二次函数及其图像

合集下载

二次函数的图像及性质

二次函数的图像及性质

与对数函数的比较
值域:二次函数值域为全体实 数,而对数函数值域为实数加 一个常数
图像:二次函数图像为抛物线, 而对数函数图像为单调递增或 递减的曲线
定义域:二次函数定义域为全 体实数,而对数函数定义域为 正实数
性质:二次函数具有对称性, 而对数函数具有反函数性质
汇报人:
性质:二次函数有最小 值或最大值,反比例函 数在x>0时单调递减, 在x<0时单调递增。
应用:二次函数在数学、 物理等领域有广泛应用, 反比例函数在解决一些 实际问题时也很有用。
与指数函数的比较
开口方向:二次函数开口向上或向下,指数函数开口向右 顶点:二次函数有顶点,指数函数无顶点 函数值:二次函数有最大值或最小值,指数函数无最大值或最小值 图像:二次函数图像是抛物线,指数函数图像是指数曲线
开口变化规律
二次函数的开口方向由系数a决定,a>0时开口向上,a<0时开口向下。
二次函数的开口大小由系数a和b共同决定,a的绝对值越大,开口越小;b的绝对值越大,开口 越大。
二次函数的对称轴为x=-b/2a,对于开口向上的函数,对称轴左侧函数值随x的增大而减小;对 于开口向下的函数,对称轴左侧函数值随x的增大而增大。
图像的对称性
二次函数的对称中心是(k,0)
二次函数的顶点坐标是(h,k)
二次函数的对称轴是x=h
二次函数的开口方向由a决定, a>0向上开口,a<0向下开口
与一次函数的比较
函数表达式:二次函数的一般形式 为y=ax^2+bx+c,一次函数的一 般形式为y=kx+b
开口方向:二次函数的开口方向由 a的符号决定,一次函数的图像是 一条直线,没有开口方向

二次函数图像与性质ppt课件

二次函数图像与性质ppt课件

D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式

二次函数

二次函数






对于顶点式: ①y=a(x-h)^2+k与y=a(x+h)^2+k两图像关于y轴 对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐 标相反、纵坐标相同。 ②y=a(x-h)^2+k与y=-a(x-h)^2-k两图像关于x轴 对称,即顶点(h,k)和(h,-k)关于y轴对称,横坐 标相同、纵坐标相反。 ③y=a(x-h)^2+k与y=-a(x-h)^2+k关于顶点对称, 即顶点(h,k)和(h,k)相同,开口方向相反。 ④y=a(x-h)^2+k与y=-a(x+h)^2-k关于原点对称, 即顶点(h,k)和(-h,-k)关于原点对称,横坐标、 纵坐标都相反。 (其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情 况)

②y=a(x-h)2+k[顶点式] 此时,对应极值点为(h,k),其中h=-b/2a, k=(4ac-b^2)/4a ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0) 对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2 时,Y随X的增大而增大,当a>0且X≦(X1+X2) /2时Y随X 的增大而减小 此时,x1、x2即为函数与X轴的两个交点,将X、 Y代入即可求出解析式(一般与一元二次方程连 用)。 交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点 和另一个点坐标设交点式。两交点X值就是相应X1 X2值。
一般式 y=ax^2+bx+c(a≠0,a、b、c为常数), 顶点坐标为 [-b/2a,(4ac-b^2)/4a] 把三个点代入函数解析式得出一个三元 一次方程组,就能解出a、b、c的值。

初中代数二次函数公式定理

初中代数二次函数公式定理

初中代数二次函数公式定理1.二次函数及其图像1.二次函数我们把函数y=ax²+bx+c(a,b,c为常数,且a不等于0)叫做二次函数2.函数y=ax²(a不等于0)的图像和性质用表里各组对应值作为点的坐标,进行描点,然后用光滑的曲线把它们顺次联结起来,就得到函数y=x²的图象这个图象叫做抛物线函数y=x²的图像,以后简称为抛物线y=x²这条抛物线是关于y轴成对称的我们把y轴叫做抛物线y=x²的对称轴对称轴和抛物线的焦点,叫做抛物线的顶点3.函数y=ax²+bx+c(a不等于0)的图像和性质抛物线y=ax²+bx+c的顶点坐标是(-b/2a,4ac-b²/4a),对称轴方程是x=-b/2a,当a〉0时,抛物线的开口向上,并且向上无限延伸;当a〈0时,抛物线的开口向下,并且向下无限延伸当a〉0时,二次函数y=ax²+bx+c在x〈-b/2a时是递减的,在x〉-b/2a时是递增的;在x=-b/2a 处取得y最小=4ac-b²/4a当a〈0时,二次函数y=ax²+bx+c在x〈-b/2a时是递减的;在x=-不/2a 处取得y最大=4ac-b²/4a2.根据已知条件求二次函数1.根据已知条件确定二次函数2.二次函数的最大值或最小值3.一元二次方程的图像解法直角三角形概述定义:有一个角为90°的三角形,叫做直角三角形。

性质:直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方。

性质2:在直角三角形中,两个锐角互余。

性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。

性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。

性质5:在直角三角形中,30°角所对直角边等于斜边的一半。

二次函数图象和性质知识点总结

二次函数图象和性质知识点总结

二次函数图象和性质知识点总结二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:2y?ax?bx?c(a、b、c为常数,a≠0)①一般式:2y?a(x?h)?k(a、h、k为常数,a≠0)②顶点式:,其中(h,k)为顶点坐标。

③交点式:y?a(x?x1)(x?x2),其中x1,x2是抛物线与x轴交点的横坐标,即2一元二次方程ax?bx?c?0的两个根,且a≠0,(也叫两根式)。

2y?ax?bx?c的图象 2. 二次函数2y?ax?bx?c的图象是对称轴平行于(包括重合)y轴的抛物线,①二次函数几个不同的二次函数,如果a相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。

