新丰中学高三数学假期作业
江苏省大丰市新丰中学高三数学上学期10月月考试题
大丰区新丰中学2015-2016第一学期第一次学情检测高三数学试题一. 填空:(每题5分,计70分)1.已知集合A ={-2,-1},B ={-1,2,3},则错误!未找到引用源。
▲ . 2.命题:“错误!未找到引用源。
,错误!未找到引用源。
”的否定是 ▲ . 3.错误!未找到引用源。
的值为▲ .4.“错误!未找到引用源。
”是“错误!未找到引用源。
”的 ▲ 条件.(从 “充分不必要”、 “必要不充分”、“充要”、“既不充分也不必要”中,选出适当的一种填空) 5. 已知幂函数f (x )=(t 3-t +1)x 错误!未找到引用源。
(t ∈N)是偶函数,则实数t 的值为___▲_____. 6.曲线2ay y x x==和在它们的交点处的两条切线互相垂直,则a 的值是 ▲ . 7.已知函数b ax ax x g ++-=12)(2(0>a )在区间]3,2[上有最大值4和最小值1, 则错误!未找到引用源。
的值为 ▲ .8.设函数错误!未找到引用源。
,则错误!未找到引用源。
的值为 ▲.9.若函数错误!未找到引用源。
定义在错误!未找到引用源。
上的奇函数,且在错误!未找到引用源。
上是增函数,又错误!未找到引用源。
,则不等式错误!未找到引用源。
的解集为 ▲ 10、已知点错误!未找到引用源。
是函数错误!未找到引用源。
图像上的点,直线错误!未找到引用源。
是该函数图像在错误!未找到引用源。
点处的切线,则错误!未找到引用源。
____▲___.11、存在正数错误!未找到引用源。
使错误!未找到引用源。
成立,则错误!未找到引用源。
的取值范围是____▲___.12.已知点P 是函数错误!未找到引用源。
的图像上一点,在点P 处的切线为错误!未找到引用源。
,错误!未找到引用源。
交x 轴于点M ,过点P 作错误!未找到引用源。
的垂线错误!未找到引用源。
,错误!未找到引用源。
交x 轴于点N ,MN 的中点为Q ,则点Q 的横坐标的最大值为 ▲13.已知函数错误!未找到引用源。
江苏省大丰市新丰中学高考数学等差数列习题及答案doc
一、等差数列选择题1.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸 D .二丈二尺五寸 2.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .143.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .0 4.在等差数列{a n }中,a 3+a 7=4,则必有( )A .a 5=4B .a 6=4C .a 5=2D .a 6=25.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .246.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 7.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S8.已知等差数列{}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是( )A .7B .8C .7或8D .99.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161B .155C .141D .13910.已知数列{}n a 中,132a =,且满足()*1112,22n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有n a nλ≥成立,则实数λ的最小值是( ) A .2B .4C .8D .1611.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项12.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( ) A .511 B .38C .1D .213.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .53B .2C .8D .1314.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a=,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人A .225B .255C .365D .46515.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13B .26C .52D .5616.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+B .212n n -+C .221n n -+D .222n n -+17.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7218.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15B .30C .3D .6419.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( )A .0B .1C .2D .320.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10B .9C .8D .7二、多选题21.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =22.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为823.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列24.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--25.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值26.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值27.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列28.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列 29.在下列四个式子确定数列{}n a 是等差数列的条件是( )A .n a kn b =+(k ,b 为常数,*n N ∈);B .2n n a a d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和21n S n n =++(*n N ∈).30.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.D 【分析】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,已知条件为985.5S =,14731.5a a a ++=,由等差数列性质即得5a ,4a ,由此可解得d ,再由等差数列性质求得后5项和. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和, 则()19959985.52a a S a +===(尺),所以59.5a =(尺),由题知1474331.5a a a a ++==(尺),所以410.5a =(尺),所以公差541d a a =-=-, 则()8910111210555522.5a a a a a a a d ++++==+=(尺). 故选:D . 2.C 【分析】利用等差数列的通项公式即可求解.{a n }为等差数列,S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C 3.A 【分析】 转化条件为122527n n a an n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得3722n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 4.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 5.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果.32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 6.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 7.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 8.C215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.【详解】22152251524n S n nn ⎛⎫=-=--⎪⎝⎭,∴数列{}n S 的图象是分布在抛物线21522524y x ⎛⎫=--⎪⎝⎭上的横坐标为正整数的离散的点.又抛物线开口向上,以152x =为对称轴,且1515|7822-=-|, 所以当7,8n =时,n S 有最小值. 故选:C 9.B 【分析】画出图形分析即可列出式子求解. 【详解】所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:由图可得:3612107y x y -=⎧⎨-=⎩ ,解得15548x y =⎧⎨=⎩.故选:B. 10.A 【分析】将11122n n na a -=+变形为11221n n n n a a --=+,由等差数列的定义得出22n n n a +=,从而得出()22nn n λ+≥,求出()max22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,11122n n n a a -=+,所以11221n n n n a a --=+,而1123a = 所以数列{}2nn a 是首项为3公差为1的等差数列,故22nn a n =+,从而22n nn a +=.又因为n a n λ≥恒成立,即()22nn n λ+≥恒成立,所以()max22n n n λ+⎡⎤≥⎢⎥⎣⎦. 由()()()()()()()1*121322,221122n n nn n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨+-+⎪≥⎪⎩N 得2n = 所以()()2max2222222n n n +⨯+⎡⎤==⎢⎥⎣⎦,所以2λ≥,即实数λ的最小值是2 故选:A 11.D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 12.C 【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得. 【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=,故631a b =. 【点睛】由n S 求n a 时,11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 13.B 【分析】设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B 14.B 【分析】直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和 【详解】解:当n 为奇数时,2n n a a +=, 当n 为偶数时,22n n a a +-=, 所以13291a a a ==⋅⋅⋅==,2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,所以30132924301514()()1515222552S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=, 故选:B 15.B 【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B. 16.D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a .【详解】解:11nn na a na +=+, ()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+ (1)11123n n a a -+-=+++…1n +-, 即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈, 又111a =也满足上式, 212()2n n n n z a -+∴=∈, 22()2n a n z n n ∴=∈-+. 故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 17.B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯=故选:B 18.A 【分析】设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,12111a a d =+,即可求解.【详解】设等差数列{}n a 的公差为d ,则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174174d a ⎧=⎪⎪⎨⎪=-⎪⎩,所以12117760111115444a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 19.D 【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【详解】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-, 联立得:()212133k k a a +-+=, 所以()232134k k a a +++=, 故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++,()()()()234538394041...a a a a a a a a =++++++++,()()201411820622k k =+⨯=-==∑1220,故①②③正确. 故选:D 20.A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a .【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A二、多选题21.AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2n S n n a =-+,则11a S a ==,2n ≥时,221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键. 22.BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD. 23.ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD 24.AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,1(1)nn a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos 2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC 25.ABD 【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD. 26.BD 【分析】设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】根据题意,设等差数列{}n a 的公差为d ,依次分析选项:{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题. 27.BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k k k aa aa aa a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题. 28.BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD 【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题. 29.AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;C 选项中()*2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差数列,故正确;D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2n S An Bn =+,所以{}n a 不为等差数列.故错误. 故选:AC 【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 30.ABD 【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确;()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >, 181919S S a ∴=-, 1819S S ∴<,故C 不正确.故选:ABD . 【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
江苏省盐城市大丰新丰中学高三数学文下学期期末试卷含解析
江苏省盐城市大丰新丰中学高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若关于的方程有三个实根,,,且满足,则的最小值为A. B. C.D.0参考答案:B试题分析:方程有三个实根,函数与函数的图象有三个交点,由图象可知,直线在之间,有3个交点,当直线过点时,此时最小,由于得或,因此点,令化简得,的最小值.考点:方程的根和函数的零点.2. 已知向量则等于( ) A.3 B. C. D.参考答案:B略3. 平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足=α+β,其中α、β∈R,且α+β=1,则点C的轨迹方程为A.3x+2y-11=0 B.(x+1)2+(y-2)2=5C.2x-y=0 D.x+2y-5=0参考答案:DD设C(x,y),(x,y)=α(3,1)+β(-1,3),因为α、β∈R,且α+β=1,消去α,β得x+2y-5=0.4. 如图,四个边长为1的正方形排成一个正四棱柱,AB是大正方形的一条边,是小正方形的其余的顶点,则的不同值的个数为()(A)7 (B)5 (C)3 (D)1参考答案:C5. “”是“直线与圆相切”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A6. 已知命题;命题,则下列命题中为真命题的是A. B. C. D.参考答案:C7. 直线是曲线在处的切线,,若,则的取值范围是()A. B. C. D.参考答案:A8. 设集合,,则()A . B. C. D.参考答案:B略9. 的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件参考答案:A或,所以充分不必要条件,选A.10. 设,,若,则实数a的取值范围是()A. B. C. D. 参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知m=3sinxdx,则二项式(a+2b﹣3c)m的展开式中ab2c m﹣3的系数为.参考答案:﹣6480【考点】二项式系数的性质;定积分.【分析】求定积分得到m=6,再利用二项式定理求得展开式中ab2c m﹣3的系数即可.【解答】解:∵m=3sinxdx=﹣3cosx=6,∴二项式(a+2b﹣3c)6 =[(2b﹣3c)+a]6展开式中含ab2c3的项为?a?(2b﹣3c)5;对于(2b﹣3c)5,含b2c3的项为?(2b)2?(﹣3c)3,故含ab2c3的项的系数为?22??(﹣3)3=﹣6480.故答案为:﹣6480.12. 数列的前80项的和等于参考答案:13. (几何证明选讲) 如图,是圆外一点,过引圆的两条割线、,,,则_________.参考答案:(-∞,0)∪{2}14. 在直角坐标系xOy 中,有一定点A (2,1)。
