同济版高数教学设计完美版第三章 中值定理与导数的应用
第三章中值定理与导数的应用课件
f (b) f (a) f ' ( ) 成立 F (b) F (a) F ' ( )
例1:验证罗尔定理对函数y ln sin x在区间
[
6
,
5
6
]的正确性
解:y ln sin x在[ , 5 ]上连续
66
y ln sin x在( , 5 )上可导
66
lim 2 cos3x 3 1 x0 3 cos2x 2
例6:求
lim
x
xn ex
(n 0, 0)
解:lim xn lim n xn1 lim n (n 1) xn2
e e x x x
x x
2 ex
lim n! 0
x n ex
例7:求 lim x sin x
且f ( ) ln 1 f (5 )
6
2
6
又
y'
c os x
ctgx
令
0
x
(
, 5 )sin x源自2 662罗尔定理正确
例2:证明arctgx arcctgx
2
证 : (arctgx arcctgx)' 1 1 0 1 x2 1 x2
arctgx arcctgx c
取x 1 c c
若f (x)是一般的函数,且它存在直到n 1 阶的导数,那么
n
f (x)
f (k) (a) (xa)k ?
k 0 k!
泰勒(Taylor)中值定理
泰勒(Taylor)中值定理 如果函数 f ( x)在含有 x0 的某个开区间(a, b)内具有直到(n 1)阶的导数,则
当 x在(a, b)内时, f ( x)可以表示为( x x0 )的一个
《高等数学(上)》教学教案—03微分中值定理与导数的应用
第3章微分中值定理与导数的应用授课序号01授课序号02授课序号03!n +!n +()()!n x n +!n +!n +[cos ((2x m θ+=+21)2!!x n α-++)(1(1)!n n αθ-++()nx R x +授课序号04(1)在生产实践和工程技术中,经常会遇到求在一定条件下,怎样才能使“成本最低”、“利润最高”、“原材料最省”等问题.这类问题在数学上可以归结为建立一个目标函数,求这个函数的最大值或最小值问题.(2)对于实际问题,往往根据问题的性质就可以断定函数()f x 在定义区间内部存在着最大值或最小值.理论上可以证明这样一个结论:在实际问题中,若函数()f x 的定义域是开区间,且在此开区间内只有一个驻点0x ,而最值又存在,则可以直接确定该驻点0x 就是最值点,0()f x 即为相应的最值. 四.例题讲解例1.讨论函数32()29123f x x x x =-+-的单调增减区间. 例2.判断函数3()=f x x 的单调性.例3.设3,0,()arctan ,0.x x f x x x x ⎧-<=⎨≥⎩确定()f x 的单调区间.例4.证明:当0x >时,e 1x x >+. 例5.求函数32()(1)f x x x =-的极值.例6.求函数22()ln f x x x =-的极值.例7.求函数233()2f x x x =+在区间1[8]8-,上的最大值与最小值.例8.水槽设计问题有一块宽为2a 的长方形铁皮如图3.8所示,将宽所在的两个边缘向上折起,做成一个开口水槽,其横截面为矩形,问横截面的高取何值时水槽的流量最大(流量与横截面积成正比). 图3.8例9.用料最省问题要做一圆柱形无盖铁桶,要求铁桶的容积V 是一定值,问怎样设计才能使制造铁桶的用料最省? 例10.面积最大问题将一长为2L 的铁丝折成一个长方形,问如何折才能使长方形的面积最大.授课序号05授课序号06教学基本指标教学课题第3章第6节弧微分与曲率课的类型新知识课教学方法讲授、课堂提问、讨论、启发、自学教学手段黑板多媒体结合教学重点曲率的计算公式教学难点曲率的计算参考教材同济七版《高等数学》上册作业布置课后习题大纲要求了解曲率和曲率半径的概念,会计算曲率和曲率半径。
(整理)第三章中值定理与导数的应用学习指导
第三章 中值定理与导数的应用一、知识脉络理定值中分微 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧)(21麦克劳林公式泰勒公式柯西定理推论推论拉格朗日定理罗尔定理⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩∞∞求方程的近似解渐屈与渐伸线曲率和曲率半径弧微分其它应用函数作图求凹凸区间与拐点凹凸性判别定义凹凸性与拐点求单调区间单调性判定定义单调性函数性态题最大值与最小值应用问极值的应用极值点的判定件函数取得极值的必要条定义概念函数极值型导数应用:二、重点与难点1.重点:拉格朗日中值定理,函数增调区间、函数的凹凸区间,求函数的极值,求具体问题的最大最小值。
2.难点:柯西定理、泰勒展式、不等式证明、函数作图。
三、问题与分析1.学习洛尔定理、拉格朗日定理与柯西定理应注意的问题:①洛尔定理是一个函数满足3条,拉格朗日定理一个函数满足2条,柯西定理是两个函数满足2条,才有相应结论; ②定理的条件是充分的,但不是必要的;③三个定理都是存在性定理,只肯定了有ξ存在,而未指出如何确定该点。
2.学习罗必塔法则应注意问题: ①罗必塔法则仅仅用于00型和∞∞型未定式; ②如果()()x g x f ''lim 不存在(不包括∞),不能断言()()x g x f lim 不存在,只能说明罗必塔法则在此失效,应采用其它方法求极限; ③∞⋅0,∞-∞,00,∞1,0∞也叫未定型,必须转化为00型或∞∞型之后,方可用罗必塔法则求极限;思路“:∞⋅0型转化为∞⋅∞1或010⋅型; ∞-∞可通分转化为00型或∞∞型;00型转化为0ln 00ln 0⋅=e e ,其中指数是∞⋅0型; ∞1型转化为1ln 1ln ⋅∞=∞e e ,其中数是0⋅∞; 0∞型转化为∞∞=ln 0ln 0e e ,其中指数是∞⋅0型。
④罗必塔法则求极限与其它方法求极限在同一题中可交替使用; ⑤有时要连续用几次洛必塔法则,每一次都要验证是否是00型或∞∞型。
同济大学高等数学教案
教案标题:同济大学高等数学教学计划一、教学目标本课程旨在帮助学生掌握高等数学的基本概念、理论和方法,培养学生的逻辑思维能力、创新意识和实际应用能力。
通过本课程的学习,学生应能熟练运用高等数学知识解决实际问题,为后续专业课程的学习和科学研究打下坚实的基础。
二、教学内容1. 函数与极限1.1 函数的概念、性质和图像1.2 极限的定义和性质1.3 无穷小和无穷大1.4 极限的运算法则1.5 极限的存在性判断2. 导数与微分2.1 导数的定义和性质2.2 导数的运算法则2.3 高阶导数2.4 隐函数和参数方程函数的导数2.5 微分及其应用3. 微分中值定理与导数的应用3.1 罗尔定理3.2 拉格朗日中值定理3.3 柯西中值定理3.4 泰勒公式3.5 导数在函数性质分析中的应用4. 不定积分4.1 不定积分的概念和性质4.2 基本积分公式4.3 换元积分法4.4 分部积分法4.5 不定积分在实际问题中的应用5. 定积分及其应用5.1 定积分的概念和性质5.2 定积分的运算法则5.3 定积分的换元法和分部法5.4 定积分的应用(如面积、体积、弧长等)6. 微分方程6.1 微分方程的概念和分类6.2 线性微分方程6.3 非线性微分方程6.4 微分方程的求解方法6.5 微分方程在实际问题中的应用三、教学方法1. 讲授法:通过系统、生动的讲解,使学生掌握高等数学的基本概念、理论和方法。
2. 案例分析法:结合具体实例,让学生了解高等数学在实际问题中的应用。
3. 练习法:布置适量的课后习题,巩固所学知识,提高学生的解题能力。
4. 讨论法:组织学生进行课堂讨论,培养学生的逻辑思维能力和创新意识。
5. 实验法:结合数学软件,让学生亲身体验高等数学的实践操作。
四、教学安排1. 授课时间:共计16周,每周2课时。
2. 课后习题:每节课后布置相应的习题,要求学生独立完成。
3. 课堂讨论:每学期组织2-3次课堂讨论,学生可就所学内容提出疑问或分享自己的见解。
同济大学第六版高数第3章
第一节 中值定理
预备知识
y
① f () lim f ( x) f ()
x0
x
② f ()表示曲线y f ( x)
在x 处切线的斜率 o
y=f(x)
x
中值定理与导数的应用
1
一、罗尔(Rolle)定理
罗尔定理
若函数 f(x)满足
y
1在闭区间 [a,b] 上连续
A
2在开区间 (a,b)内可导
x
f()
lim f ( x) f () 0;
x0
x
若 x 0, 则有 f ( x) f () 0;
x
f()
lim x0
f
(
x) x
f ()
0;
f ()存在,
f() f() f (),
f () 0.
中值定理与导数的应用
4
例1 证明方程 x5 5x 1 0 有且仅有
f (b) f (a) f () F (b) F (a) F ()
f (b) f (a) f (). ba
中值定理与导数的应用
16
注: 当 F ( x) x, F (b) F (a) b a, F ( x) 1,
f (b) f (a) f () F(b) F(a) F()
(a, b), 都有 f () 0. (2) 若 M m. f (a) f (b), 最值不可能同时在端点 取得. 设 M f (a),
则在 (a,b)内至少存在一点 使 f () M.
f ( x) f () 0,
中值定理与导数的应用
3
若 x 0, 则有 f ( x) f () 0;
柯西定理 如果函数 f (x)、F(x)满足
高数)第3章:微分中值定理与导数的应用教案资料
yf(x)
1
2
x
5
证明: 只就f (x)在x0达到最大值证明。
由f于 (x)在 x0达到最大值x, 0所 x在 (以 a,b)内 只 , 要
就f有 (x0x)f(x0), 即 f(x 0 x ) f(x 0 ) 0 ,
从f(而 x 0 x )f(x 0)0 ,当 x0 时 ; x
即 方 程 在 (a ,b )内 至 少 有 一 根 .
16
分析问题的条件, 作出辅助 函数是证明的关键 .
17
• 对于罗尔定理中的第三个条件 f(a)f(b) 很多函数都不满足,这样就限制了罗尔定
f(x0 x)f(x0)0,当 x0时 ; x
这 f(x 样 0 0 ) lx 0 im f(x 0 x x ) f(x 0 ) 0 f(x 0 0 ) lx i0 m f(x 0 x x )f(x 0) 0 .
而f(x)在点 x0可导, 所f以 (x0)0.
6
观察与思考:
右图,区间[a, b]上 一条光滑曲线弧,且两 端点处的函数值相等, 除区间端点外处处有不 垂直于x 轴的切线,在 最高点和最低点处切线 有何特点?
第三章
微分中值定理与 导数的应用
1
一、罗尔( Rolle )定理 二、拉格朗日( Lagrange )中值定理 三、柯西(Cauchy)中值定理
2
第一节 微分中值定理
微分中值定理的核心是拉格朗日(Lagrange) 中值定理,费马定理是它的预备定理,罗尔定理 是它的特例,柯西定理是它的推广。
1. 预备定理——费马(Fermat)定理
(1, 2)及(2, 3)内。
可导函数的两个零点之间必有其导数的零点。
高等数学-第三章微分中值定理与导数的应用
增量y的精确表达式. 注 由(3)式看出, 它表达了函数增量和某点的
导数之间的直接关系. 这里 ,未定, 但是增量、
导数是个等式关系. 这是十分方便的. 拉格朗日中值公式又称 有限增量公式.
拉格朗日中值定理又称 有限增量定理.
微分中值定理
f ( x)在[1,2]上连续, 在(1, 2)内可导,
f (1) 0 f (2) (2) 结论正确
方程f ( x) 0, 即3x2 8x 7 0有实根
1 x1 3 (4
1
37),
x2
(4 3
37)
其中 x2 (1,2), 符合要求.
罗尔定理肯定了 的存在性, 一般没必要知道
c0
c1 2
cn n1
0.
试证方程
证设
c0 c1 x cn xn 0在(0,1)内存在一个实根.
f
(x)
c0 x
c1 2
x2
cn n1
x n1 ,
f ( x)在[0,1]上连续,在(0,1)内可导,且
f (0) 0 f (1)
罗尔定理
在(0,1)内至少存在一个实根 , 使得f ( ) 0,
即 c0 c1 cn n 0 即x 为所求实根.
微分中值定理
拉格朗日 Lagrange (法) 1736-1813
二、拉格朗日(Lagrange)中值定理
拉格朗日中值定理 若函数f ( x)满足 : (1) 在闭区间[a, b]上连续; (2)在开区间(a, b)内可导;
g( ) f ( ) f (b) f (a) 0.
