整式的乘法测试题附答案
(完整版)整式的乘法测试题(附答案)
整式的乘法班级 姓名 学号 得分一、填空题(每格2分,共28分)1、()()=--52a a ;()()=-⋅2772-m m ; 4774)()(a a -+-= ;()()=--x y y x 2332-_______()[]⋅+323-y x ()[]432-y x += ;()=⨯⎪⎭⎫ ⎝⎛200320025.1-32 . 2、已知:a m =2,b n =32,则n m 1032+=________3、若2134825125255=n n ,则=n ________4、已知,32=n m ()=-n n m m 22234)3(_______5、已知互为相反数,和b a 且满足()()2233+-+b a =18,则=⋅32b a6、已知:,52a n =b n =4,则=n 610_______7、()()122++=++ax x n x m x ,则a 的取值有_______种8、当-1≤x ≤2时,函数6+=ax y 满足10<y ,则常数a 的取值范围是_______9、正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),B 3(7,4), 则B n 的坐标是______________.二、选择题(每题3分,共24分)1、 下列计算中正确的是( )A 、()6623333-y x y x = B 、20210a a a =⋅ C 、()()162352m m m=-⋅- D 、1263428121y x y x -=⎪⎭⎫ ⎝⎛- 2、若(x x -2+m )(x -8)中不含x 的一次项,则m 的值为( )A 、8B 、-8C 、0D 、8或-83、(-a +1)(a +1)(a 2+1)等于( )A 、a 4-1B 、a 4+1C 、a 4+2a 2+1D 、1-a 44、1405=a ,2103=b ,2802=c ,则a 、b 、c 的大小关系是( )A 、c b a <<B 、c a b <<C 、b a c <<D 、a b c <<5、若142-=y x ,1327+=x y ,则y x -等于( )A 、-5B 、-3C 、-1D 、16、()()1666---+n n 的值为( )A 、0B 、1或- 1C 、()16-+nD 、不能确定7、若三角形的三边长分别为a 、b 、c ,满足03222=-+-b c b c a b a ,则这个三角形是( )A 、直角三角形B 、等边三角形C 、锐角三角形D 、等腰三角形8、如图,等边三角形ABC 的边长为4,将此三角形置于平面直角坐标系中,使得AB 在x 轴的正半轴上,A 点坐标为(2,0),C 点坐标为(4,32)若直线b x y +-=3与三角形有交点,则b 的范围是( )A 、12326+≤≤xB 、186≤≤xC 、181232≤≤+xD 、180≤≤x二、解答题(共48分)1、 计算(每题4分,共16分)(1)()322635-a ab a - (2) 3232⎪⎭⎫ ⎝⎛-b a 2231⎪⎭⎫ ⎝⎛ab 2343b a(3)()()()()12561161412++++ (4)10098-992011-2010222⨯2、(6分)解不等式(3x -2)(2x -3)>(6x +5)(x -1)+153、(6分)先化简,再求值(32)(23)(2)(2)a b a b a b a b +----,其中11.5,4a b =-=4、(6分)已知099052=-+x x ,求1019985623+-+x x x 的值.5、(6分)已知一个长方形的长增加3cm ,宽减少1cm ,面积保持不变,若长减少2cm ,宽增加4cm ,面积也保持不变,求原长方形的面积。
整式的乘法测试题(附答案)
整式的乘法测试题班级 姓名 学号 得分一、填空题(每格2分,共28分)1、()()=--52a a ;()()=-⋅2772-m m ; 4774)()(a a -+-= ;()()=--x y y x 2332-_______()[]⋅+323-y x ()[]432-y x += ;()=⨯⎪⎭⎫ ⎝⎛200320025.1-32 . 2、已知:a m =2,b n =32,则n m 1032+=________3、若2134825125255=n n ,则=n ________4、已知,32=n m ()=-n n m m 22234)3(_______5、已知互为相反数,和b a 且满足()()2233+-+b a =18,则=⋅32b a6、已知:,52a n =b n =4,则=n 610_______7、()()122++=++ax x n x m x ,则a 的取值有_______二、选择题(每题3分,共24分)1、 下列计算中正确的是( )A 、()6623333-y x y x = B 、20210a a a =⋅ C 、()()162352m m m=-⋅- D 、1263428121y x y x -=⎪⎭⎫ ⎝⎛- 2、若(x x -2+m )(x -8)中不含x 的一次项,则m 的值为( )A 、8B 、-8C 、0D 、8或-83、(-a +1)(a +1)(a 2+1)等于( )A 、a 4-1B 、a 4+1C 、a 4+2a 2+1D 、1-a 4 4、1405=a ,2103=b ,2802=c ,则a 、b 、c 的大小关系是( )A 、c b a <<B 、c a b <<C 、b a c <<D 、a b c <<5、若142-=y x ,1327+=x y ,则y x -等于( )A 、-5B 、-3C 、-1D 、16、()()1666---+n n 的值为( )A 、0B 、1或- 1C 、()16-+nD 、不能确定7、若三角形的三边长分别为a 、b 、c ,满足03222=-+-b c b c a b a ,则这个三角形是( )A 、直角三角形B 、等边三角形C 、锐角三角形D 、等腰三角形二、解答题(共48分)1、 计算(每题6分,共12分)(1)()322635-a ab a - (2) 3232⎪⎭⎫ ⎝⎛-b a 2231⎪⎭⎫ ⎝⎛ab 2343b a3、(6分)先化简,再求值(32)(23)(2)(2)a b a b a b a b +----,其中11.5,4a b =-=4、(6分)已知099052=-+x x ,求1019985623+-+x x x 的值.5.解方程(8分)(1) (x -3)(x -2)+18 = (x+9)(x+1)6.解不等式(8分) (3x+4)(3x -4) <9(x -2)(x+3)7、(8分)已知一个长方形的长增加3cm,宽减少1cm,面积保持不变,若长减少2cm,宽增加4cm,面积也保持不变,求原长方形的面积。
(完整版)《整式的乘法》测试题含答案