江苏省大丰市新丰中学高考数学等比数列习题及答案doc
一、等比数列选择题1.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009B .1010C .1011D .20202.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8B .8-C .16D .16-3.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记{}n a 的前n 项积为nT,则下列选项错误的是( ) A .01q <<B .61a >C .121T >D .131T >4.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078a a a a +=+( ) A1 B1C.3- D.3+5.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n 6.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( )A .2±B .2C .3±D .3 7的等比中项是( )A .-1B .1C.2D.2±8.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则n n S =a ( ) A .14n - B .41n - C .12n -D .21n -9.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12B .18C .24D .3210.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9 B .10C .11D .1211.题目文件丢失!12.已知等比数列{}n a 中,17a =,435a a a =,则7a =( )A .19B .17C .13D .713.古代数学名著《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:一女子善于织布,每天织的布是前一天的2倍,已知她5天共织布5尺,问该女子每天分别织布多少?由此条件,若织布的总尺数不少于20尺,该女子需要的天数至少为 ( ) A .6B .7C .8D .914.设等比数列{}n a 的前n 项和为n S ,若425S S =,则等比数列{}n a 的公比为( ) A .2 B .1或2 C .-2或2 D .-2或1或2 15.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( )A .4B .-4C .±4D .不确定16.在等比数列{}n a 中,12345634159,88a a a a a a a a +++++==-,则123456111111a a a a a a +++++=( ) A .35B .35C .53D .53-17.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥B .若13a a =,则12a a =C .2221322a a a +≥D .若31a a >,则42a a >18.在等比数列{}n a 中,首项11,2a =11,,232n q a ==则项数n 为( ) A .3B .4C .5D .619.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a14a =,则14m n +的最小值为( ) A .53B .32C .43D .11620.已知1a ,2a ,3a ,4a 成等比数列,且()21234123a a a a a a a +++=++,若11a >,则( )A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >二、多选题21.已知等差数列{}n a ,其前n 项的和为n S ,则下列结论正确的是( )A .数列|n S n ⎧⎫⎨⎬⎩⎭为等差数列 B .数列{}2na 为等比数列C .若,()m n a n a m m n ==≠,则0m n a +=D .若,()m n S n S m m n ==≠,则0m n S += 22.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( ) A .113()2n n a -=⋅-B .36nn S a =+C .若数列{}n a 中存在两项p a ,s a 3a =,则19p s +的最小值为83D .若1n n t S m S ≤-≤恒成立,则m t -的最小值为11623.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中正确的是( ) A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n=C .13(1)n a n n =--D .{}3n S 是等比数列24.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S =D .()222lg lg lg 3n n n a a a n -+=+≥25.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )A .1{}na B .22log ()n aC .1{}n n a a ++D .12{}n n n a a a ++++26.设{}n a 是各项均为正数的数列,以n a ,1n a +为直角边长的直角三角形面积记为n S ()n *∈N ,则{}n S 为等比数列的充分条件是( )A .{}n a 是等比数列B .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅或 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列C .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅,2n a ,⋅⋅⋅均是等比数列D .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅均是等比数列,且公比相同27.数列{}n a 的前n 项和为n S ,若11a =,()*12n n a S n N +=∈,则有( )A .13n n S -=B .{}n S 为等比数列C .123n n a -=⋅D .21,1,23,2n n n a n -=⎧=⎨⋅≥⎩28.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍29.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-30.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 31.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .22212413nn a a a -+++=D .m n +为定值32.数列{}n a 是首项为1的正项数列,123n n a a +=+,n S 是数列{}n a 的前n 项和,则下列结论正确的是( ) A .313a = B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--33.已知数列{}n a 为等差数列,11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项,记()0,1na n nb a q q =≠,则{}n b 的前n 项和可以是( )A .nB .nqC .()121n n n q nq nq q q ++---D .()21121n n n q nq nq q q ++++---34.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2xf x =C .()f x =D .()ln f x x =35.对于数列{}n a ,若存在数列{}n b 满足1n n nb a a =-(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;B .若31n a n =-,则其“倒差数列”有最大值;C .若31n a n =-,则其“倒差数列”有最小值;D .若112nn a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到210111a =,再利用11,01a q ><<求解即可.【详解】根据题意:2022122022...a a a a =, 所以122021...1a a a =,因为{a n }等比数列,设公比为q ,则0q >,所以212021220201011...1a a a a a ====,因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关键是根据定义和等比数列性质得出210111a =以及11,01a q ><<进行判断.2.C 【分析】根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】因为254,32a a ==,所以3528a q a ==,所以2q ,所以2424416a a q ==⨯=,故选:C. 3.D 【分析】等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,67(1)(1)0a a ∴--<,11a >,若61a <,则一定有71a <,不符合由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,6121231267()1T a a a a a a =⋯=>,故C 正确,131371T a =<,故D 错误,∴满足1n T >的最大正整数n 的值为12.故选:D . 4.D 【分析】 根据1a ,312a ,22a 成等差数列可得3121222a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将91078a a a a ++化简即可求解.【详解】因为{}n a 是正项等比数列且1a ,312a ,22a 成等差数列, 所以3121222a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,解得:1q =+1q =(222291078787813a a a q a q q a a a a ++====+++,故选:D 5.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1212n---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 6.D 【分析】根据等比数列定义知3813q =,解得答案. 【详解】4个数成等比数列,则3813q =,故3q =.故选:D. 7.D 【分析】利用等比中项定义得解. 【详解】2311()((22-==±,的等比中项是 故选:D8.D 【分析】根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】因为等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,所以2413514522q a a a a =++==, 因此()()111111111221112n nnn n n n n na q S q qa a q q q ---⎛⎫- ⎪--⎝⎭====--⎛⎫ ⎪⎝⎭. 故选:D. 9.C 【分析】将已知条件整理为()()22121328a q q q -+=,可得()22183221q q a q +=-,进而可得()4427612249633221q a a a q q q q +=+=-,分子分母同时除以4q ,利用二次函数的性质即可求出最值. 【详解】因为{}n a 是等比数列,543264328a a a a +--=,所以432111164328a q a q a q a q +--=,()()2221232328a q q q q q ⎡⎤+-+=⎣⎦, 即()()22121328a q q q -+=,所以()22183221q q a q +=-,()()465424761111221248242496963323212121q a a a q a q a q q q a q q a q q q +=+=+=⨯==---, 令210t q =>,则()222421211t t t q q-=-=--+,所以211t q==,即1q =时2421q q -最大为1,此时242421q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化. 10.C 【分析】根据递推关系可得数列{}1n a -是以1为首项,2为公比的等比数列,利用等比数列的通项公式可得121n n a -=+,即求.【详解】因为121n n a a +=-,所以()1121n n a a +-=-,即1121n n a a +-=-, 所以数列{}1n a -是以1为首项,2为公比的等比数列.则112n n a --=,即121n n a -=+.因为513n a >,所以121513n -+>,所以12512n ->,所以10n >. 故选:C11.无12.B 【分析】根据等比中项的性质可求得4a 的值,再由2174a a a =可求得7a 的值. 【详解】在等比数列{}n a 中,对任意的n *∈N ,0n a ≠,由等比中项的性质可得24354a a a a ==,解得41a =, 17a =,21741a a a ==,因此,717a =. 故选:B. 13.B 【分析】设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得515(12)512a S -==-,解得1531a =,由此能求出该女子所需的天数至少为7天. 【详解】设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得515(12)512a S -==-,解得1531a =, 5(12)312012n n S -∴=-,解得2125n . 因为6264=,72128=∴该女子所需的天数至少为7天.故选:B 14.C 【分析】设等比数列{}n a 的公比为q ,由等比数列的前n 项和公式运算即可得解. 【详解】设等比数列{}n a 的公比为q ,当1q =时,4121422S a S a ==,不合题意; 当1q ≠时,()()41424222111115111a q S q q q S qa q q---===+=---,解得2q =±. 故选:C. 15.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 16.D 【分析】利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为162534162534a a a a a a a a a a a a +++++结合已知条件即可求值.【详解】162534123456162534111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中3498a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +++++=12345685()93a a a a a a -+++++=-, 故选:D 17.C 【分析】取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】解:设等比数列的公比为q ,对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;对于B 选项,若13a a =,则211a a q =,则1q =±,所以12a a =或12a a =-,故错误;对于C 选项,由均值不等式可得2221313222a a a a a +≥⋅=,故正确;对于D 选项,若31a a >,则()2110a q ->,所以()14221a a a q q -=-,其正负由q 的符号确定,故D 不确定. 故选:C. 18.C 【分析】根据等比数列的通项公式求解即可. 【详解】由题意可得等比数列通项5111122nn n a a q -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则5n = 故选:C 19.B 【分析】设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得22q q =+,解得2q,根据存在两项m a 、n a14a =14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,22q q ∴=+,解得2q,存在两项m a 、n a 14a =,∴14a =,6m n ∴+=,m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),则14m n+的最小值为143242+=.故选:B . 20.B 【分析】由12340a a a a +++≥可得出1q ≥-,进而得出1q >-,再由11a >得出0q <,即可根据q 的范围判断大小. 【详解】设等比数列的公比为q , 则()()()2321234111+++1+1+0a a a a a q q qa q q +++==≥,可得1q ≥-,当1q =-时,12340a a a a +++=,()21230a a a ++≠,1q ∴>-,()21234123a a a a a a a +++=++,即()223211+++1++q q q a q q =,()231221+++11++q q q a q q ∴=>,整理得432++2+0q q q q <,显然0q <,()1,0q ∴∈-,()20,1q ∈,()213110a a a q ∴-=->,即13a a >,()()32241110a a a q q a q q ∴-=-=-<,即24a a <.故选:B. 【点睛】关键点睛:本题考查等比数列的性质,解题的关键是通过已知条件判断出()1,0q ∈-,从而可判断大小.二、多选题21.ABC 【分析】设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-=,其前n 项和为()112n n n S na d -=+,结合等差数列的定义和前n 项的和公式以及等比数列的定义对选项进行逐一判断可得答案. 【详解】设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-= 其前n 项和为()112n n n S na d -=+ 选项A.112n S n a d n -=+,则+1111+1222n n S S n n d a d a d n n -⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭(常数) 所以数列|n S n ⎧⎫⎨⎬⎩⎭为等差数列,故A 正确. 选项B. ()1122na n da +-=,则112222n n n na a a d a ++-==(常数),所以数列{}2n a为等比数列,故B正确.选项C. 由,m n a n a m ==,得()()1111m na a m d n a a n d m ⎧=+-=⎪⎨=+-=⎪⎩ ,解得11,1a m n d =+-=-所以()()()111110m n a a n m d n m n m +=++-=+-++-⨯-=,故C 正确. 选项D. 