高一数学三角函数练习题
高一数学三角函数测试题(完整版)
高一数学三角函数测试题命题人:谢远净一、选择题(每小题5分,共50分.在每小题给出的四个选项中,仅有一个选项是正确的) 1.角α的终边上有一点P (a ,a ),a ∈R 且a ≠0,则sinα值为 ( )A .22-B .22 C .1 D .22或22-2.函数x sin y 2=是( )A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数 3.若f (cos x )=cos3x ,则f (sin30°) 的值( )A .1B .-1C .0D .214.“y x ≠”是“y x sin sin ≠”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设M 和m 分别表示函数1cos 31-=x y 的最大值和最小值,则M+m 等于 ( )A .32B .32-C .34-D .-2 6.αααα2cos cos 2cos 12sin 22⋅+=( )A .tan αB .tan 2αC .1D .127.sinαcosα=81,且4π<α<2π,则cosα-sinα的值为 ( )A .23 B .23- C .43 D .43-8.函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为()A .)48sin(4π+π-=x yB .)48sin(4π-π=x yC .)48sin(4π-π-=x yD .)48sin(4π+π=x y9.若tan(α+β)=3, tan(α-β)=5, 则tan2α= ( )A .74 B .-74 C .21 D .-2110.把函数)20(cos 2π≤≤=x x y 的图象和直线2=y 围成一个封闭的图形,则这个封闭图形的面积为 ( )A .4B .8C .2πD .4π11.9.设)4tan(,41)4tan(,52)tan(παπββα+=-=+则的值是 ( )A .1813B .2213 C .223 D .6112.已知α+ β =3π, 则cos αcos β –3sin αcos β –3cos αsin β – sin αsin β 的值为 ( )A .–22B .–1C .1D .–2二、填空题(每小题4分,共16分。
高一数学三角函数试题答案及解析
高一数学三角函数试题答案及解析1.已知角为第二象限角,则点位于哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为角为第二象限角,所以,,即点位于第四象限,故选D.2.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A. B. C. D. A=B=C【答案】B【解析】锐角必小于 ,故选B.3.已知角的终边过点,且,则的值为A.B.C.D.【答案】C【解析】因为,所以角的终边在第二,三象限,,从而,即,解得,故选C。
4.若,,则角的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】本题考查三角函数的性质。
由知角可能在第一、四象限;由知角可能在第三、四象限;综上得角的终边在箱四象限故正确答案为5.已知函数相邻两对称轴间的距离为,若将的图像先向左平移个单位,再向下平移1个单位,所得的函数为奇函数.(1)求的解析式,并求的对称中心;(2)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.【答案】(1),对称中心为:,(2)或.【解析】(1)相邻两对称轴间的距离为半周期,由,可得,按三角函数的平移变换,得表达式,函数为奇函数,得值,且过点得值,求出表达式后由性质可得对称中心;(2)由得的范围,将利用换元法换元,将问题转化为一个一元二次方程根的分布问题,利用判别式得不等式解得取值范围.试题解析:(1)由条件得:,即,则,又为奇函数,令,,,,由,得对称中心为:(2),又有(1)知:,则,的函数值从0递增到1,又从1递减回0.令则由原命题得:在上仅有一个实根.令,则需或,解得:或.【考点】1. 性质;2.一元二次方程;3.换元法.6.设函数的最小正周期为,且,则()A.在单调递减B.在单调递减C.在单调递增D.在单调递增【答案】A【解析】由得,,又,则,即.当时,,递减,故选A.【考点】函数的解析式,函数的奇偶性,单调性.7.若,且,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】C【解析】根据且,可得角为第三象限角,故选择C.【考点】三角函数定义.8.已知函数 .(1)求函数的单调递减区间;(2)求函数在区间上的最大值及最小值.【答案】(Ⅰ),;(Ⅱ)取得最大值,取得最小值.【解析】(Ⅰ)先根据两角和余弦公式、二倍角公式、配角公式将函数化为基本三角函数:,再根据正弦函数性质求单调区间:由解得,最后写出区间形式(Ⅱ)先根据自变量范围确定基本三角函数定义区间:,再根据正弦函数在此区间图像确定最值:当时,取得最小值;当时,取得最大值1.试题解析:(Ⅰ). ……………………………………3分由,,得,.即的单调递减区间为,.……………………6分(Ⅱ)由得,………………………………8分所以. …………………………………………10分所以当时,取得最小值;当时,取得最大值1. ………………………………13分【考点】三角函数性质【思路点睛】应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”。
高一数学三角函数试题
高一数学三角函数试题1.已知向量.(1)若,且,求角的值;(2)若,且,求的值.【答案】(1);(2)【解析】(1)根据向量垂直其数量积为0,可得到的关系式,从而得出的值,再根据角的范围得角的大小。
(2)根据数量积公式可得的关系式,用两角和差公式的逆用即化一公式将其化简为再根据角的范围找整体角的范围,从而可计算出的值。
用凑角的方法将写成的形式,用正弦的两角和公式展开计算即可。
(1)∵ , ∴ , 即 3分∴,又∴∴. 6分(2) 8分∴,又∵ , ∴, ∴ 10分∴. 12分【考点】1数量积公式;2两角和差公式。
2.如图,在中,已知,是上一点,,则【答案】【解析】由余弦定理得:,在三角形中,再由正弦定理得:【考点】正余弦定理综合3.已知,函数.(1)设,将函数表示为关于的函数,求的解析式和定义域;(2)对任意,不等式都成立,求实数的取值范围.【答案】(1),定义域为;(2)实数的取值范围是.【解析】(1)由恒等变换公式可求得,并可以表示出定义域;(2)由求出的取值范围,化简成形式,用函数单调性即可求出实数的取值范围.试题解析:(1)∴2分由可得4分∴6分定义域为 8分(2)∵∴10分∵恒成立∴恒成立化简得又∵∴ 12分令得∴在上为减函数14分∴∴ 16分【考点】恒等变换公式、恒成立问题.4.已知函数(1)用五点法画出它在一个周期内的闭区间上的图象;(2)求函数的单调增区间;(3)若,求的最大值和最小值.【答案】(1)(2)(3),【解析】(1)列表、作图 .4分6303(2)由得所以所以函数的单调增区间为 8分(3)因为所以,所以,所以当即时,当即时, -12分【考点】三角函数的性质点评:主要是考查了三角函数的图象与性质的求解运用,属于基础题。
5.已知函数(1)写出函数的单调递减区间;(2)设,的最小值是,最大值是,求实数的值.【答案】(1)(2)【解析】(1)为所求(2)【考点】三角函数的性质点评:主要是考查了三角函数的性质的运用,属于基础题。
高一数学三角函数试题
高一数学三角函数试题1.不等式sin()>0成立的x的取值范围为( )A.B.C.D.【答案】D【解析】,即,可得,故选D.【考点】解三角不等式2.已知函数(Ⅰ)若求函数的值;(Ⅱ)求函数的值域。
【答案】(1)(2)[ 1 , 2 ]【解析】解:(Ⅰ) 2分6分(Ⅱ) 8分函数的值域为[ 1 , 2 ] 12分【考点】三角函数的性质点评:主要是考查了三角函数的化简和性质的运用,属于基础题。
3.若cosθ>0且tanθ<0,则θ所在的象限为 .【答案】四【解析】若cosθ>0,则为第一或四象限角;若tanθ<0,则θ为第二或四象限角,所以θ所在的象限为四。
【考点】象限角点评:当θ为第一、二象限角时,,当θ为第三、四象限角时,;当θ为第一、四象限角时,,当θ为第二、三象限角时,;当θ为第一、三象限角时,,当θ为第二、四象限角时,。
4.如果角θ的终边经过点那么tanθ的值是()A.B.C.D.【答案】D【解析】直接根据三角函数的定义,求出tanθ的值.根据角的终边经过点,那么可知=,选D.【考点】正切函数的定义点评:本题是基础题,考查正切函数的定义,是送分题5.设函数图像的一条对称轴是直线.(1)求;(2)画出函数在区间上的图像(在答题纸上完成列表并作图).【答案】(1)(2)如图。
【解析】解:(1)的图像的对称轴,(2) 由故函数【考点】正弦函数的图像和性质点评:画三角函数的图像时,常用到五点法。
6.已知tanα=2,则3sin2α+5sinαcosα-2cos2α=.【答案】4【解析】∵tanα=2,∴3sin2α+5sinαcosα-2cos2α=【考点】本题考查了三角公式的化简点评:此类问题应首先将所给式子变形,即将其转化成所求函数式能使用的条件,或者将所求函数式经过变形后再用条件7.(本小题满分12分)已知函数(1)写出函数的最小正周期和对称轴;(2)设,的最小值是,最大值是,求实数的值.【答案】(1)最小正周期,对称轴,;(2)。
高一数学第1章三角函数综合训练卷