1.6 整式的乘法(总分100分 时间40分钟)一、填空题:(每题3分,共27分)1.(-3xy)·(-x 2z)·6xy 2z=_________.2. 2(a+b)2·5(a+b)3·3(a+b)5=____________.3.(2x 2-3xy+4y 2)·(-xy)=_________.4.3a(a 2-2a+1)-2a 2(a-3)=________.5.已知有理数a 、b 、c 满足│a-1│+│a+b │+│a+b+c-2│=0,则代数式(-•3ab).(-a 2c).6ab2的值为________.6.(a+2)(a-2)(a 2+4)=________.7.已知(3x+1)(x-1)-(x+3)(5x-6)=x 2-10x+m,则m=_____.8.已知ax 2+bx+1与2x 2-3x+1的积不含x 3的项,也不含x 的项,那么a=•_______,b=_____.9.123221123221()()n n n n n n n a a a b a b ab b b a a b a b ab b ----------+++++-+++++L L =____________.二、选择题:(每题4分,共32分)10.若62(810)(510)(210)10a M ⨯⨯⨯=⨯,则M 、a 的值可为( )A.M=8,a=8B.M=2,a=9C.M=8,a=10D.M=5,a=1011.三个连续奇数,若中间一个为n,则它们的积为( )A.6n 2-6nB.4n 3-nC.n 3-4nD.n 3-n12.下列计算中正确的个数为( )①(2a-b)(4a 2+4ab+b 2)=8a 3-b 3 ②(-a-b)2=a 2-2ab+b 2③(a+b)(b-a)=a 2-b 2 ④(2a+12b)2=4a 2+2ab+14b 2 A.1 B.2 C.3 D.413.设多项式A 是个三项式,B 是个四项式,则A ×B 的结果的多项式的项数一定是( )A.多于7项B.不多于7项C.多于12项D.不多于12项14.当n 为偶数时,()()m n a b b a -⋅-与()m n b a +-的关系是( )A.相等B.互为相反数C.当m 为偶数时互为相反数,当m 为奇数时相等D.当m 为偶数时相等,当m 为奇数时为互为相反数15.若234560a b c d e <,则下列等式正确的是( )A.abcde>0B.abcde<0C.bd>0D.bd<016.已知a<0,若33n a a -⋅的值大于零,则n 的值只能是( )A.奇数B.偶数C.正整数D.整数17.M=(a+b)(a-2b),N=-b(a+3b)(其中a ≠0),则M,N 的大小关系为( )A.M>NB.M=NC.M<ND.无法确定三、解答题:(共41分)18.(1)解方程4(x-2)(x+5)-(2x-3)(2x+1)=5.(3分)(2)化简求值:x(x 2-4)-(x+3)(x 2-3x+2)-2x(x-2),其中x=1.5.(3分)19.已知3n m x x x x ⋅⋅=,且m 是n 的2倍,求m 、n(5分)20.已知x+3y=0,求32326x x y x y +--的值.(6分)21.在多项式533ax bx cx ++-中,当x=3时,多项式的值为5,求当x=-3时,多项式的值.(6分)22.求证:多项式(a-2)(a 2+2a+4)-[3a(a+1)2-2a(a-1)2-(3a+1)(3a-1)]+•a(1+a)的值与a 的取值无关.23.求证:N=2212532336n n n n n ++⋅⋅--⋅ 能被13整除.(6分)24.求N=171225⨯是几位正整数.(6分)答案:1.18x 4y 3z 22.30(a+b)103.-2x 3y+3x 2y 2-4xy 34.a 3+3a5.-36 •6.•a 4-167.-3x 3-x+178.2,3 9.n n a b -10.C 11.C 12.C 13.D 14.D 15.D 16.B 17.A 18.(1)x=218(2)0 19. ∵1132m n m n ++=⎧⎨=⎩ ∴84m n =⎧⎨=⎩20.∵x+3y=0 ∴x 3+3x 2y-2x-6y=x 2(x+3y)-2(x+3y)=x 2·0-2·0=021.由题意得35a+33b+3c-3=5∴35a+33b+3c=8∴(-3)5a+(-3)3b+(-3)c-3=-(35a+33b+3c)-3=-8-3=-1122.原式=-9,原式的值与a 的取值无关23.∵21222532332n n n n n +++⨯⨯-⋅⋅=212125321232n n n n ++⨯⨯-⋅⋅ =211332n n +⋅⋅∴能被13整除24.∵N=171251212213252253210 3.210⨯=⨯⨯=⨯=⨯∴N 是位数为14的正整数.。
(完整版)整式的乘法习题(含详细解析答案)
整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。
八年级数学上册《第十四章 整式的乘法》单元测试题及答案(人教版)
八年级数学上册《第十四章 整式的乘法》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列运算中,结果是a 5的是( )A .a 2•a 3B .a 10÷a 2C .(a 2)3D .(﹣a )52.下列计算中正确的是( )A .a ×a 2×a 3=a 6B .a 3+a 3=2a 6C .a 6÷a 3=a 2D .(a 2)3=a 53.若(x-5)(x+4)=x 2+ax-20,则a 的值为( )A .-5B .-1C .1D .44.若a 为正整数,则(a⋅a⋯⋯a)2a 个=( )A .a 2aB .2aaC .aaD .a 25.(−x +2y)(x −2y)2[−(−x +2y)]3 =( )A .−(x −2y)6B .(x −2y)6C .(−x +2y)6D .−(x +2y)66.若(x 2+px+8)(x 2-3x+q)乘积中不含 x 2 项和 x 3 项,则p 、q 的值为( )A .p=0,q=0B .p=3,q=1C .p=–3, q=–9D .p=–3,q=17.已知x a =2,x b =4则x 2a−b 的值为( ).A .0B .1C .8D .168.某些代数恒等式可用几何图形的面积来验证,如图所示的几何图形的面积可验证的代数恒等式是()A .2a(a +b)=2a 2+2abB .2a(2a +b)=4a 2+2abC .(a +b)2=a 2+2ab +b 2D .(a +b)(a −b)=a 2−b 2二、填空题9.﹣2a (a ﹣b )= .10.计算 6m 6n 3÷3m 2n 211.(x ﹣1)(x+a )的结果是关于x 的二次二项式,则a= .12.已知(x+1)x+4=1,则x= .13.若(x+3)(x2−ax+7)的乘积中不含x的一次项,则a=.三、解答题14.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=- 14,y=- 12.15.计算:(1)(5a2b2c3)4÷(﹣5a3bc)2;(2)(2a2b)4•3ab2c÷3ab2•4b.16.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=−2时,求此时y的值.17.如图,将一个长小形铁皮剪去一个小正方形.(1)用含有a,b的代数式表示余下阴影部分的面积;(2)当a=6,b=2时,求余下阴影部分的面积.18.题目:若a2+a﹣4=0,求代数式(a+2)2+3(a+1)(a﹣1)的值.小明的解法如下:原式=a2+4a+4+3(a2﹣1)(第一步)=a2+4a+4+3a2﹣1(第二步)=4a2+4a+3(第三步)由a2+a﹣4=0得a2+a=4,(第四步)所以原式=4a2+4a+3=4(a2+a)+3=4×4+3=19(第五步)根据小明的解法解答下列问题:(1)小明的解答过程在第步上开始出现了不符合题意,错误的原因是;(2)请你借鉴小明的解题方法,写出此题的符合题意解答过程.19.(1)计算下面两组算式:①(3×5)2与32×52;②[(−2)×3]2与(−2)2×32;(2)根据以上计算结果想开去:(ab)3等于什么?(直接写出结果)(3)猜想与验证:当n为正整数时,(ab)n等于什么? 请你利用乘方的意义说明理由.(4)利用上述结论,求(−4)2020×0.252021的值.参考答案1.A2.A3.B4.A5.A6.B7.B8.A9.﹣2a2+2ab 10.2m4n11.0或1 12.-4或-2或013.7314.解:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)].=2xy-y2当x=- 14,y=- 12时,原式=0.15.