的性质,得出∠2=∠1,即可得出答案。

4、(2分)某商场为了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示.根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()A. 46人B. 38人C. 9人D. 7人【答案】D【考点】扇形统计图【解析】【解答】解:因为顾客中对商场的服务质量表示不满意的占总体的百分比为:1﹣9%﹣46%﹣38%=7%,所以100名顾客中对商场的服务质量不满意的有100×7%=7人.故答案为:D【分析】先根据扇形统计图计算D所占的百分比,然后乘以顾客人数可得不满意的人数.5、(2分)股票有风险,入市须谨慎、我国A股股票市场指数从2007年10月份6100多点跌到2008年10月份2000点以下,小明的爸爸在2008年7月1日买入10手某股票(股票交易的最小单位是一手,一手等于100股),如图,是该股票2008年7﹣11月的每月1号的收盘价折线图,已知8,9月该股票的月平均跌幅达8.2%,10月跌幅为5.4%,已知股民买卖股票时,国家要收千分之二的股票交易税即成交金额的2‰,下列结论中正确的个数是()①小明的爸爸若在8月1日收盘时将股票全部抛出,则他所获纯利润是(41.5﹣37.5)×1000×(1﹣2‰)元;②由题可知:10月1日该股票的收盘价为41.5×(1﹣8.2%)2元/股;③若小明的爸爸的股票一直没有抛出,则由题可知:7月1日﹣11月1日小明的爸爸炒股票的账面亏损为37.5×1000×(1﹣2‰)﹣41.5×1000×(1﹣8.2%)2×(1﹣5.4%)元.A. 0个B. 1个C. 2个D. 3个【答案】C【考点】折线统计图【解析】【解答】解:读图分析可得:③说法不对,账面亏损不含股票交易税;故应为账面亏损为37.5×1000﹣41.5×1000×(1﹣8.2%)2×(1﹣5.4%)元.①与②的说法都正确,故答案为:C【分析】根据统计图中的数据进行计算,从而进行计算即可判断.6、(2分)如图所表示的是下面哪一个不等式组的解集()A.B.C.D.【答案】D【考点】在数轴上表示不等式(组)的解集【解析】【解答】解:由图示可看出,从-2出发向右画出的线且-2处是空心圆,表示x>-2;从1出发向左画出的线且1处是实心圆,表示x≤1,所以这个不等式组为故答案为:D.【分析】写出图中表示的两个不等式的解集,这两个式子就是不等式.这两个式子组成的不等式组就满足条件.不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7、(2分)小明、小敏、小新商量要在毕业前夕给老师办公室的4道窗户剪贴窗花表达大伙的尊师之情,今年是农历鸡年,他们设计了金鸡报晓的剪纸图案.小明说:“我来出一道数学题:把剪4只金鸡的任务分配给3个人,每人至少1只,有多少种分配方法”小敏想了想说:“设各人的任务为x、y、z,可以列出方程x+y+z=4.”小新接着说:“那么问题就成了问这个方程有几个正整数解.”现在请你说说看:这个方程正整数解的个数是()A. 6个B. 5个C. 4个D. 3个【答案】D【考点】三元一次方程组解法及应用【解析】【解答】解:①当x=1时,y=1,z=2或y=2,z=1;②当y=1时,x=1,z=2或x=2,z=1;③当z=1时,x=1,y=2或y=1,x=2.故答案为:D.【分析】根据题意列出三元一次方程,根据每人至少1只,分三种情况:当x=1;当y=1;当z=1,求出其整数解即可。

2018年中考数学挑战压轴题(含答案)

2018年中考数学挑战压轴题(含答案)

2017挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1. 如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P( 0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T (0,t) (t V2)是射线PO上一点, 当以P、B、Q为顶点的三角形与△ PAT相似时,求所有满足条件的t的值.图①图②备用图2. 如图,已知BC是半圆O的直径,BC=8过线段BO上一动点D,作AD丄BC 交半圆O于点A,联结AO,过点B作BH丄AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD(2)设BD=x, BE?BF=y求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当厶卩人丘与厶FBG相似时,求BD的长度.3•如图,在平面直角坐标系xOy中,直线AB过点A (3, 0)、B (0, m) (m>0), tan / BAO=2(1)求直线AB的表达式;(2)反比例函数y= 的图象与直线AB交于第一象限内的C、D两点(BD v BC),x当AD=2DB时,求&的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y的图象于点F,分别联结OE OF,当厶OE2A OBE时,请直接写出满足条x4. 如图,在Rt A ABC中,/ ACB=90, AC=1, BC=7,点D是边CA延长线的一点,AE丄BD,垂足为点E, AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan / AFB的值;(2)CE?AF的值是否随线段AD长度的改变而变化?如果不变,求出CE?AF的值; 如果变化,请说明理由;(3)当△BGE和△ BAF相似时,求线段AF的长.5. 如图,平面直角坐标系xOy中,已知B (- 1, 0), —次函数y=-x+5的图象与x 轴、y轴分别交于点A、C两点,二次函数y=-x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△ APC的面积;(3)如果点Q在线段AC上,且△ ABC与厶AOQ相似,求点Q的坐标.6 .已知:半圆O的直径AB=6,点C在半圆O上,且tan / ABC=2匚,点D为弧AC 上一点,联结DC (如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△ MBC与厶MOC相似,求CD的长;(3)联结OD,当OD// BC时,作/ DOB的平分线交线段DC于点N,求ON的长.7•如图,已知二次函数y=«+bx+c(b, c为常数)的图象经过点A (3,- 1), 点C (0,- 4),顶点为点M,过点A作AB// x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m (m > 0)个单位,使平移后得到的二次函数图象的顶点落在△ ABC的内部(不包含厶ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△ BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程)•备用医I因动点产生的等腰三角形问题8 .如图1,在厶ABC中,/ ACB=90, / BAC=60,点E是/BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH丄AC,垂足为H,连接EF, HF.(1)如图1,若点H是AC的中点,AC=2「,求AB, BD的长;(2)如图1,求证:HF=EF(3)如图2,连接CF, CE猜想:△ CEF是否是等边三角形?若是,请证明;若不是,说明理由.9 •已知,一条抛物线的顶点为E (- 1,4),且过点A (-3, 0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且-3v m v- 1,过点D作DK 丄x轴,垂足为K, DK分别交线段AE、AC于点G、H.(1) 求这条抛物线的解析式;(2) 求证:GH=HK10.如图,已知在Rt A ABC中,/ ACB=90, AB=5, si nA丄,点P是边BC上的5一点,PEI AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q, 线段CQ与边AB交于点D.(1) 求AD的长;(2) 设CP=x △ PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3) 过点C作CF丄AB,垂足为F,联结PF、QF,如果△ PQF是以PF为腰的等腰三角形,求CP的长.C C11 •如图(1),直线y=- x+n交x轴于点A,交y轴于点(0,4),抛物线y=「x2+bx+c3 3经过点A,交y轴于点B (0,-2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD丄PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当厶BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将厶BDP绕点B逆时针旋转,得到△ BD P'当旋转角/ PBP = / OAC且点P的对应点P落在坐标轴上时,请直接写出点P的坐标.12 •综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx - 8与x轴交于A,B两点,与y轴交于点C,直线I经过坐标原点0,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE已知点A,D的坐标分别为(-2, 0),(6,- 8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使厶FOE^A FCE若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0, m),直线PB与直线是等腰三角形.因动点产生的直角三角形问题13. 已知,如图1,在梯形ABCD中,AD// BC,/ BCD=90, BC=11, CD=6, tan / ABC=2点E在AD边上,且AE=3ED EF// AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM丄MN,设FM?cos/ EFC=x CN=y求y关于x的函数解析式,并写出它的定义域;(3)如果△ AMN为等腰直角三角形,求线段FM的长.C C14. 如图,在矩形ABCD中,点0为坐标原点,点B的坐标为(4, 3),点A、C 在坐标轴上,点P在BC边上,直线h:y=2x+3,直线12:y=2x-3.(1)分别求直线l1与x轴,直线12与AB的交点坐标;(2)已知点M在第一象限,且是直线12上的点,若△ APM是等腰直角三角形,求点M的坐标;(3)我们把直线h和直线12上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).因动点产生的平行四边形问题15. 如图,在平面直角坐标系xOy 中,抛物线y=ax - 2ax -3a (a v 0)与x 轴交 于A , B 两点(点A 在点B 的左侧),经过点A 的直线I : y=kx+b 与y 轴交于点C , 与抛物线的另一个交点为D ,且CD=4AC(1) 直接写出点A 的坐标,并求直线I 的函数表达式(其中k , b 用含a 的式子 表示);(2) 点E 是直线I 上方的抛物线上的一点,若△ ACE 的面积的最大值为「,求a4的值;(3) 设P 是抛物线对称轴上的一点,点 Q 在抛物线上,以点A ,D ,P ,Q 为顶OA=5, AB=4,点D 为边AB 上一点,将△ BCD 沿直 线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC, OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1) 求点E 坐标及经过O , D , C 三点的抛物线的解析式;(2) 一动点P 从点C 出发,沿CB 以每秒2个单位长的速度向点B 运动,同时 动点Q 从E 点出发,沿EC 以每秒1个单位长的速度向点C 运动,当点P 到达点 B 时,两点同时停止运动.设运动时间为 t 秒,当t 为何值时,DP=DQ(3) 若点N 在(2)中的抛物线的对称轴上,点 M 在抛物线上,是否存在这样 的点M 与点N ,使得以M , N , C, E 为顶点的四边形是平行四边形?若存在, 请求出M 点的坐标;若不存在,请说明理由.16.如图,在矩形OABC 中, 请说明理由.17•如图,抛物线y=-X123+2X+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.1 求直线AD的解析式;2 如图1,直线AD上方的抛物线上有一点F,过点F作FG丄AD于点G,作FH平行于X轴交直线AD于点巴求厶FGH周长的最大值;3 点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A, M , P, Q为顶点的四边形是以AM为边的矩形•若点T和点Q关于AM所在直线对称,求点T 的坐标.18•如图,点A和动点P在直线I上,点P关于点A的对称点为Q,以AQ为边作Rt A ABQ,使/ BAQ=90 , AQ: AB=3: 4,作厶ABQ的外接圆0.点C在点P 右侧,PC=4过点C作直线m丄I,过点O作OD丄m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF冷CD,以DE, DF为邻边作矩形DEGF设AQ=3x.(1)用关于X的代数式表示BQ, DF.(2)当点P在点A右侧时,若矩形DEGF勺面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交。

【附5套中考模拟试卷】河北省石家庄市2019-2020学年中考数学第二次押题试卷含解析

【附5套中考模拟试卷】河北省石家庄市2019-2020学年中考数学第二次押题试卷含解析

河北省石家庄市2019-2020学年中考数学第二次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在Rt △ABC 中,∠B =90º,AB =6,BC =8,点D 在BC 上,以AC 为对角线的所有□ADCE 中,DE 的最小值是( )A .4B .6C .8D .102.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.A .B 与C B .C 与D C .E 与F D .A 与B3.如图,在ABC ∆中,90, 4ACB AC BC ∠=︒== ,将ABC ∆折叠,使点A 落在BC 边上的点D 处, EF 为折痕,若3AE =,则sin CED ∠的值为( )A .13B .22C .2D .354.下列汽车标志中,不是轴对称图形的是( )A .B .C .D . 5.数据4,8,4,6,3的众数和平均数分别是( )A .5,4B .8,5C .6,5D .4,56.如图,已知△ABC 中,∠C=90°,2,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为( )A.2-2B.32C.3-1D.17.在△ABC中,∠C=90°,tanA =,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C .240 D.1208.如图,某计算机中有、、三个按键,以下是这三个按键的功能.(1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1.(2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2.(3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3.若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A.0.01 B.0.1 C.10 D.1009.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.210.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF =142°,则∠C的度数为()A.38°B.39°C.42°D.48°11.在-3,12,0,-2这四个数中,最小的数是( )A.3B.12C.0 D.-212.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.23B.2 C.4 D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是_____.14.分解因式:3a2﹣12=___.15.已知扇形的弧长为 ,圆心角为45°,则扇形半径为_____.16.如图,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分线MN交AC于点D,则∠DBC 的度数是____________.17.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.18.因式分解:a3b﹣ab3=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.(1)求证:B是EC的中点;(2)分别延长CD、EA相交于点F,若AC2=DC•EC,求证:AD:AF=AC:FC.20.(6分)如图,一次函数y=kx+b (k 、b 为常数,k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=(n 为常数,且n≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D ,若OB=2OA=3OD=1.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求△CDE 的面积;(3)直接写出不等式kx+b≤的解集.21.(6分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的45,问甲、乙两公司人均捐款各多少元? 22.(8分)先化简,再求值:2(m ﹣1)2+3(2m+1),其中m 是方程2x 2+2x ﹣1=0的根23.(8分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间t (单位:小时),将获得的数据分成四组,绘制了如下统计图(A :07t <≤,B :714t <≤,C :1421t <≤,D :21t >),根据图中信息,解答下列问题:(1)这项工作中被调查的总人数是多少?(2)补全条形统计图,并求出表示A 组的扇形统计图的圆心角的度数;(3)如果李青想从D 组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC 于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=,求CG的长.25.(10分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.26.(12分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求O的半径.27.(12分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【详解】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。

