七年级数学一元一次方程6
兴隆台区五中七年级数学下册 第6章 一元一次方程6.2 解一元一次方程 2解一元一次方程第2课时 去
七年级数学下册第一章整式的乘除4整式 的乘法第3课时多项式与多项式相乘课件 新版北师大版3
同学们,下课休息十分钟。现在是休
息时间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来 动一动,久坐对身体不好哦~
(2) (ax + b)(cx + d) = ax·cx + ax·d + b·cx + bd = acx2 + (ad + bc)x + bd
3 2
2.商店降价销售某种商品 , 每件降5元 , 售出 60件后 , 与按原价销售同样数量的商品相比 , 销售额有什么变化 ?
解 : -5×60 =-300 答 : 销售额下降300元.
随堂演练
1.假设a、b互为相反数 , 假设x、y互为倒数 ,
那么a-xy +-b=1
.
2.相反数等于它本身的数是 0 ; 倒数等于 它本身的数是 1 , -1; 绝対值等于它本身 的数是 非负数.
例3 用正负数表示气温的变化量 , 上升为正 , 下降为负.登山队攀登一座山峰 , 每登高1 km气温的变化量为-6 ℃ , 攀登3 km后 , 气 温有什么变化 ?
解 : 〔-6〕×3 =-18
答 : 气温下降18℃.
强化练习 1.计算 :
〔﹣6〕×0 = 0
1 3
1 4
1 12
2 3
9 4
7 4 28 , …………__把__绝__対___值__相__乘___
所以 (7) 4 —-—28——.
思考: 通过上题,你认为:非零两数相乘,关键是 什么?
有理数乘法的步骤 :
两个有理数相乘 , 先确定积的__符_号__ , 再确定积的_绝__対_值__.
七年级数学上册 第五章 一元一次方程 6 应用一元一次方程—追赶小明课件
答:火车的长度为300 m,速度为30 m/s.
2021/12/5
第七页,共三十八页。
知识点 行程问题
1.甲、乙两人练习赛跑,甲每秒跑7 m,乙每秒跑6.5 m,甲让乙先跑5 m,设
x s后甲可追上乙,则下列(xiàliè)四个方程中不正确的是 ( ) A.7x=6.5x+5 B.7x+5=6.5x C.(7-6.5)x=5 D.6.5x=7x-5
解得x=1. 答:队伍长1千米.
2021/12Βιβλιοθήκη 5第十九页,共三十八页。2.隧道长300米,火车(huǒchē)通过隧道用时25秒,全车都在隧道内的时间为5秒,
求车长和车速.
解析 设火车车身长x长,根据题意,得
3 0 0= x , 3 0 0 x
25
5
300+x=5(300-x),
x=200,
车速为 300=2020m0/s.
4.甲、乙两站相距180 km,一辆速度为40 km/h的货车(huòchē)从甲站开出,一辆
速度为48 km/h的客车从乙站开出.
(1)若两辆车同时同向而行,客车在货车后方,则几小时后客车可以追上 货车? (2)若客车开出40分钟后货车开出,两车同向而行,客车在货车后方,则货
车开出几小时客车可以追上货车?
答案(dáàn) B 题中的相等关系为:甲x秒跑的路程=乙x秒跑的路程+5 m,根 据题意得7x=6.5x+5,故A正确;C、D选项都是通过A选项变形而来的,故
C、D正确.故选B.
2021/12/5
第八页,共三十八页。
2.(2016广东肇庆端州西区期末)轮船沿江从A港顺流行驶到B港,比从B 港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港 相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是 (
七年级数学下册第6章一元一次方程6.3实践与探索第1课时体积和面积问题教案华东师大版
第1课时体积和面积问题1.使学生能够找出简单应用题中的已知量、未知量和相等关系,然后列出一元一次方程来解简单应用题,并会根据应用题的实际意义,检查求得的结果是否合理.2.能够利用一元一次方程解决图形面积、体积等相关问题.重点利用一元一次方程解决图形面积、体积等相关问题.难点找问题中的等量关系.一、创设情境、复习引入我们学过一些图形的相关公式,你能回忆一下,有哪些公式?回忆一些图形的有关公式,为本节课学习用一元一次方程解决图形相关问题,找等量关系起到帮助作用.二、探索问题,引入新知问题:用一根长60厘米的铁丝围成一个长方形:(1)如果长方形的宽是长的错误!,求这个长方形的长和宽;(2)如果长方形的宽比长少4厘米,求这个长方形的面积;(3)比较(1),(2)所得两个长方形面积的大小.还能围出面积更大的长方形吗?解:(1)设长方形的长为x厘米,则宽为错误!x厘米.根据题意,得2(x+错误!x)=60,解这个方程,得x=18,所以长方形的长为18厘米,宽为12厘米.(2)设长方形的长为x厘米,则宽为(x-4)厘米,根据题意,得2(x+x-4)=60,解这个方程,得x=17,所以S=13×17=221(平方厘米).(3)在(1)的情况下S=12×18=216(平方厘米);在(2)的情况下S=13×17=221(平方厘米).还能围出面积更大的长方形,当围出的长方形的长宽相等时,即为正方形,其面积最大,此时其边长为15厘米,面积为225平方厘米.讨论:在第(2)小题中,能不能直接设面积为x平方厘米?如不能,怎么办?如果直接设长方形的面积为x平方厘米,则如何才能找出相等关系列出方程呢?诱导学生积极探索:不能直接设面积为未知数,则需要设谁为未知数呢?那么设未知数的原则又是什么呢?结论:在周长一定的情况下,长方形的面积在长和宽相等的情况下最大;如果可以围成任何图形,则圆的面积最大.【例】将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0。
华师版七年级数学下册优秀课件 第6章 一元一次方程 解一元一次方程 第2课时 用方程的变形规则解方程
知识点❸ 将未知数的系数化为 1 4.由 2x-1=0 得到 x=12 ,可分两步,按步骤完成下列填空: 第一步:根据方程的变形规则__1__,方程两边_都__加__上__1_,得到 2x=1;
第二步:根据方程的变形规则__2__,方程两边都__乘 ___以__12__(或__都__除__以___2_),得到 x =12 .
11.小红在解关于x的方程3a=2x+15时,在移项的过程中2x没有改变符号, 得到的方程的解为x=3,求a的值及原方程的解.