三角函数综合训练卷(120分钟:满分150分)一、选择题(每题5分:共60分)1.函数y=sin (2-πx )的最小正周期为( ) A .1 B .2 C .π D .2π 2.函数)32sin(4π+=x y 的图象( )A .关于原点对称B .)0,6(π-为其对称中心C .关于y 轴对称D .关于直线6π=x 对称3.函数)32tan(π-=x y 在一个周期内的图象是( )4.已知函数f (x )满足f (x+π)=f (-x ):f (-x )=f (x ):则f (x )可以是( ) A .sin2x B .cosx C .sin|x| D .|sinx|5.A 为△ABC 的一个内角:sinA+cosA 的取值范围是( ) A .]2,1(- B .)2,2( C .)2,2(-D .]2,2[-6.若x x 22cos sin <:则x 的取值范围是( )A .},42432|{Z k k x k x ∈+<<-ππππ B .},45242|{Z k k x k x ∈+<<-ππππC .},44|{Z k k x k x ∈+<<-ππππD .},43242|{Z k k x k x ∈+<<-ππππ 7.函数f (x )=2sin ωx (ω>0)在]4,3[ππ-上为增函数:那么( ) A .230≤<ω B .0<ω≤2 C .7240≤<ω D .ω≥28.函数y=sin2x+acos2x 的图象关于直线8π-=x 对称:那么实数a 的值为( )A .2B .2-C .1D .-19.已知x :y ∈R :1422=+y x :则x+2y 的最大值为( ) A .5 B .4 C .17D .610.已知21sin ≥x :tgx ≤-1:函数xy cos 11-=取得最小值时的最小正数x 等于( ) A .43π B .2πC .4πD .6π11.方程lgx=sinx 的实根个数为( )A .1个B .2个C .3个D .4个 12.函数f (x )=Msin (ωx+ϕ)(ω>0)在区间[a :b]上为增函数:f (a )=-M :f (b )=M :则函数g (x )=Mcos (ωx+ϕ)在[a :b]上( )A .为增函数B .可以取得最小值-MC .为减函数D .可以取得最大值M二、填空题(每题4分:共16分) 13.函数)3sin(3π+=ax y 的最小正周期为1:则实数a 的值为____________。
高一数学-知识点-三角函数及恒等公式-经典题-常考题-50道-含答案及解析
高一数学三角函数及恒等公式经典题常考题50道一、单选题1.函数y=cosx|tanx|(0≤x<且x≠)的图象是下图中的()A. B.C. D.【答案】C【考点】同角三角函数基本关系的运用,正弦函数的图象【解析】【解答】解:当0 时,y=cosxtanx≥0,排除B,D.当时,y=﹣cosxtanx<0,排除A.故选:C.【分析】根据x的范围判断函数的值域,使用排除法得出答案.==========================================================================2.若α,β都是锐角,且,则cosβ=()A. B. C. 或 D. 或【答案】A【考点】两角和与差的余弦函数【解析】【解答】解:∵α,β都是锐角,且,∴cosα==,cos(α﹣β)= = ,则cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)= += ,故选:A.【分析】由条件利用同角三角函数的基本关系,两角差的三角公式,求得cosβ=cos[α﹣(α﹣β)]的值.==========================================================================3.设为锐角,若cos = ,则sin 的值为()A. B. C. D.【答案】B【考点】二倍角的正弦【解析】【解答】∵为锐角,cos = ,∴∈,∴= = .则sin =2 . 故答案为:B【分析】根据题意利用同角三角函数的关系式求出正弦的值,再由二倍角的正弦公式代入数值求出结果即可。
==========================================================================4.sin15°sin105°的值是()A. B. C. D.【答案】A【考点】运用诱导公式化简求值【解析】【解答】sin15°sin105°=sin15°cos15°= sin30°= ,故答案为:A.【分析】利用诱导公式转化已知的三角函数关系式求出结果即可。
高中数学必修一第五章三角函数单元测试(1)(含答案解析)
⾼中数学必修⼀第五章三⾓函数单元测试(1)(含答案解析)⾼中数学必修⼀第五章三⾓函数单元测试 (1)⼀、选择题(本⼤题共9⼩题,共45.0分)1.以罗尔中值定理、拉格朗⽇中值定理、柯西中值定理为主体的“中值定理”反映了函数与导数之间的重要联系,是微积分学重要的理论基础,其中拉格朗⽇中值定理是“中值定理”的核⼼内容,其定理陈述如下:如果函数y=f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在区间(a,b)内⾄少存在⼀个点x0∈(a,b),使得f(b)?f(a)=f?(x0)(b?a),x=x0称为函数y= f(x)在闭区间[a,b]上的中值点,则函数f(x)=sinx+√3cosx在区间[0,π]上的“中值点”的个数为参考数据:√2≈1.41,√3≈1.73,π≈3.14.A. 1B. 2C. 3D. 42.若α∈(π2,π),cos?2α=?13,则tan?α=()A. ?√33B. ?√3 C. ?√2 D. ?√223.cos20o cos40°?sin20°sin40°=()A. 1B. 12C. ?12D. √324.为了得到函数f(x)=sin(2x+3π4)的图象,可以将函数g(x)=cos2x的图象()A. 向右平移π4个单位 B. 向左平移π4个单位5.在△ABC中,⾓A,B,C的对边分别为a,b,c,若2c?ba =cosBcosA,a=2√3,则△ABC⾯积的最⼤值为()A. √3B. 2√3C. 3√3D. 4√36.已知sinα?cosα=13,则cos2(π4α)=()A. 1718B. 19C. √29D. 1187.若将函数f(x)=sin(2x+φ)+√3cos(2x+φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点(π2,0)对称,则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值()A. ?12B. ?√3228.若函数f(cos x)=cos2x+1,则f(cos30°)的值为()A. 12B. 32C. 72D. 49.3?sin110°8?4cos210°=()A. 2B. √22C. 12D. √32⼆、填空题(本⼤题共5⼩题,共25.0分)10.已知cos?(α+π4)=13,α∈(0,π4),则cos2α=________.11.已知△ABC的内⾓A,B,C所对的边分别为a,b,c,B=π4,tan(π4A)=12,且△ABC的⾯积为25,则a+b=_________.12.函数y=√3sin2x?cos2x的图象向右平移φ(0<φ<π)个长度单位后,得到函数g(x)的图象,若函数g(x)为偶函数,则φ的值为___________.13.在ΔABC中,cosB+√3sinB=2,且cosBb +cosCc=2√3sinA3sinC,则a+c的取值范围是________.14.已知函数f(x)=sinxcos(x+π3)+√34,x∈[?π3,π6],则函数的单调减区间为___________,函数的值域为____________.三、解答题(本⼤题共6⼩题,共72.0分)15.如图,在四边形ABCD中,已知∠DAB=π3,AD︰AB=2︰3,BD=√7,AB⊥BC.(1)求sin∠ABD的值;(2)若∠BCD=2π3,求CD的长.16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的最⼩值为?3,若f(x)图象相邻的最⾼点与最低点的横坐标之差为2π,且f(x)的图象经过点(0,32).(2)若⽅程f(x)?k=0在x∈[0,11π3]上有两个零点x1,x2,求k的取值范围,并求出x1+x2的值.17.在△ABC中,⾓A,B,C的对边分别为a,b,c.已知向量m =(b,a?2c),n?=(cosA?2cosC,cosB),且n?⊥m .(1)求sinCsinA的值;(2)若a=2,|m |=3√5,求△ABC的⾯积S.18.化简,求值:(1)已知tanα=34,求tan(α+π4)的值;(2)sin20°sin40°?cos20°cos40°.19.在△ABC中,内⾓A,B,C对边的边长分别是a、b、c,△ABC的⾯积为S⑴若c=2,C=π3,S=√3,求a+b;)=a,求⾓A;⑴若√3(bsinC?ccosBtanC20.如图,某住宅⼩区的平⾯图呈圆⼼⾓为120°的扇形AOB,⼩区的两个出⼊⼝设置在点A及点C处,且⼩区⾥有⼀条平⾏于BO的⼩路CD.(1)已知某⼈从C沿CD⾛到D⽤了10分钟,从D沿DA⾛到A⽤了6分钟,若此⼈步⾏的速度为每分钟50⽶,求该扇形的半径OA的长(精确到1⽶);(2)若该扇形的半径为OA=a,已知某⽼⼈散步,从C沿CD⾛到D,再从D沿DO⾛到O,试确定C的位置,使⽼⼈散步路线最长.-------- 答案与解析 --------本题考查导数运算、余弦函数性质,属于中档题.求出f(x)的导数,利⽤f′(x0)=f(b)?f(a)b?a,可得结合余弦函数性质易知⽅程在区间(0,π)内有2解,【解答】解:由知由拉格朗⽇中值定理:令f′(x0)=f(b)?f(a)b?a,即,由?√3π∈(?1,?12),结合余弦函数性质易知⽅程在区间(0,π)内有2解,故在区间[0,π]上的“中值点”有2个,故选B.2.答案:C解析:【分析】本题考查三⾓函数的化简求值,考查同⾓三⾓函数基本关系式和⼆倍⾓公式,是基础题.由已知可得tanα<0,再由⼆倍⾓公式和同⾓三⾓函数基本关系可得tanα的⽅程,解之可得答案.【解答】解:∵α∈(π2,π),且cos2α=?13,∴tanα<0,且cos2α=cos2α?sin2α=cos2α?sin2αcos2α+sin2α=1?tan2α1+tan2α=?13,解得tanα=?√2.故选C.3.答案:B本题考查两⾓和与差的三⾓函数公式,属于基础题.由题直接计算求解即可得到答案.【解答】解:cos20o cos40°?sin20°sin40°=cos(20°+40°) =cos60°=12.故选B . 4.答案:D解析:【分析】本题考查三⾓函数的图象变换规律,是基础题.根据题意,进⾏求解即可.【解答】解:,,⼜,∴只需将函数g(x)=cos2x 的图象向左平移π8个单位即可得到函数f(x)=sin?(2x +3π4)的图象.故选D . 5.答案:C解析:【分析】本题考查正余弦定理、三⾓形⾯积公式,两⾓和的正弦公式和基本不等式,属于中档题.先由正弦定理和两⾓和的正弦公式得出cosA =12,再由余弦定理和基本不等式解得bc ≤12,最后由三⾓形⾯积公式求得△ABC ⾯积的最⼤值.