九年级上册数学二次函数y=ax2+bx+c(a≠0)的图像和性质经典例题讲解及答案解析
九年级数学二次函数y=ax2bxc(a≠0)的图像与性质(知识讲解2)Word版含解析
专题2.13 二次函数y=ax2+bx+c(a≠0)的图像与性质(知识讲解2)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.13 二次函数y=ax²+bx+c(a≠0)的图像与性质(知识讲解2)类型六、两个二次函数图像的综合判断1.已知二次函数y =ax 2与y =﹣2x 2+c .(1)随着系数a 和c 的变化,分别说出这两个二次函数图象的变与不变;(2)若这两个函数图象的形状相同,则a = ;若抛物线y =ax 2沿y 轴向下平移2个单位就能与y =﹣2x 2+c 的图象完全重合,则c = ;(3)二次函数y =﹣2x 2+c 中x 、y 的几组对应值如表:表中m 、n 、p 的大小关系为 (用“<”连接).2.如图,抛物线F :2y ax bx c =++的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:2y a x b x c '''=++,抛物线F ′与x 轴的另一个交点为C .(1)当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案);(2)若a 、b 、c 满足了22b ac =,⊥求b :b ′的值;⊥探究四边形OABC 的形状,并说明理由.类型七、根据二次函数图象判断式的符号3.如图,二次函数2y ax bx c =++的图象开口向上,图象经过点()1,2-和()1,0,且与y 轴相交于负半轴.第()1问:给出四个结论:①0a >;②0b >;③0c >;④0a b c ++=.写出其中正确结论的序号(答对得3分,少选、错选均不得分)第 ()2问:给出四个结论:⊥abc <0;⊥2a +b >0;⊥a +c =1;⊥a >1.写出其中正确结论的序号.4.抛物线()20y ax bx c a =++≠的图象如图所示:(1)判断a ,b ,c ,24b ac -的符号;(2)当OA OB =时,求a ,b ,c 满足的关系.5.已知抛物线2y ax bx c =++,如图所示,直线1x =-是其对称轴,()1确定a ,b ,c ,24b ac =-的符号;()2求证:0a b c -+>;()3当x 取何值时,0y >,当x 取何值时0y <.类型八、根据抛物线上的对称点求对称轴6.已知二次函数y=ax2+bx 的图象过点(6,0),(﹣2,8).(1)求二次函数的关系式;(2)写出它的对称轴和顶点坐标.7.已知二次函数2y x bx c =-++,函数值y 与自变量x 之间的部分对应值如表:(1)写出二次函数图象的对称轴.(2)求二次函数的表达式.(3)当41x -<<-时,写出函数值y 的取值范围.8.已知二次函数y =ax 2﹣2ax .(1)二次函数图象的对称轴是直线x = ;(2)当0≤x ≤3时,y 的最大值与最小值的差为4,求该二次函数的表达式;(3)若a <0,对于二次函数图象上的两点P (x 1,y 1),Q (x 2,y 2),当t ≤x 1≤t +1,x 2≥3时,均满足y 1≥y 2,请结合函数图象,直接写出t 的取值范围.9.如图,已知抛物线2142y x x =--+与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于C.(1)求点A 、B 、C 的坐标;(2)若点E 与点C 关于抛物线的对称轴对称,求梯形AOCE 的面积.类型九、二次函数y=ax2 +bx+c (a≠0)的最值10.如图在平面直角坐标系中,一次函数y kx b =+的图像经过点()0,4A -、()2,0B 交反比例函数m y x=()0x >的图像于点()3,C a ,点P 在反比例函数的图像上,横坐标为n ()03n <<,//PQ y 轴交直线AB 于点Q ,D 是y 轴上任意一点,连接PD 、QD .(1)求一次函数和反比例函数的表达式;(2)求DPQ 面积的最大值.11.已知二次函数y =ax 2+bx ﹣3的图象经过点(1,﹣4)和(﹣1,0).(1)求这个二次函数的表达式;(2)x 在什么范围内,y 随x 增大而减小?该函数有最大值还是有最小值?求出这个最值.12.已知二次函数的图象经过三点(1,0)()3,0-,30,2⎛⎫- ⎪⎝⎭ (1)求二次函数的解析式;(2)求抛物线的顶点坐标,对称轴以及抛物线与坐标轴的交点;(3)当x 为何值时,函数有最大值或最小值?最大值或最小值是多少?类型十、二次函数y=ax2 +bx+c (a≠0)图象中的将军饮马问题13.如图,抛物线y =﹣x 2+bx+c (a≠0)与x 轴交于A (1,0),B (﹣4,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上求出Q 点的坐标使得⊥QAC 的周长最小.14.如图,抛物线y =﹣x 2+bx+c (a≠0)与x 轴交于A (1,0),B (﹣4,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上求出Q 点的坐标使得⊥QAC 的周长最小.15.如图,在平面直角坐标系中,抛物线l 1:y =x 2+bx+c 过点C(0,﹣3),且与抛物线l 2:y =﹣12x 2﹣32x+2的一个交点为A ,已知点A 的横坐标为2.点P 、Q 分别是抛物线l 1、抛物线l 2上的动点.(1)求抛物线l 1对应的函数表达式;(2)若点P 在点Q 下方,且PQ⊥y 轴,求PQ 长度的最大值;(3)若以点A 、C 、P 、Q 为顶点的四边形为平行四边形,直接写出点P 的坐标.16.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值. 类型十一、二次函数图象的平移17.已知:抛物线y =﹣x 2+bx +c 经过点B (﹣1,0)和点C (2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y 轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.18.已知抛物线212y x bx c =-++经过点(1,0),(0,32). (1)求该抛物线的函数表达式;(2)抛物线212y x bx c =-++可以由抛物线212y x =-怎样平移得到?请写出一种平移的方法.19.已知二次函数y =x 2-4x +3.(1)直接写出函数图象的顶点坐标、与x 轴交点的坐标;(2)将图象先向左平移2个单位,再向下平移2个单位,得到新的函数图象,直接写出平移后的图象与y 轴交点的坐标.类型十二、二次函数综合20.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点0(1)A ,,(50)B ,,4(0)C ,.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC +的值为最小的点P 坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由.(请在图2中探索) 21.已知抛物线23y ax bx =++过()30A -,,()10B ,两点,交y 轴于点C . (1)求该抛物线的表达式.(2)设P 是该抛物线上的动点,当PAB 的面积等于ABC 的面积时,求P 点的坐标.22.已知m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和⊥BCD的面积;(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把⊥PCH 分成面积之比为2:3的两部分,请求出P点的坐标.23.如图,抛物线y=x2﹣2x﹣3与x轴交于A,B两点,与y轴交于点D,抛物线的顶点为C.(1)求A,B,C,D的坐标;(2)求四边形ABCD的面积.参考答案:1.(1)二次函数y=ax2的图象随着a的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y=﹣2x2+c的图象随着c的变化,开口大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)±2,﹣2;(3)p<m<n 【分析】(1)根据二次函数的性质即可得到结论;(2)由函数图象的形状相同得到a=±2,根据上加下减的平移规律即可求得函数y =ax2-2,根据完全重合,得到c =-2.(3)由二次函数的解析式得到开口方向和对称轴,然后根据点到对称轴的距离即可判断.【详解】解:(1)二次函数y=ax2的图象随着a的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y=﹣2x2+c的图象随着c的变化,开口大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)⊥函数y=ax2与函数y=﹣2x2+c的形状相同,⊥a=±2,⊥抛物线y=ax2沿y轴向下平移2个单位得到y=ax2﹣2,与y=﹣2x2+c的图象完全重合,⊥c=﹣2,故答案为:±2,﹣2.(3)由函数y=﹣2x2+c可知,抛物线开口向下,对称轴为y轴,⊥1﹣0<0﹣(﹣2)<5﹣0,⊥p<m<n,故答案为:p<m<n.【点睛】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,熟知图形平移不变性的性质是解答此题的关键.2.(1)C(3,0);(2)⊥2:3;⊥矩形,理由见解析【分析】(1)由于抛物线F′由抛物线F平移所得,开口方向和开口大小都无变化,因此a=a′=1;由于两条抛物线都与y轴交于A点,那么c=c′=3.然后可根据抛物线F的坐标求出其顶点坐标,即可得出D点的坐标,然后将D的坐标代入抛物线F′中,即可求出抛物线F′的解析式,进而可求出C点的坐标.(2)⊥与(1)的方法类似,在求出D的坐标后,将D的坐标代入抛物线F′中,即可得出关于b,b′的关系式即可得出b,b′的比例关系.⊥探究四边形OABC的形状,无非是平行四边形,菱形,矩形这几种.那么首先要证的是四边形OABC 是个平行四边形,已知了OA //BC ,只需看A ,B 的纵坐标是否相等,即OA 是否与BC 的长相等.根据抛物线F 的解析式可求出P 点的坐标,然后用待定系数法可求出OP 所在直线的解析式.进而可求出抛物线F 与直线OP 的交点B 的坐标,然后判断B 的纵坐标是否与A 点相同,如果相同,则四边形OABC 是矩形(⊥AOC =90°),如果B ,A 点的纵坐标不相等,那么四边形AOCB 是个直角梯形.【详解】解:(1) ⊥a = 1,b =-2,c = 3⊥223y x x =-+=()212x -+⊥P (1,2)⊥过点P 作PD ⊥x 轴于点D ,⊥D (1,0)由于抛物线F ′由抛物线F 平移所得,开口方向和开口大小都无变化,因此a =a ′=1;由于两条抛物线都与y 轴交于A 点,那么c =c ′=3.⊥抛物线F ′:23y x b x '=++,代入D (1,0)得0=1+b ’+3解得b ’=-4⊥243y x x =-+=()()13x x --⊥点C 的坐标为(3,0);(2)⊥抛物线2y ax bx c =++,令x =0,则y =c ,⊥A 点坐标(0,c ).⊥22b ac =, ⊥244224442ac b ac ac ac c a a a --===, ⊥点P 的坐标为(2b a -,2c ). ⊥PD ⊥x 轴于D ,⊥点D 的坐标为(2b a -,0). 根据题意,得a =a ′,c = c ′,⊥抛物线F ′的解析式为2'y ax b x c =++.又⊥抛物线F ′经过点D (2b a-,0),⊥220()42b b a b c a a'=⨯+-+. ⊥2024b bb ac '=-+.又⊥22b ac =,⊥2032b bb '=-.⊥b :b ′=23.⊥由⊥得,抛物线F ′为232y ax bx c =++. 令y =0,则2302ax bx c ++=. ⊥12,2b b x x a a=-=-. ⊥点D 的横坐标为2b a- ⊥点C 的坐标为(ba -,0).设直线OP 的解析式为y kx =.⊥点P 的坐标为(,22b c a -), ⊥22c b k a =-, ⊥22222ac ac b b k b b b =-=-=-=-, ⊥2b y x =-. ⊥点B 是抛物线F 与直线OP 的交点, ⊥22b ax bxc x ++=-. ⊥12,2b b x x a a=-=-. ⊥点P 的横坐标为2b a-, ⊥点B 的横坐标为ba -. 把b x a =-代入2b y x =-,得22()222b b b ac y c a a a=--===. ⊥点B 的坐标为(,)b c a-. ⊥BC //OA ,AB //OC .(或BC //OA ,BC =OA ),⊥四边形OABC 是平行四边形.又⊥⊥AOC =90°,⊥四边形OABC 是矩形.【点睛】本题着重考查了待定系数法求二次函数的性质、函数的平移变换、探究矩形的构成情况等重要知识点.3.(1)正确的序号为⊥⊥;(2)正确的序号为⊥⊥⊥.【分析】(1)根据抛物线开口向上对⊥进行判断;根据抛物线对称轴x=-2b a在y 轴右侧对⊥进行判断;根据抛物线与y 轴的交点在x 轴下方对⊥进行判断;根据x=1时,y=0对⊥进行判断;(2)有(1)得到a>0,b<0,c<0,则可对⊥进行判断;根据0<-2b a<1可对⊥进行判断;把点(-1,2)和(1,0)代入解析式得a ﹣b +c =2,a +b +c =0,整理有a+c=1,则可对⊥进行判断;根据a=1-c ,c<0可对⊥进行判断.【详解】(1)⊥由抛物线的开口方向向上可推出a >0,正确;⊥因为对称轴在y 轴右侧,对称轴为x =2b a->0. 又⊥a >0,⊥b <0,错误;⊥由抛物线与y 轴的交点在y 轴的负半轴上,⊥c <0,错误;⊥由图象可知:当x =1时y =0,⊥a +b +c =0,正确.故(1)中,正确结论的序号是⊥⊥.(2)⊥⊥a >0,b <0,c <0,⊥abc >0,错误;⊥由图象可知:对称轴x =2b a ->0且对称轴x =2b a -<1,⊥2a +b >0,正确; ⊥由图象可知:当x =﹣1时y =2,⊥a ﹣b +c =2,当x =1时y =0,⊥a +b +c =0;a ﹣b +c =2与a +b +c =0相加得2a +2c =2,解得:a +c =1,正确;⊥⊥a +c =1,移项得:a =1﹣c .又⊥c <0,⊥a >1,正确.故(2)中,正确结论的序号是⊥⊥⊥.【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0.(2)b 由对称轴和a 的符号确定:由对称轴公式x =2b a-判断符号. (3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0.(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:2个交点,b 2﹣4ac >0;1个交点,b 2﹣4ac =0;没有交点,b 2﹣4ac <0.4.(1)240b ac ->;(2)10ac b -+=.【分析】(1)根据图形,开口向下得a <0,x =0时可得c >0,由对称轴可得b >0,与x 轴有两个不同交点可得b 2﹣4ac >0;(2)由于B 点坐标可以表示为:(0,c ),|OA |=|OB |,可知A (﹣c ,0)即可进行求解.【详解】(1)由图象可知,抛物线开口向下,可得:a <0;x =0时,y =c >0;⊥对称轴x =02b a->,a <0,⊥b >0; 图象与x 轴有两个不同交点可得b 2﹣4ac >0;(2)当|OA |=|OB |时,即A 点坐标为(﹣c ,0),代入抛物线方程得y =ac 2﹣bc +c 两边同时除以c 得:ac ﹣b +1=0.【点睛】本题考查了二次函数图象与系数的关系,难度一般,关键在已知条件下表示出A 点的坐标代入抛物线方程.5.(1)0a <,0b <,0c >,240b ac =->;(2)详见解析;(3)当31x -<<时,0y >;当3x <-或1x >时,0y <.【分析】(1)根据开口方向确定a 的符号,根据对称轴的位置确定b 的符号,根据抛物线与y 轴的交点确定c 的符号,根据抛物线与x 轴交点的个数确定b 2-4ac 的符号;(2)根据图象和x=-1的函数值确定a -b+c 与0的关系;(3)抛物线在x 轴上方时y >0;抛物线在x 轴下方时y <0.【详解】()1∵抛物线开口向下,∴0a <,∵对称轴12b x a=-=-, ∴0b <,∵抛物线与y 轴的交点在x 轴的上方,∴0c >,∵抛物线与x 轴有两个交点,∴240b ac =->;()2证明:∵抛物线的顶点在x 轴上方,对称轴为1x =-,∴当1x =-时,0y a b c =-+>;()3根据图象可知,当31x -<<时,0y >;当3x <-或1x >时,0y <.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是熟练的掌握二次函数图象与系数的关系.6.(1)y=12x2﹣3x ;(2)对称轴为直线x=3、顶点坐标为(3,﹣92). 【分析】(1)根据图像过点(6,0),(﹣2,8)列方程组求出a 、b 的值即可,(2)把解析式配方后即可确定对称轴和顶点坐标.【详解】(1)⊥y=ax 2+bx 的图象过点(6,0),(﹣2,8).⊥3660428a b a b +=⎧⎨-=⎩, 解得:123a b ⎧=⎪⎨⎪=-⎩ , ⊥二次函数解析式为y=12x 2﹣3x ; (2)⊥y=12x 2﹣3x=12(x ﹣3)2﹣92, ⊥抛物线的对称轴为直线x=3、顶点坐标为(3,﹣92). 【点睛】本题考查了待定系数法求二次函数的解析式、二次函数的三种形式.将二次函数的一般解析式转化为顶点式时,可采用了“配方法”.灵活运用二次函数的三种形式是解题关键. 7.(1)x=2;(2)242y x x =---;(3)22y -<≤【分析】(1)二次函数是轴对称图形,而(-4,-2),(0,-2)关于对称轴对此,利用中点坐标公式可求,(2)求二次函数解析式2y x bx c =-++,可知b,c 待定,但(-4,-2),(0,-2)只能取一点,取两点坐标(-1,1),(0,-2)代入解之即可,(3)由于对称轴与x 轴交点横坐标,在41x -<<-,说明x=-4与x=-1取值不是最大值,为此x=-4与x=-1对应的函数值的最小值与x=-2时函数值即可.【详解】解:(1)⊥二次函数是轴对称图形,4x =-、0x =时的函数值相等,都是2-,对称轴是(-4,-2),(0,-2)两点连结的中垂线,⊥此函数图象的对称轴为直线4022x -+==-; (2)由点(-1,1),(0,-2)在抛物线上将()1,1-,()0,2-代入2y x bx c =-++,得:112b c c --+=⎧⎨=-⎩, 解得:42b c =-⎧⎨=-⎩, ⊥二次函数的表达式为:242y x x =---;(3)⊥()224222y x x x =---=-++,⊥当2x =-时,y 取得最大值2,由表可知当4x =-时=2y -,当=1x -时1y =,⊥当41x -<<-时,22y -<≤.