_高中数学2.1.1第2课时指数幂及运算课时作业新人教A版必修1
【成才之路】2014-2015学年高中数学 2.1.1 指数与指数幂的运算 第2课时 分数指数幂课件 新人教A版必修1
4
B. a-1 D. 1 4 a-1
[答案] B
[解析] 要使原式有意义,则 a-1>0 . 4 1-a ·
2
①
3 1 - (a - 1) 4 = (a - 1)· (a - 1) 3 = |1 - a|· a-1
-
3 4
=(a-1)
1 4
= a-1.
4
随堂测评
1. 若 a>0, 且 m, n 为整数, 则下列各式中正确的是( A.a ÷ a =a
1 -22=(-2)3 3 x3y3=xy4
2 2
)
4 3
(x>0,y>0)
1 -b 3
C. a -b
1 =a3
3 x y 1 - D. y=(x) 3
(x≠0,y≠0)
[答案] D
5.若10x=3,10y=4,则10x-y=________.
[答案] 3 4
x 10 3 x-y [解析] 10 =10y=4.
m n
m n
)
B.am· an=am+n D.1-an=a0-n
C.(am)n=am+n
[答案] B
2. a-2可化为( A.a
-
5
)
5 B.a2 5 D.-a2
2 5
2 C.a5
[答案] A
4 3.a5
的根式为(
4 4
) B. a5
5
A. a C.
5
4
a5
D.
a4
[答案] A
4.下列各式中正确的是( A. B. 6
规律总结: 在将根式化分数指数幂的形式时,关键
是分清指数中分子、分母的位置.
1
将下列根式与分数指数幂进行互化.
高中数学 2.1.11《指数与指数幂的运算》课件 新人教A版必修1
第七页,共13页。
当n为奇数(jī shù)时,a的n次方n 根a
是当n为偶数时。,正数a的n次方根(fānggēnna)
是
,
负0的数任没何有(偶rè次nh方é)根次(方fā根ng都gē是n)。n,0即 0
。
试试:b4 a, 则a的4次方根为____; b3 a, 则a的3次方根为____;
y (1 7.3%)x 1.073x (x N*, x 20)
y (1 7.3%)10 1.07310
第三页,共13页。
实例 3:我们(wǒ men)知道考古学家是通过生 物化石的研究判断生物的发展和进化的,他 们究竟是怎样判断生物所处的年代呢?
当生物死亡后,体内碳14每过5730年大约
-125的3次方根是____;
10000的4次方根是____。
第八页,共13页。
思考(sīkǎo)1:
知识(zhī shi)探 究(分三别)等于什么?
一般地,
等于什么? ( n a )n a
思考2:
分别等于什么?
一般地,n an 等于什么?
当n是奇数时, n an a
{ 当n是偶数时, n an | a |
第 sh知ù)识(zhī shi)探 模实型例应(sh用ílì背) 1景:某市人口平均究年增(长一率)为
1.25℅,1990 年人口数为a 万,则 x年后人
口数为多少y 万a?(11.25%)x 1.0125x a(x N )
实例2:国务院发展研究中心在2000 年分 析,我国未来20年GDP(国内生产总值) 年平均增长率达7.3℅, 则x年后GDP 为 2000年的多少倍?10年后呢?
高中数学第二章基本初等函数(Ⅰ)1.1指数与指数幂的运算基础训练(含解析)新人教A版必修1
指数函数2.1.1 指数与指数幂的运算基础过关练题组一 根式的概念及其性质1.(2020福建三明第一中学高一月考)下列各式正确的是 ( )A.√(-3)2=3B.√a 44=a C.(√-23)3=2D.√(-2)33=22.若2<a <3,则√(2-a )2+√(3-a )44的化简结果是( )a a 53.已知xy ≠0且√4a 2a 2=2xy ,则有 ( )A .xy <0B .xy >0C .x >0,y >0D .x <0,y >04.若√a 2+2a +1+√a 2+6a +9=0,则(x2019)y= .5.已知a <b <0,n >1,n ∈N *,化简√(a -a )aa+√(a +a )aa.题组二 分数指数幂及其运算6.(2020广东佛山一中高一月考)下列运算结果中,一定正确的是 ( )A.a 3·a 4=a 7B.(-a 2)3=a 6C.√a 88=aD.√(-π)55=π7.(2020广东佛山一中高一上第一次段考)√a ·√a 3的分数指数幂表示为 ( )A.a 12B.a 32C.a 34D.都不对8.(2020浙江高一月考)计算:π0+22×(94)12= ;化简:(√√a 963)4(√√a 936)4= .9.化简下列各式.(1)√23√56√34;(2)(a 23·a 14·z 1)·(x 1·a 34·z 3)-13; (3)(14)2+(6√6)-13+√3+√2√3-√2(1.03)0×(-√62). 题组三 条件求值问题10.已知x =1+2b ,y =1+2b,若用x 表示y ,则y = ( )A.a +1a -1B.a +1aC.a -1a +1D.a a -111.(2020山东师范大学附属中学高一月考)已知a ,b ∈R,若8a=223b,则a +b = . 12.已知x =27,y =64,化简并计算:5a -23a 12(-14a -1a 12)·(-56a 13a 16).13.(2020浙江塘栖中学高一期末)若a 12+a -12=3,求下列代数式的值. (1)x 2x 2; (2)a 32a -32.能力提升练一、选择题1.(2020安徽屯溪一中高一上期中,)若a <14,则化简√(4a -1)24的结果是( )A.√4a -1B.√1-4a√4a -1 √1-4a2.(2020河北衡水安平中学高一月考,)设α,β是方程2x 2+3x +1=0的两根,则(14)a +a的值为 ( )B.18183.(2020河南鹤壁高中高三月考,)已知a +a 1=3,则下列各式中正确的个数是 ( )①a 2+a 2=7;②a 3+a 3=18; ③a 12+a -12=±√5;④a √a +a√a=2√5.4.(2020广东深圳中学高一月考,)若a +b =a 13,ab =16a 23(m >0),则a 3+b 3=( )B.a2a2D.3a 2二、填空题5.(2020湖南邵阳第十一中学高一期中,)设2x =8y +1,9y =3x 9,则x +y = .6.()已知a =3,则11+a 14+11-a 14+21+a 12+41+a 的值为 .7.()(√3+√2)2020×(√3√2)2021= .三、解答题8.(2020山西晋中平遥二中高一月考,)(1)(√8)-23×(√1023)92÷√105;(2)2×(√23×√3)6+(√2√2)434×(1649)-12√24×80.25+(2019)0.9.(2020甘肃兰州一中高一月考,)(1)计算:(0.0081)-143×7801×810.25+278-13-12;(2)已知a 12+a -12=3,求a 2+a 2的值.10.()已知x =12,y =23,求√a +√a √a -√a √a -√a√a +√a的值.11.(2020云南丽江高一月考,)已知方程x 28x +4=0的两根分别为x 1,x 2(x 1<x 2).(1)求a 1-2a 2-2的值;(2)求x 1-12x 2-12的值.