22y?a(x?h)?ky?ax②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。

22y?ax?bx?cy?a(x?h)?k的形式,然后③在画的图象时,可以先配方成2将y?ax的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点22y?ax?bx?cy?a(x?h)?k的形式,这样可以确定开口方法:也是将配成向,对称轴及顶点坐标。

然后取图象与y轴的交点(0,c),及此点关于对称轴对称的点(2h,c);如果图象与x轴有两个交点,就直接取这两个点(x1,0),1(x2,0)就行了;如果图象与x轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y轴交点及其对称点),一般画图象找5个点。

3. 二次函数的性质函22y?ax?bx?cy?a(x?h)?k(a、h、k为二次函数数 a、b、c为常数,a≠0 常数,a≠0)a>0 a<0 a>0 a<0 图象 (1)抛物线开口向上,(1)抛物线开口向下,(1)抛物线开口(1)抛物线开并向上无限延伸并向下无限延伸向上,并向上无口向下,并向限延伸下无限延伸性 (2)对称轴是x=(2)对称轴是x=(2)对称轴是x(2)对称轴是x =h,顶点是(h,=h,顶点是bb??k)(h,k)2a,顶点是2a,顶点是b4ac?b2b4ac?b2?,?,2a4a2a4a)()(质 (3)当x<h时,y随x的增大而时,y随x的增增大;当x>h随x的增大而减小;当随x的增大而增大;当大而减小;当x时,y随x的增>h时,y随x大而减小 bbx??x??的增大而增大。

二次函数及其图象

二次函数及其图象
顶点位置
函数的图像以y轴为对称轴。
与x轴的交点
当c=0时,函数与x轴无交点;当c>0时,函数与x轴有两 个交点;当c<0时,函数与x轴有一个交点。
CHAPTER 03
二次函数图象特征
开口方向
开口向上
当二次项系数a大于0时,函数图 像开口向上,顶点为最低点。
开口向下
当二次项系数a小于0时,函数图 像开口向下,顶点为最高点。
科技领域
图像处理
01
在计算机视觉和图像处理中,二次函数常被用于图像的缩放、
旋转和变形等操作中。
声音处理
02
在音频处理中,二次函数被用于声音的频谱分析和合成,以及
音频信号的滤波等。
航天技术
03
在航天学中,二次函数被用于描述火箭和卫星的运动轨迹,以
及太空探测器的路径规划等。
CHAPTER 06
二次函数与数学文化
CHAPTER 04
二次函数与一元二次方程
二次函数与一元二次方程的关系
01
二次函数是一元二次方程的图形 表示,一元二次方程是二次函数 的解析形式。
02
二次函数描述了一个抛物线的形 状,而一元二次方程则描述了该 抛物线与x轴的交点位置。
一元二次方程解法
公式法
使用求根公式计算一元二次方程 的解。
因式分解法
期货与期权定价
二次函数常被用于金融衍生品如 期货、期权等的定价模型中,通 过调整参数来估算未来资产价格
的不确定性。
物理领域
弹性力学
在研究材料的弹性和塑性问题时,经常使用二次函数来描述应变 和应力之间的关系。
波动方程
在物理学中,二次函数经常被用来描述波动现象,如弦的振动、电 磁波等。

二次函数图像

二次函数图像
函数类型
Y=a(x-h)2
a>0
a<0
图像
开口方向
向上
向下
对称轴
直线x=h
直线x=h
顶点
位置
X轴
X轴
坐标
(h,0)
(h,0)
最值
当x<h时,y最小=0
当x<h时,y最大=0
增减性
当x>h时,y随x的增大而增大
当x<h时,y随x的增大而减小
当x<h时,y随x的增大而增大
当x>h时,y随x的增大而减小
函数类型
函数类型
Y=ax2
a>0
a<0
图像
开口方向
向上
向下
对称轴
Y轴(直线x=0)
Y轴(直线x=0)
顶点
位置
原点
原点
坐标
(0,0)
(0,0)
最值
当x<0时,y最小=0
当x<0时,y最大=0
增减性
当x>0时,y随x的增大而增大
当x<0时,y随x的增大而减小
当x<0时,y随x的增大而增大
当x>0时,y随x的增大而减小
Y=a(x-h)2+k
a>0
a<0
图像
开口方向
向上
向下
对称轴
直线x=h
直线x=h
顶点
位置
贝塔尔坐标系(平面直角坐标系)内
贝塔尔坐标系(平面直角坐标系)内
当x<h时,y最小=k
当x<h时,y最大=k
增减性
当x>h时,y随x的增大而增大
当x<h时,y随x的增大而减小

二次函数(一般式)的图像和性质

二次函数(一般式)的图像和性质




5 2


12

4
2
2a
y
21
1 2
x


1
2
4a
2

4



1 2

2
2
∴顶点为(1,-2),对称轴为直线 x=1。
练习2 用公式法把y 2x2 8x 6 化成
y a x h2 k 的形式,并求出顶点坐标和
4ac b2 4a
0,且a<0,所以4ac b2
0,故
b2 4ac 0 。
判断2a+b的符号
(5)因为顶点横坐标小于1,即
b 2a
1

且a<0,所以-b>2a,故2a+b<0;
陈国彬
复习提问
1.y a x h2 k 的顶点坐标是_(__h_,__k_)_,
对称轴是__直__线__x_=__h_ 2.怎样把 y 3x2的图象移动,便可得到
y 3 x 22 5 的图象?
3.y 3 x 22 5 的顶点坐标是(-2,-5),
解: (1)因为抛物线开口向下,所以a<0;
判断b的符号
(2)因为对称轴在y轴右侧,所以 b 0 ,而a<0,故b>0;
2a
判断c的符号
(3)因为x=0时,y=c,即图象与y轴交点 的坐标是(0,c),而图中这一点在y轴正 半轴,即c>0;
判断b2-4ac的符号
(4)因为顶点在第一象限,其纵坐标
对称轴。
答案:y 2 x 22 2 ,顶点坐标为
(2,2)对称轴是直线 x=2
3. y ax2 bx c 图象的画法.