解:由题意得3a+2x=15,把x=3代入得3a+6=15,解得a=3,所以原方程 为9=2x+15,解得x=-3
C.由12 y=2,得 y=4
D.由14 x+1=0,得 x=3
7.(教材 P6 例 1、例 2 变式)解方程:
(1)4x=3x-5; (2)-32 x=32 .
解:x=-5解:x=-1源自8.方程3x-4=1+2x,移项,得3x-2x=1+4,也可以理解为方程两边同时
( A) A.加上(-2x+4) B.减去(-2x+4) C.加上(2x+4) D.减去(2x+4) 9.(南阳邓州市期中)如果3ab2m-1与9abm+1是同类项,那么m等于(A ) A.2 B.1 C.-1 D.0
10.已知方程12 x=-2 的解比关于 x 的方程 5x-2a=0 的解大 2,求 a 的值.
解:由12 x=-2,得 x=-4,因为方程12 x=-2 的解比关于 x 的方程 5x- 2a=0 的解大 2,所以方程 5x-2a=0 的解为 x=-6,所以 5×(-6)-2a=0, 所以 a=-15
5.下列解方程过程中“系数化为 1”正确的是( D ) A.由 4x=-5,得 x=-45 B.由 3x=-12 ,得 x=-32 C.由 0.3x=1,得 x=130 D.由-0.5x=-12 ,得 x=1
七年级数学下册 第6章 一元一次方程电子课本 华东师大版 教案
第6章一元一次方程 (2)§6.1 从实际问题到方程 (2)§6.2 解一元一次方程 (4)1. 方程的简单变形 (4)2. 解一元一次方程 (6)阅读材料 (10)方程史话 (10)§6.3 实践与探索 (10)阅读材料 (14)2=3? (14)小结 (14)复习题 (15)第6章一元一次方程一队师生共328人,乘车外出旅游,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?44×?+64=328§6.1 从实际问题到方程问题1某校初中一年级328名师生乘车外出春游,已有2辆校车可乘坐64人,还需租用44座的客车多少辆?回忆小学里已经学过列方程的解法,我们不妨回顾一下:设需租用客车x 辆,共可乘坐44x 人,加上乘坐校车的64人,就是全体 328人.可得44x +64=328.①解这个方程,就能得到所求的结果.问题2在课外活动中,X 老师发现同学们的年龄大多是13岁.就问同学:“我 今年45岁,几年以后你们的年龄是我年龄的三分之一?”“三年!”小敏同学很快发现了答案.他是这样算的:1年后,老师的年龄是46岁,同学的年龄是14岁,不是老师年龄的31; 2年后,老师的年龄是47岁,同学的年龄是15岁,也不是老师年龄的 31; 3年后,老师的年龄是48岁,同学的年龄是16岁,恰好是老师年龄的31. 也有的同学说,我们可以列出方程来解:设x 年后同学的年龄是老师年龄的31,而x 年后同学的年龄是(13+x ) 岁,老师的年龄是(45+x )岁,可得13+x =31(45+x ). ② 这个方程不像问题1中的方程①那样容易求出它的解.但小敏同学的方法 启发我们,可以用尝试、检验的方法找出方程②的解,即只要将x =1,2,3, 4,…代入方程②的左右两边,看哪个数能使两边的值相等.这样得到x =3是 方程的解.思 考如果未知数可能取到的数值较多,或者不一定是整数,该从何试起?如果 试验根本无法入手又该怎么办?练 习根据题意设未知数,并列出方程(不必求解):1. 某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将第一组人数调整为第二组人数的一半,应从第一组调多少人到第二组去?2. 小明的爸爸三年前为小明存了一份3000元的教育储蓄.今年到期时取出,得到的本息和为3243元.请你帮小明算一算这种储蓄的年利率.1. 检验下列方程后面大括号内所列各数是否为相应方程的解:2. (1) 1815-=+x x ,⎭⎬⎫⎩⎨⎧-3,23; 3. (2) 2(y -2)-9(1-y )=3(4y -1), {-10,10}.4. 根据班级内男、女同学的人数编一道应用题,和同学交流一下.5. 小赵去商店买练习本,回来后问同学:“店主告诉我,如果多买一些就给我八折优惠.我就买了20本,结果便宜了 1.60元.你猜原来每本价格多少?”你能列出方程吗?§6.2 解一元一次方程1. 方程的简单变形联 想测量一些物体的质量时,我们经常将它们放在天平的左盘内,在右盘内放 上砝码,使天平处于平衡状态,这时两边的质量相等,我们就可测得该物体的 质量.如果我们在两边盘内同时添上(或取下)相同质量的物体,可以发现天平 依然平衡;如果我们将两边盘内物体的质量同时扩大到原来相同的倍数(或同时缩小到原来的几分之一),也会看到天平依然平衡.图~3反映了由天平联想到的几个方程的变形.x+2=5 ⇒x=5-2图3x=2x+2 ⇒3x-2x=2图2x=6 ⇒x=6÷2图归纳我们可以看到,方程能够这样变形:方程两边都加上或都减去同一个数或同一个整式,方程的解不变.方程两边都乘以或都除以同一个不为零的数,方程的解不变.通过对方程进行适当的变形,可以求得方程的解.例1解下列方程:(1)x-5=7;(2)4x=3x-4.解(1)由x-5=7,两边都加上5,得x=7+5 ,即x=12.(2)由4x=3x-4,两边都减去3x ,得 4x -3x =-4,即x =-4.概 括像这样,将方程中的某些项改变符号后,从方程的一边移到另一边的变形 叫做移项(transposition ).例2 解下列方程:(1) -5x =2; (2)23x =31. 解 (1) 方程两边都除以-5,得x =52-. (2) 方程两边都除以23(或乘以32),得 x =31×32 , 即 x =92. 这里的变形通常称作“将未知数的系数化为1”.概 括以上例1和例2解方程的过程,都是对方程进行适当的变形,得到x =a 的 形式.练 习1.列方程的变形是否正确?为什么?(1) 由3+x =5,得x =5+3; (2)由7x =-4,得x =-47; (3) 由021=y ,得y =2; (4)由3=x -2,得x =-2-3. 2. (口答)求下列方程的解:(1)x -6=6; (2)7x =6x -4;(3)-5x =60; (4)2141=y .§6.1中问题1所列出的方程.做一做利用方程的变形,求方程2x +3=1的解,并和同学讨论与交流.例3 解下列方程:(1) 8x =2x -7; (2) 6=8+2x ;(3) 321212-=-y y 解 (1) 8x =2x -7,8x -2x =-7,6x =-7,x =67-. (2) 6=8+2x ,8+2x =6,2x =-2,x =-1.(3) 321212-=-y y , 213212+-=-y y 2523-=y , y =35- 练 习解下列方程:1. 