河北省石家庄40求实2018-2019学年九年级结课考试数学试卷word版+答案

河北省石家庄40求实2018-2019学年九年级结课考试数学试卷word版+答案

河北省⽯家庄40求实2018-2019学年九年级结课考试数学试卷word版+答案⽯家庄40求实2018-2019学年第⼆学期初三结课考试数学试卷⼀.选择题1.计算﹣(﹣2014)的结果是() A .﹣2014B .2014C .12014-D .2.据教育部门统计,⽯家庄市2018年参加普通⾼中招⽣考试的⼈数约为83007⼈,数字83007精确到万位表⽰为()A.48.310?B. 48.300710?C. 4810?D.38310? 3.不等式组的解在数轴上表⽰为()A .B .C .D .4.如图,⼀个含有30°⾓的直⾓三⾓板的两个顶点放在⼀个矩形的对边上,如果∠1=25°,那么∠2的度数是()A .100°B .105°C .115°D .120°5.如图是五个相同的⼩正⽅体搭成的⼏何体,其俯视图是()A .B .C .D .6.⼩丁去看某场电影,只剩下如图所⽰的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若⼩丁从中随机抽取⼀个,则抽到的座位号是偶数的概率是()A.B.C.D.m-+==0,则m+n的值为()7.已知()210A.﹣1B.0C.1D.28.如图,△ABC和△A1B1C1是以点O为位似中⼼的位似三⾓形,若C1为OC的中点,AB =4,则A1B1的长为()A.1B.2C.4D.89.下列运算正确的是()A.(x﹣1)2=x2﹣1B.(﹣x+1)(﹣x﹣1)=﹣x2﹣1C.(﹣)﹣2=1D.﹣(﹣2ab2)2=﹣4a2b410.⼀元⼆次⽅程3x2-2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有⼀个实数根D.没有实数根11.如图,直线m∥n,圆⼼在直线n上的⊙A是由⊙B平移得到的,则图中两个阴影三⾓形的⾯积⼤⼩关系是()A.S1<S2B.S1=S2C.S1>S2D.不能确定12.已知点A(x1,y1)、B(x2,y2)是反⽐例函数y=图象上的点,若x1>0>x2,则下列⼀定成⽴的是()A.y1>y2>0 B.y1>0>y2C.0>y1>y2D.y2>0>y113.如图,⼩聪⽤⼀块有⼀个锐⾓为30°的直⾓三⾓板测量树⾼,已知⼩聪和树都与地⾯垂直,且相距3⽶,⼩聪⾝⾼AB为1.7⽶,则这棵树的⾼度是()⽶.A.10.7B.4.3C.4.5D.4.714.如图,在正⽅形ABCD 中,AD =6,点E 是边CD 上的动点(点E 不与端点C ,D 重合),AE 的垂直平分线FG 分别交AD ,AE ,BC 于点F ,H ,G ,当时,DE 的长为()A .2B .C .D .415.如图,已知点A (2,2)关于直线y =kx (k>0)的对称点恰好落在x 轴的正半轴上,则k 的值是()A .2B .C .21- D .21+16.如图,两个反⽐例函数y =和y =的图象分别是C 1和C 2,点P 是C 1上⾃左向右运动的动点,PD ⊥x 轴,垂⾜为C ,交C 2于点D ,PA ⊥y 轴,垂⾜为B ,交C 2于点A ,则关于四边形ABCD 的⾯积说法正确的是()A.逐渐变⼤B.逐渐变⼩C.不变,⾯积为D.不变,⾯积为4⼆、填空题17.因式分解:x2﹣2x=.18.⼀个圆形⼈⼯湖如图所⽰,弦AB是湖上的⼀座桥,已知桥AB长100m,测得圆周⾓∠ACB=45°,则这个⼈⼯湖的直径AD为______⽶.19.图1是⼀个⼋⾓星形纸板,图中有⼋个直⾓,⼋个相等的钝⾓,每条边都相等.如图2将纸板沿虚线进⾏切割,⽆缝隙⽆重叠的拼成图3所⽰的⼤正⽅形,其⾯积为8+4,则图3中线段AB的长为.三、解答题20.(1)计算:|﹣2|×(﹣1)0﹣2sin30°(2)化简:(a+2)(a﹣2)﹣a(a﹣1)21.在⼤课间活动中,体育⽼师随机抽取了七年级甲、⼄两班部分⼥学⽣进⾏仰卧起坐的测试,并对成绩进⾏统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a=,b=,并将统计图补充完整;(2)如果该校七年级共有⼥⽣180⼈,估计仰卧起坐能够⼀分钟完成30或30次以上的⼥学⽣有多少⼈?(3)已知第⼀组中只有⼀个甲班学⽣,第四组中只有⼀个⼄班学⽣,⽼师随机从这两个组中各选⼀名学⽣谈⼼得体会,则所选两⼈正好都是甲班学⽣的概率是多少?22.如图,平⾏四边形ABCD中,E为BC边上⼀点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.23.问题呈现如图1,在边长为1的正⽅形⽹格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.⽅法归纳求⼀个锐⾓的三⾓函数值,我们往往需要找出(或构造出)⼀个直⾓三⾓形.观察发现问题中∠CPN不在直⾓三⾓形中,我们常常利⽤⽹格画平⾏线等⽅法解决此类问题,⽐如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN 就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正⽅形⽹格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,⽤上述⽅法构造⽹格求∠CPN的度数.24.某批发部某⼀玩具价格如图所⽰,现有甲、⼄两个商店,计划在“六⼀”⼉童节前到该批发部购买此类玩具,两商店所需玩具总数为120个,⼄商店所需数量不超过50个,设甲商店购买x个,如果甲、⼄两商店分别购买玩具,两商店需付款总和为y元.(1)求y关于x的函数关系式,并写出⾃变量x的取值范围;(2)若甲商店购买不超过100个,请说明甲、⼄两商店联合购买⽐分别购买最多可节约多少钱;(3)“六⼀”⼉童节之后,该批发部对此玩具价格作了如下调整:数量不超过100个时,价格不变,数量超过100个时,每个玩具降价a元,在(2)的条件下,若甲、⼄两商店“六⼀”⼉童节之后去批发玩具,最多可节约2800元,求a的值.25.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上⽅的抛物线上求⼀点P,使△PBC⾯积为1;(3)将线段BC绕点B逆时针旋转90o,点C的对应点记为点Q,点Q能否落在抛物线的对称轴上?若存在,求出Q点坐标;若不存在,说明理由26.已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图1),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)(1)半圆的直径落在对⾓线AC上时,如图2所⽰,半圆与AB的交点为M,求AM的长;(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图3所⽰,求劣弧AP的长;(3)在旋转过程中,半圆弧与直线CD只有⼀个交点时,设此交点与点C的距离为d,直接写出d的取值范围.答案:⼀.选择题1.B. 2.C 3.C 4.C 5.A6.C7.A 8.B.9.D.10.D.11.B.12.B13.D 14. B.15.B.16.D.⼆.填空题17.x(x﹣2)18.19.+1三.解答题(共7⼩题)20.解:(1)|﹣2|×(﹣1)0﹣2sin30°=2×1﹣2×=2﹣1=1;(2)原式=a2﹣4﹣a2+a=﹣4+a.21.解:(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总⼈数为:3÷0.15=20(⼈),∴b=20×0.20=4(⼈);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够⼀分钟完成30或30次以上的⼥学⽣有:180×(0.35+0.20)=99(⼈);(3)画树状图得:∵共有12种等可能的结果,所选两⼈正好都是甲班学⽣的有3种情况,∴所选两⼈正好都是甲班学⽣的概率是:=.22.(1)证明:∵在平⾏四边形ABCD中,AD∥BC,BC=AD,∴∠EAD=∠AEB,⼜∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS).(2)解:∵AE平分∠DAB,∴∠BAE=∠DAE,∴∠BAE=∠AEB=∠B,∴△ABE为等边三⾓形,∴∠BAE=60°,∴∠BAC=∠BAE+∠EAC=60°+25°=85°,∵△ABC≌△EAD,∴∠AED=∠BAC=85°.23.解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,∴tan∠CPN=tan∠DNM===2,故答案为2.(2)如图2中,取格点D,连接CD,DM.∵CD∥AN,∴∠CPN=∠DCM,∵△DCM是等腰直⾓三⾓形,∴∠DCM=∠D=45°,∴cos∠CPN=cos∠DCM=.(3)如图3中,如图取格点H,连接AN、HN.∵PC∥HN,∴∠CPN=∠ANH,∵AH=HN,∠AHN=90°,∴∠ANH=∠HAN=45°,∴∠CPN=45°.24.解:(1)∵⼄商店所需数量不超过50个∴120﹣x≤50∴x≥70∴70≤x≤120设玩具的单价m元,当50≤x≤100,单价与数量的关系式为m=kx+b由题意得:解得∴m=﹣x+100∴当70≤x≤100,y=(﹣x+100)x+80(120﹣x)=﹣x2+20x+9600当100<x≤120,y=60x+80(120﹣x)=9600﹣20x(2)∵y=﹣x2+20x+9600=﹣(x﹣25)2+9850 (70≤x≤100)∴当x=70时,y最⼤值为9040元,∴最多节约的费⽤=9040﹣120×60=1840元答甲、⼄两商店联合购买⽐分别购买最多可节约1840元.(3)由题意得:9040﹣120(60﹣a)=2800a=8答:a的值为8元25.解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代⼊得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S△PBC=OB?DP=×3×(﹣x2+x)=﹣x2+x.⼜∵S△PBC=1,∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).26.解:(1)在图2中,连接B′M,则∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=5.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=.(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G.∵半圆与直线CD相切,∴ON⊥DN,∴四边形DGON为矩形,∴DG=ON=2,∴AG=AD﹣DG=1.在Rt△AGO中,∠AGO=90°,AO=2,AG=1,∴∠AOG=30°,∠OAG=60°.⼜∵OA=OP,∴△AOP为等边三⾓形,∴==π.(3)由(2)可知:△AOP为等边三⾓形,∴DN=GO=OA=,∴AN=AD+DN=4+.当点B′在直线CD上时,如图4所⽰.在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,∴B′D==,∴CB′=4﹣.∵AB′为直径,∴∠ADB′=90°,∴当点B′在点D右边时,半圆交直线CD于点D、B′.∴当半圆弧与直线CD只有⼀个交点时,4﹣≤d<4或d=4+.。