二次函数的图像与性质

二次函数的图像与性质

二次函数的图像与性质二次函数的性质二次函数()02≠++=a c bx ax y 的顶点坐标是(-a b 2,a b ac 442-),对称轴直线x=-a b 2,二次函数y=ax 2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax 2+bx+c(a≠0)的开口向上,x<-a b 2时,y 随x 的增大而减小;x>-a b 2时,y 随x 的增大而增大;x=-a b 2时,y 取得最小值a b ac 442-,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax 2+bx+c(a≠0)的开口向下,x<-a b 2时,y 随x 的增大而增大;x>-a b 2时,y 随x 的增大而减小;x=-a b 2时,y 取得最大值a b ac 442-,即顶点是抛物线的最高点.③抛物线y=ax 2+bx+c(a≠0)的图象可由抛物线y=ax 2的图象向右或向左平移a b 2个单位,再向上或向下平移ab ac 442-个单位得到的.二次函数上点坐标的特征二次函数y=ax 2+bx+c(a≠0)的图象是抛物线,顶点坐标是(-a b 2,ab ac 442-).①抛物线是关于对称轴x=-a b 2成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.②抛物线与y 轴交点的纵坐标是函数解析中的c 值.③抛物线与x 轴的两个交点关于对称轴对称,设两个交点分别是(x 1,0),(x 2,0),则其对称轴为x=221x x +【例1】已知()()212232m x m x m m y m m +-+-=--是关于x 的二次函数,求出它的解析式,并写出其二次项系数、一次项系数及常数项.【例2】下列各式中,一定是二次函数的有()①y=2x 2﹣4xz +3;②y=4﹣3x +7x 2;③y=(2x ﹣3)(3x ﹣2)﹣6x 2;④y=21x﹣3x +5;⑤y=ax 2+bx +c (a ,b ,c 为常数);⑥y=(m 2+1)x 2﹣2x ﹣3(m 为常数);⑦y=m 2x 2+4x ﹣3(m 为常数).A .1个B .2个C .3个D .4个【例3】(2017•东莞市一模)在同一坐标系中,一次函数y=ax+b 与二次函数y=bx 2+a 的图象可能是()A.B.C.D.【例4】(2017•辽阳)如图,抛物线y=x 2﹣2x﹣3与y 轴交于点C,点D 的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD 是以CD 为底边的等腰三角形,则点P 的横坐标为()A.1+2B.1﹣2C.2﹣1D.1﹣2或1+2【例5】(2017•唐河县三模)如图,在平面直角坐标系中,抛物线y=31x 2经过平移得到抛物线y=ax 2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为38,则a、b 的值分别为()A.31,34B.31,﹣38C.31,﹣34D.﹣31,34【例6】(2016•北仑区一模)如图,抛物线y=﹣x 2+5x﹣4,点D 是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD 的面积的最大值是多少?1、(2011秋•无锡期末)下列函数中,(1)y ﹣x 2=0,(2)y=(x +2)(x ﹣2)﹣(x ﹣1)2,(3)x x y 12+=,(4)322-+=x x y ,其中是二次函数的有()A .4个B .3个C .2个D .1个2、(2015秋•五指山校级月考)函数y=(m ﹣n )x 2+mx +n 是二次函数的条件是()A .m 、n 是常数,且m ≠0B .m 、n 是常数,且m ≠nC .m 、n 是常数,且n ≠0D .m 、n 可以为任何常数3、(2014•葫芦岛二模)在同一直角坐标系中,函数y=mx +m 和函数y=mx 2+2x +2(m 是常数,且m ≠0)的图象可能是()A .B .CD .4、(2017•扬州)如图,已知△ABC 的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x 2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A.b≤﹣2B.b<﹣2C.b≥﹣2D.b>﹣25、(2012秋•高安市期末)把抛物线y=﹣2x 2﹣4x﹣6经过平移得到y=﹣2x 2﹣1,平移方法是()A.向右平移1个单位,再向上平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向左平移1个单位,再向下平移3个单位6、(2017•泸州)已知抛物线y=41x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线y=41x 2+1上一个动点,则△PMF 周长的最小值是()A .3B .4C .5D .67、(2016•陕西校级模拟)如图,已知点A(8,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=6时,这两个二次函数的最大值之和等于()A.5B.358C.10D.528、(2010秋•西城区校级期中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(1,0),则下列结论:①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a﹣b+c<0,其中正确的是.9、(2017•孝感模拟)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论有(填序号).10、(2016•黄冈校级自主招生)方程2x﹣x 2=x 2的正实数根有个.11、(2011•路南区一模)已知二次函数y=(x﹣3a)2﹣(3a+2)(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.图中分别是当a=﹣1,a=﹣31,a=1时二次函数的图象.则它们的顶点所满足的函数关系式为.12、(2015•泗洪县校级模拟)若直线y=m (m 为常数)与函数y=的图象恒有三个不同的交点,则常数m 的取值范围是.13、(2017春•昌江区校级期中)记实数x 1,x 2中的最小值为min{x 1,x 2},例如min{0,﹣1}=﹣1,当x 取任意实数时,则min{﹣x 2+4,3x}的最大值为.14、(2016•锡山区一模)二次函数y=﹣x 2﹣2x 图象x 轴上方的部分沿x 轴翻折到x 轴下方,图象的其余部分保持不变,翻折后的图象与原图象x 轴下方的部分组成一个“M”形状的新图象,若直线y=21x+b 与该新图象有两个公共点,则b 的取值范围为.15、(2017春•平南县月考)抛物线238942++-=x x y 与y 轴交于点A,顶点为B.点P 是x 轴上的一个动点,当点P 的坐标是时,|PA﹣PB|取得最小值.16、(2014•上城区二模)已知当x=2m+n+2和x=m+2n 时,多项式x 2+4x+6的值相等,且m﹣n+2≠0,则当x=6(m+n+1)时,多项式x 2+4x+6的值等于.17、(2017•港南区二模)二次函数y=(a﹣1)x 2﹣x+a 2﹣1的图象经过原点,则a 的值为.18、(2017•西华县二模)已知y=﹣41x 2﹣3x+4(﹣10≤x≤0)的图象上有一动点P,点P 的纵坐标为整数值时,记为“好点”,则有多个“好点”,其“好点”的个数为.19、(2017•鄂州)已知正方形ABCD 中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m 个单位(m>0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是.20、作出下列函数的图象:(1)y=x 2﹣4x +3;(2)y=x 2﹣4|x |+3;(3)y=|x 2﹣4|x |+3|.21、(2017•海安县一模)在平面直角坐标系xOy 中,直线y=﹣41x+n 经过点A(﹣4,2),分别与x,y 轴交于点B,C,抛物线y=x 2﹣2mx+m 2﹣n 的顶点为D.(1)求点B,C 的坐标;(2)①直接写出抛物线顶点D 的坐标(用含m 的式子表示);②若抛物线y=x 2﹣2mx+m 2﹣n 与线段BC 有公共点,求m 的取值范围.22、(2011•泰州)已知二次函数y=x 2+bx ﹣3的图象经过点P (﹣2,5)(1)求b 的值并写出当1<x ≤3时y 的取值范围;(2)设P 1(m ,y 1)、P 2(m +1,y 2)、P 3(m +2,y 3)在这个二次函数的图象上,①当m=4时,y 1、y 2、y 3能否作为同一个三角形三边的长?请说明理由;②当m 取不小于5的任意实数时,y 1、y 2、y 3一定能作为同一个三角形三边的长,请说明理由.23、(2017•邵阳县模拟)(1)已知函数y=2x+1,﹣1≤x≤1,求函数值的最大值.(2)已知关于x的函数y=(m≠0),试求1≤x≤10时函数值的最小值.(3)己知直线m:y=2kx﹣2和抛物线y=(k2﹣1)x2﹣1在y轴左边交于A、B两点,直线l 过点P(﹣2、0)和线段AB的中点M,求直线1与y轴的交点纵坐标b的取值范围.24、(2015秋•长兴县月考)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=5,点E在CB边上,以每秒1个单位的速度从点C向点B运动,运动时间为t(s),过点E作AB的平行线,交AC边于点D,以DE为边向上作等边△DEF,设△ABC与△DEF重叠部分的面积为S.(1)当点F恰好落在AB边上时,求t的值;(2)当t为何值时,S有最大值?最大值是多少?。