【点睛】本题考查利用列表求对称轴表示式,二次函数解析式,函数值范围,关键利用数形结合思想,掌握二次函数的性质,函数值的求法,抛物线最值.8.(1)1;(2)y =x 2﹣2x 或y =﹣x 2+2x ;(3)﹣1≤t ≤2【分析】(1)由对称轴是直线x =2b a -,可求解; (2)分a >0或a <0两种情况讨论,求出y 的最大值和最小值,即可求解;(3)利用函数图象的性质可求解.【详解】解:(1)由题意可得:对称轴是直线x =22a a--=1, 故答案为:1;(2)当a >0时,⊥对称轴为x =1,当x =1时,y 有最小值为﹣a ,当x =3时,y 有最大值为3a ,⊥3a ﹣(﹣a )=4.⊥a =1,⊥二次函数的表达式为:y =x 2﹣2x ;当a <0时,同理可得y 有最大值为﹣a ; y 有最小值为3a ,⊥﹣a ﹣3a =4,⊥a =﹣1,⊥二次函数的表达式为:y =﹣x 2+2x ;综上所述,二次函数的表达式为y =x 2﹣2x 或y =﹣x 2+2x ;(3)⊥a <0,对称轴为x =1,⊥x ≤1时,y 随x 的增大而增大,x >1时,y 随x 的增大而减小,x =﹣1和x =3时的函数值相等,⊥t ≤x 1≤t +1,x 2≥3时,均满足y 1≥y 2,⊥t ≥﹣1,t +1≤3,⊥﹣1≤t ≤2.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识点的综合应用,能利用分类思想解决问题是本题的关键.9.(1)A (-4,0),B (2,0),C,0,4);(2)12【分析】(1)在抛物线的解析式中,令x=0可以求出点C 的坐标,令y=0可以求出A 、B 点的坐标;(2)先求出E 点坐标,然后求出OA ,OC ,CE 的长计算面积即可.【详解】解:(1)当y=0时,212x --x+4=0,解得x 1=-4,x 2=2, ⊥A (-4,0),B (2,0),当x=0时,y=4,⊥C (0,4);(2)y=212x -﹣x+4=12-(x+1)2+92, ⊥抛物线y=212x -﹣x+4的对称轴是直线x=-1, ⊥E 的坐标为(-2,4),则OA=4,OC=4,CE=2,S 梯形AOCE =(24)4122+⨯= 【点睛】本题是对二次函数的基础考查,熟练掌握二次函数与x 轴,y 轴交点坐标的求解及梯形面积知识是解决本题的关键.10.(1)624,y x y x=-=;(2)4. 【分析】(1)利用点()0,4A -、()2,0B 求解一次函数的解析式,再求C 的坐标,再求反比例函数解析式;(2)设6,,P n n ⎛⎫ ⎪⎝⎭则(),24,Q n n -再表示PQ 的长度,列出三角形面积与n 的函数关系式,利用函数的性质可得答案.【详解】解:(1)设直线AB 为,y kx b =+把点()0,4A -、()2,0B 代入解析式得:420b k b =-⎧⎨+=⎩解得:24k b =⎧⎨=-⎩∴ 直线AB 为24,y x =-把()3,C a 代入得:2342,a =⨯-=()3,2,C ∴把()3,2C 代入:,m y x= 236m ∴=⨯=,6,y x∴= (2)设6,,P n n ⎛⎫ ⎪⎝⎭//PQ y 轴, 则(),24,Q n n - 由0<n <3,()666242424,PQ n n n n n n∴=--=-+=-+ 16242DPQ S n n n ⎛⎫∴=-+ ⎪⎝⎭()222314,n n n =-++=--+即当1n =时, 4.DPQ S ∴=最大【点睛】本题考查的是利用待定系数法求解一次函数与反比例函数的解析式,以及利用二次函数的性质求解面积的最值,掌握以上知识是解题的关键.11.(1)y =x 2﹣2x ﹣3;(2)当x <1时,y 随x 增大而减小,该函数有最小值,最小值为﹣4.【分析】(1)将(1,﹣4)和(﹣1,0)代入解析式中,即可求出结论;(2)将二次函数的表达式转化为顶点式,然后根据二次函数的图象及性质即可求出结论.【详解】(1)根据题意得3430a b a b +-=-⎧⎨--=⎩, 解得12a b =⎧⎨=-⎩, 所以抛物线解析式为y =x 2﹣2x ﹣3;(2)∵y =(x ﹣1)2﹣4,∴抛物线的对称轴为直线x =1,顶点坐标为(1,﹣4),∵a >0,∴当x <1时,y 随x 增大而减小,该函数有最小值,最小值为﹣4.【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、二次函数的图象及性质是解决此题的关键.12.(1)21322y x x =+-;(2)顶点()1,2--,对称轴=1x -,交点:()()31,0,3,0,0,2⎛⎫-- ⎪⎝⎭;(3)=1x -时函数有最小值为2-.【分析】(1)抛物线的点过(1,0)3,0,可以设抛物线的解析式为y=a(x -1)(x+3),把点30,2⎛⎫- ⎪⎝⎭代入解得a 即可;(2)由配方法,得出抛物线解析式的顶点式,可得顶点坐标,对称轴以及抛物线与坐标轴的交点;(3)由抛物线的开口向上,可得函数有最小值,顶点坐标的纵坐标是函数的最小值.【详解】(1)设抛物线解析式为y=a(x -1)(x+3), 将30,2⎛⎫- ⎪⎝⎭代入,解得12a =, 所以抛物线解析式为21322y x x =+-, 故答案为:21322y x x =+-; (2)抛物线解析式为21322y x x =+-, 配方可得,()221123=1222y x x x =+-+-(), ⊥顶点()1,2-- ,对称轴=1x -,由(1)知,交点:()()31,0,3,0,0,2⎛⎫-- ⎪⎝⎭, 故答案为:顶点()1,2--,对称轴=1x -,交点:()()31,0,3,0,0,2⎛⎫-- ⎪⎝⎭; (3)由(2)可知,函数解析式为()21122y x =+-,开口向上,函数有最小值,当=1x - 时函数有最小值为2-, 故答案为:=1x -时函数有最小值为2-.【点睛】本题考查了二次函数的解析式求法,二次函数的性质,熟练掌握二次函数的性质是解题的关键.13.(1)y =﹣x 2﹣3x+4(2)Q (﹣32,52) 【分析】(1)函数的表达式为:y =﹣(x ﹣1)(x+4),即可求解;(2)点B 为点A 关于函数对称轴的对称点,连接BC 交函数对称轴与点Q ,则点Q 为所求,即可求解.【详解】解:(1)函数的表达式为:y =﹣(x ﹣1)(x+4)=﹣x 2﹣3x+4;(2)抛物线的对称轴为:x =﹣32, 点B 为点A 关于函数对称轴的对称点,连接BC 交函数对称轴与点Q ,则点Q 为所求,点C(0,4),将点B、C坐标代入一次函数表达式:y=kx+m得:404k mm-+=⎧⎨=⎩,解得:14km=⎧⎨=⎩,故直线BC的表达式为:y=x+4,当x=﹣32时,y=52,则点Q(﹣32,52).【点睛】本题考查了利用待定系数法求二次函数解析式,周长最小本质上考查抛物线的对称轴上求出Q点的坐标使得QA+QC最短,点B为点A关于函数对称轴的对称点,连接BC 交函数对称轴与点Q,原理是是两点之间线段最短14.(1)y=﹣x2﹣3x+4(2)Q(﹣32,52)【分析】(1)函数的表达式为:y=﹣(x﹣1)(x+4),即可求解;(2)点B为点A关于函数对称轴的对称点,连接BC交函数对称轴与点Q,则点Q为所求,即可求解.【详解】解:(1)函数的表达式为:y=﹣(x﹣1)(x+4)=﹣x2﹣3x+4;(2)抛物线的对称轴为:x=﹣32,点B为点A关于函数对称轴的对称点,连接BC交函数对称轴与点Q,则点Q为所求,点C(0,4),将点B、C坐标代入一次函数表达式:y=kx+m得:404k mm-+=⎧⎨=⎩,解得:14km=⎧⎨=⎩,故直线BC的表达式为:y=x+4,当x=﹣32时,y=52,则点Q(﹣32,52).【点睛】本题考查了利用待定系数法求二次函数解析式,周长最小本质上考查抛物线的对称轴上求出Q点的坐标使得QA+QC最短,点B为点A关于函数对称轴的对称点,连接BC 交函数对称轴与点Q,原理是是两点之间线段最短15.(1)y=x2﹣2x﹣3;(2)12124;(3)(﹣1,0)或(3,0)或(43-,139)或(﹣3,12)【分析】(1)将x=2代入y=﹣12x2﹣32x+2,从而得出点A的坐标,再将A(2,﹣3),C(0,﹣3)代入y=x2+bx+c,解得b与c的值,即可求得抛物线l1对应的函数表达式;(2)设点P的坐标为(m,m2﹣2m﹣3),则可得点Q的坐标为(m,﹣12m2﹣32m+2),从而PQ等于点Q的纵坐标减去点P的纵坐标,利用二次函数的性质求解即可;(3)设点P的坐标为(n,n2﹣2n﹣3),分两类情况:第一种情况:AC为平行四边形的一条边;第二种情况:AC为平行四边形的一条对角线.分别根据平行四边形的性质及点在抛物线上,得出关于n的方程,解得n的值,则点P的坐标可得.【详解】解:(1)将x=2代入y=﹣12x2﹣32x+2,得y=﹣3,⊥点A的坐标为(2,﹣3).将A(2,﹣3),C(0,﹣3)代入y=x2+bx+c,得23=2+23b cc⎧-+⎨-=⎩,解得23bc=-⎧⎨=-⎩,⊥抛物线l1对应的函数表达式为y=x2﹣2x﹣3;(2)⊥点P、Q分别是抛物线l1、抛物线l2上的动点.⊥设点P的坐标为(m,m2﹣2m﹣3),⊥点P在点Q下方,PQ⊥y轴,⊥点Q的坐标为(m,﹣12m2﹣32m+2),⊥PQ=﹣12m2﹣32m+2﹣(m2﹣2m﹣3),=﹣32m2+12m+5,⊥当m=﹣112=3622⎛⎫⨯-⎪⎝⎭时,PQ长度有最大值,最大值为:﹣23126⎛⎫⨯ ⎪⎝⎭+1126⨯+5=12124;⊥PQ长度的最大值为121 24;(3)设点P的坐标为(n,n2﹣2n﹣3),第一种情况:AC为平行四边形的一条边.AC=2⊥当点Q在点P右侧时,点Q的坐标为(n+2,﹣12(n+2)2﹣32(n+2)+2),将Q的坐标代入y=﹣12x2﹣32x+2,,得n2﹣2n﹣3=﹣12(n+2)2﹣32(n+2)+2,解得,n=0或n=﹣1.⊥n=0时,点P与点C重合,不符合题意,舍去,⊥n=﹣1,⊥点P的坐标为(﹣1,0);⊥当点Q在点P左侧时,点Q的坐标为(n﹣2,﹣12(n﹣2)2﹣32(n﹣2)+2),将Q的坐标代入y=﹣12x2﹣32x+2,得n2﹣2n﹣3=﹣12(n﹣2)2﹣32(n﹣2)+2,解得n=3或n=﹣43.⊥此时点P的坐标为(3,0)或(﹣43,139);第二种情况:AC为平行四边形的一条对角线.Q点的纵坐标y Q,n2-2n-3-(-3)=-3-y Q,y Q=-n2+2n-3,点Q的坐标为(2﹣n,﹣n2+2n﹣3),将Q的坐标代入y=﹣12x2﹣32x+2,得﹣n2+2n﹣3=﹣12(2﹣n)2﹣32(2﹣n)+2,解得,n=0或n=﹣3.⊥n=0时,点P与点C重合,不符合题意,舍去,⊥n=﹣3,⊥点P的坐标为(﹣3,12).综上所述,点P的坐标为(﹣1,0)或(3,0)或(43,139)或(﹣3,12).【点睛】本题考查抛物线解析式,平行y轴线段的最值,平行四边形的性质,掌握抛物线解析式,平行y轴线段的最值,平行四边形的性质,利用平形四边形的性质构造方程是解题关键.16.(1)215322y x x =++;(2【分析】(1)利用132y x =+的解析式求解A 的坐标,把()0,3A ,()3,0C -代入212y x bx c =++,利用待定系数法列方程组,解方程组可得答案;(2)联立两个函数解析式,求解B 的坐标,线段BC 的长度, 如图,要使MBC 的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x =-=-⨯ 点()2,0D -,连接,BD 交对称轴于,M MD MC =,此时,MB MC MB MD BD +=+=最小,再利用勾股定理求解BD =【详解】.解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y =∴ 点()0,3A 把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴=如图,要使MBC 的周长最小,则MB MC +最小,设二次函数215322y x x=++与x 轴的另一交点为D , 抛物线的对称轴为:552,1222x =-=-⨯ ()3,0C - ∴ 点()2,0D -,连接,BD 交对称轴于,MMD MC ∴=,此时,MB MC MB MD BD +=+=最小,此时:BD ==MBC ∴【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,利用轴对称的性质求解三角形的周长的最小值,掌握以上知识是解题的关键.17.(1)y =﹣x 2+2x +3;(2)需将抛物线向上平移4个单位【分析】(1)把点B 和点C 的坐标代入函数解析式解方程组即可;(2)求出原抛物线上x =-2时,y 的值为-5,则抛物线上点(-2,-5)平移后的对应点为(-2,-1),根据纵坐标的变化可得平移的方向和平移的距离.【详解】解:(1)把B (﹣1,0)和点C (2,3)代入y =﹣x 2+bx +c得10423b c b c --+=⎧⎨-++=⎩, 解得23b c =⎧⎨=⎩, 所以抛物线解析式为y =﹣x 2+2x +3;(2)把x =﹣2代入y =﹣x 2+2x +3得y =﹣4﹣4+3=﹣5,点(﹣2,﹣5)向上平移4个单位得到点(﹣2,﹣1),所以需将抛物线向上平移4个单位.【点睛】本题主要考查待定系数法求二次函数的解析式及抛物线的平移,熟练掌握待定系数法求二次函数的解析式是解题的关键.18.(1)213y 22x x =--+;(2)先向左平移1单位,再向上平移2个单位 【分析】(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;(2)先将抛物线的一般式转化为顶点式,然后指出满足题意的平移方法即可.【详解】解:(1)把()1,0,30,2⎛⎫ ⎪⎝⎭代入抛物线解析式得: 10232b c c ⎧-++=⎪⎪⎨⎪=⎪⎩, 解得:132b c =-⎧⎪⎨=⎪⎩, 则抛物线解析式为213y 22x x =--+; (2)抛物线解析式为22131y (1)2222x x x =--+=-++, 抛物线213y 22x x =--+可以由抛物线212y x =-先向左平移1单位,再向上平移2个单位. 【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键. 19.(1)顶点坐标为()2,1-,与x 轴的交点坐标为()1,0,()3,0;(2)()0,3-. 【分析】(1)根据配方法,可得顶点式解析式,根据函数值为零,可得相应自变量的值;(2)根据图象向左平移加,向右平移减,向上平移加,向下平移减,可得平移后的解析式,根据自变量与函数值的关系,可得答案.【详解】解:(1)()22x 4321y x x =--=-+,顶点坐标为()2,1-, 当0y =时,2430x x -+=,解得1x =或3x =,即图象与x 轴的交点坐标为()1,0,()3,0;(2)图象先向左平移2个单位,再向下平移2个单位,得()2,2212y x =-+--, 化简得23y x =-,当0x =时,3y =-,即平移后的图象与y 轴交点的坐标()0,3-.【点睛】本题考查了二次函数的性质,利用配方法得出顶点坐标,利用图象向左平移加,向右平移减,向上平移加,向下平移减得出平移后的解析式是解题关键.20.(1)2545442y x x -+=,函数的对称轴为:3x =;(2)点8(3)5P ,;(3)存在,点E 的坐标为12(2,)5-或12,)5(4-. 【分析】1()根据点AB 、的坐标可设二次函数表达式为:()()()21565y a x x a x x +--=﹣=,由C 点坐标即可求解;2()连接B C 、交对称轴于点P ,此时PA PC +的值为最小,即可求解; 3()512E E OEBF S OB y y ⨯⨯四边形===,则125E y =,将该坐标代入二次函数表达式即可求解. 【详解】解:1()根据点0(1)A ,,(50)B ,的坐标设二次函数表达式为:()()()21565y a x x a x x +--=﹣=,⊥抛物线经过点4(0)C ,, 则54a =,解得:45a =, 抛物线的表达式为:()()2224416465345555245y x x x x x --+--+=== , 函数的对称轴为:3x =; 2()连接B C 、交对称轴于点P ,此时PA PC +的值为最小,设BC 的解析式为:y kx b +=,将点B C 、的坐标代入一次函数表达式:y kx b +=得:05,4k b b =+⎧⎨=⎩解得:4,54k b ⎧=-⎪⎨⎪=⎩ 直线BC 的表达式为:4y x 45=-+, 当3x =时,85y =, 故点835P (,); 3()存在,理由: 四边形OEBF 是以OB 为对角线且面积为12的平行四边形, 则512E E OEBF S OB y y ⨯⨯四边形===, 点E 在第四象限,故:则125E y =-, 将该坐标代入二次函数表达式得:()24126555y x x -+==-, 解得:2x =或4, 故点E 的坐标为122,5(-)或12,5(4-). 【点睛】本题考查二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中2(),求线段和的最小值,采取用的是点的对称性求解,这也是此类题目的一般解法.21.(1)y=-x 2-2x +3;(2)P 坐标为(-,-3)或(-1-3).【分析】(1)把A与B坐标代入求出a与b的值,即可确定出表达式;(2)根据已知三角形面积相等求出P的坐标即可.【详解】解:(1)把A与B坐标代入得:9330a ba b c-+=⎧⎨++=⎩,解得:12ab=-⎧⎨=-⎩,则该抛物线的表达式为y=-x2-2x+3;(2)由抛物线解析式得:C(0,3),⊥⊥ABC面积为12×3×4=6,⊥⊥P AB面积为6,即12×|Py|×4=6,即Py=3或-3,当P y=3时,可得3=-x2-2x+3,解得:x=-2或x=0(舍去),此时P坐标为(-2,3);当y P=-3时,可得-3=-x2-2x+3,解得:x=-此时P坐标为(-,-3)或(-1-3).【点睛】本题考查了待定系数法求二次函数解析式,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.22.(1)、y=-x2-4x+5;(2)、15;(3)、(-,0)或(-,0).【详解】试题分析:(1)、首先求出方程的解得出点A和点B的坐标,然后利用待定系数法求出函数解析式;(2)、根据二次函数的解析式得出点C的坐标和顶点坐标,过D作x轴的垂线交x轴于M,从而求出⊥DMC、梯形MDBO和⊥BOC的面积,然后得出面积;(3)、设P点的坐标为(a,0),得出直线BC的方程,则PH与直线BC的交点坐标为(a,a+5),PH与抛物线的交点坐标为H(a,-a2-4a+5),然后根据EH=EP和EH=EP两种情况分别求出点P的坐标.试题解析:(1)、解方程x2-6x+5=0,得x1=5,x2=1.由m<n,m=1,n=5,。
第5讲 二次函数y=ax^2(a≠0)的图象与性质(基础课程讲义例题练习含答案)