(1)解:(5a2b2c3)4÷(﹣5a3bc)2=54a8b8c12÷52a6b2c2=25a2b6c10(2)解:(2a2b)4•3ab2c÷3ab2•4b=16a8b4•3ab2c÷3ab2•4b=(16×3÷3×4)(a8+1﹣1b4+2﹣2+1c)=64a8b5c16.(1)解:∵x=2m+1∴2m=x−1∴y=3+(22)m=3+(2m)2=3+(x−1)2=x2−2x+4(2)解:当x=−2时17.解:(1)根据图形可得:S阴影部分的面积=(a+b)(2a+b)﹣a2=2a2+ab+2ab+b2﹣a2=a2+3ab+b2;(2)当a=6,b=2时S阴影部分的面积=62+3×6×2+22=36+36+4=76.18.(1)二;去括号时,未将﹣1也乘以3(2)解:原式=a2+4a+4+3(a2﹣1)(第一步)=a2+4a+4+3a2﹣3(第二步)=4a2+4a+1(第三步)由a2+a﹣4=0得a2+a=4,(第四步)所以原式=4a2+4a+1=4(a2+a)+1=4×4+1=17(第五步).19.(1)解:①(3×5)2 =152=22532×52 =9×25=225(3×5)2 = 32×52②[(−2)×3]2 =(-6)2=36(−2)2×32 =4×9=36[(−2)×3]2 = (−2)2×32(2)(ab)3=a3b3(3)解:(ab)n=(ab)·(ab)·⋯·(ab)︸n个=(a·a·⋯·a︸n个)·(b·b·⋯·b︸n个)=a n b n(4)解:(−4)2020×0.252021 = (−4×0.25)2020×0.25=1×0.25=0.25。
【精选】湘教版七年级下册数学第二章《整式的乘法》测试卷(含答案)
1 【精选】湘教版七年级下册数学第二章《整式的乘法》测试卷(含答案)一、选择题(共6题,每题3分,共18分)1.计算(-3a )3的正确结果是( )A .-3a 3B .27a 3C .-27a 3D .-9a 32.下列计算正确的是( )A .b 2·b 2=2b 2B .x 4·(x 4-1)=x 16-x 4C .(-2a )2=4a 2D .(m 2)3·m 4=m 93.下列各式中,与(1-a )2相等的是( )A .a 2-1B .a 2-2a +1C .a 2-2a -1D .a 2+14.下列各式能用平方差公式计算的是( )A .(3x +5y )(3x -5y )B .(1-5x )(5x -1)C .(-x +2y )(x -2y )D .(x +y )(y +x )5.根据如下图形的面积关系得到的数学公式是( )A .a (a -b )=a 2-abB .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a (a +b )=a 2+ab6.若(x 2-mx +1)(x -2)的积中不含x 的二次项,则m 的值是( )A .-1B .-2C .1D .2二、填空题(共6题,每题4分,共24分)7.计算:4a 2·⎝ ⎛⎭⎪⎫-12a =________. 8.若(m +1)(m -1)=1,则m 2=________.9.如果一个长方形的长是(x +3y )m ,宽是(x -3y )m ,那么该长方形的面积是______m 2.10.已知代数式-3x m -1y 3与2x n ym +n 是同类项,则-3x m -1y 3与2x n y m +n 的积是____________.11.计算:852-130×85+652=________.12.若x+y=2,x2+y2=4,则x2 023+y2 023的值是________.三、解答题(共6题,共58分)13.(6分)计算:(1)x·x3+x2·x2; (2)(-a3)2·(-a2)3;(3)x4·x6-(x5)2; (4)(a-b)2+a(2b-a);(5)(3+a)(3-a)+a(a-4); (6)(2x-y)2-x(x+y)+5xy. 14.(8分)已知x2n=2,求(x3n)2-8(-x2)2n的值.2。
整式的乘法习题含解析答案.doc
整式的乘法测试1.列各式中计算结果是x2-6x+5 的是 ()A. ( x-2)( x-3)B.( x-6)( x+1)C.( x-1)( x-5)D.( x+6)( x-1)2.下列各式计算正确的是( )A.2 x+3x=5B.2x?3x=6C.( 2x)3=8D.5x6÷x3=5 x23.下列各式计算正确的是( )A.2 x( 3x-2)=5x2-4xB.( 2y+3x)( 3x-2y) =9 x2-4y2C.( x+2)2 =x2+2 x+4D.( x+2)( 2x-1) =2x2 +5x-24.要使多项式 (x2+px+2)( x-q)展开后不含 x 的一次项,则p 与 q 的关系是 ()A. p=qB. p+q=0C.pq=1D.pq=225.若 (y+3)( y-2)= y +my+n,则 m、 n 的值分别为 ()B.m=1, n=-6C.m=1, n=6D.m=5, n=-66.计算: (x-3)(x+4)=_____ .7.若 x2+px+6=( x+q)(x-3) ,则 pq=_____ .8.先观察下列各式,再解答后面问题:( x+5)( x+6)= x2+11x+30; (x-5)( x-6)= x2-11x+30 ;(x-5)(x+6)= x2 +x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①( a+99)( a-100)=_____ ;② (y-500)( y-81)=_____ .9. (x-y)(x2+xy+y2 )=_____ ; (x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n -1y+y n -2y2+⋯+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若 (x+4)( x-3)= x2+mx-n,则 m=_____ , n=_____.12.整式的乘法运算(x+4)( x+m), m 为何值时,乘积中不含x 项? m 为何值时,乘积中x 项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片 A 类, B 类和长方形卡片 C 类若干张,如果要拼一个长为(a+2 b),宽为( a+b)的大长方形,则需要 C 类卡片 ()张.14.计算:(1)(5 mn2-4m2n)(-2 mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2 x+4x2)-x(3x-1)(3x+1)+( x2+x+1)( x-1)-(x-3) 的值与 x 无关.参考答案1.答案: C解析:【解答】 A 、( x-2)( x-3) =x2-6x+6,故本选项错误;B、( x-6)( x+1) =x2-5x-6,故本选项错误;C、( x-1)( x-5) =x2-6x+5,故本选项正确;D、( x+6)( x-1) =x2+5x-6,故本选项错误;故选 C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案: A解析:【解答】 A 、 2x+3 x=5x,故 A 选项正确;B、 2x?3x=6x2,故 B 选项错误;C、( 2x)3=8x3,故 C 选项错误;D、 5x6÷x3=5x3,故 D 选项错误;故选 A .【分析】根据整式乘法和幂的运算法则.3.答案: B解析:【解答】 A 、 2x( 3x-2) =6x2-4x,故本选项错误;B、( 2y+3 x)( 3x-2y)=9x2-4y2,故本选项正确;C、( x+2)2=x2+4x+4,故本选项错误;2D、( x+2)( 2x-1) =2x +3x-2,故本选项错误.