高等数学同济第七版第三章学习指导
第三章 中值定理与导数的应用一、知识点梳理1.中值定理费马引理 设函数)(x f 在点0x 的某邻域)(0x U 内有定义,并且在0x 处可导,如果对任一)(0x U x ∈,有))()(( )()(00x f x f x f x f ≥≤或,那么0)(0='x f .罗尔中值定理 如果函数)(x f 满足(1) 在闭区间],[b a 上连续;(2) 在开区间),(b a 内可导;(3) 在区间端点处的函数值相等,即)()(b f a f =,那么至少存在一点),(b a ∈ξ,使得0)(=ξ'f .拉格朗日中值定理 如果函数)(x f 满足(1) 在闭区间],[b a 上连续;(2) 在开区间),(b a 内可导;那么至少存在一点),(b a ∈ξ,使等式))(()()(a b f a f b f -ξ'=- 或)()()(ξf ab a f b f '=-- (3-1) 成立.注意 式(3-1)称为拉格朗日中值公式,也可写为x x x f x f x x f Δ)Δ()()Δ(000⋅θ+'=-+ )10(<θ<称为函数的有限增量公式.定理 如果函数)(x f 在区间I 上的导数恒为零,那么)(x f 在区间I 上是一个常数. 柯西中值定理 如果函数)(x f 及)(x F 满足(1) 在闭区间],[b a 上连续;(2) 在开区间),(b a 内可导;(3) 对任一()b a x ,∈,0)(≠'x F ,那么至少存在一点),(b a ∈ξ,使等式)()()()()()(ξξF f a F b F a f b f ''=-- (3-2) 成立.拉格朗日中值定理又称微分中值定理,在微积分学中占有重要的地位.(3-1)式表明函数在一个区间上的平均变化率等于函数在该区间上某一瞬时变化率.罗尔定理是拉格朗日中值定理的特殊情形))()((b f a f =,而柯西中值定理又是它的推广.2. 洛必达法则定理1(00型) 设 (1)当a x →时,函数)(x f 及)(x F 都趋于零;(2)在点a 的某去心邻域内,)(x f '及)(x F '都存在,且0)(≠'x F ;(3))()(lim x F x f a x ''→存在(或为无穷大); 那么 )()(lim )()(lim x F x f x F x f a x a x ''=→→. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的方法称为洛必达法则.注意 (1)如果)()(x F x f ''当a x →时仍属00型,且这时)(x f ',)(x F '能满足定理1中)(x f ,)(x F 所要满足的条件,那么可以继续使用洛必达法则,即)()(lim )()(lim )()(lim x F x f x F x f x F x f a x a x a x ''''=''=→→→. 且可以以此类推.(2)定理1中,将""a x →改为""+∞→x ,""-∞→x 或者""∞→x ,在相应的条件下,结论也成立. 例如,对于""∞→x 时的未定式00有以下定理. 定理2(0型) 设 (1)当∞→x 时,函数)(x f 及)(x F 都趋于零;(2)当X x >||时, )(x f '及)(x F '都存在,且0)(≠'x F ; (3))()(limx F x f x ''∞→存在(或为无穷大); 那么 )()(lim )()(lim x F x f x F x f x x ''=∞→∞→. 注意 对于""a x →或""∞→x 时的未定式∞∞型,也有相应的洛必达法则. 3.泰勒公式泰勒(Taylor )中值定理1 如果函数)(x f 在0x 处具有n 阶导数,那么存在0x 的一个邻域)(0x U ,对任一)(0x U x ∈,有 +-''+-'+=200000)(!2)())(()()(x x x f x x x f x f x f )()(!)(00)(x R x x n x f n n n +-+, (3-3) 其中))(()(0n n x x o x R -= (3-4)公式(3-3)称为)(x f 在0x 处(或按)(0x x -的幂展开)的带有佩亚诺(Peano)余项的n 阶泰勒公式,而)(x R n 的表达式(3-4)称为佩亚诺余项.泰勒(Taylor )中值定理2 如果函数)(x f 在0x 的某个邻域)(0x U 内具有直到()1+n 阶导数,那么对任一)(0x U x ∈,有+-''+-'+=200000)(!2)())(()()(x x x f x x x f x f x f )()(!)(00)(x R x x n x f n n n +-+, (3-5) 其中10)1()()!1()()(++-+ξ=n n n x x n f x R (ξ介于0x 与x 之间). (3-6) 公式(3-5)称为)(x f 在0x 处(或按)(0x x -的幂展开)的带有拉格朗日余项的n 阶泰勒公式,而)(x R n 的表达式(3-6)称为拉格朗日余项.在泰勒公式(3-3)中,如果取00=x ,则有带有佩亚诺(Peano)余项的麦克劳林(Maclaurin)公式+''+'+=2!2)0()0()0()(x f x f f x f )(!)0()(n n n x o x n f ++. (3-7) 在泰勒公式(3-5)中,如果取00=x ,则ξ介于0与x 之间.因此可以令()10<<=θθξx ,于是得到带有拉格朗日余项的麦克劳林公式+''+'+=2!2)0()0()0()(x f x f f x f ()1)1()(!1)(!)0(+++++n n n n x n x f x n f θ ()10<<θ. (3-8)常用函数的n 阶麦克劳林展开式:)(!!212n n x x o n x x x e +++++= ; )()!12()1(!7!5!3sin 2121753n n n x o n x x x x x x +--++-+-=-- ; )()!2()1(!6!4!21cos 122642++-++-+-=n n n x o n x x x x x ; )()1(32)1ln(132n n n x o nx x x x x +-+-+-=+- ; )(1112n n x o x x x x+++++=- ; +-++=+2!2)1(1)1(x x x αααα )(!)1()1(n n x o x n n ++--+ααα .4.函数的单调性与曲线的凹凸性(1)函数单调性的判别法定理1 设函数)(x f y =在],[b a 上连续,在),(b a 内可导.1)如果在),(b a 内0)(≥'x f ,且等号仅在有限多个点处成立,那么函数)(x f y =在],[b a 上单调增加;2)如果在),(b a 内0)(≤'x f ,且等号仅在有限多个点处成立,那么函数)(x f y =在],[b a 上单调减少.如果函数)(x f 在定义区间上连续,除去有限个导数不存在的点外导数存在且在区间内只有有限个驻点,那么驻点和导数不存在的点有可能是函数单调区间的分界点.(2)曲线的凹凸性与拐点定义 设)(x f 在区间I 上连续,如果对I 上任意两点21,x x ,恒有 2)()(22121x f x f x x f +<⎪⎭⎫ ⎝⎛+ 那么称)(x f 在区间I 上的图形是(向上)凹的(或凹弧);如果恒有2)()(22121x f x f x x f +>⎪⎭⎫ ⎝⎛+ 那么称)(x f 在区间I 上的图形是(向上)凸的(或凸弧).定理2 设)(x f 在],[b a 上连续,在),(b a 内具有一阶和二阶导数,那么1)若在),(b a 内0)(>''x f ,则)(x f y =在],[b a 上的图形是凹的.2)若在),(b a 内0)(<''x f ,则)(x f y =在],[b a 上的图形是凸的.设)(x f y =在区间I 上连续,0x 是I 的内点.如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 是这曲线的拐点.找区间I 上连续曲线)(x f y =的拐点可按以下步骤:1) 求)(x f '';2) 令0)(=''x f ,解出该方程在区间I 内的实根,并求出在区间。
同济七版NUAA高数课件 第三章 中值定理及导数的应用 第二节 洛必达法则
x0
1
例2
求
lim
x1
x3 x3
3x x2
x
2
1
.
(0) 0
解
原式
lim
x1
3
3 x2
x2
3 2x
1
lim 6x x1 6 x 2
3. 2
arctan x
例3 求 lim 2 x
1
.
(0) 0
x
解
原式
lim
x
1
1
x 1 x2
2
x2
lim x1
x2
1.
练习:
求 lim e x e x 2x . x0 x sin x
例6 求 lim ln(1 x2 ) . x0 sec x cos x
解
原式
lim
x0
x2 cos 1 cos 2
x x
1 恒 等 变 形 , 非 零 因 子出分
x2
lim
x0
s
in2
x
定理2 设(1) lim f ( x) lim F ( x) ;
xa
xa
(2) 在 a 点的某邻域内(点 a 可以除外), f ( x)及
.
练习: lim x arctan x
x 2
2. 型 1 1 0 0 . 0 0 00
通过通分或分子有理化及其它初等变换转化为 0 或 不定型。 0
例10 求 lim( 1 1 ). x0 sin x x
()
解 原式 lim x sin x x0 x sin x
lim 1 cos x 0. x0 sin x x cos x
例14 求 lim x cos x .
第三章 中值定理与导数的应用
第一节第三节 函数单调性的判别法
第四节
函数的极值及其求法
2019/10/10
第五节 函数的最大值与最小值
第六节 曲线的凹凸性与拐点
第七节
函数图形的描绘
第一节 中值定理
微分学中有三个中值定理应用非常广泛,它们 分别是罗尔定理、拉格朗日中值定理和柯西中值定 理.
从上述拉格朗日中值定理与罗尔定理的关系,自 然想到利用罗尔定理来证明拉格朗日中值定理.但在拉 格朗日中值定理中,函数f(x)不一定具备f(a)=f(b)这个 条件,为此我们设想构造一个与f(x)有密切联系的函数 φ(x)(称为辅助函数),使φ(x)满足条件φ(a)=φ(b).然后对 φ(x)应用罗尔定理,再把对φ(x)所得的结论转化到f(x) 上,证得所要的结果.
一、0/0型未定式
第三节 函数单调性的判定法
如图3-4所示,如果函数y=f(x)在区间[a,b]上 单调增加,那么它的图像是一条沿x轴正向上升的曲线 ,这时,曲线上各点切线的倾斜角都是锐角,它们的 切线斜率f′(x)都是正的,即f′(x)>0.同样地,如图3-5所 示,如果函数y=f(x)在[a,b]上单调减少,那么它的 图像是一条沿x轴正向下降的曲线,这时曲线上各点切 线的倾斜角都是钝角, 它们的斜率f′(x)都是负的,即 f′(x)<0.由此可见,函数的单调性与导数的符号有着密 切的联系.下面,我们给出利用导数判定函数单调性的 定理.
根据上面三个定理,如果函数f(x)在所讨论的区间内各点处 都具有导数,我们就以下列步骤来求函数f(x)的极值点和 极值:
(1) 求出函数f(x)的定义域;
(2) 求出函数f(x)的导数f′(x);
(3) 求出f(x)的全部驻点(即求出方程f′(x)=0在所讨论的区 间内的全部实根)以及一阶导数不存在的点;
同济第六版《高等数学》教案WORD版-第03章-中值定理与导数的应用
第三章 中值定理与导数的应用教学目的:1、 理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。
2、 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。
3、 会用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
4、 掌握用洛必达法则求未定式极限的方法。
5、 知道曲率和曲率半径的概念,会计算曲率和曲率半径。
6、 知道方程近似解的二分法及切线性。
教学重点:1、罗尔定理、拉格朗日中值定理;2、函数的极值 ,判断函数的单调性和求函数极值的方法;3、函数图形的凹凸性;4、洛必达法则。
教学难点:1、罗尔定理、拉格朗日中值定理的应用;2、极值的判断方法;3、图形的凹凸性及函数的图形描绘;4、洛必达法则的灵活运用。
§3. 1 中值定理一、罗尔定理费马引理设函数f (x )在点x 0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x 0) (或f (x )≥f (x 0)),那么f '(x 0)=0.罗尔定理 如果函数y =f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 且有f (a )=f (b ), 那么在(a , b )内至少在一点ξ , 使得f '(ξ)=0.简要证明: (1)如果f (x )是常函数, 则f '(x )≡0, 定理的结论显然成立.(2)如果f (x )不是常函数, 则f (x )在(a , b )内至少有一个最大值点或最小值点, 不妨设有一最大值点ξ∈(a , b ). 于是0)()(lim )()(≥--='='-→-ξξξξξx f x f f f x , 0)()(lim )()(≤--='='+→+ξξξξξx f x f f f x , 所以f '(x )=0.罗尔定理的几何意义:二、拉格朗日中值定理拉格朗日中值定理 如果函数f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 那么在(a , b )内至少有一点ξ(a <ξ<b ), 使得等式f (b )-f (a )=f '(ξ)(b -a )成立.拉格朗日中值定理的几何意义:f '(ξ)=ab a f b f --)()(, 定理的证明: 引进辅函数令 ϕ(x )=f (x )-f (a )-a b a f b f --)()((x -a ). 容易验证函数f (x )适合罗尔定理的条件: ϕ(a )=ϕ(b )=0, ϕ(x )在闭区间[a , b ] 上连续在开区间(a , b )内可导, 且ϕ '(x )=f '(x )-ab a f b f --)()(. 根据罗尔定理, 可知在开区间(a , b )内至少有一点ξ, 使ϕ '(ξ)=0, 即f '(ξ)-a b a f b f --)()(=0. 由此得 ab a f b f --)()(= f '(ξ) , 即 f (b )-f (a )=f '(ξ)(b -a ).定理证毕.f (b )-f (a )=f '(ξ)(b -a )叫做拉格朗日中值公式. 这个公式对于b <a 也成立.拉格朗日中值公式的其它形式:设x 为区间[a , b ]内一点, x +∆x 为这区间内的另一点(∆x >0或∆x <0), 则在[x , x +∆x ] (∆x >0)或[x +∆x , x ] (∆x <0)应用拉格朗日中值公式, 得f (x +∆x )-f (x )=f '(x +θ∆x ) ⋅∆x (0<θ<1).如果记f (x )为y , 则上式又可写为∆y =f '(x +θ∆x ) ⋅∆x (0<θ<1).试与微分d y =f '(x ) ⋅∆x 比较: d y =f '(x ) ⋅∆x 是函数增量∆y 的近似表达式, 而f '(x +θ∆x ) ⋅∆x 是函数增量∆y 的精确表达式.作为拉格朗日中值定理的应用, 我们证明如下定理:定理 如果函数f (x )在区间I 上的导数恒为零, 那么f (x )在区间I 上是一个常数. 证 在区间I 上任取两点x 1, x 2(x 1<x 2), 应用拉格朗日中值定理, 就得f (x 2)-f (x 1)=f '(ξ)(x 2 - x 1) (x 1<ξ< x 2).由假定, f '(ξ)=0, 所以f (x 2)-f (x 1)=0, 即f (x 2)=f (x 1).因为x 1, x 2是I 上任意两点, 所以上面的等式表明: f (x )在I 上的函数值总是相等的, 这就是说, f (x )在区间I 上是一个常数.例2. 证明当x >0时, x x xx <+<+)1ln(1. 证 设f (x )=ln(1+x ), 显然f (x )在区间[0, x ]上满足拉格朗日中值定理的条件, 根据定理, 就有 f (x )-f (0)=f '(ξ)(x -0), 0<ξ<x 。
大一上学期同济版高数第三章中值定理
x cos x
2
0 x . 2
中值定理条件, (0 x ) 因此应有 2 即
cos x 在 (0, ) 内单调减少。 0 cos x cos 1 2 x x x 2 2 cos cos x x 故 x tan x 0 x . 2 21 2 cos x
b a
f (b) f (a) f ( ) . ba
可以推出 f (b) f (a) f ( )(b a). 拉格朗日中值定理的有限增量形式: 令 则
y f ( x0 x)x
(0 1)
x0 x0 x x0 x (0 1)
f ( x1 ) f ( x2 ) f ( x3 ) 0,
再对f ( x)分别在[ x1, x2 ]、 2 , x3 ]上应用罗尔定理, [x 至少存在 1 ( x1, x2 )、 2 ( x2 , x3 )使得 f (1 ) f ( 2 ) 0,
在 ( a , b ) 内可导, 且
x a
lim f ( x) lim f ( x)
x b
在( a , b ) 内至少存在一点
使
证明提示: 设
证 F(x) 在 [a , b] 上满足罗尔中值定理 .