二次函数y=ax2(a≠0)的图象与性质—知识讲解(基础)【学习目标】1.经历探索二次函数y=ax2和y=ax2+c的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.2.会作出y=ax2和y=ax2+c的图象,并能比较它们与y=x2的异同,理解a与c对二次函数图象的影响.3.能说出y=ax2+c与y=ax2图象的开口方向、对称轴和顶点坐标.4.体会二次函数是某些实际问题的数学模型.【要点梳理】要点一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=ax2(a≠0)的图象二次函数y=ax2的图象(如图),是一条关于y轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y轴,它的顶点是坐标原点.当a> 0时,抛物线的开口向上,顶点是它的最低点;当a<0时,抛物线的开口向下,顶点是它的最高点.2.二次函数y=ax2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x的值,求出相应的y值,填入表中.(自变量x 的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x和y的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来.要点诠释:(1)用描点法画二次函数y=ax2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x的值,然后计算出对应的y值.(2)二次函数y=ax2(a≠0)的图象,是轴对称图形,对称轴是y轴.y=ax2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.3.二次函数y=ax 2(a ≠0)的图象的性质二次函数y=ax 2(a≠0)的图象的性质,见下表: 函数 图象 开口方向 顶点坐标 对称轴 函数变化 最大(小)值y=ax 2a >0向上 (0,0) y 轴 x >0时,y 随x 增大而增大; x <0时,y 随x 增大而减小.当x=0时,y 最小=0y=ax 2a <0向下 (0,0) y 轴 x >0时,y 随x 增大而减小; x <0时,y 随x 增大而增大.当x=0时,y 最大=0要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a │相同,抛物线的开口大小、形状相同.│a │越大,开口越小,图象两边越靠近y 轴,│a │越小,开口越大,图象两边越靠近x 轴. 要点二、二次函数y=ax 2+c(a ≠0)的图象与性质 1.二次函数y=ax 2+c(a ≠0)的图象 (1)0a >(2)0a <j xOy()0y ax c c =+>cjyxOc()0y ax c c =+<j yxOcj y xOc2.二次函数y=ax 2+c(a ≠0)的图象的性质关于二次函数2(0)y ax c a =+≠的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:函数2(0,0)y ax c a c =+>> 2(0,0)y ax c a c =+<>图象开口方向 向上 向下 顶点坐标 (0,c) (0,c) 对称轴y 轴y 轴函数变化当0x >时,y 随x 的增大而增大;当0x <时,y 随x 的增大而减小.当0x >时,y 随x 的增大而减小;当0x <时,y 随x 的增大而增大.最大(小)值当0x =时,y c =最小值当0x =时,y c =最大值【典型例题】类型一、二次函数y=ax 2(a ≠0)的图象与性质1.(2014秋•青海校级月考)二次函数y=ax 2与直线y=2x ﹣1的图象交于点P (1,m ) (1)求a ,m 的值;(2)写出二次函数的表达式,并指出x 取何值时该表达式y 随x 的增大而增大? (3)写出该抛物线的顶点坐标和对称轴. 【思路点拨】(1)把点P (1,m )分别代入二次函数y=ax 2与直线y=2x ﹣1即可求出未知数的值; (2)把a 代入二次函数y=ax 2与即可求出二次函数表达式; 根据二次函数的对称轴及增减性判断出x 的取值. (3)根据二次函数的性质直接写出即可.【答案与解析】解:(1)点P (1,m )在y=2x ﹣1的图象上∴m=2×1﹣1=1代入y=ax 2 ∴a=1(2)二次函数表达式:y=x 2因为函数y=x 2的开口向上,对称轴为y 轴,当x >0时,y 随x 的增大而增大; (3)y=x 2的顶点坐标为(0,0),对称轴为y 轴.【总结升华】本题考查了用待定系数法求函数解析式的方法,及二次函数的增减性. 举一反三:【变式1】二次函数2y ax =与22y x =-的形状相同,开口大小一样,开口方向相反,则a = . 【答案】2.【变式2】(•山西模拟)抛物线y=﹣x 2不具有的性质是( ).A.开口向上B. 对称轴是y 轴C. 在对称轴的左侧,y 随x 的增大而增大D. 最高点是原点 【答案】A.2.已知y=(m+1)x 2m m+是二次函数且其图象开口向上,求m 的值和函数解析式.【思路点拨】根据二次函数的定义以及函数y=ax 2(a≠0)的图象性质来解答. 【答案与解析】由题意,2210m m m ⎧+=⎨+⎩>,解得m=1,∴二次函数的解析式为:y=22x .【总结升华】本题中二次函数还应该有m+1≠0的限制条件,但当10m +>时,一定存在m+1≠0,所以就不再考虑了.类型二、二次函数y=ax 2+c(a ≠0)的图象与性质3.求下列抛物线的解析式: (1)与抛物线2132y x =-+形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线; (2)顶点为(0,1),经过点(3,-2)并且关于y 轴对称的抛物线.【思路点拨】抛物线形状相同则||a 相同,再由开口方向可确定a 的符号,由顶点坐标可确定c 的值,从而确定抛物线的解析式2y ax c =+. 【答案与解析】(1)由于待求抛物线2132y x =-+形状相同,开口方向相反,可知二次项系数为12, 又顶点坐标是(0,-5),故常数项5k =-,所以所求抛物线为2152y x =-. (2)因为抛物线的顶点为(0,1),所以其解析式可设为21y ax =+,又∵该抛物线过点(3,-2),∴912a +=-,解得13a =-. ∴所求抛物线为2113y x =-+. 【总结升华】本题考察函数2(0)y ax c a =+≠的基本性质,并考察待定系数法求简单函数的解析式.4.在同一直角坐标系中,画出2y x =-和21y x =-+的图象,并根据图象回答下列问题.(1)抛物线21y x =-+向________平移________个单位得到抛物线2y x =-;(2)抛物线21y x =-+开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线21y x =-+,当x________时,随x 的增大而减小;当x________时,函数y 有最________值,其最________值是________.【思路点拨】利用描点法画出函数图象,根据图象进行解答. 【答案与解析】函数2y x =-与21y x =-+的图象如图所示:(1)下; l ; (2)向下; y 轴; (0,1); (3)>0; =0; 大; 大 ; 1. 【总结升华】本例题把函数21y x =-+与函数2y x =-的图象放在同一直角坐标系中进行对比,易得出二次函数2(0)y ax c a =+≠与2(0)y ax a =≠的图象形状相同,只是位置上下平移的结论.2(0)y ax c a =+≠可以看作是把2(0)y ax a =≠的图象向上(0)k >或向下(0)k <平移||k 个单位得到的. 举一反三:【变式】函数23y x =可以由231y x =-怎样平移得到?【答案】向上平移1个单位.二次函数y=ax 2(a ≠0)的图象与性质—巩固练习(基础)【巩固练习】 一、选择题1.关于函数y=2x 的图象,则下列判断中正确的是( ) A.若a 、b 互为相反数,则x=a 与x=b 的函数值相等; B.对于同一个自变量x,有两个函数值与它对应; C.对任一个实数y,有两个x 和它对应; D.对任意实数x,都有y >0.2.下列函数中,开口向上的是( )A.23y x =- B.212y x =-C. 2y x =-D.216y x = 3.把抛物线2y x =向上平移1个单位,所得到抛物线的函数表达式为( ).A .21y x =+ B .2(1)y x =+ C .21y x =- D .2(1)y x =-4.下列函数中,当x <0时,y 值随x 值的增大而增大的是( )A.25y x = B.212y x =-C. 2y x =D.213y x = 5.在同一坐标系中,作出22y x =,22y x =-,212y x =的图象,它们的共同点是( ).A .关于y 轴对称,抛物线的开口向上B .关于y 轴对称,抛物线的开口向下C .关于y 轴对称,抛物线的顶点都是原点D .关于原点对称,抛物线的顶点都是原点 6.(•黄陂区校级模拟)抛物线y=2x 2+1的对称轴是( ) A .直线x=B . 直线x=﹣C . y 轴D . x 轴二、填空题7.已知抛物线的解析式为y =-3x 2,它的开口向________,对称轴为________,顶点坐标是________, 当x >0时,y 随x 的增大而________.8.若函数y =ax 2过点(2,9),则a =________.9.已知抛物线y =x 2上有一点A ,A 点的横坐标是-1,过点A 作AB ∥x 轴,交抛物线于另一点B ,则△AOB 的面积为________.10.(•巴中模拟)对于二次函数y=ax 2,已知当x 由1增加到2时,函数值减少4,则常数a 的值是 . 11.函数2y x =,212y x =、23y x =的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.12.若对于任意实数x ,二次函数21x a y )(+=的值总是非负数,则a 的取值范围是____________. 三、解答题13.已知2(2)mmy m x +=+是二次函数,且当x >0时,y 随x 的增大而增大.(1)求m 的值;(2)画出函数的图象. 14. 已知抛物线2y ax =经过A (-2,-8). (1)求此抛物线的函数解析式;(2)判断B (-1,-4)是否在此抛物线上?(3)求此抛物线上纵坐标为-6的点的坐标.15.(春·牙克石市校级月考)函数y=ax 2(a ≠0)的图象与直线y=2x-3交于点(1,b). (1)求a 和b 的值;(2)求抛物线y=ax 2的解析式,并求顶点坐标和对称轴; (3)x 取何值时,y 随x 的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.【答案与解析】 一、选择题 1.【答案】A. 2.【答案】D ;【解析】开口方向由二次项系数a 决定,a >0,抛物线开口向上;a <0,抛物线开口向下. 3.【答案】A ; 【解析】由抛物线2y x =的图象知其顶点坐标为(0,0),将它向上平移1个单位后,抛物线的顶点坐标为(0,1),因此所得抛物线的解析式为21y x =+. 4.【答案】B ;【解析】根据抛物线2(0)y ax a =≠的图象的性质,当a <0时,在对称轴(x=0)的左侧,y 值随x 值的增大而增大,所以答案为B. 5.【答案】C ;【解析】y =2x 2,y =-2x 2,212y x =的图象都是关于y 轴对称的,其顶点坐标都是(0,0). 6.【答案】C ;【解析】∵抛物线y=2x 2+1中一次项系数为0, ∴抛物线的对称轴是y 轴. 故选C .二、填空题 7.【答案】下 ; y 轴; (0,0); 减小; 8.【答案】94; 【解析】将点(2,9)代入解析式中求a. 9.【答案】 1 ;【解析】由抛物线的对称性可知A(-1,1),B(1,1),则1121122AOB A S AB y ==⨯⨯=△.10.【答案】43-; 【解析】当x=1时,y=ax 2=a ;当x=2时,y=ax 2=4a ,所以a ﹣4a=4,解得a=43-.故答案为:43-. 11.【答案】23y x =,2y x =,212y x =. 【解析】先比较12,|1|,|3|的大小关系,由|a|越大开口越小,可确定从里向外的三条抛物线所对应的函数依次是y =3x 2,y =x 2,212y x =. 12.【答案】a >-1;【解析】二次函数21x a y )(+=的值总是非负数,则抛物线必然开口向上,所以a+1>0. 三、解答题 13.【解析】解:(1)∵2(2)mmy m x +=+为二次函数,且当x >0时,y 随x 的增大而增大,∴ 2220m m m ⎧+=⎨+>⎩,∴ 122m m m ==-⎧⎨>-⎩或,∴m=1.(2)由(1)得这个二次函数解析式为23y x =,自变量x 的取值范围是全体实数,可以用描点法画出这个函数的图象.如图所示.14.【解析】解:(1)∵抛物线2y ax =经过A (-2,-8),∴-8=4a ,∴a=-2,抛物线的解析式为:22y x =-.(2)当x=-1时,y=-2()21⨯-=-2≠-4,∴点B (-1,-4)不在此抛物线上.(3)当y=-6时,即226x -=-,得3x =∴此抛物线上纵坐标为-6-6)和(-6). 15.【解析】解:(1)将x=1,y=b 代入y=2x-3,得b=-1,所以交点坐标是(1,-1).将x=1,y=-1代入y=ax 2,得a=-1,所以a=-1,b=-1.(2)抛物线的解析式为y=-x 2,顶点坐标为(0,0),对称轴为直线x=0(即y 轴). (3)当x <0时,y 随x 的增大而增大.(4)设直线y=- 2与抛物线y=-x 2相交于A 、B 两点,抛物线顶点为O(0,0).由22y y x =-⎧⎨=-⎩,,得112x y ⎧=⎪⎨=-⎪⎩222x y ⎧=⎪⎨=-⎪⎩ ∴A(,-2),,-2).∴,高=|-2|=2.∴122AOBS =⨯=。
九年级数学 二次函数y=ax2bxc(a≠0)的图像与性质(知识讲解1)Word版含解析
专题2.12 二次函数y=ax2+bx+c(a≠0)的图像与性质(知识讲解1)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.12 二次函数y=ax²+bx+c(a≠0)的图象与性质(知识讲解1) 【学习目标】1.会用描点法画二次函数2(0)y ax bx c a =++≠的图象;会用配方法将二次函数2y ax bx c =++的解析式写成2()y a x h k =-+的形式;2.通过图象能熟练地掌握二次函数2y ax bx c =++的性质;3.经历探索2y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】要点一、二次函数2(0)y ax bx c a =++≠与2(1)(0)y a x t k a =-+≠之间的相互关系 1.顶点式化成一般式从函数解析式2()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式 22222()()()22b b b b y ax bx c a x x c a x x c a a a a ⎡⎤=++=++=++-+⎢⎥⎣⎦224()24b ac b a x a a-=++.对照2()y a x h k =-+,可知2b h a =-,244ac b k a-=.∴抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--. 特别说明:1.抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--,可以当作公式加以记忆和运用.2.求抛物线2y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点二、二次函数2(0)y ax bx c a =++≠的图象的画法 1.一般方法:列表、描点、连线; 2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线2y ax bx c =++与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 特别说明:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象, 要点三、二次函数2(0)y ax bx c a =++≠的图象与性质 1.二次函数2(0)y ax bx c a =++≠图象与性质2.二次函数2(0)y ax bx c a =++≠图象的特征与a 、b 、c 及b2-4ac 的符号之间的关系要点四、求二次函数2(0)y ax bx c a =++≠的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当2b x a =-时,244ac b y a-=.特别说明:如果自变量的取值范围是x1≤x≤x2,那么首先要看2ba-是否在自变量的取值范围x1≤x≤x2内,若在此范围内,则当2b x a =-时,244ac b y a-=,若不在此范围内,则需要考虑函数在x1≤x≤x2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x2时,22y bx c ++;当x =x1时,211y ax bx c =++,如果在此范围内,y 随x 的增大而减小,则当x =x1时,2max 11y ax bx c =++;当x =x2时,2min 22y ax bx c =++,如果在此范围内,y 值有增有减,则需考察x =x1,x =x2,2bx a=-时y 值的情况. 特别说明: 【典型例题】类型一、二次函数2(0)y ax bx c a =++≠化为顶点式1.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标. 举一反三: 【变式1】2.用配方法把二次函数y=12x 2–4x+5化为y=a(x+m)2+k 的形式,再指出该函数图象的开口方向、对称轴和顶点坐标. 【变式2】3.已知二次函数2y x 4x 3=-+.()1用配方法将其化为2y a(x h)k =-+的形式;()2在所给的平面直角坐标系xOy 中,画出它的图象.【变式3】4.已知二次函数y =﹣2x 2+bx +c 的图象经过点A (0,4)和B (1,﹣2). (1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标; (3)设抛物线的顶点为C ,试求∴CAO 的面积. 类型二、画二次函数2(0)y ax bx c a =++≠的图象5.已知:二次函数243y x x =++ (1)求出该函数图象的顶点坐标; (2)在所提供的网格中画出该函数的草图.举一反三: 【变式1】6.已知二次函数y =﹣x 2+4x .(1)写出二次函数y =﹣x 2+4x 图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线); (3)根据图象,写出当y <0时,x 的取值范围. 【变式2】7.已知二次函数y =12x 2﹣x ﹣32. (1)在平面直角坐标系内,画出该二次函数的图象; (2)根据图象写出:①当x 时,y >0; ②当0<x <4时,y 的取值范围为 .【变式3】8.已知抛物线22232(0)y ax ax a a =--+≠. (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围. 类型三、二次函数2(0)y ax bx c a =++≠的性质9.