2018-2019 石家庄重点中学中考数学模拟考试

2018-2019 石家庄重点中学中考数学模拟考试

.......o .............o ............. o .. 3. 如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A. 1.8B. 2.4C. 3.2D. 3.6第2页 共20页※在※※装※※订※※线※※内※※答※※题※※※※※※※※※※※※※※※※※ .o .............o .............订.............o .............o .............线.............o .............o ..............o ..............o .................................6. 如图,数轴上点M 所表示的数可能是( )A. 1.5B. -1.6C. -2.6D. -3.47. 如图,在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF ∥BC 交AC 于M ,若CM =5,则 等于( )A. 75B. 100C. 120D. 125 8. 方程2x (x -3)=5(x -3)的解是( )A. x =3B. x =2.5C. x 1=3,x 2=2.5D. x =-39. 若二次函数y =ax 2+bx +c (a ≠0)的图象上有两点,坐标分别为(x 1,y 1),(x 2,y 2),其中x 1<x 2,y 1y 2<0,则下列判断正确的是( )A. a <0B. a >0C. 方程ax 2+bx +c =0必有一根x 0满足x 1<x 0<x 2 D. y 1<y 2 10. 下列四个图案中,属于中心对称图形的是( )第3页 共20页....... o ............ A.B.C.D.11. 某厂接到720件衣服的定单,预计每天做48件,正好按时完成,后因客户要求提前5天x 件,则x 应满足的方程为( ).A.-=5 B.+5=C.-=5 D. -=5 当k >0时,正比例函数y =kx 的图象大致是( )第4页 共20页不※※要※※在※※装※※订※※线※※内※※答※※题※※※※※※※※※※※※※※※※※ .....装.............o .............o .............订.............o .............o .............线.............o .............o ..............o ..............o ..............o .......................A.B.C.第5页 共20页...o .............o ............. o ...........装.............o .............o ............. o ............订.............o .............o ............. o ............线.............o .............o ............. o ............. o ............ D.第6页 共20页※※要※※在※※装※※订※※线※※内※※答※※题※※※※※※※※※※※※※※※※※ 装.............o .............o .............订.............o .............o .............线.............o .............o ..............o ..............o ..............o .......................13. 如图所示几何体的俯视图是( )A. B. C. D.14. 如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A. 线段CD 的中点B. OA 与OB 的中垂线的交点C. OA 与CD 的中垂线的交点D. CD 与∠AOB 的平分线的交点15. 甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x 千米/时,可列方程为( )A.B.C. D.第7页 共20页.....o .............o ............. o ............线.............o .............o ............. o ............. o ............16. 如图,DE ∥BC ,在下列比例式中,不能成立的是( )B.C.D._________. y 3分解因式的结果是______.第8页 共20页※※装※※订※※线※※内※※※题※※※※※※※※※※※※※※※※※ .......o .............订.............o .............o .................o .............o ..............o ..............o ..............o .......................19. 如图,AB 是⊙O 直径,弦AD ,B C 相交于点E ,若CD =5,AB =13,则=_____.三、解答题的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x (min)与通话费y (元)的关系如图所示:(1)分别求出通话费y 1,y 2与通话时间x 之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜.21. 如图,已知某小区的两幢10层住宅楼间的距离为AC =30 m ,由地面向上依次为第1层、第2层、…、第10层,每层高度为3 m.假设某一时刻甲楼在乙楼侧面的影长EC =h ,太阳光线与水平线的夹角为α .第9页 共20页o ...........装.............o .............o ............. o ............订.............o .............o ............. o ............线.............o .............o ............. o ............. o ............(1)用含α的式子表示h (不必指出α的取值范围);当α=30°时,甲楼楼顶B 点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几 ?如图1,在Rt △ABC 中,∠C =90°,BC =8厘米,点D 在AC 上,CD =3厘米.点P ,Q 分A ,C 两点同时出发,点P 沿AC 方向向点C 匀速移动,速度为每秒k 厘米,行完AC 全8秒;点Q 沿CB 方向向点B 匀速移动,速度为每秒1厘米.设运动的时间为x 秒 ,△DCQ 的面积为y 1平方厘米,△PCQ 的面积为y 2平方厘米.第10页共20页第11页 共20页........................o .............内.............o .............o ............. o ...........装.............o .............o ............. o ............订.............o .............o ............. o ............线.............o .............o ............. o ............. o ............※要※※在※※装※※订※※线※※内※※答※※题※※※※※※※※※※※※※※※※※装.............o.............o.............订.............o.............o.............线.............o.............o..............o..............o..............o............(1)求y1与x的函数关系,并在图2中画出y1的图象;(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;(3)在图2中,点G是x轴正半轴上一点(0<OG<6),过G作EF垂直于x轴,分别交y1,y2于点E,F.①说出线段EF的长在图1中所表示的实际意义;②当时,求线段EF长的最大值.23. 如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?四、证明题第12页共20页第13页 共20页...........装.............o .............o ............. o ............订.............o .............o ............. o ............线.............o .............o ............. o ............. o ............24. 如图,已知在四边形ABCD 中,E 是AC 上一点,∠1=∠2,∠3=∠4.求证:∠5=∠6.第14页 共20页※※※答※※题※※※※※※※※※※※※※※※※※ o .............外.............o .............线.............o .............o ..............o ..............o ..............o .......................25. 如图,△ABC 中BD ,CD 平分∠ABC ,∠ACB ,过D 作直线平行于BC ,交AB ,AC 于E ,F ,求证:EF =BE +CF .五、计算题26. 计算:(-3)÷(1.5)﹣6×(-)+|﹣32﹣9|27. 计算:-22÷(-1)2-×[4-(-5)2] 参考答案1. 【答案】C 【解析】根据有理数的运算可得-2×(-2)=4.故选C.2. 【答案】A 【解析】∵28a 2b m÷4a n b 2=7a 2-n b m-2=7b 2,∴2-n =0,m -2=2,解得m =4,n =2.故选A.3. 【答案】D 【解析】连接BF ,交AE 与点H ,由折叠的性质可得FE=BE ,BF ⊥AE ,∵BC =6,点E 为BC 的中点,∴BE =3,又Rt △ABE 中,AB =4,由勾股定理得第15页 共20页= =5,∴BH==,则BF =,在△BFC 中,FE=BE=EC ,∴∠BFC =90°,∴CF = - = -.故选D.【答案】D 【解析】由分式及二次根式有意义的条件可得:x -1≥0且x -2≠0,解得x ≥1且≠2,故选D.【答案】B 【解析】三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所成的.故选B.【答案】C 【解析】从数轴上看,-3<M <-2,即-3<-2.6<-2.故选C.【答案】B 【解析】∵CE 平分∠ACB ,CF 平分ACD ,∴∠ACE =∠ACB ,∠ACF =∠ACD ,即∠ECF =(∠ACB +∠ACD )=90°,∴△EFCEF ∥BC ,CE 平分∠ACB ,CF 平分ACD ,∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF ,∴CM=EM=MF =5,即EF =10,由勾股定理可知CE 2+CF 2=EF 2=100.故选B.【答案】C 【解析】因为2x (x -3)-5(x -3)=0,所以(x -3)( 2x -5)=0,解得x 1=3,x 2=2.5.故选C.【答案】C 【解析】∵y 1y 2<0,即y 1,y 2异号.∴抛物线经过x 轴的上方和下方,∴抛物线x 轴有两个交点,且有一个交点在(x 1,0)和(x 2,0)之间,∴方程ax 2+bx+c =0必有一根x 0满x 1<x 0<x 2.其他选项不能推得,故选C.【答案】D 【解析】在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图.A,B,C 是轴对称图形,但不是中.D 是中心对称图形.故选D.第16页 共20页※※装※※订※※线※※内※※答※※题※※※※※※※※※※...o .............订.............o .............o .............线.............o .............o ..............o ..........11. 【答案】D 【解析】由题意可知,预计完成的天数比实际完成的天数多5天,据此列方程得,-=5.故选D.12. 【答案】A 【解析】正比例函数的图象是一条经过原点的直线,且当k >0时,经过一、三象限.故选A.13. 【答案】D 【解析】由三视图的定义可知,俯视图为从上面看到的图形,所以可得到三个左右相邻的中间有两条实线的长方形.故选D.14. 【答案】D 【解析】由角平分线的性质可得点P 在∠AOB 的角平分线上,即CD 与∠AOB 的平分线的交点为P .故选D.15. 【答案】B 【解析】设原来的平均速度为x 千米/时,高速公路开通后平均速度为1.5x 千米/时,根据走过相同的距离时间缩短了2小时,由题意得.故选B.16. 【答案】B 【解析】∵DE ∥BC ,∴,,,,选项A,C,D 正确,B 错误,故选B.17. 【答案】【解析】 ∵ , 的倒数是 ,∴的绝对值的倒数是第17页 共20页【答案】2y (x ﹣y )2【解析】2x 2y -4xy 2+2y 3=2y (x 2-2xy +y 2)=2y (x -y )2【答案】【解析】由圆的性质得:∠C =∠A ,∠D=∠B ,∴△ECD ∽△EAB ,∴=.【答案】设y 1=kx+b ,将(0,29),(30,35)代入,, 解得,, ∴y 1=x +29,又24×60×30=43200(min), ∴y 1=x +29(0≤x ≤43200),同理求得y 2= x (0≤x ≤43200).(2) 【答案】当y 1=y 2时, x +29=x ,x =96;当y 1>y 2时, x +29>x ,x <96;当y 1<y 2时, x +29< x ,x >96 .∴当通话时间等于96min 时,两种卡的收费相等,当通话时间小于96min 时,“如意卡便宜”,当通话时间大于96min 时,“便民卡”便宜.第18页 共20页※※请※※不※※要※※在※※装※订※※线※※内※※答※※题※※※※※※※※※※※※※※※※※ ...........外.............o .............o .............装.............o .............o ..........订.............o .............o .............线.............o .............o ..............o ..............o ..............o .......................21.(1) 【答案】过点E 作EF ⊥AB 于F ,由题意得,四边形ACEF 为矩形. ∴EF =AC =30,AF =CE =h , ∠BEF =α, ∴BF =3×10-h =30-h . 在Rt △BEF 中,tan ∠BEF =, ∴tan α=-,即30 - h =30tan α.∴h =30-30tan α.(2) 【答案】当α=30°时,h =30-30tan 30°=30-30×≈12.7,∵ 12.7÷3≈4.2,∴ B 点的影子落在乙楼的第五层 .当B 点的影子落在C 处时,甲楼的影子刚好不影响乙楼采光. ∵AB =AC =30,∴△ABC 是等腰直角三角形,∠ACB =45°, ∴= 1(小时).故经过1小时后,甲楼的影子刚好不影响乙楼采光.22.(1) 【答案】∵CD =3,CQ =x ,,∴.图象如图所示:(2) 【答案】,CP=AC-AP =8k -xk ,CQ =x ,∴.,12)代入抛物线得,,解得的速度每秒厘米,AC=12厘米.①观察图象,知线段的长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ.,对称轴为中,当时,EF取得最大值.∵掷一次骰子有4种等可能结果,只有掷得4时,才会落回A圈,列表如下,16种,当两次掷得的数字和为4的倍数才可落回A圈,有(3,1),(4,4)共4种,第19页共20页第20页共20页∴,∴淇淇与嘉嘉落回到圈A的可能性一样.24. 【答案】∵===,∴△ADC≌△ABC(ASA). ∴DC=BC.又∵===,∴△CED≌△CEB(SAS).∴∠5=∠6.25. 【答案】∵BD为∠ABC的平分线,∴∠EBD=∠CBD,又∵EF∥BC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴BE=ED,同理CF=DF,又∵EF=ED+DF,∴EF=ED+DF=BE+CF.26. 【答案】原式=81÷2.25+1+18=36+1+18=55.27. 【答案】原式=---=-4+7=3.。