由,m n S n S m ==,则()112n n n n S a d m -=+=,()112m m m m S a d n -=+=将以上两式相减可得:()()()2212dm n a m m n n n m ⎡⎤-+---=-⎣⎦()()()112dm n a m n m n n m -+-+-=-,又m n ≠所以()1112d a m n ++-=-,即()1112dm n a +-=-- ()()()()()()()111112m n m n m n dS m n a m n a m n a m n +++-=++=+++--=-+,所以D 不正确. 故选:ABC 【点睛】关键点睛:本题考查等差数列和等比数列的定义的应用以及等差数列的前n 项和公式的应用,解答本题的关键是利用通项公式得出()()1111m na a m d na a n d m ⎧=+-=⎪⎨=+-=⎪⎩,从中解出1,a d ,从而判断选项C ,由前n 项和公式得到()112n n n n S a d m -=+=,()112m m m m S a d n -=+=,然后得出()1112dm n a +-=--,在代入m n S +中可判断D ,属于中档题. 22.ABD 【分析】根据等差中项列式求出12q =-,进而求出等比数列的通项和前n 项和,可知A ,B 正确;3a =求出15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或51p s =⎧⎨=⎩,可知19p s +的最小值为114,C 不正确;利用1nn y S S =-关于n S 单调递增,求出1n n S S -的最大、最小值可得结果. 【详解】设等比数列{}n a 的公比为q ,由13a =,21344a a a -=+得243343q q -⨯=+⨯,解得12q =-,所以113()2n n a -=⋅-,13(1())1221()121()2n n n S --⎛⎫==-- ⎪⎝⎭--;1111361()66()63()63222n n n n n S a -⎛⎫=--=--=+⋅-=+ ⎪⎝⎭;所以A ,B 正确;3a =,则23p s a a a ⋅=,1122111()p s p s a a a q a q a q --⋅==,所以114p s q qq --=,所以6p s +=,则15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或51p s =⎧⎨=⎩,此时19145p s +=或114或194或465;C 不正确,122,2121()2122,2nn n nn S n ⎧⎛⎫+⎪ ⎪⎪⎝⎭⎛⎫=--=⎨ ⎪⎝⎭⎛⎫⎪- ⎪⎪⎝⎭⎩为奇数为偶数, 当n 为奇数时,(2,3]n S ∈,当n 为偶数时,3[,2)2n S ∈,又1n n y S S =-关于n S 单调递增,所以当n 为奇数时,138(,]23n n S S -∈,当n 为偶数时,153[,)62n n S S -∈,所以83m ≥,56t ≤,所以8511366m t -≥-=,D 正确, 故选:ABD . 【点睛】本题考查了等差中项的应用,考查了等比数列通项公式,考查了等比数列的前n 项和公式,考查了数列不等式恒成立问题,属于中档题.【分析】由1(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫⎨⎬⎩⎭是等差数列,从而可求得n S ,利用n S 求出n a ,并确定3n S 的表达式,判断D . 【详解】因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;公差为3,又11113S a ==,所以133(1)3n n n S =+-=,13n S n =.B 正确; 2n ≥时,由1n n n a S S -=-求得13(1)n a n n =-,但13a =不适合此表达式,因此C 错;由13n S n =得1311333n n n S +==⨯,∴{}3n S 是等比数列,D 正确. 故选:ABD . 【点睛】本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.24.ACD 【分析】根据等比数列的通项公式,结合等比数列的定义和对数的运算性质进行逐一判断即可. 【详解】因为521127,==a a a ,所以有431127273q a q q q a ⋅=⋅⇒=⇒=,因此选项A 正确;因为131(31)132n n n S -==--,所以131+2+2(3+3)132nn n S -==-, 因为+1+111(3+3)+222=1+1+21+3(3+3)2n nn n n S S -=≠常数, 所以数列{}2n S +不是等比数列,故选项B 不正确; 因为551(31)=1212S =-,所以选项C 正确; 11130n n n a a q --=⋅=>,因为当3n ≥时,22222lg lg =lg()=lg 2lg n n n n n n a a a a a a -+-++⋅=,所以选项D 正确. 故选:ACD本题考查了等比数列的通项公式的应用,考查了等比数列前n 项和公式的应用,考查了等比数列定义的应用,考查了等比数列的性质应用,考查了对数的运算性质,考查了数学运算能力. 25.AD 【分析】主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,由等比数列的定义知1{}na 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 26.AD 【分析】根据{}n S 为等比数列等价于2n na a +为常数,从而可得正确的选项. 【详解】{}n S 为等比数列等价于1n n S S +为常数,也就是等价于12+1n n n n a a a a ++即2n na a +为常数.对于A ,因为{}n a 是等比数列,故22n na q a +=(q 为{}n a 的公比)为常数,故A 满足; 对于B ,取21221,2nn n a n a -=-=,此时满足2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列,1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅不是等比数列,2121n n a a +-不是常数,故B 错. 对于C ,取2123,2n nn n a a -==,此时满足2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列,1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅是等比数列,21213n n a a +-=,2222n naa +=,两者不相等,故C 错. 对于D ,根据条件可得2n na a +为常数.故选:AD. 【点睛】本题考查等比数列的判断,此类问题应根据定义来处理,本题属于基础题.【分析】根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】由题意,数列{}n a 的前n 项和满足()*12n n a S n N +=∈,当2n ≥时,12n n a S -=,两式相减,可得112()2n n n n n a a S S a +-=-=-, 可得13n n a a +=,即13,(2)n na a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以212a a =, 所以数列的通项公式为21,1232n n n a n -=⎧=⎨⋅≥⎩;当2n ≥时,11123322n n n n a S --+⋅===,又由1n =时,111S a ==,适合上式,所以数列的{}n a 的前n 项和为13n n S -=;又由11333nn n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】本题考查利用,n n a S 关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题. 28.BCD 【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列.所以661161[1()](1)2=3781112a a q S q --==--,解得1192a =. 选项A:5561119262a a q ⎛⎫==⨯= ⎪⎝⎭,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确. 选项C:211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确.选项D:2123111(1)192(1)33624a a a a q q ++=++=⨯++=, 则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD 【点睛】本题考查等比数列的性质,考查等比数列的前n 项和,是基础题. 29.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.30.BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意;当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 31.BD 【分析】由n S 和n a 的关系求出数列{}n a 为等比数列,所以选项A 错误,选项B 正确;利用等比数列前n 项和公式,求出 122212443n n a a a +-+++=,故选项C 错误,由等比数列的通项公式得到62642m n +==,所以选项D 正确. 【详解】由题意,当1n =时,1122S a =-,解得12a =, 当2n ≥时,1122n n S a --=-,所以()111222222n n n n n n n a S S a a a a ----=-=---=, 所以12nn a a -=,数列{}n a 是以首项12a =,公比2q 的等比数列,2n n a =,故选项A 错误,选项B 正确; 数列{}2na 是以首项214a=,公比14q =的等比数列,所以()()21112221211414441143n n n na q a a a q +-⨯--+++===--,故选项C 错误; 6222642m n m n m n a a +====,所以6m n +=为定值,故选项D 正确.故选:BD 【点睛】本题主要考查由n S 和n a 的关系求数列的通项公式,等比数列通项公式和前n 项和公式的应用,考查学生转化能力和计算能力,属于中档题. 32.AB 【分析】由已知构造出数列{}3n a +是等比数列,可求出数列{}n a 的通项公式以及前n 项和,结合选项逐一判断即可. 【详解】123n n a a +=+,∴()1323n n a a ++=+,∴数列{}3n a +是等比数列又∵11a =,∴()11332n n a a -+=+,∴123n n a +=-,∴313a =,∴()2412323412n n nS n n +-=-=---.故选:AB. 33.BD 【分析】设等差数列{}n a 的公差为d ,根据2a ,4a ,8a 是一个等比数列中的相邻三项求得0d =或1,再分情况求解{}n b 的前n 项和n S 即可. 【详解】设等差数列{}n a 的公差为d ,又11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项∴2428a a a =,即()()()211137a d a d a d +=++,化简得:(1)0d d -=,所以0d =或1,故1n a =或n a n =,所以n b q =或nn b n q =⋅,设{}n b 的前n 项和为n S ,①当n b q =时,n S nq =;②当nn b n q =⋅时,23123n n S q q q n q =⨯+⨯+⨯+⋯⋯+⨯(1), 2341123n n qS q q q n q +=⨯+⨯+⨯+⋯⋯+⨯(2),(1)-(2)得:()()2311111n n n n n q q q S q q q q n q n q q++--=+++-⨯=-⨯-+⋅⋅,所以121122(1)(1)1(1)n n n n n n q q n q q nq nq q S q q q ++++-⨯+--=-=---, 故选:BD【点睛】本题主要考查了等差等比数列的综合运用与数列求和的问题,需要根据题意求得等差数列的公差与首项的关系,再分情况进行求和.属于中等题型.34.AC【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可.【详解】设等比数列{}n a 的公比为q .对于A ,则2221112()()n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭ ,故A 是“保等比数列函数”; 对于B ,则111()22()2n n n n a a a n a n f a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C,则1()()n n f a f a +===,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n na a q a q q f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”.故选:AC.【点睛】本题考查等比数列的定义,考查推理能力,属于基础题.35.ACD【分析】根据新定义进行判断.【详解】A .若数列{}n a 是单增数列,则11111111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+, 虽然有1n n a a ->,但当1110n n a a -+<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确; B .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确;D .若112n n a ⎛⎫=-- ⎪⎝⎭,则111()121()2n n n b =-----,首先函数1y x x=-在(0,)+∞上是增函数, 当n 为偶数时,11()(0,1)2n n a =-∈,∴10n n nb a a =-<, 当n 为奇数时,11()2n n a =+1>,显然n a 是递减的,因此1n n n b a a =-也是递减的, 即135b b b >>>,∴{}n b 的奇数项中有最大值为13250236b =-=>, ∴156b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .【点睛】本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.。
新丰中学高三年级月考数学试卷1
新丰中学高三年级月考数学试卷(2005年10月22日)一、选择题(每题5分,共10题,满分50分)1M ={}4|2<x x ,N ={}032|2<--x x x ,则集合M N=(A ){2|-<x x }(B ){3|>x x }(C ){21|<<-x x }(D ){32|<<x x } 2不等式311<+<x 的解集为(A )()2,0 (B )())4,2(0,2 - (C )()0,4- (D )())2,0(2,4 -- 3函数y =(A )[1,)+∞ (B )23(,)+∞ (C )23[,1] (D )23(,1]4设0<a <1,实数x ,y 满足x +y a log =0,则y 关于x 的函数的图象大致形状是:(A ) (B ) (C ) (D ) 5)21( 22≤≤-=x x x y 反函数是(A ))11( 112≤≤--+=x x y (B ))10( 112≤≤-+=x x y (C ))11( 112≤≤---=x x y(D ))10( 112≤≤--=x x y6已知条件p :1+x >2,条件q :5x -6>2x ,则p ⌝是q ⌝的 (A )充分必要条件 (B )充分非必要条件(C )必要非充分条件 (D )既非充分又非必要条件7已知a >0且a ≠1, 函数y =a -x与y =log a (-x )的图象只能是:(A ) (B ) (C ) (D )8函数2xx e e y --=的反函数(A) 是奇函数,它在(0,+∞)上是增函数 (B)是偶函数,它在(0,+∞)上是减函数(C) 是奇函数,它在(0,+∞)上是减函数 (D)是偶函数,它在(0,+∞)上是增函数9函数)(x f y =的图象与)1(log 5..0x y -=的图象关于直线x y =对称,则)(x f =(A )x -+21 (B )x 21+ ( C )x 21- ( D )x --2110国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800 元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税已知某人出版一本书,共纳税420元时,这个人应得稿费(扣税前)为: (A )3000 (B ) 3380 (C ) 3800 (D ) 以上答案都不对二填空题(每题5分,共4题,满分20分)11函数()212log 2y x x =-的单调递减区间是 12函数242-+-=x x y 在区间[0,3]上的最大值是 最小值是13若指数函数f(x)=a x(x ∈R)的部分对应值如下表:则不等式1-f(|x -1|)<0的解集为14关于函数)0(||1lg)(2≠+=x x x x f ,有下列命题: ①其图象关于y 轴对称;②当0>x 时,)(x f 是增函数;当0<x 时,)(x f 是减函数; ③)(x f 的最小值是2lg ;④当01<<-x 时,)(x f 是增函数; ⑤)(x f 无最大值,也无最小值其中所有正确结论的序号是学校 班级 学号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆新丰中学高三年级月考数学试卷(2005年10月22日)一选择题(每题5分,共10题,满分50分)二填空题(每题5分,共4题,满分20分)11 ; 12 , ;13 ; 14 三解答题(共6题,满分80分)15(12分)设函数5412--=x x y 的定义域为A ,B={x }4<-a x ,且A B=R ,求实数a 的取值范围16(12分)已知函数y=f (x)在区间[-2, 1]上的图象如图所示,其中第三象限的图象是以(-2,0)为圆心,半径为2的圆的四分之一圆弧,试写出函数y=f(x)在区间[-2, 1]上的解析式,并求出它的反函数17(14分)定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y)(1)求证:f(x)为奇函数;(2)若f(k·3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围18(14分)某工厂今年1月2月3月生产某产品分别为1万件12万件13万件,为估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量y 与月份x 的关系,模拟函数可选用二次函数或c b a y x +⋅=(a,b,c 为常数),已知四月份该产品的产量为137万件,请问:用以上那个函数作模拟函数较好?