答案全解全析 第二章 基本初等函数(Ⅰ)2.1 指数函数 2.1.1 指数与指数幂的运算基础过关练1.C 对于A 选项,√(-3)2=3,故A 选项错误;对于B 选项,√a 44=|a |,故B 选项错误;对于C 选项,(√-23)3=2,故C 选项正确;对于D 选项,√(-2)33=2,故D 选项错误.故选C .2.C 原式=|2a |+|3a |, ∵2<a <3,∴原式=a 2+3a =1.3.A 因为xy ≠0且√4a 2a 2=2xy ,所以xy <0.4.答案 1解析 因为√a 2+2a +1+√a 2+6a +9=0,所以√(a +1)2+√(a +3)2=|x +1|+|y +3|=0,所以x =1,y =3.所以(x2019)y=[(1)2019]3=(1)3=1.5.解析 当n 是奇数时,原式=(ab )+(a +b )=2a ; 当n 是偶数时,因为a <b <0,所以ab <0,a +b <0, 所以原式=|ab |+|a +b | =(ba )+(ab )=2a.所以√(a -a )aa+√(a +a )aa={2a ,a 为奇数,-2a ,a 为偶数(n >1,n ∈N *). 6.A a 3a 4=a 3+4=a 7,故A 正确;(a 2)3=a 6,故B 不正确;√a 88=|a |,故C 不正确;√(-π)55=π,故D 不正确.故选A .7.A 原式=√a ·a 123=√a 323=(a 32)13=a 12,故选A . 8.答案118;a 4解析 根据指数幂的运算,化简可得 π0+22×(94)12=1+14×32=118. 由根式与指数幂的转化,可得(√√a 9634(√√a 9364=(√a 963)4(√a 36)4=(a96×3)4(a 36)4=a9×46×3·a3×46=a 2·a 2=a 4. 方法点拨 根指数分数指数的分母,被开方数(式)的指数分数指数的分子.9.解析 (1)原式=a 13a 23a 56a 34=a 13-56a 23-34=a -12a -112.(2)原式=(a 23a 14z 1)·(a 13a -14z 1)=a23+13a 14-14z 11=xz 2.(3)原式=116+√6+(√3+√2)21×(-√62)=116+√6+5+2√6+√62=81+56√616. 10.D 由x =1+2b,得2b=x 1, ∴y =1+2b=1+12a =1+1a -1=aa -1.11.答案 23解析 8a=223b⇒23a=223b⇒3a =23b ⇒a +b =23.12.解析 原式=5a -23a 12524a -23a 23=24a -16.将y =64代入,得原式=24×64-16=24×(26)-16=24×21=12.13.解析 (1)因为a 12+a -12=3,所以(a 12+a -12)2=9,整理得x +x 1=7,令t =a 12a -12,则t 2=(a 12-a -12)2=x +x 12=5,所以a 12a -12=±√5, 所以x 2x 2=(x +x 1)·(xx 1)=(x +x 1)·(a 12+a -12)(a 12a -12) =7×3×(±√5)=±21√5.(2)a 32a -32=(a 12a -12)·(x +x 1+1)=±8√5.能力提升练一、选择题1.B ∵a <14,∴4a 1<0, ∴√(4a -1)24=√1-4a .故选B . 2.A 由题意可知α+β=32,则(14)a +a=(14)-32=432=√43=8,故选A .3.C ①a 2+a 2=(a +a -1)22=92=7,正确; ②a 3+a 3=(a +a 1)(a 21+a 2)=3×(71)=18,正确;③因为a +a 1=3,所以a >0,所以a 12+a -12>0,又(a 12+a -12)2=a +2+a 1=5,所以a 12+a -12=√5,故错误; ④a √a +a √a=a 32+a -32=(a 12+a -12)(a 1+a 1)=√5×(31)=2√5,正确.故选C .4.B a 3+b 3=(a +b )(a 2ab +b 2) =(a +b )[(a +b )23ab ] =a 13·(a 23-12a 23)=a2.故选B .二、填空题 5.答案 27解析 由2x =8y +1得2x =23y +3,所以x =3y +3①. 由9y=3x 9得32y=3x 9, 所以2y =x 9②. 由①②,得x =21,y =6, 所以x +y =27.6.答案 1 解析11+a 14+11-a 14+21+a 12+41+a=2(1+a 14)(1-a 14)+21+a 12+41+a=21-a 12+21+a 12+41+a=4(1-a 12)(1+a 12)+41+a =41-a +41+a =8(1-a )(1+a )=81-a 2.因为a =3,所以原式=1. 7.答案 √3√2 解析 (√3+√2)2020×(√3√2)2021=[(√3+√2)(√3√2)]2020×(√3√2)=12020×(√3√2)=√3√2.三、解答题8.解析 (1)原式=(232)-23×(1023)92÷1052=21×103×10-52=21×1012=√102. (2)原式=2×(213×312)6+(212×214)434×74214×234+1=2×22×33+272+1=210. 9.解析 (1)原式=(34×104)-1431×[(34)-14+23]-12=31×1013×(13+23)-12=3.(2)由a 12+a -12=3,得(a 12+a -12)2=9,即a +a 1+2=9,∴a +a 1=7,∴(a +a 1)2=49,即a 2+a 2+2=49,∴a 2+a 2=47. 10.解析√a +√a √a -√a √a -√a √a +√a=(√a +√a )2a -a (√a -√a )2a -a =4√aaa -a.将x =12,y =23代入上式,则原式=4√12×2312-23=4√13-16=24√13=8√3.11.解析 ∵x 1,x 2是方程x 28x +4=0的 两根,∴x 1+x 2=8,x 1·x 2=4.(1)a 1-2a 2-2=(a 1+a 2)(a 2-a 1)(a 1a 2)2=a 2-a 12=√(a 1+a 2)2-4a 1a 22=√64-4×42=2√3. (2)x 1 -12x 2-12=√a +a -2√a a √a a=√8-2×22=1.。
人教A版高中数学必修一2.1.1指数与指数幂的运算第一、二、三课时
备用
1.要使
(5x
1
)
3 4
(x
2
1) 3
有意义,则x的取
值范围是 2
2.计算:1
(a 2
1
a2
1
)(a 2
1
a2
)(a
a2
a1)
a2
3.求值: 3 2 5 12 3 2 2
2.1.1 指数与指数幂的运算
第3课时
指数式的计算与化简
指数式的计算与化简,除了掌握定义、法则外,还 要掌握一些变形技巧.根据题目的不同结构特征,灵 活运用不同的技巧,才能做到运算合理准确快捷.
(2)在 根 式n am中,若 根 指 数n与 幂 指 数m有 公 约 数 时, 当a 0时 可约 分.当a 0时 不可 随意 约 分. 如8 32 4 3, 10 (2)2 5 2而15 (2)5 3 2.