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案: D解析:【解答】(x2+px+2)( x-q) =x3-qx2+px2-pqx+2x-2q=x3+( p-q)x2 +( 2-pq) x-2q,∵多项式不含一次项,∴p q-2=0 ,即 pq=2 .故选 D【分析】利用多项式乘以多项式法则计算,次项,令一次项系数为0 即可列出p 与5.答案: B合并同类项得到最简结果,q 的关系.由结果中不含x 的一解析:【解答】∵(y+3)( y-2)=y2-2y+3 y-6= y2+y-6,∵( y+3)( y-2) =y2+my+n,∴y2+my+n=y2+y-6,∴m=1, n=-6 .故选 B .【分析】先根据多项式乘以多项式的法则计算( y+3)( y-2),再根据多项式相等的条件即可求出 m、 n 的值.6.答案: x2+x-12解析:【解答】(x-3)( x+4) =x2+4x-3x-12=x2+x-12【分析】根据(a+b)( m+n) =am+an+bm+bn 展开,再合并同类项即可.7.答案: 10解析:【解答】∵(x+q)( x-3)=x2+( -3+q) x-3q,∴x2+px+6= x2+( -3+q) x-3q,∴p=-3+ q, 6=-3q,∴p=-5 , q=-2 ,∴pq=10.故答案是 10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为( a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、 q 的方程组,求解即可.8.答案:① a2-a-9900 ;② y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)( x+a)( x+b) =x2+( a+b) x+ab.(3)①( a+99 )( a-100) =a2-a-9900 ;②( y-500)( y-81) =y2-581y+40500 .【分析】( 1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据( 1)中呈现的规律,列出公式;(3)根据( 2)中的公式代入计算.9.答案: x3-y3; x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2 y+xy2-x2y-xy2 -y3=x3-y3;原式 =x4+x3 y+x2 y2+xy3-x3y-x2 y2-xy3-y4 =x4-y4;原式 =x n+1+x n y+xy n-2+x2y n-1 +xy n -x n y-x n-1y2-y n-1y2-⋯ -x2y n -1 -xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案: -3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)( 2b-3a)÷2=(a+b)( 2b-3a) =-3 a2+2b2-ab.【分析】根据三角形的面积=底×高÷2 列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案: 1, 12.解析:【解答】∵(x+4)( x-3)=x2-3x+4 x-12=x2+x-12=x2+mx-n,∴m=1, -n=-12 ,即 m=1, n=12 .【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与 n 的值,代入所求式子中计算,即可求出值.12.答案: -4, 2解析:【解答】∵(x+4)( x+m) =x2+mx+4 x+4m若要使乘积中不含x 项,则∴4+ m=0∴m=-4若要使乘积中x 项的系数为6,则∴4+ m=6∴m=2提出问题为: m 为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x 项,则令含x 项的系数为零;若要使乘积中x 项的系数为6,则令含x 项的系数为6;根据展开的式子可以提出多个问题.13.答案: 3 张.解析:【解答】(a+2b)( a+b) =a2+3ab+2b2.则需要 C 类卡片 3 张.【分析】拼成的大长方形的面积是(a+2b)( a+b)=a2+3 ab+2b2,即需要一个边长为 a 的正方形, 2 个边长为 b 的正方形和 3 个 C 类卡片的面积是 3ab.14.答案:( 1) 10m2n3+8m3 n2;( 2) 2x-40.解析:【解答】( 1)原式 =-10m2n3+8m3n2;(2)原式 =x2-6x+7 x-42-x2-x+2x+2=2x-40.【分析】( 1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与 x 无关解析:【解答】原式 =2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+ x-3=-3 ,则代数式的值与x 无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。
整式的乘法练习题(含答案)
整式的乘法练习题14.1.1 同底数幂的乘法1.化简a 2·a 的结果是( )A .a 2B .a 3C .a 4D .a 52.下列计算正确的是( )A .x 2·x 2=x 4B .x 3·x ·x 4=x 7C .a 4·a 4=a 16D .a ·a 2=a 23.填空:(1)(-a )5·(-a )2=________;(2)(a -b )·(a -b )2=________(结果用幂的形式表示);(3)a 3·a 2·(________)=a 11.4.计算:(1)a 2·a 5+a ·a 3·a 3; (2)⎝⎛⎭⎫1104×⎝⎛⎭⎫1103.5.(1)若2x =3,2y =5,求2x +y 的值;(2)若32×27=3n ,求n 的值.1.计算(x3)4的结果是()A.x7B.x12C.x81D.x642.下列运算正确的是()A.(x3)2=x5B.(-x)5=-x5C.x3·x2=x6D.3x2+2x3=5x53.已知5y=2,则53y的值为()A.4 B.6 C.8 D.94.计算:(1)a6·(a2)3=________;(2)(-a3)2=________.5.计算:(1)(x3)2·(x2)3; (2)(-x2)3·x5;(3)-(-x2)3·(-x2)2-x·(-x3)3.6.若(27x)2=36,求x的值.1.计算(x 2y )2的结果是( )A .x 6yB .x 4y 2C .x 5yD .x 5y 22.计算(-2a 2b )3的结果是( )A .-6a 6b 3B .-8a 6b 3C .8a 6b 3D .-8a 5b 33.若m 2·n 2=25,且m ,n 都为正实数,则mn 的值为( )A .4B .5C .6D .74.计算:(1)(mn 3)2=________;(2)(2a 3)3=________;(3)(-2x 2y )3=________;(4)⎝⎛⎭⎫-12x 3y 3=________.5.计算:(1)(ab 2c 4)3;(2)(3a 2)3+(a 2)2·a 2;(3)(x n y 3n )2+(x 2y 6)n;(4)(-2×103)2;(5)4100×0.25100.14.1.4整式的乘法第1课时单项式与单项式、多项式相乘1.计算x3·4x2的结果是()A.4x5B.5x6C.4x6D.5x52.化简x(2-3x)的结果为()A.2x-6x2B.2x+6x2C.2x-3x2D.2x+3x23.下列各式中,计算正确的是()A.3a2·4a3=12a6B.2xy(3x2-4y)=6x3-8y2C.2x3·3x2=6x5D.