3x +4=0 .2. 7y +6=-6y3. 5x +2=7x +84. 3y -2=y +1+6y .5.x x 2.041852-=-. 6. 1-21x =x +31习题1. 解下列方程:(1)18=5-x ; (2)x x 413243-=+; (3)3x -7+4x =6x -2; (4)10y +5=11y -5-2y ;(5)a -1=5+2ax +1.2-2xx .2. 解下列方程:(1)2y +3=11-6y (2)2x -1=5x +7(3)31x -1-2x =-1; (4)21x -3=5x +41 3. 已知y 1=3x +2,y 2=4-x .(1)当x 取何值时,y 1=y 2? (2)当x 取何值时,y 1比y 2大4?2. 解一元一次方程前面我们遇到的一些方程,例如44x +64=328,13+x =31(45+x ) 等等,有一个共同特点,它们都只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程(linearequationwithoneunknown ).我们再一起来解几个一元一次方程.例4 解方程: 3(x -2)+1=x -(2x -1).解 原方程的两边分别去括号,得3x -6+1=x -2x +1,3x -5=-x +1,3x +x =1+5,4x =6, x =23. 练 习1.解下列方程:(1)5(x +2)=2(5x -1);(2)(x +1)-2(x -1)=1-3x ;(3)2(x -2)-(4x -1)=3(1-x ).2.列方程求解:(1)当x 取何值时,代数式3(2-x )和2(3+x )的值相等?(2)当y 取何值时,2(3y +4)的值比5(2y -7)的值3?3.解§6.1中问题2所列出的方程.例5 解方程:解 由原方程得3(x -3)-2(2x +1)=6,3x -9-4x -2=6,3x -4x =6+9+2,-x =17,x =-17.在上述解方程的过程中,第一步是方程的两边都乘以同一个数6,使方程中的系数不出现分数.这样的变形通常称为“去分母”.讨 论在以上各例解一元一次方程时,主要进行了哪些变形?如何灵活运用这些变形合理、简洁地解一元一次方程?练 习1.指出下列方程求解过程中的错误,并给予纠正:(1)解方程:1524213-+=-x x (2)解方程:246231x x x -=+-- 解: 15x -5=8x +4-1, 解: 2x -2-x +2=12-3x15x -8x=4-1+5, 2x-x +3x =12+2+27x =8 4x =1687=x x =4.2.解下列方程:(1);47815=-a (2)15334--=-x x 例6 如图,天平的两个盘内分别盛有51 g 、45 g 盐,问应该从盘A 内拿出多少盐放到盘B 内,才能使两者所盛盐的质量相等?图6.2.4分析 设应从盘A 内拿出盐xg ,可列出表.表6.2.1解 设应从盘A 内拿出盐x g 放到盘B 内,则根据题意,得 51-x =45+x .解这个方程,得x =3.经检验,符合题意.答: 应从盘A 内拿出盐3 g 放到盘B 内.例7 学校团委组织65名新团员为学校建花坛搬砖.女同学每人搬6块,男同学每人搬8块,每人搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析 设新团员中有x 名男同学,可列出表.解设新团员中有x名男同学,则根据题意,得32x+24(65-x)=1800.解这个方程,得x=30.经检验,符合题意.答:新团员中有30名男同学.练习1. 学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多少时间?2. 将上题的分析和列得的方程与例7相比较,看看是否相似.将你的想法和同学交流一下.3.第1题中,若问“小刚在离终点多远时开始冲刺”,你该如何求解?归纳用一元一次方程解答实际问题,关键在于抓住问题中有关数量的相等关系,列出方程.求得方程的解后,经过检验,就可得到实际问题的解答.这一过程也可以简单地表述为:其中分析和抽象的过程通常包括:(1)弄清题意和其中的数量关系,用字母表示适当的未知数;(2)找出能表示问题含义的一个主要的等量关系;(3)对这个等量关系中涉及的量,列出所需的表达式,根据等量关系,得 到方程.在设未知数和解答时,应注意量的单位.习题1.解下列方程:(1))4(213x +-=; (2)1)34(2)52(3++=+x x2.解下列方程:(1)353235x x -=-; (2)x x 613211-=-; (3)161242=--+y y . 3.(1)在等式S =2)(b a n +中,已知S =279,b =7,n =18,求a 的值. (2)已知梯形上底a =3,高h =5,面积S =20,根据梯形的面积公式S =h b a )(21+,求下底b 的长. 4.球的表面是由一些呈多边形的黑、白皮块缝合而成的,共计有32块,已知黑色块数比白色块数的一半多2,问两种皮块各有多少?5.学校大扫除,某班原分成两个小组,第一组26人打扫教室,第二组22人打扫包干区.这次根据工作需要,要使第二组人数是第一组人数的2倍,那么应从第一组调多少人到第二组去?6.学校所在地的出租车计价规则如下:行程不超过3千米李老师和三位学生去探望一位病假的学生,坐出租车付了17.60元,他们共乘坐了多少路程?阅读材料方程史话你知道吗?现存世界上最古老的方程出现在英国考古学家兰德1858年找到的一份古埃及人的“纸草书”“啊哈,它的全部,它的71,是19”;“一堆,它的71,21,32,居然是33”.译得更明白一点就是:.33712132;1971=+++=+x x x x x x 在我国,“方程”一词最早出现于东汉初年(公元前后)的数学经典著作《九章算术》的第八章“方程”“天元术”解题,从设未知数到列方程都和现代数学十分相似.也就是在这段时期,方程的知识从中国传入日本.古希腊数学家丢番图(Diophantus ),是以研究一类方程(不定方程)著称于世的数学家.在他的墓碑上,刻写着这样一段墓志铭:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.请你列出方程算一算,丢番图去世时的年龄.§6.3 实践与探索问题1用一根长60厘米的铁丝围成一个长方形.(1) 使长方形的宽是长的32,求这个长方形的长和宽. (2) 使长方形的宽比长少4厘米,求这个长方形的面积.(3) 比较(1)、(2)所得两个长方形面积的大小.还能围出面积更大的 长方形吗?讨 论每小题中如何设未知数?在第(2)小题中,能不能直接设面积为x 平方 厘米?如不能,该怎么办?探 索将题(2)中的宽比长少4厘米改为3厘米、2厘米、1厘米、0厘米(即 长与宽相等),长方形的面积有什么变化?