6
例1 求证罗尔定理对于函数 f x sin x 在区间
[0, 2 ] 上的正确性。
f f [ x f x ] x 0
证:设 F x x f x , 由题意知 F x x f x
F 在 [ 0, 1] 上连续, 在 0,1 ) 内可导, 1 0, F 0 0 (
高等数学第三章微分中值定理与导数的应用讲义
第三章 微分中值定理与导数的应用讲义【考试要求】1.掌握罗尔中值定理、拉格朗日中值定理并了解它们的几何意义. 2.熟练掌握洛必达法则求“0/0”、“/∞∞”、“0⋅∞”、“∞-∞”、“1∞”、“00”和“0∞”型未定式极限的方法.3.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式.4.理解函数极值的概念,掌握求函数的极值和最值(最大值和最小值)的方法,并且会解简单的应用问题.5.会判定曲线的凹凸性,会求曲线的拐点. 6.会求曲线的水平渐近线与垂直渐近线.【考试内容】一、微分中值定理1.罗尔定理如果函数()yf x =满足下述的三个条件:(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)在区间端点处的函数值相等,即()()f a f b =,那么在(,)a b 内至少有一点ξ(ab ξ<<),使得()0f ξ'=.说明:通常称导数等于零的点为函数的驻点(或稳定点,临界点),即若0()0f x '=,则称点0x 为函数()f x 的驻点.2.拉格朗日中值定理如果函数()yf x =满足下述的两个条件:(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导, 那么在(,)a b 内至少有一点ξ(ab ξ<<),使得下式(拉格朗日中值公式)成立: ()()()()f b f a f b a ξ'-=-.说明:当()()f b f a =时,上式的左端为零,右端式()b a -不为零,则只能()0f ξ'=,这就说明罗尔定理是拉格朗日中值定理的特殊情形.此外,由于拉格朗日中值定理在微分学中占有重要的地位,因此有时也称这定理为微分中值定理.3.两个重要推论(1)如果函数()f x 在区间I 上的导数恒为零,那么()f x 在区间I 上是一个常数.证:在区间I 上任取两点1x 、2x (假定12x x <,12x x >同样可证),应用拉格朗日中值公式可得2121()()()()f x f x f x x ξ'-=- (12x x ξ<<). 由假定,()0f ξ'=,所以 21()()0f x f x -=,即 21()()f x f x =.因为1x 、2x 是I 上任意两点,所以上式表明()f x 在区间I 上的函数值总是相等的,即()f x 在区间I 上是一个常数.(2)如果函数()f x 与()g x 在区间(,)a b 内的导数恒有()()f x g x ''=,则这两个函数在(,)a b 内至多相差一个常数,即()()f x g x C -=(C 为常数). 证:设()()()F x f x g x =-,则()[()()]()()0F x f x g x f x g x ''''=-=-=,根据上面的推论(1)可得,()F x C =,即()()f x g x C -=,故()()f x g x C -=.二、洛必达法则1.x a →时“0”型未定式的洛必达法则如果函数()f x 及()F x 满足下述的三个条件:(1)当x a →时,函数()f x 及()F x 都趋于零;(2)在点a 的某个去心邻域内()f x '及()F x '都存在且()0F x '≠;(3)()lim ()x a f x F x →''存在(或为无穷大),那么()()limlim()()x ax a f x f x F x F x →→'='. 说明:这就是说,当()lim ()x a f x F x →''存在时,()lim ()x a f x F x →也存在且等于()lim ()x a f x F x →'';当()lim()x af x F x →''为无穷大时,()lim ()x a f x F x →也是无穷大.2.x →∞时“”型未定式的洛必达法则 如果函数()f x 及()F x 满足下述的三个条件:(1)当x →∞时,函数()f x 及()F x 都趋于零;(2)当x X >时()f x '及()F x '都存在且()0F x '≠;(3)()lim ()x f x F x →∞''存在(或为无穷大),那么 ()()lim lim()()x x f x f x F x F x →∞→∞'='. 说明:我们指出,对于xa →或x →∞时的未定式“∞∞”,也有相应的洛必达法则. 3.使用洛必达法则求“00”型或“∞∞”型极限时的注意事项(1)使用洛必达法则之前要先判断所求极限是不是“00”型或“∞∞”型,如果不是则不能使用洛必达法则.例如:2sin lim x xx π→就不能运用洛必达法则,直接代入求极限即可,故2sinsin 22lim 2x x x ππππ→==.(2)洛必达法则可多次连续使用,也就是说,如果使用一次洛必达法则后算式仍然是“00”型或“∞∞”型,则可再次使用洛必达法则,依此类推.(3)洛必达法则是求“00”型或“∞∞”型未定式极限的一种有效方法,但最好能与其他求极限的方法结合使用,例如能化简时应尽可能先化简,可以应用等价无穷小替代或重要极限时,应尽可能应用,这样可以使运算简便.例如:求20tan lim tan x x xx x→-时,可先用~tan x x进行无穷小的等价替换,然后再用洛必达法则,故2223220000tan tan sec 1tan 1lim lim lim lim tan 333x x x x x x x x x x x x x x x →→→→---====. (4)如果求极限的式子中含有非零因子,则可以对该非零因子单独求极限(即可以先求出这部分的极限),然后再利用洛必达法则,以便简化运算.例如:求0lnsin 2limlnsin3x xx+→时,0000lnsin 2sin3cos 222sin323lim lim lim lim 1lnsin3sin 2cos333sin 232x x x x x x x x x x x x x x++++→→→→⋅⋅⋅====⋅⋅⋅,从第二步到第三步的过程中,分子上的因子cos2x 和分母上的因子cos3x 当0x +→时极限均为1,故可先求出这两部分的极限以便化简运算.(5)当洛必达法则的条件不满足时,所求极限不一定不存在,也即是说,当()lim ()f x F x ''不存在时(等于无穷大的情况除外),()lim ()f x F x 仍可能存在.例如:极限sin lim x x xx→∞+,(sin )1cos lim lim lim(1cos )1x x x x x xx x →∞→∞→∞'++==+' 极限是不存在的,但是原极限是存在的,sin sin sin limlim(1)1lim 101x x x x x x xx x x→∞→∞→∞+=+=+=+=.4.其他类型的未定式除了“00”型或“∞∞”型未定式之外,还有其他类型的未定式,如“0⋅∞”、“∞-∞”、“1∞”、“00”及“0∞”型等.对于“0⋅∞”和“∞-∞”型的未定式,处理方法为将它们直接转化成“00”或“∞∞”型;对于“1∞”、“00”及“0∞”型的未定式,处理方法为先取对数将它们转化成“0⋅∞”型,然后再转化成“00”型或“∞∞”型未定式. 三、函数单调性的判定法1.单调性判定法设函数()yf x =在[,]a b 上连续,在(,)a b 内可导,(1)如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; (2)如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少.说明:① 如果把这个判定法中的闭区间改为其他各种区间(包括无穷区间),结论也成立; ② 若判定法中()f x '在(,)a b 内只有有限个点上()0f x '=,而在其余点上恒有()0f x '>(或()0f x '<),则函数()f x 在区间[,]a b 上仍然是单调增加(或单调减少)的.2.单调区间的求法设函数()f x 在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,则求函数()f x 的单调性的步骤如下:(1)求出函数()f x 的定义域;(2)求出函数()f x 的导数()f x ',并令()0f x '=求出函数的驻点;此外,再找出导数不存在的点(一般是使得()f x '分母为零的点); (3)用函数()f x 的所有驻点和导数不存在的点来划分函数的定义区间,然后用单调性判定定理逐个判定各个部分区间的单调性.3.用单调性证明不等式函数()f x 的单调性还可以用来证明不等式,步骤如下:(1)将不等式的一边变为零,不等于零的一边设为()f x ,根据要证明的式子找出不等式成立的x 的范围I ; (2)求()f x 的导数()f x ',判断()f x '在上述I 范围内的符号(即正负); (3)根据范围I 的边界值与()f x '的情况,导出所需要证明的不等式即可.例如:试证明当1x>时,13x>-. 证明:原不等式即为13x -+,故令1()3f x x=-+,0x >,则2211()(1)f x xx '=-=- ,()f x 在[1,)+∞上连续,在(1,)+∞内()0f x '>,因此在[1,)+∞上()f x 单调增加,从而当1x >时,()(1)f x f >,又由于(1)0f =,故()0f x >,即130x -+>,亦即13x>-.四、函数的凹凸性与拐点1.函数凹凸性的定义设函数()f x 在区间I 上连续,如果对I 上任意两点1x 、2x ,恒有1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭,那么称()f x 在I 上的图形是(向上)凹的(或凹弧);如果恒有1212()()22x x f x f x f ++⎛⎫>⎪⎝⎭,那么称()f x 在I 上的图形是(向上)凸的(或凸弧).如果函数()f x 在I 内具有二阶导数,那么可以利用二阶导数的符号来判定曲线的凹凸性,如下所示.2.函数凹凸性的判定法设函数()f x 在区间[,]a b 上连续,在(,)a b 内具有一阶和二阶导数,那么(1)若在(,)a b 内()0f x ''>,则()f x 在[,]a b 上的图形是凹的; (2)若在(,)a b 内()0f x ''<,则()f x 在[,]a b 上的图形是凸的.说明:若在(,)a b 内除有限个点上()0f x ''=外,其它点上均有()0f x ''>(或()0f x ''<),则同样可以判定曲线()y f x =在[,]a b 上为凹曲线(或凸曲线). 3.曲线的拐点的求法一般地,设()y f x =在区间I 上连续,0x 是I 的内点(除端点外I 内的点).如果曲线()y f x =在经过点00(,())x f x 时,曲线的凹凸性改变了,那么就称点00(,())x f x 为这曲线的拐点.我们可以按照下述步骤求区间I 上的连续函数()y f x =的拐点:(1)求()f x ''; (2)令()0f x ''=,解出这方程在区间I 内的实根,并求出在区间I 内()f x ''不存在的点;(3)对于(2)中求出的每一个实根或二阶导数不存在的点0x ,检查()f x ''在0x 左、右两侧邻近的符号,当两侧的符号相反时,点00(,())x f x 是拐点,当两侧的符号相同时,点00(,())x f x 不是拐点.在[,]a b 上单3.基本初等函数的微分公式说明:若要求函数()y f x =的凹凸区间,则用(2)中求出的每一个实根或二阶导数不存在的点把区间I分成若干部分区间,然后在这些部分区间上判定()f x ''的符号,若()0f x ''>,则该部分区间为凹区间,若()0f x ''<,则该部分区间为凸区间.五、函数的极值与最值1.函数极值的定义设函数()f x 在点0x 的某邻域0()U x 内有定义,如果对于去心邻域0()U x 内任一x ,有0()()f x f x <(或0()()f x f x >),那么就称0()f x 是函数()f x 的一个极大值(或极小值).函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点. 说明:函数的极大值与极小值概念是局部性的,如果0()f x 是函数()f x 的一个极大值,那只是就0x 附近的一个局部范围来说,0()f x 是()f x 的一个最大值,如果就()f x 的整个定义域来说,0()f x 不见得是最大值.关于极小值也类似.2.函数取得极值的必要条件设函数()f x 在0x 处可导,且在0x 处取得极值,那么0()0f x '=.说明:这也就是说,可导函数()f x 的极值点必定是它的驻点.但反过来,函数的驻点却不一定是极值点.例如,3()f x x =的导数2()3f x x '=,(0)0f '=,因此0x =是这函数的驻点,但0x=却不是这函数的极值点,所以,函数的驻点只是可能的极值点.此外,函数在它的导数不存在的点处也可能取得极值.例如,函数()f x x =在点0x =处不可导,但函数在该点取得极小值.3.判定极值的第一充分条件设函数()f x 在0x 处连续,且在0x 的某去心邻域0()U x 内可导.(1)若00(,)x x x δ∈-时,()0f x '>,而00(,)x x x δ∈+时,()0f x '<,则()f x 在0x 处取得极大值;(2)若00(,)x x x δ∈-时,()0f x '<,而00(,)x x x δ∈+时,()0f x '>,则()f x 在0x 处取得极小值;(3)若0(,)x U x δ∈时,()f x '的符号保持不变,则()f x 在0x 处没有极值.4.用第一充分条件求极值点和极值的步骤设函数()f x 在所讨论的区间内连续,除个别点外处处可导,则用第一充分条件求极值点和相应的极值的步骤如下: (1)求出导数()f x ';(2)求出()f x 的全部驻点与不可导点;(3)考查()f x '的符号在每个驻点或不可导点的左右邻近的情形,以确定该点是否为极值点;如果是极值点,进一步确定是极大值点还是极小值点; (4)求出各极值点的函数值,就得函数()f x 的全部极值.5.判定极值的第二充分条件设函数()f x 在0x 处具有二阶导数且0()0f x '=,0()0f x ''≠,那么(1)当0()0f x ''<时,函数()f x 在0x 处取得极大值; (2)当0()0f x ''>时,函数()f x 在0x 处取得极小值.说明:该极值判定条件表明,如果函数()f x 在驻点0x 处的二阶导数0()0f x ''≠,那么该驻点0x 一定是极值点,并且可按二阶导数0()f x ''的符号来判定0()f x 是极大值还是极小值.但如果0()0f x ''=,则该判定条件失效.事实上,当0()0f x '=,0()0f x ''=时,()fx 在0x 处可能有极大值,可能有极小值,也可能没有极值.例如,41()f x x =-,42()f x x =,33()f x x =这三个函数在0x =处就分别属于上述三种情况.因此,如果函数在驻点处的二阶导数为零,那么还得用一阶导数在驻点左右邻近的符号来判定.6.求()f x 在区间[,]a b 上的最值的步骤设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内除有限个点外可导,且至多有有限个驻点,则求()f x 在闭区间[,]a b 上的最值的步骤如下:(1)求出()f x 在(,)a b 内的驻点1x ,2x ,,m x 及不可导点1x ',2x ',,n x ';(2)计算()i f x (1,2,,i m =),()j f x '(1,2,,j n =)及 ()f a ,()f b ;(3)比较(2)中诸值的大小,其中最大的便是()f x 在[,]a b 上的最大值,最小的便是()f x 在[,]a b 上的最小值.