【解答】解:由已知可得(2c ?b)cosA =acosB ,由正弦定理可得(2sinC ?sinB)cosA =sinAcosB ,所以2sinCcosA =sinBcosA +sinAcosB =sin(A +B)=sinC ,由sinC ≠0可得cosA =12,则,由余弦定理可得12=b 2+c 2?2bc ×12=b 2+c 2?bc ,由基本不等式可得12=b 2+c 2?bc ≥2bc ?bc =bc ,解得bc ≤12,当且仅当b =c =2√3时,取等号,故△ABC ⾯积S =12bcsinA =√34bc ≤√34×12=3√3.故选C .6.答案:A解析:【分析】本题主要考查⼆倍⾓公式、诱导公式以及同⾓三⾓函数基本关系的应⽤,属于基础题.由条件利⽤⼆倍⾓公式可得sin2α=81+cos(π22α)2=12+sin2α2,计算求得结果.【解答】解:∵sinα?cosα=13,∴1?2sinαcosα=1?sin2α=19,∴sin2α=89,则cos2(π4?α)=1+cos(π22α)2=12+sin2α2=1718,故选A.7.答案:D解析:【分析】本题主要考查函数y=Asin(ωx+φ)的图像变换规律、诱导公式和三⾓函数的性质.3]=2cos(2x+φ+π3),再根据图像关于点(π2,0)对称,得到φ=π6,得到g(x)=cos(x+π6),进⽽求出g(x)的最⼩值.【解答】解:∵f(x)=sin?(2x+φ)+√3cos?(2x+φ)=2sin?(2x+φ+π3),∴将函数f(x)的图像向左平移π4个单位长度后,得到图像的函数解析式为y=2sin?[2(x+π4)+φ+π3]=2cos?(2x+φ+π3).∵函数y=2cos(2x+φ+π3)的图像关于点(π2,0)对称,∴2cos(2×π2+φ+π3)=0,所以π+φ+π3=kπ+π2解得φ=kπ?5π6,k∈Z.∵0<φ<π,∴φ=π6,∴g(x)=cos(x+π6).∵x∈[?π2,π6],∴x+π6∈[?π3,π3],∴cos(x+π6)∈[12,1],则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值是12.故选D.8.答案:B解析:【分析】本题主要考查⼆倍⾓公式的应⽤,属于基础题.利⽤⼆倍⾓公式,然后求出函数值即可.【解答】解:∵f(cos x)=cos 2x +1=2cos 2x ,∴f(cos?30°)=2cos 230°32)2=32.故选B . 9.答案:C解析:【分析】本题考查三⾓函数的化简求值问题,属于基础题.根据诱导公式与⼆倍⾓的余弦公式即可求出结果.【解答】解:原式=3?sin110°8?4cos 210°=3?cos20°8?2(1+cos20°)=3?cos20°6?2cos20°=12.故选C .10.答案:4√29解析:解:因为cos(α+π4)=13,α∈(0,π4),所以sin(α+π4)=2√23,所以cos2α=cos[2(α+π4)?π2]=sin2(α+π4) =2sin(α+π4)cos(α+π4)=2×2√23×13=4√29.答案:4√29由诱导公式可知cos2α=cos[2(α+π4)?π2]=sin2(α+π4),然后结合⼆倍⾓的正弦公式展开可求.本题主要考查函数值的计算,利⽤三⾓函数的倍⾓公式是解决本题的关键. 11.答案:5+5√5解析:【分析】本题考查两⾓和与差的三⾓公式的应⽤,考查正弦定理及三⾓形⾯积公式的应⽤,属中档题.依题意,根据两⾓和与差的三⾓公式求得tanA =13,进⽽得sin?A ,cos?A .⼜B =π4,求得sinC ,再结合三⾓形⾯积及正弦定理求解即可.【解答】解:因为tan?(π4?A)=12,所以1?tan?A1+tan?A =12,则tan?A =13,因此sinA =√1010,cosA =3√1010.所以sinC =sin (A +B )=sinAcosB +cosAsinB =√1010×√22+3√1010×√22=2√55,根据△ABC 的⾯积为25,得12absinC =12ab ×2√55=25,得ab =25√5,⼜由正弦定理得a sinA =bsinB ,得b =√5a ,联⽴{ab =25√5b =√5ab =5√5,所以a +b =5+5√5.故答案为5+5√5.12.答案:π6解析:【分析】先将y =√3sin2x ?cos2x 化为y =2sin(2x ?π6),然后再利⽤图象平移知识,求出g(x),根据g(x)是偶函数,则g(0)取得最值,求出φ.本题考查三⾓函数图象变换的⽅法以及性质,将奇偶性、对称性与函数的最值联系起来,是此类问题的常规思路,属于中档题.【解答】解:由已知得y =√3sin2x ?cos2x =2(sin2x ?√32cos2x 12)=2sin(2x π6).所以g(x)=2sin[2(x ?φ)?π6],由g(x)是偶函数得g(0)=2sin(?2φ?π6)=±2,∴?2φ?π6=π2+kπ,k ∈Z ,∴φ=?π3kπ2,k ∈Z ,当k =?1时,φ=π6即为所求.故答案为:π6.13.答案:(√32,√3]解析:【分析】本题考查正、余弦定理,三⾓函数恒等变换的应⽤,正弦函数的性质,考查了计算能⼒和转化思想,属于中档题.由题意可得⾓B和边b,然后利⽤正弦定理,三⾓函数恒等变换的应⽤可求a+c=√3sin(A+π6),66<5π6,利⽤正弦函数的性质可求其取值范围.【解答】解:∵在ΔABC中,cosB+√3sinB=2,∴2(12cos?B+√32sin?B)=2,即2sin(B+π6)=2,所以B+π6=π2,B=π3,⼜cosBb +cosCc=2√3sinA3sinC=2√3a3c,所以ccosB+bcosC=2√33ab,故c?a2+c2?b22ac +b?a2+b2?c22ab=2√3即a=2√33ab,解得b=√32,∴由正弦定理可得bsinB =√32√32=1=asinA=csinC,故a=sinA,c=sinC,所以a+c=sinA+sinC=sinA+sin(2π3A)=sinA+√32cosA+12sinA=32sinA+√32cosA=√3sin(A+π63,π66<5π6,所以sin(A+π6)∈(12,1]∴a+c=√3sin(A+π6)∈(√32,√3].故答案为(√32,√3].14.答案:;[?√34,12]解析:【分析】本题主要考查了两⾓和与差的三⾓函数公式、⼆倍⾓公式、函数的单调区间以及函数的值域,属于基础题.由题意化简可得,且,,由此即可得到函数的单调减区间以及值域.【解答】解:=sinx (12cosx ?√32sinx)+√34=14sin2x ?√32sin 2x +√34 =14sin2x +√34cos2x ,令,解得,,令k =0,可得,即函数的单调减区间为,此时,,即函数的值域为[?√34,12],故答案为;[?√34,12].15.答案:解:(1)由题意可设AD =2k ,AB =3k(k >0).∵BD =√7,∠DAB =π3,∴由余弦定理,得(√7)2=(3k)2+(2k)2?2×3k ×2kcos π3,解得k =1,∴AD =2,AB =3..(2)∵AB ⊥BC ,,,,∴CD =√7×2√77√32=4√33.解析:本题主要考查了余弦定理,⽐例的性质,正弦定理,同⾓三⾓函数之间的关系以及特殊⾓的三⾓函数值在解三⾓形中的综合应⽤,考查了计算能⼒和转化思想,属于中档题.(1)在△ABC 中,由已知及余弦定理,⽐例的性质即可解得AD =2,AB =3,由正弦定理即可解得sin∠ABD 的值;(2)由(1)可求cos∠DBC ,利⽤同⾓三⾓函数关系式可求sin∠DBC 的值,利⽤正弦定理即可计算得解.16.答案:解:(1)由题意得:A =3,T2=2π,则T =4π,即ω=2πT=12,所以f(x)=3sin(12x +φ),⼜f(x)的图象经过点(0,32),则32=3sinφ,由|φ|<π2得φ=π6,所以f(x)=3sin(12x +π6); (2)由题意得,f(x)?k =0在x ∈[0,11π3]有且仅有两个解x 1,x 2,即函数y =f(x)与y =k 在x ∈[0,11π3]且仅有两个交点,由x ∈[0,11π3]得,12x +π6∈[π6,2π],则f(x)=3sin(12x +π6)∈[?3,3],设t =12x +π6,则函数为y =3sint ,且t ∈[π6,2π],画出函数y =3sint 在t ∈[π6,2π]上的图象,如图所⽰:由图可知,k 的取值范围为:k ∈(?3,0]∪[3 2,3),当k ∈(?3,0]时,由图可知t 1,t 2关于t =3π2对称,即x =83π对称,所以x 1+x 2=16π3当k ∈[32,3)时,由图可知t 1,t 2关于t =π2对称,即x =23π对称,所以x 1+x 2=4π3,综上可得,x 1+x 2的值是16π3或4π3.解析:(1)由题意求出A 和周期T ,由周期公式求出ω的值,将点(0,32)代⼊化简后,由φ的范围和特殊⾓的三⾓函数值求出φ的值,可得函数f(x)的解析式;(2)将⽅程的根转化为函数图象交点问题,由x 的范围求出12x +π6的范围,由正弦函数的性质求出f(x)的值域,设设t =12x +π6,函数画出y =3sint ,由正弦函数的图象画出y =3sint 的图象,由图象和条件求出k 的范围,由图和正弦函数的对称性分别求出x 1+x 2的值.本题考查了形如f(x)=Asin(ωx +φ)的解析式的确定,正弦函数的性质与图象,以及⽅程根转化为函数图象的交点问题,考查分类讨论思想,数形结合思想,以及化简、变形能⼒.17.答案:解:(1)由m⊥n ? ,可得b(cosA ?2cosC)+(a ?2c)cosB =0,根据正弦定理可得,sinBcosA ?2sinBcosC +sinAcosB ?2sinCcosB =0∴(sinBcosA +sinAcosB)?2(sinBcosC +sinCcosB)=0∴sin(A +B)?2sin(B +C)=0,∵A +B +C =π,∴sinC ?2sinA =0,所以(2)由(1)得:c =2a ,因为a =2,|m |=3√5,所以c =4,b =3,所以cosA =32+42?222×3×4=78,因为A ∈(0,π),所以sinA =√1?(78)2=√158,所以△ABC 的⾯积为=12bcsinA =12×3×4×√158=3√154解析:本题考查平⾯向量的数量积、垂直的应⽤、考查两⾓和与差的三⾓函数、正弦定理、余弦定理以及三⾓形⾯积公式的运⽤,考查计算能⼒和转化能⼒,属于中档题.(1)由⊥m n?,可得b(cosA?2cosC)+(a?2c)cosB=0,根据正弦定理可得,sinBcosA?2sinBcosC+sinAcosB?2sinCcosB=0,化简即可;(2)由(1)c=2a可求c,由|m |=3√5可求b,结合余弦定理可求cos A,利⽤同⾓平⽅关系可求sin A,代⼊三⾓形的⾯积公式S=12bcsinA可求.18.