说明理由19(14分)在函数y =log a x (a >1, x ≥1)的图象上有A B C 三点,它们的横坐标分别为m , m +2, m +4 (m ≥1), 若△ABC 的面积为S ,试求S =f (m )的解析表达式和值域20(14分)设f(x)是定义在区间(-∞,+∞)上以2为周期的函数,对k∈Z,用I k表示区间(2k-1, 2k+1],已知当x∈I0时f(x)=x2(Ⅰ)求f(x)在I k上的解析表达式;(Ⅱ)对大于零的自然数k,求集合M k={a│使方程f(x)=ax在I k上有两个不相等的实根}参 考 答 案1C 2D 3 D 4A 5B6B 7B 8A 9D 10C11 (2,+∞) 12最大值是2,最小值是-2; 13 (0,1)∪(1,2) 14①③④15解:要使函数5412--=x x y 有意义则0542>--x x∴ 15-<>x x 或∴ A={x 15-<>x x 或} ——————3分B={x }4<-a x={x 44+<<-a x a } ———————3分又因为A B=R , 所以a 应满足 ⎩⎨⎧-<->+1454a a ——10分即 31<<a ——————————12分16解:f (x)=⎪⎩⎪⎨⎧∈+--∈---]1,0[22)0,2[42x x x xx —————6分f -1(x)=⎪⎩⎪⎨⎧∈+--∈--]2,0[12)0,2[242x xx x ———————12分17(1) 证明:f(x+y)=f(x)+f(y)(x ,y ∈R), ①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0——————2分令y=-x ,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有 0=f(x)+f(-x)即f(-x)=-f(x)对任意x ∈R 成立,所以f(x)是奇函数——————————————————————5分(2) 因为f(x)在R 上是增函数,又由(1)f(x)是奇函数f(k ·3x )<-f(3x -9x -2)=f(-3x +9x +2), k ·3x <-3x +9x+2, 32x -(1+k)·3x+2>0对任意x ∈R 成立 ———————————8分令t=3x>0,问题等价于t 2-(1+k)t+2>0对任意t >0恒成立—————10分————————————12分R 恒成立————————————————————————14分法二:由k ·3x <-3x +9x+2得18解:设二次函数为: r qx px y ++=2由已知得:⎪⎩⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧=++=++=++7.035.005.03.1392.1241r q p r q p r q p r q p ————4分∴7.035.005.02++-=x x y ————————5分 当 x = 4时,3.17.0435.0405.021=+⨯+⨯-=y ——6分 又对于函数 c b a y x+⋅=由已知得:⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧==-=⇒=+=+=+4.15.08.03.12.1132c b a c ab c ab c ab ————10分∴4.1)21(8.0+⨯-=xy ———————————11分 当 x = 4时,35.14.1)21(8.042=+⨯-=y ———12分 由四月份的实际产量为137万件,|37.1|07.002.0|37.1|12-=<=-y y∴选用函数4.1)21(8.0+⨯-=xy 作模拟函数较好——14分19 解:S △ABC =S ABED +S BCFE -S ACFD —————————————— 1分=21·2·{[log a m +log a (m +2)]+[log a (m +2)+log a (m +4)]}-2·[log a m +log a (m +4)] ——————————8分=2log a (m +2)-log a m -log a (m +4)=441(log )4()2(log 22mm m m m a a++=++ ——————10分∵ m>1, ∴ t =m 2+4m 为增函数,原函数为减函数,∴ S(m)=)441(log 2m m a ++,0<S ≤log a 59————14分20(Ⅰ)解:∵ f(x)是以2为周期的函数,∴ 当k∈Z 时,2k 是f(x)的周期又∵ 当x∈I k 时,(x-2k)∈I 0, ∴ f(x)=f(x-2k)=(x-2k)2即对 k∈Z,当x∈I k 时,f(x)=(x-2k)2——————5分(Ⅱ)解:当k∈N 且x∈I k 时,利用(Ⅰ)的结论可得方程(x-2k)2=ax, 整理得 x 2-(4k+a)x+4k 2=0它的判别式是△=(4k+a)2-16k 2=a(a+8k)上述方程在区间I k 上恰有两个不相等的实根的充要条件是a 满足————————————8分化简得————————————————————————9分由①知a>0,或a<-8k当a>0时:———————————12分当a<-8k时:——13分故所求集合————————14分。
2022年广东省潮州市新丰中学高三数学理期末试卷含解析
2022年广东省潮州市新丰中学高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设a,b是互不垂直的两条异面直线,则下列命题成立的是()A.存在唯一平面α,使得a?α,且b∥αB.存在唯一直线l,使得l∥a,且l⊥bC.存在唯一直线l,使得l⊥a,且l⊥bD.存在唯一平面α,使得a?α,且b⊥α参考答案:A【考点】空间中直线与平面之间的位置关系.【分析】根据线面位置关系的判定与性质判断,或举出反例.【解答】解:对于A,在a上任取一点A,过A作b′∥b,设a,b′确定的平面为α,显然α是唯一的,且a?α,且b∥α.故A正确.对于B,假设存在直线l使得l∥a,且l⊥b,则a⊥b,与已知矛盾,故B错误.对于C,设a,b的公垂线为AB,则所有与AB垂直的直线与a,b都垂直,故C错误.对于D,若存在平面α,使得a?α,且b⊥α,则b⊥a,与已知矛盾,故D错误.故选:A.1.已知复数的共轭复数(为虚数单位),则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:D3. 函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是( )A.B.C.D.参考答案:A【考点】y=Asin(ωx+φ)中参数的物理意义.【专题】三角函数的图像与性质.【分析】根据函数在同一周期内的最大值、最小值对应的x值,求出函数的周期T==π,解得ω=2.由函数当x=时取得最大值2,得到+φ=+kπ(k∈Z),取k=0得到φ=﹣.由此即可得到本题的答案.【解答】解:∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ)又∵当x=时取得最大值2,∴2sin(2?+φ)=2,可得+φ=+2kπ(k∈Z)∵,∴取k=0,得φ=﹣故选:A.【点评】本题给出y=Asin(ωx+φ)的部分图象,求函数的表达式.着重考查了三角函数的图象与性质、函数y=Asin(ωx+φ)的图象变换等知识,属于基础题.4.非零向量,若点B关于所在直线的对称点为,则向量为()A、 B、 C、 D、参考答案:答案:A5. 下列命题错误的是A.命题“若”的逆否命题为“若”B. “”是“”的充分不必要条件C. 若为假命题,则均为假命题D. 对于命题则参考答案:A略6. 如图,网格纸的小正方形的边长是1,粗线画出的是一个几何体的三视图,则这个几何体的体积为()A.B.C.2+D.3+参考答案:B【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是三棱柱与长方体的组合体,结合图中数据即可求出它的体积.【解答】解:根据几何体的三视图,得;该几何体是上部为三棱柱,下部为长方体的组合体,且三棱柱的底面为底面边长是1,底边上的高是1,三棱柱的高是3,长方体的底面是边长为1的正方形,高是2;所以该几何体的体积为V=V三棱柱+V长方体=×1×1×3+1×1×2=.故选:B.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征,是基础题目.7. 阅读右面的程序框图,运行相应的程序,输出的结果为()A. B. C. D.参考答案:C略8. (5分)某三棱锥的三视图如图所示,该三棱锥的体积是()A. B. 32 C. 16 D.参考答案:B【考点】:由三视图求面积、体积.【专题】:空间位置关系与距离.【分析】:根据三视图画出几何体的直观图,代入数据求解即可.解:几何体的直观图是:几何体的高为4;底面三角形的高为6.底边长为8.∴V棱锥=××8×6×4=32.故选:B【点评】:本题考查由三视图求三棱锥的体积.分析出几何体的形状及底面面积和高是解答的关键.9. 已知点,若函数的图象上存在两点到点的距离相等,则称该函数为“点距函数”,给定下列三个函数:①;②;③,其中“点距函数”的个数是()A.0 B.1 C.2 D.3参考答案:C10. 设,,,则()A. B. C. D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 在△ABC中,,则__________.参考答案:12. 在数列中,若,,则该数列的通项。
安徽省芜湖市新丰中学高三数学文测试题含解析
安徽省芜湖市新丰中学高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若;②若;③若;④若m、n是异面直线,其中真命题是( )A.①和② B.①和③ C.①和④ D.③和④参考答案:C2. 执行如图所示的程序框图,若输入的x的值为2,则输出的x的值为()A.3 B.126 C.127 D.128参考答案:C【考点】程序框图.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算x值并输出,模拟程序的运行过程,即可得到答案.【解答】解:当输出的x=2时,执行循环体后,x=3,不满足退出循环的条件,当x=3时,执行循环体后,x=7,不满足退出循环的条件,当x=7时,执行循环体后,x=127,满足退出循环的条件,故输出的x值为127故选:C【点评】本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.3. (5分)(2015?万州区模拟)若函数f(x)为偶函数,x>0时,f(x)单调递增,P=f(﹣π),Q=f(e),R=f(),则P,Q,R的大小为()A. R>Q>P B. Q>R>P C. P>R>Q D. P>Q>R参考答案:【考点】:奇偶性与单调性的综合.【专题】:函数的性质及应用.【分析】:根据函数奇偶性和单调性之间的关系,进行判断即可.【解答】:∵函数f(x)为偶函数,x>0时,f(x)单调递增,∴P=f(﹣π)=f(π),∵π>e>,∴f(π)>f(e)>f(),即P>Q>R,故选:D【点评】:本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系,是解决本题的关键.4. 设i是虚数单位,复数(a∈R)的实部与虚部相等,则a=()A.﹣1 B.0 C.1 D.2参考答案:B【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,又已知复数(a∈R)的实部与虚部相等,即可解得a的值.【解答】解:∵=,又复数(a∈R)的实部与虚部相等,∴,解得a=0.故选:B.5. 若向量满足,与的夹角为,则()A. B. C. D.参考答案:B6. 函数函数y=的单调递增区间为( )A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(3,+∞)参考答案:C【考点】函数单调性的判断与证明.【专题】函数的性质及应用.【分析】可以看出原函数是由y=3t和t=x2﹣2x复合而成的复合函数,y=3t为增函数,从而t=x2﹣2x 的增区间便是原函数的增区间,从而求二次函数t=x2﹣2x的增区间即可.【解答】解:令x2﹣2x=t,y=3t为增函数;∴t=x2﹣2x的单调递增区间为原函数的单调增区间;∴原函数的单调递增区间为(1,+∞).故选:C.【点评】考查复合函数的单调性,以及指数函数、二次函数的单调性,清楚复合函数是由哪两个函数复合而成的.7. 已知点P是双曲线右支上一点,分别为双曲线的左、右焦点,I为△的内心,若成立,则的值为()A. B. C. D.参考答案:B略8. 已知函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200 B.﹣100 C.0 D.﹣50参考答案:B【考点】85:等差数列的前n项和;3F:函数单调性的性质.【分析】由函数y=f(x﹣2)的图象关于x=1轴对称,平移可得y=f(x)的图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称,可得y=f(x)的图象关于x=﹣1对称,由数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.9. 若关于的方程组有实数解,则实数满足A. B.C. D.参考答案:C10. 已知x,y满足约束条件,则z=2x+y的最大值为( )A.3 B.﹣3 C.1 D.参考答案:A考点:简单线性规划.专题:计算题.分析:先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.解答:解:作图易知可行域为一个三角形,当直线z=2x+y过点A(2,﹣1)时,z最大是3,故选A.点评:本小题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 奇函数在上有定义,且在区间上是增函数,,又函数,则使函数同取正值的的范围_.参考答案:12. 的值为.参考答案:1原式13. 一个四棱锥的三视图如图所示,其正视图是腰长为1的等腰直角三角形,则这个四棱锥的体积为_________.参考答案:14. 7个身高各不相同的学生排成一排照相,高个子站中间,从中间到左边一个比一个矮,从中间到右边也一个比一个矮,则共有 种不同的排法(结果用数字作答).参考答案:20【知识点】排列、组合及简单计数问题.J3解析:最高个子站在中间,只需排好左右两边,第一步:先排左边,有=20种排法,第二步:排右边,有=1种,根据分步乘法计数原理,共有20×1=20种,故答案为:20.【思路点拨】最高个子站在中间,只需排好左右两边,第一步:先排左边,有=20种排法,第二步:排右边,有=1种,根据分步乘法计数原理可得结论.15. 若平面向量=(cosθ,sinθ),=(1,﹣1),且⊥,则sin2θ的值是 .参考答案:1【考点】三角函数中的恒等变换应用;平面向量数量积的运算.【分析】利用向量垂直,就是数量积为0,求出cos θ﹣sin θ=0,两边平方,利用同角三角函数基本关系式,二倍角的正弦函数公式可求sin2θ的值. 【解答】解:因为⊥, 所以?=0, 即:cosθ﹣sinθ=0,两边平方可得:cos 2θ﹣2sinθcosθ+sin 2θ=0,可得:1﹣sin2θ=0,解得:sin2θ=1. 故答案为:1.16. 向量,,且∥,则______参考答案:17.已知函数y=f(x)是R 上的偶函数,对于x 都有f(x+6)=f(x)+f(3)成立,且f(-4)=-2,当x ,x[0,3],且xx 时,都有。
江苏省大丰市新丰中学高考数学等比数列习题及答案doc
一、等比数列选择题1.已知q 为等比数列{}n a 的公比,且1212a a =-,314a =,则q =( ) A .1- B .4C .12-D .12±2.若1,a ,4成等比数列,则a =( ) A .1B .2±C .2D .2-3.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭4.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n5.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>06.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( ) A .第四个单音的频率为1122f - B .第三个单音的频率为142f - C .第五个单音的频率为162fD .第八个单音的频率为1122f7.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-B .3-C .3D .88.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n nb b +,则b 2020=( )A .22017B .22018C .22019D .220209.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=( ) A .4B .5C .8D .1510.已知1a ,2a ,3a ,4a 成等比数列,且()21234123a a a a a a a +++=++,若11a >,则( )A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >11.题目文件丢失!12.已知数列{}n a 的首项11a =,前n 项的和为n S ,且满足()*122n n a S n N ++=∈,则满足2100111100010n nS S 的n 的最大值为( ). A .7B .8C .9D .1013.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .714..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2B .2或2-C.2-D15.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8B .﹣8C .±8D .9816.设等比数列{}n a 的前n 项和为n S ,若425S S =,则等比数列{}n a 的公比为( ) A .2B .1或2C .-2或2D .-2或1或217.在等比数列{}n a 中,12345634159,88a a a a a a a a +++++==-,则123456111111a a a a a a +++++=( ) A .35B .35C .53D .53-18.数列{}n a 满足119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,则该数列从第5项到第15项的和为( )A .2016B .1528C .1504D .99219.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a14a =,则14m n +的最小值为( ) A .53B .32C .43D .11620.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T二、多选题21.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列22.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )A .{}n a 为单调递增数列B .639S S = C .3S ,6S ,9S 成等比数列D .12n n S a a =-23.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为非零常数),则下列结论正确的是( ) A .{}n a 是等比数列 B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+24.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列 B .若4123,27,a a ==则89a =±C .若123,a a a <<则数列{}n a 是递增数列D .若数列{}n a 的前n 和13,n n S r -=+则r =-1 25.设{}n a 是无穷数列,1n n n A a a +=+,()1,2,n =,则下面给出的四个判断中,正确的有( )A .若{}n a 是等差数列,则{}n A 是等差数列B .若{}n A 是等差数列,则{}n a 是等差数列C .若{}n a 是等比数列,则{}n A 是等比数列D .若{}n A 是等差数列,则{}2n a 都是等差数列 26.关于递增等比数列{}n a ,下列说法不正确的是( ) A .10a >B .1q >C .11nn a a +< D .当10a >时,1q >27.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( ) A .113()2n n a -=⋅-B .36nn S a =+C .若数列{}n a 中存在两项p a ,s a3a =,则19p s +的最小值为83D .若1n n t S m S ≤-≤恒成立,则m t -的最小值为11628.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-= B .12n n aC .21nn S =-D .121n n S -=-29.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( ) A .8 B .12 C .-8D .-1230.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( ) A .2B .4C .85D .8331.