∥3套精选试卷∥石家庄市某名校中学2018-2019中考单科质检数学试题

∥3套精选试卷∥石家庄市某名校中学2018-2019中考单科质检数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣5【答案】B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,∴-2+m=−31,解得,m=-1,故选B.2.计算6m3÷(-3m2)的结果是()A.-3m B.-2m C.2m D.3m【答案】B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故选B.3.在△ABC中,∠C=90°,AC=9,sinB=35,则AB=( )A.15 B.12 C.9 D.6【答案】A【解析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵sin ACBAB=,∴935AB=,解得AB=1.故选A4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21.126故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.5.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m【答案】D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.6.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高【答案】C【解析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.7.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是()A .B .C .D .【答案】C【解析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知:开口向上,a >1;对称轴大于1,2b a>1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内;∵一次函数y =bx ﹣c 中,b <1,﹣c <1,∴一次函数图象经过第二、三、四象限.故选C .【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.8.方程(m –2)x 2+3mx+1=0是关于x 的一元二次方程,则( )A .m≠±2B .m=2C .m=–2D .m≠2 【答案】D【解析】试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.故选D9.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为A .60°B .120°C .60°或120°D .30°或120° 【答案】C【解析】根据题意画出相应的图形,由OD ⊥AB ,利用垂径定理得到D 为AB 的中点,由AB 的长求出AD 与BD 的长,且得出OD 为角平分线,在Rt △AOD 中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD 的度数,进而确定出∠AOB 的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB 所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即532在Rt△AOD中,OA=5,53 2∴sin∠AOD=5332=52,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.10.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2【答案】A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.二、填空题(本题包括8个小题)11.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.【答案】【解析】先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.【详解】解:根据题意得2π×PA=3×2π×1,所以PA=3,所以圆锥的高OP=故答案为.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12.如图,已知一次函数y=ax+b和反比例函数kyx的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<kx的解集为__________【答案】﹣2<x<0或x>1【解析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【详解】观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<kx的解集是﹣2<x<0或x>1.【点睛】本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.13.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD 是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.14.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”).【答案】>【解析】分析:首先求得抛物线y=﹣x 2+2x 的对称轴是x=1,利用二次函数的性质,点M 、N 在对称轴的右侧,y 随着x 的增大而减小,得出答案即可.详解:抛物线y=﹣x 2+2x 的对称轴是x=﹣22-=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y 1>y 2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.15.已知反比例函数21kyx+=的图像经过点(2,1)-,那么k的值是__.【答案】32 k=-【解析】将点的坐标代入,可以得到-1=212k+,然后解方程,便可以得到k的值.【详解】∵反比例函数y=21kx+的图象经过点(2,-1),∴-1=212k+∴k=−32;故答案为k=−32.【点睛】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答16.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.【答案】1:2【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.考点:相似三角形的性质.17.比较大小:(填入“>”或“<”号)【答案】>【解析】试题解析:∵∴4考点:实数的大小比较.【详解】请在此输入详解!18.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.【答案】1.1【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=22OA OB+=1cm,∵点D为AB的中点,∴OD=12AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案为1.1.三、解答题(本题包括8个小题)19.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?【答案】(1)100,35;(2)补全图形,如图;(3)800人【解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30%100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40% 100⨯=,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.20.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【答案】(1) 4800元;(2) 降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.21.两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,2,反比例函数y=kx的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=kx图象上时,求点D经过的路径长.【答案】(1)k=2;(2)点D经过的路径长为6.【解析】(1)根据题意求得点B的坐标,再代入kyx=求得k值即可;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC 于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.【详解】(1)∵△AOB和△COD为全等三的等腰直角三角形,OC=2,∴AB=OA=OC=OD=2,∴点B坐标为(2,2),代入kyx=得k=2;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,∵2,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函数图象上,∴t (t+2)=2,解得t=31-或t=﹣3﹣1(舍去),∴D′(3﹣1,3 +1),∴DD′=22(311)(311)6-+++-=, 即点D 经过的路径长为6.【点睛】 本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.22.如图,已知一次函数y=32x ﹣3与反比例函数k y x=的图象相交于点A (4,n ),与x 轴相交于点B . 填空:n 的值为 ,k 的值为 ; 以AB 为边作菱形ABCD ,使点C 在x轴正半轴上,点D 在第一象限,求点D 的坐标; 考察反比函数k y x =的图象,当2y ≥-时,请直接写出自变量x 的取值范围.【答案】 (1)3,1;133);(3) x 6≤-或x 0> 【解析】(1)把点A (4,n )代入一次函数y=32x-3,得到n 的值为3;再把点A (4,3)代入反比例函数k y x=,得到k 的值为1; (2)根据坐标轴上点的坐标特征可得点B 的坐标为(2,3),过点A 作AE ⊥x 轴,垂足为E ,过点D 作DF ⊥x 轴,垂足为F ,根据勾股定理得到13AAS 可得△ABE ≌△DCF ,根据菱形的性质和全等三角形的性质可得点D 的坐标;(3)根据反比函数的性质即可得到当y≥-2时,自变量x 的取值范围.【详解】解:(1)把点A (4,n )代入一次函数y=32x-3,可得n=32×4-3=3; 把点A (4,3)代入反比例函数k y x =,可得3=4k , 解得k=1.(2)∵一次函数y=32x-3与x 轴相交于点B , ∴32x-3=3, 解得x=2,∴点B 的坐标为(2,3),如图,过点A 作AE ⊥x 轴,垂足为E ,过点D 作DF ⊥x 轴,垂足为F ,∵A (4,3),B (2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2, 在Rt △ABE 中,22223123AE BE ++==∵四边形ABCD 是菱形,∴13AB ∥CD ,∴∠ABE=∠DCF ,∵AE ⊥x 轴,DF ⊥x 轴,∴∠AEB=∠DFC=93°,在△ABE 与△DCF 中,AEB DFC ABE DCF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (ASA ),∴CF=BE=2,DF=AE=3,∴1313∴点D 的坐标为(133).(3)当y=-2时,-2=12x,解得x=-2. 故当y≥-2时,自变量x 的取值范围是x≤-2或x >3.23.“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.【答案】(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°.【解析】试题分析:(1)用“极高”的人数÷所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;⨯即可求出对应的扇(3)用“中”的人数÷调查的学生人数,即可得到所占的百分比,所占的百分比360,形圆心角的度数.÷=(人).试题解析:()15025%200()2学生学习兴趣为“高”的人数为:20050602070---=(人).补全统计图如下:()3分组后学生学习兴趣为“中”的所占的百分比为:60100%30%.⨯=200⨯=学生学习兴趣为“中”对应扇形的圆心角为:30%360108.24.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C 距守门员多少米?(取437=)运动员乙要抢到第二个落点D ,他应再向前跑多少米?【答案】(1)21(6)412y x =--+.(或21112y x x =-++)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.【解析】(1)依题意代入x 的值可得抛物线的表达式.(2)令y=0可求出x 的两个值,再按实际情况筛选.(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD ,相当于将抛物线AEMFC 向下平移了2个单位可得解得x 的值即可知道CD 、BD .【详解】解:(1)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =.即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)令210(6)4012y x =--+=,. 212(6)48436134360x x x ∴-==≈=-<.,(舍去). ∴足球第一次落地距守门员约13米.(3)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得12626626x x =-=+,.124610CD x x∴=-=≈.1361017BD∴=-+=(米).答:他应再向前跑17米.25.观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.【答案】(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.26.如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.【答案】见解析【解析】由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,EAO FCOOA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEO≌△CFO(ASA),∴OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =【答案】D【解析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.2.如图,AB 切⊙O 于点B ,OA =23,AB =3,弦BC ∥OA ,则劣弧BC 的弧长为( )A .33πB .32πC .πD .32π 【答案】A【解析】试题分析:连接OB ,OC ,∵AB 为圆O 的切线,∴∠ABO=90°,在Rt △ABO 中,OA=3∠A=30°,∴3,∠AOB=60°,∵BC ∥OA ,∴∠OBC=∠AOB=60°,又OB=OC ,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC长为6033ππ⨯=.故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.3.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】B【解析】根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y<0,由此即可判定②;观察图象可得,当x=1时,y>0,由此即可判定③;观察图象可得,当x>2时,的值随值的增大而增大,即可判定④.【详解】由抛物线的对称轴为x=2可得=2,即4a+b=0,①正确;观察图象可得,当x=-3时,y<0,即9a-3b+c<0,所以,②错误;观察图象可得,当x=1时,y>0,即a+b+c>0,③正确;观察图象可得,当x>2时,的值随值的增大而增大,④错误.综上,正确的结论有2个.故选B.【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac <0时,抛物线与x轴没有交点.4.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;5.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.2C.32D.33【答案】B【解析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴PMPN =22.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.6.下列各式中的变形,错误的是(()A.B.C.D.【答案】D【解析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【详解】A、,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选:D.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.7.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.70.2510⨯B.72.510⨯C.62.510⨯D.52510⨯【答案】C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1.故选C.8.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【答案】B【解析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.9.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是( )A.①②③B.①③⑤C.②③④D.②④⑤【答案】D【解析】根据实数的运算法则即可一一判断求解.【详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= 14,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.故选D.10.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC 的度数是()A.55°B.60°C.65°D.70°【答案】C【解析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.二、填空题(本题包括8个小题)11.81_______.【答案】38181.8181 3故答案为3此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,-1的特殊性质.12.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x ﹣3:则所捂住的多项式是___.【答案】x 2+7x-4【解析】设他所捂的多项式为A ,则22(53)(221)A x x x x =-+-++-;接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A ,则根据题目信息可得 22(53)(221),A x x x x =-+-++-2253221,x x x x =-+-++-27 4.x x =+-他所捂的多项式为27 4.x x +-故答案为27 4.x x +-【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;13.如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是__.【答案】34. 【解析】解:根据从C 、D 、E 、F 四个点中任意取一点,一共有4种可能,选取D 、C 、F 时,所作三角形是等腰三角形,故P (所作三角形是等腰三角形)=34; 故答案为34. 【点睛】 本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的14.如图,数轴上点A表示的数为a,化简:a244a a+-+=_____.【答案】1.【解析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【详解】由数轴可得:0<a<1,则a+2a4a4-+=a+22a-()=a+(1﹣a)=1.故答案为1.【点睛】本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.15.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,OE3=OA5,则EFGHABCDSS四边形四边形=_____.【答案】925【解析】试题分析:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,∴EFAB=OEOA=35,则EFGHABCDSS四边形四边形=2()OEOA=23()5=925.故答案为925.点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.16.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是。

{3套试卷汇总}2018-2019石家庄市某名校中学九年级统考数学试题

{3套试卷汇总}2018-2019石家庄市某名校中学九年级统考数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形中,哪一个是圆锥的侧面展开图?()A.B.C.D.【答案】B【解析】根据圆锥的侧面展开图的特点作答.【详解】A选项:是长方体展开图.B选项:是圆锥展开图.C选项:是棱锥展开图.D选项:是正方体展开图.故选B.【点睛】考查了几何体的展开图,注意圆锥的侧面展开图是扇形.2.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.3.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形.故错误;B.不是轴对称图形,也不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.4.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟【答案】C【解析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx=,将y=35代入700yx =,解得20x;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.5.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣7【答案】B【解析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.【详解】∵一次函数y=﹣2x+3中k=﹣2<0,∴y随x的增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3,故选B.【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.6.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A.平均数B.中位数C.众数D.方差【答案】B【解析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B.【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。