把抛物线21:23C y x x =++先向右平移4个单位长度,再向下平移5个单位长度得到抛物线2C .(1)直接写出抛物线2C 的函数关系式;(2)动点(),6P a -能否在拋物线2C 上?请说明理由;(3)若点()()12,,,A m y B n y 都在抛物线2C 上,且0m n <<,比较12,y y 的大小,并说明理由. 举一反三: 【变式1】10.在平面直角坐标系xOy 中,关于x 的二次函数2y x px q +=+的图象过点(1,0)-,(2,0).(1)求这个二次函数的表达式;(2)求当21x -≤≤时,y 的最大值与最小值的差;(3)一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,且3a b <<,求m 的取值范围. 【变式2】11.如图,已知抛物线y=x 2-2x -3与x 轴交于A 、B 两点.(1)当0<x <3时,求y 的取值范围;(2)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标.【变式3】12.已知抛物线2y ax bx c =++,如图所示,直线1x =-是其对称轴,()1确定a ,b ,c ,24b ac =-的符号;()2求证:0a b c -+>;()3当x 取何值时,0y >,当x 取何值时0y <.类型四、二次函数的图象及各项的系数13.如图,抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).(1)m的值为________;(2)当x满足________时,y的值随x值的增大而减小;(3)当x满足________时,抛物线在x轴上方;(4)当x满足0≤x≤4时,y的取值范围是________.举一反三:【变式1】14.已知二次函数y=ax2+bx+c的图象如图所示,给出下列结论:∴abc>0;∴a﹣b+c<0;∴2a+b﹣c<0;∴4a+2b+c>0,∴若点(﹣23,y1)和(73,y2)在该图象上,则y1>y2.其中正确的结论是_____(填入正确结论的序号)类型五、一次函数、二次函数图象的综合判断15.如图,已知直线y=-2x+m与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求m 的值; (2)求抛物线的解析式;(3)若点P 是x 轴上一点,当∴ABP 为直角三角形时直接写出点P 的坐标. 举一反三: 【变式1】16.已知二次函数()2229y mx m x m =++++.()1如果二次函数的图象与x 轴有两个交点,求m 的取值范围;()2如图,二次函数的图象过,点()4,0A ,与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标.【变式2】17.如图所示,已知直线y=12-x 与抛物线y=2164x -+交于A 、B 两点,点C 是抛物线的顶点.(1)求出点A 、B 的坐标; (2)求出∴ABC 的面积;(3)在AB 段的抛物线上是否存在一点P ,使得∴ABP 的面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案:1.(1)2y x 2x 3=-++(2)(1,4)【详解】解:(1)∴抛物线2y x bx c =-++经过点A (3,0),B (-1,0), ∴抛物线的解析式为;()()y x 3x 1=--+,即2y x 2x 3=-++, (2)∴抛物线的解析式为()22y x 2x 3x 14=-++=--+, ∴抛物线的顶点坐标为:(1,4).(1)根据抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0),直接由交点式得出抛物线的解析式.(2)将抛物线的解析式化为顶点式,即可得出答案.2.抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3). 【分析】用配方法把一般式化为顶点式,根据二次函数的性质解答即可. 【详解】解:∵y =12x 2-4x +5=12(x -4)2-3,∴抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3).【点睛】本题考查的是二次函数的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.3.(1)2(x 2)1--;(2)见解析.【分析】(1)利用配方法把二次函数解析式化成顶点式即可; (2)利用描点法画出二次函数图象即可.【详解】解:()21y x 4x 3=-+=222x 4x 223-+-+ =2(x 2)1--()22y (x 2)1=--,∴顶点坐标为()2,1-,对称轴方程为x 2=.函数二次函数2y x 4x 3=-+的开口向上,顶点坐标为()2,1-,与x 轴的交点为()3,0,()1,0, ∴其图象为:故答案为(1)2(x 2)1--;(2)见解析.【点睛】本题考查二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解题的关键.4.(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)∴CAO 的面积为2.【分析】(1)利用待定系数法把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c 中,可以解得b ,c 的值,从而求得函数关系式即可; (2)利用配方法求出图象的对称轴和顶点坐标;(3)由(2)可得顶点C 的坐标,再根据三角形的面积公式即可求出△CAO 的面积. 【详解】解:(1)把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c ,得:24212c b c =⎧⎨-⨯++=-⎩,解得:44b c =-⎧⎨=⎩, 所以此抛物线的解析式为y =﹣2x 2﹣4x +4; (2)∴y =﹣2x 2﹣4x +4 =﹣2(x 2+2x )+4 =﹣2[(x +1)2﹣1]+4 =﹣2(x +1)2+6,∴此抛物线的对称轴为直线x =﹣1,顶点坐标为(﹣1,6); (3)由(2)知:顶点C (﹣1,6), ∴点A (0,4),∴OA =4, ∴S △CAO =12OA •|xc |=12×4×1=2,即△CAO 的面积为2.故答案为(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)△CAO 的面积为2.【点睛】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键. 5.(1) (-2,-1);(2)见解析【分析】(1)将二次函数化为顶点式即可得出顶点坐标; (2)利用五点法画二次函数的图象即可.【详解】(1)243y x x =++化为顶点式为2(2)1y x =+- 则该函数图象的顶点坐标为(2,1)--;(2)先求出自变量x 在4,3,2,1,0----处的函数值,再列出表格 当4x =-和0x =时,3y =当3x =-和=1x -时,2(1)4(1)30y =-+⨯-+= 当2x =-时,1y =- 列出表格如下:由此画出该函数的草图如下:【点睛】本题考查了二次函数的顶点式、画二次函数的图象,掌握函数图象的画法是解题关键.6.(1)对称轴是过点(2,4)且平行于y轴的直线x=2;(2)见解析;(3)x<0或x>4.【详解】试题分析:(1)把一般式化成顶点式即可求得;(2)首先列表求出图象上点的坐标,进而描点连线画出图象即可.(3)根据图象从而得出y<0时,x的取值范围.试题解析:(1)∴y=-x2+4x=-(x-2)2+4,∴对称轴是过点(2,4)且平行于y轴的直线x=2;(2)列表得:描点,连线.(3)由图象可知,当y<0时,x的取值范围是x<0或x>4.7.(1)见解析;(2)①x<﹣1或x>3;②﹣2≤y<52.【分析】(1)先把解析式配成顶点式得到抛物线的顶点坐标为(1,2);再分别求出抛物线与坐标轴的交点坐标,然后利用描点法画二次函数图象;(2)∴利用函数图象写出抛物线在x轴上方所对应的自变量的范围即可;∴先确定x=4时,y=52,然后利用函数图象写出当0<x<4时对应的函数值的范围.【详解】解:(1)∴y=12(x﹣1)2﹣2,∴抛物线的对称轴为直线x=1,顶点坐标为(1,2);当x=0时,y=12x2﹣x﹣32=﹣32,则抛物线与y轴交点坐标为(0,﹣32)当y =0时,12 x 2﹣x ﹣32=0,解得x 1=﹣1,x 2=3,抛物线与x 轴的交点坐标为(﹣1,0)、(3,0), 如图,(2)∴当x <﹣1或x >3时,y >0; ∴当0<x <4时,﹣2≤y <52;故答案为x <﹣1或x >3;﹣2≤y <52.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.8.(1)1x =;(2)233322y x x =-+或221y x x =-+-;(3)当a >0时,13m -<<;当a <0时,1m <-或3m >.【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到a 的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q 关于对称轴的对称点,再结合二次函数的图象与性质,即可得到m 的取值范围.【详解】(1)∴22232y ax ax a =--+, ∴22(1)32y a x a a =---+, ∴其对称轴为:1x =.(2)由(1)知抛物线的顶点坐标为:2(1,23)a a --,∴抛物线顶点在x 轴上, ∴2230a a --=, 解得:32a =或1a =-, 当32a =时,其解析式为:233322y x x =-+, 当1a =-时,其解析式为:221y x x =-+-, 综上,二次函数解析式为:233322y x x =-+或221y x x =-+-. (3)由(1)知,抛物线的对称轴为1x =, ∴()23,Q y 关于1x =的对称点为2(1,)y -, 当a >0时,若12y y <, 则-1<m <3;当a <0时,若12y y <, 则m <-1或m >3.【点睛】本题考查了二次函数对称轴,解析式的计算,以及根据二次函数的图象性质求不等式的取值范围,熟知相关计算是解题的关键.9.(1)2(3)3y x =--;(2)不在,见解析;(3)12y y >,见解析【分析】(1)先求出抛物线1C 的顶点坐标,再根据向右平移横坐标加,向下平移纵坐标减求出平移后的抛物线的顶点坐标即可;(2)根据抛物线2C 的顶点的纵坐标为3-,即可判断点()6P a -,不在拋物线2C 上; (3)根据抛物线2C 的增减性质即可解答.【详解】(1)抛物线221:23(1)2C y x x x =++=++,∴抛物线1C 的顶点坐标为(﹣1,2),根据题意,抛物线2C 的顶点坐标为(-1+4,2-5),即(3,﹣3), ∴抛物线2C 的函数关系式为:2(3)3y x =--; (2)动点P 不在抛物线2C 上. 理由如下:∴抛物线2C 的顶点为()3,3-,开口向上, ∴抛物线2C 的最低点的纵坐标为3-. ∴63P y =-<-,∴动点P 不在抛物线2C 上; (3)12y y >. 理由如下:由(1)知抛物线2C 的对称轴是3x =,且开口向上, ∴在对称轴左侧y 随x 的增大而减小. ∴点()()12,,,A m y B n y 都在抛物线2C 上,且03m n <<<, ∴12y y >.【点睛】本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,熟练掌握平移的规律“左加右减,上加下减”以及熟练掌握二次函数的性质是解题的关键. 10.(1)2y x x 2=--;(2)254;(3)1m <. 【分析】(1)利用待定系数法将点(1,0)-,(2,0)代入解析式中解方程组即可; (2)根据(1)中函数关系式得到对称轴12x =,从而知在21x -≤≤中,当x=-2时,y 有最大值,当12x =时,y 有最小值,求之相减即可; (3)根据两函数相交可得出x 与m 的函数关系式,根据有两个交点可得出∆>0,根据根与系数的关系可得出a ,b 的值,然后根据3a b <<,整理得出m 的取值范围. 【详解】解:(1)∴2y x px q +=+的图象过点(1,0)-,(2,0),∴10420p q p q -+=⎧⎨++=⎩解得12p q =-⎧⎨=-⎩ ∴2y x x 2=--(2)由(1)得,二次函数对称轴为12x =∴当21x -≤≤时,y 的最大值为(-2)2-(-2)-2=4,y 的最小值为21192224⎛⎫--=- ⎪⎝⎭ ∴y 的最大值与最小值的差为925444⎛⎫--= ⎪⎝⎭;(3)由题意及(1)得()2222y m x my x x ⎧=-+-⎨=--⎩整理得()()2340x m x m ----=即()(1)40x x m +--=⎡⎤⎣⎦∴一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,∴()()23440m m ∆=-+-> 化简得210250m m -+> 即()250m -> 解得m≠5∴a ,b 为方程()(1)40x x m +--=⎡⎤⎣⎦的两个解 又∴3a b << ∴a=-1,b=4-m 即4-m>3 ∴m<1综上所述,m 的取值范围为1m <.【点睛】本题考查了利用待定系数法求二次函数解析式,二次函数图象的性质,根与系数的关系等知识.解题的关键是熟记二次函数图象的性质. 11.(1) ﹣4≤y <0;(2) P 点坐标为(﹣2,5)或(4,5)【详解】分析:(1)、首先将抛物线配成顶点式,然后根据x 的取值范围,从而得出y 的取值范围;(2)、根据题意得出AB 的长度,然后根据面积求出点P 的纵坐标,根据抛物线的解析式求出点P 的坐标.详解:(1)∴抛物线的解析式为y=x 2﹣2x ﹣3,∴y=x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴顶点坐标为(1,﹣4),由图可得当0<x <3时,﹣4≤y <0. (2)当y=0时,x 2﹣2x ﹣3=0, 解得:x 1=-1 x 2=3 ∴A (﹣1,0)、B (3,0), ∴AB=4.设P (x ,y ),则S △PAB =AB•|y|=2|y|=10, ∴|y|=5, ∴y=±5. ∴当y=5时,x 2﹣2x ﹣3=5,解得:x 1=﹣2,x 2=4, 此时P 点坐标为(﹣2,5)或(4,5); ∴当y=﹣5时,x 2﹣2x ﹣3=﹣5,方程无解; 综上所述,P 点坐标为(﹣2,5)或(4,5).点睛:本题主要考查的是二次函数的性质,属于基础题型.求函数值取值范围时,一定要注意自变量的取值范围是否是在对称轴的一边.12.(1)0a <,0b <,0c >,240b ac =->;(2)详见解析;(3)当31x -<<时,0y >;当3x <-或1x >时,0y <.【分析】(1)根据开口方向确定a 的符号,根据对称轴的位置确定b 的符号,根据抛物线与y 轴的交点确定c 的符号,根据抛物线与x 轴交点的个数确定b 2-4ac 的符号; (2)根据图象和x=-1的函数值确定a -b+c 与0的关系; (3)抛物线在x 轴上方时y >0;抛物线在x 轴下方时y <0. 【详解】()1∵抛物线开口向下, ∴0a <, ∵对称轴12bx a=-=-, ∴0b <,∵抛物线与y 轴的交点在x 轴的上方, ∴0c >,∵抛物线与x 轴有两个交点, ∴240b ac =->;()2证明:∵抛物线的顶点在x 轴上方,对称轴为1x =-,∴当1x =-时,0y a b c =-+>;()3根据图象可知,当31x -<<时,0y >;当3x <-或1x >时,0y <.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是熟练的掌握二次函数图象与系数的关系.13.(1)3;(2)x >1;(3)-1<x <3;(4)-5≤y ≤4 【分析】根据函数的图象和性质即可求解.【详解】解:(1)将(0,3)代入y =﹣x 2+(m ﹣1)x +m 得,3=m , 故答案为3;(2)m =3时,抛物线的表达式为y =﹣x 2+2x +3, 函数的对称轴为直线x =2ba-=1, ∴﹣1<0,故抛物线开口向下,当x >1时,y 的值随x 值的增大而减小, 故答案为x >1;(3)令y =﹣x 2+2x +3,解得x =﹣1或3, 从图象看,当﹣1<x <3时,抛物线在x 轴上方; 故答案为﹣1<x <3;(4)当x =0时,y =3;当x =4时,y =﹣x 2+2x +3=﹣5, 而抛物线的顶点坐标为(1,4),故当x 满足0≤x ≤4时,y 的取值范围是﹣5≤y ≤4, 故答案为﹣5≤y ≤4.【点睛】本题主要考查二次函数的图像与性质及系数的关系,熟练掌握二次函数的图像与性质及系数的关系是解题的关键. 14.∴∴∴【详解】解:∴抛物线开口向下, ∴a <0,∴对称轴在y 轴右边, ∴b >0,∴抛物线与y 轴的交点在x 轴的上方, ∴c >0,∴abc <0,故∴错误;∴二次函数y =ax 2+bx +c 图象可知,当x =﹣1时,y <0,∴a ﹣b +c <0,故∴正确;∴二次函数图象的对称轴是直线x =1,c >0, ∴2b a-=1, ∴2a +b =0,∴2a +b <c ,∴2a +b ﹣c <0,故∴正确;∴二次函数y =ax 2+bx +c 图象可知,当x =2时,y >0,∴4a +2b +c >0,故∴正确;∴二次函数图象的对称轴是直线x =1,∴抛物线上x =23-时的点与当x =83时的点对称, ∴x >1,y 随x 的增大而减小,∴y 1<y 2,故∴错误;故答案为∴∴∴.【点睛】本题考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:∴二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;∴一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)∴常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).15.(1)m =6;(2)y =﹣x 2+2x +3;(3)点P 的坐标为(7,0)或(1,0).【分析】(1)将点A 坐标代入y=-2x+m ,即可求解;(2)y=-2x+6,令y=0,则x=3,故点B (3,0),则二次函数表达式为:y=a (x -1)2+4,将点B 的坐标代入上式,即可求解;(3)分∴BAP=90°、∴AP (P′)B=90°两种情况,求解即可.【详解】解:(1)将点A 坐标代入y =﹣2x+m 得:4=﹣2+m ,解得:m =6;(2)y =﹣2x+6,令y =0,则x =3,故点B (3,0),则二次函数表达式为:y =a (x ﹣1)2+4,将点B 的坐标代入上式得:0=a (3﹣1)2+4,解得:a =﹣1,故抛物线的表达式为:y =﹣(x ﹣1)2+4=﹣x 2+2x+3;(3)∴当∴BAP =90°时,直线AB 的表达式为:y =﹣2x+6,则直线PB 的表达式中的k 值为12,设直线PB 的表达式为:y =12x+b ,将点A 的坐标代入上式得:4=12×1+b , 解得:b =72, 即直线PB 的表达式为:y =12x+72, 当y =0时,x =﹣7,即点P (7,0);∴当∴AP (P′)B =90°时,点P′(1,0);故点P 的坐标为(7,0)或(1,0).