答案:解:(1)∵tan?α=34,∴tan?(α+π4)=tanα+tanπ41?tanα·tanπ4=34+11?34×1=7.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°)=?cos(?20°+?40°)=?cos60°=?12.解析:本题主要考查了两⾓和差公式,三⾓函数的化简与求值,属于较易题.(1)利⽤两⾓和的正切公式直接代值求解.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°),利⽤两⾓和的余弦公式求解.19.答案:解:,∴ab=4 ①,⼜c2=a2+b2?2abcosC,c=2,∴a2+b2?2ab=4 ②,由①②得a+b=4;(2)∵√3(bsinC?ccosBtanC)=a,∴∵√3(sinBsinC?sinCcosBcosCsinC)=sinA,∴?√3cos(B+C)=sinA,∴tanA=√3,⼜,.解析:本题考查解三⾓形和三⾓恒等变换,考查推理能⼒和计算能⼒,属于⼀般题.(1)利⽤三⾓形的⾯积公式和余弦定理即可求解;(2)由正弦定理和三⾓恒等变换公式得tanA=√3,结合范围即可求出A.20.答案:解:(1)设该扇形的半径为r⽶,连接CO.由题意,得CD=500(⽶),DA=300(⽶),∠CDO=60°,在△CDO中,CD2?+OD2?2CD?OD?cos60°=OC2,即,5002+(r?300)2??2×500×(r?300)×1 2=r?2,解得r=490011≈445(⽶).(2)连接OC,设∠DOC=θ,θ∈(0,2π3),在△DOC中,由正弦定理得:CDsinθ=DOsin(2π3θ)=OCsinπ3=√3,于是CD=3,DO=3sin(2π3θ),则DC+DO=√3+sin(2π3θ)]=2asin(θ+π6),θ∈(0,2π3),所以当θ=π3时,DC+DO最⼤为 2a,此时C在弧AB的中点处.解析:本题主要考查解三⾓形在实际问题中的运⽤,属于中档题.(1)连接OC,由CD//OB知∠CDO=60°,可由余弦定理得到OC的长度.(2)连接OC,设∠DOC=θ,θ∈(0,2π3),由正弦定理,三⾓恒等变换可求DC+DO=2asin(θ+π6),θ∈(0,2π3),利⽤正弦函数的性质可求最⼤值,即可得解.。
高一数学三角函数试题
高一数学三角函数试题1.已知且则________.【答案】【解析】,因为所以,即。
所以。
【考点】同角三角函数基本关系式。
2.在中,为坐标原点,,,,则面积的最小值为_________.【答案】【解析】,所以,所以。
则,当时,。
【考点】1向量的数量积公式;2向量的模;3同角三角函数关系式;4正弦函数的最值。
3.在△ABC中,角A,B,C的对边分别为,若,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【答案】B【解析】根据正弦定理,可得,根据正弦和角公式有,即,因为三角形中,,所,可得.【考点】正弦定理.4.已知函数的最大值为4,最小值为0,两个对称轴间的最短距离为,直线是其图象的一条对称轴,则符合条件的解析式是A.B.C.D.【答案】B【解析】根据题意,由于函数的最大值为4,最小值为0,在可知A+m=4,-A+m=0,m=2,A=2,由于两个对称轴间的最短距离为为半个周期,则可知周期为,g故w=2,直线是其图象的一条对称轴,结合代入可知,,因此可知解析式为,故选B.【考点】三角函数的性质与解析式点评:主要是考查了三角函数的图象与解析式的关系的运用,属于基础题。
5.已知函数为非零实数,且,则的值为___________________.【答案】2【解析】根据题意,由于函数为非零实数,那么可知函数的周期为2,那么可知 =f(1)=-asin-bsin+4,=f(0)= asin+bsin+4=2,故答案为2.【考点】三角函数的求值点评:主要是考查了诱导公式以及函数周期性的运用,属于基础题。
6.若,则()A.B.C.D.【答案】C【解析】根据题意,由于,故可知答案为C.【考点】二倍角公式点评:主要是考查了二倍角的正弦公式的运用,属于基础题。
7.要使sin-cos=有意义,则m的范围为【答案】【解析】根据题意,由于要使sin-cos=有意义,则只需要,故可知答案为【考点】三角函数的值域点评:本题考查三角函数的值域,不等式的解法,考查计算能力,属于中档题.8.已知函数,若,则与的大小关系是()A.>B.<C.=D.大小与a、有关【答案】B【解析】根据题意,由于函数,若,,故可知=,=,故<,故选B.【考点】三角函数的性质点评:主要是考查了三角函数的性质的意义,单调性比较大小,属于基础题。
高中数学三角函数练习题及答案解析(附答案)
高中数学三角函数练习题及答案解析(附答案)一、选择题1.探索如图所呈现的规律,判断2 013至2 014箭头的方向是()图1-2-3【解析】观察题图可知0到3为一个周期,则从2 013到2 014对应着1到2到3.【答案】 B2.-330是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角【解析】-330=30+(-1)360,则-330是第一象限角.【答案】 A3.把-1 485转化为+k360,kZ)的形式是()A.45-4360 B.-45-4360C.-45-5360 D.315-5360【解析】-1 485=-5360+315,故选D.【答案】 D4.(2019济南高一检测)若是第四象限的角,则180-是() A.第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角【解析】∵是第四象限的角,k360-90k360,kZ,-k360+180180--k360+270,kZ,180-是第三象限的角.【答案】 C5.在直角坐标系中,若与的终边互相垂直,则与的关系为()A.=+90B.=90C.=+90-k360D.=90+k360【解析】∵与的终边互相垂直,故-=90+k360,kZ,=90+k360,kZ.【答案】 D二、填空题6.,两角的终边互为反向延长线,且=-120,则=________. 【解析】依题意知,的终边与60角终边相同,=k360+60,kZ.【答案】k360+60,kZ7.是第三象限角,则2是第________象限角.【解析】∵k360+180k360+270,kZk180+90k180+135,kZ当k=2n(nZ)时,n360+90n360+135,kZ,2是第二象限角,当k=2n+1(nZ)时,n360+270n360+315,nZ2是第四象限角.【答案】二或四8.与610角终边相同的角表示为________.【解析】与610角终边相同的角为n360+610=n360+360+250=(n+1)360+250=k360+250(kZ,nZ).【答案】k360+250(kZ)三、解答题9.若一弹簧振子相对平衡位置的位移x(cm)与时间t(s)的函数关系如图所示,图1-2-4(1)求该函数的周期;(2)求t=10.5 s时该弹簧振子相对平衡位置的位移.【解】(1)由题图可知,该函数的周期为4 s.(2)设本题中位移与时间的函数关系为x=f(t),由函数的周期为4 s,可知f(10.5)=f(2.5+24)=f(2.5)=-8(cm),故t=10.5 s时弹簧振子相对平衡位置的位移为-8 cm.图1-2-510.如图所示,试表示终边落在阴影区域的角.【解】在0~360范围中,终边落在指定区域的角是0或315360,转化为-360~360范围内,终边落在指定区域的角是-4545,故满足条件的角的集合为{|-45+k36045+k360,kZ}.11.在与530终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720到-360的角.【解】与530终边相同的角为k360+530,kZ.(1)由-360<k360+530<0,且kZ可得k=-2,故所求的最大负角为-190.(2)由0<k360+530<360且kZ可得k=-1,故所求的最小正角为170(3)由-720k360+530-360且kZ得k=-3,故所求的角为-550.。
高一数学三角函数试题
高一数学三角函数试题1.已知函数,则函数的图像()A.关于点对称B.关于点对称C.关于直线对称D.关于直线对称【答案】B【解析】时,,则此函数的对称轴为;时,,则此函数的对称中心为。
分析可知B正确。
【考点】1两角和差公式;2余弦函数图像的性质。
2.振动量y=sin(ωx+φ)(ω>0)的初相和频率分别是-π和,则它的相位是________.【答案】3πx-π【解析】∵f=,∴T=,∴ω==3π,又φ=-π,∴y=sin(3πx-π),∴振动量y的相位是3πx-π.3.若函数y=sin(2x+θ)(0≤θ≤π)是R上的偶函数,则θ的值可以是()A.0B.C.D.π【答案】C【解析】∵y=sin(2x+θ)为R上的偶函数,∴θ=kπ+ (k∈Z),∵0≤θ≤π,∴k=0,θ=4.函数f(x)=3sin(3x+φ)在区间[a,b]上是增函数,且f(a)=-2,f(b)=2,则g(x)=2cos(2x+φ)在[a,b]上()A.是增函数B.是减函数C.可以取得最大值D.可以取得最小值【答案】C【解析】由f(x)在[a,b]上为增函数及f(a)=-2,f(b)=2知,g(x)在[a,b]上先增后减,可以取到最大值.5.已知函数f(x)=A cos(ωx+φ)+b(A>0,ω>0,|φ|<)在同一个周期内的图象上有一个最大值点A和一个最小值点B.(1)求f(x)的解析式;(2)经过怎样的平移和伸缩变换可以将f(x)的图象变换为g(x)=cos x的图象.【答案】(1)f(x)=4cos-1.(2)(一)将f(x)图象上各点向上平移1个单位;(二)将所得图象上各点横坐标伸长到原来的2倍,纵坐标缩短到原来的;(三)将所得图象上各点左移个单位,即可得到g(x)=cos x的图象.【解析】(1)由f(x)的最大值点A与最小值点B可知,A==4,b==-1,=-=,∴T==π,∴ω=2.∴f(x)=4cos(2x+φ)-1.将点A代入得:4cos-1=3,∴cos=1,∴+φ=2kπ(k∈Z),∴φ=2kπ-,∵|φ|<,∴φ=-,∴f(x)=4cos-1.(2)依次按下列步骤变换:(一)将f(x)图象上各点向上平移1个单位;(二)将所得图象上各点横坐标伸长到原来的2倍,纵坐标缩短到原来的;(三)将所得图象上各点左移个单位,即可得到g(x)=cos x的图象.6.