∥3套精选试卷∥石家庄市某名校中学2018-2019中考数学第二次适应性考试题

∥3套精选试卷∥石家庄市某名校中学2018-2019中考数学第二次适应性考试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,四边形ABCD内接于⊙O,F是CD上一点,且DF BC=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【答案】B【解析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵DF BC=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.2.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.4.50.51y xy x=+⎧⎨=-⎩B.4.521y xy x=+⎧⎨=-⎩C.4.50.51y xy x=-⎧⎨=+⎩D.4.521y xy x=-⎧⎨=-⎩【答案】A【解析】根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.【详解】由题意可得,4.50.51y x y x =+⎧⎨=-⎩, 故选A .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 3.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3xB .由,得2x ﹣2﹣x =﹣4C .由,得2y-15=3yD .由,得3(y+1)=2y+6【答案】D【解析】根据等式的性质2,A 方程的两边都乘以6,B 方程的两边都乘以4,C 方程的两边都乘以15,D 方程的两边都乘以6,去分母后判断即可.【详解】A .由,得:2x ﹣6=3﹣3x ,此选项错误;B .由,得:2x ﹣4﹣x =﹣4,此选项错误;C .由,得:5y ﹣15=3y ,此选项错误;D .由,得:3( y+1)=2y+6,此选项正确.故选D .【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.4.如图1,在等边△ABC 中,D 是BC 的中点,P 为AB 边上的一个动点,设AP=x ,图1中线段DP 的长为y ,若表示y 与x 的函数关系的图象如图2所示,则△ABC 的面积为( )A .4B .23C .12D .43【答案】D【解析】分析: 由图1、图2结合题意可知,当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小=3,这样如图3,过点P 作PD ⊥AB 于点P ,连接AD ,结合△ABC 是等边三角形和点D 是BC 边的中点进行分析解答即可.详解:由题意可知:当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小=3,如图3,过点P 作PD ⊥AB 于点P ,连接AD ,∵△ABC 是等边三角形,点D 是BC 边上的中点,∴∠ABC=60°,AD ⊥BC ,∵DP ⊥AB 于点P ,此时DP=3,∴BD=332sin 60PD =÷=, ∴BC=2BD=4,∴AB=4,∴AD=AB·sin ∠B=4×sin60°=23,∴S △ABC=12AD·BC=1234432⨯⨯=. 故选D.点睛:“读懂题意,知道当DP ⊥AB 于点P 时,DP 最短3是解答本题的关键.5.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【答案】B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.6.如图所示的两个四边形相似,则α的度数是()A.60°B.75°C.87°D.120°【答案】C【解析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.7.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )A.k≤2且k≠1B.k<2且k≠1C.k=2 D.k=2或1【答案】D【解析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.8.已知方程组2728x yx y+=⎧⎨+=⎩,那么x+y的值()A.-1 B.1 C.0 D.5 【答案】D【解析】解:2728x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=15,则x+y=5,故选D9.解分式方程12x-﹣3=42x-时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4【答案】B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 10.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B 的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边【答案】C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴点O介于B、C点之间.故选C.点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.二、填空题(本题包括8个小题)11.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=15米,那么该古城墙的高度CD是_____米.【答案】10【解析】首先证明△ABP∽△CDP,可得ABBP=CDPD,再代入相应数据可得答案.【详解】如图,由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴ABBP =CD PD,∵AB=2米,BP=3米,PD=15米,∴23=15 CD,解得:CD=10米.故答案为10.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.12.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是_____.【答案】﹣1.【解析】由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c 取得最小值,即可求解.【详解】解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-1,故答案为-1.【点睛】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变.13.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=34x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.【答案】285【解析】认真审题,根据垂线段最短得出PM ⊥AB 时线段PM 最短,分别求出PB 、OB 、OA 、AB 的长度,利用△PBM ∽△ABO ,即可求出本题的答案【详解】解:如图,过点P 作PM ⊥AB ,则:∠PMB=90°,当PM ⊥AB 时,PM 最短,因为直线y=34x ﹣3与x 轴、y 轴分别交于点A ,B , 可得点A 的坐标为(4,0),点B 的坐标为(0,﹣3),在Rt △AOB 中,AO=4,BO=3,22345+=,∵∠BMP=∠AOB=90°,∠B=∠B ,PB=OP+OB=7,∴△PBM ∽△ABO ,∴PB PM AB AO=, 即:754PM =, 所以可得:PM=285. 14.已知x=2是一元二次方程x 2﹣2mx+4=0的一个解, 则m 的值为 .【答案】1.【解析】试题分析:直接把x=1代入已知方程就得到关于m 的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x 1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.15.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)【答案】12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为>16.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.【答案】1.【解析】设小矩形的长为x ,宽为y ,则由图1可得5y=3x ;由图2可知2y-x=2.【详解】解:设小矩形的长为x ,宽为y ,则可列出方程组,3522x y y x =⎧⎨-=⎩,解得106x y =⎧⎨=⎩, 则小矩形的面积为6×10=1.【点睛】本题考查了二元一次方程组的应用.17.如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB =2,AD =4,则阴影部分的面积为_____.【答案】8233π-【解析】试题解析:连接,CE∵四边形ABCD是矩形,4,2,90 AD BC CD AB BCD ADC∴====∠=∠=,∴CE=BC=4,∴CE=2CD,30DEC∴∠=,60DCE∴∠=,由勾股定理得:23DE=,∴阴影部分的面积是S=S扇形CEB′−S△CDE260π4218223π2 3.36023⨯=-⨯⨯=-故答案为8π2 3. 3-18.12的相反数是______.【答案】﹣12.【解析】根据只有符号不同的两个数叫做互为相反数解答.【详解】12的相反数是12-.故答案为1 2 -.【点睛】本题考查的知识点是相反数,解题关键是熟记相反数的概念.三、解答题(本题包括8个小题)19.如图,在等边三角形ABC中,点D,E分别在BC, AB上,且∠ADE=60°.求证:△ADC~△DEB.【答案】见解析【解析】根据等边三角形性质得∠B=∠C,根据三角形外角性质得∠CAD=∠BDE,易证ADC DEB. 【详解】证明: ABC是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C= ∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴ADC DEB【点睛】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.20.灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:a=%,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?【答案】(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.列方程解应用题八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.【答案】15/km h【解析】试题分析:设骑车学生的速度为xkm/h,利用时间关系列方程解应用题,一定要检验.试题解析:解:设骑车学生的速度为xkm/h,由题意得1010123x x-=,解得x15=.经检验x15=是原方程的解.答: 骑车学生的速度为15km/h.22.某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:该公司“高级技工”有名;所有员工月工资的平均数x为2500元,中位数为元,众数为元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.【答案】(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)y能反映该公司员工的月工资实际水平.【解析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(4)2500502100084003171346y⨯--⨯=≈(元).y能反映该公司员工的月工资实际水平.23.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=nx(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=32.求该反比例函数和一次函数的解析式;求△AOB的面积;点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.【答案】(1)y=﹣6x,y=﹣12x+2;(2)6;(3)当点E(﹣4,0130130)或(﹣134,0)时,△AOE是等腰三角形.【解析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积=12×4×3=6;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【详解】(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=32ADOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=nx,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣6x,把B(m,﹣1)代入y=﹣6x,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:23 61k bk b-+=⎧⎨+=-⎩,解得:122kb⎧=-⎪⎨⎪=⎩,所以一次函数解析式为:y=﹣12x+2;(2)当y=0时,﹣12x+2=0,解得:x=4,则C(4,0),所以14362AOCS=⨯⨯=;(3)当OE3=OE2=AO222313+=,即E2130),E3130);当OA=AE1=13OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣32x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣134,即E4(﹣134,0),综上,当点E(﹣4,0)或(13,0)或(﹣13,0)或(﹣134,0)时,△AOE是等腰三角形.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键.24.如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.【答案】(1)详见解析;(2)①67.5°;②90°.【解析】(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【详解】(1)证明:连接OD,如图所示,∵射线DC切⊙O于点D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①连接AF与DP交于点G,如图所示,∵四边形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此时点P与点O重合,∴此时DE是直径,∴∠EAD=90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.25.某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.【答案】(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解析】(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x的值得出答案.【详解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依题意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x(元)取整数,∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x﹣5)[400﹣40(x﹣10)]﹣2,当y=1560时,(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.故该套餐售价应定为11元.【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.26.已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.不等式组12342x x +>⎧⎨-≤⎩的解集表示在数轴上正确的是( ) A .B .C .D .【答案】C 【解析】根据题意先解出12342x x +>⎧⎨-≤⎩的解集是, 把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右; 表示时要注意方向向左,起始的标记为实心圆点,综上所述C 的表示符合这些条件.故应选C.2.要使分式有意义,则x 的取值应满足( ) A .x=﹣2B .x≠2C .x >﹣2D .x≠﹣2【答案】D【解析】试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x 的取值应满足:x≠﹣1.故选D . 考点:分式有意义的条件.3.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( ) A . B .C .D .【答案】D【解析】试题分析:D 选项中作的是AB 的中垂线,∴PA=PB ,∵PB+PC=BC ,∴PA+PC=BC .故选D .考点:作图—复杂作图.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A .8×1012B .8×1013C .8×1014D .0.8×1013【答案】B【解析】80万亿用科学记数法表示为8×1.故选B .点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.5.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4πB .324π-C .2-8πD .324π- 【答案】B【解析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S ABCD 矩形-S ABE -S EBF 扇形,求出答案.【详解】∵矩形ABCD 的边AB=1,BE 平分∠ABC ,∴∠ABE=∠EBF=45°,AD ∥BC ,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=2 ,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD 矩形 −S ABE −S EBF 扇形 =1×2−12×1×1−245(2)3=-24π⨯π 故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式6.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD ∆的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为()A.36B.C.32D.【答案】C【解析】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.【详解】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,∴矩形ABCD的面积为4×8=32,故选:C.【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP面积变化情况是解题的关键,属于中考常考题型.7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.19【答案】A【解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A .3B .5C .23D .25 【答案】D【解析】过B 点作BD ⊥AC ,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=AD AB =2210=25, 故选D .9.如图,已知D 是ABC 中的边BC 上的一点,BAD C ∠=∠,ABC ∠的平分线交边AC 于E ,交AD 于F ,那么下列结论中错误的是( )A .△BAC ∽△BDAB .△BFA ∽△BEC C .△BDF ∽△BECD .△BDF ∽△BAE【答案】C 【解析】根据相似三角形的判定,采用排除法,逐项分析判断.【详解】∵∠BAD=∠C ,∠B=∠B ,∴△BAC ∽△BDA .故A 正确.∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∴△BFA ∽△BEC .故B 正确.∴∠BFA=∠BEC ,∴∠BFD=∠BEA ,∴△BDF ∽△BAE .故D 正确.而不能证明△BDF ∽△BEC ,故C 错误.故选C .【点睛】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.10.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE =AF ,AC 与EF 相交于点G ,下列结论:①AC垂直平分EF ;②BE+DF =EF ;③当∠DAF =15°时,△AEF 为等边三角形;④当∠EAF =60°时,S △ABE =12S △CEF ,其中正确的是( )A .①③B .②④C .①③④D .②③④【答案】C 【解析】①通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE=∠DAF ,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=a ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和S △ABE ,再通过比较大小就可以得出结论.【详解】①四边形ABCD 是正方形,∴AB ═AD ,∠B=∠D=90°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD=⎧⎨=⎩,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正确).②设BC=a,CE=y,∴BE+DF=2(a-y)y,∴BE+DF与EF关系不确定,只有当y=()a时成立,(故②错误).③当∠DAF=15°时,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=x)2∴x2=2y(x+y)∵S△CEF=12x2,S△ABE=12y(x+y),∴S△ABE=12S△CEF.(故④正确).综上所述,正确的有①③④,故选C.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(本题包括8个小题)11.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是_____千米.【答案】36【解析】作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.【详解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=BE AB,∴BE=AB•sin∠BAC=3633=由题意得,∠C=45°,∴BC=BEsin C =23336=,故答案为6.【点睛】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.12.分解因式:2x2﹣8=_____________【答案】2(x+2)(x﹣2)【解析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.13.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC=105°,则∠A的度数是_____.。