(3x2+x-1)(-2x)=6x3+2x2-2x4.计算:(1)(6ab)·(3a2b)=__________;(2)(-2a2)2·a=__________;(3)(-2a2)(a-3)=__________.5.若一个长方形的长、宽分别是3x-4、2x,则它的面积为________.6.计算:(1)ab·(-3ab)2; (2)(-2a2)·(3ab2-5ab3).7.已知a=1,求代数式a(a2-a)+a2(5-a)-9的值.第2课时多项式与多项式相乘1.计算(x-1)(x-2)的结果为()A.x2+3x-2 B.x2-3x-2C.x2+3x+2 D.x2-3x+22.若(x+3)(x-5)=x2+mx-15,则实数m的值为()A.-5 B.-2 C.5 D.23.下列各式中,计算结果是x2+7x-18的是()A.(x-2)(x+9) B.(x+2)(x+9)C.(x-3)(x+6) D.(x-1)(x+18)4.计算:(1)(2x+1)(x+3)=________________;(2)(y+3x)(3x-2y)=________________.5.一个长方形相邻的两条边长分别为2a+1和3a-1,则该长方形的面积为____________.6.计算:(1)(a+1)(2-b)-2a;(2)x(x-6)-(x-2)(x+1).7.先化简,再求值:(2a-3b)(a+2b)-a(2a+b),其中a=3,b=1.第3课时 整式的除法1.计算a 6÷a 2的结果为( )A .4a 4B .3a 3C .a 3D .a 42.下列计算正确的是( )A .x 8÷x 2=x 4B .(-x )6÷(-x )4=-x 2C .36a 3b 4÷9a 2b =4ab 3D .(2x 3-3x 2-x )÷(-x )=-2x 2+3x3.计算:(1)20180=________;(2)a 8÷a 5=________;(3)a 6b 2÷(ab )2=________;(4)(14a 3b 2-21ab 2)÷7ab 2=________.4.当m ________时,(m -2019)0的值等于1.5.计算:(1)(-6m 4n 5)÷⎝⎛⎭⎫12m 2n 2; (2)(x 4y +6x 3y 2-x 2y 3)÷3x 2y .6.一个等边三角形框架的面积是4a 2-2a 2b +ab 2,一边上的高为2a ,求该三角形框架的边长.整式的乘法14.1.1 同底数幂的乘法1.B 2.A 3.(1)-a 7 (2)(a -b )3 (3)a 64.解:(1)原式=a 7+a 7=2a 7. (2)原式=⎝⎛⎭⎫1107.5.解:(1)∵2x =3,2y =5,∴2x +y =2x ·2y =3×5=15.(2)∵32×27=3n ,∴32×33=3n ,即35=3n ,∴n =5.14.1.2 幂的乘方1.B 2.B 3.C 4.(1)a 12 (2)a 65.解:(1)原式=x 6·x 6=x 12.(2)原式=-x 6·x 5=-x 11.(3)原式=x 6·x 4+x ·x 9=2x 10.6.解:∵(27x )2=36,∴(33x )2=36,∴6x =6,解得x =1.14.1.3 积的乘方1.B 2.B 3.B4.(1)m 2n 6 (2)8a 9 (3)-8x 6y 3 (4)-18x 9y 3 5.解:(1)原式=a 3b 6c 12.(2)原式=27a 6+a 6=28a 6.(3)原式=x 2n y 6n +x 2n y 6n =2x 2n y 6n .(4)原式=4×106.(5)原式=(4×0.25)100=1.14.1.4 整式的乘法第1课时 单项式与单项式、多项式相乘1.A 2.C 3.C 4.(1)18a 3b 2 (2)4a 5 (3)-2a 3+6a 25.6x 2-8x6.解:(1)原式=ab ·9a 2b 2=9a 3b 3.(2)原式=-2a 2·3ab 2-2a 2·(-5ab 3)=-6a 3b 2+10a 3b 3.7.解:∵a =1,∴原式=a 3-a 2+5a 2-a 3-9=4a 2-9=-5.第2课时 多项式与多项式相乘1.D 2.B 3.A4.(1)2x 2+7x +3 (2)-3xy -2y 2+9x 25.6a 2+a -16.解:(1)原式=2a -ab +2-b -2a =-ab -b +2.(2)原式=x 2-6x -x 2-x +2x +2=-5x +2.7.解:原式=2a 2+4ab -3ab -6b 2-2a 2-ab =-6b 2.当b =1时,原式=-6.第3课时 整式的除法1.D 2.C 3.(1)1 (2)a 3 (3)a 4 (4)2a 2-34.≠20195.解:(1)原式=-24n 3. (2)原式=13x 2+2xy -13y 2. 6.解:由题意知等边三角形框架的边长为2(4a 2-2a 2b +ab 2)÷2a =4a -2ab +b 2.。
整式的乘法测试题(附答案)
整式的乘法测试题2016.11.18.班级 姓名 学号 得分一、填空题(每格2分,共28分)1.()()=--52a a ;()()=-⋅2772-m m ;4774)()(a a -+-=;()()=--x y y x 2332-_______()[]⋅+323-y x ()[]432-y x +=;()=⨯⎪⎭⎫ ⎝⎛200320025.1-32 .2.已知:a m =2,b n =32,则n m 1032+=________3.若2134825125255=n n ,则=n ________4.已知,32=n m ()=-nn m m 22234)3(_______ 5.已知互为相反数,和b a 且知足()()2233+-+b a =18,则=⋅32b a6.已知:,52a n =b n =4,则=n 610_______7.()()122++=++ax x n x m x ,则a 的取值有_______二.选择题(每题3分,共24分)1、 下列盘算中准确的是( )A.()6623333-y x y x = B.20210a a a =⋅ C.()()162352m m m =-⋅- D.1263428121y x y x -=⎪⎭⎫ ⎝⎛- 2.若(x x -2+m )(x -8)中不含x 的一次项,则m 的值为( )A.8B.-8C.0D.8或-83.(-a +1)(a +1)(a 2+1)等于( )A.a 4-1B.a 4+1C.a 4+2a 2+1D.1-a 44.1405=a ,2103=b ,2802=c ,则a .b .c 的大小关系是( )A.c b a <<B.c a b <<C.b a c <<D.a b c <<5.若142-=y x ,1327+=x y ,则y x -等于( )A.-5B.-3C.-1D.16.()()1666---+n n 的值为( )A.0B.1或- 1C.()16-+nD.不克不及肯定7.若三角形的三边长分离为a .b .c ,知足03222=-+-b c b c a b a ,则这个三角形是( )A.直角三角形B.等边三角形C.锐角三角形D.等腰三角形二、解答题(共48分)1、 盘算(每题6分,共12分) (1)()322635-a ab a - (2) 3232⎪⎭⎫ ⎝⎛-b a 2231⎪⎭⎫ ⎝⎛ab 2343b a 3.(6分)先化简,再求值(32)(23)(2)(2)a b a b a b a b +----,个中11.5,4a b =-= 4、(6分)已知099052=-+x x ,求1019985623+-+x x x 的值.5.解方程(8分)(1) (x -3)(x -2)+18 = (x+9)(x+1)6.解不等式(8分) (3x+4)(3x -4) <9(x -2)(x+3)7.(8分)已知一个长方形的长增长3cm,宽削减1cm,面积保持不变,若长削减2cm,宽增长4cm,面积也保持不变,求原长方形的面积.。