二次函数的图像与性质

二次函数的图像与性质

弹簧振动:描述弹 簧振动的规律
波动:描述波动现 象,如声波、水波 等
电路:在交流电路 中,二次函数用于 描述电流与电压的 关系
与一次函数的比较
表达式不同:二次函数的一般形式为y=ax^2+bx+c,一次函数的一般形式为y=kx+b 图像不同:二次函数的图像是抛物线,一次函数的图像是直线 开口方向不同:二次函数的开口方向由a的符号决定,一次函数没有开口方向 顶点不同:二次函数有顶点,一次函数没有顶点

对称轴的证明
证明方法:利用 二次函数的对称 性,通过代入法 证明对称轴的存 在
证明过程:通过 计算二次函数在 x轴上的交点, 推导出对称轴的 方程
证明结论:二次 函数的图像关于 对称轴对称,且 对称轴的方程为 x=-b/2a
证明意义:理解 二次函数图像的 对称性质,有助 于解决与二次函 数相关的数学问 题
与坐标轴交点坐标的证明
证明方法:通过令二次函数等于0,解出x的值,得到与y轴交点的坐标
证明过程:将二次函数的一般形式代入x=0,得到y的值,即为与y轴的交点坐标
证明结果:当x=0时,y的值即为与y轴的交点坐标 证明结论:通过以上步骤,可以证明二次函数与y轴的交点坐标为(0,c)
汇报人:XX
与反比例函数的比较
函数形式:二次 函数的一般形式
为 y=ax^2+bx+c,
反比例函数的一 般形式为y=k/x,
其中k为常数且 k≠0
添加标题
图像:二次函数的 图像是一个抛物线, 反比例函数的图像 是两条渐近线,当 k>0时,图像在第
一、三象限;当 k<0时,图像在第
二、四象限
添加标题
性质:二次函数有 最小值或最大值, 而反比例函数没有 最小值和最大值, 当k>0时,函数在 x>0时单调递减, 在x<0时也单调递 减;当k<0时,函 数在x>0时单调递 增,在x<0时也单

二次函数图像和性质

二次函数图像和性质
A x1 P B x2
y
b c x1 x2 , x1 x2 a a
对称轴
AB=|x1-x2|= | a |
x x2 x 1 2
o
x
x1 x2 x 2
y
x1x2>0, 点A,点B在原点同侧
x1 x2 0, 原点右侧
x1 x2 0,原点左侧
x1x2<0,点A,点B在原点两侧 x1 x2 0, BO AO
2 4.当m= -1 时,y=(m+2)xm +3m+2是二次函数,
二.二次函数的图象及性质
a的符号 图象
开口方向 对称轴
a>0
a<0
x
开口向上
b 2a 4ac b 2 b ( , ) 4a 2a b x 当 2a 时,y x
开口向下
b 2a 4ac b 2 b ( , ) 4a 2a x
y=a(x-h)2 y=a(x-h)2+k
抛物线y=ax2向左 直线X=h (h,0) (h<0)、向右(h>0) 平移|h|个单位, 向上 (k>0)、向下(k<0) 直线X=h (h,k) 平移|k|个单位后,可以得 到抛物线y=a(x-h)2+k 。
a 越大,开口越小.
a 越小,开口越大.
做一做: 1 2 y 2 y x , x 1. 已知函数 2 的图象如图所示。 抛物线①②③④ 分别对应哪个函数?
3.已知抛物线y=ax2+2x+c 经过点(-1,0)、(0,3) (2)x取何值时,y 随 x 的增大而增大; x取何值时,抛物线在 x 轴的上方; x取何值时,y 随 x 的增大而减小且 y <0。 (3)利用图象求方程 ax2+2x+c=-5 解。