说明:在实际问题中,往往根据问题的性质就可以断定可导函数()f x 确有最大值或最小值,而且一定在定义区间内部取得.这时如果()f x 在定义区间内部只有一个驻点0x ,那么不必讨论0()f x 是不是极值,就可以断定0()f x 是最大值或最小值.六、函数的渐近线的求法1.水平渐近线若lim()x f x a →∞=(包括lim ()x f x a →-∞=或lim ()x f x a →+∞=),则直线y a =就是函数()f x 的水平渐近线.2.垂直渐近线(或称铅直渐近线)若0lim()x x f x →=∞(包括0lim ()x x f x -→=∞或0lim ()x x f x +→=∞),则直线0x x =就是函数()f x 的垂直(铅直)渐近线.【典型例题】 【例3-1】验证罗尔定理对函数()lnsin f x x =在区间5[,]66ππ上的正确性.解:显然函数()lnsin f x x =在闭区间5[,]66ππ上连续,在开区间5(,)66ππ上可导,1()(lnsin )cos cot sin f x x x x x ''==⋅=,且5()()l n266f f ππ==-,故满足罗尔定理的条件,由定理可得至少存在一点5(,)66ππξ∈,使得()0f ξ'=,即cot 0ξ=,2πξ=即为满足条件的点.【例3-2】验证拉格朗日中值定理对函数2()482f x x x =--在区间[0,1]上的正确性.解:显然函数2()482f x x x =--在闭区间[0,1]上连续,在开区间(0,1)内可导,()88f x x '=-,根据拉格朗日中值定理可得至少存在一点(0,1)ξ∈,使得(1)(0)()(10)f f f ξ'-=-,即6(2)88ξ---=-,可得1(0,1)2ξ=∈,12ξ=即为满足条件的点.【例3-3】不求导数,判断函数()(1)(2)(3)(4)f x x x x x =----的导数有几个零点,这些零点分别在什么范围. 解:显然()f x 是连续可导的函数,且(1)(2)(3)(4)0f f f f ====,故()f x 在区间[1,2],[2,3],[3,4]上满足罗尔定理的条件,所以在区间(1,2)内至少存在一点1ξ,使得1()0f ξ'=,即1ξ是()f x '的一个零点;在区间(2,3)内至少存在一点2ξ,使得2()0f ξ'=,即2ξ是()f x '的一个零点;又在区间(3,4)内至少存在一点3ξ,使得3()0f ξ'=,即3ξ也是()f x '的一个零点.又因为()f x '是三次多项式,最多只能有三个零点,故()f x '恰好有三个零点,分别在区间(1,2),(2,3)和(3,4)内.【例3-4】证明arcsin arccos 2x x π+=,其中11x -≤≤.证明:设()arcsin arccos f x x x =+,[1,1]x ∈-, 因为()(0f x '=+=,所以()f x C =,[1,1]x ∈-.又因为(0)a r c s i n 0a r c c o s 0022f ππ=+=+=,即 2C π=,故arcsin arccos 2x xπ+=.说明:同理可证,arctan arccot 2x x π+=,(,)x ∈-∞+∞.【例3-5】求下列函数的极限.1.求 332132lim 1x x x x x x →-+--+.解:该极限为1x →时的“”型未定式,由洛必达法则可得 原式22113363lim lim 321622x x x x x x x →→-===---.2.求arctan 2lim 1x x xπ→+∞-.解:本题为x →+∞时的“00”型未定式,由洛必达法则可得原式222211lim lim 111x x x x x x→+∞→+∞-+===+-.3.求0lnsin 2lim lnsin3x xx+→. 解:该极限为0x+→时的“∞∞”型未定式,由洛必达法则可得原式0001cos 222sin 323sin 2lim lim lim 113sin 232cos33sin 3x x x x x x x x xx x+++→→→⋅⋅⋅====⋅⋅⋅.4.求 2tan lim tan 3x xx π→.解:本题为2x π→时的“∞∞”型未定式,由洛必达法则可得原式2222222sec cos 32cos3(sin 3)3lim lim lim 3sec 33cos 6cos (sin )x x x x x x x x x x x πππ→→→⋅-⋅===⋅- 22cos33sin3lim lim 3cos sin x x x x x x ππ→→-===-.5.求2tan limtan x x xx x→-. 解:该极限为0x →时的“00”型未定式,结合等价无穷小的替换,运用洛必达法则可得原式22320000tan sec 12sec tan 21lim lim lim lim 3663x x x x x x x x x x x x x x →→→→--⋅=====. 说明:此题也可这样求解(运用公式22sec1tan x x =+和等价无穷小替换来简化运算): 原式22232220000tan sec 1tan 1lim lim lim lim 3333x x x x x x x x x x x x x →→→→--=====. 6.求11lim()sin x x x→-. 解:该极限为0x →时的“∞-∞”型未定式,解决方法为先化为“1100-”型,然后通分化为“”型,故 原式20000sin sin 1cos sin lim lim lim lim 0sin 22x x x x x x x x x xx x x x →→→→---=====.7.求lim x x x +→. 解:该极限为0x +→时的“00”型未定式,解决方法为取对数化为“0ln0⋅”型,进而化为“”型,故 原式020001lim ln 1lim ln limlim ()ln 00lim 1x x x x xx x xx x x xx x e ee e e e +→+++→→→+--→=======.8.求cos limx x xx→∞+.解:原式1sin lim lim(1sin )1x x x x →∞→∞-==-,最后的极限不存在,不满足洛必达法则的条件,实际上,原式cos cos lim(1)1lim 101x x x xx x→∞→∞=+=+=+=.【例3-6】求下列函数的单调区间. 1.32()29123f x x x x =-+-.解:因2()618126(1)(2)f x x x x x '=-+=--,令()0f x '=,得11x =,22x =.用1x ,2x 将函数的定义域(,)-∞+∞分成三个区间(,1)-∞,(1,2),(2,)+∞,其讨论结果如下表所示:由上表可得,函数的单调递增区间为(,1]-∞和[2,)+∞,单调递减区间为[1,2].2.()f x = .解:函数的定义域为(,)-∞+∞,()f x '=(0x ≠),当0x =时导数不存在.将函数定义域分成两个区间(,0)-∞和(0,)+∞,讨论结果如下表所示:所以函数的单调递增区间为[0,)+∞,单调递减区间为(,0]-∞. 【例3-7】利用函数的单调性证明不等式. 1.试证当0x>时,ln(1)x x >+成立.证明:设()ln(1)f x x x =-+,则1()111xf x x x'=-=++, 因()f x 在区间[0,)+∞上连续,在(0,)+∞内可导,且 ()0f x '>, 故()f x 在区间[0,)+∞上单调增加,又因为(0)0f =,所以当0x >时,()0f x >,即ln(1)0x x -+>,也即 ln(1)x x >+成立.2.试证当1x >时,13x>-.证明:令1()(3)f x x =--,则2211()(1)f x xx '=-=-, 因()f x 在区间[1,)+∞上连续,在(1,)+∞内可导且()0f x '>, 故()f x 在区间[1,)+∞上单调增加,又因为(1)0f =,所以当1x >时,()0f x >,即1(3)0x -->,也即13x>- 成立.【例3-8】证明方程510x x ++=在区间(1,0)-内有且仅有一个实根.证明:令5()1f x x x =++,因为()f x 在闭区间[1,0]-上连续,且(1)10f -=-<,(0)10f =>,根据零点定理,()f x 在区间(0,1)内至少有一个零点.另一方面,对于任意实数x ,有4()510f x x '=+>,所以()f x 在(,)-∞+∞内单调增加,因此曲线5()1f x x x =++与x 轴至多有一个交点.综上所述,方程510xx ++=在区间(1,0)-内有且仅有一个实根.【例3-9】求下列函数的极值. 1.32()395f x x x x =--+.解:函数的定义域为(,)-∞+∞,且有2()3693(1)(3)f x x x x x '=--=+-,令()0f x '=,得驻点11x =-,23x =,列表讨论如下:由上表可得,函数的极大值为(1)10f -=,极小值为(3)22f =-.2.233()2f x x x =-.(,1]-∞-解:函数的定义域为(,)-∞+∞,且有13()1f x x-'=-=, 令()0f x '=,得驻点1x =,当0x =时()f x '不存在,驻点1x =以及不可导点0x =将定义域分成三个区间,列表讨论如下:由上表可得,函数的极大值为(0)0f =,极小值为1(1)2f =-.【例3-10】求函数32()231214f x x x x =+-+在区间[3,4]-上的最值.解:因为2()66126(2)(1)f x x x x x '=+-=+-,令()0f x '=,得 12x =-,21x =,计算(3)23f -=,(2)34f -=,(1)7f =,(4)142f =,比较上述结果可知,最大值为(4)142f =,最小值为(1)7f =.【例3-11】求下列曲线的凹凸区间和拐点. 1.43()341f x x x =-+.解:函数的定义域为(,)-∞+∞,且有32()1212f x x x '=-,2()36()3f x x x ''=-,令()0f x ''=,得10x =,223x =, 列表讨论如下:(,1]-∞-由上表可得,曲线()f x 的凹区间为(,0]-∞和2[,)3+∞,凸区间为2[0,]3,拐点为(0,1)和211(,)327.2.()f x =解:函数的定义域为(,)-∞+∞,当0x ≠时有231()3f x x -'=,532()9f x x -''=-,当0x =时,()f x '和()f x ''均不存在,但在区间(,0)-∞内,()0f x ''>,故曲线在(,0]-∞上是凹的;在区间(0,)+∞内,()0f x ''<,故曲线在[0,)+∞上是凸的.所以曲线的凹区间为(,0]-∞,凸区间为[0,)+∞,拐点为(0,0).【历年真题】 一、选择题1.(2009年,1分)若函数()y f x =满足0()0f x '=,则0x x =必为()f x 的(A )极大值点 (B )极小值点 (C )驻点 (D )拐点 解:若0()0f x '=,则0x x =必为()f x 的驻点,选(C ).2.(2009年,1分)当0x >时,曲线1sin y x x=(A )没有水平渐近线 (B )仅有水平渐近线23 x ()f x 2(,)3+∞ 0 (,0)-∞2(0,)3+-+对应拐点对应拐点凹凸凹()f x ''(C )仅有铅直渐近线 (D )既有水平渐近线,又有铅直渐近线解:由1sin1lim sin lim11x x x x x x→∞→∞==可知,1y =为曲线的水平渐近线;01lim sin 0x x x+→=,故曲线无铅直渐近线.选项(B )正确. 3.(2008年,3分)函数()ln f x x =在区间[1,2]上满足拉格朗日公式中的ξ等于(A )ln 2 (B )ln1 (C )ln e (D )1ln 2解:对函数()ln f x x =在区间[1,2]上应用拉格朗日中值定理,(2)(1)()(21)f f f ξ'-=-,即 1ln 20ξ-=,故 1ln 2ξ=.选(D ). 4.(2007年,3分)曲线33yx x =-上切线平行于x 轴的点为(A )(1,4)-- (B )(2,2) (C )(0,0)(D )(1,2)- 解:切线平行于x 轴的点即为一阶导数等于零的点.由2330y x'=-=可得,1x =±;1x =时,2y =-,1x =-时,2y =,故曲线33y x x =-上切线平行于x 轴的点为(1,2)-和(1,2)-.选项(D )正确. 5.(2007年,3分)若在区间(,)a b 内,导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在该区间内(A )单调增加,曲线为凸的 (B )单调增加,曲线为凹的 (C )单调减少,曲线为凸的 (D )单调减少,曲线为凹的 解:()0f x '>可得()f x 单调增加,()0f x ''<可得曲线为凸的,故选(A ).二、填空题1.(2010年,2分)函数32()2912f x x x x =-+的单调减区间是.解:令2()618126(1)(2)0f x x x x x '=-+=--=,得驻点1x =和2x =;当1x <时,()0f x '>,当12x <<时,()0f x '<,当2x >时,()0f x '>,故函数的单调递减区间为[1,2].2.(2009年,2分)当62x ππ≤≤时,sin ()xf x x=是函数(填“单调递增”、“单调递减”).解:当6x π=时,sin36()66f ππππ==;当2x π=时,sin22()22f ππππ==;故当62x ππ≤≤时,sin ()xf x x=是单调递减函数. 3.(2009年,2分)函数32()29121f x x x x =-++在区间[0,2]上的最大值点是.解:令2()618126(1)(2)0f x x x x x '=-+=--=,得驻点1x =和2x =.比较函数值(1)6f =,(2)5f =,(0)1f =,可知,函数的最大值为(1)6f =,故函数的最大值点为1x =.4.(2007年,4分)曲线24x t y t⎧=⎨=⎩在1t =处的切线方程为.解:将1t =代入参数方程可得切点为(1,4),切线斜率11422t t t t y k tx =='===',故切线方程为42(1)y x -=-,即 22y x =+.5.(2005年,3分)x y xe -=的凸区间是.解:()(1)x x x x y xe e xe x e ----''==-=-,(1)(2)x x x y e x e x e ---''=---=-. 令 (2)0x y x e -''=-=可得,2x =,且当2x >时,0y ''>,当2x <时,0y ''<,故函数x y xe -=的凸区间是(,2]-∞.6.(2005年,3分)曲线x y x =通过(1,1)点的切线方程为.解:因ln ln ()()(ln 1)(ln 1)x x x x x x y x e e x x x '''===⋅+=+,故切线斜率1[(ln 1)]1x x k x x ==+=,所以切线方程为11(1)y x -=⋅-,即 y x =.三、应用题或综合题1.(2010年,10分)现有边长为96厘米的正方形纸板,将其四角各剪去一个大小相同的小正方形,折做成无盖纸箱,问剪区的小正方形边长为多少时做成的无盖纸箱容积最大? 