整式的乘法测试题(附答案)
整式的乘法尝试题2016.11.18.之阳早格格创做班级 姓名 教号 得分一、挖空题(每格2分,同28分)1、()()=--52a a ;()()=-⋅2772-m m ;4774)()(a a -+-=;()()=--x y y x 2332-_______()[]⋅+323-y x ()[]432-y x +=;()=⨯⎪⎭⎫ ⎝⎛200320025.1-32 .2、已知:a m =2,b n =32,则n m 1032+=________3、若2134825125255=n n ,则=n ________4、已知,32=n m ()=-n n m m 22234)3(_______5、已知互为相反数,和b a 且谦脚()()2233+-+b a =18,则=⋅32b a6、已知:,52a n =b n =4,则=n 610_______7、()()122++=++ax x n x m x ,则a 的与值有_______两、采用题(每题3分,同24分)1、 下列估计中精确的是( )A 、()6623333-y x y x =B 、20210a a a =⋅C 、()()162352m m m =-⋅-D 、1263428121y x y x -=⎪⎭⎫ ⎝⎛- 2、若(x x -2+m )(x -8)中没有含x 的一次项,则m 的值为( )A 、8B 、-8C 、0D 、8或者-83、(-a +1)(a +1)(a 2+1)等于( )A 、a 4-1B 、a 4+1C 、a 4+2a 2+1D 、1-a 44、1405=a ,2103=b ,2802=c ,则a 、b 、c 的大小闭系是( )A 、c b a <<B 、c a b <<C 、b a c <<D 、a b c <<5、若142-=y x ,1327+=x y ,则y x -等于( )A 、-5B 、-3C 、-1D 、16、()()1666---+n n 的值为( )A 、0B 、1或者- 1C 、()16-+nD 、没有克没有及决定7、若三角形的三边少分别为a 、b 、c ,谦脚03222=-+-b c b c a b a ,则那个三角形是( )A 、曲角三角形B 、等边三角形C 、钝角三角形D 、等腰三角形二、解问题(同48分)1、 估计(每题6分,同12分)(1)()322635-a ab a - (2) 3232⎪⎭⎫ ⎝⎛-b a 2231⎪⎭⎫ ⎝⎛ab 2343b a 3、(6分)先化简,再供值(32)(23)(2)(2)a b a b a b a b +----,其中11.5,4a b =-= 4、(6分)已知099052=-+x x ,供1019985623+-+x x x 的值. 5.解圆程(8分)(1) (x -3)(x -2)+18 = (x+9)(x+1)6.解没有等式(8分) (3x+4)(3x -4) <9(x -2)(x+3)7、(8分)已知一个少圆形的少减少3cm ,宽缩小1cm ,里积脆持没有变,若少缩小2cm ,宽减少4cm ,里积也脆持没有变,供本少圆形的里积.。
整式的乘法测试题及答案.doc
♦(人教版.整式的乘法与因式分解•第14章.2分)1・计算(2圧)正确的结果是()A.3/ B 4/ C a1 D. 4a6考点:单项式乘单项式;幕的乘方与积的乘方.专题:计算题.分析:根据幕的乘方与积的乘方、单项式与单项式相乘及同底数幕的乘法法则进行计算即可.解答:原式=8a6^a二4/,故选:B.点评:本题考查了同底数摹的乘法法则,同底数幕相乘,底数不变指数相加;幕的乘方的法则,幕的乘方,底数不变,指数相乘.♦(人教版.整式的乘法与因式分解•第14章.2分)2.若口x3xy=3?y,则□内应填的单项式是()A.X)'B・C・x D. 3x单项式乘单项式.计算题.根据题意列出算式,计算即可得到结果.解:根据题意得:3,)冲C此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.♦(人教版•整式的乘法与因式分解.第14章.2分)3.若2x3-启一5x+5= (2x2+ax -1)(x-b) +3,其冲为整数,贝lj a+h Z值为何?()A. -4 B・一2 C・ 0 D. 4考点:多项式乘多项式.专题:计算题.分析:先把等式右边整理,在根据对应相等得出〃的值,代入即可.解答:解:*.• 2x3 - ax2・5x+5二(2xhax - 1)(x-/;) +3,/.2x3 - ax2 - 5x+5=2x34- (a - 2b) x - (ab+ \) x+b+3,・:-a=a - 2b, ab+l=5, b+3=5,解得b=2, Q=2,a+b=2+2=4.故选D・点评:本题考查了多项式乘以多项式,让第一个多项式的每一项乘以第二个多项式的每一项,再把所得的积相加.♦(人教版.整式的乘法与因式分解•第14章.2分)4.下列运算止确的是()A. (a2)3=^ B. (a - b) ~=cT - /?2C. ^5 - V_5=3 D・ - 27= - 3考点:完全平方公•式;实数的运算;幕的乘方与积的乘方.专题:计算题.分析:A 、原式利用幕的乘方运算法则计算得到结果,即可作出判断B. 原式利用完全平方公式展开得到结果,即可作出判断;C 、 原式不能合并,错误;Q 、原式利用立方根定义化简得到结果,即可做出判断. 解答:解:A 、原式二错误; B 、 原式- 2ab+b 2,错误;C 、 原式不能合并,错误;D 、 原式=-3,.正确,故选:D点评:此题考查了完全平方公式,合并同类项,同底数幕的乘法,以及平方差公 式,熟练掌握公式是解本题的关键.♦(人教版•整式的乘法与因式分解.第14章.2分)5.下列运算止确的是( )A. (m+n) 2=m 2+n 2B. (x 3) 2=x 5C. 5x - 2%=3D. (a+h) (a - /?) —cf -h 2完全平方公式;合并同类项;幕的乘方与积的乘方;平方差公式.计算题.根据完全平方公式,幕的乘方,合并同类项法则,平方差公式分别求出每子的值,再判断即可.: W : A 、(tn+n ) , F ) 故木选项错误;-2%=3x,故本选项错误;D 、(o+b ) (a - b ) =a 2 - b 1,故本选项正确;故选:D.点评:本题考查了对完全平方公式,幕的乘方,合并同类项法则,平方差公式的 应用,注意:完全平方公式有(a+b ) 2=a 2+2ab+b 2, (a ・b ) 2=a 2 - 2ab+b 2,题目 比较好,难度适中.♦(人教版•整式的乘法与因式分解.第14章.2分)6.如图,在边长为2。
整式乘除较难题
第十五章测试1 同底数幂的乘法23·2(______)=256; 假设2m =6,2n =5,则2m +n =______. 25×54-125×53. (-2)2009+(-2)2010.(-a )n 与-a n 相等吗?(a -b )n 与(b -a )n 相等吗?根据以上结论计算①(m -2n )4·(2n -m )2;②(m -n )4·(n -m )3.测试2 幂的乘方假设(a 3)x ·a =a 19,则x =_______.已知a 3n =5,那么a 6n =______. 假设16x =216,求x 的值; 假设(9a )2=38,求a 的值.假设10α=2,10β=3,求102α+3β 的值;假设2x +5y -3=0,求4x ·32y 的值.比较大小:3555,4444,5333.测试3 积的乘方假设2n =a ,3n =b ,则6n =______. 二、选择题52009×(-0.2)2010. .)21(6)31(675-⨯⨯-假设4)31()9(832=⋅x ,求x 3的值.比较216×310与210×314的大小. 假设3x +1·2x -3x ·2x +1=22·32,求x .