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的基本知识,要注意类讨论,避免遗漏,本题较为简单.16.(1)45m <且0m ≠;(2)P 点坐标为()1,6. 【分析】解:(1)根据题意得0m ≠且()24(2)490m m m =+-⋅+>;(2)先求二次函数的解析式,再求抛物线的对称轴,用待定系数法求直线AB 的解析式,再求AB 与对称轴的交点P.【详解】解:()1根据题意得0m ≠且()24(2)490m m m =+-⋅+>, 所以45m <且0m ≠; ()2把()4,0A 代入()2229y mx m x m =++++得()168290m m m ++++=,解得1m =-,所以抛物线解析式为2228(1)9y x x x =-++=--+,所以抛物线的对称轴为直线1x =,当0x =时,2288y x x =-++=,则()0,8B ,设直线AB 的解析式为y kx b =+,把()4,0A ,()0,8B 代入得{408k b b +==,解得{28k b =-=,所以直线AB 的解析式为28y x =-+,当1x =时,286y x =-+=,所以P 点坐标为()1,6.【点睛】本题考核知识点:二次函数与一次函数. 解题关键点:理解二次函数图象的交点问题.17.(1)点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)30;(3)当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234). 【分析】(1)由直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点,可得方程211x x 624-=-+,解方程即可求得点A 、B 的坐标;(2)首先由点C 是抛物线的顶点,即可求得点C 的坐标,又由S △ABC =S △OBC +S △OAC 即可求得答案;(3)首先过点P 作PD∴OC ,交AB 于D ,然后设21P a,a 64⎛⎫-+ ⎪⎝⎭,即可求得点D 的坐标,可得PD 的长,又由S △ABP =S △BDP +S △ADP ,根据二次函数求最值的方法,即可求得答案.【详解】解:(1)∴直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点, ∴211x x 624-=-+, 解得:x =6或x =﹣4,当x =6时,y =﹣3,当x =﹣4时,y =2,∴点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)∴点C 是抛物线的顶点.∴点C 的坐标为(0,6),∴S △ABC =S △OBC +S △OAC =12×6×4+12×6×6=30;(3)存在.过点P 作PD∴OC ,交AB 于D ,设P(a ,﹣14a 2+6), 则D(a ,﹣12a), ∴PD =﹣14a 2+6+12a , ∴S △ABP =S △BDP +S △ADP =12×(﹣14a 2+6+12a)×(a+4)+12×(﹣14a 2+6+12a)×(6﹣a)=25125(a 1)44--+ (﹣4<a <6), ∴当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234).【点睛】此题考查了二次函数与一次函数的交点问题,三角形面积的求解以及二次函数的最值问题等知识.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.。
部编数学九年级上册二次函数y=ax2+bx+c(a≠0)的图象与性质(基础篇)(专项练习) 含答案
专题22.14 二次函数的图象与性质(基础篇)(专项练习)一、单选题【类型一】把二次函数化为顶点式1.用配方法将二次函数21242y x x =--化为2()y a x h k =-+的形式为( )A .21(2)42y x =--B .21(1)32y x =--C .21(2)52y x =--D .21(2)62y x =--2.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---3.如图,在平面直角坐标系中,点A 在抛物线2322y x x =-+上运动.过点A 作AC x ^轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为( ).A .2B .4C .53D .73【类型二】画二次函数的图象4.二次函数()221210y a x ax a =+++-=的图象经过原点,则a 的值为( )A .±1B .1-C .1D .05.已知二次函数2y ax bx c =++,且0,0,0a b c <=<,则图象一定经过( )象限.A .三、四B .一、三、四C .一、二、三、四D .二、三、四2(0)y ax bx c a =++¹2(0)y ax bx c a =++¹2(0)y ax bx c a =++¹6.已知二次函数y =x 2﹣(m ﹣2)x +4图象的顶点在坐标轴上,则m 的值一定不是( )A .2B .6C .﹣2D .0【类型三】二次函数的性质7.已知:二次函数2y ax bx c =++图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是( )x (1)-012…y…0343…A .()0,3B .()1,4C .()2,3D .()3,08.已知二次函数221y ax ax a =++-的图象只经过三个象限,下列说法正确的是( )A .开口向下B .顶点在第一象限C .1a ³D .当1x >时,y 的最小值为-19.画二次函数2y ax bx c =++的图象时,列表如下:x (1234)5…y…2321-6-…关于此函数有以下说法:①函数图象开口向上;②当2x >时,y 随x 的增大而减小;③当0x =时,1y =-.其中正确的有( )A .①②B .①③C .②③D .①②③【类型四】二次函数各项系数的符号10.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =-+的图象大致是( ).2(0)y ax bx c a =++¹2(0)y ax bx c a =++¹A .B .C .D .11.在同一坐标系中,直线y ax a =+和抛物线232y ax x =-++(a 是常数,且a ≠0)的图象可能是( )A .B .C .D .12.对称轴为直线1x =的抛物线2y ax bx c =++(a ,b ,c 为常数,且0a ¹)如图,小明同学得出了以下结论:①0abc >;②24b ac >;③420a b c ++>;④30a c +>;⑤()a b m am b +£+(m 为任意实数);⑥当1x <-时,y 随x 的增大而增大.其中结论错误的个数为( )A .1B .2C .3D .4【类型五】一次函数与二次函数图象判断13.在同一平面直角坐标系中,函数()20y ax bx a =+¹与y ax b =+的图象可能是( )A .B .C .D .14.已知二次函数2(0)y ax bx c a =++¹的图象如图所示,对称轴为12x =-,下列结论中,正确的是( )A .abc >0B .a +b =0C .b +c >aD .a +c <b15.当ab <0时,y =ax 2与y =ax +b 的图象大致是( )A .B .C .D .【类型六】二次函数图象的平移16.将抛物线23y x =向右平移1个单位,再向上平移2个单位后所得到的抛物线的解析式为( )A .()2312y x =+-B .()2312y x =++C .()2312x y =--D .()2312y x =-+17.关于二次函数y =(x ﹣2)2+1,下列说法中错误的是( )A .图象的开口向上B .图象的对称轴为x =2C .图象与y 轴交于点(0,1)D .图象可以由y =x 2的图象向右平移2个单位长度,再向上平移1个单位长度得到18.如图,抛物线y =x 2经过平移得到抛物线y =ax 2+bx ,其对称轴与两段抛物线所围成的阴影部分的面积是8,则抛物线y =ax 2+bx 的顶点坐标是( )A .(1,-4)B .(2,-4)C .(4,-2)D .(4,-1)二、填空题【类型一】把二次函数化为顶点式19.把二次函数y =-x 2-4x -3化成y =a (x -h )2+k 的形式是______ .20.已知(0,3)A 、()2,3B 是抛物线2y x bx c =-++上两点,则该抛物线的顶点坐标是_____.21.二次函数245y x x =-+化为2()y x h k =-+的形式,则h k -=___________.【类型二】画二次函数的图象22.如图,已知二次函数22y x x =-+,当x <a 时,y 随x 的增大而增大,则实数a 的取值范围是_____________.23.已知1(4,)A y -,B 2(3,)y -,3(3,)C y 两点都在二次函数22(2)y x b =-++的图象上,则1y ,2y ,3y 的大小关系为_________.24.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).【类型三】二次函数的性质25.已知二次函数21y x mx =-+,(1)该二次函数图像的开口方向为______;(2)若该函数的图象的顶点在x 轴上,则m 的值为______;26.将二次函数241y x x =--+的图象先向右平移a 个单位再向下平移2a 个单位.(1)若平移后的二次函数图象经过点()1,1-,则a =______.(2)平移后的二次函数图象与y 轴交点的纵坐标最大值为______.27.如图,二次函数y =ax 2+bx +c 的图象经过点A (﹣3,0),B (1,0),与y 轴交于点C .下列结论:①abc >0;②3a ﹣c =0;③当x <0时,y 随x 的增大而增大;④对于任意实数m ,总有a ﹣b ≥am 2﹣bm .其中正确的是 _____(填写序号).2(0)y ax bx c a =++¹2(0)y ax bx c a =++¹2(0)y ax bx c a =++¹【类型四】二次函数各项系数的符号28.如图,抛物线()20y ax bx c a =++¹与x 轴交于点(-3,0),其对称轴是12x =-,则下列结论:①0abc >;②0a b c ++<;③若两点(-2,1y ),(3,2y )在二次函数图象上,则12y y >.其中正确结论的个数为___.29.如图,抛物线y =ax 2+bx +c 的对称轴为直线x =1,下列结论①ac <0;②b 2﹣4ac >0;③2a ﹣b =0;④3a +c =0,其中,正确的个数是_____30.已知二次函数2y ax bx c =++的图象如图所示,下列结论:①0ac <;②20b a -<;③240b ac -<;④0a b c -+<,正确的是______.【类型五】一次函数与二次函数图象判断31.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.2(0)y ax bx c a =++¹32.已知二次函数22y ax =+的图象开口向下,则直线2y ax =-不经过的象限是第______象限.33.已知二次函数2y ax bx c =++的图象如图所示,则一次函数y ax bc =+ 的图象不经过第____________象限【类型六】二次函数图象的平移34.抛物线2y x bx c =++图像向右平移2个单位再向下平移3个单位,所得图像的解析式为223y x x =--,那么原抛物线的解析式为____________35.平移二次函数的图象,如果有一个点既在平移前的函数图象上,又在平移后的函数图象上,我们把这个点叫做“关联点”.现将二次函数22y x x c =++(c 为常数)的图象向右平移得到新的抛物线,若“关联点”为(1,2),则新抛物线的函数表达式为_______.36.已知平面直角坐标系中,点P 的坐标为()2,1--,若二次函数242y x x m =-++的图像与线段OP 有且只有一个公共点,则m 满足的条件是______.三、解答题37.如图,已知经过原点的抛物线y =2x 2+mx 与x 轴交于另一点A (2,0).(1)求m 的值和抛物线顶点M 的坐标;(2)求直线AM 的解析式.38.已知抛物线y =ax 2+bx +c 经过点A (0,3)、B (4,3)、C (1,0).(1)填空:抛物线的对称轴为直线x = ,抛物线与x 轴的另一个交点D 的坐标为;(2)画出二次函数y =ax 2+bx +c 的图象.(3)当 1 < x £4时, y 的取值范围是39.二次函数2y ax bx c =++的自变量x 与函数值y 的对应值如下表,根据下表回答问题.x …-3-2-10…y…-2-24…(1)该二次函数与y 轴交点是 ,对称轴是.(2)求出该二次函数的表达式;(3)向下平移该二次函数,使其经过原点,求出平移后图像所对应的二次函数表达式.40.如图,抛物线y =﹣x 2+(m ﹣1)x +m 与y 轴交于点(0,3).(1)m 的值为________;(2)当x 满足________时,y 的值随x 值的增大而减小;(3)当x 满足________时,抛物线在x 轴上方;(4)当x 满足0≤x ≤4时,y 的取值范围是________.41.已知抛物线21y ax bx c =++的顶点A 是直线22y x =与324y x =-+的交点,且抛物线经过直线324y x =-+与y 轴的交点B .(1)求点A 的坐标;(2)求抛物线的函数表达式;(3)写出当13y y >时x 的取值范围.42.已知二次函数2243y x x =-+的图像为抛物线C .(1)抛物线C 顶点坐标为______;(2)将抛物线C 先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线1C ,请判断抛物线1C 是否经过点()2,3P ,并说明理由;(3)当23x -££时,求该二次函数的函数值y 的取值范围.参考答案1.D【分析】先把二次项的系数化为1,再配方,从而可得答案.解:21242y x x =--()2144442x x =-+-- ()21262x =--,故选:D.【点拨】本题考查的是利用配方法化抛物线为顶点式,熟练掌握“配方法”是解本题的关键.2.C【分析】把抛物线沿y 轴翻折后,抛物线的开口方向与原抛物线开口方向相反,顶点(2,1)关于y 轴对称的顶点为(2,-1),则可得翻折后的抛物线的解析式.解:∵2245(2)1y x x x =-+=-+,∴顶点坐标为(2,1),开口向上,∴抛物线245y x x =-+沿y 轴翻折后顶点坐标为(2,-1),此时抛物线的开口向下,∴抛物线沿y 轴翻折所得的抛物线的表达式为2(2)1=---y x ,化简后为:245y x x =-+-.故选:C .【点拨】本题考查了求抛物线关于y 轴对称后的解析式,点关于y 轴对称,把二次函数的一般式化为顶点式等知识,关键是抓住抛物线的开口方向与顶点坐标翻折后的变化.3.C【分析】先利用配方法得到抛物线的顶点坐标,再根据矩形的性质得BD =AC ,由于AC 的长等于点A 的纵坐标,所以当点A 在抛物线的顶点时,点A 到x 轴的距离最小,从而得到BD 的最小值.解:∵2215322333y x x x æö=-+=-+ç÷èø,∴抛物线的顶点坐标为(13,53),∵四边形ABCD 为矩形,∴BD =AC ,而AC ⊥x 轴,∴AC 的长等于点A 的纵坐标,当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为53,∴对角线BD 的最小值为53.故选:C .【点拨】本题考查了二次函数图象上点的坐标特征以及矩形的性质,解题时注意:二次函数图象上点的坐标满足其解析式.4.C【分析】先根据二次函数图象上点的坐标特征,把原点坐标代入解析式求出a =1或a =-1,然后根据二次函数的定义确定a 的值.解:把(0,0)代入y =(a +1)x 2+3x +a 2-1得a 2-1=0,解得a =1或a =-1,而a +1≠0,所以a 的值为1.故选:C .【点拨】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.注意不要掉了a +1≠0.5.A【分析】根据0a <,0b =,0c <,可以判断二次函数的开口向下,二次函数与y 轴的交点在y 轴的负半轴,且二次函数的顶点坐标为原点,由此即可判断二次函数图像经过的象限.解:∵二次函数2y ax bx c =++中0a <,0b =,0c <,∴二次函数的解析式为2y ax c =+,二次函数的开口向下,二次函数与y 轴的交点在y 轴的负半轴,∴二次函数的顶点坐标为(0,c ),在y 轴负半轴,∴二次函数2y ax bx c =++的图象 经过三、四象限;故选A .【点拨】本题主要考查了二次函数图象的性质,解题的关键在于能够熟练掌握二次函数图象与系数之间的关系.6.D【分析】先把二次函数的解析式化为顶点式,再利用该函数图象的顶点在坐标轴上,可以得到关于m 的方程,解方程从而可得答案.解:∵二次函数()()22222244,24m m y x m x x --æö=--+=--+ç÷èø∴该函数的顶点坐标为()222,4,22m m éù---+êúêúëû∵二次函数()224y x m x =--+图象的顶点在坐标轴上,∴202-=m 或()22404m --+=,当202-=m 时,2,m = 当()22404m --+=时,()2216,m -= 24m \-=或24,m -=-6m \=或2,m =-综上:2m =或6m =或 2.m =-故选:D .【点拨】本题考查的是二次函数的性质,掌握二次函数的顶点坐标在坐标轴上的坐标特点是解题的关键.7.D【分析】由表格可知,二次函数的图象关于直线1x =对称,它的图象与x 轴的一个交点坐标为()1,0-,根据二次函数的对称性可求它的图象与x 轴的另一个交点坐标.解:由表格可知,二次函数的图象关于直线1x =对称,它的图象与x 轴的一个交点坐标为()1,0-,∴它的图象与x 轴的另一个交点坐标为()3,0,故选D .【点拨】本题考查了二次函数的图象与性质.解题的关键在于确定二次函数的对称轴.8.C【分析】二次函数221y ax ax a =++-的图象只经过三个象限,要满足条件,常数项大于等于0,解不等式即得.解:∵二次函数221y ax ax a =++-的图象只经过三个象限,∴a -1≥0,∴a ≥1.故选C .【点拨】本题考查了二次函数221y ax ax a =++-的图象只经过三个象限,运用函数图象与x 轴的两个交点横坐标的积大于等于0,即常数项大于等于0,是解决此类问题的关键.9.C【分析】先由表中数据可知,y 随x 的增大先增大后减小,得到函数图象开口向下;利用y =2时,x =1或x =3,得到函数的对称轴,再结合开口方向得到函数的增减性;利用对称轴为直线x =2,则求出1y =-时的自变量的值.解:由表中数据可知,y 随x 的增大先增大后减小,∴函数图象开口向下,故①错误,不符合题意;∵y =2时,x =1或x =3,∴函数的对称轴为直线x =2,∵开口向下,∴当x >2时,y 随x 的增大而减小,故②正确,符合题意;∵对称轴为直线x =2,当x =4时,1y =-,∴x =0时,1y =-,故③正确,符合题意;∴正确的选项有②③;故选:C .