河北省石家庄市2019-2020学年中考数学第一次押题试卷含解析

河北省石家庄市2019-2020学年中考数学第一次押题试卷含解析

河北省石家庄市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A.中位数不变,方差不变B.中位数变大,方差不变C.中位数变小,方差变小D.中位数不变,方差变小2.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AB=c,∠A=α,则CD长为()A.c•sin2αB.c•cos2αC.c•sinα•tanαD.c•sinα•cosα3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°4.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为()A.13B.24C.2D.35.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B. C. D.6.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()A .B .C .D .7.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.下列图标中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .9.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( ) A .1000(1+x)2=1000+500 B .1000(1+x)2=500 C .500(1+x)2=1000 D .1000(1+2x)=1000+50010.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =11.已知电流I (安培)、电压U (伏特)、电阻R (欧姆)之间的关系为UI R=,当电压为定值时,I 关于R 的函数图象是( )A .B .C .D .12.下列图形中,可以看作中心对称图形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系xOy 中,△ABC 的顶点A 、C 在坐标轴上,点B 的坐标是(2,2).将△ABC沿x轴向左平移得到△A1B1C1,点1B落在函数y=-6x.如果此时四边形11AAC C的面积等于552,那么点1C的坐标是________.14.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.15.分解因式:a2b−8ab+16b=_____.16.使分式的值为0,这时x=_____.17.如图,P是⊙O的直径AB延长线上一点,PC切⊙O于点C,PC=6,BC:AC=1:2,则AB的长为_____.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD 相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C 距守门员多少米?(取437=)运动员乙要抢到第二个落点D ,他应再向前跑多少米? 20.(6分)如图1,四边形ABCD 中,AB BC ⊥,//AD BC ,点P 为DC 上一点,且AP AB =,分别过点A 和点C 作直线BP 的垂线,垂足为点E 和点F .()1证明:ABE V ∽BCF V ; ()2若34AB BC=,求BP CF的值;()3如图2,若AB BC =,设DAP ∠的平分线AG 交直线BP 于.G 当1CF =,74PD PC=时,求线段AG的长.21.(6分)先化简,再求值:(2x x x +﹣1)÷22121x x x -++,其中x=1.22.(8分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A ,B ,C ,D 均为网格线的交点在网格中将△ABC 绕点D 顺时针旋转90°画出旋转后的图形△A 1B 1C 1;在网格中将△ABC 放大2倍得到△DEF ,使A 与D 为对应点.23.(8分)某景区在同一线路上顺次有三个景点A ,B ,C ,甲、乙两名游客从景点A 出发,甲步行到景点C ;乙花20分钟时间排队后乘观光车先到景点B ,在B 处停留一段时间后,再步行到景点C .甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?24.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a =,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?25.(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE 的延长线于点F.求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.26.(12分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元) 1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?27.(12分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确数字x 人数A 0≤x<8 10B 8≤x<16 15C 16≤x<24 25D 24≤x<32 mE 32≤x<40 n根据以上信息解决下列问题:(1)在统计表中,m=,n=,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.【详解】∵原数据的中位数是=3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;∵新数据的中位数为3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;所以新数据与原数据相比中位数不变,方差变小,故选:D.【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.2.D【解析】【分析】根据锐角三角函数的定义可得结论.【详解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根据锐角三角函数的定义可得sinα=BC AB,∴BC=c•sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB= CD BC,∴CD=BC•cosα=c•sinα•cosα,故选D.3.C 【解析】试题分析:∵FE ⊥DB ,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB ∥CD ,∴∠2=∠D=40°.故选C .考点:平行线的性质. 4.B 【解析】 【分析】根据勾股定理和三角函数即可解答. 【详解】解:已知在Rt △ABC 中∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,c=3a ,设a=x,则x.即=4. 故选B. 【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键. 5.C 【解析】试题分析:由题意可得BQ=x .①0≤x≤1时,P 点在BC 边上,BP=3x ,则△BPQ 的面积=12BP•BQ ,解y=12•3x•x=232x ;故A 选项错误;②1<x≤2时,P 点在CD 边上,则△BPQ 的面积=12BQ•BC ,解y=12•x•3=32x ;故B 选项错误;③2<x≤3时,P 点在AD 边上,AP=9﹣3x ,则△BPQ 的面积=12AP•BQ ,解y=12•(9﹣3x )•x=29322x x -;故D 选项错误. 故选C .考点:动点问题的函数图象. 6.D 【解析】 【分析】根据一次函数的性质结合题目中的条件解答即可.解:由题可得,水深与注水量之间成正比例关系,∴随着水的深度变高,需要的注水量也是均匀升高,∴水瓶的形状是圆柱,故选:D.【点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.7.D【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.8.D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别9.A【解析】设该公司第5、6个月投放科研经费的月平均增长率为x ,5月份投放科研经费为1000(1+x ),6月份投放科研经费为1000(1+x )(1+x ),即可得答案. 【详解】设该公司第5、6个月投放科研经费的月平均增长率为x , 则6月份投放科研经费1000(1+x )2=1000+500, 故选A. 【点睛】考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 10.C 【解析】 【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点. 11.C 【解析】 【分析】根据反比例函数的图像性质进行判断. 【详解】 解:∵UI R=,电压为定值, ∴I 关于R 的函数是反比例函数,且图象在第一象限, 故选C . 【点睛】本题考查反比例函数的图像,掌握图像性质是解题关键. 12.B 【解析】 【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(-5,112)【解析】分析:依据点B的坐标是(2,2),BB2∥AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=﹣6x的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于552,可得OC=112,进而得到点C2的坐标是(﹣5,112).详解:如图,∵点B的坐标是(2,2),BB2∥AA2,∴点B2的纵坐标为2.又∵点B2落在函数y=﹣6x的图象上,∴当y=2时,x=﹣3,∴BB2=AA2=5=CC2.又∵四边形AA2C2C的面积等于552,∴AA2×OC=552,∴OC=112,∴点C2的坐标是(﹣5,112).故答案为(﹣5,112).点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.14.1 2【解析】【分析】根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值. 【详解】解: ∵∠AED=∠ABD (同弧所对的圆周角相等),∴tan∠AED=tanB=12 ADAB=.故答案为:1 2 .【点睛】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.15.b(a﹣4)1【解析】【分析】先提公因式,再用完全平方公式进行因式分解.【详解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.【点睛】本题考查了提公因式与公式法的综合运用,熟练运用公式法分解因式是本题的关键.16.1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法17.1【解析】PC切⊙O于点C,则∠PCB=∠A,∠P=∠P,∴△PCB∽△PAC,∴12 BP BCPC AC==,∵BP=12PC=3,∴PC2=PB•PA,即36=3•PA,∵PA=12∴AB=12-3=1.故答案是:1.18.4.1【解析】解:如图所示:∵四边形ABCD 是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根据题意得:△ABP ≌△EBP ,∴EP=AP ,∠E=∠A=90°,BE=AB=1,在△ODP 和△OEG 中,,∴△ODP ≌△OEG (ASA ),∴OP=OG ,PD=GE ,∴DG=EP ,设AP=EP=x ,则PD=GE=6﹣x ,DG=x ,∴CG=1﹣x ,BG=1﹣(6﹣x )=2+x ,根据勾股定理得:BC 2+CG 2=BG 2,即62+(1﹣x )2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案为4.1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)21(6)412y x =--+.(或21112y x x =-++)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.【解析】【分析】(1)依题意代入x 的值可得抛物线的表达式.(2)令y=0可求出x 的两个值,再按实际情况筛选.(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD ,相当于将抛物线AEMFC 向下平移了2个单位可得解得x 的值即可知道CD 、BD .【详解】解:(1)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+.由已知:当0x =时1y =. 即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)令210(6)4012y x =--+=,. 212(6)48436134360x x x ∴-==≈=-<.,(舍去). ∴足球第一次落地距守门员约13米.(3)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得12626626x x =-=+,. 124610CD x x ∴=-=≈.1361017BD ∴=-+=(米). 答:他应再向前跑17米.20.(1)证明见解析;(2)32BP CF =;(3)3AG =. 【解析】【分析】 ()1由余角的性质可得ABE BCF ∠∠=,即可证ABE V ∽BCF V ;()2由相似三角形的性质可得AB BE 3BC CF 4==,由等腰三角形的性质可得BP 2BE =,即可求BP CF 的值; ()3由题意可证DPH V ∽CPB V ,可得HP PD 7BP PC 4==,可求32AE 2=,由等腰三角形的性质可得AE 平分BAP ∠,可证1EAG BAH 452∠∠==o ,可得AEG V 是等腰直角三角形,即可求AG 的长. 【详解】证明:()1AB BC ⊥Q , ABE FBC 90∠∠∴+=o又CF BF ⊥Q ,BCF FBC 90∠∠∴+=oABE BCF ∠∠∴=又AEB BFC 90∠∠==o Q ,ABE ∴V ∽BCF V()2ABE QV ∽BCF V , AB BE 3BC CF4∴== 又AP AB =Q ,AE BF ⊥,BP 2BE ∴=BP 2BE 3CF CF 2∴== ()3如图,延长AD 与BG 的延长线交于H 点AD //BC Q ,DPH ∴V ∽CPB V∴HP PD 7BP PC 4== AB BC =Q ,由()1可知ABE V ≌BCF VCF BE EP 1∴===,BP 2∴=,代入上式可得7HP 2=,79HE 122=+= ABE QV ∽HAE V ,BE AE AE HE ∴=,1AE 9AE 2=, ∴32AE =AP AB =Q ,AE BF ⊥,AE ∴平分BAP ∠又AG Q 平分DAP ∠,1EAG BAH 452∠∠∴==o , AEG ∴V 是等腰直角三角形.∴AG 3==. 【点睛】本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.21.-1.【解析】【分析】先化简题目中的式子,再将x 的值代入化简后的式子即可解答本题.【详解】解:原式=2(1)(1)[1](1)(1)x x x x x x +--÷++, =111)111x x x x x ++-⨯++-(, =111x x x x -+⨯+-, =﹣1x x -, 当x=1时,原式=﹣221-=﹣1. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则22.(1)见解析(2)见解析【解析】【分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△DEF即为所求.【点睛】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.23.(1)60;(2)s=10t-6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟.【解析】【分析】(1)观察图像得出路程和时间,即可解决问题.(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.【详解】(1)甲的速度为540090=60米/分钟.(2)当20≤t ≤1时,设s=mt+n,由题意得:200 303000 m nm n+=⎧⎨+=⎩,解得:3006000mn=⎧⎨=-⎩,所以s=10t-6000;(3)①当20≤t ≤1时,60t=10t-6000,解得:t=25,25-20=5;②当1≤t ≤60时,60t=100,解得:t=50,50-20=1.综上所述:乙出发5分钟和1分钟时与甲在途中相遇.(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400-100-(90-60)x=360解得:x=2.答:乙从景点B步行到景点C的速度是2米/分钟.【点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.24.(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-0.15-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:31= 124.点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)证明详见解析;(2)证明详见解析;(3)1.【解析】【分析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.【详解】(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF=DB .∵AD 为BC 边上的中线∴DB=DC ,∴AF=CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点,∴AD=DC=12BC , ∴四边形ADCF 是菱形;(3)连接DF ,∵AF ∥BD ,AF=BD ,∴四边形ABDF 是平行四边形,∴DF=AB=5,∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC▪DF=12×4×5=1. 【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.26.(1)应安排4天进行精加工,8天进行粗加工(2)①20001000(140)W m m =+-=1000140000m +②安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元【解析】【分析】【详解】解:(1)设应安排x 天进行精加工,y 天进行粗加工,根据题意得12{515140.x y x y +=+=, 解得4{8.x y ==,答:应安排4天进行精加工,8天进行粗加工.(2)①精加工m 吨,则粗加工(140m -)吨,根据题意得20001000(140)W m m =+-=1000140000m +②Q 要求在不超过10天的时间内将所有蔬菜加工完,14010515m m -∴+≤ 解得5m ≤ 05m ∴<≤又Q 在一次函数1000140000W m =+中,10000k =>,W ∴随m 的增大而增大,∴当5m =时,10005140000145000.W =⨯+=最大∴精加工天数为55÷=1,粗加工天数为(1405)159-÷=.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.27.(1)m=30, n=20,图详见解析;(2)90°;(3)727. 【解析】分析:(1)、根据B 的人数和百分比得出总人数,从而根据总人数分别求出m 和n 的值;(2)、根据C 的人数和总人数的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.详解:(1)∵总人数为15÷15%=100(人),∴D 组人数m=100×30%=30,E 组人数n=100×20%=20,补全条形图如下:(2)扇形统计图中“C组”所对应的圆心角的度数是360°×=90°,(3)记通过为A、淘汰为B、待定为C,画树状图如下:由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,∴E组学生王云参加鄂州市“汉字听写”比赛的概率为7 27.点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定要明白样本容量=频数÷频率,根据这个公式即可进行求解.。