解:设剪区的小正方形边长为x ,则纸盒的容积2(962)yx x =-,048x <<.2(962)2(962)(2)(962)(966)y x x x x x '=-+⋅--=--,令0y '=,可得 16x =(48x =舍去).因只有唯一的驻点,且原题中容积最大的无盖纸箱一定存在,故当剪区的小正方形边长为16厘米时,做成的无盖纸箱容积最大. 2.(2010年,10分)设函数()f x 在[0,1]上连续,并且对于[0,1]上的任意x 所对应的函数值()f x 均为0()1f x ≤≤,证明:在[0,1]上至少存在一点ξ,使得()f ξξ=.解:令()()F x f x x =-,由于()f x 在[0,1]上连续,故()F x 在[0,1]上也连续.(0)(0)0(0)F f f =-=,(1)(1)1F f =-.而对[0,1]x ∀∈,0()1f x ≤≤,故(0)0F ≥,(1)0F ≤. 若(0)0F =,即(0)00f -=,(0)0f =,则0ξ=; 若(1)0F =,即(1)10f -=,(1)1f =,则1ξ=;当(0)0F ≠,(1)0F ≠时,(0)(1)0F F ⋅<,而()F x 在[0,1]上连续,故根据零点定理可得,至少存在一点(0,1)ξ∈,使得()0F ξ=,即()0f ξξ-=,()f ξξ=.综上,在[0,1]上至少存在一点ξ,使得()f ξξ=.3.(2009年,10分)某工厂需要围建一个面积为2512m 的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁.问堆料场的长和宽各为多少时,才能使砌墙所用的材 料最省?解:设堆料场的宽为xm ,则长为512x m ,设砌墙周长为y ,则5122y x x=+, 令251220y x'=-=,得 2256x =,16x =(16x =-舍去).因只有一个驻点,且原题中最值一定存在,故当16x =时,函数有最小值.即当宽为16m ,长为32m 时,才能使砌墙所用的材料最省. 4.(2009年,10分)当0x >,01a <<时,1a x ax a -≤-.解:原不等式即为 10a x ax a -+-≤.设()1a f x x ax a =-+-,则(1)当1x=时,()110f x a a =-+-=,即10a x ax a -+-=成立; (2)当01x <<时,111()(1)0a a f x axa a x--'=-=->,故()f x 单调增加,可得()(1)0f x f <=,即10a x ax a -+-<成立;(3)当1x>时,111()(1)0a af x ax a a x--'=-=-<,故()f x 单调减少,可得()(1)0f x f <=,即10a x ax a -+-<成立.综上,当0x>,01a <<时,不等式10a x ax a -+-≤成立,即1ax ax a -≤-. 5.(2008年,8分)求函数233y x x =-的单调区间、极值、凹凸区间与拐点.解:函数的定义域为(,)-∞+∞. 先求单调区间和极值.令2633(2)0y x xx x '=-=-=,得驻点0x =,2x =,用驻点将整个定义域分为三个区间(,0)-∞,(0,2),(2,)+∞.当(,0)x ∈-∞时,0y '<,函数单调减少;当(0,2)x ∈时,0y '>,函数单调增加;当(2,)x ∈+∞时,0y '<,函数单调减少.故函数的单调增加区间为[0,2],单调减少区间为(,0]-∞和[2,)+∞;极小值(0)0f =,极大值(2)4f =.再求凹凸区间和拐点.令660y x ''=-=,得1x =.当(,1)x ∈-∞时,0y ''>,函数为凹的;当(1,)x ∈+∞时,0y ''<,函数为凸的,且当1x =时,2y =,故函数的凹区间为(,1]-∞,凸区间为[1,)+∞,拐点为(1,2).6.(2007年,8分)求函数11y x x =++的单调区间、极值、凹凸区间和拐点. 解:函数的定义域为(,1)(1,)-∞--+∞.先求单调区间和极值.令221(2)10(1)(1)x x y x x +'=-==++,得驻点2x =-,0x =,用驻点将整个定义域分为三个区间(,2)-∞-,(2,1)--,(1,0)-,(0,)+∞.当(,2)x ∈-∞-时,0y '>,函数单调增加;当(2,1)x ∈--时,0y '<,函数单调减少;当(1,0)x ∈-时,0y '<,函数单调减少;当(0,)x ∈+∞时,0y '>,函数单调增加.故函数的单调增加区间为(,2]-∞-和[0,)+∞,单调减少区间为[2,1)--和(1,0]-;极大值(2)3f -=-,极小值(0)1f =.再求凹凸区间和拐点.因432(1)2(1)(1)x y x x -+''=-=++,故当(,1)x ∈-∞-时,0y ''<,函数为凸的;当(1,)x ∈-+∞时,0y ''>,函数为凹的,故函数的凸区间为(,1)-∞-,凹区间为(1,)-+∞.凹凸性改变的点为1x =-,不在定义域内,故函数没有拐点.7.(2007年,8分)在周长为定值l 的所有扇形中,当扇形的半径取何值时所得扇形的面积最大?解:设扇形的半径为x ,则弧长为2lx -,设扇形的面积为y ,则由题意211(2)22y l x x x lx =-=-+.令202l y x '=-+=得,4l x =.唯一的极值点即为最大值点.故当扇形的半径为4l时,扇形的面积最大.8.(2006年,10分)求函数321y x x x =--+的单调区间、极值及凹凸区间、拐点.解:函数的定义域为(,)-∞+∞.先求单调区间和极值.令2321(31)(1)0y x x x x '=--=+-=,得驻点13x =-,1x =,用驻点将整个定义域分为三个区间1(,)3-∞-,1(,1)3-,(1,)+∞.当1(,)3x ∈-∞-时,0y '>,函数单调增加;当1(,1)3x ∈-时,0y '<,函数单调减少;当(1,)x ∈+∞时,0y '>,函数单调增加.故函数的单调增加区间为1(,]3-∞-和[1,)+∞,单调减少区间为1[,1]3-;极大值132()327f -=,极小值(1)0f =. 再求凹凸区间和拐点.令620y x ''=-=,得13x=.当1(,)3x ∈-∞时,0y ''<,函数为凸的;当1(,)3x ∈+∞时,0y ''>,函数为凹的,且当13x =时,1627y =,故函数的凸区间为1(,]3-∞,凹区间为1[,)3+∞,拐点为116(,)327.9.(2006年,10分)设函数()f x 在[0,1]上连续,且()0f x >.证明方程11()0()xxf t dt dt f t +=⎰⎰在(0,1)内有且仅有一个根.证明:先证存在性.设011()()()x xF x f t dt dt f t =+⎰⎰,[0,1]x ∈.因()f x 在[0,1]上连续,故()F x 在[0,1]上也连续,且011011(0)00()()F dt dt f t f t =+=-<⎰⎰,11(1)()0()0F f t dt f t dt =+=>⎰⎰,故由零点定理可得,至少存在一点(0,1)ξ∈使得()0F ξ=,即在(0,1)内方程至少存在一个根.再证唯一性,即证()F x 的单调性.1()()0()F x f x f x '=+>,故()F x 单调增加,所以结合上面根的存在性可知,方程011()0()xxf t dt dt f t +=⎰⎰在(0,1)内有且仅有一个根.10.(2005年,8分)已知()y f x =与2arctan 0xt y e dt -=⎰在(0,0)处切线相同,写出该切线方程并求2lim ()n nfn→∞. 解:切线斜率()22arctan arctan 02011x xtx x e k e dtx --==⎛⎫'===⎪ ⎪+⎝⎭⎰,故切线方程为01(0)y x -=⋅-,即 y x =.因()y f x =过点(0,0),故(0)0f =,且(0)1f '=,故 222()()()2lim ()lim lim 2(0)211()n n n f f n n n nf f n n n→∞→∞→∞'''===='.。
中值定理与导数的应用(全
导数在不等式证明中的常见方法
构造法
根据题意,通过构造适当的函数, 利用导数研究该函数的性质,从 而证明不等式。
放缩法
通过放缩技巧,将需要证明的不 等式转化为更容易处理的形式, 再利用导数进行证明。
参数法
引入参数,通过调整参数的值, 利用导数研究函数的变化规律, 从而证明不等式。
导数在不等式证明中的实例分析
详细描述
柯西中值定理进一步揭示了函数之间的内在关系,为研究函数的性质提供了更多的理论支持。同时,柯西中值定 理也在解决一些复杂问题时发挥了重要的作用。
02
导数的几何意义及应用
导数的几何意义
导数表示函数在某一点的切线斜率
对于可导函数,其在某一点的导数即为该点处的切线斜率,反映了函数在该点的变化率。
03
导数在不等式证明中的应用
导数在不等式证明中的基本思想
利用导数研究函数的单调性
01
通过求导判断函数的单调性,从而在不等式证明中利用函数的
增减性进行推导。
利用导数研究函数的极值
02
通过求导找到函数的极值点,利用极值点处的函数值进行不等
式的比较和证明。
导数与不等式的转化
03
将不等式问题转化为求导数问题,通过求解导数来证明不等式。
速度与加速度
在物理学中,速度和加速度是描述物体运动的重要参数。导数可以用于计算速度和加速 度,帮助我们理解物体的运动规律。
弹性与应变
在弹性力学中,导数可以用于描述物体的弹性性质和应变状态,帮助我们分析物体的受 力情况和变形规律。
导数在经济问题中的应用
供需关系
在经济学中,供需关系是决定市场价格的重 要因素。导数可以用于分析供需函数的变化 趋势,帮助我们理解市场价格的变动。
第三章 微分中值定理与导数应用教案教学设计
证明:不妨设 x ∈U(x )时, f (x) ≤ f (x ) (若 f (x) ≥ f (x ) ,可以类似地证明).∆x ≤ 0∆x第三章 微分中值定理与导数应用第一节 微分中值定理教学目的:理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。
教学重点:罗尔定理、拉格朗日中值定理。
教学难点:罗尔定理、拉格朗日中值定理的应用。
教学内容:一、罗尔定理1. 罗尔定理几何意义:对于在 [a,b ] 上每一点都有不垂直于 x 轴的切线,且两端点的连线与 x 轴平行的不间断的曲线yf (x) 来说,至少存在一点 C ,使得其切线平行于 xC轴。
y = f ( x )ABoaξ ξ bx21从图中可以看出:符合条件的点出现在最大值和最小值点,由此得到启发证明罗尔定理。
为应用方便,先介绍费马(Fermat )引理费马引理 设函数 f (x) 在点 x 的某邻域U ( x ) 内有定义, 并且在 x 处可导, 如果对任意 x ∈U(x ), 有 f (x) ≤ f (x ) (或 f (x) ≥ f (x )), 那么 f ' (x ) = 0 .0 0 0 0于是对于 x + ∆x ∈U(x ) ,有 f (x + ∆x) ≤ f (x ) , 从而当 ∆x > 0 时, 0f (x + ∆x) - f (x ) ; 而当 ∆x < 0 时, f (x 0 + ∆x) - f (x 0 ) ≥ 0; 0例如 y = ⎨根据函数 f (x) 在 x 处可导及极限的保号性的得f ' (x 0 ) = f '+ (x 0 ) = lim f (x 0 + ∆x) - f (x 0 ) ≤ 0∆x →0+∆xf ' (x 0 ) = f '- (x 0 ) = lim f (x 0 + ∆x) - f (x 0) ≥ 0∆x →0-∆x所以 f ' (x ) = 0 , 证毕.定义 导数等于零的点称为函数的驻点(或稳定点,临界点).罗尔定理 如果函数 f (x) 满足:(1)在闭区间 [a,b ] 上连续, (2)在开区间 (a, b ) 内可导,(3)在区间端点处的函数值相等,即f (a) = f (b ), 那么在 (a,b ) 内至少在一点ξ(a <ξ < b ) ,使得函数 f (x) 在该点的导数等于零,即 f ' (ξ ) = 0 .证明:由于 f (x) 在 [a,b ] 上连续,因此必有最大值 M 和最小值 m ,于是有两种可能的情形:(1) M = m ,此时 f (x) 在 [a,b ] 上必然取相同的数值 M ,即 f (x) = M .由此得 f '(x) = 0. 因此,任取 ξ ∈ (a, b ) ,有 f '(ξ ) = 0.(2) M > m ,由于 f (a) = f (b ) ,所以 M 和 m 至少与一个不等于 f ( x ) 在区间[a,b ] 端点处的函数值.不妨设 M ≠ f (a)(若 m ≠ f (a) ,可类似证明),则必定在 (a,b ) 有一点 ξ 使 f (ξ ) = M . 因此任取 x ∈[a,b ]有 f (x) ≤ f (ξ ) , 从而由费马引理有 f '(ξ ) = 0 . 证毕例 1 验证罗尔定理对 f ( x ) = x 2 - 2 x - 3 在区间[-1,3] 上的正确性解 显然 f ( x ) = x 2 - 2 x - 3 = ( x - 3)( x + 1)在 [-1,3] 上连续,在 (-1,3) 上可导,且f (-1) = f (3) = 0 , 又 f '( x ) = 2( x - 1) , 取 ξ = 1, (1 ∈ (-1,3)) ,有 f '(ξ ) = 0 .说明:1 若罗尔定理的三个条件中有一个不满足, 其结论可能不成立;2 使得定理成立的ξ 可能多于一个,也可能只有一个.例如 y = x , x ∈ [-2,2]在 [-2,2] 上除 f '(0) 不存在外,满足罗尔定理的一切条件, 但 在区间 [-2,2] 内找不到一点能使 f '( x ) = 0 .⎧1 - x, x ∈ (0,1] ⎩0, x = 0除了 x = 0 点不连续外,在 [0,1] 上满足罗尔定理的一切条2 2,]满足定理的一切条件,而ξ = 0,πx ∈ (0,1) 使 f (x ) = 0 , 即 x 为方程的小于 1 的正实根. 0但 f '(x) = 5(x 4 -1) < 0, ( x ∈ (0,1)) , 矛盾, 所以 x 为方程的唯一实根..件,但在区间 [0,1] 上不存在使得 f '(ξ ) = 0 的点例如 y = x, x ∈ [0,1]. 除了 f (0) ≠ f (1) 外,在 [0,1] 上满足罗尔定理的一切条件,但在区间 [0,1] 上不存在使得 f '(ξ ) = 0 的点又例如 y = cos x,x ∈ [- π 3π2.罗尔定理的应用罗尔定理 1)可用于讨论方程只有一个根;2)可用于证明等式.例 2 证明方程 x 5 - 5 x + 1 = 0 有且仅有一个小于 1 的正实根.证明:设 f ( x ) = x 5 - 5x + 1 , 则f (x) 在 [0,1] 上连续,且 f (0) =1, f (1) = -3.由介值定理存在 0 0设另有x ∈ (0,1), x ≠ x , 使 f (x ) = 0. 因为 f (x) 在 x , x 之间满足罗尔定理1 1 0 1 0 1的条件, 所以至少存在一个 ξ (在 x , x 之间)使得 f '(ξ ) = 0 .1拉格朗日中值定理的证明就是罗尔定理证明等式的一个例子(见后面)二、拉格朗日(Lagrange )中值定理1.拉格朗日中值定理在实际应用中,由于罗尔定理的条件(3)有时不能满足,使得其应用受到一定限制。
同济大学-高等数学微积分教案
第一章:函数与极限初等函数图象及性质1.1.1 幂函数函数(m 是常数)叫做幂函数。
幂函数的定义域,要看m 是什么数而定。
例如,当m = 3时,y=x3的定义域是(-∞ ,+∞);当m = 1/2时,y=x1/2的定义域是[0,+∞ );当m = -1/2时,y=x-1/2的定义域是(0,+∞ )。