二次函数的图像与性质

二次函数的图像与性质

06
二次函数与一元二次方程的关 系
一元二次方程的基本概念
1 2
一元二次方程的标准形式
ax² + bx + c = 0,其中a、b、c是系数,且a≠0 。
判别式
Δ = b² - 4ac,用于判断一元二次方程的实数根 的个数。
3
根的求解
通过配方或公式法求解,若Δ > 0,方程有两个 实数根,若Δ = 0,方程有一个实数根,若Δ < 0 ,方程没有实数根。
顶点式
表达式
$y = a(x - h)^{2} + k$
描述
顶点式表示二次函数的顶点坐标,其中$(h, k)$是顶点坐标,$a$是二次项系数。
焦点式
表达式
$y = a\sqrt{x^{2} + 2ax + b}$
描述
焦点式主要用于描述二次函数的 焦点位置和形状,其中$a$和$b$ 分别是二次项和一次项的系数。
05
二次函数的应用
求最值问题
定义
设f(x)=ax2+bx+c(a,b,c是常数, a≠0),当a>0时,函数f(x)的图像是 一个开口向上的抛物线;当a<0时, 函数f(x)的图像是一个开口向下的抛物 线。
顶点
极值点
当a>0时,二次函数f(x)的图像在x=b/2a处取得最小值f(-b/2a);当a<0 时,二次函数f(x)的图像在x=-b/2a处 取得最大值f(-b/2a)。
对称
二次函数图像的对称主要改变函数的单调性。如果一个二次函数图像关于y轴对 称,那么它的单调性将发生改变;如果一个二次函数图像关于x轴对称,那么它 的单调性不变。
04
二次函数的解析式

二次函数的性质及其图象

二次函数的性质及其图象

象经过一、三、四象限,反比例函数 y
c x
经过二、四象限.故选择B.
经典考题
【例2】(2016年达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴
交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),
对称轴为直线x=1,下列结论:
( D)
①abc>0
(2)c<0时,抛物线与y轴的交点在y轴负半轴上.
(3)c=0时,抛物线过原点.
3.4.5 二次函数图象的平移
y=ax2
平移 |h|个 左 单 位 加 向右 右 (h 减 0)、 左 (h 0) y=a(x-h)2
上加下减 向上(k>0)、下(k<0)
平移|k|个单位
上加下减 向上(k>0)、下(k<0)
经典考题

4a 2b 4 36a 6b 0
,解得
a
1 2

b 3
(2)如图,过A作x轴的垂线,垂足为D(2,0),
连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E、
F.则:S△OAD
1 2
OD
AD
1 2
2
4
4.
S△ACD
1 2
AD
CE
1 2
4x
2
2x
4.
S△BCD
1 2
BD
CF
1 2
3.4.2 二次函数的图象及性质
要点梳理
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象是抛物线.
1.当a>0时,抛物线开口向上,对称轴是直线x= b .当x= b 时, y有最小
值为4ac b2 .在对称轴左边(即x<

二次函数的图像与性质

二次函数的图像与性质

学情分析:本节内容是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习的函数知识,是函数知识螺旋发展的一个重要环节.二次函数曲线——抛物线,也是人们最为熟悉的曲线之一.喷泉的水流、标枪的投掷等都形成抛物线路径.同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等.本节课研究最简单的二次函数y=±x2的图象,是学生学习函数知识的过程中的一个重要环节,既是前面所学知识的延续,又是探究其它二此函数的图象及其性质的基础,起到承上启下的作用.教学目标:1. 知识与技能目标(1)能够利用描点法作出函数y=x2的图象,并能根据图象认识和理解二次函数y= ax2的性质.(2)猜想并能作出y=- x2的图象,能比较它与y= x2的图象的异同.2.过程与方法目标(1)经历探索二次函数y= x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.(2)由函数y= x2的图象及性质,对比地学习y=- x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.3.情感、态度与价值观目标(1)经历探索的过程发现抛物线的性质,体会探索发现的乐趣,增强学习数学的自信心.(2)通过小组交流、讨论、比较,研究二次函数y= x2和y=- x2的图象,培养学生合作意识和交流能力.教学重点:经历探索二次函数y=±x2的图象的作法和性质的过程,理解二次函数y=a x2的性质.教学难点:描点法画y= x2的图象,体会数与形的相互联系。