测试4 整式的乘法(一)已知x 3a =3,则x 6a +x 4a ·x 5a =______. 以下各题中,计算正确的选项是( ). (A)(-m 3)2(-n 2)3=m 6n 6 (B)(-m 2n )3(-mn 2)3=-m 9n 9 (C)(-m 2n )2(-mn 2)3=-m 9n 8 (D)[(-m 3)2(-n 2)3]3=-m 18n 18假设x =2m +1,y =3+4m ; (1)请用含x 的代数式表示y ; (2)如果x =4,求此时y 的值.测试5 整式的乘法(二)要使x (x +a )+3x -2b =x 2+5x +4成立,则a ,b 的值分别是( ).(A)a =-2,b =-2 (B)a =2,b =2 (C)a =2,b =-2 (D)a =-2,b =2通过对代数式进行适当变化求出代数式的值 (1)假设x +5y =6,求x 2+5xy +30y ;(2)假设m 2+m -1=0,求m 3+2m 2+2009;(3)假设2x +y =0,求4x 3+2xy (x +y )+y 3.测试6 整式的乘法(三)先化简,再求值:4x (y -x )+(2x +y )(2x -y ),其中x =21,y =-2.在(x 2+ax +b )(2x 2-3x -1)的积中,x 3项的系数是-5,x 2项的系数是-6,求a 、b .已知(x 2+px +8)(x 2-3x +q )的展开式中不含x 2和x 3项,求p 、q 的值.23.答复以下问题:(1)计算:①(x +2)(x +3)=________;②(x +3)(x +7)=______;③(a +7)(a -10)=_______;④(x -5)(x -6)=______.(2)由(1)的结果,直接写出以下计算的结果:①(x +1)(x +3)=______; ②(x -2)(x -3)=______;③(x +2)(x -5)=______; ④)31)(21(+-m m =______.(3)总结公式:(x +a )(x +b )=____________.(4)已知a ,b ,m 均为整数,且(x +a )(x +b )=x 2+mx +36,求m 的所有可能值.24.计算:(x -1)(x +1)=_________;(x -1)(x 2+x +1)=__________; (x -1)(x 3+x 2+x +1)=__________; (x -1)(x 4+x 3+x 2+x +1)=__________; ……猜想:(x -1)(x n +x n -1+x n -2+…+x 2+x +1)=_________.测试7 平方差公式以下各式中能使用平方差公式的是( ).(A)(x 2-y 2)(y 2+x 2)(B))5121)(5121(3232n m n m +--(C)(-2x -3y )(2x +3y ) (D)(4x -3y )(-3y +4x ) 下面计算(-7+a +b )(-7-a -b )正确的选项是( ).(A)原式=(-7+a +b )[-7-(a +b )]=-72-(a +b )2 (B)原式=(-7+a +b )[-7-(a +b )]=72+(a +b )2 (C)原式=[-(7-a -b )][-(7+a +b )]=72-(a +b )2 (D)原式=[-(7+a )+b ][-(7+a )-b ]=(7+a )2-b 2 (a +3)(a 2+9)(a -3)的计算结果是( ).(A)a 4+81 (B)-a 4-81 (C)a 4-81 (D)81-a 4巧算:(1);21)211)(211)(211)(211(15842+++++(2)(3+1)(32+1)(34+1)(38+1)…(n23+1).已知:x ,y 为正整数,且4x 2-9y 2=31,你能求出x ,y 的值吗?试一试.测试8 完全平方公式答复以下问题:(1)填空:-+=+222)1(1x x x x ______=+-2)1(x x ______. (2)假设51=+a a ,则221aa +的值是多少?(3)假设a 2-3a +1=0,则221aa +的值是多少?假设x 2-2x +10+y 2+6y =0,求(2x -y )2的值. 假设a 4+b 4+a 2b 2=5,ab =2,求a 2+b 2的值.29.假设△ABC 三边a ,b ,c 满足a 2+b 2+c 2=ab +bc +ca ,试问△ABC 的三边有何关系?测试9 同底数幂的除法(1)已知10m =3,10n =2,求102m -n 的值. (2)已知32m =6,9n =8,求36m -4n的值.×104×103人,每个教师或学生假期平均最多 可以借阅多少册图书?假设2x =3,2y =6,2z =12,求x ,y ,z 之间的数量关系.假设(a -1)a =1,求a 的值.已知999999=P ,909911=Q ,那么P ,Q 的大小关系怎样?为什么?测试10 整式的除法(一)假设22372288b b a b a nm=÷,求m ,n 的值.已知x 2=x +1,求代数式x 5-5x +2的值.测试11 整式的除法(二)当21=a ,b =-1时,求(a 2b -2ab 2-b 3)÷b -(a +b )(a -b )的值.已知多项式A =1343x -258,B =x 2+5x -1,C =2x 3-10x 2+51x -259, D =2x 5-x 3+6x 2-3x +1,你能用等号和运算符号把它们连接起来吗?整式的除法一、填空〔每题3分,共30分〕1.计算:52()()x x -÷-= ,10234x x x x ÷÷÷= 。
人教版七年级数学整式的乘法测试试卷及参考答案
人教版七年级数学整式的乘法测试试卷基础巩固1.下列计算:①a 2n ·a n =a 3n ;②22·33=65;③32÷32=1;④a 3÷a 2=5a ;⑤(-a )2·(-a )3=a 5.其中正确的式子有( )A .4个B .3个C .2个D .1个2.若(2x -1)0=1,则( )A .12x ≥-B .12x ≠-C .12x ≤-D .12x ≠ 3.下列计算错误的是( )A .(-2x )3=-2x 3B .-a 2·a =-a 3C .(-x )9+(-x )9=-2x 9D .(-2a 3)2=4a 64.化简(-a 2)5+(-a 5)2的结果是( )A .0B .-2a 7C .a 10D .-2a 105.下列各式的积结果是-3x 4y 6的是( )A .2231(3)3x xy -⋅- B .2231(3)3x xy ⎛⎫-⋅- ⎪⎝⎭C .22321(3)3x x y -⋅- D .2321(3)3x xy ⎛⎫-⋅- ⎪⎝⎭6.下列运算正确的是( )A .a 2·a 3=a 6B .(-3x )3=-3x 3C .2x 3·5x 2=7x 5D .(-2a 2)(3ab 2-5ab 3)=-6a 3b 2+10a 3b 37.计算(-a 4)3÷[(-a )3]4的结果是( )A .-1B .1C .0D .-a8.下列计算正确的是( )A .3222233x b xb x b ÷=B .663422122m n m n m n m ÷⋅=C .32211·(0.5)24xy a b a y xa ÷= D .(ax 2+x )÷x =ax9.计算(14a 2b 2-21ab 2)÷7ab 2等于( )A .2a 2-3B .2a -3C .2a 2-3bD .2a 2b -310.计算(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2n )的结果等于( )A .2m 2n -3mn +n 2B .2m 2-3mn 2+n 2C .2m 2-3mn +n 2D .2m 2-3mn +n11.