练 习1.一块长、宽、高分别为4厘米、3厘米、2厘米的长方体橡皮泥,要用它来捏一个底面半径为的圆柱,它的高是多少?(精确到,π取3.14)2.在一个底面直径5厘米、高18厘米的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离.读一读本节问题1中,通过探索我们发现,长方形的周长一定的情况下,它的长 和宽越接近,面积就越大.当长和宽相等,即成为正方形时,面积最大,通过以后的学习,我们就会知道其中的道理.有趣的是:若把这根铁丝围成任何封闭的平面图形(包括随意七凹八凸的不规则图形),面积最大的是圆.这里面的道理需要较为高深的学问.将来你有兴趣去认识它吗?小常识本章§6.1练习中讨论过的教育储蓄,是我国目前暂不征收利息税的一种储蓄.国家对其他储蓄所产生的利息,征收20%的个人所得税,即利息税.问题2小明爸爸前年存了年利率为2.43%的二年期定期储蓄.今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.60元的计算器.问小明爸爸前年存了多少元?讨论扣除利息的20%,那么实际得到利息的多少?你能否列出较简单的方程?练习填空:1. (1)学校图书馆原有图书a册,最近增加了20%,则现在有图书_______册;(2)某煤矿预计今年比去年增产15%,达到年产煤60万吨,设去年产煤x万吨,则可列方程__________________;(3)某商品按定价的八折出售,售价14.80元,则原定价是_________元.2.肖青的妈妈前年买了某公司的二年期债4500元,今年到期,扣除利息税后,共得本利和约4700元.问这种债券的年利率是多少(精确到0.01%)?习题1. 一个角的余角比这个角的补角的一半小40°,求这个角的度数.2. 一X覆盖在圆柱形罐头侧面的商标纸,展开是一个周长为88厘米的正方形(不计接口部分),求这个罐头的容积(精确到1立方厘米,π取3.14).3. 有一批截面是长11厘米、宽10厘米的长方形铁锭,现要铸造一个42. 9千克的零件,应截取多长的铁锭(铁锭每立方厘米重)?4. 某市去年年底人均居住面积为11平方米平方米.求今年的住房年增长率(精确到0.1%).5. 某银行设立大学生助学贷款,分3~4年期,5~7年期两种.贷款年利率分别为6.03%、6.21%,贷款利息的50%由国家财政贴补.某大学生预计6年 后能一次性偿还2万元,问他现在大约可以贷款多少(精确到0.1万元)?问题3小X 和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小X 向司机询问行车时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议小X 和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是30千米/时,问小X 家到火车站有多远?吴小红同学给出了一种解法:设小X 家到火车站的路程是x 千米,由实际乘车时间比原计划乘公共汽车提前了41小时,可列出方程 4160230230=⎪⎪⎪⎪⎭⎫ ⎝⎛+-x x x 解这个方程:411206030=--x x x , 4x -2x -x =30,x =30.经检验,它符合题意.答: 小X 家到火车站的路程是30千米.X 勇同学又提出另外一种解法:设实际上乘公共汽车行驶了x 千米,则从小X 家到火车站的路程是2x 千米,乘出租车行驶了x 千米.注意到提前的41小时是由于乘出租车而少用的,可列出方程416030=-x x 解这个方程,得x =15.2x =30.所得的答案与解法一相同.讨 论试比较以上两种解法,它们各是如何设未知数的?哪一种比较方便?是不是还有其他设未知数的方法?试试看.练 习加制作,每天制作40面.完成了三分之一以后,全班同学一起参加,结果比原计划提前一天半完成任务,假设每人的制作效率相同,问共制作小旗多少面?2. 将上题与问题3比较,你发现了什么?3. 编一道联系实际的数学问题,使所列的方程是3x +4(45-x )=150.并与同学交流、比较一下.习题1. 师徒两人检修一条长180米的自来水管道,师傅每小时检修15米,徒弟每小时检修10米.现两人合作,多少时间可以完成整条管道的检修?2. 学校准备添置一批课桌椅,原订购60套,每套100元.店方表示:如果多购,可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.3. 师徒两人检修一条煤气管道,师傅单独完成要10小时,徒弟单独完成要15小时.现两人合作,需多少小时完成?4. 中国民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票.一名旅客带了35千克行李乘机,机票连同行李费共付1 323元,求该旅客的机票价.5. 小王每天去体育场晨练,都见到一位田径队的叔叔也在锻炼.两人沿400米跑道跑步,每次总是小王跑2圈的时间,叔叔跑3圈.一天,两人在同地反向而跑,小明看了一下记时表,发现隔了32秒钟两人第一次相遇.求两人的速度.第二天小王打算和叔叔在同地同向而跑,看叔叔隔多少时间再次与他相遇.你能先给小王预测一下吗?问题4课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”,就因校长叫他听一个而离开教室.调皮的小X说:“让我试一试.”上去添了“两人合作需几天完成?”有同学反对:“这太简单了!”但也引起了大家的兴趣,于是各自试了起来:有添上一人先做几天再让另一人做的,有两人先合作再一人离开的,有考虑两人合作完成后的报酬问题的……李老师回教室后选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元.如果按各人完成的工作量计算报酬,那么该如何分配?试解答这一问题,并与同学们一起交流各自的做法.习题1.试将下题内容改为与我们日常生活、学习有关的问题,使所列得的方程相同或相似:食堂存煤若干吨,原来每天烧煤3吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量.2.试对以下情境提出问题,并讨论解答(必要时可对情境作适当补充):3.某班级组织去风景区春游,大部分同学先坐公共汽车前往,平均速度为24千米/时;4名负责后勤的同学晚半小时坐校车出发,速度为60千米/时,同时到达山脚下.到达后发现乘坐缆车上山费用较大,且不能游览沿途风景.于是商定:大部队步行上山,4名后勤改为先遣队,乘缆车上山,做好在山顶举行活动的准备.缆车速度是步行的3倍,步行同学中途在一个景点逗留了10分钟,到达山顶时比先遣队晚了半小时.阅读材料2=3?小红和小兵一起讨论方程2+xx的解法.