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )A .1{}na B .22log ()n aC .1{}n n a a ++D .12{}n n n a a a ++++32.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍33.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍34.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q <<B .8601a a <<C .n S 的最大值为7SD .n T 的最大值为6T35.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】利用等比通项公式直接代入计算,即可得答案; 【详解】()211142211111122211121644a a q a q q q q a q a q ⎧⎧=-=--⎪⎪⎪⎪⇒⇒=⇒=-⎨⎨⎪⎪=⋅=⎪⎪⎩⎩, 故选:C. 2.B 【分析】根据等比中项性质可得24a =,直接求解即可. 【详解】由等比中项性质可得:2144a =⨯=,所以2a =±, 故选:B 3.D 【分析】由2n n S a =-利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由2(1)0n n n S T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 4.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1212n---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 5.A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 6.B 【分析】根据题意得该单音构成公比为四、五、八项即可得答案. 【详解】解:根据题意得该单音构成公比为 因为第六个单音的频率为f ,141422f f -==.661122f f -==.所以第五个单音的频率为1122f =.所以第八个单音的频率为1262f f =故选:B. 7.A 【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 8.A 【分析】根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为20201b b ,再根据等比数列下标和性质求解出2020b 的结果.【详解】 因为1n n nb a b +=,所以32019202020202412320182019123201820191b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()()123201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅22220192019101010101010101010102a a a a a =⋅⋅⋅==所以2019202012b b =,又114b =,所以201720202b =, 故选:A. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.9.C 【分析】由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴27a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 10.B 【分析】由12340a a a a +++≥可得出1q ≥-,进而得出1q >-,再由11a >得出0q <,即可根据q 的范围判断大小. 【详解】设等比数列的公比为q , 则()()()2321234111+++1+1+0a a a a a q q qa q q +++==≥,可得1q ≥-,当1q =-时,12340a a a a +++=,()21230a a a ++≠,1q ∴>-,()21234123a a a a a a a +++=++,即()223211+++1++q q q a q q =,()231221+++11++q q q a q q ∴=>,整理得432++2+0q q q q <,显然0q <,()1,0q ∴∈-,()20,1q ∈,()213110a a a q ∴-=->,即13a a >,()()32241110a a a q q a q q ∴-=-=-<,即24a a <.故选:B. 【点睛】关键点睛:本题考查等比数列的性质,解题的关键是通过已知条件判断出()1,0q ∈-,从而可判断大小.11.无12.C 【分析】根据()*122n n a S n N ++=∈可求出na的通项公式,然后利用求和公式求出2,n n S S ,结合不等式可求n 的最大值. 【详解】1122,22()2n n n n a S a S n +-+=+=≥相减得1(22)n n a a n +=≥,11a =,212a =;则{}n a 是首项为1,公比为12的等比数列,100111111000210n⎛⎫<+< ⎪⎝⎭,1111000210n⎛⎫<< ⎪⎝⎭,则n 的最大值为9. 故选:C 13.C 【分析】依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭,由题意,902131n⎛⎫-≥ ⎪⎝⎭,即21lg lg 1031n ≤=-,即()lg3lg21n -≥,解得:115.679lg3lg 20.47710.3010n ≥=≈--,又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题. 14.A 【分析】由等比数列的性质可得2315a a a =⋅,且1a 与3a 同号,从而可求出3a 的值【详解】解:因为等比数列{}n a 中,11a =,54a =,所以23154a a a =⋅=,因为110a =>,所以30a >, 所以32a =, 故选:A 15.A 【分析】由已知条件求出公差和公比,即可由此求出结果. 【详解】设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,419q ⋅=,解之可得83d =,23q =, ()22218183b a a q ∴-=⨯⨯=.故选:A. 16.C 【分析】设等比数列{}n a 的公比为q ,由等比数列的前n 项和公式运算即可得解. 【详解】设等比数列{}n a 的公比为q , 当1q =时,4121422S a S a ==,不合题意;当1q ≠时,()()41424222111115111a q S q q q S qa q q---===+=---,解得2q =±. 故选:C. 17.D 【分析】利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为162534162534a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】162534123456162534111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中3498a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +++++=12345685()93a a a a a a -+++++=-, 故选:D 18.C 【分析】利用等比数列的求和公式进行分项求和,最后再求总和即可 【详解】因为119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,所以,41049104561022222212a a a -+++=++==--,498448941112152222222212a a a -+++=++=++==--,该数列从第5项到第15项的和为10494465422222(2121)2(64322)16941504-+-=⨯-+-=⨯+-=⨯=故选:C 【点睛】解题关键在于利用等比数列的求和公式进行求解,属于基础题 19.B 【分析】设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得22q q =+,解得2q,根据存在两项m a 、n a14a =14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,22q q ∴=+,解得2q,存在两项m a 、n a14a =,∴14a =,6m n ∴+=,m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),则14m n+的最小值为143242+=.故选:B . 20.B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确; 因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】关键点点睛:本题的关键是通过穷举法确定01q <<.二、多选题21.BCD【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 22.BD 【分析】根据638a a =利用等比数列的性质建立关系求出2q ,然后结合等比数列的求和公式,逐项判断选项可得答案. 【详解】由638a a =,可得3338q a a =,则2q,当首项10a <时,可得{}n a 为单调递减数列,故A 错误;由663312912S S -==-,故B 正确; 假设3S ,6S ,9S 成等比数列,可得2693S S S =⨯, 即6239(12)(12)(12)-=--不成立,显然3S ,6S ,9S 不成等比数列,故C 错误; 由{}n a 公比为q 的等比数列,可得11122121n n n n a a q a a S a a q --===--- 12n n S a a ∴=-,故D 正确;故选:BD . 【点睛】关键点睛:解答本题的关键是利用638a a =求得2q ,同时需要熟练掌握等比数列的求和公式. 23.ABC 【分析】由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 正确;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 正确; 由A 可得m n m n a a a +⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,则3856a a a a +>+,即D 不正确; 故选:ABC. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 24.AC 【分析】根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】设等比数列{}n a 公比为,(0)q q ≠则222112()n n n na a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;若123,a a a <<则1211101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩,即数列{}n a 是递增数列,C 正确;若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211323(1),3a a q r r a a ===∴=+=-,即D 错误 故选:AC【点睛】等比数列的判定方法(1)定义法:若1(n na q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且212n n a a a a ++=,则数列{}n a 是等比数列;(3)通项公式法:若数列通项公式可写成(,nn a cq c q =均是不为0的常数),则{}n a 是等比数列;(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,nn S kq k q q k =-≠≠为非零常数),则{}n a 是等比数列.25.AD 【分析】利用等差数列的通项公式以及定义可判断A 、B 、D ;利用等比数列的通项公式可判断B. 【详解】对于A ,若{}n a 是等差数列,设公差为d ,则()1111122n n n a n d a nd A a a a nd d +=+=+-++=+-, 则()()111222212n n A A a nd d a n d d d --=+--+--=⎡⎤⎣⎦, 所以{}n A 是等差数列,故A 正确; 对于B ,若{}n A 是等差数列,设公差为d ,()11111n n n n n n n n A a a a a a a A d +-+--=-=-+-=+,即数列{}n a 的偶数项成等差数列,奇数项成等差数列,故B 不正确,D 正确. 对于C ,若{}n a 是等比数列,设公比为q ,当1q ≠-时, 则11111n n n n n n n n n na q a A a a a qq a A a a --+--+=+++==, 当1q =-时,则10n n n A a a ++==,故{}n A 不是等比数列,故C 不正确; 故选:AD 【点睛】本题考查了等差数列的通项公式以及定义、等比数列的通项公式以及定义,属于基础题. 26.ABC 【分析】由题意,设数列{}n a 的公比为q ,利用等比数列{}n a 单调递增,则111(1)0n n n a a a q q -+-=->,分两种情况讨论首项和公比,即可判断选项.【详解】由题意,设数列{}n a 的公比为q ,因为11n n a a q -=,可得111(1)0n n n a a a qq -+-=->,当10a >时,1q >,此时101nn a a +<<, 当10a <时,101,1nn a q a +<<>, 故不正确的是ABC. 故选:ABC. 【点睛】本题主要考查了等比数列的单调性.属于较易题. 27.ABD 【分析】根据等差中项列式求出12q =-,进而求出等比数列的通项和前n 项和,可知A ,B 正确;3a =求出15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或51p s =⎧⎨=⎩,可知19p s +的最小值为114,C 不正确;利用1nn y S S =-关于n S 单调递增,求出1n n S S -的最大、最小值可得结果. 【详解】设等比数列{}n a 的公比为q ,由13a =,21344a a a -=+得243343q q -⨯=+⨯,解得12q =-,所以113()2n n a -=⋅-,13(1())1221()121()2n n n S --⎛⎫==-- ⎪⎝⎭--;1111361()66()63()63222n n n n n S a -⎛⎫=--=--=+⋅-=+ ⎪⎝⎭;所以A ,B 正确;3a =,则23p s a a a ⋅=,1122111()p s p s a a a q a q a q --⋅==,所以114p s q qq --=,所以6p s +=,则15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或51p s =⎧⎨=⎩,此时19145p s +=或114或194或465;C 不正确,122,2121()2122,2nn n nn S n ⎧⎛⎫+⎪ ⎪⎪⎝⎭⎛⎫=--=⎨ ⎪⎝⎭⎛⎫⎪- ⎪⎪⎝⎭⎩为奇数为偶数, 当n 为奇数时,(2,3]n S ∈,当n 为偶数时,3[,2)2n S ∈,又1n n y S S =-关于n S 单调递增,所以当n 为奇数时,138(,]23nn S S -∈,当n 为偶数时,153[,)62n n S S -∈,所以83m ≥,56t ≤,所以8511366m t -≥-=,D 正确, 故选:ABD . 【点睛】本题考查了等差中项的应用,考查了等比数列通项公式,考查了等比数列的前n 项和公式,考查了数列不等式恒成立问题,属于中档题. 28.BC 【分析】根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>23464a a a =,2364a ∴=,解得34a =,2410a a +=,4410q q∴+=即22520q q -+=,解得2q或12, 又数列{a n }为单调递增的等比数列,取2q,312414a a q ===, 12n na ,212121n n n S -==--,()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 29.AC 【分析】求出等比数列的公比2q =±,再利用通项公式即可得答案; 【详解】5721624a q q a ==⇒=±,当2q时,65428a a q ==⨯=,当2q =-时,654(2)8a a q ==⨯-=-, 故选:AC. 【点睛】本题考查等比数列通项公式的运算,考查运算求解能力,属于基础题. 30.ABD 【分析】根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,∴2373752323262a a a a a +=, 因为50a >,所以上式可化为52a ,当且仅当3a =,7a = 故选:ABD . 【点睛】本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 31.AD 【分析】主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,由等比数列的定义知1{}na 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 32.BD 【分析】根据题意,得到此人每天所走路程构成以12为公比的等比数列,记该等比数列为{}n a ,公比为12q =,前n 项和为n S ,根据题意求出首项,再由等比数列的求和公式和通项公式,逐项判断,即可得出结果.【详解】 由题意,此人每天所走路程构成以12为公比的等比数列, 记该等比数列为{}n a ,公比为12q =,前n 项和为n S , 则16611163237813212a S a ⎛⎫- ⎪⎝⎭===-,解得1192a =, 所以此人第三天走的路程为23148a a q =⋅=,故A 错;此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确; 此人第二天走的路程为213789694.54a a q =⋅=≠=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为6337833642S S -=-=,336428=⨯,即前三天路程之和是后三天路程之和的8倍,D 正确;故选:BD.【点睛】本题主要考查等比数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型. 33.BCD【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案.【详解】解:根据题意此人每天行走的路程成等比数列,设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以661161[1()](1)2=3781112a a q S q --==--,解得1192a =. 选项A:5561119262a a q ⎛⎫==⨯= ⎪⎝⎭,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确.选项C:211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确. 选项D:2123111(1)192(1)33624a a a a q q ++=++=⨯++=, 则后3天走的路程为378336=42-,而且336428÷=,故D 正确.故选:BCD【点睛】 本题考查等比数列的性质,考查等比数列的前n 项和,是基础题.34.ABD【分析】先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D.【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾;若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确; 667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确;故选:ABD【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题.35.AD【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确.【详解】数列{a n }是公比q 为23-的等比数列,{b n }是首项为12,公差设为d 的等差数列, 则8912()3a a =-,91012()3a a =-,∴a 9•a 1021712()3a =-<0,故A 正确;∵a 1正负不确定,故B 错误;∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误;由a 9>b 9且a 10>b 10,则a 1(23-)8>12+8d ,a 1(23-)9>12+9d , 由于910,a a 异号,因此90a <或100a <故 90b <或100b <,且b 1=12 可得等差数列{b n }一定是递减数列,即d <0,即有a 9>b 9>b 10,故D 正确.故选:AD【点睛】本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.。