教学过程:一、创设情境,提出问题学生观察:喷泉的水流、篮球的投掷形成的路径,抛物线型拱桥、抛物线型隧道,都与抛掷一个物体形成的路径的曲线类似,由此导入课题.紧接着提出两个问题:1.我们已经学过哪些函数?研究函数问题的一般步骤是怎样的?2.一次函数、反比例函数的图象各是怎样的图形?(设计意图:让学生回顾已学的函数类型、图象及研究函数问题的一般思路,以便学生运用类比的方法研究二次函数的相关问题.)二、合作交流,探究新知1.认识抛物线问题:一次函数的图象是一条直线,二次函数的图象是什么形状呢?让我们先来研究最简单的二次函数y=x2的图象.大家还记得画函数图象的一般步骤吗?(设计意图:通过这个问题让学生回忆起用描点法画图的一般步骤,以便于学生下一步的画图.)画一画:你能试着用描点法画二次函数y= x2的图象吗?(两名学生上台板演,其他学生在下面尝试画图.在学生画图时,教师溶入到学生中,了解并搜集学生可能出现的各种问题.比如:学生可能会画成折线、半个抛物线、没画出延伸的趋势等情形,这时正好针对问题鼓励小组间互相讨论、相互比较,交流各自的观点.)问题:通过刚才的分析你认为在画y= x2的图象时:(1)列表取值应注意什么问题?(取对称的7或5个点)(2)点和点之间用什么样的线连接? (用平滑曲线按自变量从小到大或从大到小的顺序连接)(学生尝试描述y= x2的图象,建立和实际问题的联系.再通过投篮的动态演示,形象的描述并体会y= x2的图象的形状是抛物线,并且与开始的引例相呼应.)(设计意图:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了.事实上,数学学习应该与学生的生活经验融合起来,让他们在生活中去发现数学、发现生活中的数学、探究数学、认识并掌握数学.)2.探究抛物线y= x2的性质议一议:请你观察y=x2的图象,你能得到哪些方面的性质,然后分组讨论.(在学生讨论交流之后,请每组的学生代表一一发表自己的观察结果.在此过程中,教师不能作裁判,而要把评判权交给学生,注意培养学生语言的规范化、条理化 .待学生发表自己的观点之后系统地总结一下y= x2的图象的性质)抛物线y=x2的性质(1)开口:抛物线的开口向上.(2)对称性:它是轴对称图形,对称轴是y轴(或x=0).(3)增减性:在对称轴的左侧(x<0时),y随x的增大而减小;在对称轴的右侧(x>0),y随着x的增大而增大.(4)顶点:图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图象的最低点,坐标为(0,0).(5)最值:因为图象有最低点,所以函数有最小值,当x=0时,y最小=0.1x2的图像,后总结图像的性质类似地:让学生再分组画出函数y= 2x2 y=2(设计意图:在此问题上,不再按课本上的问题一一叠列给学生,而是给学生一个开放的空间,给学生一个交流的平台,一个展现自我的空间.仁者见仁,智者见智,不同的学生肯定会有不同的认识,通过小组讨论与交流,学生可以相互学习,共同提高.)3.探究抛物线y=-x2的性质想一想:(1)二次函数y=- x2的图象是什么形状?先想一想,然后作出它的图象.(2) 类似的你能说出它的性质吗?(让学生先猜想再画图验证,在学生画图时可让每一小组部分同学将y= x2与y=-x2的图象画在一个坐标系内,而后学生通过讨论交流得出结论,教师只给以必要的引导.)1x2的图像,后总结图像的性质类似地:让学生再分组画出函数y=- 2x2 y= -2(设计意图:这一问题设计为学生提供思考的空间,培养学生在观察、分析、对比、交流中发展分析能力和从图象中获取信息的能力.)议一议:函数y=x2与y=-x2的图象及其性质有何异同?(学生观察图形,通过小组讨论,归纳y=x2与y=-x2的图象及其性质的异同,然后回答,学生想不到的,及时给予引导.)不同点:开口方向不同:函数值随自变量的增大的变化趋势而不同:函数的最值不同:相同点:关系:它们的图像关于x轴对称(设计意图:通过比较y=x2与y=-x2的性质的异同,让学生更充分地理解y =±x2的性质.)三、变式训练,巩固提高(课堂检测)1.在二次函数y= x2的图象上,与点A(-5,25)对称的点的坐标是.顶点为:_____2.点(x1,y1)、 (x2,y2)在抛物线y=-3x2上,且x1> x2>0,则y1_____y2. 3.设边长为x cm的正方形的面积为y cm2,y是x的函数,该函数的图象是下列各图形中()(设计意图:通过一组简单的练习题,及时巩固所学知识,使学生品尝到成功的喜悦.)四、总结反思,纳入系统通过今天的学习,你是否对二次函数y=a x2有了一些新的认识?能谈谈你的想法吗?(由学生总结本节课所学习的主要内容.在学生归纳的基础上总结它们的区别与生的素质,并且逐渐培养学生的良好的个性品质.)五、课后延伸,提升能力你能类比地画出函数:12+y的图象吗?动手画一下吧!=x教学反思:针对本节课的特点,采用“创设情境—作图探索—总结归纳—知识运用”为主线的教学方法.把教学的重心放在如何促进学生的“学”上,引导学生采用观察、实验、自主探索、小组活动、集体交流等多样化的学习方式.教学过程中始终坚持学生为主体,教师为主导的方针,使探究知识和培养能力融为一体,让学生不仅学到科学探究的方法,而且体验到探究的甘苦,领会到成功的喜悦.。