但不论m 取什么值,幂函数在(0,+∞)内总有定义。
最常见的幂函数图象如下图所示:[如图]1.1.2 指数函数与对数函数1.指数函数函数y=a x(a是常数且a>0,a≠1)叫做指数函数,它的定义域是区间(-∞ ,+∞)。
因为对于任何实数值x,总有a x >0,又a0=1,所以指数函数的图形,总在x轴的上方,且通过点(0,1)。
若a>1,指数函数a x是单调增加的。
若0<a<1,指数函数a x是单调减少的。
由于y=(1/a)-x=a-x,所以y=a x的图形与y=(1/a)x的图形是关于y轴对称的(图1-21)。
[如图]2.对数函数指数函数y=a x的反函数,记作y=log a x(a是常数且a>0,a≠1),叫做对数函数。
它的定义域是区间(0,+∞)。
对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。
y=log a x的图形总在y轴上方,且通过点(1,0)。
若a>1,对数函数log a x是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞)内函数值为正。
若0<a<1,对数函数log a x是单调减少的,在开区间(0,1)内函数值为正,而在区间(1,+∞)内函数值为负。
[如图] 1.1.3 三角函数与反三角函数1.三角函数正弦函数和余弦函数都是以2π为周期的周期函数,它们的定义域都是区间(-∞ ,+∞),值域都是必区间[-1,1]。
正弦函数是奇函数,余弦函数是偶函数。
正切函数和余切函数都是以π为周期的周期函数,它们都是奇函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 中值定理与导数的应用教学目的:1、 理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。
2、 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。
3、 会用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
4、 掌握用洛必达法则求未定式极限的方法。
5、 知道曲率和曲率半径的概念,会计算曲率和曲率半径。
6、 知道方程近似解的二分法及切线性。
教学重点:1、罗尔定理、拉格朗日中值定理;2、函数的极值 ,判断函数的单调性和求函数极值的方法;3、函数图形的凹凸性;4、洛必达法则。
教学难点:1、罗尔定理、拉格朗日中值定理的应用;2、极值的判断方法;3、图形的凹凸性及函数的图形描绘;4、洛必达法则的灵活运用。
§3. 1 中值定理一、罗尔定理费马引理设函数f (x )在点x 0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x 0) (或f (x )≥f (x 0)), 那么f '(x 0)=0.罗尔定理 如果函数y =f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 且有f (a )=f (b ), 那么在(a , b )内至少在一点ξ , 使得f '(ξ)=0.简要证明: (1)如果f (x )是常函数, 则f '(x )≡0, 定理的结论显然成立.(2)如果f (x )不是常函数, 则f (x )在(a , b )内至少有一个最大值点或最小值点, 不妨设有一最大值点ξ∈(a , b ). 于是0)()(lim )()(≥--='='-→-ξξξξξx f x f f f x ,0)()(lim )()(≤--='='+→+ξξξξξx f x f f f x ,所以f '(x )=0.罗尔定理的几何意义:二、拉格朗日中值定理拉格朗日中值定理 如果函数f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 那么在(a , b )内至少有一点ξ(a <ξ<b ), 使得等式f (b )-f (a )=f '(ξ)(b -a )成立.拉格朗日中值定理的几何意义:f '(ξ)=ab a f b f --)()(,定理的证明: 引进辅函数 令 ϕ(x )=f (x )-f (a )-ab a f b f --)()((x -a ).容易验证函数f (x )适合罗尔定理的条件: ϕ(a )=ϕ(b )=0, ϕ(x )在闭区间[a , b ] 上连续在开区间(a , b )内可导, 且ϕ '(x )=f '(x )-ab a f b f --)()(.根据罗尔定理, 可知在开区间(a , b )内至少有一点ξ, 使ϕ '(ξ)=0, 即f '(ξ)-ab a f b f --)()(=0.由此得ab a f b f --)()(= f '(ξ) ,即 f (b )-f (a )=f '(ξ)(b -a ). 定理证毕.f (b )-f (a )=f '(ξ)(b -a )叫做拉格朗日中值公式. 这个公式对于b <a 也成立. 拉格朗日中值公式的其它形式:设x 为区间[a , b ]内一点, x +∆x 为这区间内的另一点(∆x >0或∆x <0), 则在[x , x +∆x ] (∆x >0)或[x +∆x , x ] (∆x <0)应用拉格朗日中值公式, 得f (x +∆x )-f (x )=f '(x +θ∆x ) ⋅∆x (0<θ<1).如果记f (x )为y , 则上式又可写为∆y =f '(x +θ∆x ) ⋅∆x (0<θ<1).试与微分d y =f '(x ) ⋅∆x 比较: d y =f '(x ) ⋅∆x 是函数增量∆y 的近似表达式, 而 f '(x +θ∆x ) ⋅∆x 是函数增量∆y 的精确表达式.作为拉格朗日中值定理的应用, 我们证明如下定理:定理 如果函数f (x )在区间I 上的导数恒为零, 那么f (x )在区间I 上是一个常数. 证 在区间I 上任取两点x 1, x 2(x 1<x 2), 应用拉格朗日中值定理, 就得f (x 2)-f (x 1)=f '(ξ)(x 2 - x 1) (x 1<ξ< x 2). 由假定, f '(ξ)=0, 所以f (x 2)-f (x 1)=0, 即f (x 2)=f (x 1).因为x 1, x 2是I 上任意两点, 所以上面的等式表明: f (x )在I 上的函数值总是相等的, 这就是说, f (x )在区间I 上是一个常数. 例2. 证明当x >0时,x x xx <+<+)1ln(1. 证 设f (x )=ln(1+x ), 显然f (x )在区间[0, x ]上满足拉格朗日中值定理的条件, 根据定理, 就有f (x )-f (0)=f '(ξ)(x -0), 0<ξ<x 。
由于f (0)=0, x x f +='11)(, 因此上式即为ξ+=+1)1l n (x x .又由0<ξ<x , 有x x xx <+<+)1l n (1. 三、柯西中值定理设曲线弧C 由参数方程⎩⎨⎧==)()(x f Y x F X (a ≤x ≤b )表示, 其中x 为参数. 如果曲线C 上除端点外处处具有不垂直于横轴的切线, 那么在曲线C 上必有一点x =ξ , 使曲线上该点的切线平行于连结曲线端点的弦AB , 曲线C 上点x =ξ 处的切线的斜率为)()(ξξF f dX dY ''=,弦AB 的斜率为)()()()(a F b F a f b f --.于是)()()()()()(ξξF f a F b F a f b f ''=--. 柯西中值定理 如果函数f (x )及F (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 且F '(x )在(a , b )内的每一点处均不为零, 那么在(a , b )内至少有一点ξ , 使等式)()()()()()(ξξF f a F b F a f b f ''=--. 成立.显然, 如果取F (x )=x , 那么F (b )-F (a )=b -a , F '(x )=1, 因而柯西中值公式就可以写成:f(b)-f(a)=f'(ξ)(b-a) (a<ξ<b),这样就变成了拉格朗日中值公式了.§3. 3 泰勒公式对于一些较复杂的函数,为了便于研究,往往希望用一些简单的函数来近似表达.由于用多项式表示的函数,只要对自变量进行有限次加、减、乘三种运算,便能求出它的函数值,因此我们经常用多项式来近似表达函数.在微分的应用中已经知道,当|x|很小时,有如下的近似等式:e x≈1+x, ln(1+x) ≈x.这些都是用一次多项式来近似表达函数的例子.但是这种近似表达式还存在着不足之处:首先是精确度不高,这所产生的误差仅是关于x的高阶无穷小;其次是用它来作近似计算时,不能具体估算出误差大小.因此,对于精确度要求较高且需要估计误差时候,就必须用高次多项式来近似表达函数,同时给出误差公式.设函数f(x)在含有x0的开区间内具有直到(n+1)阶导数,现在我们希望做的是:找出一个关于(x-x0)的n次多项式p n(x)=a 0+a 1(x-x0)+ a 2(x-x0) 2+⋅⋅⋅+ a n(x-x0)n来近似表达f(x),要求p n(x)与f(x)之差是比(x-x0)n高阶的无穷小,并给出误差|f(x)-p n(x)|的具体表达式.我们自然希望p n(x)与f(x)在x0的各阶导数(直到(n+1)阶导数)相等,这样就有p n(x)=a 0+a 1(x-x0)+ a 2(x-x0) 2+⋅⋅⋅+ a n(x-x0)n,p n'(x)= a 1+2 a 2(x-x0)+⋅⋅⋅+na n(x-x0)n-1 ,p n''(x)= 2 a 2 + 3⋅2a 3(x-x0)+⋅⋅⋅+n (n-1)a n(x-x0)n-2,p n'''(x)= 3!a 3+4⋅3⋅2a 4(x-x0) +⋅⋅⋅+n (n-1)(n-2)a n(x-x0)n-3,⋅⋅⋅⋅⋅⋅,p n (n)(x)=n! a n.于是p n(x0)=a 0,p n'(x0)= a 1,p n''(x0)= 2! a 2,p n'''(x)= 3!a 3,⋅⋅⋅,p n (n)(x)=n! a n.按要求有f(x0)=p n(x0) =a0,f'(x0)= p n'(x0)= a 1,f''(x0)= p n''(x0)= 2! a 2,f'''(x0)= p n'''(x0)= 3!a 3,⋅⋅⋅⋅⋅⋅f(n)(x0)= p n (n)(x0)=n! a n.从而有a 0=f (x 0 ), a 1=f '(x 0 ), )(!2102x f a ''=, ⋅ ⋅ ⋅ , )(!3103x f a '''=, )(!10)(x f n a n n =.)(!10)(x f k a k k =(k =0, 1, 2, ⋅ ⋅ ⋅, n ).于是就有p n (x )= f (x 0)+ f '(x 0) (x -x 0))(!210x f ''+(x -x 0) 2 +⋅ ⋅ ⋅ )(!10)(x f n n +(x -x 0) n .泰勒中值定理 如果函数f (x )在含有x 0的某个开区间(a , b )内具有直到(n +1)的阶导数, 则当x 在(a , b )内时, f (x )可以表示为(x -x 0 )的一个n 次多项式与一个余项R n (x )之和: )())((!1 ))((!21))(()()(00)(200000x R x x x f n x x x f x x x f x f x f n n n +-+⋅⋅⋅+-''+-'+=其中10)1()()!1()()(++-+=n n n x x n f x R ξ(ξ 介于x 0与x 之间). 这里多项式n n n x x x f n x x x f x x x f x f x p ))((!1 ))((!21))(()()(00)(200000-+⋅⋅⋅+-''+-'+=.称为函数f (x )按(x -x 0 )的幂展开的n 次近似多项式, 公式200000))((!21))(()()(x x x f x x x f x f x f -''+-'+=+⋅ ⋅ ⋅)())((!100)(x R x x x f n n n n +-+,称为f (x )按(x -x 0 )的幂展开的n 阶泰勒公式, 而R n (x )的表达式 其中10)1()()!1()()(++-+=n n n x x n f x R ξ(ξ介于x 与x 0之间). 称为拉格朗日型余项.当n =0时, 泰勒公式变成拉格朗日中值公式: f (x )=f (x 0 )+f '(ξ)(x -x 0 ) (ξ在x 0 与x 之间). 因此, 泰勒中值定理是拉格朗日中值定理的推广.如果对于某个固定的n , 当x 在区间(a , b )内变动时, |f (n +1)(x )|总不超过一个常数M , 则有估计式: 1010)1(||)!1( |)()!1()(| |)(|+++-+≤-+=n n n n x x n M x x n f x R ξ,及 0)(lim0)(0=-→nx n x x x x R .可见, 妆x →x 0时, 误差|R n (x )|是比(x -x 0 )n 高阶的无穷小, 即 R n (x )=o [(x -x 0 ) n ].在不需要余项的精确表达式时, n 阶泰勒公式也可写成200000))((!21))(()()(x x x f x x x f x f x f -''+-'+=+⋅ ⋅ ⋅])[())((!1000)(n n n x x o x x x f n -+-+.当x 0 =0时的泰勒公式称为麦克劳林公式, 就是 )(!)0( !2)0()0()0()()(2x R x n f x f x f f x f n nn ++⋅⋅⋅+''+'+=, 或 )(!)0( !2)0()0()0()()(2n n n x o x n f x f x f f x f ++⋅⋅⋅+''+'+=, 其中1)1()!1()()(+++=n n n x n f x R ξ. 由此得近似公式: nn x n f x f x f f x f !)0( !2)0()0()0()()(2+⋅⋅⋅+''+'+≈. 误差估计式变为:1||)!1(|)(|++=n n x n M x R .例1.写出函数f (x )=e x 的n 阶麦克劳林公式. 解: 因为 f (x )=f '(x )=f ''(x )= ⋅ ⋅ ⋅ =f ( n )(x )=e x , 所以 f (0)=f '(0)=f ''(0)= ⋅ ⋅ ⋅ =f ( n )(0)=1 ,于是 12)!1(!1 !211++++⋅⋅⋅+++=n xn x x n e x n x x e θ(0<θ<1),并有 n x x n x x e !1 !2112+⋅⋅⋅+++≈. 这时所产性的误差为|R n (x )|=|)!1(+n e x θx n +1|<)!1(||+n e x | x | n +1.当x =1时, 可得e 的近似式: !1 !2111n e x +⋅⋅⋅+++≈.其误差为 |R n |<)!1(3)!1(+<+n n e .例2.求f (x )=sin x 的n 阶麦克劳林公式. 解: 因为f '(x )=cos x , f ''(x )=-sinx , f '''(x )= -cos x ,x x f s i n)()4(=, ⋅ ⋅ ⋅ ,)2sin()()(π⋅+=n x x f n , f (0)=0, f '(0)=1, f ''(0)=0 , f '''(0)=-1, f ( 4)(0)=0, ⋅ ⋅ ⋅,于是 )()!12()1(!51!31sin 212153x R x m x x x x m m m +--+⋅⋅⋅++-=--.