2020年安徽省芜湖市新丰中学高三数学理期末试题含解析
2020年安徽省芜湖市新丰中学高三数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知和是平面内两个单位向量,它们的夹角为,则与的夹角是(A)(B)(C)(D)参考答案:C2. 设集合,则()A.B.C. D.参考答案:B略3. 已知复数满足(为虚数单位),则复数()A.B.C.D.参考答案:B因为,所以 .4. 经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系. 对某小组学生每周用于数学的学习时间x与数学成绩y进行数据收集如下:115由表中样本数据求得回归方程为,则A. B.C. D.与的大小无法确定参考答案:B5. 已知上是单调增函数,则a的最大值是A.0 B.1 C.2D.3参考答案:D6. 已知点在圆上运动, 且,若点的坐标为,则的最大值为()A. B.C. D.参考答案:B考点:平面向量的基本运算.7. 对两个实数,定义运算“”,.若点在第四象限,点在第一象限,当变动时动点形成的平面区域为,则使成立的的最大值为A. B. C.D.参考答案:C略8. 已知某几何体的三视图如图所示,则该几何体的体积为()A.2 B.4 C.D.参考答案:C由已知三视图可得,该几何体是一个底面为直角边为的等腰直角三角形,高为的三棱锥,如图,三棱锥,故该几何体的体积为,故选C.9. 已知命题:使成立.则为()A.使成立B.均成立C.使成立 D.均成立参考答案:D原命题为特称命题,故其否定为全称命题,即.10. 已知集合A. B. C. D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 若圆上至少有三个不同的点到直线的距离为,则直线的倾斜角的取值范围是.参考答案:12. 已知抛物线y2=2x的焦点为F,过F点作斜率为的直线交抛物线于A,B两点,其中第一象限内的交点为A,则= .参考答案:3【考点】抛物线的简单性质.【分析】根据题意,求得抛物线的焦点为F(,0),得到直线AB的方程为y=(x﹣).将直线AB方程与抛物线y2=2x消去x,得到y2﹣y﹣1=0,解出点A、B的纵坐标,进而可得的值.【解答】解:设A(x1,y1),B(x2,y2),∵抛物线y2=2x的焦点为F(,0),直线AB经过点F且斜率k=,∴直线AB的方程为y=(x﹣),将直线AB方程与抛物线y2=2x消去x,可得y2﹣y﹣1=0,∵点A是第一象限内的交点,∴解方程得y1=,y2=﹣.因此=3.故答案为:3【点评】本题给出经过抛物线焦点F 的直线交抛物线于A 、B 两点,求线段AF 、BF 的比值.着重考查了抛物线的简单性质、直线与圆锥曲线的位置关系等知识,属于中档题. 13. 不等式的解为__________。
江苏省大丰市新丰中学高考数学数列的概念习题及答案doc
一、数列的概念选择题1.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 2.已知数列{}n a 满足: 12a =,111n na a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007B .1008C .1009.5D .10103.已知数列{}n a 满足12a =,111n na a +=-,则2018a =( ). A .2B .12 C .1-D .12-4.已知数列{}n a 满足11a =),2n N n *=∈≥,且()2cos3n n n a b n N π*=∈,则数列{}n b 的前18项和为( ) A .120B .174C .204-D .37325.已知数列{}n a 的前n 项和223n S n n =-,则10a =( )A .35B .40C .45D .506.已知数列{}ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )A .13i =,33j =B .19i =,32j =C .32i =,14j =D .33i =,14j =7.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 8.数列{}n a 的前n 项和记为n S ,()*11N ,2n n n a a a n n ++=-∈≥,12018a =,22017a =,则100S =( )A .2016B .2017C .2018D .20199.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若1102a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+D .71089a a a a +>+10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:()()22221211236n n n n ++++++=)A .1624B .1198C .1024D .156011.数列{}n a 满足:12a =,111nn na a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-B .16-C .16D .612.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1013.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×2018214.数列{}n a 满足1111,(2)2n n n a a a n a --==≥+,则5a 的值为( )A .18B .17 C .131D .1615.数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)32n n --+B .(1)32n n -+C .1(1)23n n --+D .(1)23nn -+16.已知数列{}n a 满足:11a =,145n n a a +=+,则n a =( ) A .85233n⨯- B .185233n -⨯- C .85433n⨯-D .185433n -⨯- 17.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .11218.设数列{}n a 的通项公式为2n n a n+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6B .7C .8D .919.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-20.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .11二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54 C .S 2020=a 2022-1 D .a 1+a 3+a 5+…+a 2021=a 202222.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)n n a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--23.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=024.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()15155n nF n ⎡⎤+-⎥=-⎥⎝⎭⎝⎭⎦ D .()15155n n F n ⎡⎤+-⎥=+⎥⎝⎭⎝⎭⎦25.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )A .数列{}n a 的公差d <0B .数列{}n a 中S n 的最大项为S 10C .S 10>0D .S 11>026.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >27.已知数列{}n a 满足:12a =,当2n ≥时,)212n a =-,则关于数列{}n a 的说法正确的是 ( )A .27a =B .数列{}n a 为递增数列C .221n a n n =+-D .数列{}n a 为周期数列28.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列29.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列30.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =31.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列32.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >33.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为2134.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <B .70a >C .{}n S 中5S 最大D .49a a <35.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=- ⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.2.D解析:D 【分析】根据题设条件,可得数列{}n a 是以3为周期的数列,且3132122S =+-=,从而求得2017S的值,得到答案. 【详解】由题意,数列{}n a 满足: 12a =,111n na a +=-, 可得234111,121,1(1)2,22a a a =-==-=-=--=,可得数列{}n a 是以3为周期的数列,且3132122S =+-= 所以20173672210102S =⨯+=. 故选:D. 【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.3.B解析:B 【分析】利用递推关系可得数列{}n a 是以3为周期的周期数列,从而可得2018a . 【详解】 在数列{}n a 中,111n na a +=-,且12a =, 211112a a ∴=-=, 3211121a a =-=-=- , ()41311112a a a =-=--== ∴数列{}n a 是以3为周期的周期数列,201867232=⨯+,2018212a a ∴==.故选:B 【点睛】本题考查了由数列的递推关系式研究数列的性质,考查了数列的周期性,属于基础题.4.B解析:B【分析】将题干中的等式化简变形得211n n a n a n --⎛⎫= ⎪⎝⎭,利用累乘法可求得数列{}n a 的通项公式,由此计算出()32313k k k b b b k N *--++∈,进而可得出数列{}nb 的前18项和.【详解】)1,2n a n N n *--=∈≥,将此等式变形得211n n a n a n --⎛⎫= ⎪⎝⎭,由累乘法得22232121211211123n n n aa a n a a a a a n n--⎛⎫⎛⎫⎛⎫=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2cos3n n n a b n N π*=∈,22cos 3n n b n π∴=, ()()222323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛⎫∴++=--+--+ ⎪ ⎪⎝⎭⎝⎭592k =-,因此,数列{}n b 的前18项和为()591234566921151742⨯+++++-⨯=⨯-=. 故选:B. 【点睛】本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.5.A解析:A 【分析】利用()n n n a S S n 12-=-,根据题目已知条件求出数列的通项公式,问题得解.【详解】223n S n n =-,n 2∴≥时,1n n n a S S -=-22(23[2(1)3(1)]n n n n )=-----=45n1n = 时满足11a S = ∴ =45n a n ,∴ 10a =35故选:A. 【点睛】本题考查利用n a 与n S 的关系求通项. 已知n S 求n a 的三个步骤: (1)先利用11a S =求出1a .(2)用1n -替换n S 中的n 得到一个新的关系,利用()n n n a S S n12-=-便可求出当n 2≥时n a 的表达式.(3)对1n =时的结果进行检验,看是否符合n 2≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与n 2≥两段来写. .6.C解析:C 【分析】可以看出所排都是奇数从小到大排起.规律是先第一列和第一行,再第二列和第二行,再第三列第三行,并且完整排完n 次后,排出的数呈正方形.可先算2021是第几个奇数,这个奇数在哪两个完全平方数之间,再去考虑具体的位置. 【详解】每排完n 次后,数字呈现边长是n 的正方形,所以排n 次结束后共排了2n 个数.20211110112-+=,说明2021是1011个奇数. 而22961311011321024=<<=,故2021一定是32行,而从第1024个数算起,第1011个数是倒数第14个,根据规律第1024个数排在第32行第1列,所以第1011个数是第32行第14列,即2021在第32行第14列. 故32,14i j ==. 故选:C. 【点睛】本题考查数列的基础知识,但是考查却很灵活,属于较难题.7.C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.A解析:A 【分析】根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】解:因为12018a =,22017a =,()*11N ,2n n n a a a n n +-=-∈≥,则321201720181a a a =-=-=-, 432(1)20172018a a a =-=--=-, 543(2018)(1)2017a a a =-=---=-,654(2017)(2018)1a a a =-=---=, 76511(2017)2018a a a a =-=--==, 8762201812017a a a a =-=-==,…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++⋅⋅⋅++=,所以()100125697989910016S a a a a a a a a =++⋅⋅⋅++++++12342016a a a a =+++=.故选:A . 【点睛】本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.9.C解析:C 【分析】 由递推公式1221n n n a a a ++=+得出25445n n n a a a ++=+,计算出25,24a ⎛⎫∈ ⎪⎝⎭,利用递推公式推导得出()0,1n a ∈(n 为正奇数),1n a >(n 为正偶数),利用定义判断出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,进而可得出结论.【详解】()()113212132221212221n n n n n n a a a a a a ++++===++++,110,2a ⎛⎫∈ ⎪⎝⎭,25,24a ⎛⎫∴∈ ⎪⎝⎭,()()121259245221545944221454544452121n n n n n n n n n n n n a a a a a a a a a a a a ++++++-+++=====-+++++⨯++,且()2241544545n n n n n n n a a a a a a a +-+-=-=++,()212122121n n n n n n n a a a a a a a +-+-=-=++. 110,2a ⎛⎫∈ ⎪⎝⎭,则101a <<,则()()3590,14445n a a =-∈+, 如此继续可得知()()210,1n a n N *-∈∈,则()22121212141=045n n n n a aa a -+---->+,所以,数列{}()21n a n N *-∈单调递增;同理可知,()21na n N *>∈,数列{}()2na n N *∈单调递减.对于A 选项,78a a <且79a a <,8972a a a ∴+>,A 选项错误; 对于B 选项,89a a >且108a a <,则91082a a a +<,B 选项错误; 对于C 选项,68a a >,97a a >,则6978a a a a +>+,C 选项正确; 对于D 选项,79a a <,108a a <,则71098a a a a +<+,D 选项错误. 故选:C. 【点睛】本题考查数列不等式的判断,涉及数列递推公式的应用,解题的关键就是推导出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,考查推理能力,属于难题.10.C解析:C 【分析】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则n c n =,依次用累加法,可求解.【详解】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,()()()111121n n n n n n n C c c c b b b b b b +----=+++=++++-所以11n n b b C +=-,1213b a a -==22n n n C +=,进而得21332n n n nb C ++=+=+,所以()21133222n n n n b n -=+=-+,()()()()2221111121233226n n n n B n n n n +-=+++-++++=+同理:()()()111112n n n n n n n B b b b a a a a a a +---=+++=+++--11n n a a B +-=所以11n n a B +=+,所以191024a =. 故选:C 【点睛】本题考查构造数列,用累加法求数列的通项公式,属于中档题.11.A解析:A 【分析】根据递推公式推导出()4n n a a n N *+=∈,且有12341a a a a=,再利用数列的周期性可计算出2018T 的值. 【详解】12a =,()*111++=∈-nn n a a n N a ,212312a +∴==--,3131132a -==-+,411121312a -==+,51132113a +==-,()4n n a a n N *+∴=∈,且()12341123123a a a a ⎛⎫=⨯-⨯-⨯= ⎪⎝⎭,201845042=⨯+,因此,()5042018450421211236T T a a ⨯+==⨯=⨯⨯-=-.故选:A. 【点睛】本题考查数列递推公式的应用,涉及数列周期性的应用,考查计算能力,属于中等题.12.C解析:C 【分析】利用443a S S =-计算. 【详解】由已知22443(44)(33)8a S S =-=+-+=.故选:C .13.