课堂练习:课本 P54中练习第3题
课外作业:课本 P59习题2.1中A组第2,3,4题
4.下 列 各 式 中,正 确 的 是( C )
A.6 (2)2 3 2 B.4 (3 )4 3
C .(3 2 )3 2 D.6 (2a 1)6 2a 1
小结
1.n次方根的定义:
一般地,如果xn a,那么x叫做a的n次方根, 其中n 1且n N .
2.根式的简单性质: 1) 当n 1, n N *时,总有 (n a )n a.
(1)a a1 7; (2)a2 a2 47;
3
a2 (3) 1
3
a 2
1
(a
1 2
1
a2
)(a
1
a1
1
1
a2
1
a2
)
高中数学必修1_ 第二章 2.1 第2课时 指数幂及其运算
=[(0.4)3]
-
1 3
-
1
+
(-
2)-4
+
2-
3+[(0.1)2]12
=
0.4-1
-1+
1 16
+18+
0.1=18403.
(2)原式=a13×92·a13×-32÷a12×-73·a12
×133=a96-36+76-163=a0=1.
指数幂的一般运算步骤 有括号先算括号里的;无括号先做 指数运算.负指数幂化为正指数幂的倒 数.底数是负数,先确定符号,底数是 小数,先要化成分数,底数是带分数, 先要化成假分数,然后要尽可能用幂的 形式表示,便于用指数幂的运算性质.
[课前反思] (1)分数指数幂的意义是什么?
; (2)有理指数幂的运算性质有哪些?
.
观察下式,完成下列思考.
amn =n
am,a-mn =a1mn =n
1 (a>0,n,m∈N*,n>1). am
[思考 1] 怎样理解分数指数幂?
名师指津:“三角度”理解分指数幂 (1)角度一:与根式的关系. 分数指数幂是根式的另一种写法,根式与分 数指数幂可以相互转化. (2)角度二:底数的取值范围. 由分数指数幂的定义知 a≤0,amn 可能会有意 义.当 amn 有意义时可借助定义将底数化为正数, 再进行运算.
③0 的分数指数幂的意义:
0 的正分数指数幂等于 0,0 的负分数指数幂无
意义.
(2)有理指数幂的运算性质: ①ar·as=ar+s(a>0,r,s∈Q); ②(ar)s=ars(a>0,r,s∈Q); ③(a·b)r=arbr(a>0,b>0,r∈Q). (3)无理数指数幂 无理数指数幂 aα(a>0,α 是无理数)是一个 确定的实数.有理数指数幂的运算性质对于无理 数指数幂同样适用.
必修1课件:2.1.1分数指数幂第2课时(新人教A版必修1)
a r ⋅ a s = a r + s (a > 0, r , s ∈ Q)
(a r ) S = a rs (a > 0, r , s ∈ Q) (a ⋅ b) = a b (a > 0, b > 0, r ∈ Q)
r r r
• 3 • 例3:用分数指数幂的形式表示下列 各 : 3 4 2 3 5 3 式(b>0) b b b i b b i b 2 1 1 5 1 1 • 例4: a 3 b 2 )(−8a 2 b 3 ) ÷ (−6a 6 b 6 ) : (3
n 0 0
a
−n
1 = n a
(a ≠ 0)
a m ⋅ a n = a m + n ; (a m ) n = a mn
(a ) = a , (ab) = a b
n m mn n
n n
• 2.观察以下式子,并总结出规律:a>0 .观察以下式子,并总结出规律: >
5
a = (a ) = a = a
10 5 2 5 2
• 为此,我们规定正数的分数指数幂的意义为: 为此,我们规定正数的分数指数幂的意义为:
a = n a m (a > 0, m, n ∈ N * )
m n
正数的负分数指数幂的意义与负整数幂的意义相同
即:a
−
m n
=
1 a
m n
(a > 0, m, n ∈ N * )
规定: 的正分数指数幂等于 的正分数指数幂等于0, 的负分数指数幂无意义 规定:0的正分数指数幂等于 ,0的负分数指数幂无意义
一复习准备
• 练习①计算 练习① • ② 若 a 2 − 2a + 1 = a − 1, 求a的取值范围 • • •
人教A版高中数学必修一2.1.1.1指数与指数幂的运算(1)
(2)2 学科网 4
-8 -2
(2)3 8
9 ±3 00
(3)2 9 02 0
-1 -1
0
0
(1)3 1 03 0
-4 无
8
2
23 8
-9 无
27 3
33 27
类比分析, 可是个好 方法哟!
3.若x4=a, 则 x 叫做 a 的 四次方根(a≥0 )
4.若x5=a, 则 x 叫做 a 的五 次方根
(3)利用(2)的规律,你能表示下列式子吗?
4 53 , 5 a7
n xm (x 0, m, n N *,且n 1)
(4)你能用方根的意义来解释(3)的式子吗? (5)你能推广到一般情形吗?
讨论结果:形式变了,本质没变,方根的结 果和分数指数幂是相通的。综上我们得到正 数的正分数指数幂的意义。
提出问题
分数指数幂
(1).整数指数幂的运算性质是什么?
(2).观察以下式子,并总结出规律:
①
5 a10
10
5 (a2 )5 a2 a 5
②
8
a8 (a4)2 a4 a2
③
12
4 a12 4 (a3 )4 a3 a 4
④ 10
2 a10 2 (a5 )2 a5 a 2
高中数学课件
(金戈铁骑 整理制作)
第1课时
根式与分数指数幂
1. 理解n次方根与根式的概念;理解分数 指数幂的概念 2. 正确运用根式运算性质化简、求值;掌 握分数指数幂和根式之间的互化;分数指 数幂的运算性质。 3. 分类讨论思想,观察分析、抽象概括等 的能力。
(1) 整数指数幂的概念:
2013-2014高中数学 2.1.1指数与指数幂的运算学案 新人教A版必修1
§2.1.1 指数与指数幂的运算(练习)学习目标1. 掌握n 次方根的求解;2. 会用分数指数幂表示根式;3. 掌握根式与分数指数幂的运算.学习过程一、课前准备(复习教材P 48~ P 53,找出疑惑之处) 复习1:什么叫做根式? 运算性质?像n a 的式子就叫做 ,具有性质: ()n n a = ;n n a = ;npmp a = .复习2:分数指数幂如何定义?运算性质?① m na = ;m na -= .其中*0,,,1a m n N n >∈> ②r s a a = ; ()r s a = ;()s ab = .复习3:填空.① n 为 时,(0)||...........(0)n n x x x x ≥⎧==⎨<⎩.② 求下列各式的值:362= ; 416= ;681= ;26(2)-= ; 1532-= ;48x = ;624a b = .二、新课导学 ※典型例题 例1 已知1122a a-+=3,求下列各式的值:(1)1a a -+; (2)22a a -+; (3)33221122a aa a----.补充:立方和差公式3322()()a b a b a ab b ±=±+ .小结:① 平方法;② 乘法公式;③ 根式的基本性质npn mp m a a =(a ≥0)等.注意, a ≥0十分重要,无此条件则公式不成立. 例如,236(8)8-≠-.变式:已知11223a a --=,求:(1)1122a a -+; (2)3322a a --.例2从盛满1升纯酒精的容器中倒出13升,然后用水填满,再倒出13升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?变式:n 次后?小结:① 方法:摘要→审题;探究 → 结论; ② 解应用问题四步曲:审题→建模→解答→作答. ※ 动手试试练1. 化简:11112244()()x y x y -÷-.练2. 已知x +x -1=3,求下列各式的值. (1)1122x x -+; (2)3322x x -+.练3. 已知12(),0x f x x x π=⋅>,试求12()()f x f x ⋅的值.三、总结提升 ※ 学习小结1. 根式与分数指数幂的运算;2. 乘法公式的运用.※知识拓展1. 立方和差公式:3322()()a b a b a ab b +=+-+;3322()()a b a b a ab b -=-++. 2. 完全立方公式:33223()33a b a a b ab b +=+++; 33223()33a b a a b ab b -=-+-.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 329的值为( ).A. 3B. 33C. 3D. 7292. 354a a a(a >0)的值是( ).A. 1B. aC. 15a D. 1710a 3. 下列各式中成立的是( ).A .1777()n n m m = B .4312(3)3-=-C .33344()x y x y +=+ D .3393=4. 化简3225()4-= .5. 化简2115113366221()(3)()3a b a b a b -÷= .课后作业1. 已知32x a b --=+, 求42362x a x a ---+的值.2. 探究:()2n n n n a a a +=时, 实数a 和整数n 所应满足的条件.。
高中数学第二章基本初等函数§2.1.1指数(第1—2课时)教案新人教A版必修1
第二课时
提问: 1.习初中时的整数指数幂,运算性质?