=332+小红说,移项求解:+xx=22+33-xx=322-3-x1-=x=1小兵边听边想,只见他写下了如下的式子:+x=x3232+-x3=x2-32-xx=(3)1)1(2-2=3小红一看,怎么,2=3?!你能帮助他们解开这个谜吗?小结一、知识结构二、注意事项1.对一元一次方程的认识,要联系生活实际,在学习中体会:方程是反映现实世界中数量相等关系的一个有效的数学模型.2.解一元一次方程时,要注意合理地进行方程的变形,也要注意根据方程的特点灵活运用.3.意,将实际问题转化为数学问题,特别是寻求主要的数量相等关系,列出方程.求得方程的解后,要注意检验所得结果是否符合实际问题的要求.复习题A组1.解下列方程:(1);321132+=-x x (2);0)12(2)5(5=-+-x x (3)4x +3=2(x -1)+1; (4);3221y y -=+ (5);232)73(72x x -=+ (6).1823652=--+x x 2.(1)x 取何值时,代数式4x -5与3x -6的值互为相反数?(2)k 取何值时,代数式31+k 的值比213+k 的值小1? 3.课外活动中一些学生分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少2组.问这些学生共有多少人?4.一种药品现在售价每盒56.10元,比原来降低了15%,问原售价多少元?5.用一根直径12厘米的圆柱形铅柱,铸造10只直径12厘米的铅球,问应截取多长的铅柱(球的体积为π34R 3)? 6.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1 171,求这个三位数.7.一年级三个班为希望小学捐赠图书.1班捐了152册,2班捐书数是三个班级的平均数,3班捐书数是年级总数的40%,三个班共捐了多少册?B 组8.(1);532)21(223x x =⎥⎦⎤⎢⎣⎡+- (2);5174732+-=--x x (3);535.244.2x x =--(4).22)141(34=---x x 9.已知x =32是方程x x x m 523)43(3=+-的解,求m 的值. 10.当k 取何值时,方程2(2x -3)=1-2x 和 8-k =2(x +1)的解相同?11.(1) 阅读以下例题:解方程 |3x |=1.解:① 当3x ≥0时,原方程可化为一元一次方程3x =1,它的解是 31=x ; ② 当3x <0时,原方程可化为一元一次方程-3x =1,它的解是 31-=x . 所以原方程的解是311=x ,312-=x . (2) 解下列方程:① |x -3|=2; ② |2x +1|=5.12.学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,杉树的棵数比总数的三分之一少14棵.两类树各种了多少棵?13.一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2 700元的罚款.求每台彩电的原售价.C 组14.从甲地到乙地公共汽车原需行驶7个小时,开通高速公路后,路程近了30千米,而车速平均每小时增加了30千米,只需4个小时即可到达。
七年级数学下册第6章一元一次方程6.2解一元一次方程6.22解一元一次方程第1课时课件新版华东师大版
所以a+2=0,m-3=1,故a=-2,m=4.
答案:-2 4
4.观察下列各式,哪几个是方程?哪几个是一元一次方程?
①5x2+2=3;②7+6=13;③3x-1=x-4;④2x+3;
⑤x+5=y+6;⑥ 1 -2x=8x+3.
x
【解析】①③⑤⑥是方程;③是一元一次方程.
5.已知(m-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式 199(m+x)(x-2m)+m的值. 【解析】因为(m-1)x2-(m+1)x+8=0是关于x的一元一次方 程,所以m-1=0,即m=1. 当m=1时,方程变形为-2x+8=0,因此x=4, 所以原式=199(1+4)(4-2×1)+1=1991; 所以所求代数式的值为1991.
但并不是解每一个方程都需要这五个步骤,这五个步骤的先后 顺序并非固定不变,要根据方程的特点,确定恰当的步骤,灵 活解方程.
题组一:一元一次方程
1.下列方程中,是一元一次方程的是( )
A.x-3
B.x2-1=0
C.2x-3=0
D.x-y=3
【解析】选C.选项A不是方程,选项B未知数的次数不是1,选
【互动探究】结合本例说明:一元一次方程中,未知数的系数 应满足什么条件?为什么? 提示:m-1≠0.当m-1=0时,就会得到0×x+5=0,即5=0,不是 一元一次方程. 【总结提升】一元一次方程具备的三个条件 1.一元:只含有一个未知数. 2.整式:含有未知数的式子是整式. 3.一次:未知数的次数是1.
项D含有两个未知数,只有选项C符合一元一次方程的定义.
七年级数学上册一元一次方程应用题常用公式
七年级数学上册一元一次方程应用题常用公式
一元一次方程是数学中一个重要的概念,它在解决实际问题中有着广泛的应用。
对于一元一次方程的应用题,我们通常需要使用一些常用的公式来简化计算过程。
下面是一元一次方程应用题中常用的几个公式:
1. 路程=速度×时间
这个公式是解决行程问题的基础,它表示物体在一定时间内移动的距离与速度和时间的关系。
2. 工作量=工作效率×工作时间
这个公式用于解决工作问题,它表示完成一项工作所需的总工作量与工作效率和时间的关系。
3. 利润=售价-进价
这个公式用于解决利润问题,它表示商家在销售商品时所获得的利润与商品的售价和进价的关系。
4. 利息=本金×利率×时间
这个公式用于解决利息问题,它表示在一定时间内,本金产生的利息与本金、利率和时间的关系。
5. 面积=长×宽
这个公式用于解决几何图形面积问题,它表示矩形面积与长和宽的关系。
6. 周长=4×半径
这个公式用于解决圆的周长问题,它表示圆的周长与半径的关系。
7. 体积=底面积×高
这个公式用于解决几何图形体积问题,它表示立方体体积与底面积和高度的关系。
这些公式是一元一次方程应用题中常用的,掌握它们可以帮助我们更快地解决问题。
七年级数学下册第6章一元一次方程6.3实践与探索工程类应用问题2
件,甲需
小时完成。我思考我收获。—————。片刻后,同学们带着疑问的目光
No (mùguāng),窃窃私语:“这个题目没有呀。李老师开口了:“同学们的疑问是有道理的。解:设剩
下的部分需要x小时完成,根据题意,得。解:设两人合做这项工做需x小时,根据题意得,。已知 量、未知量、等量关系。教师寄语
Image
剩下(shènɡ xià)的部分由甲、乙合做。剩下(shènɡ xià) 的部分需要几小时完成?