下列直线中,与函数y=tan的图象不相交的是()A.x=B.y=C.x=D.y=【答案】C【解析】由2x+=kπ+得,x=+(k∈Z),令k=0得,x=.7.ω是正实数,如果函数f(x)=2sinωx在[-,]上是增函数,那么ω的取值范围是________.【答案】0<ω≤【解析】解法一:2kπ-≤ωx≤2kπ+,k=0时,-≤x≤,由题意:-≤-①,≥②,由①得ω≤,由②得ω≥2,∴0<ω≤.解法二:∵ω>0,∴据正弦函数的性质f(x)在[-,]上是增函数,则f(x)在[-,]上是增函数,又f(x)周期T=,由≥得0<ω≤.8.求下列函数的单调区间:(1)y=tan;(2)y=tan2x+1;(3)y=3tan.【答案】(1),k∈Z(2) (k∈Z).(3)(k∈Z).【解析】(1)由kπ-<x-<kπ+得kπ-<x<kπ+ (k∈Z),所以函数的单调递增区间是,k∈Z.(2)由kπ-<2x<kπ+得-<x<+ (k∈Z),所以函数的单调递增区间是 (k∈Z).(3)y=3tan=-3tan,由kπ-<-<kπ+得4kπ-<x<4kπ+,所以函数的单调递减区间是 (k∈Z).9.要得到函数y=sin x的图象,只需将函数y=cos的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】A【解析】y=sin x=cos=cos=cos,∴须将y=cos的图象向右平移个单位.[点评]一般地,正弦与余弦异名函数图象平移时,由cos x为偶函数知,将正弦函数利用sin x=cos化余弦后,结合cos x为偶函数可调整x系数的符号,再考虑平移单位数较简便.本题也可以先作变形y=cos=sin再平移,但此解法不具有一般性.10.观察函数y=sin x的图象可知y=sin x的奇偶性为________函数.【答案】奇【解析】因为根据奇偶性的定义可知sin(-x)=-sinx,因此是奇函数。
人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)
人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)人教版高一数学必修一第五单元《三角函数》单元练题(含答案)一、单选题1.已知函数$f(x)=\cos 2x+3\sin 2x+1$,则下列判断错误的是()A。
$f(x)$的最小正周期为$\pi$B。
$f(x)$的值域为$[-1,3]$C。
$f(x)$的图象关于直线$x=\dfrac{\pi}{6}$对称D。
$f(x)$的图象关于点$\left(-\dfrac{\pi}{4},0\right)$对称2.已知函数$y=\sin(\omega x+\dfrac{\pi}{2})$在区间$\left[0,\dfrac{\pi}{3}\right]$上单调递增,则$\omega$的取值范围是A。
$\left[0,\dfrac{1}{2}\right]$B。
$\left[\dfrac{1}{2},1\right]$C。
$\left[\dfrac{1}{3},2\right]$D。
$\left[\dfrac{2}{3},3\right]$3.若角$\alpha$的终边过点$P(2,2)$,则$\sin\alpha=$()A。
1B。
-1C。
$\dfrac{1}{\sqrt{10}}$D。
$-\dfrac{1}{\sqrt{10}}$4.若$x$是三角形的最小内角,则函数$y=\sin x+\cos x+\sin x\cos x$的值域是()A。
$[-1,+\infty)$B。
$[1,2]$C。
$[0,2]$D。
$\left[1,\dfrac{2+\sqrt{2}}{2}\right]$5.下列说法正确的个数是()①大于等于,小于等于90的角是锐角;②钝角一定大于第一象限的角;③第二象限的角一定大于第一象限的角;④始边与终边重合的角的度数为$360^\circ$。
A。
1B。
2C。
3D。
46.角$\alpha$的终边经过点$(2,-1)$,则$2\sin\alpha+3\cos\alpha$的值为()A。
高一数学三角函数测试题(附答案)
一.选择题:本大题共12小题,每小题5分,共60分。
1. 化简015tan 115tan 1-+等于 ( ) A. 3B. 23C. 3D. 12. 在 ABCD 中,设AB a = ,AD b = ,AC c = ,BD d =,则下列等式中不正确的是( )A .a b c +=B .a b d -=C .b a d -=D .2c d a -=3. 在ABC ∆中,①sin(A+B)+sinC ;②cos(B+C)+cosA ;③2tan 2tanCB A +;④cossec 22B C A+,其中恒为定值的是( ) A 、① ② B 、② ③ C 、② ④ D 、③ ④4. 已知函数f(x)=sin(x+2π),g(x)=cos(x -2π),则下列结论中正确的是( )A .函数y=f(x)·g(x)的最小正周期为2πB .函数y=f(x)·g(x)的最大值为1C .将函数y=f(x)的图象向左平移2π单位后得g(x)的图象D .将函数y=f(x)的图象向右平移2π单位后得g(x)的图象5. 下列函数中,最小正周期为π,且图象关于直线3π=x 对称的是( )A .)32sin(π-=x y B .)62sin(π-=x y C .)62sin(π+=x yD .)62sin(π+=x y6. 函数x x y sin cos 2-=的值域是 ( )A 、[]1,1-B 、⎥⎦⎤⎢⎣⎡45,1C 、[]2,0D 、⎥⎦⎤⎢⎣⎡-45,17. 设0002012tan13cos66,,21tan 13a b c ===+则有( ) A .a b c >> B.a b c <<C. b c a <<D.a cb <<8. 已知sin 53=α,α是第二象限的角,且tan(βα+)=1,则tan β的值为( )A .-7B .7C .-43 D .43 9. 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为( )A. 21- B23 C 23-D 2110. 函数1cos sin xy x-=的周期是( ) A .2πB .πC .2πD .4π 11. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于( )A .1B .2524- C .257 D .725-12. 使函数f(x)=sin(2x+θ)+)2cos(3θ+x 是奇函数,且在[0,]4π上是减函数的θ的一个值( )A .3π B .32π C .34π D .35π二.填空题:本大题共4小题,每小题4分,共16分。
高一数学 三角函数试题 含答案
高一数学三角函数试题含答案高一数学必修四三角函数检测题一、选择题1.下列不等式中,正确的是()A。
tan13π < tan13πB。
sinπ。
cos(−π/4)C。
sin(π−1°) < sin1°D。
cos7π/5 < cos(−2π/5)2.函数y=sin(−2x+6π/7)的单调递减区间是()A。
[−π+2kπ,π+2kπ](k∈Z)B。
[π+2kπ,5π+2kπ](k∈Z)C。
[−π+kπ,π+kπ](k∈Z)D。
[π+kπ,5π+kπ](k∈Z)3.函数y=|tanx|的周期和对称轴分别为()A。
π。
x=kπ (k∈Z)B。
π/2.x=kπ (k∈Z)C。
π。
x=kπ+π/2 (k∈Z)D。
π/2.x=kπ+π/2 (k∈Z)4.要得到函数y=sin2x的图象,可由函数y=cos(2x−π/2)()A。
向左平移π/4个长度单位B。
向右平移π/4个长度单位C。
向左平移π/2个长度单位D。
向右平移π/2个长度单位5.三角形ABC中角C为钝角,则有()A。
sinA。
cosBB。
sinA < cosBC。
sinA = cosBD。
sinA与cosB大小不确定6.设f(x)是定义域为R,最小正周期为π的函数,若f(x)=sinx(0≤x≤π),则f(−15π/4)的值等于()A。
1B。
2C。
0D。
−27.函数y=f(x)的图象如图所示,则y=f(x)的解析式为()A。
y=sin2x−1B。
y=2cos3x−1C。
y=sin(2x−π/2)−1D。
y=1−sin(2x−π/2)8.已知函数f(x)=asin(x)−bcos(x)(a、b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4−x)是()A。
偶函数且它的图象关于点(π/2,0)对称B。
偶函数且它的图象关于点(π/4,0)对称C。
奇函数且它的图象关于点(π/4,0)对称D。
奇函数且它的图象关于点(π/2,0)对称9.函数f(x)=sinx−3cosx,x∈[−π,π]的单调递增区间是()A。
高一数学三角函数试题