an a a a a, a0 1 (a 0) ,0 0无意义
an
1 an
(a 0)
a m a n a m n ; (a m )n a mn
(an )m a mn, (ab) n a nb n
什么叫实数?
有理数,无理数统称实数 . 2.观察以下式子,并总结出规律:
三.学法与教具 1 .学法:讲授法、讨论法、类比分析法及发现法 2.教具:多媒体
四、教学设想:
第一课时
一、复习提问:
什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
归纳:在初中的时候我们已经知道:若
x2 a ,则 x 叫做 a 的平方根 . 同理,若 x3 a ,则 x 叫做 a
的立方根 .
3、教材对反函数的学习要求仅限于初步知道概念, 目的在于强化指数函数与对数函数这两种函数模
型的学习,教学中不宜对其定义做更多的拓展
.
4. 教材对幂函数的内容做了削减, 仅限于学习五种学生易于掌握的幂函数, 并且安排的顺序向后调
整,教学中应防止增加这部分内容,以免增加学生学习的负担
.
5. 通过运用计算机绘制指数函数的动态图象
思考: a n n ( n a ) n 是否成立,举例说明 .
课堂练习: 1. 求出下列各式的值
(1) 7 ( 2)7
(2) 3 (3a 3)3 ( a 1)
4
(3) (3a
3)4
2.若 a2 2a 1 a 1,求 a的取值范围 .
3.计算 3 ( 8)3 4 (3 2)4 3 (2 3)3
三.归纳小结:
即: a n
1
m
高中数学人教版A版必修一课时作业及解析:第二章2-1指数函数
∴原式=--24x1-≤2x<3 -3<x<1 .
12.解
1
1
1
原式=
a3
2
a 8b
1
2
a3
2b3
1
1
×a3
4b3 2a3 a 3
a3
13.解 ∵x- xy-2y=0,x>0,y>0, ∴( x)2- xy-2( y)2=0, ∴( x+ y)( x-2 y)=0, 由 x>0,y>0 得 x+ y>0, ∴ x-2 y=0,∴x=4y, ∴y2+x-2 xxyy=8yy+-42yy=65.
6
1
-32>0, 33
<0,C
选项错.故选
D.]
6.B [①中,当 a<0 时,
a2
3 2
a2
1 2
3
=(-a)3=-a3,
∴①不正确;
②中,若 a=-2,n=3,
则3 -23=-2≠|-2|,∴②不正确;
x-2≥0, ③中,有3x-7≠0,
即 x≥2 且 x≠73,
故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a=5,10b=2, ∴102a=5,10b=2,102a×10b=10,即 102a+b=10.
1 2
3
xy
1 2
·(xy)-1
12
= x3 ·y 3
1
x6
y
1 6
x
1 2
y
1 2
=x1 3·x1 31, =-1,x<0
x>0
.
(2)原式= 1 + 1 + 2+1-22 22
=2 2-3.
高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2指数函数及其性质教学设计新人教A版必修1
2.1.2 指数函数及其性质整体设计教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》.根据实际情况,将《指数函数及其性质》划分为三节课〔指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)〕,这是第一节课“指数函数的图象及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.学生学习情况分析指数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上进行研究的,是学生对函数概念及性质的第一次应用.教材在之前的学习中给出了两个实际例子(GDP的增长问题和碳14的衰减问题),已经让学生感受到了指数函数的实际背景,但这两个例子的背景对于学生来说有些陌生.本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望.设计思想1.函数及其图象在高中数学中占有很重要的位置.如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机地结合起来,通过具有一定思考价值的问题,激发学生的求知欲望——持久的好奇心.我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的.本节课力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去.2.在本节课的教学中我努力实践以下两点:(1)在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.(2)在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法.3.通过课堂教学活动向学生渗透数学思想方法.教学目标根据学生的实际情况,本节课的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识.重点难点教学重点:指数函数的概念、图象和性质.教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质.教学过程一、创设情境、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……,按这样的规律,51号同学该准备多少粒米?学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重.师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……,按这样的规律,51号同学该准备多少粒米?学情预设学生可能说出很多或能算出具体数目.师:大家能否估计一下51号同学该准备的米有多重吗?教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨.师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨.这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!设计意图用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望.在以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用x表示,y与x之间的关系分别是什么?学生很容易得出y=2x(x∈N*)和y=2x(x∈N*).学情预设学生可能会漏掉x的取值范围,教师要引导学生思考具体问题中x的取值范围.二、师生互动、探究新知1.指数函数的定义师:其实,在本章开头的问题中,也有一个与y=2x类似的关系式y=1.073x(x∈N*,x≤20).(1)让学生思考讨论以下问题(问题逐个给出,约3分钟):①y=2x(x∈N*)和y=1.073x(x∈N*,x≤20)这两个解析式有什么共同特征?②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 设计意图引导学生从具体问题、实际问题中抽象出数学模型.学生对比已经学过的一次函数、反比例函数、二次函数,发现y =2x ,y =1.073x 是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣.引导学生观察,两个函数中,底数是常数,指数是自变量.师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成y =a x 的形式.自变量在指数位置,所以我们把它称作指数函数.(2)让学生讨论并给出指数函数的定义(约6分钟).对于底数的分类,可将问题分解为:①若a <0,会有什么问题?(如a =-2,x =12,则在实数范围内相应的函数值不存在) ②若a =0,会有什么问题?(对于x ≤0,a x 都无意义)③若a =1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要)师:为了避免上述各种情况的发生,所以规定a >0且a ≠1.在这里要注意生生之间、师生之间的对话.①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a >0,且a ≠1;a =1为什么不行?②若学生只给出y =a x ,教师可以引导学生通过类比一次函数(y =kx +b ,k ≠0)、反比例函数(y =k x ,k ≠0)、二次函数(y =ax 2+bx +c ,a ≠0)中的限制条件,思考指数函数中底数的限制条件.学情预设设计意图①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;②讨论出a >0,且a ≠1,也为下面研究性质时对底数的分类做准备.接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y =2×3x ,y =32x ,y =-2x.学情预设学生可能只是关注指数是否是变量,而不考虑其他的.设计意图加深学生对指数函数定义和呈现形式的理解.2.指数函数的性质(1)提出两个问题(约3分钟)①目前研究函数一般可以包括哪些方面?设计意图让学生在研究指数函数时有明确的目标:函数三要素(对应法则、定义域、值域)和函数的基本性质(单调性、奇偶性).②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究? 可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考.设计意图①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)两个不同的角度对函数进行研究;②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透.