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解. 【详解】由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列,则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181a a =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.14.C解析:C 【分析】根据条件依次算出2a 、3a 、4a 、5a 即可. 【详解】 因为1111,(2)2n n n a a a n a --==≥+,所以211123a ==+,31131723a ==+,411711527a ==+,51115131215a ==+ 故选:C 15.D解析:D 【分析】根据观察法,即可得出数列的通项公式. 【详解】因为数列1111,,,, (57911)--可写成 ()()()()2342322311111,1,1,12,..24.333-⨯-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213nnn a n n -=-=++⨯. 故选:D.16.D解析:D 【分析】 取特殊值即可求解. 【详解】当1n =时,11a =,显然AC 不正确,当2n =时,21459a a =+=,显然B 不符合,D 符合 故选:D17.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭.∴1211322aa ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭ 2115(1)221122n n n---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-. ∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;18.C解析:C 【分析】先求出数列{}n a 的前n 项的乘积为n D ,令0n D >解不等式,结合*n N ∈,即可求解.【详解】记数列{}n a 的前n 项的乘积为n D ,则()()12112451232312n n n n n n n D a a a a n n -++++=⋅⋅=⨯⨯⨯⨯⨯=- 依题意有()()12362n n ++>整理得()()23707100n n n n +-=-+> 解得:7n >,因为*n N ∈,所以min 8n =, 故选:C19.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.20.A解析:A 【分析】直接将6n =代入通项公式可得结果. 【详解】 因为()()211nn a n=--,所以626(1)(61)35a =--=.故选:A 【点睛】本题考查了根据通项公式求数列的项,属于基础题.二、多选题 21.BCD 【分析】由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可解析:BCD 【分析】由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++++++++n n n a a a a a a a a a a a a a a +-=----即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a a a a =---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解.22.AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】对于选项A ,取前六项得:,满足条件; 对于选项B ,取前六项得:,不满足条件; 对于选项C ,取前六项得:,解析:AC 【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案.【详解】对于选项A ,1(1)nn a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos 2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC23.ABD 【分析】对于A ,由题意得bn=an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题24.BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……, 显然,,,,,所以且,即B 满足条件; 由, 所以 所以数列解析:BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭为公比的等比数列, 所以()()1nF n n +-=⎝⎭115()n -=++, 令1nn n F b-=⎝⎭,则11n n b +=+,所以1n n b b +=-, 所以nb ⎧⎪⎨⎪⎪⎩⎭以510-32-为公比的等比数列, 所以1n n b -+,所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.25.AC 【分析】由,可得,且,然后逐个分析判断即可得答案 【详解】解:因为,所以,且,所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误, 所以,,所以C 正确,D 错误, 故选:AC解析:AC 【分析】由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】解:因为564S S S >>,所以650,0a a ,且650a a +>,所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()5()02a a S a a +==+>,11111611()1102a a S a +==<, 所以C 正确,D 错误, 故选:AC26.ABC 【分析】因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.27.ABC 【分析】由,变形得到,再利用等差数列的定义求得,然后逐项判断. 【详解】 当时,由, 得, 即,又,所以是以2为首项,以1为公差的等差数列, 所以, 即,故C 正确; 所以,故A 正确; ,解析:ABC 【分析】由)212n a =-1=,再利用等差数列的定义求得n a ,然后逐项判断. 【详解】当2n ≥时,由)212n a =-,得)221n a +=,1=,又12a =,所以是以2为首项,以1为公差的等差数列,2(1)11n n =+-⨯=+,即221n a n n =+-,故C 正确;所以27a =,故A 正确;()212n a n =+-,所以{}n a 为递增数列,故正确;数列{}n a 不具有周期性,故D 错误; 故选:ABC28.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.29.ACD【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=解析:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD30.BD 【分析】设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误. 【详解】设等差数列的公差为,则,, 因为、、成等差数列,则,即, 解得,,解析:BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d Sd -⨯==-,A 选项错误;对于B 选项,()2229272d Sd -⨯==-,()2779772d Sd -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.31.BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数, 是等方差数解析:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k k k aa a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题.32.ABC 【分析】根据等差数列性质依次分析即可得答案. 【详解】解:对于A.,若,则,所以,所以,故A 选项正确;对于B 选项,若,则,由于,公差,故,故,所以是中最大的项;故B 选项正确; C. 若解析:ABC 【分析】根据等差数列性质依次分析即可得答案. 【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确; 对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误. 故选:ABC . 【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.33.BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D . 【详解】由公差,可得,即,① 由a7是a解析:BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.34.AD 【分析】先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案. 【详解】解:根据等差数列前项和公式得:, 所以,, 由于,, 所以,, 所以,中最大, 由于, 所以,即:解析:AD 【分析】先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.【详解】解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=<所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误. 故选:AD. 【点睛】本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.35.ACD 【分析】由得,故正确;当时,根据二次函数知识可知无最小值,故错误;根据等差数列的性质计算可知,故正确;根据等差数列前项和公式以及等差数列的性质可得,故正确. 【详解】因为,所以,所以,即解析:ACD 【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确. 【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2dn n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a+⨯===,故D 正确.故选:ACD. 【点睛】本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题.。
浙江省嘉兴市新丰中学2018-2019学年高三数学文期末试题含解析
浙江省嘉兴市新丰中学2018-2019学年高三数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在区间[1,2]上任选两个数x,y,则y<的概率为()A.2ln2﹣1 B.1﹣ln2 C.D.ln2参考答案:A【考点】CF:几何概型.【分析】由题意,本题是几何概型,利用变量对应区域的面积比求概率即可.【解答】解:由题意,在区间[1,2]上任选两个数x,y,对应区域如图:面积为1,则y<的区域面积为=2ln2﹣1,所以所求概率为=2ln2﹣1;故选A.2. 若是方程的解,是方程的解,则等于()A. B. C. D.参考答案:B【分析】,再利用函数与函数互为反函数,推出函数图像交点的横坐标与纵坐标的关系【详解】由题意知是方程的解,是方程的解,即是函数与函数交点的横坐标,是函数与函数交点的横坐标。
因为函数与函数互为反函数,图像关于对称。
所以等于函数与函数交点的纵坐标,即【点睛】方程的解就是对应函数图像的交点,还是函数的零点利用函数与函数互为反函数,推出函数图像交点的横坐标与纵坐标的关系,即可求解本题。
3. 过点(1,1),且在轴上的截距为3的直线方程是()A. B. C. D.参考答案:D4. “0<m<l”是“关于x的方程有两个异号实数根”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件参考答案:A5. 已知三个村庄A、B、C所处的位置恰好位于三角形的三个顶点处,且AB=6km,BC=8km,AC=10km.现在△ABC内任取一点M建一大型的超市,则M点到三个村庄A、B、C的距离都不小于2km的概率为A. B. C. D.参考答案:D6. 定义一种运算:的值是()A. B. C. D.参考答案:D7. 如图是某样本数据的茎叶图,则该样本的中位数、众数、极差分别是()A.32 34 32 B.33 45 35 C.34 45 32 D.33 36 35参考答案:B【考点】茎叶图.【专题】对应思想;综合法;概率与统计.【分析】根据中位数,众数以及极差的概念以及茎叶图中的数据,求出相应的数据即可.【解答】解:从茎叶图中知共16个数据,按照从小到大排序后中间的两个数据为32、34,所以这组数据的中位数为33;45出现的次数最多,所以这组数据的众数为45;最大值是47,最小值是12,故极差是:35,故选:B.【点评】本题考查了茎叶图的应用以及中位数、众数以及极差的求法问题,求中位数时,要把数据从小到大排好,再确定中位数,也要注意数据的个数.8. 设集合那么“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:A9. 已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20D.46参考答案:B【考点】球内接多面体;棱柱、棱锥、棱台的体积.【分析】由题意求出矩形的对角线的长,结合球的半径,球心到矩形的距离,满足勾股定理,求出棱锥的高,即可求出棱锥的体积.【解答】解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.10. 已知函数是R上的偶函数,对都有成立,当,且时,都有<0,给出下列命题:(1);(2)直线是函数图象的一条对称轴;(3)函数在上有四个零点;(4)其中所有正确的命题为()A.(2)(3)(4)B. (1)(2)(3)C. (1)(2)(4)D.(1)(2)(3)(4)参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 右图是一个算法的伪代码,输出结果是.参考答案:1412. 已知函数f(x)满足,则f(x)的最小值为.参考答案:略13. 已知正方形的边长为2,则.参考答案:4 14. 15. 16.14. 已知是偶函数,且其定义域为,则的值域是参考答案:15. 关于函数f(x)= 4 sin(2x+)(),有下列命题:①由f(x1)=f(x2)=0可得x1-x2必是的整数倍;②y =f(x)的表达式可改写为y = 4cos(2x-);③y =f(x)的图象关于点(-,0)对称;④y =f(x)的图象关于直线x = -对称.其中正确命题的序号是________________。
新丰中学高三数学国庆假期作业一
12 时 , 解不等式 f (x
25
12 , 求 f (x ) 在 [0, 2] 上的最大值 ;
5
2
8
4)
0.
x
5
新丰中学高三数学国庆假期作业二
班级 一、填空题
命题人:刘永华 姓名
审核人:陈笑天
学号
完成时间
1.已知函数 f ( x)
1 的定义域为 M , g ( x) 1x
4
x
的定义域为
N ,则
x1
10. 已知集合 A x x2 2x a 0 , B x x2 3x 2 0 ,若 B A , 则实数 a 的
值范围是
11. 定义在 ( , ) 上的偶函数 f ( x) ,满足 f (x 1) f (x),且 f ( x) 在 0,1 上是减函
数.下面五个关于 f (x) 的命题中,命题正确..的个数有
a 的取值范围;若不存在,请说明理由。 19.设函数 f ( x) 的定义域是 (0, ) ,对于任意正实数 且当 x 1时, f ( x) 0, f ( 2) 1 。
m, n 恒有 f (mn)
( 1)求 f ( 1 ) 的值; 2
( 2)求证: f ( x) 在 (0, ) 上是增函数;
f (m)
13.已知函数 f(x)=
loga x
(x
在
1)
R
不.是.单.调.函.数.
,则实数
a 的取值范围是
|x| 14.若关于 x 的方程
x2
二、解答题
kx 有三个不等实数根,则实数
k 的取值范围是
15.设集合 A { x | x 2 3x 2 0}, B { x | x 2 2(a 1)x ( a 2 5) 0}
新丰中学高三年级月考数学试卷
新丰中学高三年级月考数学试卷(2005年10月22日)一、选择题(每题5分,共10题,满分50分)1M ={}4|2<x x ,N ={}032|2<--x x x ,则集合M N=(A ){2|-<x x }(B ){3|>x x }(C ){21|<<-x x }(D ){32|<<x x } 2不等式311<+<x 的解集为(A )()2,0 (B )())4,2(0,2 - (C )()0,4- (D )())2,0(2,4 -- 3函数y =(A )[1,)+∞ (B )23(,)+∞ (C )23[,1] (D )23(,1]4设0<a <1,实数x ,y 满足x +y a log =0,则y 关于x 的函数的图象大致形状是:(A ) (B ) (C ) (D ) 5)21( 22≤≤-=x x x y 反函数是(A ))11( 112≤≤--+=x x y (B ))10( 112≤≤-+=x x y (C ))11( 112≤≤---=x x y(D ))10( 112≤≤--=x x y6已知条件p :1+x >2,条件q :5x -6>2x ,则p ⌝是q ⌝的 (A )充分必要条件 (B )充分非必要条件(C )必要非充分条件 (D )既非充分又非必要条件7已知a >0且a ≠1, 函数y =a -x与y =log a (-x )的图象只能是:(A ) (B ) (C ) (D )8函数2xx e e y --=的反函数(A) 是奇函数,它在(0,+∞)上是增函数 (B)是偶函数,它在(0,+∞)上是减函数(C) 是奇函数,它在(0,+∞)上是减函数 (D)是偶函数,它在(0,+∞)上是增函数9函数)(x f y =的图象与)1(log 5..0x y -=的图象关于直线x y =对称,则)(x f =(A )x -+21 (B )x 21+ ( C )x 21- ( D )x --2110国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800 元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税已知某人出版一本书,共纳税420元时,这个人应得稿费(扣税前)为: (A )3000 (B ) 3380 (C ) 3800 (D ) 以上答案都不对二填空题(每题5分,共4题,满分20分)11函数()212log 2y x x =-的单调递减区间是 12函数242-+-=x x y 在区间[0,3]上的最大值是 最小值是13若指数函数f(x)=a x(x ∈R)的部分对应值如下表:则不等式1-f(|x -1|)<0的解集为14关于函数)0(||1lg)(2≠+=x x x x f ,有下列命题: ①其图象关于y 轴对称;②当0>x 时,)(x f 是增函数;当0<x 时,)(x f 是减函数; ③)(x f 的最小值是2lg ;④当01<<-x 时,)(x f 是增函数; ⑤)(x f 无最大值,也无最小值其中所有正确结论的序号是新丰中学高三年级月考数学试卷学校 班级 学号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆(2005年10月22日)一选择题(每题二填空题(每题5分,共4题,满分20分)11 ; 12 , ;13 ; 14 三解答题(共6题,满分80分)15(12分)设函数5412--=x x y 的定义域为A ,B={x }4<-a x ,且A B=R ,求实数a 的取值范围16(12分)已知函数y =f (x )在区间[-2, 1]上的图象如图所示,其中第三象限的图象是以(-2,0)为圆心,半径为2的圆的四分之一圆弧,试写出函数y =f (x )在区间[-2, 1]上的解析式,并求出它的反函数17(14分)定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y)(1)求证:f(x)为奇函数;(2)若f(k·3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围18(14分)某工厂今年1月2月3月生产某产品分别为1万件12万件13万件,为估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量y 与月份x 的关系,模拟函数可选用二次函数或c b a y x +⋅=(a,b,c 为常数),已知四月份该产品的产量为137万件,请问:用以上那个函数作模拟函数较好?