当m =1、2、3时, 有近似公式sin x ≈x , 3!31sin x x x -≈, 53!51!31sin x x x x +-≈.§3. 4 函数单调性与曲线的凹凸性一、函数单调性的判定法如果函数y =f (x )在[a , b ]上单调增加(单调减少), 那么它的图形是一条沿x 轴正向上升(下降)的曲线. 这时曲线的各点处的切线斜率是非负的(是非正的), 即y '=f '(x )≥0(y '=f '(x )≤0). 由此可见, 函数的单调性与导数的符号有着密切的关系. 反过来, 能否用导数的符号来判定函数的单调性呢?定理1(函数单调性的判定法) 设函数y =f (x )在[a , b ]上连续, 在(a , b )内可导. (1)如果在(a , b )内f '(x )>0, 那么函数y =f (x )在[a , b ]上单调增加; (2)如果在(a , b )内f '(x )<0, 那么函数y =f (x )在[a , b ]上单调减少.证明 只证(1). 在[a , b ]上任取两点x 1 , x 2 (x 1 <x 2 ), 应用拉格朗日中值定理, 得到f (x 2 )-f (x 1 )=f '(ξ)(x 2-x 1) (x 1 <ξ<x 2 ).由于在上式中, x 2-x 1>0, 因此, 如果在(a , b )内导数f '(x )保持正号, 即f '(x )>0, 那么也有f '(ξ)>0. 于是f (x 2 )-f (x 1 )=f '(ξ)(x 2 -x 1 )>0,即 f (x 1 )<f (x 2 ), 这函数y =f (x ) 在[a , b ]上单调增加.注: 判定法中的闭区间可换成其他各种区间. 例1 判定函数y =x -sin x 在[0, 2π]上的单调性. 解 因为在(0, 2π)内 y '=1-cos x >0,所以由判定法可知函数y =x -cos x 在[0, 2π]上的单调增加.例2 讨论函数y =e x -x -1的单调性. (没指明在什么区间怎么办?) 解 y '=e x -1.函数y =e x -x -1的定义域为(-∞, +∞). 因为在(-∞, 0)内y '<0, 所以函数y =e x -x -1在(-∞, 0] 上单调减少; 因为在(0, +∞)内y '>0, 所以函数y =e x -x -1在[0, +∞)上单调增加. 例3. 讨论函数32x y =的单调性. 解: 函数的定义域为(-∞, +∞). 当时, 函数的导数为332xy ='(x ≠0), 函数在x =0处不可导.当x =0时, 函数的导数不存在.因为x <0时, y '<0, 所以函数在(-∞, 0] 上单调减少; 因为x >0时, y '>0, 所以函数在[0, +∞)上单调增加.如果函数在定义区间上连续, 除去有限个导数不存在的点外导数存在且连续, 那么只要用方程f '(x )=0的根及导数不存在的点来划分函数f (x )的定义区间, 就能保证f '(x )在各个部分区间内保持固定的符号, 因而函数f (x )在每个部分区间上单调. 例4. 确定函数f (x )=2x 3-9x 2+12x -3的单调区间. 解 这个函数的定义域为:(-∞, +∞).函数的导数为:f '(x )=6x 2 -18x +12 = 6(x -1)(x -2). 导数为零的点有两个: x 1 =1、x 2 =2. 列表分析:例5. 讨论函数y =x 3的单调性. 解 函数的定义域为: (-∞, +∞).函数的导数为: y '=3x 2 . 除当x =0时, y '=0外, 在其余各点处均有y '>0. 因此函数y =x 3在区间(-∞, 0]及[0, +∞)内都是单调增加的. 从而在整个定义域: (-∞, +∞)内是单调增加的. 在x =0处曲线有一水平切线.一般地, 如果f '(x )在某区间内的有限个点处为零, 在其余各点处均为正(或负)时, 那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 例6. 证明: 当x >1时, x x 132->.证明: 令)13(2)(x x x f --=, 则)1(111)(22-=-='x x xx x x f .因为当x >1时, f '(x )>0, 因此f (x )在[1, +∞)上f (x )单调增加, 从而当x >1时, f (x )>f (1). 由于f (1)=0, 故f (x )>f (1)=0, 即 0)13(2>--x x ,也就是xx 132->(x >1).二、曲线的凹凸与拐点凹凸性的概念:定义 设f (x )在区间I 上连续, 如果对I 上任意两点x 1, x 2, 恒有2)()()2(2121x f x f x x f +<+, 那么称f (x )在I 上的图形是(向上)凹的(或凹弧); 如果恒有2)()()2(2121x f x f x x f +>+, 那么称f (x )在I 上的图形是(向上)凸的(或凸弧).定义' 设函数y =f (x )在区间I 上连续, 如果函数的曲线位于其上任意一点的切线的上方,则称该曲线在区间I 上是凹的;如果函数的曲线位于其上任意一点的切线的下方,则称该曲线在区间I 上是凸的. 凹凸性的判定:定理 设f (x )在[a , b ]上连续, 在(a , b )内具有一阶和二阶导数, 那么 (1)若在(a , b )内f ''(x )>0, 则f (x )在[a , b ]上的图形是凹的; (2)若在(a , b )内f ''(x )<0, 则f (x )在[a , b ]上的图形是凸的. 简要证明 只证(1). 设21 ,x x x 1, x 2∈[a , b ], 且x 1<x 2, 记2210x x x +=. 由拉格朗日中值公式, 得2)())(()()(21101101x x f x x f x f x f -'=-'=-ξξ, 011x x <<ξ, 2)())(()()(12202202x x f x x f x f x f -'=-'=-ξξ, 220x x <<ξ, 两式相加并应用拉格朗日中值公式得2)]()([)(2)()(1212021x x f f x f x f x f -'-'=-+ξξ 02))((1212>--''=x x f ξξξ, 21ξξξ<<, 即)2(2)()(2121xx f x f x f +>+, 所以f (x )在[a , b ]上的图形是凹的.拐点: 连续曲线y =f (x )上凹弧与凸弧的分界点称为这曲线的拐点. 确定曲线y =f (x )的凹凸区间和拐点的步骤: (1)确定函数y =f (x )的定义域; (2)求出在二阶导数f`'' (x );(3)求使二阶导数为零的点和使二阶导数不存在的点; (4)判断或列表判断, 确定出曲线凹凸区间和拐点; 注: 根据具体情况(1)(3)步有时省略. 例1. 判断曲线y =ln x 的凹凸性.解: x y 1=', 21xy -=''.因为在函数y =ln x 的定义域(0, +∞)内, y ''<0, 所以曲线y =ln x 是凸的.例2. 判断曲线y =x 3的凹凸性. 解: y '=3x 2, y ''=6x . 由y ''=0, 得x =0.因为当x <0时, y ''<0, 所以曲线在(-∞, 0]内为凸的; 因为当x >0时, y ''>0, 所以曲线在[0, +∞)内为凹的. 例3. 求曲线y =2x 3+3x 2-2x +14的拐点. 解: y =6x 2+6x -12, )21(12612+=+=''x x y .令y ''=0, 得21-=x .因为当21-<x 时, y ''<0; 当21->x 时, y ''>0, 所以点(21-, 2120)是曲线的拐点.例4. 求曲线y =3x 4-4x 3+1的拐点及凹、凸的区间.解: (1)函数y =3x 4-4x 3+1的定义域为(-∞, +∞); (2)231212x x y -=',)32(3624362-=-=''x x x x y ;(3)解方程y ''=0, 得01=x , 322=x ;(4)列表判断:在区间(-∞, 0]和[2/3, +∞)上曲线是凹的, 在区间[0, 2/3]上曲线是凸的. 点(0, 1)和(2/3, 11/27)是曲线的拐点.例5 问曲线y =x 4是否有拐点? 解 y '=4x 3, y ''=12x 2.当x ≠0时, y ''>0, 在区间(-∞, +∞)内曲线是凹的, 因此曲线无拐点. 例6. 求曲线3x y =的拐点. 解 (1)函数的定义域为(-∞, +∞); (2) 32 31x y =', 3292x x y -='';(3)无二阶导数为零的点, 二阶导数不存在的点为x =0;(4)判断: 当x <0当, y ''>0; 当x >0时, y ''<0. 因此, 点(0, 0)曲线的拐点.§3. 5 函数的极值与最大值最小值一、函数的极值及其求法 极值的定义:定义 设函数f (x )在区间(a , b )内有定义, x 0∈(a , b ). 如果在x 0的某一去心邻域内有f (x )< f (x 0), 则称f (x 0)是函数 f (x )的一个极大值; 如果在x 0的某一去心邻域内有f (x )>f (x 0), 则称f (x 0)是函数f (x )的一个极小值.设函数f (x )在点x 0的某邻域U (x 0)内有定义, 如果在去心邻域U (x 0)内有f (x )<f (x 0) (或f (x )>f (x 0)),则称f (x 0)是函数 f (x )的一个极大值(或极小值).函数的极大值与极小值统称为函数的极值, 使函数取得极值的点称为极值点.函数的极大值和极小值概念是局部性的. 如果f (x 0)是函数f (x )的一个极大值, 那只是就x 0 附近的一个局部范围来说, f (x 0)是f (x )的一个最大值; 如果就f (x )的整个定义域来说, f (x 0)不一定是最大值. 关于极小值也类似.极值与水平切线的关系: 在函数取得极值处, 曲线上的切线是水平的. 但曲线上有水平切线的地方, 函数不一定取得极值.定理1 (必要条件)设函数f (x )在点x 0 处可导, 且在x 0 处取得极值, 那么这函数在x 0 处的导数为零, 即f '(x 0)=0.证 为确定起见, 假定f (x 0)是极大值(极小值的情形可类似地证明). 根据极大值的定义, 在x 0 的某个去心邻域内, 对于任何点x , f (x ) < f (x 0)均成立. 于是 当x < x 0 时0)()(00>--x x x f x f ,因此 f '(x 0)0)()(lim 000≥--=-→x x x f x f x x ;当x > x 0 时0)()(00<--x x x f x f ,因此 0)()(lim )(0000≤--='+→x x x f x f x f x x ;从而得到 f '(x 0) = 0 .简要证明: 假定f (x 0)是极大值. 根据极大值的定义, 在x 0的某个去心邻域内有f (x )< f (x 0). 于是0)()(lim )()(00000≥--='='-→-x x x f x f x f x f x x ,同时 0)()(lim )()(00000≤--='='+→+x x x f x f x f x f x x ,从而得到f '(x 0) = 0 .驻点: 使导数为零的点(即方程f '(x ) = 0的实根)叫函数f (x )的驻点. 定理1就是说: 可导函数f (x )的极值点必定是函数的驻点. 但的过来, 函数f (x )的驻点却不一定是极值点. 考察函数f (x )=x 3在x =0处的情况.定理2(第一种充分条件)设函数f (x )在点x 0的一个邻域内连续, 在x 0的左右邻域内可导. (1) 如果在x 0的某一左邻域内f '(x )>0, 在x 0的某一右邻域内f '(x )<0, 那么函数f (x )在x 0处取得极大值;(2) 如果在x 0的某一左邻域内f '(x )<0, 在x 0的某一右邻域内f '(x )>0, 那么函数f (x )在x 0处取得极小值;(3)如果在x 0的某一邻域内f '(x )不改变符号, 那么函数f (x )在x 0处没有极值.定理2' (第一种充分条件)设函数f (x )在含x 0的区间(a , b )内连续, 在(a , x 0)及(x 0, b )内可导.(1)如果在(a , x 0)内f '(x )>0, 在(x 0, b )内f '(x )<0, 那么函数f (x )在x 0处取得极大值; (2)如果在(a , x 0)内f '(x )<0, 在(x 0, b )内f '(x )>0, 那么函数f (x )在x 0处取得极小值; (3)如果在(a , x 0)及(x 0, b )内 f '(x )的符号相同, 那么函数f (x )在x 0处没有极值.定理2''(第一充分条件)设函数f (x )在x 0连续, 且在x 0的某去心邻域(x 0-δ, x 0)⋃(x 0, x 0+δ)内可导.(1)如果在(x 0-δ, x 0)内f '(x )>0, 在(x 0, x 0+δ)内f '(x )<0, 那么函数f (x )在x 0处取得极大值; (2)如果在(x 0-δ, x 0)内f '(x )<0, 在(x 0, x 0+δ)内f '(x )>0, 那么函数f (x )在x 0处取得极小值; (3)如果在(x 0-δ, x 0)及(x 0, x 0+δ)内 f '(x )的符号相同, 那么函数f (x )在x 0处没有极值.定理2也可简单地这样说: 当x 在x 0的邻近渐增地经过x 0时, 如果f '(x )的符号由负变正, 那么f (x )在x 0处取得极大值; 如果f '(x )的符号由正变负, 那么f (x )在x 0处取得极小值; 如果f '(x )的符号并不改变, 那么f (x )在x 0处没有极值 (注: 定理的叙述与教材有所不同) . 确定极值点和极值的步骤: (1)求出导数f '(x );(2)求出f (x )的全部驻点和不可导点;(3)列表判断(考察f '(x )的符号在每个驻点和不可导点的左右邻近的情况, 以便确定该点是否是极值点, 如果是极值点, 还要按定理2确定对应的函数值是极大值还是极小值); (4)确定出函数的所有极值点和极值. 例1求函数32)1()4()(+-=x x x f 的极值.解(1)f (x )在(-∞, +∞)内连续, 除x =-1外处处可导, 且313)1(5)(+-='x x x f ;(2)令f '(x )=0, 得驻点x =1; x =-1为f (x )的不可导点;(3)列表判断(4)极大值为f (-1)=0, 极小值为343)1(-=f .定理3 (第二种充分条件) 设函数f (x )在点x 0处具有二阶导数且f '(x 0)=0, f ''(x 0)≠0, 那么(1)当f ''(x 0)<0时, 函数f (x )在x 0处取得极大值; (1)当f ''(x 0)>0时, 函数f (x )在x 0处取得极小值;证明 在情形(1), 由于f ''(x 0)<0, 按二阶导数的定义有0)()(lim )(0000<-'-'=''→x x x f x f x f x x .根据函数极限的局部保号性, 当x 在x 0的足够小的去心邻域内时, 0)()(00<-'-'x x x f x f .但f '(x 0)=0, 所以上式即0)(0<-'x x x f . 从而知道, 对于这去心邻域内的x 来说, f '(x )与x -x 0符号相反. 因此, 当x -x 0<0即x <x 0时, f '(x )>0; 当x -x 0>0即x >x 0时, f '(x )<0. 根据定理2, f (x )在点x 0处取得极大值. 类似地可以证明情形(2).简要证明: 在情形(1), 由于f ''(x 0)<0, f '(x 0)=0, 按二阶导数的定义有0)(lim )()(lim )(000000<-'=-'-'=''→→x x x f x x x f x f x f x x x x .