(2)分组活动,合作学习(约8分钟)师:下面我们就从图象和解析式这两个不同的角度对指数函数进行研究.①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;②每一大组再分为若干合作小组(建议4人一小组);③每组都将研究所得到的结论或成果写出来以便交流.学情预设考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导.通过自主探索、合作学习,不仅让学生充当学习的主人更可加深对所得到结论的理解.设计意图(3)交流、总结(约10~12分钟)师:下面我们开一个成果展示会!教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果.教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析.这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其他性质?师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?〔〕如过定点(0,1),y =a x 与y =⎝ ⎛⎭⎪⎫1a x 的图象关于y 轴对称学情预设①首先选一个从解析式的角度研究的小组上台汇报;②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;③问其他小组有没有不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化.设计意图①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的.②让学生上台汇报研究成果,使学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题,使该难点的突破显得自然.师:从图象入手我们很容易看出函数的单调性、奇偶性,以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到.教师通过几何画板中改变参数a的值,追踪y=a x的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律.师生共同总结指数函数的图象和性质,教师可以边总结边板书.0<a<1a>1(0,+∞)过定点(0,1)1.例:已知指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,π),求f(0),f(1),f(-3)的值.解:因为f(x)=a x的图象经过点(3,π),所以f(3)=π,即a 3=π.解得13πa =,于是f (x )=3πx . 所以f (0)=1,f (1)=3π,f (-3)=1π. 设计意图通过本题加深学生对指数函数的理解.师:根据本题,你能说出确定一个指数函数需要什么条件吗?师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了.设计意图让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想.2.练习:(1)在同一平面直角坐标系中画出y =3x 和y =⎝ ⎛⎭⎪⎫13x 的大致图象,并说出这两个函数的性质;(2)求下列函数的定义域:①y =112xy ⎛⎫= ⎪⎝⎭. 3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?学情预设学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数.设计意图①让学生再一次复习对函数的研究方法(可以从多个角度进行),让学生体会本节课的研究方法,以便能将其迁移到其他函数的研究中去.②总结本节课中所用到的数学思想方法.③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通.4.作业:课本习题2.1A 组 5.教学反思1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”.2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本节课使用几何画板可以动态地演示出指数函数的底数的变化过程,让学生直观地观察底数对指数函数单调性的影响.3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉地运用这些数学思想方法去分析、思考问题.指数函数及其性质的应用整体设计三维目标1.知识与技能理解指数函数的图象和性质,会利用性质来解决问题.2.过程与方法能利用指数函数的图象和性质来比较两个值的大小,图象间的平移,去探索利用指数函数的单调性来求未知字母的取值范围.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.重点难点教学重点:指数函数的图象和性质.教学难点:指数函数的性质应用.教学过程第2课时指数函数及其性质的应用(1)作者:王建波导入新课思路1.复习导入:我们前一节课学习了指数函数的概念和性质,下面我们一起回顾一下指数函数的概念、图象和性质.如何利用指数函数的图象和性质来解决一些问题,这就是本堂课要讲的主要内容.教师板书课题.思路2.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在理论上,我们能否严格的证明(特别是指数函数的单调性),以便于我们在解题时应用这些性质,本堂课我们要解决这个问题.教师板书课题:指数函数及其性质的应用(1).应用示例例1 比较下列各题中的两个值的大小:(1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的方法,再写出答案(最好用实物投影仪展示写得正确的答案).比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;图1二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并评价.解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y=1.7x的图象,如图1.在图象上找出横坐标分别为2.5,3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91,所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法三:利用函数单调性,(1)1.72.5与1.73的底数是1.7,它们可以看成函数y=1.7x,当x=2.5和3时的函数值;因为1.7>1,所以函数y=1.7x在R上是增函数,而2.5<3,所以1.72.5<1.73;(2)0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y=0.8x,当x=-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y=0.8x在R上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2;(3)因为1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1.点评:在第(3)小题中,可以用解法一、解法二解决,但解法三不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值.思考在上面的解法中,你认为哪种方法更实用?活动:学生对上面的三种解法作比较,解题有法但无定法,我们要采取多种解法,在多种解法中选择最优解法,这要通过反复练习强化来实现.例活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.证法一:设x 1,x 2∈R ,且x 1<x 2,则y 2-y 1=21121(1)x x x x a a a a x -=--.因为a >1,x 2-x 1>0,所以21>1x x a-,即21x x a --1>0. 又因为1x a >0,所以y 2-y 1>0,即y 1<y 2.所以当a >1时,y =a x,x ∈R 是增函数.同理可证,当0<a <1时,y =a x 是减函数. 证法二:设x 1,x 2∈R ,且x 1<x 2,则y 2与y 1都大于0,则y 2y 1=2211x x x x a a a -=. 因为a >1,x 2-x 1>0,所以21>1x x a->1,即y 2y 1>1,y 1<y 2. 所以当a >1时,y =a x ,x ∈R 是增函数.同理可证,当0<a <1时,y =a x是减函数.例1%,那么经过20年后,我国人口数最多为多少(精确到亿)?活动:师生共同讨论,将实际问题转化为数学表达式,建立目标函数,常采用特殊到一般的方式,教师引导学生注意题目中自变量的取值范围,可以先考虑一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿;经过1年 人口约为13(1+1%)亿;经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿;经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿;……经过x 年 人口约为13(1+1%)x亿;经过20年 人口约为13(1+1%)20亿.解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则 y =13(1+1%)x ,当x =20时,y =13(1+1%)20≈16(亿).答:经过20年后,我国人口数最多为16亿.