说明理由19(14分)在函数y =log a x (a >1, x ≥1)的图象上有A B C 三点,它们的横坐标分别为m , m +2, m +4 (m ≥1), 若△ABC 的面积为S ,试求S =f (m )的解析表达式和值域20(14分)设f(x)是定义在区间(-∞,+∞)上以2为周期的函数,对k∈Z,用I k 表示区间(2k-1, 2k+1],已知当x ∈I 0时f(x)=x(Ⅰ)求f(x)在I k上的解析表达式;(Ⅱ)对大于零的自然数k,求集合M k={a│使方程f(x)=ax在I k上有两个不相等的实根}参考答案1C 2D 3 D 4A 5B 6B 7B 8A 9D 10C11 (2,+∞) 12最大值是2,最小值是-2; 13 (0,1)∪(1,2) 14①③④15解:要使函数5412--=x x y 有意义则0542>--x x∴ 15-<>x x 或∴ A={x 15-<>x x 或} ——————3分B={x }4<-a x={x 44+<<-a x a } ———————3分又因为A B=R , 所以a 应满足 ⎩⎨⎧-<->+1454a a ——10分即 31<<a ——————————12分16解:f (x)=⎪⎩⎪⎨⎧∈+--∈---]1,0[22)0,2[42x x x xx —————6分f -1(x)=⎪⎩⎪⎨⎧∈+--∈--]2,0[12)0,2[242x xx x ———————12分17(1) 证明:f(x+y)=f(x)+f(y)(x ,y ∈R), ①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0——————2分令y=-x ,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有 0=f(x)+f(-x)即f(-x)=-f(x)对任意x ∈R 成立,所以f(x)是奇函数——————————————————————5分(2) 因为f(x)在R 上是增函数,又由(1)f(x)是奇函数f(k ·3x )<-f(3x -9x -2)=f(-3x +9x +2), k ·3x <-3x +9x+2, 32x -(1+k)·3x+2>0对任意x ∈R 成立 ———————————8分令t=3x>0,问题等价于t 2-(1+k)t+2>0对任意t >0恒成立—————10分————————————12分R 恒成立————————————————————————14分法二:由k ·3x <-3x +9x +2得18解:设二次函数为: r qx px y ++=2由已知得:⎪⎩⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧=++=++=++7.035.005.03.1392.1241r q p r q p r q p r q p ————4分∴7.035.005.02++-=x x y ————————5分 当 x = 4时,3.17.0435.0405.021=+⨯+⨯-=y ——6分 又对于函数 c b a y x+⋅=由已知得:⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧==-=⇒=+=+=+4.15.08.03.12.1132c b a c ab c ab c ab ————10分∴4.1)21(8.0+⨯-=xy ———————————11分 当 x = 4时,35.14.1)21(8.042=+⨯-=y ———12分 由四月份的实际产量为137万件,|37.1|07.002.0|37.1|12-=<=-y y∴选用函数4.1)21(8.0+⨯-=xy 作模拟函数较好——14分19 解:S △ABC =S ABED +S BCFE -S ACFD —————————————— 1分=21·2·{[log a m +log a (m +2)]+[log a (m +2)+log a (m +4)]}-2·[log a m +log a (m +4)] ——————————8分=2log a (m +2)-log a m -log a (m +4)=441(log )4()2(log 22mm m m m a a++=++ ——————10分∵ m>1, ∴ t =m 2+4m 为增函数,原函数为减函数,∴ S(m)=)441(log 2m m a ++,0<S ≤log a 59————14分20(Ⅰ)解:∵ f(x)是以2为周期的函数,∴ 当k∈Z 时,2k 是f(x)的周期又∵ 当x∈I k 时,(x-2k)∈I 0, ∴ f(x)=f(x-2k)=(x-2k)2即对 k∈Z,当x∈I k 时,f(x)=(x-2k)2——————5分(Ⅱ)解:当k∈N 且x∈I k 时,利用(Ⅰ)的结论可得方程(x-2k)2=ax, 整理得 x 2-(4k+a)x+4k 2=0它的判别式是△=(4k+a)2-16k 2=a(a+8k)上述方程在区间I k 上恰有两个不相等的实根的充要条件是a 满足————————————8分化简得————————————————————————9分由①知a>0,或a<-8k当a>0时:———————————12分当a<-8k时:——13分故所求集合————————14分。
嘉兴市新丰中学2018-2019学年上学期高三期中数学模拟题
嘉兴市新丰中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知函数(5)2()e 22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f -=( )A .2e B .e C .1 D .1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力. 2. 已知是虚数单位,,a b R ∈,则“1a b ==-”是“2()2a bi i +=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件3. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >> 【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.4. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y x y =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 5. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163D .2036. 设集合,,则( )A BCD7. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.8. 已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.9. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .110.函数2(44)xy a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .111.已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .11212.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( )A .80+20πB .40+20πC .60+10πD .80+10π二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.14.若函数63e ()()32e x xbf x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.15.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.16.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 三、解答题(本大共6小题,共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新丰中学高三数学假期作业一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上.1. 已知全集{}4,3,2,1=U ,集合{}1,2P =,{}2,3Q =,则)(Q p U C 等于________.2. 已知复数z 满足(3)10i z i +=(i 为虚数单位),则z 的模为________. 3.已知510°角的始边在x 轴的非负半轴上,终边经过点(,2)P m ,则m =________. 4.函数2(2)2log x x y -=增区间_________5.已知2)4tan(=+απ,则=αtan ________.6. 如图,在四边形ABCD 中,已知AD ⊥CD ,AD =10,AB =14,∠BDA =60°,∠BCD =135°,则BC 的长为________.7. 已知函数()41x x f x ax =++是偶函数,则常数a 的值为________. 8. 已知log 2x y =,则y x -的取值范围为________.9. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若3c o s c o s 5a B b A c -=,则t a n t a n A B=_______. 10. 在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________. 11. ()f x 是定义在()0,+∞上的非负可导函数,且满足()()/0xf x f x ->,对任意正数,a b ,若a b <,则()bf a ,()af b 的大小关系为__▲___.12.已知32()(0)f x ax bx cx a =++≠有极大值5,其导函数(y f '=的图象如图所示,则()f x 的解析式为________. 13. 设函数212log , 0()log (), 0x x f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,则实数a 的取值范围是________.14. 已知函数f (x )=x 2+2x ,若存在实数t ,当x ∈[1,m ]时,f (x +t )≤3x 恒成立,则实数m 的最大值为____________.二、解答题:本大题共6题,共90分.请在答题卡规定区域写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在ABC ∆中,,,a b c 分别是角,,A B C 所对的边,且3,sin 2sin a b C A ==.(1)求边c 的值; (2)求sin(2)3A π-的值. 16.(本小题满分14分)设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.17.(本小题满分14分)某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价. (1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.18. (本小题满分16分)如图所示,某市准备在一个湖泊的一侧修建一条直路OC ;另一侧修建一条观光大道,它的前一段OD 是以O 为顶点,x 轴为对称轴,开口向右的抛物线的一部分,后一段DBC是函数y =A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2,x ∈[4,8]时的图象,图象的最高点为B ⎝⎛⎭⎫5,833,DF ⊥OC ,垂足为F . (1) 求函数y =A sin(ωx +φ)的解析式;(2) 若在湖泊内修建如图所示的矩形水上乐园PMFE ,问点P 落在曲线OD 上何处时,水上乐园的面积最大?19. (本小题满分16分)已知函数2()ln ,a f x x a x=+∈R . (1)若函数()f x 在[2,)+∞上是增函数,求实数a 的取值范围;(2)若函数()f x 在[1,]e 上的最小值为3,求实数a 的值.20.(本小题满分16分)若函数()f x 为定义域D 上单调函数,且存在区间[],a b D ⊆(其中a b <),使得当[],x a b ∈时,()f x 的取值范围恰为[],a b ,则称函数()f x 是D 上的正函数,区间[],a b 叫做等域区间.(1)已知12()f x x =是[)0,+∞上的正函数,求()f x 的等域区间;(2)试探究是否存在实数m ,使得函数2()g x x m =+是(),0-∞上的正函数?若存在,请求出实数m 的取值范围;若不存在,请说明理由.一、填空题:本大题共14小题,每小题5分,计70分.1.}4{2.3. -4. )1,0(5. 316. 287. 21-8. ),0()0,41[∞+⋃-9. 4 10.7211. )()(b af a bf < 12. x x x x f 1292)(23+-= 13. ),1()0,1(∞+⋃- 14. 8二、解答题:本大题共6小题,计90分.15. (本小题满分14分)解:(1)根据正弦定理,A a C c sin sin =,所以522sin sin ===a a AC c ……… 5分 (2)根据余弦定理,得5522cos 222=-+=bc a b c A ……………………… 7分 于是55cos 1sin 2=-=A A ……………………… 8分 从而54cos sin 22sin ==A A A ……… 10分,53sin cos 2cos 22=-=A A A 12分 所以103343sin 2cos 3cos 2sin )32sin(-=-=-πππA A A …………………… 14分 16. (本小题满分14分)解 (1)要使mx 2-mx -1<0恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧ m <0,Δ=m 2+4m <0⇒-4<m <0. 所以-4<m ≤0. [6分](2)要使f (x )<-m +5在[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. [8分]有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, [10分]所以g (x )max =g (3)⇒7m -6<0,所以m <67,则0<m <67; [12分]当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述:m 的取值范围是{m |m <67}. [14分] 方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1. [10分] 因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.[12分] 所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m |m <67. [14分] 17. (本小题满分14分)解 (1)依题意,y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 又售价不能低于成本价,所以100⎝⎛⎭⎫1-x 10-80≥0. 所以y =f (x )=40(10-x )(25+4x ),定义域为x ∈[0,2].(2)由题意得40(10-x )(25+4x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134. 所以x 的取值范围是⎣⎡⎦⎤12,2.18. (本小题满分16分)解:(1) 对于函数y =A sin(ωx +φ),由图象知,A =833,ω=2πT =2π4(8-5)=π6.(4分) 将B ⎝⎛⎭⎫5,833代入到y =833sin ⎝⎛⎭⎫π6x +φ中,得5π6+φ=2k π+π2(k ∈Z ). 又|φ|<π2,所以φ=-π3,故y =833sin ⎝⎛⎭⎫πx -π3.(7分) (2) 在y =833sin ⎝⎛⎭⎫π6x -π3中令x =4,得D (4,4),则曲线OD 的方程为y 2=4x (0≤x ≤4).(9分)设点P ⎝⎛⎭⎫t 24,t (0≤t ≤4),则矩形PMFE 的面积为S =⎝⎛⎭⎫4-t 24t (0≤x ≤4).(11分)因为S ′=4-3t 24,由S ′=0,得t =433,且当t ∈⎝⎛⎭⎫0,433时,S ′>0,S 递增;当t ∈⎝⎛⎭⎫433,4时,S ′<0,S 递减,所以当t =433时,S 最大,此时点P 的坐标为⎝⎛⎭⎫43,433.(14分)19. (本小题满分16分)解:(1)∵2()ln a f x x x =+,∴212()a f x x x'=-.………………………………1分 ∵()f x 在[2,)+∞上是增函数,∴212()a f x x x '=-≥0在[2,)+∞上恒成立,即a ≤2x 在[2,)+∞上恒成立.……… 4分 令()2x g x =,则a ≤[]min (),[2,)g x x ∈+∞. ∵()2x g x =在[2,)+∞上是增函数,∴[]min ()(2)1g x g ==. ∴1≤a .所以实数a 的取值范围为(,1]-∞. ……………………7分(2)由(1)得22()x a f x x -'=,[1,]x e ∈. ①若21a <,则20x a ->,即()0f x '>在[1,]e 上恒成立,此时()f x 在[1,]e 上是增函数.所以()min (1)23f x f a ===⎡⎤⎣⎦,解得32a =(舍去). ……………………10分②若12a e ≤≤,令()0f x '=,得2x a =.当12x a <<时,()0f x '<,所以()f x 在(1,2)a 上是减函数,当2a x e <<时,()0f x '>,所以()f x 在(2,)a e 上是增函数. 所以()()min 2ln(2)13f x f a a ==+=⎡⎤⎣⎦,解得22e a =(舍去).…………………13分 ③若2a e >,则20x a -<,即()0f x '<在[1,]e 上恒成立,此时()f x 在[1,]e 上是减函数.所以()()min 213af x f e e ==+=⎡⎤⎣⎦,所以a e =.综上所述,a e =. ………………16分20. (本小题满分16分)解:(1)因为()f x =是[)0 +∞,上的正函数,且()f x 在[)0 +∞,上单调递增,所以当[] x a b ∈,时,()() f a a f b b ⎧=⎪⎨=⎪⎩,,即 a b =,,………………………………………3分 解得0 1a b ==,, 故函数()f x 的“等域区间”为[]0 1,;………………………5分 (2)因为函数2()g x x m =+是() 0-∞,上的减函数, 所以当[] x a b ∈,时,()() g a b g b a ⎧=⎪⎨=⎪⎩,,即22 a m b b m a ⎧+=⎪⎨+=⎪⎩,,………………………………7分 两式相减得22a b b a -=-,即()1b a =-+, ……………………………9分 代入2a m b +=得210a a m +++=, 由0a b <<,且()1b a =-+得112a -<<-, ………………………………11分 故关于a 的方程210a a m +++=在区间()11 2--,内有实数解,………………13分 记()21h a a a m =+++, 则()()10 10 2h h ->⎧⎪⎨-<⎪⎩,,解得()31 4m ∈--,. ……16分。