【点拨】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.10.C【分析】观察二次函数2y ax bx c =++的图象得:0,02b a a<-<,可得0b <,0a ->,从而得到一次函数y ax b =-+的图象经过第一、三、四象限,即可求解.解:观察二次函数2y ax bx c =++的图象得:0,02b a a<-<,∴0b <,0a ->,∴一次函数y ax b =-+的图象经过第一、三、四象限.故选:C【点拨】本题主要考查了一次函数和二次函数的图象和性质,熟练掌握一次函数和二次函数的图象和性质是解题的关键.11.D【分析】根据函数图像和解析式中的参数分析函数图像性质,分析函数图像是否可能存在.解:A 、由直线y =ax+a 的图像性质和抛物线y =﹣ax 2+3x +2的图像性质可得0a <和0a >,图象不符合题意B 、由直线y =ax +a 的图像性质可得0a <,抛物线y =﹣ax 2+3x +2的图像性质可得0a <及对称轴在y 轴的左侧,图象不符合题意C 、由直线y =ax +a 的图像性质可得0a >,抛物线y =﹣ax 2+3x +2的图像性质可得0a <,图象不符合题意D 、由直线y =ax +a 的图像性质可得0a <,抛物线y =﹣ax 2+3x +2的图像性质可得0a <和对称轴在y 轴的左侧,符合题意故选D【点拨】此题考查的知识点:一次函数增减性质、二次函数开口方向和对称轴在y 轴的左侧还是右侧、函数中参数的作用;根据图像变化确定函数中的参数正负性是解答此题的关键.12.B【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:观察图象得:抛物线开口向上,与y 轴交于负半轴,对称轴为直线x =1,∴0,0,12b a c a><-=,∴20b a =-<,∴0abc >,故①正确;根据题意得:抛物线与x 轴有两个交点,∴240b ac D =->,即24b ac >,故②正确;∵对称轴为直线x =1,且抛物线与x 轴的另一个交点位于x 轴负半轴,当x =2时,y <0,即420a b c ++<,故③错误;根据题意得:当x =-1时,y >0,即0a b c -+>∵2b a =-,∴()230a a c a c --+=+>,故④正确;∵抛物线开口向上,对称轴为直线x =1,∴当x =1时,函数值最小,最小值为a +b +c ,∴当x =m 时,2a b c am bm c ++£++,∴()a b m am b +£+,故⑤正确;∵抛物线开口向上,对称轴为直线x =1,∴⑥当1x <-时,y 随x 的增大而减小,故⑥错误;∴错误的有2个.故选:B【点拨】本题考查了二次函数图象与系数的关系,理解二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点确定是解题的关键.13.A【分析】根据二次函数和一次函数图象的性质依次进行判断即可.解:函数()20y ax bx a =+¹经过原点(0,0),则B 错误;当a <0时,y ax b =+经过二、四象限,则D 错误;当02b a->时,b >0, y ax b =+经过一、二、四象限,则C 错误;当a >0,02b a ->时,b <0, y ax b =+经过一、三、四象限,则A 符合题意.故选:A .【点拨】本题考查二次函数与一次函数的综合,熟练掌握函数图象的性质是解决问题的关键.14.D【分析】由抛物线开口方向得到a >0,由对称轴得到b =a >0,由抛物线与y 轴的交点得到c <0,则abc <0;a +b >0,据此来进行一一判断即可.解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =122b a -=-,∴b =a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0;a +b >0;故选项A 、B 错误;∵b =a >0,c <0,∴b +c <a ,a +c <b ,故选项C 错误,选项D 正确,故选:D .【点拨】此题考查了二次函数图象与系数的关系.此题难度适中,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.15.A【分析】根据题意,ab<0,分a>0与a<0两种情况讨论,分析选项可得答案.解:根据题意,ab<0,当a>0时,b<0,y=ax2开口向上,过原点,y=ax+b过一、三、四象限;此时,A选项符合,当a<0时,b>0,y=ax2开口向下,过原点,y=ax+b过一、二、四象限;此时,没有选项符合.故选:A.【点拨】本题考查了二次函数与一次函数的图象的性质,要求学生理解系数与图象的关系.16.D【分析】先根据抛物线的顶点式得到抛物线y=3x2的顶点坐标为(0,0),则抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的顶点坐标为(1,2),然后再根据顶点式即可得到平移后抛物线的解析式.解:∵抛物线y=3x2的顶点坐标为(0,0),∴抛物线y=3x2向右平移1个单位,再向上平移2个单位得到的抛物线的顶点坐标为(1,2),∴平移后抛物线的解析式为y=3(x-1)2+2.故选:D.【点拨】本题考查了二次函数图象与几何变换:先把抛物线的解析式化为顶点式y=a (x-k)2+h,其中对称轴为直线x=k,顶点坐标为(k,h),若把抛物线先右平移m个单位,向上平移n个单位,则得到的抛物线的解析式为y=a(x-k-m)2+h+n;抛物线的平移也可理解为把抛物线的顶点进行平移.17.C【分析】根据二次函数的性质判断A,B选项;根据当x=0时,y=5判断C选项;根据图象的平移规律判断D选项.解:A选项,a=1>0,开口向上,故该选项不符合题意;B选项,图象的对称轴为x=2,故该选项不符合题意;C选项,当x=0时,y=5,图象与y轴交于点(0,5)故该选项符合题意;D 选项,图象可以由y =x 2的图象向右平移2个单位长度,再向上平移1个单位长度得到,故该选项不符合题意;故选:C .【点拨】本题考查了二次函数的性质,二次函数的图象和几何变换,掌握二次函数的图象与坐标轴交点的求法是解题的关键.18.B【分析】确定出抛物线y =ax 2+bx 的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.解:如图,设平移后所得新抛物线的对称轴和两抛物线相交于点A 和点B ,连接OA ,OB ,则由抛物线平移的性质可知,a =1,S 阴影=S △OAB ,∴y =ax 2+bx =x 2+bx = (x +2b ) 2−24b ,∴点A 的坐标为 (−2b ,−24b ),点B 的坐标为 (−2b ,24b ),∴AB =24b +24b =22b ,点O 到AB 的距离:−2b ,∴S △AOB =12×22b ×(−2b )=8,解得:b =−4.∴−2b =2,−24b =−4,∴抛物线y =ax 2+bx 的顶点A 的坐标为 (2,−4).故选:B .【点拨】本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.19.y =-(x +2)2+11【分析】根据配方法即可求解.解:∵y =-x 2-4x -3=-(x 2+4x +4)+11=-(x +2)2+11,故答案为:y =-(x +2)2+11.【点拨】此题主要考查二次函数的顶点式,解题的关键是熟知配方法的运用.20.()1,4【分析】将A (0,3),B (2,3)代入抛物线y =-x 2+bx +c 的解析式,求出b 、c ,即可得解析式,从而得到顶点坐标.解:∵A (0,3),B (2,3)是抛物线y =﹣x 2+bx +c 上两点,∴代入得:3423c b c =ìí-++=î,解得:b =2,c =3,∴抛物线解析式为y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴抛物线顶点坐标为(1,4),故答案为(1,4).【点拨】本题主要考查了待定系数法求二次函数解析式,二次函数的顶点坐标,熟练掌握待定系数法是解题的关键.21.1【分析】根据配方法进行整理即可得解.解:245y x x =-+2(44)1x x =-++2(2)1=-+x ,∴h =2,k =1,211h k \-=-=,故答案为:1.【点拨】本题考查了二次函数的三种形式的转化,熟记配方法的操作是解题的关键.22.a≤1【分析】由函数图象可得函数的增减性,即可得答案.解:∵由函数图象可知,当x <1时,y 随x 的增大而增大,∴a≤1,故答案为a≤1.【点拨】本题主要考查二次函数的图象与系数的关系,熟练掌握二次函数的性质是解题的关键.23.312y y y <<.【分析】先根据二次函数的性质得到抛物线的对称轴为直线x=-2,然后比较三个点离直线x=-2的远近得到y 1、y 2、y 3的大小关系.解: ∵二次函数的解析式为22(2)y x b =-++,∴抛物线的对称轴为直线x =−2,∵1(4,)A y -,B 2(3,)y -,3(3,)C y ,∴点C 离直线x =−2最远,其次为A 点,B 距离x =−2最近而抛物线开口向下,∴所以根据图象可知:312y y y << ;故答案为:312y y y <<.【点拨】本题考查二次函数图象上点的坐标特征.解决此题的关键是能根据函数的图象理解二次函数,当a >0时,距离对称轴越远的点,函数值越大;当a <0时,距离对称轴越远的点,函数值越小.24.y =x 2+2x (答案不唯一).【分析】设此二次函数的解析式为y =ax (x+2),令a =1即可.解:∵抛物线过点(0,0),(﹣2,0),∴可设此二次函数的解析式为y =ax (x+2),把a =1代入,得y =x 2+2x .故答案为y =x 2+2x (答案不唯一).【点拨】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.25. 向上 2±【分析】根据二次函数的性质求解即可.解:∵二次函数解析式为21y x mx =-+,10a =>,∴抛物线的开口向上,抛物线对称轴为直线12x m =,∵该函数的图象的顶点在x 轴上,∴当12x m =时,22111042y m m =-+=,∴2m =±,故答案为:向上;±2.【点拨】本题主要考查了二次函数的性质,熟知二次函数的性质是解题的关键.26. 3或1##1或3 2【分析】(1)先求出平移后的解析式2(2)52y x a a =-+-+-,然后把点(1,-1)代入解析式求解即可;(2)根据平移后的解析式,令x =0,求出与y 轴交点的函数,配方即可.解:(1)∵二次函数2241(2)5y x x x =--+=-++的图象先向右平移a 个单位再向下平移2a 个单位,∴2(2)52y x a a =-+-+-,∵平移后的二次函数图象经过点()1,1-,∴21(12)52a a -=-+-+-,解得1231a a ==,,故答案为3或1;(2)∵平移后的二次函数图象与y 轴交点,∴()22(02)52=-12y a a a =-+-+--+,∴与y 轴交点的纵坐标最大值为2.故答案为2.【点拨】本题考查二次函数的平移,待定系数法求参数,二次函数的性质,掌握二次函数的平移,待定系数法求参数,二次函数的性质是解题关键.27.①④##④①【分析】根据抛物线的对称轴,开口方向,与y 轴的交点位置,即可判断①,根据二次函数y =ax 2+bx +c 的图象经过点A (﹣3,0),B (1,0),即可求得对称轴,以及当1x =时,0y =,进而可以判断②③,根据顶点求得函数的最大值,即可判断④.解:Q 抛物线开口向下,0a \<,Q 对称轴0,02b x a a=-<<,0b \<,Q 抛物线与y 轴交于正半轴,0c \>,0abc \>,故①正确,Q 二次函数y =ax 2+bx +c 的图象经过点A (﹣3,0),B (1,0),\对称轴为12b x a=-=-,则2b a =,当1x =,20y a b c a a c =++=++=,30a c \+=,故②不正确,由函数图象以及对称轴为1x =-,可知,当1x <-时,y 随x 的增大而增大,故③不正确,Q 对称轴为1x =-,则当1x =-时,y a b c =-+取得最大值,\对于任意实数m ,总有2a b c am bm c -+³-+,即2a b am bm -³-,故④正确.故答案为:①④.【点拨】本题考查了二次函数图象的性质,数形结合是解题的关键.28.2【分析】根据观察图象得:抛物线开口向下,与y 轴交于正半轴,对称轴是直线12x =-,可得a <0,c >0,0b a =<,从而得到abc >0,故①正确;再由抛物线()20y ax bx c a =++¹与x 轴交于点(-3,0),其对称轴是直线12x =-,可得抛物线()20y ax bx c a =++¹与x 轴的另一个交点为(2,0),从而得到当x =1时,y >0,进而得到0a b c ++>,故②错误;再由(3,2y )关于对称轴直线12x =-的点为(-4,2y ),在对称轴左侧y 随x 的增大而增大,可得12y y >,故③正确,即可求解.解:观察图象得:抛物线开口向下,与y 轴交于正半轴,∴a <0,c >0,∵对称轴是直线12x =-,∴122b a -=-,即0b a =<,∴abc >0,故①正确;∵抛物线()20y ax bx c a =++¹与x 轴交于点(-3,0),其对称轴是直线12x =-,∴抛物线()20y ax bx c a =++¹与x 轴的另一个交点为(2,0),∵抛物线开口向下,∴当x =1时,y >0,∴0a b c ++>,故②错误;根据题意得:(3,2y )关于对称轴直线12x =-的点为(-4,2y ),∵抛物线开口向下,∴在对称轴左侧y 随x 的增大而增大,∴12y y >,故③正确,∴正确的有①③,共2个.故答案为:2【点拨】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.29.3个##三个【分析】由图象可知a <0,b >0,c >0,然后可判定①,根据二次函数的图象与x 轴的交点问题可判定②,根据对称轴公式可判定③,把x =-1代入函数解析式可判定④,进而问题可求解.解:由图象可得:a <0,对称轴为12b x a=-=,与x 轴的交点有2个,∴2b a =-,即20a b +=,240b ac ->,故②正确,③错误;∴b >0,c >0,∴0ac <,故①正确;当x =-1时,则有0a b c -+=,∴30a c +=,故④正确;∴正确的有①②④,共3个;故答案为3个.【点拨】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.30.①②##②①【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:①图象开口向下,与y 轴交于正半轴,能得到:0a <,0c >,0ac \<,故①正确;Q ②对称轴1x <-,0a <,12b a\-<-,2b a \<,20b a \-<,故②正确.③图象与x 轴有2个不同的交点,依据根的判别式可知240b ac ->,故③错误.④当1x =-时,0y >,0a b c \-+>,故④错误;故答案为①②.【点拨】本题主要考查了二次函数图象与系数的关系,解题的关键是会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.31.﹣1≤x ≤2【分析】根据图象可以直接回答,使得y 1≥y 2的自变量x 的取值范围就是直线y 1=kx+m 落在二次函数y 2=ax 2+bx+c 的图象上方的部分对应的自变量x 的取值范围.解:根据图象可得出:当y 1≥y 2时,x 的取值范围是:﹣1≤x ≤2.故答案为:﹣1≤x ≤2.【点拨】本题考查了二次函数的性质.本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度.32.四【分析】根据二次函数的图像求出a 的取值,再根据一次函数的图像与性质即可求解.解:∵二次函数22y ax =+的图象开口向下,∴0a <.又∵直线2,0,20y ax a =-->>,直线2y ax =-经过第一、二、三象限,即不经过第四象限.故答案为:四.【点拨】此题主要考查二次函数与一次函数综合,解题的关键是熟知其图像与性质.33.二##2【分析】由抛物线的开口方向、与y 轴的交点以及对称轴,可确定a ,b ,c 的符号,继而可判定一次函数y ax bc =+的图象不经过哪个象限即可.解:Q 开口向上,0a \>,Q 与y 轴交于负半轴,0c \<,Q 对称轴在y 轴左侧,02b a\-<,又∵0a >,0b \>,0bc \<,\一次函数y ax bc =+的图象经过一、三、四象限,不经过第二象限.故答案为:二.【点拨】主要考查二次函数图象与二次函数系数之间的关系.注意二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点确定,也考查了一次函数图象的性质.34.22y x x=+【分析】将抛物线223y x x =--的图像先向上平移3个单位,再向左平移2个单位即可得.解:将抛物线2223(1)4y x x x =--=--先向上平移3个单位,所得抛物线的解析式为2(1)43y x =--+,即为2(1)1y x =--,再向左平移2个单位,所得抛物线的解析式为2(12)1y x =-+-,即为22(1)12y x x x =+-=+,则原抛物线的解析式为22y x x =+,故答案为:22y x x =+.【点拨】本题考查了二次函数图像的平移,熟练掌握二次函数图像的平移规律是解题关键.35.2(3)2y x =--【分析】将(1,2)代入y =x 2+2x +c ,解得c =-1,设将抛物线y =x 2+2x -1=(x +1)2-2,向右平移m 个单位,则平移后的抛物线解析式是y =(x +1-m )2-2,然后将(1,2)代入得到关于m 的方程,通过解方程求得m 的值即可.解:将(1,2)代入y =x 2+2x +c ,得12+2×1+c =2,解得c =-1.设将抛物线y =x 2+2x -1=(x +1)2-2,向右平移m 个单位,则平移后的抛物线解析式是y =(x +1-m )2-2,将(1,2)代入,得(1+1-m )2-2=2.。
人教版初三数学上册二次函数y=ax2+bx+c(a≠0)的图象和性质(1)
x1+x2 2
O
y1x2 6x21 2
5
10 x
牛刀小试:
对于上面抛物线
y1x2 2
6x21,
已知(2,11)关于对称轴直线x=6
对称点的坐标是 (10,11)
利用配方法求下列抛物线的对称轴 和顶点坐标并指出它的最值和增减
性。 (1) y=x2+4x-1
(2) y=-2x2-4x+1
欢迎各位老师光临指导
苏桥中学 张善书 2016.10.9
一般地,抛物线y=a(x-h)2 +k与 y=ax2的 形状 相同, 位置 不同
上加下减 y=ax 2
y=a(x-h)2 +k
左加右减
抛物线 a(-xh)2k有如下特点:
1.当a﹥0时,开口向上 , 当a﹤0时,开口 向下 ,
2.对称轴是直线X=h ;
(配方法—确定抛物线的对称轴和顶点坐标)
y
o
x
y1x2 6x21 2
你知道是怎样配 方的吗?