高一数学三角函数试题1.已知函数f(x)=cos (x∈R,ω>0)的最小正周期为,为了得到函数g(x)=sinωx的图象,只要将y=f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】D【解析】∵f(x)最小正周期为,∴=,∴ω=4,∴f(x)=cos=cos4,g(x)=sin4x=cos=cos=cos4,故须将f(x)的图象右移+=个单位长度2.欲得到函数y=cos x的图象,须将函数y=3cos2x的图象上各点()A.横坐标伸长到原来的2倍,纵坐标伸长到原来的3倍B.横坐标缩短到原来的,纵坐标缩短到原来的C.横坐标伸长到原来的2倍,纵坐标缩短到原来的D.横坐标缩短到原来的,纵坐标伸长到原来的3倍【答案】C【解析】按照三角函数的图像的变换可知,将函数y=3cos2x的图象上各点横坐标伸长到原来的2倍,得到y=3cosx,纵坐标缩短到原来的得到y=cosx,可知结论,故选C3.方程sin2x=sin x在区间(0,2π)内解的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】函数y=sin2x与y=sin x的图象交点个数等于方程解的个数.在同一坐标系内作出两个函数y=sin2x,y=sin x在(0,2π)内的图象,如图所示.由图象不难看出,它们有三个交点.所以方程sin2x=sin x在(0,2π)内有三个解.故正确答案为C.4.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M对称,且在区间上是单调函数,求ω和φ的值.【答案】ω=或ω=2. φ=,【解析】∵f(x)=sin(ωx+φ)是R上的偶函数,∴φ=+kπ,k∈Z.又∵0≤φ≤π,∴φ=,∴f(x)=sin=cosωx.∵图象关于点对称,∴cosω=0.∴ω=+nπ,n∈Z.∴ω=+n,n∈Z.又∵f(x)在区间上是单调函数,∴≥-0,即×≥,∴ω≤2.又∵ω>0,∴ω=或ω=2.5.函数f(x)=的定义域为()A.B.C.D.【答案】A【解析】由 (k∈Z)得,∴x≠π且x≠π,∴x≠,k∈Z,∴选A.6.ω是正实数,如果函数f(x)=2sinωx在[-,]上是增函数,那么ω的取值范围是________.【答案】0<ω≤【解析】解法一:2kπ-≤ωx≤2kπ+,k=0时,-≤x≤,由题意:-≤-①,≥②,由①得ω≤,由②得ω≥2,∴0<ω≤.解法二:∵ω>0,∴据正弦函数的性质f(x)在[-,]上是增函数,则f(x)在[-,]上是增函数,又f(x)周期T=,由≥得0<ω≤.7.函数y=2sin x与函数y=x图象的交点有()A.2个B.3个C.4个D.5个【答案】B【解析】在同一坐标系中作出函数y=2sin x与y=x的图象可见有3个交点.8.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,则=________.【答案】【解析】由已知得sinα=-.∵α是第三象限角,∴cosα=-=-.∴原式===.9. (2010·全国卷Ⅰ理,2)设cos(-80°)=k,那么tan100°=()A.B.-C.D.-【答案】B【解析】因为sin80°===,所以tan100°=-tan80°=-=-.10.已知tan(π+α)=-,求下列各式的值.(1);(2)sin(α-7π)·cos(α+5π).【答案】(1)-.(2)-【解析】tan(π+α)=-⇒tanα=-,(1)原式=====-.(2)原式=sin(-6π+α-π)·cos(4π+π+α)=sin(α-π)·cos(π+α)=-sinα·(-cosα)=sinα·cosα===-.11.已知sinθ+cosθ=,θ∈(0,π),求值:(1)tanθ;(2)sin3θ+cos3θ.【答案】(1)tanθ=-,(2)sin3θ+cos3θ=.【解析】∵sinθ+cosθ=,θ∈(0,π),平方得:sinθcosθ=-<0,∴sinθ>0,cosθ<0,且sinθ,cosθ是方程x2-x-=0的两根.解方程得x1=,x2=-,∴sinθ=,cosθ=-.∴(1)tanθ=-,(2)sin3θ+cos3θ=.12.下列命题中为真命题的是()A.三角形的内角必是第一象限角或第二象限角B.角α的终边在x轴上时,角α的正弦线、正切线分别变成一个点C.终边在第二象限的角是钝角D.终边相同的角必然相等【答案】B【解析】三角形的内角有可能是,属非象限角;终边在第二象限的角不一定是钝角;终边相同的角不一定相等,故A、C、D都不正确.13.已知sinα>sinβ,那么下列命题成立的是()A.若α、β是第一象限角,则cosα>cosβB.若α、β是第二象限角,则tanα>tanβC.若α、β是第三象限角,则cosα>cosβD.若α、β是第四象限角,则tanα>tanβ【答案】D【解析】如图(1),α、β的终边分别为OP、OQ,sinα=MP>NQ=sinβ,此时OM<ON,∴cosα<cosβ,故A错;如图(2),OP、OQ分别为角α、β的终边,MP>NQ,∴AC<AB,即tanα<tanβ,故B错;如图(3),角α,β的终边分别为OP、OQ,MP>NQ即sinα>sinβ,∴ON>OM,即cosβ>cosα,故C错,∴选D.14.若α∈[0,2π),且cosα≥,则α的取值范围是______.【答案】[0,]∪[,2π)【解析】如图,OM为[0,2π)内的角和的余弦线,欲使cosα≥,角α的余弦≥OM,当OM伸长时,OP与OQ扫过部分为扇形POQ,∴0≤α≤或≤α<2π.15.利用单位圆写出满足sinα<,且α∈(0,π)的角α的集合是__________________________.【答案】∪【解析】作出正弦线如图.MP=NQ=,当sinα<时,角α对应的正弦线MP、NQ缩短,∴0<α<或<α<π.16.利用三角函数线比较下列各组数的大小:(1)sin与sin;(2)tan与tan.【答案】(1)sin>sin.(2)tan<tan.【解析】如图所示,角的终边与单位圆的交点为P,其反向延长线与单位圆的过点A的切线的交点为T,作PM⊥x轴,垂足为M,sin=MP,tan=AT;的终边与单位圆的交点为P′,其反向延长线与单位圆的过点A的切线交点为T′,作P′M′⊥x轴,垂足为M′,则sin=M′P′,tan=AT′,由图可见,MP>M′P′>0,AT<AT′<0,∴(1)sin>sin.(2)tan<tan.17.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是()A.2B.sin2C.D.2sin1【答案】C【解析】如图,∠AOB=2弧度,过O点作OC⊥AB于C,并延长OC交于D.∠AOD=∠BOD=1弧度,且AC=AB=1,在Rt△AOC中,AO==,即r=,从而弧AB的长为l=|α|·r=.∴选C.本题是据弧长公式l=|α|r求弧长,需先求半径.18.与600°角终边相同的角可表示为(k∈Z)()A.k·360°+220°B.k·360°+240°C.k·360°+60°D.k·360°+260°【答案】B【解析】与600°终边相同的角α=n·360°+600°=n·360°+360°+240°=(n+1)·360°+240°=k·360°+240°,n∈Z,k∈Z.∴选B.19.在(-360°,0°)内与角1250°终边相同的角是()A.170°B.190°C.-190°D.-170°.【答案】C【解析】与1250°角的终边相同的角α=1250°+k·360°,∵-360°<α<0°,∴-<k<-,∵k∈Z,∴k=-4,∴α=-190°20.-1445°是第________象限角.【答案】四【解析】∵-1445°=-5×360°+355°,∴-1445°是第四象限的角.。
高一数学必修1三角函数练习题及答案详解
高一数学必修1三角函数练习题及答案详解考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。
下面是店铺为大家整理的高一数学必修1三角函数练习题,希望对大家有所帮助!高一数学必修1三角函数练习题及答案1.下列命题中正确的是( )A.终边在x轴负半轴上的角是零角B.第二象限角一定是钝角C.第四象限角一定是负角D.若β=α+k•360°(k∈Z),则α与β终边相同解析易知A、B、C均错,D正确.答案 D2.若α为第一象限角,则k•180°+α(k∈Z)的终边所在的象限是( )A.第一象限B.第一、二象限C.第一、三象限D.第一、四象限解析取特殊值验证.当k=0时,知终边在第一象限;当k=1,α=30°时,知终边在第三象限.答案 C3.下列各角中,与角330°的终边相同的是( )A.150°B.-390°C.510°D.-150°解析330°=360°-30°,而-390°=-360°-30°,∴330°与-390°终边相同.答案 B4.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析方法一由270°+k•360°<α<360°+k•360°,k∈Z得:-90°-k•360°>180°-α>-180°-k•360°,终边在(-180°,-90°)之间,即180°-α角的终边在第三象限,故选C.方法二数形结合,先画出α角的终边,由对称得-α角的终边,再把-α角的终边关于原点对称得180°-α角的终边,如图知180°-α角的终边在第三象限,故选C.答案 C5.把-1125°化成k•360°+α(0°≤α<360°,k∈Z)的形式是( )A.-3×360°+45°B.-3×360°-315°C.-9×180°-45°D.-4×360°+315°解析-1125°=-4×360°+315°.答案 D6.设集合A={x|x=k•180°+(-1)k•90°,k∈Z},B={x|x=k•360°+90°,k∈Z},则集合A,B的关系是( )A.A?BB.A?BC.A=BD.A∩B=∅解析集合A表示终边在y轴非负半轴上的角,集合B也表示终边在y轴非负半轴上的角.∴A=B.答案 C7.如图,射线OA绕顶点O逆时针旋转45°到OB位置,并在此基础上顺时针旋转120°到达OC位置,则∠AOC的度数为________.解析解法一根据角的定义,只看终边相对于始边的位置,顺时针方向,大小为75°,故∠AOC=-75°.解法二由角的定义知,∠AOB=45°,∠BOC=-120°,所以∠AOC=∠AOB+∠BOC=45°-120°=-75°.答案-75°8.在(-720°,720°)内与100°终边相同的角的集合是________.解析与100°终边相同的角的集合为{α|α=k•360°+100°,k∈Z}令k=-2,-1,0,1,得α=-620°,-260°,100°,460°.答案{-620°,-260°,100°,460°}9.若时针走过2小时40分,则分针转过的角度是________.解析∵2小时40分=223小时,∴-360°×223=-960°.答案-960°10.若2α与20°角的终边相同,则所有这样的角α的集合是__________.解析2α=k•360°+20°,所以α=k•180°+10°,k∈Z.答案{α|k•180°+10°,k∈Z}11.角α满足180°<α<360°,角5α与α的始边相同,且又有相同的终边,求角α.解由题意得5α=k•360°+α(k∈Z),∴α=k•90°(k∈Z).∵180°<α<360°,∴180°<k•90°<360°.∴2<k<4,又k∈Z,∴k=3.∴α=3×90°=270°.12.如图所示,角α的终边在图中阴影部分,试指出角α的范围.解∵与30°角的终边所在直线相同的角的集合为:{β|β=30°+k•180°,k∈Z}.与180°-65°=115°角的终边所在直线相同的角的集合为:{β|β=115°+k•180°,k∈Z}.因此,图中阴影部分的角α的范围为:{α|30°+k•180°≤α<115°+k•180°,k∈Z}.13.在角的集合{α|α=k•90°+45°,k∈Z}中,(1)有几种终边不同的角?(2)写出区间(-180°,180°)内的角?(3)写出第二象限的角的一般表示法.解(1)在α=k•90°+45°中,令k=0,1,2,3知,α=45°,135°,225°,315°.∴在给定的角的集合中,终边不同的角共有4种.(2)由-180°<k•90°+45°<180°,得-52<k<32.又k∈Z,故k=-2,-1,0,1.∴在区间(-180°,180°)内的角有-135°,-45°,45°,135°.(3)其中第二象限的角可表示为k•360°+135°,k∈Z.。