二次函数图像与性质完整归纳

二次函数图像与性质完整归纳

⼆次函数图像与性质完整归纳⼆次函数图像与性质完整归纳————————————————————————————————作者:————————————————————————————————⽇期:⼆次函数的图像与性质⼀、⼆次函数的基本形式1. ⼆次函数基本形式:2y ax =的性质: a 的绝对值越⼤,抛物线的开⼝越⼩。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质: a 的符号开⼝⽅向顶点坐标对称轴性质0a >向上()00, y 轴0x >时,y 随x 的增⼤⽽增⼤;0x <时,y 随x 的增⼤⽽减⼩;0x =时,y 有最⼩值0. 0a < 向下()00,y 轴0x >时,y 随x 的增⼤⽽减⼩;0x <时,y 随x 的增⼤⽽增⼤;0x =时,y 有最⼤值0.a 的符号开⼝⽅向顶点坐标对称轴性质0a >向上()0c , y 轴0x >时,y 随x 的增⼤⽽增⼤;0x <时,y 随x 的增⼤⽽减⼩;0x =时,y 有最⼩值c .0a <向下()0c ,y 轴0x >时,y 随x 的增⼤⽽减⼩;0x <时,y 随x 的增⼤⽽增⼤;0x =时,y 有最⼤值c .a 的符号开⼝⽅向顶点坐标对称轴性质()0h ,X =hx h >时,y 随x 的增⼤⽽增⼤;x h <时,y 随x 的增⼤⽽减⼩;x h =时,y 有最⼩值0. 0a <向下()0h ,X=hx h >时,y 随x 的增⼤⽽减⼩;x h <时,y 随x 的增⼤⽽增⼤;x h =时,y 有最⼤值0.a 的符号开⼝⽅向顶点坐标对称轴性质0a >向上()h k , X=hx h >时,y 随x 的增⼤⽽增⼤;x h <时,y 随x 的增⼤⽽减⼩;x h =时,y 有最⼩值k . 0a < 向下 ()h k ,X =hx h >时,y 随x 的增⼤⽽减⼩;x h <时,y 随x 的增⼤⽽增⼤;x h =时,y 有最⼤值k .⼆、⼆次函数图象的平移1.平移步骤:⽅法⼀:⑴将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移⽅法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成⼋个字“左加右减,上加下减”.⽅法⼆:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、⼆次函数()2y a x h k =-+与2y ax bx c =++的⽐较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配⽅可以得到前者,即2 2424b ac b y a x a a -?=++,其中2424b ac b h k a a -=-=,. 四、⼆次函数2y ax bx c =++图象的画法五点绘图法:利⽤配⽅法将⼆次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开⼝⽅向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.⼀般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下⼏点:开⼝⽅向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、⼆次函数2y ax bx c =++的性质1.当0a >时,抛物线开⼝向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ??--,.当2b x a <-时,y 随x 的增⼤⽽减⼩;当2bx a>-时,y 随x 的增⼤⽽增⼤;当2bx a=-时,y 有最⼩值244ac b a -. 2. 当0a <时,抛物线开⼝向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ??--,.当2b x a <-时,y 随x 的增⼤⽽增⼤;当2b x a >-时,y 随x 的增⼤⽽减⼩;当2b=-时,y 有最⼤值244ac b a-.六、⼆次函数解析式的表⽰⽅法1.⼀般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何⼆次函数的解析式都可以化成⼀般式或顶点式,但并⾮所有的⼆次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以⽤交点式表⽰.⼆次函数解析式的这三种形式可以互化.七、⼆次函数的图象与各项系数之间的关系1. ⼆次项系数a⼆次函数2y ax bx c =++中,a 作为⼆次项系数,显然0a ≠.⑴当0a >时,抛物线开⼝向上,a 的值越⼤,开⼝越⼩,反之a 的值越⼩,开⼝越⼤;⑵当0a <时,抛物线开⼝向下,a 的值越⼩,开⼝越⼩,反之a 的值越⼤,开⼝越⼤.总结起来,a 决定了抛物线开⼝的⼤⼩和⽅向,a 的正负决定开⼝⽅向,a 的⼤⼩决定开⼝的⼤⼩.2. ⼀次项系数b在⼆次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴a=在y 轴左边则0>ab ,在y 轴的右侧则0总结:3.常数项c⑴当0c >时,抛物线与y 轴的交点在x 轴上⽅,即抛物线与y 轴交点的纵坐标为正;⑵当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶当0c <时,抛物线与y 轴的交点在x 轴下⽅,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯⼀确定的.⼆次函数解析式的确定:根据已知条件确定⼆次函数解析式,通常利⽤待定系数法.⽤待定系数法求⼆次函数的解析式必须根据题⽬的特点,选择适当的形式,才能使解题简便.⼀般来说,有如下⼏种情况:1. 已知抛物线上三点的坐标,⼀般选⽤⼀般式;2.已知抛物线顶点或对称轴或最⼤(⼩)值,⼀般选⽤顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,⼀般选⽤两根式;4. 已知抛物线上纵坐标相同的两点,常选⽤顶点式.⼋、⼆次函数图象的对称⼆次函数图象的对称⼀般有五种情况,可以⽤⼀般式或顶点式表达1.关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3.关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然⽆论作何种对称变换,抛物线的形状⼀定不会发⽣变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或⽅便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开⼝⽅向,再确定其对称抛物线的顶点坐标及开⼝⽅向,然后再写出其对称抛物线的表达式.⼆次函数图像参考:⼗⼀、y=2(x-4)2-3y=2(x-4)2y=2x 2y=x 22y=2x 2y=x 2y=-2x 2y= -x 2y= -x 22y=2x 2-4y=2x 2+2y=2x 2y=3(x+4)2y=3(x-2)2y=3x 2y=-2(x+3)2y=-2(x-3)2y=-2x 2【例题精讲】⼀、⼀元⼆次函数的图象的画法【例1】求作函数64212++=x x y 的图象【解】 )128(21642122++=++=x x x x y14]-4)[(21 2222+=+=x x以4-=x 为中间值,取x 的⼀些值,列表如下:x … -7 -6 -5 -4 -3 -2-1…y … 25 0 23- -2 23- 0 25 …【例2】求作函数342+--=x x y 的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数及其图像
【知识点回顾】 1. 解析式:
(1)一般式:y =ax 2
+bx +c (a ≠0)
(2)顶点式:y =a (x -h )2
+k (a ≠0),其图象顶点坐标(h ,k ).
(3)两根式:y =a (x -x 1)( x -x 2) (a ≠0),其图象与x 轴的两交点分别为(x 1,0),(x 2,0). 注意:①一般式可通过配方法化为顶点式.②求二次函数解析式通常由图象上三个点的坐标,用待定系数法求得. 若已知抛物线的顶点和对称轴,可用顶点式;若已知抛物线与x 轴的两个交点,可用两根式;若已知三个非特殊点,通常用一般式.
2
a >0
3. 二次函数y =a (x -h )2
+k (a ≠0)的对称轴是______________,顶点坐标是___________.
4. 二次函数y =ax 2+bx +c 用配方法可化成y =a (x -h )2
+k 的形式,其中h =____,k =________.
5. 二次函数y =a (x -h )2+k 的图象和y =ax 2
图象的关系.
6. 二次函数y =ax 2
+bx +c 图象与a ,b ,c 符号的关系.
(1)a 决定抛物线开口方向:a >0时抛物线开口向上;a <0时抛物线开口向下; (2)a 、b 决定对称轴x =-
2b
a
的位置:ab >0时对称轴在y 轴左侧;b =0时对称轴为y 轴; ab <0时对称轴在y 轴右侧.
(3)c 决定抛物线与y 轴交点的位置:c >0时抛物线交y 轴于正半轴;c =0时抛物线过原点;c <0时抛物线交y 轴于负半轴.
7.抛物线的平移
抛物线的平移主要是移动顶点的位置,将y=ax 2
沿着y 轴(上“+”,下“-”)平移k (k>0)个单位得到函数y=ax 2
±k ,将y=ax 2
沿着x 轴(右“-”,左“+”)平移h (h>0)个单位得到y=a (x ±h )2
.•在平移之前先将函数解析式化为顶点式,再来平移,若沿y•轴平移则直接在解析式的常数项后进行加减(上加下减),若沿x 轴平移则直接在含x 的括号内进行加减(右减左加). 【典例精析】
例1 已知:二次函数为y=x 2-x+m ,(1)写出它的图象的开口方向,对称轴及顶点坐标;(2)m 为何值时,顶点在x 轴上方,(3)若抛物线与y 轴交于A ,过A 作AB ∥x 轴交抛物线于另一点B ,当S △AOB =4时,求此二次函数的解析式.
例2 如图,抛物线经过、两点,与轴交于另一点.
(1)求抛物线的解析式;
(2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标; (3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.
2
4y ax bx a =+-(10)A -,(04)C ,x B (1)D m m +,D BC BD P 45DBP
∠=°P
【迎考精练】
一、选择题
1.抛物线(是常数)的顶点坐标是()
A.B.C.D.
2.根据下表中的二次函数的自变量x与函数y的对应值,可判断二次函数的图像与x轴()
A.只有一个交点
B.有两个交点,且它们分别在y轴两侧
C.有两个交点,且它们均在y轴同侧
D.无交点
3.函数y=ax+1
与y=
ax2+
bx
+1(a≠0)的图象可能是()
4.二次函数的图象如图2所示,若点A(1,y1)、B(2,y2)是它图象上的两点,则y1与y2的大小关系是()
A.B.C.D.不能确定
5.将函数的图象向右平移a个单位,得到函数的图象,则
2
2()
y x m n
=++m n