配
(1)“提”:提出二次项系数;
方
得
( 2 )“配”:括号内配成完全平方;
(3)“化”:化成顶点式。
1
2
y= — (x―6) +3
2
问题导入:
如何画出
y=
—1
2
(x―6)
+3 的图象呢?
2
平移方法一:
↗5y1
点B(9.1,y2);比较y1
和y2的大小?
O
5
10 x
y1(x6)2 3 2
请找出关于对称轴x=6两个对 y
称点,比如 (5,3.5)、(7,3.5)
x= 5+7 2
初中数学专题练习-二次函数y=ax^2+bx+c(a≠0)的图象与性质
《二次函数》专题第三讲:二次函数y=ax 2+bx+c(a ≠0)的图象与性质一、二次函数2y ax bx c =++的图象和性质1.如何画216212y x x =-+的图象?2.用配方法推导顶点坐标公式二次函数2y ax bx c =++的图象是抛物线,其顶点坐标是(2b a -, 244ac b a -),对称轴是平行于y 轴的一条直线2b x a=-. 列表小结=2++ (≠0)的图象和性质示意图 a >0a <0开口方向a >0时,开口向上 a <0时,开口向下 形状 ①a 相同⇔抛物线的形状、大小相同; ②a 越大, 开口越小; a 越小, 开口越大.二次函数2y ax bx c =++的图像与性质:顶点坐标24(,)24b ac b a a --,是抛物线最高(或最低)点 对称轴直线2b x a =- 函数最值 若a >0,当2b x a =-时,y 最小值=244ac b a-. 若a <0,当2b x a =-时, y 最大值244ac b a -. 增减性 若a>0,当2b x a ≤-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大. 若a<0,当2b x a≤-时,y 随x 的增大而增大; 当2b x a>-时,y 随x 的增大而减小.二、过特殊位置的抛物线:对于抛物线2y ax bx c =++,(1)若顶点是原点,则(2)若经过原点,则(3)若顶点在y 轴上,则(4)若顶点在x 轴上,则(5)若经过(1,0)点,则若经过(-1,0)点,则练习(1)抛物线223y x x =--的顶点坐标是 ,对称轴是 .(2)若二次函数2221y ax x a =++-(0a ≠)的图象如图所示, 则a 的值是 .(3)二次函数22y x bx c =++的顶点坐标是(1,-2),则 b = ,c = .(4)已知二次函数2y ax bx c =++(其中a >0,b >0,c <0),关于 这个二次函数的图象有如下说法:①图象的开口一定向上;xyO②图象的顶点一定在第四象限;③图象与x轴的交点至少有一个在y轴的右侧.以上说法正确的个数为()A.0 B.1 C.2 D.3。
22.1.4二次函数y=ax^2+bx+c的图象和性质(第二课时)(课件)九年级数学上册(人教版)
C. y=(x-2)2-1
D. y= 1 (x-2)2-1 2
分层作业
3.一抛物线的形状、开口方向与抛物线 y= 1 x2-2x+3 相同,顶点为(-2,1),则此抛物线的解析式为( )
2
A. y= 1 (x-2)2+1
2
B. y= 1 (x+2)2-1
2
C. y= 1 (x+2)2+1
2
D. y= 1 (x-2)2-1
分层作业
【拓展延伸作业】
6.如图,抛物线 y=ax2+bx+c 经过点 A(-1,0),点 B(3,0),且 OB=OC. (1)求抛物线的表达式; (2)如图,点 D 是抛物线的顶点,求△BCD 的面积.
分层作业
解:(1):抛物线 y=ax2+bx+c 经过点 A(-1,0),点 B(3,0),且 OB=OC, ∴OC=OB=3. ∴C(0.3), 设抛物线的解析式为 y=a(x+1)(x-3),将 C(0,3)代入得, -3a=3. ∴a=-1, ∴抛物线的解析式为 y=-(x+1)(x-3)=-x2+2x+3;
∴DE=4-2=2,
∴S△CDB= 1 DE·OB= 1 ×2×3=3
2
2
分层作业
7. 已知二次函数 y=x2+bx+c 的图象经过点(0,-1)和(2,7)
(1)求二次函数解析式及对称轴
(2)若点(-5,y1)(m,y2)是抛物线上不同的两个点,且 y1+y2=28,求 m 的值
解:把(0,-1)和(2,7)分别代入 y=x2+bx+c 可得: (2)把 x=-5 代入二次函数得:y1=14,
人教数学九年级上册-二次函数y=ax2bxc(a≠0)的图象与性质基础篇人教版
专题22.3 二次函数(巩固篇)(专项练习)一、单选题知识点一、二次函数的判断1.下列实际问题中,可以看作二次函数模型的有( )①正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数b 与这个人的年龄a 之间的关系为b =0.8(220-a );②圆锥的高为h ,它的体积V 与底面半径r 之间的关系为V =πr 2h (h 为定值);13③物体自由下落时,下落高度h 与下落时间t 之间的关系为h =gt 2(g 为定值);12④导线的电阻为R ,当导线中有电流通过时,单位时间所产生的热量Q 与电流I 之间的关系为Q =RI 2(R 为定值).A .1个B .2个C .3个D .4个2.关于函数y=(500﹣10x )(40+x ),下列说法不正确的是( )A .y 是x 的二次函数 B .二次项系数是﹣10 C .一次项是100D .常数项是200003.下列函数关系中,是二次函数的是( )A .在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系B .当距离一定时,火车行驶的时间t 与速度v 之间的关系C .等边三角形的周长c 与边长a 之间的关系D .圆心角为120°的扇形面积S 与半径R 之间的关系4.下列各式中,y 是x 的二次函数的是( )A .y=a +bx+c B .x 2+y-2=0C .y 2-ax=-2D .-y 2+1=02x 2x 知识点二、二次函数的参数5.若函数y =(a ﹣1)x 2+2x +a 2﹣1是二次函数,则( )A .a ≠1B .a ≠﹣1C .a =1D .a =±16.当函数是二次函数时,的取值为( )21(1)23ay a x x +=-++a A .B .C .D .1a =1a =±1a ≠1a =-7.若y=(m +1)是二次函数,则m= ( )265m m x --A .-1B .7C .-1或7D .以上都不对8.下列结论正确的是( )A .y=ax 2是二次函数B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数知识点三、二次函数的解析式9.用一根长的铁丝围成一个矩形,那么矩形的面积与它的一边长60cm 2()y cm 之间的函数关系式为( )()x cm A .B .230(030)y x x x =-<<230(030)y x x x =-+<…C .D .230(030)y x x x =-+<<230(030)y x x x =-+<…10.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那么商品所赚钱y 元与售价x 元的函数关系为( )A .B .2105607350y x x =--+ 2105607350y x x =-++ C .D .210350y x x=-+2103507350y x x =-+- 11.下列函数关系中,可以看做二次函数y=ax 2+bx+c (a≠0)模型的是( )A .在一定距离内,汽车行驶的速度与行驶的时间的关系B .正方形周长与边长之间的关系C .正方形面积和正方形边长之间的关系D .圆的周长与半径之间的关系12.某商店从厂家一每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那商品所赚钱y 元与售价x 元的函数关系为( )A .y =-10 x 2-560x+7350B .y =-10 x 2+560x-7350C .y =-10 x 2+350xD .y =-10 x 2+350x-7350二、填空题知识点一、二次函数的判断13.二次函数中,二次项系数为____,一次项是____,常数项是___21212y x x =-+14.下列函数中:①y=-x 2;②y=2x ;③y=22+x 2-x 3;④m=3-t -t 2是二次函数的是______(其中x 、t 为自变量).15.下列各式:;其()()()()2222212;2;;;12;2(1)2;2122y x y x y y y x x y x y x x x x x =+====-+=-+=+--中是的二次函数的有________(只填序号)y x 16.二次函数y =3x 2+5的二次项系数是_____,一次项系数是_____.知识点二、二次函数的参数17.定义:由a ,b 构造的二次函数叫做一次函数y =ax +b 的“滋()2y ax a b x b=+++生函数”,一次函数y =ax +b 叫做二次函数的“本源函数”(a ,b 为常()2y ax a b x b=+++数,且).若一次函数y =ax +b 的“滋生函数”是,那么二次函数0a ≠231y ax x a =-++的“本源函数”是______.231y ax x a =-++18.如果函数是二次函数,那么m =____.2(1)2mmy m x-=++19.当m____________________________时,函数是22(23)(2)y m m x m x m =--+-+二次函数.20.点是二次函数图像上一点,则的值为__________(),1m 221y x x =--236m m -知识点三、二次函数的解析式21.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,则第n 个叠放的图形中,小正方体木块总数m 与n 的解析式是______.22.如图,正方形的边长是,是上一点,是延长线上的一点,ABCD 10cm E AB F AD.四边形是矩形,矩形的面积与的长的BE DF =AEGF AEGF ()2cm y BE cm x ()010x <≤函数关系是______.23.将二次函数化成的形式为__________.245y x x =-+2()y a x h k =-+24.二次函数的一般形式是________.()()y 412x x 3=-+-2y ax bx c =++三、解答题25.已知函数y =(m 2-m )x 2+(m -1)x +2-2m .(1)若这个函数是二次函数,求m 的取值范围.(2)若这个函数是一次函数,求m 的值.(3)这个函数可能是正比例函数吗?为什么?26.已知函数是关于的二次函数,求不等式()229123y k x kx =-++x 的解集.141123k k -+≥-27.某农科所研究出一种新型的花生摘果设备,一期研发成本为每台6万元,该摘果机的销售量(台)与售价(万元/台)之间存在函数关系:.y x 24y x =-+(1)设这种摘果机一期销售的利润为(万元),问一期销售时,在抢占市场份额(提1W 示:销量尽可能大)的前提下利润达到32万元,此时售价为多少?(2)由于环保局要求该机器必须增加除尘设备,科研所投入了7万元研究经费,使得环保达标且机器的研发成本每台降低了1万元,若科研所的销售战略保持不变,请问在二期销售中利润达到63万元时,该机器单台的售价为多少?参考答案1.C解:形如y=ax 2+bx+c (a 、b 、c 是常数且a≠0)的函数是二次函数,由二次函数的定义可得②③④是二次函数,故选C .2.C 【分析】先化简,整理成一般式,然后对每个选项判断即可.解:∵y =(500﹣10x )(40+x )=-10x 2+100x +20000,∴y 是x 的二次函数,二次项系数是-10,一次项系数是100,常数项是20000,∴A 、B 、D 正确,C 错误.故选C.【点拨】本题考查了二次函数的一般形式,一般地,形如y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的函数叫做二次函数,其中a 是二次项系数,b 是一次项系数,c 是常数项,据此求解即可.3.D 【分析】根据各选项的意思,列出个选项的函数表达式,再根据二次函数定义的条件判定则可.解:A 、y=mx+b ,当m≠0时(m 是常数),是一次函数,错误;B 、t=,当s≠0时,是反比例函数,错误;sv C 、C=3a ,是正比例函数,错误;D 、S=πR 2,是二次函数,正确.13故选D .【点拨】本题考查二次函数的定义.4.B解:利用二次函数的定义,可知:A.y=a +bx+c ,应说明a≠0,故此选项错误;2xB.x 2+y-2=0可变为y= +2,是二次函数,故此选项正确;2x C.y 2-ax=-2不是二次函数,故此选项错误;D.x 2-y 2+1=0不是二次函数,故此选项错误;故选B .5.A 【分析】利用二次函数定义进行解答即可.解:由题意得:a ﹣1≠0,解得:a ≠1,故选:A .【点拨】本题主要考查了二次函数的定义,准确计算是解题的关键.6.D 【分析】根据二次函数的定义去列式求解计算即可.解:∵函数 是二次函数,21(1)23ay a xx +=-++∴a-1≠0,=2,2a 1+∴a≠1,,21a =∴,1a =-故选D .【点拨】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键.7.B 【分析】令x 的指数为2,系数不为0,列出方程与不等式解答即可.解:由题意得:m 2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,∴m=7,故选:B .【点拨】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0.8.B【分析】根据二次函数的定义和自变量的取值范围,逐一判断解答问题.解:A、应强调a是常数,a≠0,错误;B、二次函数解析式是整式,自变量可以取全体实数,正确;C、二次方程不是二次函数,更不是二次函数的特例,错误;D、二次函数的自变量取值有可能是零,如y=x2,当x=0时,y=0,错误.故选B.【点拨】本题考查二次函数的定义和自变量的取值范围,解题关键是熟练掌握定义.9.C【分析】由矩形另一边长为周长的一半减去已知边长求得另一边的长,进一步根据矩形的面积等于相邻两边长的积列出关系式即可.解:由题意得:矩形的另一边长=60÷2-x=30-x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30-x)=-x2+30x(0<x<30).故选:C.【点拨】此题考查根据实际问题列二次函数关系式,掌握矩形的边长与所给周长与另一边长的关系是解题的关键.10.B【分析】商品所赚钱=每件的利润×卖出件数,把相关数值代入即可求解.解:每件的利润为(x-21),∴y=(x-21)(350-10x)=-10x2+560x-7350.故选B.【点拨】本题考查了根据实际问题列二次函数关系式,解决本题的关键是找到总利润的等量关系,注意先求出每件商品的利润.11.C【分析】利用二次函数的性质:一般地,把形如y=ax 2+bx+c (其中a 、b 、c 是长常数,a≠0,b ,c 可以为0)的函数叫做二次函数.逐一分析解答即可.解:A 、在一定距离内,汽车行驶的速度与行驶的时间的关系是一种反比例关系,不能看作二次函数y=ax 2+bx+c 模型;B 、正方形周长与边长之间的关系属于一次函数,不能看作二次函数y=ax 2+bx+c模型;C 、正方形面积和正方形边长之间的关系,可以看做二次函数y=ax 2+bx+c 模型;D 、圆的周长与半径之间的关系属于一次函数,不能看作二次函数y=ax 2+bx+c 模型.故选C .【点拨】本题考查了二次函数的性质,建立二次函数的模型要从解析式,数值的变化和图象几个方面分析.12.B解:根据商品的单价利润×销售的件数=总利润,即可得y=(x-21)(350-10x )=-10x 2+560x -7350,故选B.13. -2x , 112【分析】函数化简为一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.解:∵y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项∴ 中,二次项系数为,一次项是-2x ,常数项是1.21212y x x =-+12故答案是:; -2x;1.12【点拨】考查了二次函数的定义,二次函数的一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.14.①④【分析】一般地,如果y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.根据二次函数的定义条件判定则可.解:①y =-x 2,二次项系数为-1,是二次函数;②y =2x ,是一次函数;③y =22+x 2-x 3,含自变量的三次方,不是二次函数;④m =3-t -t 2,是二次函数.故填①④.【点拨】本题考查二次函数的定义.一般地,如果y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.判断一个函数是二次函数需要注意三点:(1)经整理后,函数表达式是含自变量的整式;(2)自变量的最高次数为2;(3)二次项系数不为0,尤其是含有字母系数的函数,应特别注意,二次项系数a 是否为0.15.②⑤⑥【分析】根据二次函数的定义与一般形式即可求解.解:y 是x 的二次函数的有②,⑤,⑥.故答案是:②,⑤,⑥.【点拨】本题考查了二次函数的定义,一般形式是y=ax 2+bx+c (a≠0,且a ,b ,c 是常数,x 是未知数).16. 3 0【分析】根据二次函数的定义解答即可.解:二次函数y =3x 2+5的二次项系数是3,一次项系数是0.故答案是:3;0.