高一数学三角函数测试题
高一数学三角函数测试题高一数学三角函数测试题一、选择题1、下列四个函数中,以π为最小正周期,且在区间(π,2π)上为减函数的函数是() A. y=sin2x B. y=|cosx| C. y=tanx D. y=cosx2、已知角α的终边过点P(x,-1)(x≠0),且cosα= ,则sinα+tan α的值为() A. 2 B. -2 C. D.3、已知角α的终边过点P(3a,4a),且cosα=- ,则a的值为() A. - B. - C. D. -4、若角α满足,则角α与5弧度的角终边相同的角为() A. 235°B. 145°C. 155°D. 205°二、填空题5、函数y=sin2x+ 的最小正周期为________;最大值为________。
51、已知,则的值为________。
511、在的终边上取一点P(1,-1),则cosθ=________。
三、解答题8、求下列各式的值: (1) cos( - ); (2) cos +sin ; (3) tan245°+·tan60°+sin245°; (4) cos2 +sin2θ-tanθ·cosθ。
四、解答题9、求下列函数的定义域和值域: (1) y=sinx; (2) y=|cosx|; (3) y=cosx; (4) y= 。
五、解答题10、已知函数y=Asin(ωx+φ)(A>0,ω>0)的图象过点(π,0),它的一个最高点的坐标为,该点到相邻最低点的图象与x轴的交点坐标为,且。
(1) 求这个函数的解析式; (2) 当时,求函数的最大值,并写出相应的x的值。
高一数学三角函数专项测试题高一数学三角函数专项测试题一、选择题1、下列函数中,最小正周期为π,且在区间(0,π/4)上单调递增的是 A. sin(2x-π/6) B. sin(x/2-π/6) C. cos(2x-π/6) D.cos(x/2-π/6)2、已知角α的终边过点P(1,-√3),则sin(α-π/2)的值为 A. √3B. -√3C. 2D. -13、已知sinθ+cosθ=1/5,且0≤θ≤π,则sinθ-cosθ的值为 A. -7/5 B. 7/5 C. -1/5 D. 1/54、函数y=sin(2x+π/3)的图像的一条对称轴的方程为 A. x=π/12 B. x=π/6 C. x=π/3 D. x=5π/12二、填空题5、cos(?π/12)=,sin(?5π/12)=。
高一数学第5章 三角函数 章末测试(提升)(解析版)
第5章 三角函数 章末测试(提升)一、单选题(每题5分,每题只有一个选项为正确答案,8题共40分) 1.(2022·江苏南通·高一期末)若π1sin 43α⎛⎫+= ⎪⎝⎭,则sin 2α=( )A .79-B .79C 12- D 22【答案】A【解析】2ππππ27sin 2sin 2cos 212sin 1424499αααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=-+=-++=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:A2.(2022·江西省万载中学高一阶段练习)把函数4πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0ϕϕ>个单位长度,所得图像关于y 轴对称,则ϕ的最小值是( ) A .5π6B .2π3C .5π12 D .π6【答案】C【解析】将函数4πsin 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移()0ϕϕ>个单位长度得到函数()4πsin 23y x ϕ⎡⎤=-+⎢⎥⎣⎦, ∵所得函数图象关于y 轴对称, 即4π23ϕ-=()ππ,Z 2k k +∈, ∵()5ππ,Z 122k k ϕ=-∈, ∵0ϕ>,∵当0k =时,ϕ的最小值为5π.12故选:C3.(2022·辽宁 )若πtan()24-=-α,则23sin sin cos 3cos αααα=+( ) A .52B .2C .52-D .12-【答案】C【解析】由πtan()24-=-α可得1tan 2,tan 31tan -α=-∴α=-+α , 故232222sin sin tan sin cos 3cos cos (sin 3cos )sin 3cos ==+++ααααααααααα,而22222222sin 3cos tan 36sin 3cos sin cos tan 15+++===++αααααααα,故22tan 356sin 3cos 25-==-+ααα, 即23sin 5sin cos 3cos 2=-+αααα,故选:C4.(2022·陕西 )函数()()5πcos 1log (0)2f x x x x ⎡⎤=-+>⎢⎥⎣⎦的零点个数为( )A .1B .2C .3D .4【答案】C【解析】()()55ππcos 1log sin log 22f x x x x x ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎣⎦⎝⎭;在同一直角坐标系内画出函数()πsin 2g x x ⎛⎫= ⎪⎝⎭和()5log (0)h x x x =->的图象,又55(3)log 31,(7)log 71h h =->-=-<-,()()3π7π3sin 1,7sin 122g g ⎛⎫⎛⎫==-==- ⎪ ⎪⎝⎭⎝⎭;所以函数()g x 和()h x 恰有3个交点,即函数()f x 有3个零点, 故选:C.5.(2022·湖南 )奇函数()()()cos ,(0,0,)f x x ωϕωϕπ=+>∈在区间,34ππ⎡⎤-⎢⎥⎣⎦上恰有一个最大值1和一个最小值-1,则ω的取值范围是( ) A .[)2,6 B .92,2⎡⎫⎪⎢⎣⎭C .39,22⎡⎫⎪⎢⎣⎭D .3,62⎡⎫⎪⎢⎣⎭【答案】B【解析】由()f x 为奇函数,则2k πϕπ=+,Z k ∈,又()0,ϕπ∈,故2ϕπ=, 所以()sin f x x ω=-,在,34ππ⎡⎤∈-⎢⎥⎣⎦x ,则,34x ωπωπω⎡⎤∈-⎢⎥⎣⎦,0>ω,当042ωππ<<,则53232πωππ-<-≤-,故ω无解; 当3242πωππ≤<,则3232πωππ-<-≤-,可得922ω≤<; 当023πωπ-<-<,则35242πωππ≤<,无解.综上,ω的取值范围是92,2⎡⎫⎪⎢⎣⎭.故选:B6.(2022·河南 )将函数()sin f x x =的图象上各点横坐标变为原来的12,纵坐标不变,再将所得图象向左平移12π个单位长度,得到函数()g x 的图象,则函数()g x 的解析式为( ) A .()1sin 212g x x π⎛⎫=+ ⎪⎝⎭B .()1sin 224g x x π⎛⎫=+ ⎪⎝⎭C .()sin 212g x x π⎛⎫=+ ⎪⎝⎭D .()sin 26g x x π⎛⎫=+ ⎪⎝⎭【答案】D【解析】将()sin f x x =图象上各点横坐标变为原来的12,得sin2y x =,再向左平移12π个单位长度后得()sin 2sin 2126g x x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:D.7.(2022·江西 )已知函数())2π33sin sin sin 02f x x x x ωωωω⎛⎫=+-> ⎪⎝⎭的最小正周期为π,则()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为( )A .11,22⎡⎤-⎢⎥⎣⎦B .33⎡⎢⎣⎦C .3⎡⎤⎢⎥⎣⎦D .3⎡-⎢⎣⎦【答案】D【解析】()2π33sin sin 2f x x x x ωωω⎛⎫+- ⎪⎝⎭1cos2133sin 222x x ωω--πsin 23x ω⎛⎫=-+ ⎪⎝⎭,因为()f x 的最小正周期为π,所以2ππ2ω=,得1ω=, 所以()πsin 23x f x ⎛⎫=-+ ⎪⎝⎭.由π0,2x ⎡⎤∈⎢⎥⎣⎦得ππ4π2,333x ⎡⎤+∈⎢⎥⎣⎦,所以π3sin 23x ⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,从而()π3sin 23f x x ⎡⎛⎫=-+∈-⎢ ⎪⎝⎭⎣⎦,故选:D .8.(2022·广西 )已知函数()cos (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在区间π3,π44⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .80,9⎛⎤⎥⎝⎦B .(]1,2C .(]0,1D .20,3⎛⎤ ⎥⎝⎦【答案】A【解析】由题意有2ππT ω=≥,可得02ω<≤,又由πππ5π3436ω<+≤,必有3πππ43ω+≤,可得809ω<≤. 故选:A二、多选题(每题至少有两个选项为正确答案,少选且正确得2分,每题5分。
高一数学三角函数试题
高一数学三角函数试题1.“无字证明”(proofs without words), 就是将数学命题用简单、有创意而且易于理解的几何图形来呈现.请利用图甲、图乙中阴影部分的面积关系,写出该图所验证的一个三角恒等变换公式:.【答案】【解析】甲图中,阴影部分是边长为1,内角为的菱形,其面积是;乙图中,阴影部分是由两个矩形组成,一个边长分别是,另一个边长分别是,面积;因为两图中的阴影部分面积相同,所以.【考点】新定义题、两角和的正弦公式的推导.2.不等式sin()>0成立的x的取值范围为( )A.B.C.D.【答案】D【解析】,即,可得,故选D.【考点】解三角不等式3.函数的值域是( )A.B.C.D.【答案】B【解析】且,所以,根据正切函数的图像可知值域为,或,故选B.【考点】复合函数的值域4.已知函数为奇函数,且相邻两对称轴间的距离为.(1)当时,求的单调递减区间;(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.【答案】(1);(2)【解析】(1)先用余弦二倍角公式将其降幂,再用两角和差公式的逆用即化一公式将其化简为,两相邻对称轴间的距离为半个周期,从而可得的值,由函数为奇函数可求的值。