根据函数极限的局部保号性, 在x 0的某一去心邻域内有 0)(0<-'x x x f .从而在该邻域内, 当x <x 0时, f '(x )>0; 当x >x 0时, f '(x )<0. 根据定理2, f (x )在点x 0处取得极大值.定理3 表明, 如果函数f (x )在驻点x 0处的二导数f ''(x 0) ≠0, 那么该点x 0一定是极值点, 并且可以按二阶导数f ''(x 0)的符来判定f (x 0)是极大值还是极小值. 但如果f ''(x 0)=0, 定理3就不能应用.讨论: 函数f (x )=-x 4, g (x )=x 3在点x =0是否有极值?提示: f '(x )=4x 3, f '(0)=0; f ''(x )=12x 2, f ''(0)=0. 但当x <0时f '(x )<0, 当x >0时f '(x )>0, 所以f (0) 为极小值.g '(x )=3x 2, g '(0)=0; g ''(x )=6x , g ''(0)=0. 但g (0)不是极值.例2 求函数f (x )=(x 2-1)3+1的极值. 解 (1)f '(x )=6x (x 2-1)2.(2)令f '(x )=0, 求得驻点x 1=-1, x 2=0, x 3=1. (3)f ''(x )=6(x 2-1)(5x 2-1).(4)因f ''(0)=6>0, 所以f (x )在x =0处取得极小值, 极小值为f (0)=0.(5)因f ''(-1)=f ''(1)=0, 用定理3无法判别. 因为在-1的左右邻域内f '(x )<0, 所以f (x )在-1处没有极值; 同理, f (x )在1处也没有极值.二、最大值最小值问题在工农业生产、工程技术及科学实验中, 常常会遇到这样一类问题: 在一定条件下, 怎样使“产品最多”、“用料最省”、“成本最低”、“效率最高”等问题, 这类问题在数学上有时可归结为求某一函数(通常称为目标函数)的最大值或最小值问题. 极值与最值的关系:设函数f (x )在闭区间[a , b ]上连续, 则函数的最大值和最小值一定存在. 函数的最大值和最小值有可能在区间的端点取得, 如果最大值不在区间的端点取得, 则必在开区间(a , b )内取得, 在这种情况下, 最大值一定是函数的极大值. 因此, 函数在闭区间[a , b ]上的最大值一定是函数的所有极大值和函数在区间端点的函数值中最大者. 同理, 函数在闭区间[a , b ]上的最小值一定是函数的所有极小值和函数在区间端点的函数值中最小者. 最大值和最小值的求法:设f (x )在(a , b )内的驻点和不可导点(它们是可能的极值点)为x 1, x 2, ⋅ ⋅ ⋅ , x n , 则比较 f (a ), f (x 1), ⋅ ⋅ ⋅ , f (x n ), f (b )的大小, 其中最大的便是函数f (x )在[a , b ]上的最大值, 最小的便是函数f (x )在[a , b ]上的最小值.例3求函数f (x )=|x 2-3x +2|在[-3, 4]上的最大值与最小值.解 ⎩⎨⎧∈-+-⋃-∈+-=)2 ,1( 23]4 ,2[]1 ,3[ 23)(22x x x x x x x f , ⎩⎨⎧∈+-⋃-∈-=')2 ,1( 32)4 ,2()1 ,3( 32)(x x x x x f 在(-3, 4)内, f (x )的驻点为23=x ; 不可导点为x =1和x =2.由于f (-3)=20, f (1)=0,41)23(=f , f (2)=0, f (4)=6, 比较可得f (x )在x =-3处取得它在[-3, 4]上的最大值20, 在x =1和x =2处取它在[-3, 4]上的最小值0.例4 工厂铁路线上AB 段的距离为100km . 工厂C 距A 处为20km , AC 垂直于AB . 为了运输需要, 要在AB 线上选定一点D 向工厂修筑一条公路. 已知铁路每公里货运的运费与公路上每公里货运的运费之比3:5. 为了使货物从供应站B 运到工厂C 的运费最省, 问D 点应选在何处?解 设AD =x (km), 则 DB =100-x , 2220x CD +=2400x +=.设从B 点到C 点需要的总运费为y , 那么 y =5k ⋅CD +3k ⋅DB (k 是某个正数), 即 24005x k y +=+3k (100-x ) (0≤x ≤100).现在, 问题就归结为: x 在[0, 100]内取何值时目标函数y 的值最小. 先求y 对x 的导数: )34005(2-+='x x k y . 2400x CD += 解方程y '=0, 得x =15(km).由于y |x =0=400k , y |x =15=380k ,2100511500|+==k y x , 其中以y |x =15=380k 为最小, 因此当AD =x =15km 时, 总运费为最省.例2' 工厂C 与铁路线的垂直距离AC 为20km, A 点到火车站B 的距离为100km. 欲修一条从工厂到铁路的公路CD . 已知铁路与公路每公里运费之比为3:5. 为了使火车站B 与工厂C 间的运费最省, 问D 点应选在何处?解 设AD =x (km), B 与C 间的运费为y , 则y =5k ⋅CD +3k ⋅DB )100(340052x k x k -++=(0≤x ≤100), 其中k 是某一正数. 由)34005(2-+='x x k y =0, 得x =15. 由于y |x =0=400k , y |x =15=380k ,2100511500|+==k y x , 其中以y |x =15=380k 为最小, 因此当AD =x =15km 时, 总运费为最省.注意: f (x )在一个区间(有限或无限, 开或闭)内可导且只有一个驻点x 0 , 并且这个驻点x 0 是函数f (x )的极值点, 那么, 当f (x 0)是极大值时, f (x 0)就是f (x )在该区间上的最大值; 当f (x 0)是极小值时, f (x 0)就是f (x )在该区间上的最小值.A B应当指出, 实际问题中, 往往根据问题的性质就可以断定函数f (x )确有最大值或最小值, 而且一定在定义区间内部取得. 这时如果f (x )在定义区间内部只有一个驻点x 0, 那么不必讨论f (x 0)是否是极值, 就可以断定f (x 0)是最大值或最小值.例6 把一根直径为d 的圆木锯成截面为矩形的梁. 问矩形截面的高h 和宽b 应如何选择才能使梁的抗弯截面模量W (261bh W =)最大?解 b 与h 有下面的关系: h 2=d 2-b 2,因而 )(6122b d b W -=(0<b <d ).这样, W 就是自变量b 的函数, b 的变化范围是(0, 现在, 问题化为: b 等于多少时目标函数W 取最大值?为此, 求W 对b 的导数: )3(6122b d W -='.解方程W '=0得驻点d b 31=.由于梁的最大抗弯截面模量一定存在, 而且在(0, d )内部取得; 现在, 函数)(6122b d b W -=在(0, d )内只有一个驻点, 所以当d b 31=时, W 的值最大. 这时,2222223231d d d b d h =-=-=,即 d h 32=.1:2:3::=b h d .解: 把W 表示成b 的函数: 261bh W =)(6122b d b -=(0<b <d ).由0)3(6122=-='b d W , 得驻点d b 13-=.由于梁的最大抗弯截面模量一定存在, 而且在(0, d ) 内部取得; 现在函数W 在(0, d )内只有一个驻点d b 13-=, 所以当d b 13-=时, 抗弯截面模量W 最大, 这时d h 32=.§3. 8 函数图形的描绘描绘函数图形的一般步骤:(1)确定函数的定义域, 并求函数的一阶和二阶导数;(2)求出一阶、二阶导数为零的点, 求出一阶、二阶导数不存在的点; (3)列表分析, 确定曲线的单调性和凹凸性; (4)确定曲线的渐近性;(5)确定并描出曲线上极值对应的点、拐点、与坐标轴的交点、其它点; (6)联结这些点画出函数的图形.例1. 画出函数y =x 3-x 2-x +1的图形. 解: (1)函数的定义域为(-∞, +∞),(2) f '(x )=3x 2-2x -1=(3x +1)(x -1), f ''(x )=6x -2=2(3x -1). f '(x )=0的根为x = -1/3, 1; f ''(x )=0的根为x = 1/3. (3) (4)当x (5)计算特殊点: f (-1/3)=32/27, f (1/3)=16/27, f (1)=0, f (0)=1; f (-1)=0, f (3/2)=5/8. (6)描点联线画出图形:例2. 作函数22121)(x e x f -=π的图形. 解: (1) 函数为偶函数, 定义域为(-∞, +∞), 图形关于y 轴对称.(2)2212)(x e x x f --='π, 2212)1)(1()(x e x x x f --+=''π.令f '(x )=0, 得x =0; 令f ''(x )=0, 得x =-1和x =1. (3)(4) (5)先作出区间(0, +∞)内的图形, 然后利用对称性作出区间(-∞, 0)内的图形. 例3. 作函数2)3(361++=x x y 的图形.解: (1)函数的定义域为(-∞, -3)⋃(-3, +∞).(2)3)3()3(36)(+-='x x x f , 4)3()6(72)(+-=''x x x f . 令f '(x )=0得x =3, 令f ''(x )=0得x =6.(3)列表分析:(4) x = -3是曲线的铅直渐近线, y= 1是曲线的水平渐近线.(5)计算特殊点的函数值: f (0)=1, f (-1)=-8, f (-9)=-8, f (-15)=-11/4. (6)作图.§3. 9 曲 率 一、弧微分设函数f (x )在区间(a , b )内具有连续导数. 在曲线y =f (x )上取固定点M 0(x 0, y 0)作为度量弧长的基点, 并规定依x 增大的方向作为曲线的正向. 对曲线上任一点M (x , y ), 规定有向弧段⋂M M 0的值s (简称为弧s )如下: s 的绝对值等于这弧段的长度, 当有向弧段⋂M M 0的方向与曲线的正向一致时s >0, 相反时s <0. 显然, 弧s =⋂M M 0是x 的函数: s =s (x ), 而且s (x )是x 的单调增加函数. 下面来求s (x )的导数及微分.设x , ∆x 为(a , b )内两个邻近的点, 它们在曲线y =f (x )上的对应点为M , N , 并设对应于x 的增量∆x , 弧s 的增量为∆s , 于是()2x s ∆∆2⎪⎪⎭⎫ ⎝⎛∆=⋂x MN 2||⎪⎪⎭⎫ ⎝⎛=⋂MN MN 22)(||x MN ∆⋅2||⎪⎪⎭⎫ ⎝⎛=⋂MN MN 222)()()(x y x ∆∆+∆⋅ 2||⎪⎪⎭⎫⎝⎛=⋂MN MN ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆∆+⋅21x y , xs ∆∆⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆∆+⋅⎪⎪⎭⎫⎝⎛±=⋂221||x y MN MN , 因为0lim →∆x ||||MN MN ⋂=M N →lim ||||MN MN ⋂=1, 又0lim →∆x xy ∆∆=y ',因此dxds =±21y '+. 由于s =s (x )是单调增加函数, 从而dx ds >0, dx ds =21y '+. 于是ds =21y '+dx . 这就是弧微分公式.因为当∆x →0时, ∆s ~⋂MN , ∆x 又∆s 与同号, 所以202200)(1l i m ||)()(l i ml i m xyx y x xs dxds x x x ∆∆+=∆∆+∆=∆∆=→∆→∆→∆21y '+=. 因此dx y ds 21'+=, 这就是弧微分公式.二、曲率及其计算公式曲线弯曲程度的直观描述:设曲线C 是光滑的, 在曲线C 上选定一点M 0作为度量弧s 的基点. 设曲线上点M 对应于弧s , 在点M 处切线的倾角为α , 曲线上另外一点N 对应于弧s +∆s , 在点N 处切线的倾角为α+∆α .我们用比值||||s ∆∆α, 即单位弧段上切线转过的角度的大小来表达弧段⋂MN 的平均弯曲程度.记sK ∆∆=α, 称K 为弧段MN 的平均曲率.记s K s ∆∆=→∆α0lim , 称K 为曲线C 在点M 处的曲率.在0lim →∆s s ∆∆α=ds d α存在的条件下, dsd K α=.曲率的计算公式:设曲线的直角坐标方程是y =f (x ), 且f (x )具有二阶导数(这时f '(x )连续, 从而曲线是光滑的). 因为tan α=y ' , 所以 sec 2α d α=y ''dx ,dx y y dx y dx y d 2221tan 1sec '+''=+''=''=ααα.又知ds =21y '+dx , 从而得曲率的计算公式232)1(||y y ds d K '+''==α.例1. 计算直线y =a x +b 上任一点的曲率. 例2. 计算半径为R 的圆上任一点的曲率. 讨论:1. 计算直线y =a x +b 上任一点的曲率.提示: 设直线方程为y =ax +b , 则y '=a , y ''= 0. 于是K =0.2. 若曲线的参数方程为x =ϕ(t ), y =ψ(t )给, 那么曲率如何计算?提示: 2/322)]()([|)()()()(|t t t t t t K ψϕψϕψϕ'+''''-'''=. 3. 计算半径为R 的圆上任一点的曲率.提示: 圆的参数方程为x =R cos t , y =R sin t .例1. 计算等双曲线x y =1在点(1, 1)处的曲率.解: 由xy 1=, 得 21x y -=', 32xy =''. 因此 y '|x =1=-1, y ''|x =1=2.曲线xy =1在点(1, 1)处的曲率为 232)1(||y y K '+''=232))1(1(2-+=2221==. 例4 抛物线y =a x 2+b x +c 上哪一点处的曲率最大?解: 由y =a x 2+b x +c , 得y '=2a x +b , y ''=2a ,代入曲率公式, 得 232])2(1[|2|b ax a K ++=. 显然, 当2ax +b =0时曲率最大.曲率最大时, x =-ab 2, 对应的点为抛物线的顶点. 因此, 抛物线在顶点处的曲率最大, 最大曲率为K =|2a | .三、曲率圆与曲率半径设曲线在点M (x , y )处的曲率为K (K ≠0) . 在点M 处的曲线的法线上, 在凹的一侧取一点D , 使|DM | =K -1=ρ. 以D 为圆心, ρ为半径作圆, 这个圆叫做曲线在点M 处的曲率圆, 曲率圆的圆心D 叫做曲线在点M 处的曲率中心, 曲率圆的半径 ρ 叫做曲线在点M 处的曲率半径. 设曲线在点M 处的曲率为K (K ≠0), 在曲线凹的一侧作一个与曲线相切于M 且半径为ρ=K -1的圆, 则这个圆叫做曲线在点M 处的曲率圆, 其圆心叫做曲率中心, 其半径ρ 叫做曲率半径.曲线在点M 处的曲率K (K ≠0)与曲线在点M 处的曲率半径 ρ 有如下关系:ρ =K 1, K =ρ1. 例3 设工件表面的截线为抛物线y =0.4x2. 现在要用砂轮磨削其内表面. 问用直径多大的砂轮才比较合适?解 砂轮的半径不应大于抛物线顶点处的曲率半径.y '=0.8x , y ''=0.8,y '|x =0=0, y ''|x =0=0.8.把它们代入曲率公式, 得232)1(||y y K '+''==0.8. 抛物线顶点处的曲率半径为K -1= 1.25.所以选用砂轮的半径不得超过1.25单位长, 即直径不得超过2.50单位长.。