2、学校准备安装无线网络,请来两名工人。 已知师傅单独完成需10天,徒弟单独完成需15 天,现由徒弟先做5天,然后两人合作(hézuò)完成, 得到报酬3000元,如果按各人完成工作量计算报
酬,那么该如何分配?
当堂闯关
我学习我快乐
比一比,看谁 又快又好
4、整理(zhěnglǐ)一批数据,由一个人做需80小时完
成。现在计划由一些人做2小时,再增加5人做8小时
,完成这项工作的 体人数?
。怎样安3 排参与整理数据的具
4
解:设计划(jìhuà)先由X 人做两小时。
2x 8(x5)
3
80
80
4
解得: x 2
经检验,符合题意
2、现由徒弟先做1天,再两人合作,完成后共得
到报酬450元.如果按各人完成的工作量计算(jì suàn)
报酬,那么该如何分配?
分析:
全部工作量“1”
&相等(xiāngděng)关 系全:部工作量
= 徒弟独做工
作量+徒弟合
徒弟先
做1天完
成的工 做量 1
6
合做x天徒 弟完成的工
作量 1 x 6
合做x天师傅完成的工
徒弟、师傅工作每天均得报酬: 450 90(元)
一元一次方程七年级
一元一次方程七年级一、引言在数学学科中,一元一次方程是一种基本的代数式,学生在七年级开始接触并学习一元一次方程。
本文将介绍一元一次方程的基本概念、解法和实际应用,帮助学生深入理解这一概念。
二、基本概念一元一次方程是指含有未知数(通常用字母表示)的方程,且未知数的最高次数为一。
一元一次方程的一般形式为ax+b=c,其中a,b,c分别为已知数,x为未知数。
解一元一次方程即为求解未知数x的值,使得方程式成立。
三、解一元一次方程的方法1. 移项法移项法是解一元一次方程常用的方法之一,其步骤如下: 1. 将方程式中的项按照未知数的系数归并; 2. 通过变形,将未知数项移至一边,常数项移至另一边; 3. 对方程式两侧同时进行同样的操作,直至求得未知数的值。
2. 因式分解法对一些特定形式的一元一次方程,可以通过因式分解的方法解决,具体步骤如下: 1. 将方程式按照因式分解的形式展开; 2. 通过观察因式后的系数和常数项,求解未知数的值。
3. 系数法系数法是一种利用等式两侧的系数关系快速解方程的方法,适用于一些特殊的题目,一般不用于一般的一元一次方程。
四、实际应用一元一次方程在生活中有着广泛的应用,例如: - 买卖问题:通过一元一次方程可以解决各类价格问题; - 水果购买问题:通过一元一次方程可以求解各种水果的单价问题; - 计算问题:通过一元一次方程可以解决各种数学计算问题等等。
五、结论通过学习一元一次方程,可以帮助学生提高自己的数学技能,培养逻辑思维能力,同时也有助于他们在生活中解决各种实际问题。
希望学生能够认真学习和掌握一元一次方程这一基础概念,为今后更深入的数学学习打下坚实的基础。
以上是关于一元一次方程七年级的一些介绍,希望对学生们有所帮助。
七年级数学下第6章一元一次方程6.2解一元一次方程6.21等式的性质与方程的简单变形第2课时
(1)由-3-x=5,得x=5-3.
(2)由4x=-8,得x= 1 .
2
(3)由 1 y =1,得y=-2.
2
(4)由3=-x-2,得x=-2+3.
A.1个
B.2个
C.3个
D.4个
【解析】选A.(1)由-3-x=5,应得x=-5-3;
(2)由4x=-8,应得x=-2; (3)由 1 y =1,得y=-2,正确;
A.由3= 5 x , 得 5 x =3
2
2
B.由6x=3+5x,得6x=5x+3
C.由2x=-1,得x= 1
2
D.由2x-3=x+5,得2x-x=5+3
【解析】选D.移项是将某项从方程的一边移到方程的另一边, 移项需要改变符号.A项没有改变符号;B项没有将某项从方程 一边移到方程的另一边;C项是将系数化为1,不属于移项;D 项的变形是移项.
3
【总结提升】解决方程变形问题的三个步骤 1.观察:观察对比方程的前后变化情况. 2.依据:确定变形的依据. 3.变形:根据变形规则准确变形,在对方程变形时应做到: ①方程两边不能同时乘以0;②变形后的结果是以等号为界, 左边为含未知数的整式,右边是常数项.
知识点 2 利用方程的变形规则解方程 【例2】解下列方程: (1) 1 x -2=7.
33
可得 x 4x 5;
3
3
5 4x, 3
(3)根据方程变形规则1,方程7-6x=5-4x两边同时加4x-7,
可得-6x+4x=5-7;
(4)根据方程变形规则1,方程
1 x 可1 ,得
22
x 1x 5 1.
2
2
x1 两1x边同5 时加
七年级数学下册第6章一元一次方程6.3实践与探索第2课时商品销售与增长率问题课件
(1)如何进货,使进货款恰好为 46 000 元? (2)如何进货,才能使商场销售完节能灯时获利为 13 500 元?
解:(1)设商场购进甲型节能灯 x 只,则购进乙型节能灯(1 200-x)只. 根据题意,得 25x+45(1 200-x)=46 000,解得 x=400. 则 1 200-x=1 200-400=800. 答:购进甲型节能灯 400 只,购进乙型节能灯 800 只进货款恰好为 46 000 元. (2)设商场购进甲型节能灯 y 只,则购进乙型节能灯(1 200-y)只. 根据题意,得(30-25)y+(60-45)(1 200-y)=13 500,解得 y=450, 则 1 200-y=1 200-450=750. 答:商场购进甲型节能灯 450 只,购进乙型节能灯 750 只时的获利为 13 500 元.