点评:类似此题,设原值为N ,平均增长率为p ,则对于经过时间x 后总量y =N (1+p )x (x ∈N ),像y =N (1+p )x 等形如y =ka x (k ∈R ,且k ≠0;a >0,且a ≠1)的函数称为指数型函数.知能训练1.函数y =a |x |(a >1)的图象是( )图2解析:当x ≥0时,y =a |x |=a x 的图象过(0,1)点,在第一象限,图象下凸,是增函数. 答案:B2.下列关系中正确的是( )A .221333111252⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .122333111225⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .212333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .221333111522⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答案:D3.已知函数f (x )的定义域是(0,1),那么f (2x)的定义域是( )A .(0,1)B .⎝ ⎛⎭⎪⎫12,1 C .(-∞,0) D .(0,+∞) 解析:由题意得0<2x <1,即0<2x <20,所以x <0,即x ∈(-∞,0). 答案:C4.若集合A ={y |y =2x,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .AB B .AB C .A =B D .A ∩B =∅解析:A ={y |y >0},B ={y |y ≥0},所以A B .答案:A5.对于函数f (x )定义域中的任意的x 1、x 2(x 1≠x 2),有如下的结论: ①f (x 1+x 2)=f (x 1)·f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2.当f (x )=10x时,上述结论中正确的是__________. 解析:因为f (x )=10x,且x 1≠x 2,所以f (x 1+x 2)=1212101010x x xx +=⋅=f (x 1)·f (x 2),所以①正确;因为f (x 1·x 2)=1212101010x x xx ⋅≠+=f (x 1)+f (x 2),②不正确;因为f (x )=10x是增函数,所以f (x 1)-f (x 2)与x 1-x 2同号, 所以f (x 1)-f (x 2)x 1-x 2>0,所以③正确.因为函数f (x )=10x图象如图3所示是上凹下凸的,可解得④正确.图3答案:①③④另解:④.∵10x 1>0,10x 2>0,x 1≠x 2,∴1210102xx +>1210102xx +>即121221010102x x x x ++>.∴f (x 1)+f (x 2)2>f ⎝⎛⎭⎪⎫x 1+x 22.拓展提升在同一坐标系中作出下列函数的图象,讨论它们之间的联系. (1)①y =3x,②y =3x +1,③y =3x -1;(2)①y =⎝ ⎛⎭⎪⎫12x ,②y =⎝ ⎛⎭⎪⎫12x -1,③y =⎝ ⎛⎭⎪⎫12x +1.活动:学生动手画函数图象,教师点拨,学生没有思路,教师可以提示.学生回忆函数作图的方法与步骤,按规定作出图象,特别是关键点.解:如图4及图5.观察图4可以看出,y =3x,y =3x +1,y =3x -1的图象间有如下关系:y =3x +1的图象由y =3x 的图象左移1个单位得到; y =3x -1的图象由y =3x 的图象右移1个单位得到; y =3x -1的图象由y =3x +1的图象向右移动2个单位得到.观察图5可以看出,y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫12x -1,y =⎝ ⎛⎭⎪⎫12x +1的图象间有如下关系:y =⎝ ⎛⎭⎪⎫12x +1的图象由y =⎝ ⎛⎭⎪⎫12x 的图象左移1个单位得到;y =⎝ ⎛⎭⎪⎫12x -1的图象由y =⎝ ⎛⎭⎪⎫12x 的图象右移1个单位得到; y =⎝ ⎛⎭⎪⎫12x -1的图象由y =⎝ ⎛⎭⎪⎫12x +1的图象向右移动2个单位得到. 你能推广到一般的情形吗?同学们留作思考.课堂小结思考本节课我们主要学习了哪些知识,你有什么收获?把你的收获写在笔记本上.活动:教师用多媒体显示以下内容,学生互相交流学习心得,看是否与多媒体显示的内容一致.本节课,在复习旧知识的基础上学习了数形结合的思想、函数与方程的思想,加深了对问题的分析能力,形成了一定的能力与方法.作业课本习题2.1 B组1,3,4.设计感想本节课主要是复习巩固指数函数及其性质,涉及的内容较多,要首先组织学生回顾指数函数的性质,为此,必须利用函数图象,数形结合,通过数与形的相互转化,借助形的直观性解决问题,本节课要训练学生能够恰当地构造函数,根据函数的单调性比较大小,有时要分a>1,0<a<1,这是分类讨论的思想,因此加大了习题和练习的量,目的是让学生在较短的时间内,掌握学习的方法,提高分析问题和解决问题的能力,要加快速度,多运用现代化的教学手段.第3课时指数函数及其性质的应用(2)作者:刘玉亭导入新课思路1.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在上节课的探究中我们知道,函数①y=3x,②y=3x+1,③y=3x-1的图象之间的关系,由其中的一个可得到另外两个的图象,那么,对y=a x与y=a x+m(a>0,m∈R)有着怎样的关系呢?在理论上,含有指数函数的复合函数是否具有奇偶性呢?这是我们本堂课研究的内容.教师点出课题:指数函数及其性质的应用(2).思路2.我们在第一章中,已学习了函数的性质,特别是单调性和奇偶性是某些函数的重要特点,我们刚刚学习的指数函数,严格地证明了指数函数的单调性,便于我们在解题时应用这些性质,在实际生活中,往往遇到的不单单是指数函数,还有其他形式的函数,有的是指数函数的复合函数,我们需要研究它的单调性和奇偶性,这是我们面临的问题,也是我们本节课要解决的问题——指数函数及其性质的应用(2).推进新课新知探究提出问题(1)指数函数有哪些性质?(2)利用单调性的定义证明函数单调性的步骤有哪些?(3)对复合函数,如何证明函数的单调性?(4)如何判断函数的奇偶性,有哪些方法?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容.讨论结果:(1)指数函数的图象和性质一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:图象分布在一、二象限,与轴相交,落在x轴的上方都过点(0,1)第一象限的点的纵坐标都大于1第二象限的点的纵坐标都大于第一象限的点的纵坐标都大于0且小于1;第二象限的点①取值.即设x1,x2是该区间内的任意两个值且x1<x2.②作差变形.即求f(x2)-f(x1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.③定号.根据给定的区间和x2-x1的符号确定f(x2)-f(x1)的符号,当符号不确定时,可以进行分类讨论.④判断.根据单调性定义作出结论.(3)对于复合函数y=f(g(x))可以总结为:当函数f(x)和g(x)的单调性相同时,复合函数y=f(g(x))是增函数;当函数f(x)和g(x)的单调性相异即不同时,复合函数y=f(g(x))是减函数;又简称为口诀“同增异减”.(4)判断函数的奇偶性:一是利用定义法,即首先是定义域关于原点对称,再次是考查式子f(x)与f(-x)的关系,最后确定函数的奇偶性;二是作出函数图象或从已知图象观察,若图象关于原点或y轴对称,则函数具有奇偶性.应用示例例 1 在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系.(1)y=2x+1与y=2x+2;(2)y=2x-1与y=2x-2.活动:教师适当时候点拨,学生回想作图的方法和步骤,特别是指数函数图象的作法,学生回答并到黑板上作图,教师指点学生,列出对应值表,抓住关键点,特别是(0,1)点,或用计算机作图.解:(1)列出函数数据表作出图象如图6.图6比较可知函数y=2x+1、y=2x+2与y=2x的图象的关系为:将指数函数y=2x的图象向左平行移动1个单位长度,就得到函数y=2x+1的图象;将指数函数y=2x的图象向左平行移动2个单位长度,就得到函数y=2x+2的图象.(2)列出函数数据表作出图象如图7.图7比较可知函数y =2x -1、y =2x -2与y =2x的图象的关系为:将指数函数y =2x的图象向右平行移动1个单位长度,就得到函数y =2x -1的图象;将指数函数y =2x的图象向右平行移动2个单位长度,就得到函数y =2x -2的图象.点评:类似地,我们得到y =a x与y =ax +m(a >0,a ≠1,m ∈R )之间的关系:y =a x +m (a >0,m ∈R )的图象可以由y =a x 的图象变化而来.当m >0时,y =a x的图象向左移动m 个单位得到y =ax +m的图象; 当m <0时,y =a x 的图象向右移动|m |个单位得到y =a x +m的图象.上述规律也简称为“左加右减”.例2 已知定义域为R 的函数f (x )=2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. 活动:学生审题,考虑解题思路.求值一般是构建方程,求取值范围一般要转化为不等式,如果有困难,教师可以提示,(1)从条件出发,充分利用奇函数的性质,由于定义域为R ,所以f (0)=0,f (-1)=-f (1),(2)在(1)的基础上求出f (x ),转化为关于k 的不等式,利用恒成立问题再转化.(1)解:因为f (x )是奇函数,所以f (0)=0,即b -1a +2=0⇒b =1.所以f (x )=1-2xa +2x +1;。
人教A版数学必修一2.1.1指数与指数幂的运算
② 3-2 2 + 3 (1- 2)3 + 4 (1- 2)4 = _____2_-__1.