()
m n
,()
m n
-,()
m n
-,()
m n
--,
c
bx
ax
y+
+
=2
44
c
bx
ax
y+
+
=2
2
1
y
y<2
1
y
y=2
1
y
y>
2
y x x
=+(0)
a>232
y x x
=-+
B.C.D.
a 的值为
A .1
B .2
C .3
D .4
6.在平面直角坐标系中,先将抛物线关于轴作轴对称变换,再将所得的抛物线关于轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A . B .
C. D .
7.把二次函数用配方法化成的形式 A. B. C. D. 8.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/s
D .5 m/s
二、填空题
1.若把代数式化为的形式,其中为常数,
则=
.
2.已知二次函数的图象经过原点及点(,),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为
3.抛物线的顶点坐标为__________.
4.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是 个.
5.抛物线的图象如图所示, 则此抛物线的解析式为 .
2
2y x x =+-x y 2
2y x x =--+2
2y x x =-+-22y x x =-++2
2y x x =++34
12+--=x x y ()k h x a y +-=2
()2241
2+--
=x y ()424
12+-=x y ()42412++-=x y 3212
12
+⎪⎭⎫ ⎝⎛-=x y 2
120
y x =2
23x x --()2
x m k -+,m k m k +1
2-14
-2
3(1)5y x =--+2
y ax bx c =++x (20)-,1(0)x ,112x <<y (02),
420a b c -+=0a b <<20a c +>210a b -+>2
y x bx c
=-++
6.函数取得最大值时,______. 三、解答题
1.已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式.
2.已知为直角三角形,,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、

(1)求点的坐标(用表示); (2)求抛物线的解析式;
(3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结
并延长交于点,试证明:
(2)(3)y x x =--x =ABC ∆90ACB ∠=︒AC BC =A C x B 3m 0m >AB y D P B D A m Q P B PQ BC E BQ AC F (FC AC
3.已知二次函数过点A (0,),B (,0),C (). (1)求此二次函数的解析式;
(2)判断点M (1,)是否在直线AC 上?
(3)过点M (1,
)作一条直线与二次函数的图象交于E 、F 两点(不同于A ,B ,C 三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.
2-1-59
48
,1
2
1
2
l 第3题
4.如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是
(-1,2).
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO.
5.新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12
(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;
(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);
(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?
6.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.
(1)求一次函数的表达式;
(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价的范围.
7.如图1,已知:抛物线与轴交于两点,与轴交于点C,经过
B、C两点的直线是,连结.
(1)B、C两点坐标分别为B(_____,_____)、C(_____,_____),抛物线的函数关系式为______________;
(2)判断的形状,并说明理由;
(3)若内部能否截出面积最大的矩形(顶点在各边上)?若能,求出在边上的矩形顶点的坐标;若不能,请说明理由.
[抛物线的顶点坐标是]。

相关文档
最新文档