解:设今年一线城市销售金额比去年增加 x. 根据题意,得 40%x-(1-40%)×15%=5%, 解得 x=35%. 答:今年一线城市销售金额比去年增加 35%.
【点悟】 增长率问题的等量关系: 增长后的量=增长前的量×(1+增长率).
当堂测评
[学生用书P18]
1.[2018· 牡丹江二模]某款服装进价 80 元/件,标价 x 元/件,商店对这款 服装推出“买两件,第一件原价,第二件打六折”的促销活动.按促销方 式销售两件该款服装,商店仍获利 32 元,则 x 的值为( A.125 B.120 C.115 D.110
累计 购物 在甲商场 实际花费 在乙商场 实际花费 1 300 2 900 … … … x
1 270 _______ 1 260 _______
2 710 _______ 2 780 _______
0.9x+100 __________ 0.95x+25 __________
2023七年级数学下册第6章一元一次方程6
元,再将此本息和转存两年后要达
到10 000元,可列方程为 .
(答2)案若按照②的储蓄方式,两年后的本息和是
元,再将此本息和转存三年后要达
到10 000元,可列方程为 . 2.(1)(x+2.75%x×3) x+2.75%x×3+2.25%(x+2.75%x×3)×2=10 000;
(2)(x+2.25%x×2) x+2.25%x×2+2.75%(x+2.25%x×2)×3=10 000
答案
4.解:分两种情况讨论: ①若第二次购物超过100元,但不超过300元, 设此时第二次购物需要x元, 则90%x=252,解得x=280,所以两次购物共需要80+280=360(元), 360>300,所以享受8折优惠, 因此将这两次所购商品一次性购买应付款360×80%=288(元);
②若第二次购物超过300元, 设此时第二次购物需要y元, 则80%y=252,解得y=315, 所以两次购物共需要80+315=395(元), 395>300,享受8折优惠, 因此将这两次所购商品一次性购买应付款395×80%=316(元). 故将这两次所购商品一次性购买,应付款288或316元.
小明一次性购买甲商品5件,乙商品若干件,实际付款752元,求小明购买乙商品的件数.
答案
6.解:(1)设采购甲商品x件,则采购乙商品(50-x)件. 由题意,得40x+50(50-x)=2 300, 解得x=20. 答:采购甲商品20件. (2)设小明购买乙商品y件.易知小明消费超过500元. ①当小明消费超过500元但不超过800元时,由题意,得500+0.9(40×1.5×5+50×1.6y500)=752,解得y=6. ②当小明消费超过800元时,由题意,得800×0.88+0.8(40×1.5×5+50×1.6y800)=752,解得y=7. 答:小明购买乙商品6件或7件.
202年初中数学七年级上册第二单元一元一次方程06 一元一次方程(6)解决问题1
3.4实际问题与一元一次方程(第1课时)1、卓玛种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100厘米?解:设x周后树苗长高到100厘米.根据题意,得 .解方程,得 .答:周后树苗长高到100厘米.2、汽车上共有1500千克苹果,卸下 600千克,还有30箱,每箱苹果重多少?解:设每箱苹果重为X,根据题意,得, .3、某数的3倍加上5等于它的4倍减3,求某数.解:设某数为x,根据题意,得, .4、某数减去14等于它的1,求某数.3解:设某数为x,根据题意,得, .5、用一根长24厘米的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为x厘米,根据题意,得, .6、一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?解:设经过x个月这台计算机的使用时间达到规定的检修时间2450小时,根据题意,得, .1、某数的34比它的67少1,求某数.解:设某数为x,根据题意,得 .2、扎西家今年底的存款将达到21000元,是去年底的2倍少3000元,求扎西家去年底的存款数.解:设扎西家去年底的存款为x元,根据题意,得 .3、某商店对电脑购买者提供分期付款服务,顾客可以先付3000元,以后每月付1500元.单增叔叔想用分期付款的形式购买价值19500元的电脑,他需要多少个月才能付清全部贷款?解:设他需x个月才能付清全部贷款,根据题意,得 .4、洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1﹕2﹕7,Ⅰ型洗衣机计划生产多少台?解:设Ⅰ型洗衣机计划生产x台,则Ⅱ型洗衣机计划生产台,Ⅲ型洗衣机计划生产台.根据题意,得 .解方程,得 .答:Ⅰ型洗衣机计划生台.5、某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.这个工厂去年上半年每月平均用电多少度?解:(1)设上半年每月平均用电x度,则下半年每月平均用电度;上半年共用电度,下半年共用电度.(2)根据全年用电15万度,列出方程:.1、在一卷公元前1600年左右遗留下来的古埃及草卷中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的1,其和等于19.”你能7求出问题中的“它”吗?解:设问题中的“它”为x,根据题意,列方程得 .2、地球上的海洋面积为陆地面积的2.4倍,地球的表面积为5.1亿平方公里,求地球上的陆地面积.解:设地球上陆地面积为x平方公里,根据题意,列方程得 .3、某中学初一年级,一班人数是全年级人数的1,二班人数50人,两个班级人6数的和是98人.求该校初一年级的人数.解:设该校初一年级的人数为x,根据题意,列方程得 .4、某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(1)解:设这个足球场的长为x米,则宽为米.根据题意,列方程得 .解方程得 .这个足球场的宽==(米)答:这个足球场的长为米,宽为米. (2)解:设这个足球场的宽为x米,则长为米.根据题意,列方程得 .解方程得 .这个足球场的长==(米)答:这个足球场的宽为米,长为米.1、卓玛是4月出生的,卓玛的年龄的2倍加上8,正好是卓玛出生那一月的总天数,求卓玛有多少岁.解:设卓玛有x岁,根据题意,列方程得 .2、蜘蛛有8条腿,蜻蜓有6条腿.现有一些蜘蛛和蜻蜓,它们共有120条腿,并且蜻蜓的只数是蜘蛛的2倍.