2.1.1 │ 考点类析
[解析] ①8 (x-3)8=|x-3|,当 x≥3 时,原式=x-3; 当 x<3 时,原式=3-x.
所以8 (x-3)8=x3--3x,,xx≥<33. , ②因为 3-2 2=2-2 2+1=( 2)2-2 2+1=( 2-1)2, 所 以 3-2 2 + 3 (1- 2)3 + 4 (1- 2)4 = ( 2-1)2+ 3 (1- 2)3+ 4 (1- 2)4= 2-1+1- 2+ 2-1= 2-1.
2.1.1 │ 考点类析
[小结] 有理指数幂运算的基本原则和常规方法: (1)基本原则:式子里既有分数指数幂又有根式时,
一般把根式统一化为分数指数幂的形式,再用有理指数 幂的运算性质化简.
(2)常规方法:①化负指数幂为正指数幂;②化根式 为分数指数幂;③化小数为分数.
2.1.1 │ 考点类析
考点四 条件求值 重点探究型 [导入] 已知 x+1x=a(a≥2),如何求 x2+x12的值?
[ 解 析 ] (1)① 4 (-8)4 = | - 8| = 8 ;
②3 (-8)3=-8.
6 (2)①
1-π3 6=1-π3 =π3 -1;② 5
1-π3 5
=1-π3 .
2.1.1 │ 考点类析
(3)计算下列各式的值:
①8
x-3,x≥3,
(x-3)8=_3_-__x_,_x_<_3,
2.1.1 │ 考点类析
【变式】 (1)设 10m=2,10n=3,则 10-2m-10-n=_-_1_12_____.
[解析] 由 10m=2 得 10-2m=(101m)2=14,10 -n=110n=13, 所以 10-2m-10-n=14-13=-112.
高一数学人教A版必修1:2.1.1 指数与指数幂运算
一、复习引入
问题1:据调查,现行银行存款定期一年利率是 1.75%, 某投资者打算存款1万元,按照复利计算, 设x年(x≤20)底存款数y元, 问:y是否是关于x的函数?若是,求函数关系式.
解:y (1 1.75%) 1.0175 (x N 且x 20)
x x
*
幂
x 1.0175
指数
底数
一、复习引入
同底数幂相乘,底数不变,指数相加 a (1) a a ________
1、整数指数幂运算性质: ( r、s ∈Z ) rs r s
( 2)
a a
r s
a ________
r s r
rs
同底数幂相除,底数不变,指数相减
a ( 3) ( a ) ________ 幂的乘方,底数不变,指数相乘 a b 乘积的幂,等于幂的乘积 (4) (ab ) ________
2 3 3 5 5
二、新课讲解
(4)
a
n
n
_________
a
(5) n a n
?
n n
n n 当n是奇数时, a a
a,a 0 当n是偶数时, a | a | a,a <0
思考:
3
5 53 ___________ 5 5 ___________
2
3
5 ( 5)3 ________
( 5) ________ 5
2
二、新课讲解 如果x n a,那么x叫做a的n次方根.
2、运算性质: (1)当n为偶数:正数a的n次方根有两个,且互为相反数.
正的n次方根记为n a,负的n次方根记为 n a ( 2)当n是奇数:正数a的n次方根是一个正数;
高中数学 2.1.2.1指数函数的定义与简单性质课件 新人教A版必修1
1
32
[走出误区] 易错点⊳忽略分类讨论致求指数型函数值域出错 [典例] [2013·赤壁高一检测]若函数f(x)=ax-1(a>0且a≠1)的定义域和值域都是[0,2],求实数a的值.
a0-1=0, [错解档案] 由题意可知a2-1=2, 解得a= 3.
[误区警示] 虽然结果正确,但解题过程缺少步骤,没有分类讨论的意识.实际上在不知底数a的取 值的情况下,要对a的取值分a>1和0<a<1两种情况讨论.
由指数函数的性质知,y=(13) x-2≤(13)0=1, 且y>0,故此函数的值域为(0,1].
1
31
[规律小结] 1.指数函数的定义 理解指数函数的定义,需注意的几个问题:
(1)因为a>0,x是任意一个实数时,ax是一个确定的实数,所以函数的定义域为实数集R;且ax>0,所 以函数的值域是(0,+∞).
1.底数a与1的大小关系决定了指数函数图象的“升降”;当a>1时,指数函数的图象“上升”;当 0<a<1时,指数函数的图象“下降”.
2.底数的大小决定了图象相对位置的高低:不论是a>1,还是0<a<1,在第一象限内底数越大,函数 图象越靠近y轴.
当a>b>1时, (1)若x>0,则ax>bx>1; (2)若x<0,则1>bx>ax>0. 当1>a>b>0时, (1)若x>0,则1>ax>bx>0; (2)若x<0,则bx>ax>1.
1
16
【跟踪训练1】 函数f(x)=(a2-3a+3)ax是指数函数,则有( )
A.a=1或a=2
高中数学第二章基本初等函数2.1.1指数与指数幂的运算第2课时分数指数幂新人教A版必修1
B.234
C.18
D.243
[解析]
4-23
=
1
3
42
=22123
=213=18.