【点拨】考查二次函数的定义,是基础题,熟记概念是解题的关键,要注意没有一次项,所以一次项系数看做是0.17.2-1y x ﹣【分析】由“滋生函数”和“本源函数”的定义,运用待定系数法求出函数的本源231y ax x a =-++函数.解:由题意得3=++1=a b a b⎧⎨⎩﹣解得=2=1a b ⎧⎨⎩﹣﹣∴函数的本源函数是.231y ax x a =-++2-1y x =﹣故答案为:.2-1y x =﹣【点拨】本题考查新定义运算下的一次函数和二次函数的应用,解题关键是充分理解新定义“本源函数”.18.2.【分析】直接利用二次函数的定义得出m 的值.解:∵函数是二次函数,2(1)2m m y m x -=++∴m 2−m =2,(m−2)(m +1)=0,解得:m 1=2,m 2=−1,∵m +1≠0,∴m≠−1,故m =2.故答案为:2.【点拨】此题主要考查了二次函数的定义,正确得出m 的方程是解题关键.19.不等于和31-【分析】我们一般把形如(为常数)的函数称之为二次函数,其中2y ax bx c =++a b c 、、二次项系数不能为0,据此进一步求解即可.解:根据二次函数的定义可得:,2230m m --≠即:,()()130m m +-≠∴,且,1m ≠-3m ≠即当不等于和3时,原函数为二次函数,m 1-故答案为:不等于和3.1-【点拨】本题主要考查了二次函数的定义的运用,熟练掌握相关概念是解题关键.20.6【分析】把点代入即可求得值,将变形,代入(),1m 221y x x =--22m m -236m m -()232m m -即可.解:∵点是二次函数图像上,(),1m 221y x x =--∴则.2121m m =--222m m -=∴()223632326m m m m -=-=⨯=故答案为:6.【点拨】本题考查了二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键.21.m =2n 2−n【分析】图(1)中只有一层,有(4×0+1)一个正方形,图(2)中有两层,在图(1)的基础上增加了一层,第二层有(4×1+1)个.图(3)中有三层,在图(2)的基础长增加了一层,第三层有(4×2+1),依此类推出第n 层正方形的个数,即可推出当有n 层时总的正方形个数.解:经分析,可知:第一层的正方形个数为(4×0+1),第二层的正方形个数为(4×1+1),第三层的正方形个数为(4×2+1),……第n 层的个数为:[4×(n −1)+1],第n 个叠放的图形中,小正方体木块总数m 为:1+(4×1+1)+(4×2+1)+…+[4×(n −2)+1]+[4×(n −1)+1]=1+4×1+1+4×2+1+…+4×(n −2)+1+4×(n −1)+1=n +4(1+2+3+…+n −2+n −1)=n +4()()1112n n +--⨯=n +2n (n −1)=2n 2−n .即:m =2n 2−n .故答案为:m =2n 2−n【点拨】本题解题关键是根据图形的变换总结规律,由图形变换得规律:每次都比上一次增加一层,增加第n 层时小正方形共增加了4(n −1)+1个,将n 层的小正方形个数相加即可得到总的小正方形个数.22.##2100y x =-+2100y x=-【分析】由已知图形可以分析得到矩形的长为cm ,宽为cm ,由面AEGF AF (10)x +AE (10)x -积公式即可计算得到正确答案.解:∵正方形的边长是,且ABCD 10cm BE DF=∴矩形的长的长为cm ,宽的长为cmAEGF AF (10)x +AE (10)x -∴矩形的面积为:AEGF ()()21010=100y AF AE x x x ==+--+A 故答案为:2100y x =-+【点拨】本题考查变量之间的关系,由矩形面积推导二次函数关系式等知识点.数形结合列式计算是解此类题的关键.23.22()1y x =-+【分析】利用配方法整理即可得解.解:,222454()4121y x x x x x =-+=-++=-+所以.22()1y x =-+故答案为.22()1y x =-+【点拨】本题考查了二次函数的解析式有三种形式:(1)一般式:为常数);2(y ax bx c =++ 0,a a b c ≠、、(2)顶点式:;2()y a x h k =-+(3)交点式(与轴):.x 12()()y a x x x x =--24.2y 8x 20x 12=-++【分析】直接利用乘法运算法则化成一般式.解:y =−4(1+2x )(x−3)=−8x 2+20x +12,故答案为y =−8x 2+20x +12.【点拨】此题考查二次函数的解析式的三种形式,熟练掌握这几种形式是解题的关键.25.(1). m ≠0且m ≠1.(2). m =0.(3). 不可能试题分析:(1)根据二次函数的二次项系数不等于0,可得答案;(2)根据二次函数的二次项系数等于0,常数项不等于0,是一次函数,可得答案;(3)根据二次函数的二次项系数等于0,常数项等于0,可得正比例函数.解:(1)∵这个函数是二次函数,∴m 2-m ≠0,∴m (m -1)≠0,∴m ≠0且m ≠1.(2)∵这个函数是一次函数,∴∴m =0.(3)不可能.∵当m =0时,y =-x +2,∴不可能是正比例函数.26.且.15k ≤13k ≠-【分析】首先利用二次函数的定义得出k 不能取的值,进而解不等式得出答案.解:∵函数是关于的二次函数,()229123y k x kx =-++x ∴,2910k -≠解得:,13k ≠±141123k k -+≥-,()()312416k k -≥+-解得:,15k ≤故不等式的解集为:且.141123k k -+≥-15k ≤13k ≠-【点拨】此题主要考查了二次函数的定义以及解不等式,正确解不等式是解题关键.27.(1)在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台;(2)要使二期利润达到63万元,销售价应该为10万元/台.【分析】(1)先根据等量关系式:总利润=(售价-成本)销售量,列出函数关系式,再将⨯代入函数关系式得出方程求解即得;132W =(2)先根据等量关系式:总利润=(售价-新成本)销售量-7,列出函数关系式,再⨯将代入函数关系式得出方程求解即得.263W =解:(1)根据题意列出函数关系式如下:21(6)(6)(24)(15)81W x y x x x =-⋅=--+=--+当时,,132W =2(15)8132x --+=解得,.18x =222x =∵要抢占市场份额∴.8x =答:在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台.(2)降低成本之后,每台的成本为5万元,每台利润为万元,销售量(5)x -.24y x =-+依据题意得,22(5)(24)729127W x x x x =--+-=-+-当时,,解得,.263W =22912763x x -+-=110x =219x =∵要继续保持扩大销售量的战略∴10x =答:要使二期利润达到63万元,销售价应该为10万元/台.【点拨】本题考查函数解析式及解一元二次方程,解题关键是正确找出等量关系式:总利润=(售价-成本)销售量.。
人教版 九年级数学讲义 二次函数的图像与性质(含解析)
第5讲二次函数的图象与性质知识定位讲解用时:2分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习二次函数的图象与性质,本节课的重点是掌握二次函数的平移法则,能够结合二次函数图象和性质判断a、b、c的之间的关系,而难点在于二次函数的图象和性质的综合考查,需要学生能够根据二次函数的图象与性质正确分析并解决问题。
希望同学们能够认真学习并掌握,为后面二次函数的应用打好基础。
知识梳理讲解用时:25分钟二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表;①描点:在平面直角坐标系中描出表中的各点;①连线:用平滑的曲线按顺序连接各点;①在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可,连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来,画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧。
x…-223--112-0121232…2y x= (4)491140141494…(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移|ab2|个单位,再向上或向下平移|abac442-|个单位得到的。
12341234xyxyOO1212----图1图2向上()或向下()平移个单位向上()或向下()平移个单位向左()或向右()平移个单位向左()或向右()平移个单位课堂精讲精练【例题1】抛物线212y x =向左平移8个单位,再向下平移9个单位,所得的抛物线的解析式是___________________。
【答案】218232y x x =++【解析】本题考查了二次函数平移规则,根据二次函数的平移法则,“上加下减,左加右减”,可知平移后的函数解析式为()21892y x =+-,整理即为218232y x x =++讲解用时:2分钟解题思路:牢记平移法则即可。
部编数学九年级上册22.4二次函数y=ax2(a≠0)的图象与性质(知识讲解)(人教版)含答案(1)
专题22.4 二次函数y=ax2(a≠0)的图象与性质(知识讲解)【学习目标】1、准确掌握二次函数y=ax2(a≠0)图象的形状、开口方向、对称轴和顶点的坐标;2、经历用描点法画函数图象的过程,感受数形结合的思想和方法,能够由图像直观地观察得到函数的性质;【要点梳理】【知识点一】二次函数y=ax2(a≠0)的图象二次函数y=ax2(a≠0)的图象是一条关于y轴对称的曲线,这条曲线叫做抛物线。
实际上,二次函数的图象都是抛物线,y轴是抛物线y=ax2(a≠0)的对称轴,对称轴与抛物线的交点是抛物线的顶点。
用描点法画二次函数y=ax2(a≠0)的图象(1)按步骤列表、描点、连线。
(2)用描点法画二次函数y=ax2(a≠0)的图象时,应在O(0,0)点左右两侧(或在对称轴左右两侧)对称的选取自变量x的值,在计算y的值,这样的对应值选择月密集,描出的图象越精准。
通常情况下,画图一般选取9个点,草图通常取5或7个点,但必须画出抛物线的顶点,然后对称的取其他各点。
实际问题应在自变量取值范围内选取适当的几个点,一般选7个点,再进行描点。
连线时要注意图象的平滑,特别是顶点处更要注意,不能画得太平或者太尖,要顺势用平滑曲线连接。
【知识点2】二次函数y=ax2(a≠0)的性质(1)二次函数y=ax2(a≠0)的图象是一条抛物线。
我们把二次函数y=ax2(a≠0)的图象叫做抛物线y=ax2(a≠0)。
(2)抛物线y=ax2(a≠0)的对称轴是y轴(即直线x=0),顶点是原点。
(3)当a>0时,抛物线y=ax2(a≠0)的开口向上,顶点是它的最低点,抛物线在x轴上方(顶点在x轴上),并且向上无限延伸;当a<0时,抛物线y=ax2(a≠0)的开口向下,顶点是它的最高点,抛物线在x轴下方(顶点在x轴上),并且向下无限延伸。
(4)当a>0时,在y 轴左侧,y随x的增大而减小,在y 在右侧,y随x的增大而减大,函数y的值,当x=0时最小,最小值是0;当a<0时,在y 在左侧,y随x的增大而增大,在y 在右侧,y随x的增大而减小,函数y 的值,当x=0时最大,最大值是0。
初中数学九年级上册《20.2二次函数y=ax^2+bx+c(a≠0) 的图象》PPT课件 (12)
y=ax2
当c>0时,向上平移|c| 个单位长度 y=ax2+c
当c<0时,向下平移|c| 个单位长度
当h>0时,向右平移|h| 个单位长度 y=a(x-h)2
当h<0时,向左平移|h| 个单位长度
①在同一坐标系内画出函数y=3x2,y=3x2+1, y=3(x+1)2的图象,分别说出它们的开口方向、 对称轴、顶点坐标,并用简洁的语言叙述它们的 位置关系。
描点法
列表 描点 联线
y x2
y 1 x2 2
L
y x2
开口方向: 对称轴: 顶点坐标: 最值: 增减性: 开口宽窄:
y 2x2
y2x 3
做一做:
在同一坐标系中,画出函数
y x2 1
y x2 1
的y 图 x象2 ,
比较它们与二次函数 间有怎样的关系?
的图象之
描点法
列表 描点 联线
y x2 y x2 3
L
y x2
抛物线
开口方向
a>o a<o
y=ax2 向上 向下 y=ax2+c 向上 向下
对称 (0,c)
y=ax2
当c>0时,向上平移|c| 当c<0时,向下平移|c|
个 个单单位位长长度度y=ax2+c
②一条抛物线其形状与抛物线y=2x2相同,对称 轴与抛物线y=(x-2)2相同,且顶点的纵坐标是3, 则试这说条出抛二物次线函的数解y=析3(式x+是1)_2_+_1_图__象__的。开口方向、 对称轴、顶点坐标,猜想它与抛物线y=3x2, y=3x2+1的位置关系,并作图验证。
九年级数学二次函数y=ax2k(a≠0)的图像与性质(知识讲解)Word版含解析
【要点梳理】
要点一、二次函数y=ax2+k(x2+k(a≠0)的图像
(1)
(2)
2.二次函数y=ax2+k(a≠0)的图像的性质
关于二次函数y=ax2+k(a≠0)的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图像,将其性质列表归纳如下:
x
﹣2
1
5
y
m
n
p
表中m、n、p的大小关系为(用“<”连接).
5.在同一直角坐标系中画出二次函数 与二次函数 的图形.
(1)从抛物线的开口方向、形状、对称轴、顶点等方面说出两个函数图象的相同点与不同点;
(2)说出两个函数图象的性质的相同点与不同点.
6.二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:
故答案为>0;=0;1;(0,1);(-1,0)和(1,0).
(3)抛物线 的开口方向向上,对称轴是y轴,顶点坐标是(0,-3).
【点睛】本题考查了二次函数的图像和性质,做出图象后即可得到平移的单位和方向.解题的关键是掌握二次函数的图像和性质.
4.(1)二次函数y=ax2的图象随着a的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y=﹣2x2+c的图象随着c的变化,开口大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)±2,﹣2;(3)p<m<n
【详解】(1)抛物线的对称轴为:x=- =0
令x=0,y=4
则顶点坐标为(0,4);
北京版九年级数学上册《二次函数y=ax2 bx c(a≠0)的图象》课件1
的对称轴一样),顶点坐标为(1,3)(它是由抛物
线
y
=
1( 2
x
-1)2
的顶点(1,0)向上平移3个单位得到)
,它的开口向上.
结论 一般地,二次函数y=a(x-h)2+k的图象也是抛物线:
抛物线y=a(x-h)2+k
对称轴
顶点 坐标
开口 方向
a>0 a<0
x=h (h,k) 向上 x=h (h,k) 向下
( 1 ) 4 2b c 8 2
( 1 )16 4b c 10 2
解这个方程组,得
b=4, c=2. 因此,所求的二次函数的表达式为 y 1 x2 4x 2.
2
1.把抛物线y=-x2向左平移1个单位,然后向
上平移3个单位,则平移后抛物线的解析式为
( D)
下面,我们来研究二次函数y=ax2+bx+c(a≠0) 图象的对称轴和顶点坐标的计算公式.
动脑筋 怎样画二次函数y=-2x2+6x-1 的对称轴和 顶点坐标?
只需把y=-2x2+6x-1配方成
y=a(x-h)2+k的形式就可以了.
配方:
y = -2x2+6x-1
= -2(x2-3x)-1
= =
得到.
(c>0,向上平移;c<0向下平移.)
在同一直角坐标系中,画出下列二次函数的
图像:
y=
1 2
x2,y=
1 2
x2+2,y=
1 2
x2-2.
观察三条抛物线的位置关系,并分别指出它
们的开口方向、对称轴和顶点.你能说出抛物
线y=
1 2
2022秋九年级数学上册第1章二次函数1.3二次函数的性质2二次函数y=ax2+bx+c(a≠0)的
7.【中考·资阳】已知二次函数 y=x2+bx+c 的图象
与 x 轴只有一个交点,且图象过 A(x1,m),B(x1
+n,m)两点,则 m,n 的关系为( )
A.m=12n C.m=12n2
B.m=14n D.m=14n2
【点拨】由“二次函数 y=x2+bx+c 的图象与 x 轴只有 一个交点”推知 x=-b2时,y=0,且 b2-4ac=0,即 b2 =4c;其次,根据抛物线对称轴的定义知点 A,B 关于 对称轴对称,故 A-b2-n2,m,B(-b2+n2,m);最后, 根据二次函数图象上点的坐标特征即可得出结论.
【答案】A
5.下列抛物线中,与x轴有两个交点的是( D ) A.y=3x2-5x+3 B.y=4x2-12x+9 C.y=x2-2x+3 D.y=2x2+3x-4
6.【中考·永州】抛物线y=x2+2x+m-1与x轴有两
个不同的交点,则m的取值范围是( A )
A.m<2
B.m>2
C.0<m≤2
D.m<-2
(D ) A.无解
B.x=1
C.x=-4
D.x=-1或x=4
3.【中考·宿迁】若二次函数y=ax2-2ax+c的 图象经过点(-1,0),则关于x的方程ax2- 2ax+c=0的解为( )
A.x1=-3,x2=-1 B.x1=1,x2=3 C.x1=-1,x2=3 D.x1=-3,x2=1
【点拨】∵二次函数y=ax2-2ax+c的图象经过点 (-1,0),∴方程ax2-2ax+c=0一定有一个解为x =-1.∵抛物线的对称轴为直线x=1,∴二次函数y =ax2-2ax+c的图 象与 x轴 的 另一个交 点为 (3, 0).∴方程ax2-2ax+c=0的解为x1=-1,x2=3. 【答案】C