石家庄市2019年中考数学猜题卷及答案

石家庄市2019年中考数学猜题卷及答案

石家庄市2019年中考数学猜题卷及答案(全卷共120分,考试时间120分钟)第Ⅰ卷一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,有且只有....一个是正确的)1.若实数a 、b 互为相反数,则下列等式中成立的是( )A .a ﹣b =0B .a+b =0C .ab =1D .ab =﹣12.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣13.下列运算正确的是( )A.235x x x +=B. 2221x x -=C.236x x x ⋅=D.633x x x ÷=4.已知右图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )DCB A5.如图,□ABCD 中,AC =3cm ,BD =5cm ,则边AD 的长可以是( )A .3 cmB .4 cmC .5 cmD .6 cm6.为吸引新用户支付宝推出“领红包抵现金活动”.甜甜在这个月中扫码共领4.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40B .42、38C .40、42D .42、40AB CD7. 如图,二次函数y=ax2+bx+c的图象与x轴交于4、B两点,与y轴交于点C,且OB=OC,下列结论:①b>l且6≠2;②b2-4ac<4a2;③a>争;其中正确的个数为()A.0B.1C.2D.38. 一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:下面有三个推断:①投掷1000次时,“兵”字面朝上的次数是550,所以“兵”字面朝上的概率是0.55②随着实验次数的增加,“兵”字面朝上的频率总在0.55附近,显示出一定的稳定性,可以估计“兵”字面朝上的概率是0.55③当实验次数为200次时,“兵”字面朝上的频率一定是0.55其中合理的是()A.①B. ②C. ①②D. ①③9.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x +b>kx+4的解集是()A.x>-2 B.x>0 C.x>1 D.x<110.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A. B. C. D.第Ⅱ卷二、填空题(共6小题,每小题3分,共18分.)11. 计算:)=————————.12. 分解因式:=+-2422a a ___________________. 13. 若反比例函数xky =的图象在第二、四象限内,则k 的值可能是 .(写一个即可) 14.在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是13,则黄球有 _____ 个.15.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为 .17.(本小题满分8分)计算:(3.14-π)0-12-|-3|+4sin 60° . 18.(本小题满分8分)先化简,再求值:(x ﹣2+)÷,其中x =﹣.19. (本小题满分10分)已知关于x 的一元二次方程2610kx x -+=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.20.(本小题满分10分)已知:如图,在平行四边形ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.21. (本小题满分10分)停车难已成为合肥城市病之一,主要表现在居住停车位不足,停车资源结构性失衡,中心城区供需差距大等等.如图是张老师的车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为 1.2 米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)四、解答题(2小题,共26分)22.(本小题满分12分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:②该产品90天内每天的销售价格与时间(第x天)的关系如下表:(1)求m 关于x 的一次函数表达式;(2)设销售该产品每天利润为y 元,请写出y 关于x 的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果. 23.(本小题满分14分)如图,在△ABC 中,∠C = 90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F .(1)试判断直线BC 与⊙O 的位置关系,并说明理由;(2)若BD = 2 ,BF = 2 ,求阴影部分的面积(结果保留π) .3参 考 答 案第Ⅰ卷一、选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中,有且只有....一个是正确的)1.B2.B3.D4.B5.A6.D7.D8.B9.C 10.B第Ⅱ卷二、填空题(共6小题,每小题3分,共18分.) 11. 2 12. 2(a -1)213. 如 —1(答案不唯一 ) 14. 6 15. .三、解答题(共4小题,每小题8分,32分) 17.(本小题满分8分)解:原式=1-2 3-3+2 3=-2. 18.(本小题满分8分) 解:原式=(+)•=•=2(x +2) =2x +4, 当x =﹣时, 原式=2×(﹣)+4 =﹣1+4 =3.19. (本小题满分10分)解:(1) 依题意,得()20,640k k ≠⎧⎪⎨∆=--⎪⎩>, 解得k k ≠<9且0.(2) ∵k 是小于9的最大整数,∴=8k . 此时的方程为28610x x -+=. 解得11=2x ,21=4x . 20.(本小题满分10分)(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,∠BAE=∠DCF , 在△ABE 和△CDF 中,,∴△ABE ≌△CDF (SAS );………(4分)(2)解:四边形BEDF 是菱形;理由如下:如图所示: ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC , ∵AE=CF , ∴DE=BF ,∴四边形BEDF 是平行四边形, ∴OB=OD , ∵DG=BG , ∴EF ⊥BD ,∴四边形BEDF 是菱形.………(12分) 21. (本小题满分10分)过点A 作OB 的垂线AE ,垂足是 E , Rt△AEO ,AO =1.2,∠AOE =40° ∵sin40°=OAAE, ∴AE = OA sin40°≈0.64×1.2=0.768<0.8 ∵汽车靠墙一侧OB 与墙MN 平行且距离为0.8米, ∴车门不会碰到墙. 四、解答题(2小题,共26分) 22. (本小题满分12分) 解:(1)∵m 与x 成一次函数,∴设m =kx +b ,将x =1,m =198,x =3,m =194代入,得:,解得:.所以m关于x的一次函数表达式为m=﹣2x+200;(2)设销售该产品每天利润为y元,y关于x的函数表达式为:y=,当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,∵﹣2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=﹣120x+12000,∵﹣120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)当1≤x<50时,由y≥5400可得﹣2x2+160x+4000≥5400,解得:10≤x≤70,∵1≤x<50,∴10≤x<50;当50≤x≤90时,由y≥5400可得﹣120x+12000≥5400,解得:x≤55,∵50≤x≤90,∴50≤x≤55,综上,10≤x≤55,故在该产品销售的过程中,共有46天销售利润不低于5400元.23. (本小题满分14分)解:(1)BC与⊙O相切.证明:连接OD.∵ AD是∠BAC的平分线,∴∠BAD = ∠CAD.又∵ OD = OA,∴∠OAD = ∠ODA.∴∠CAD = ∠ODA.∴ OD∥AC.∴∠ODB = ∠C = 90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.(2)设OF = OD = x,则OB = OF+BF = x+2,根据勾股定理得:OB2 = OD2 + BD2,即(x+2)2 = x2 + 12,解得:x = 2,即OD = OF = 2,∴OB = 2+2 = 4,∵Rt△ODB中,OD =OB,∴∠B = 30°,∴∠DOB =60°,∴S扇形AOB==,则阴影部分的面积为S△ODB﹣S扇形DOF =×2×2﹣ = 2﹣.故阴影部分的面积为2﹣.。

2018-2019学年石家庄市八年级上期中数学模拟试卷(含答案解析)

2018-2019学年石家庄市八年级上期中数学模拟试卷(含答案解析)

2018-2019学年河北省石家庄市八年级(上)期中数学模拟试卷一.选择题(共16小题,满分32分,每小题2分)1.四个数0,1,,中,无理数的是()A.B.1 C.D.02.下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个3.分式有意义,则x的取值范围是()A.x≠2 B.x≠2且x≠3C.x≠﹣1或x≠2 D.x≠﹣1且x≠24.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍B.扩大9倍C.不变D.扩大3倍5.计算(1+)÷的结果是()A.x+1 B.C.D.6.若分式方程=a无解,则a的值为()A.0 B.﹣1 C.0或﹣1 D.1或﹣17.已知x﹣=8,则x2+﹣6的值是()A.60 B.64 C.66 D.728.三个数的大小关系是()A.B.C.D.9.估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间10.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D. +=1011.若解分式方程=产生增根,则m=()A.1 B.0 C.﹣4 D.﹣512.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个13.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS14.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥A C C.∠E=∠ABC D.AB∥DE15.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DCC.∠ACB=∠DBC D.AC=BD16.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状[二.填空题(共4小题,满分12分,每小题3分)17.把命题“对顶角相等”改写成“如果…那么…”的形式:.18.已知(x﹣1)3=64,则x的值为.19.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)20.式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为,这里的符号“”是求和的符号,如“1+3+5+7+…+99”即从1开始的100以内的连续奇数的和,可表示为.通过对以上材料的阅读,请计算: = (填写最后的计算结果).三.解答题(共6小题,满分56分)21.(6分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=AD.(1)尺规作图:作∠A的平分线交CD于点E,过点B作CD的垂线,垂足为点F;(2)求证:△CBF≌△ACE.22.(6分)先化简+,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x的值代入求值.23.(8分)按要求完成下列各小题.(1)计算:2÷(﹣1)﹣9×()2+20160;(2)解方程:﹣=0.24.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).25.(12分)为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?26.(14分)如图,在等腰Rt△ABC中,AC=BC=2,∠ACB=90°,直线BM ⊥BC,点P是线段AB上一动点,过P点作直线PD⊥PC交直线BM于点D,过P点作线段BC的平行线EF交AC于E,交直线BM于F.(1)△PFB是三角形;(2)试说明:△CEP≌△PFD;(3)当点D在线段FB上时,设AE=x,PC2为y,请求出y与x之间的函数关系式,并写出自变量的取值范围;(4)当点P在线段AB上移动时,点D也随之在直线BM上移动,则△PBD 是否有可能成为等腰三角形?如果能,求出所有能使△PBD成为等腰三角形时的AE的长;如果不可能,请说明理由.参考答案与试题解析一.选择题1.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:0,1,是有理数,是无理数,故选:A.2.【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①=10,故说法错误;②数轴上的点与实数成一一对应关系,故说法正确;③﹣2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与﹣的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②③④⑥共4个.故选:C.3.【分析】直接利用分式有意义的条件得出答案.【解答】解:∵分式有意义,∴(x+1)(x﹣2)≠0,∴x≠﹣1且x≠2,故选:D.4.【分析】将原式中的x、y分别用3x、3y代替,化简,再与原分式进行比较.【解答】解:∵把分式中的x与y同时扩大为原来的3倍,∴原式变为: ==9×,∴这个分式的值扩大9倍.故选:B.5.【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】解:原式=(+)÷=•=,故选:B.6.【分析】由分式方程无解,得到最简公分母为0求出x的值,分式方程去分母转化为整式方程,把x的值代入计算即可求出a的值.【解答】解:去分母得:x﹣a=ax+a,即(a﹣1)x=﹣2a,显然a=1时,方程无解;由分式方程无解,得到x+1=0,即x=﹣1,把x=﹣1代入整式方程得:﹣a+1=﹣2a,解得:a=﹣1,综上,a的值为1或﹣1,故选:D.7.【分析】将x﹣=8代入原式=x2+﹣2﹣4=(x﹣)2﹣4,计算可得.【解答】解:当x﹣=8时,原式=x2+﹣2﹣4=(x﹣)2﹣4=82﹣4=64﹣4=60,故选:A.8.【分析】根据二次根式的性质把这一组数化为二次根式的形式,再比较被开方数的大小.【解答】解:这一组数据可化为、、,∵27>25>24,∴>>,即2<5<.故选:A.9.【分析】直接利用2<<3,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,故选:B.10.【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=10亩,根据等量关系列出方程即可.【解答】解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:﹣=10.故选:A.11.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x+4),得x﹣1=m,∵原方程增根为x=﹣4,∴把x=﹣4代入整式方程,得m=﹣5,故选:D.12.【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据三角形外角性质对③进行判断;根据非负数的性质对④进行判断.【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.13.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等.【解答】解:由作法易得 OD=O′D′,OC=O′C′,CD=C′D′,依据 SSS 可判定△COD≌△C'O'D'(SSS),则△COD≌△C'O'D',即∠A'O'B'=∠ AOB(全等三角形的对应角相等).故选:D. 14.【分析】由 EB=CF,可得出 EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添 加的条件与原来的条件可形成 SSA,就不能证明△ABC≌△DEF 了. 【解答】解:A、添加 DE=AB 与原条件满足 SSA,不能证明△ABC≌△DEF, 故 A 选项正确. B、添加 DF∥AC,可得∠DFE=∠ACB,根据 AAS 能证明△ABC≌△DEF,故 B 选项错误. C、添加∠E=∠ABC,根据 AAS 能证明△ABC≌△DEF,故 C 选项错误. D、添加 AB∥DE,可得∠E=∠ABC,根据 AAS 能证明△ABC≌△DEF,故 D 选 项错误. 故选:A. 15.【分析】根据题目所给条件∠ABC=∠DCB,再加上公共边 BC=BC,然后 再结合判定定理分别进行分析即可. 【解答】解:A、添加∠A=∠D 可利用 AAS 判定△ABC≌△DCB,故此选项不 合题意; B、添加 AB=DC 可利用 SAS 定理判定△ABC≌△DCB,故此选项不合题意; C、添加∠ACB=∠DBC 可利用 ASA 定理判定△ABC≌△DCB,故此选项不合题 意; D、添加 AC=BD 不能判定△ABC≌△DCB,故此选项符合题意;故选:D. 16.【分析】先证得△ABE≌△ACD,可得 AE=AD,∠BAE=∠CAD=60°,即可证明△ADE 是等边三角形. 【解答】解:∵△ABC 为等边三角形 ∴AB=AC ∵∠1=∠2,BE=CD ∴△ABE≌△ACD ∴AE=AD,∠BAE=∠CAD=60° ∴△ADE 是等边三角形. 故选:B.二.填空题(共 4 小题,满分 12 分,每小题 3 分) 17.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面. 【解答】解:题设为:对顶角,结论为:相等, 故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等, 故答案为:如果两个角是对顶角,那么它们相等. 18.【分析】先根据开立方的定义求出 x﹣1=4,然后求出 x 的值. 【解答】解:∵(x﹣1)3=64, ∴x﹣1=4, 解得:x= 5. 故答案为:5. 20.【分析】根据题意将所求式子化为普通加法运算,拆项后合并即可得到结果.【解答】解:= + +…+=1﹣ = . 故答案为: .=1﹣ + ﹣ +…+ ﹣三.解答题(共 6 小题,满分 56 分)22.【分析】原式约分后,利用同分母分式的减法法则计算得到最简结果,确定出 x 的值,代入计算即可 求出值.【解答】解:原式=﹣=﹣=,由﹣1≤x≤2,且 x 为整数,得到 x=2 时,原式= .23.【分析】(1)原式利用零指数幂,乘方的意义,乘除法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣2﹣1+1=﹣2;(2)去分母得:2x﹣5x+5=0,解得:x= ,经检验,x= 是原分式方程的解.25.【分析】关键描述语是:“这两个小组的每一名学生就要比原计划多做4 面彩旗”.等量关系为:实际每个学生做的彩旗数﹣原来每个学生做的旗数=4.【解答】解;设每个小组有 x 名学生,根据题意得:, 解之得 x=10, 经检验,x=10 是原方程的解,且符合题意. 答:每组有 10 名学生.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学靠前押题试卷一、选择题(本大题共10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)1.(4分)若a与1互为相反数,则|a+1|等于()A .﹣1 B.0 C.1 D.22.(4分)如图是某几何体的三视图,该几何体是()A 圆柱B 圆锥C正三棱柱 D 正三棱锥3.(4分)某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A .6.7×10﹣5B.6.7×10﹣6C.0.67×10﹣5D.6.7×10﹣64.(4分)在天水市汉字听写大赛中,10名学生得分情况如表人数 3 4 2 1分数80 85 90 95那么这10名学生所得分数的中位数和众数分别是()A .85和82.5 B.85.5和85 C.85和85 D.85.5和805.(4分)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是()A .﹣3 B.﹣1 C.2 D.36.(4分)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A .B.C.或D.或7.(4分)如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A .65°B . 55°C . 50°D .25°8.(4分)如图,在四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P 在四边形ABCD 的边上.若点P 到BD 的距离为,则点P 的个数为( )A . 2B . 3C . 4D .59.(4分)如图,AB 为半圆所在⊙O 的直径,弦CD 为定长且小于⊙O 的半径(C 点与A 点不重合),CF ⊥CD 交AB 于点F ,DE ⊥CD 交AB 于点E ,G 为半圆弧上的中点.当点C 在上运动时,设的长为x ,CF+DE=y .则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B .C .D .10.(4分)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( )A . ①④B . ①③C . ②③④D .①②④二、填空题(本大题共8小题,每小题4分,共32分。