根据求整体角的范围。
再此范围内将整体角代入正弦的单调减区,解得的范围,即为所求。
(2)先将用替换,再将用替换即可得函数。
根据的范围得整体角的范围,结合函数图像求函数的值域。
(1)由题知,∵相邻两对称轴的距离为,∴, 3分又∵为奇函数,∴,, ∴, 即, 5分要使单调递减, 需, ,∴的单调减区间为. 7分(2) 由题知, 9分∵, ∴,,,∴函数的值域为 12分【考点】1三角函数的周期性奇偶性;2三角函数的单调性;3三角函数伸缩平移变换。
5.已知扇形的周长为8 cm,圆心角为2弧度,则该扇形的面积为_______________.【答案】【解析】设扇形的半径为,则,所以,扇形的弧长为4,半径为2,所以扇形的面积为.【考点】扇形的面积公式.6.如图,在中,已知,是上一点,,则【答案】【解析】由余弦定理得:,在三角形中,再由正弦定理得:【考点】正余弦定理综合7.已知函数的图象过点(1,2),相邻两条对称轴间的距离为2,且的最大值为2.(1)求;(2)计算;(3)若函数在区间[1,4]上恰有一个零点,求的范围.【答案】(1)(2)2011 (3)(0,1]【解析】解:(1),由于的最大值为2且A>0,所以即A=2得,又函数的图象过点(1,2)则…4分(2)由(1)知且周期为4,2010=4×502+2………6分故8分(3) 由在区间[1,4]上恰有一个零点知:函数的图象与直线恰有一个交点。
高一数学三角函数测试题试题
智才艺州攀枝花市创界学校米易高一数学三角函数测试题一、选择题:〔此题仅有一个正确答案,每一小题5分,一共60分〕1、 sin600°的值是〔〕 A.21 B.21- C.23 D.-23 2、53sin =α,且α是第二象限的角,那么)]sin()[cos(tan απαπα++-的值等于〔〕 A .2021B .203C .2021-D .203- 3、假设角α满足0sin cos ,0cos sin <-<a a aa ,那么α在() A .第一象限B.第二象限C .第三象限D .第四象限4、假设sin x +cos x =1,那么x x n n cos sin+的值是〔〕 A .1B .0C .-1D .不能确定 5、在△ABC 中,“A >30°〞是“sinA >21〞的() A .仅充分条件 B .仅必要条件C .充要条件D .既不充分也不必要条件6、sin α>sin β()A .假设α.β是第一象限角,那么cos α>cos βB .假设α.β是第二象限角,那么tan α>tan β.C .假设α.β是第三象限角,那么cos α>cos βD .假设α.β是第四象限角,那么tan α>tan β.7、以下各式能成立的是()A .sin α=cos α=21 ;B .cos α=31且tan α=2; C .sin α=21且tan α=33; D .tan α=2且cot α=-21 8、α为第二象限角,P(x,5)为其终边上一点,且cos α=x 42,那么x 值为() A .3 B .±3 C .-3D .-29、在△ABC 中,2sinAcosB =sinC ,那么△ABC 一定是()A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 10、等式sin α+cos α=有意义,那么m 的取值范围是()A .(-1,)B .[-1,)C .[-1,]D .[―,―1]11、在△ABC 中,以下各表达式中为常数的是〔〕A .CB A sin )sin(++B .AC B cos )cos(-+ C .2tan 2tan C B A ⋅+D .2sec 2cos A C B ⋅+ 12、“cos α=-23〞是“α=2k π+65π,k ∈Z 〞的〔〕 A.必要条件B.充分条件C.充要条件D.既不充分也不必要条件 二、填空题:〔每一小题4分,一共16分〕13、sin θ-cos θ=21,那么=-θθ33cos sin 14、函数y =aa a a a a a a cot cot tan tan cos cos sin sin +++的值域为 15、cos(75°+α)=31,其中α为第三象限角,那么cos(105°-α)+ sin(α-105°)=16、=-+a a a a cos 4sin 3cos sin 51,那么a tan = 三、综合题:〔6小题,一共74分〕17、sin 〔3π+θ〕=12,求cos(3)cos(4)cos [cos()1]cos(2)cos(3)cos()πθθπθπθθππθθ+-++-+++-的值.〔10分〕18、 135450<<<<αβ,53)45cos(=-α 135)135sin(=+β , 求:〔1〕)sin(βα+的值.〔2〕)cos(βα-的值.〔12分〕19、a a x +-=11sin ,aa x +-=113cos ,假设x 是第二象限角,务实数a 的值.〔12分〕20.化简:)414cos()414cos(απαπ--+++n n (n Z).〔12分〕 21、锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A 〔Ⅰ〕求证B A tan 2tan =;〔Ⅱ〕设AB=3,求AB 边上的高.〔14分〕 22、关于x 的方程0)13(22=++-m x x的两根为sin θ和cos θ,θ∈(0,2π),求: (1)θθθθtan 1cos cot 1sin -+-的值;(2)m 的值;(3)方程的两根及此时θ的值.〔14分〕参考答案选择题:DDBABDCCBCCA填空题:13、161114、{}0,2,4-15、3221+-16、29- 17.解:sin 〔3π+θ〕=-sin θ,∴sin θ=-12.原式=θθθθθθθcos )cos (cos cos )1cos (cos cos +-+---=θθcos 11cos 11-++ =θθ22sin 2cos 12=-=8. 18、〔1〕6556;〔2〕6516。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.已知向量 , , ,其中 .
(Ⅰ)求 的最大值,并求此时x的集合; (Ⅱ)求 的最大值。
厦门第二外国语学校高一数学三角函数练习参考答案2010.1
1.B 2.A 3.B 4.D 5.A 6.D 7.C 8.C 9.C 10.B 11.B 12.C
①图像上所有点的纵坐标不变,横坐标缩短到原来的 ;②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图像向右平移 个单位;④图像向左平移 个单位;⑤图像向右平移 个单位;⑥图像向左平移 个单位。请写出用上述变换将函数y = sinx的图像变换到函数y = sin ( + )的图像的一个变换______________ (按变换顺序写上序号即可)。
二、填空题
13.若 ,且 ,则 的值是____________
14.若 是第四象限角,则 是第象限角, 是第象限角。
15.已知 =。
16.角 化为 的形式是
17.角的终边在第一象限和第三象限的平分线上的角的集合为
18.若sinθcosθ>0,则θ在第象限
19.已知 ,且 是第四象限角,tan =
20.给出下列6种图像变换方法:
厦门第二外国语学校09-10学年高一上学期
数学三角函数练习2010.1
一、选择题
1.已知点P( )在第三象限,则角 在()
A.第一象限B.第二象限C.第三象限D.第四象限
2.有下列四种变换方式:
向左平移 ,再将横坐标变为原来的 ;②横坐标变为原来的 ,再向左平移 ;
③横坐标变为原来的 ,再向左平移 ;④向左平移 ,再将横坐标变为原来的 ;
其中能将正弦曲线 的图像变为 的图像的是()
A.①和②B.①和③C.②和③D.②和④
3.函数 的最大值为()
A. B.2C. D.
4.若 是△ 的一个内角,且 ,则 的值为()
A. B. C. D.
5.函数 在一个周期内的图象如下,此函数的
解析式为()
A. B.
C. D.
6.函数 的单调递减区间是()
点评:(1)从终边相同的角的表示入手分析问题,先表示出所有与角 有相同终边的角,然后列出一个关于 的不等式,找出相应的整数 ,代回求出所求解;(2)可对整数 的奇、偶数情况展开讨论
25.解:设扇形的圆心角是 ,因为扇形的弧长 ,
所以扇形的周长是
依题意知: ,解得
转化为角度度制为
它的面积为:
26.解析:因为过点 ,所以 , 。
21.函数 的值域为
22.已知下列各个角: , , , ;其中是第三象限的角是
23.已知 ,则
三、计算题
24.已知角 ;(1)在区间 内找出所有与角 有相同终边的角 ;(2)集合 , 那么两集合的关系是什么?
25.一个半径为 的扇形,若它的周长等于弧所在的半圆的长,则扇形的圆心角是多少弧度?多少度?扇形的面积是多少?
13. ;14.三、二;15.-1; 16. ;17. ;
18.一或三;19.-- ;20.④、②;21。 ;22。 、 ;23。 ;
24.解析:(1)所有与角 有相同终边的角可表示为: ,
则令 ,
得
解得
从而 或
代回 或
(2)因为 表示的是终边落在四个象限的平分线上的角的集合;而集合 表示终边落在坐标轴或四个象限平分线上的角的集合,从而: 。
当sin(+ )=1时, 的最大值为2。
A.1或-1B. 或 C.1或 D.-1或
11.若点 在第一象限,则在 内 的取值范围是()
A. B.
C. D.
12.同时具有以下性质:“①最小正周期实π;②图象关于直线x= 对称;③在[- ]上是增函数”的一个函数是( )
A.y=sin( )B.y=cos(2x+ )C.y=sin(2x- )D.y=cos(2x- )
A. B.
C. D.
7.已知 ,则 的值为()
A.0B.1C.-1D. 1
8.下列命题中正确的是()
A.第一象限角必是锐角B.终边相同的角相等
C.相等的角终边必相同D.不相等的角其终边必不相同
9.将分针拨慢5分钟,则分钟转过的弧度数是()
A. B.- C. D.-
10.已知角 的终边过点 , ,则 的值是()
当 ;
, 。
当 , ; 。
27.解析:(Ⅰ)f(x)=a b=cos x -2sinx=1-sin x-2sinx=-(sinx+1) +2
当sinx=-1时,f(x)的最大值为2.
(Ⅱ)a-c=(cosx+1,sinx+1);
=(cosx+1) +(sinx+1)
=2cosx+2sinx+3
=2 sin(x+ )+3