(1)(a 2)5=__________;(2)(-2a )2=__________;(3)(xy 2)2=__________.12.与单项式-3a 2b 的积是6a 3b 2-2a 2b 2+9a 2b 的多项式是__________.13.计算:(1)(-5a 2b 3)(-3a );(2)2ab (5ab 2+3a 2b );(3)(3x +1)(x +2).14.计算:(1)412÷43; (2)421122⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (3)32m +1÷3m -1.能力提升15.如果a 2m -1·a m +2=a 7,则m 的值是( )A .2B .3C .4D .516.210+(-2)10所得的结果是( )A .211B .-211C .-2D .217.(x -4)(x +8)=x 2+mx +n ,则m ,n 的值分别是( )A .4,32B .4,-32C .-4,32D .-4,-3218.已知(a n b m +1)3=a 9b 15,则m n =__________.19.若a m +2÷a 3=a 5,则m =__________;若a x =5,a y =3,则a y -x =__________.20.计算:-a 11÷(-a )6·(-a )5.21.计算:(1)()2232223(2)(2)3a b ab a b a ab ab ⎛⎫-+-+- ⎪⎝⎭; (2)112213233y y y y ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭; (3)2221[(2)]3xy xy x y xy ⎛⎫-⋅-+ ⎪⎝⎭; (4)(a +2b )(a -2b )(a 2+4b 2).22.小明在进行两个多项式的乘法运算时(其中的一个多项式是b -1),把“乘以(b -1)”错看成“除以(b -1)”,结果得到(2a -b ),请你帮小明算算,另一个多项式是多少?23.已知(x +a )(x 2-x +c )的积中不含x 2项和x 项,求(x +a )(x 2-x +c )的值是多少?参考答案1.C 2.D 3.A 4.A 5.D 6.D7.A 点拨:原式=-a 12÷a 12=-1.8.A 点拨:本题易错选D ,D 的正确结果为ax +1,在实际运算中,“1”这一项经常被看作0而忽视,应引起特别的重视.9.B 点拨:原式=14a 2b 2÷7ab 2-21ab 2÷7ab 2=2a -3.10.C 点拨:原式=8m 4n ÷4m 2n -12m 3n 2÷4m 2n +4m 2n 3÷4m 2n =2m 2-3mn +n 2.11.(1)a 10 (2)4a 2 (3)x 2y 412.2233ab b -+- 点拨:由题意列式(6a 3b 2-2a 2b 2+9a 2b )÷(-3a 2b )计算即得. 13.解:(1)原式=[(-5)×(-3)](a 2·a )·b 3=15a 3b 3.(2)原式=10a 2b 3+6a 3b 2.(3)原式=3x 2+6x +x +2=3x 2+7x +2.14.解:(1)412÷43=412-3=49; (2)424211112224-⎛⎫⎛⎫⎛⎫-÷-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)32m +1÷3m -1=3(2m+1)-(m -1)=3m +2. 15.A 点拨:a 2m -1·a m +2=a 2m-1+m +2=a 7,所以2m -1+m +2=7,解得m =2. 16.A 17.B 18.64 19.63520.解:原式=-a 11÷a 6·(-a )5=-a 5·(-a 5)=a 10. 或者,原式=(-a )11÷(-a )6·(-a )5=(-a )11-6+5=a 10.21.解:(1)原式=-a 3b 3-4a 3b 3+4a 3b 3=-a 3b 3.(2)原式=y 2-2y -y 2-2y =-4y .(3)242224512(2)99x y x y xy xy x y ⎛⎫=⋅-+= ⎪⎝⎭原式. (4)原式=(a 2-2ab +2ab -4b 2)(a 2+4b 2)=(a 2-4b 2)(a 2+4b 2)=a 4+4a 2b 2-4a 2b 2-16b 4=a 4-16b 4.22.解:设所求的多项式是M ,则M =(2a -b )(b -1)=2ab -2a -b 2+b .23.解:∵(x+a)(x2-x+c)=x3-x2+cx+ax2-ax+ac=x3+(a-1)x2+(c-a)x+ac,又∵积中不含x2项和x项,∴a-1=0,c-a=0,解得a=1,c=1.又∵a=c=1,∴(x+a)(x2-x+c)=x3+1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法测试题
A a ::b c
B b a : c
C 、 c a b
D 、c :
5、若 2x = 4y4, 27 y =3x1,则 x - y 等于( )
A 、一 -5
B 、一3
C 、一1
D 、1
4、
)
a = 5140 , bp 21。
, c= 2 280,则a 、
b 、
c 的大小关系是(
6、(-6$+6(-6广的值为()
班级 姓名 学号
得分 1、 填空题(每格2分,共28分)
;-m 2」-m 7 =
-a 2 -a 5 / 4、7 丄/ 7、4
(_a ) (_a )= ;-2x-3y 3y-2x 二
2、 3、 4、 5、 6、 7、 1、 2、 3、 -3 x y 2 3 -2x y 3 4= ;2 2002 -1.52003
3
已知:2m =a ,32n =b ,则 23m 10n
若 58n 2541253n =2521,则 n =
已知 m 2n =3, (3m 3n )2 _4m 2 2n =
已知a 和b 互为相反数,且满足a 3 b 3 2=18,则a 2 b
已知:52n =a, 4n =b ,则 106n =
x m x n = x 2 ax 12,则a 的取值有
、选择题(每题3分,共24 分)
下列计算中正确的是(
A -3x 3y 3 $ =3x 6y 6 CC -m 2 5 / 3 f 16 -m m a 10 a 2 =a 20
1 xy
2 1 6 12
x y
8 若(x 2 A 8 (-a + 1) A a 4 - 1 -x + m ) (x -8) B 、一 8 (a + 1) (a 2 + 1) 4
B 、a + 1 x 的一次项, 、0 D 等于( )
4 2 C a + 2a + 1 D 、 中不含 C m 的值为
( 、8 或一
1-a 4
A 0
B 、1或-1
C 、-6 n 1
D 、不能确定
7、若三角形的三边长分别为a 、b 、c,满足a 2b - a 2c • b 2c-b ‘=0,则这个三角形是()
1
3、 (6 分)先化简,再求值(3a 2b)(2a-3b)_(a-2b)(2a_b),其中 a 一 1.5,b =
4
4、 ( 6 分)已知 x 2 5x -990 = 0,求 x ‘ 6x 2 - 985x 1019 的值.
5、 解方程(8 分)(1) (x - 3)(x - 2)+18 = (x+9)(x+1)
6、 解不等式(8 分)(3x+4)(3x - 4) v 9(x - 2)(x+3)
7、 ( 8分)已知一个长方形的长增加 3cm 宽减少1cm 面积保持不变,若长减少2cm 宽 增加4cm 面积也保持不变,求原长方形的面积。
A 、直角三角形
B 、等边三角形 、 解答题(共48分)
1、计算(每题6分,共12分)
(1) -5a 2 3ab 2 -6a 3 C 、锐角三角形 D 、等腰三角形 ,2) ( 2 2「3“ 以丫 3 3以
(2) _ - a bi —ab 丨-a b
< 3 八3丿4。