(C)
2.若a>0,n,m为实数,则下列各式中正确的是
m
A.am÷an=a n
B.an·am=am·n
C.(an)m=am+n
D.1÷an=a0-n
(D )
• [解析] 由指数幂的运算法则知1÷an=a0÷an=a0-n正确, 故选D.
(3)由于a23
-a-32
=(a12
)3-(a-12
3
)3,所以有a21 a2
-a-32 -a-12
1
=a2
-a-21 a+a-1+a12
1
a2
-a-12
·a-12
=a+a-1+1=7+1=8.
『规律方法』 (1)条件求值是代数式求值中的常见题型,一般要结合已知
条件先化简再求值,另外要特别注意条件的应用,如条件中的隐含条件,整体
3
(2)化简:
7
a2
a-3÷ 3 a-83 a15÷3
a-3 a-1.
• [思路分析] 将根式化为分数指数幂的形式,利用分数指 数幂的运算性质计算.
[解析] (1)原式=1+14×(49)12 -(1100)21 =1+16-110=1165.
3
(2)原式=
7
a2
a-32
÷
a-83
15
a3
3
÷
a-23
• 利用分数指数幂进行根式计算时,结果可化为根式形式或保留分 数指数幂的形式,不强求统一用什么形式,但结果不能既有根式 又有分数指数幂,也不能同时含有分母和负指数.
数学:2.1.1《指数与指数幂的运算》课件(新人教A版必修1)
1.am· an=am+n;
2.am÷an=am-n; 3.(am)n=amn; 4.(ab)n=an· bn; 5.
a n an ( ) n (b 0). b b
另外,我们规定:
a 1(a 0); 1 n a n. a
0
二、根式
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1, 且n∈N*.
(a b) (a b).
2
三、分数指数幂 探究:
5 10 5
a
10பைடு நூலகம்
(a ) a a (a 0),
5 2 5 2 12 4
4
a12 4 (a 4 ) 3 a 3 a (a 0).
2 3
0的正分数指数 幂等于0,0 的负 分数指数幂没有 意义.
3
a 2 a ( a 0), b b (b 0),
(2)(a r ) s a rs (a 0, r , s Q) (3)(ab) r a r b r (a 0, b 0, r Q)
例2 用分数指数幂表示下列各式(其中a>0).
a 3 a , a 2 3 a 2 , a3 a .
解:
a3 a a3 a a
2 3 1 3 1 3 1 3
2 3
a
1 3
1 3 1 3
a
1 3
a 2b
a a a a.
五、知识总结
整数指数幂 根式 两个等式
分数指数幂 有理数指数幂 无理数指数幂
(1)a r a s a r s (a 0, r , s R) (2)(a r ) s a rs (a 0, r , s R ) (3)(ab) a b (a 0, b 0, r R)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活页作业(十五) 指数幂及运算
1.[(-2)2]-
12 的值为( ) A. 2 B .- 2 C.22
D .-
22
解析:原式=2-
1
2 =12=2
2.
答案:C
2.计算(2a -3b -23 )·(-3a -1b )÷(4a -4b -
53 )得( ) A .-32b 2
B .32b 2
C .-3
2
b 73
D ..32
b 73
答案:A
3.化简-a ·3
a 的结果是( )
A.5
-a 2
B .-6
-a 5
C.6
-a 5
D .-6
a 5
解析:-a ·3
a =-a ·(-3
-a ) =-(-a ) 12 ·(-a ) 13 =-(-a ) 12 +
1
3 =-(-a ) 56 =-6
-a
5
=-6
-a 5
.
答案:B
4.在⎝ ⎛⎭⎪⎫-12-1、2-12 、⎝ ⎛⎭⎪⎫12-1
2 、2-1
中,最大的是( )
A.⎝ ⎛⎭
⎪⎫-12-1
B .2-
12
C.⎝ ⎛⎭
⎪⎫12 -
12 D .2-1
解析:∵⎝ ⎛⎭⎪⎫-12-1=-2,2-1
2 =22,⎝ ⎛⎭⎪⎫12-1
2 =2,2-1
=12,∴2>22>12>-2,故选C.
答案:C
5.计算64-
2
3 的值是________. 解析:64-23 =(26) -2
3 =2-4
=116.
答案:1
16
6.化简(
3
6
a 9)4·(
63a 9)4的结果为________.
解析:原式=(3
a 3
2)4·(6
a 3)4=(a 12 )4·(a 1
2 )4
=a 2
·a 2
=a 4
. 答案:a 4
7.计算: (1)
3
-
3-⎝ ⎛⎭⎪⎫120
+0.251
2 ×⎝ ⎛⎭
⎪⎫-12-4;
(2)⎝ ⎛⎭
⎪⎫-278 -2
3 +(0.002)-1
2 -10(5-2)-1+(2-3)0
. 解:(1)原式=-4-1+12×(2)4
=-3.
(2)原式=⎝ ⎛⎭⎪⎫-278-2
3 +⎝ ⎛⎭⎪⎫1500-
1
2 -105-2+1
=⎝ ⎛⎭
⎪⎫-82723 +50012 -10(5+2)+1
=49+105-105-20+1=-1679
.
8.若(1-2x )-
3
4 有意义,则x 的取值范围是( )
A .x ∈R
B .x ≠0.5
C .x >0.5
D .x <0.5
解析:(1-2x ) -
3
4 =
14
-2x
3
,由1-2x >0,得x <1
2
,故选D.
答案:D
9.若10m
=2,10n
=3,则103m -n
2 =______.
解:103m -n 2 =103m
10
n =83=263
. 答案:263
10.化简下列各式:
(1)1.5-1
3 ×⎝ ⎛⎭⎪⎫-760+80.25×42+(32×3)6
-
⎝ ⎛⎭
⎪⎫-232
3; (2)⎝ ⎛⎭
⎪⎫14 -
12 ·4ab -1
30.1
-2
a 3b
-3
1
2
.
解:(1)原式=⎝ ⎛⎭⎪⎫2313 +234 ×214 +22×33
-⎝ ⎛⎭⎪⎫2313
=21
+4×27=110;
(2)原式=41
2·43
2100a 32 ·b -32 ·a -32
·b 3
2
=425a 0b 0=425
.
12.已知x-3+1=a(a为常数),求a2-2ax-3+x-6的值.
解:∵x-3+1=a,∴x-3=a-1,
又x-6=(x-3)2,∴x-6=(a-1)2,
∴a2-2ax-3+x-6
=a2-2a(a-1)+(a-1)2
=a2-(2a2-2a)+(a2-2a+1)
=1.
1.指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数,底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.2.根据一般先转化成分数指数幂,然后再利用有理数指数幂的运算性质进行运算 .在将根式化为分数指数幂的过程中,一般采用由内到外逐层变换为指数的方法,然后运用运算性质准确求解.。