只要求填写最简结果)11.(4分)相切两圆的半径分别是5和3,则该两圆的圆心距是 .12.(4分)不等式组的所有整数解是.13.(4分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED 的正切值为.14.(4分)一元二次方程x2+3﹣2x=0的解是.15.(4分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.16.(4分)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.17.(4分)下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有个.18.(4分)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为.三、解答题(本大题共3小题,共28分。

解答时写出必要的文字说明及演算过程。

)19.(9分)计算:(1)(π﹣3)0+﹣2cos45°﹣(2)若x+=3,求的值.20.(9分)2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)21.(10分)如图,在平面直角坐标系内,O为原点,点A的坐标为(﹣3,0),经过A、O两点作半径为的⊙C,交y轴的负半轴于点B.(1)求B点的坐标;(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理证明过程。

)22.(8分)钓鱼岛是我国固有领土.某校七年级(15)班举行“爱国教育”为主题班会时,就有关钓鱼岛新闻的获取途径,对本班50名学生进行调查(要求每位同学,只选自己最认可的一项),并绘制如图所示的扇形统计图.(1)该班学生选择“报刊”的有人.在扇形统计图中,“其它”所在扇形区域的圆心角是度.(直接填结果)(2)如果该校七年级有1500名学生,利用样本估计选择“网站”的七年级学生约有人.(直接填结果)(3)如果七年级(15)班班委会就这5种获取途径中任选两种对全校学生进行调查,求恰好选用“网站”和“课堂”的概率.(用树状图或列表法分析解答)23.(8分)天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?24.(10分)如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x 轴于点C,DC=5.(1)求m、n的值并写出该反比例函数的解析式.(2)点E在线段CD上,S△ABE=10,求点E的坐标.25.(12分)如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB 于点E,连结AC,与DE交于点P.求证:(1)AC•PD=AP•BC;(2)PE=PD.26.(12分)在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)1.B 2.B 3.A 4.C 5.D 6.C 7.C 8.A 9.B 10.A二、填空题(本大题共8小题,每小题4分,共32分。

只要求填写最简结果)11.2或8 12.0 13.14.x1=x2=15.8 16.4π17.3 18.(,0)三、解答题(本大题共3小题,共28分。

解答时写出必要的文字说明及演算过程。

)19.20.21.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理证明过程。

)22.636420 23.24.25.26.2018中考数学押题试卷一、选择题(本大题共10小题,每小题3分,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2015的倒数为()A.﹣2015 B.2015 C.﹣D.2.(3分)若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1 B.a≤1 C.a<1 D.a>13.(3分)下列运算正确的是()A.a6÷a3=a2 B.5a2﹣3a2=2a C.(a3)3=a9 D.(a﹣b)2=a2﹣b24.(3分)一元一次不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.5.(3分)下列命题中错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等6.(3分)某中学女子足球队15名队员的年龄情况如下表:年龄(岁)13 14 15 16队员(人)2 3 6 4这支球队队员的年龄的众数和中位数分别是()A.14,15 B.14,14.5 C.15,15 D.15,147.(3分)已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B. 1 C.﹣1 D.﹣28.(3分)如图,正三棱柱的主视图为()A.B.C.D.9.(3分)反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2 C.y1>y2>0 D.y1>0>y210.(3分)如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(kg)与时间t(s)的函数图象大致是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,满分24分)11.(3分)我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为.12.(3分)从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为.13.(3分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)14.(3分)已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是.15.(3分)下列数据是按一定规律排列的,则第7行的第一个数为.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.17.(3分)如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=度.18.(3分)一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(﹣3,0),∠B=30°,则点B的坐标为.三、解答题(本大题共2个小题,每小题6分,满分12分)19.(6分)计算:(﹣1.414)0+()﹣1﹣+2cos30°.20.(6分)先化简,再求值:•+,其中x是从﹣1、0、1、2中选取的一个合适的数.四、解答题(本大题共2小题,每小题8分,满分16分)21.(8分)今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并绘制出了如图的两幅不完整的统计图:(1)本次模拟测试共抽取了多少个学生?(2)将图乙中条形统计图补充完整;(3)如果该校今年有九年级学生1000人,试估计其中D等学生的人数.22.(8分)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)五、解答题(本大题共2小题,每小题9分,满分18分)23.(9分)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?24.(9分)如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作A B的平行线EF交⊙A于点F,连接AF,BF,DF.(1)求证:△ABC≌△ABF;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.六、解答题(本大题共2道小题,每小题10分,满分20分)25.(10分)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.26.(10分)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.2018中考数学押题试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2015的倒数为()A.﹣2015 B.2015 C.﹣D.考点:倒数.分析:利用倒数的定义求解即可.解答:解:2015的倒数为.故选:D.点评:本题主要考查了倒数的定义,解题的关键是熟记倒数的定义.2.(3分)若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1 B.a≤1 C.a<1 D.a>1考点:绝对值.分析:根据|a|=a时,a≥0,因此|a﹣1|=a﹣1,则a﹣1≥0,即可求得a的取值范围.解答:解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,故选A点评:此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.3.(3分)下列运算正确的是()A.a6÷a3=a2 B.5a2﹣3a2=2a C.(a3)3=a9 D.(a﹣b)2=a2﹣b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:A、原式利用同底数幂的除法法则计算得到结果,即可做出判断;B、原式合并同类项得到结果,即可做出判断;C、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D、原式利用完全平方公式化简得到结果,即可做出判断.解答:解:A、原式=a3,错误;B、原式=2a2,错误;C、原式=a9,正确;D、原式=a2+b2﹣2ab,错误,故选C.点评:此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握运算法则是解本题的关键.4.(3分)一元一次不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:,由①得:x≤1;由②得:x>﹣2,∴不等式组的解集为﹣2<x≤1,表示在数轴上,如图所示:,故选B.点评:此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)下列命题中错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等考点:命题与定理.分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据平行线的性质对C进行判断;根据矩形的性质对D进行判断.解答:解:A、平行四边形的对角线互相平分,所以A选项为真命题;B、菱形的对角线互相垂直,所以B选项为真命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、矩形的对角线相等,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)某中学女子足球队15名队员的年龄情况如下表:年龄(岁)13 14 15 16队员(人)2 3 6 4这支球队队员的年龄的众数和中位数分别是()A.14,15 B.14,14.5 C.15,15 D.15,14考点:众数;中位数.分析:根据众数与中位数的意义分别进行解答即可.解答:解:15出现了6次,出现的次数最多,则众数是15,把这组数据从小到大排列,最中间的数是15;故选C.点评:本题考查了众数与中位数的意义,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.(3分)已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B. 1 C.﹣1 D.﹣2考点:代数式求值.专题:计算题.分析:原式前两项提取变形后,将已知等式代入计算即可求出值.解答:解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.8.(3分)如图,正三棱柱的主视图为()A.B.C.D.考点:简单几何体的三视图.分析:根据正三棱柱的主视图是矩形,主视图中间有竖着的实线,即可解答.解答:解:正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B.点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.9.(3分)反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2 C.y1>y2>0 D.y1>0>y2考点:反比例函数图象上点的坐标特征.分析:先根据反比例函数y=﹣中k=﹣2<0可判断出此函数图象在二、四象限,再根据x1<0<x2,可判断出A、B两点所在的象限,根据各象限内点的坐标特点即可判断出y1与y2的大小关系.解答:解:∵反比例函数y=﹣中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选D.点评:本题考查的是反比例函数图象上点的坐标特点及各象限内点的坐标特点,先根据k <0判断出该函数图象所在象限是解答此题的关键.10.(3分)如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(kg)与时间t(s)的函数图象大致是()A.B.C.D.考点:函数的图象.分析:开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.解答:解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.点评:本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.二、填空题(本大题共8小题,每小题3分,满分24分)11.(3分)我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为 1.08×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数解答:解:10.8万=1.08×105.故答案为:1.08×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为.考点:概率公式.分析:由从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,直接利用概率公式求解即可求得答案.解答:解:∵从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,即:、π;∴抽取到无理数的概率为:=.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是∠ABD=∠CBD或AD=CD..(只需写一个,不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD或AD=CD.解答:解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.点评:本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.14.(3分)已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是m≤1.考点:根的判别式.专题:探究型.分析:先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可.解答:解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,∵方程有实数根,∴△=22﹣4m≥0,解得m≤1.故答案为:m≤1.点评:本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键.15.(3分)下列数据是按一定规律排列的,则第7行的第一个数为22.考点:规律型:数字的变化类.分析:先找到数的排列规律,求出第n﹣1行结束的时候一共出现的数的个数,再求第n行的第1个数,即可求出第7行的第1个数.解答:解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个数.所以第n行的第1个数n(n﹣1)+1.所以n=7时,第7行的第1个数为22.故答案为:22.点评:此题主要考查了数字的变化规律,找出数字排列的规律是解决问题的关键.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.考点:多边形内角与外角.专题:计算题.分析:利用多边形的外角和以及多边形的内角和定理即可解决问题.解答:解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.点评:本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.17.(3分)如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=50度.考点:圆周角定理.分析:由在⊙O中,AB为直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由圆周角定理,可求得∠B=∠ACD=40°,继而求得答案.解答:解:∵在⊙O中,AB为直径,∴∠ADB=90°,∵∠B=∠ACD=40°,∴∠BAD=90°﹣∠B=50°.故答案为:50.点评:此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角.18.(3分)一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(﹣3,0),∠B=30°,则点B的坐标为(﹣3﹣,3).考点:相似三角形的判定与性质;坐标与图形性质.分析:过点B作BD⊥OD于点D,根据△ABC为直角三角形可证明△BCD∽△COA,设点B 坐标为(x,y),根据相似三角形的性质即可求解.解答:解:过点B作BD⊥OD于点D,∵△ABC为直角三角形,∴∠BCD+∠CAO=90°,∴△BCD∽△COA,∴=,设点B坐标为(x,y),则=,y=﹣3x﹣9,∴BC==,AC==,∵∠B=30°,∴==,解得:x=﹣3﹣,则y=3.即点B的坐标为(﹣3﹣,3).故答案为:(﹣3﹣,3).点评:本题考查了全等三角形的判定与性质以及坐标与图形的性质,解答本题的关键是作出合适的辅助线,证明三角形的相似,进而求解.三、解答题(本大题共2个小题,每小题6分,满分12分)19.(6分)计算:(﹣1.414)0+()﹣1﹣+2cos30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+3﹣+2×=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)先化简,再求值:•+,其中x是从﹣1、0、1、2中选取的一个合适的数.考点:分式的化简求值.专题:计算题.分析:先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.解答:解:原式=•+=+==,当x=0时,原式==﹣.点评:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、解答题(本大题共2小题,每小题8分,满分16分)21.(8分)今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并绘制出了如图的两幅不完整的统计图:(1)本次模拟测试共抽取了多少个学生?(2)将图乙中条形统计图补充完整;(3)如果该校今年有九年级学生1000人,试估计其中D等学生的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由B等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、B、D的人数求得C等的人数,再画直方图;(3)用样本估计总体,先计算出D等学生所占的百分比,再乘以1000即可解答.解答:解:(1)∵B等人数为100人,所占比例为50%,∴抽取的学生数=100÷50%=200(名);(2)C等的人数=200﹣100﹣40﹣10=50(人);如图所示:(3)D等学生所占的百分比为:=5%,故该校今年有九年级学生1000人,其中D等学生的人数为:1000×5%=50(人).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.会画条形统计图.22.(8分)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)考点:勾股定理的应用.分析:根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.解答:解:此车没有超速.理由:过C作CH⊥MN,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200×=100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∵60千米/小时=m/s,∴=14.6(m/s)<≈16.7(m/s),∴此车没有超速.点评:此题主要考查了勾股定理以及锐角三角函数关系的应用,得出AB的长是解题关键.五、解答题(本大题共2小题,每小题9分,满分18分)23.(9分)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?。

相关文档
最新文档