蜘蛛、蜻蜓各有多少只?解:设蜘蛛有x只,则蜻蜓有只.根据题意,列方程得 .3、某校图书室用172元钱买了两种书,共10本,一种书每本的价格为18元,另一种书每本的价格为10元.每种书各买了多少本?解:设价格为18元的书买了x本,则价格为10元的书买了本.根据题意,列方程得 .4、一家人分一些苹果,每人3个剩3个,每人4个差2个.全家有几口人?共有多少个苹果?(1)解:设全家有x口人.可以用两个式子来表示苹果总数,由此可得方程 .解方程得 .共有苹果个数== .答:全家有口人,共有个苹果.(2)思考题:(供学有余力的同学做)解:设共有x个苹果.可以用两个式子来表示全家的人口数,由此可得方程.解方程得 .全家人口数== .答:共有个苹果,全家有口人.1.一个学生带钱到文具店买笔记本,若买3本就剩下1元,若买4本则差2元.笔记本每本多少元?这个学生共带了多少钱?解:(1)如果设笔记本每本x元,则这个学生所带的钱数可以用两个式子来表示由此可列出方程.解:(2)思考题:如果设这个学生带了x元,则笔记本每本的钱数也可以用两个式子来表示,由此可列出方程.2.卓玛骑自行车从A村到B村,用了0.5小时;扎西走路从A村到B村,用了1.5小时.已知卓玛的速度比扎西的速度每小时快10千米,求扎西走路的速度.(1)设扎西走路的速度为每小时x千米,根据题意,在下面的图中填空:B村A村(2) 解:设扎西走路的速度为每小时x千米,则卓玛骑自行车的速度为每小时千米.根据卓玛骑自行车的路程与扎西走路的路程相等,列方程得.解方程得 .答:扎西走路的速度为每小时千米.3.(1)墙上钉着用一根彩绳围成的梯形的装饰物,如下图实线所示.德吉将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示.德吉所钉长方形的长为多少厘米?解:设德吉所钉长方形的长为x,根据梯形周长与长方形周长相等,列方程得s.6 61010 10104、思考题:如下图,汽车匀速行驶,从A 县城开到C 县城用了3小时;从A 县城开到B 县城用了2小时.已知B 县城距C 县城60千米,A 县城到B 县城有多远?解:设A 县城到B 县城有x 千米,则A 县城到C 县城有 千米.根据:汽车从A 县城开到C 县城的速度=汽车从A 县城开到B 县城的速度 列方程得.5、甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?解:(1)如果设甲种铅笔买了x 枝,那么乙种铅笔买了 枝,买甲种铅笔用了 元,买乙种铅笔用了 元.(2)把这道题完整解一遍:解:设甲种铅笔买了x 枝,则乙种铅笔买了 枝.根据题意,列方程得 .解方程得 .乙种铅笔买的枝数= = .答:甲种铅笔买了 枝,乙种铅笔买了 枝.6、按下面的设法解探究题:解:设分配x 名工人生产螺母,则有 名工人生产螺钉.根据螺母数量与螺钉数量关系,列方程得 .解方程得 .生产螺钉的人数= = .答:应分配 名工人生产螺母, 名工人生产螺钉. C 县城B 县城A 县城1、如图,用长为10米,宽为8米的长方形铁丝围成一个正方形,此时正方形的边长是多少米?解:设此时正方形的边长是x米,根据长方形与正方形的周长相等,列方程得.2、思考题:将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?解:设高变成了x厘米,根据锻压前后的体积相等,列方程得 .(提示:圆柱体积=底面积×高)3、甲组有10人,乙组有14人.现在另增调12人加入到甲组或乙组,要使甲组人数是乙组人数的12,甲组和乙组各应增调多少人?.根据题意填表:(2)根据增调后,甲组人数=乙组人数的12,列方程得.(3)通过上面的思考,将本题完整地解一遍.解:设甲组应增调x人,则乙组应增调人.根据题意,得 .解方程得 .乙组应增调的人数== .答:甲组应增调人,乙组应增调人.x米8米10米1.填空:我们已经学习的三个基本相等关系是:(1)总量=的和;(2)表示的两个不同式子相等;(3)一个量=另一个量的或几分之几.2.根据题意,列出方程:小巴桑今年6岁,他的波啦72岁.几年后,小巴桑的?年龄是他波啦的14解:设x年后,小巴桑的年龄是他波啦年龄的1.根据题意,得4.3.探究题:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?请你默读题目,一直读到可以不看题目说出题目的意思.分析:(1)如果设分配x名工人生产螺钉,则有名工人生产螺母,这个车间每天生产螺钉个,每天生产螺母个.(2)一个螺钉要配两个螺母,为了使这个车间每天的产品刚好配套,应使生产的螺母数量恰好是螺钉数量的,根据这一相等关系,列方程得.(3)这道题完整的解答过程是:解:设分配x名工人生产螺钉,则有名工人生产螺母.根据螺母数量与螺钉数量关系,列方程得 .解方程得 .生产螺母的人数== .答:应分配名工人生产螺钉,名工人生产螺母.1.利用“路程=速度×时间”列整式:(1)扎西骑自行车,每分钟骑500米,x 分钟骑了 米;(2)扎西骑自行车,每分钟骑500米,先骑了3分钟,后又骑了x 分钟,他一共骑了 米;(3)扎西骑自行车,每分钟骑500米,边巴骑摩托车,每分钟骑1000米,x 分钟两人一共骑了 米.2.完成下面的思考和解题过程:扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,3分钟后边巴骑摩托车也从家里出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1) 如果设边巴出发x 分钟后他们在路上相遇,根据题意,填图.骑了 分钟 骑了 分钟相遇扎西家边巴家(2) 从上图,你发现了什么相等关系,根据这一相等关系,你列出的方程是 .(3)根据上面的审题和分析,请你完成下面的解题过程:解:设边巴出发x 分钟后他们在路上相遇.根据题意,列方程得 .解方程得 .答:边巴出发 分钟后他们在路上相遇.3.某中学发起“献爱心希望工程”捐款活动.该校共有师生2200人,教师每人捐100元,学生每人捐5元,结果学生捐款数只有教师的一半.这个中学师生各有多少人?该校师生共捐了多少钱?1.扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,扎西骑了1500米后边巴骑摩托车也从家出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1)设边巴出发x 分钟后他们在路上相遇,根据题意填图.骑了 分钟 骑了 分钟相 遇扎西家 边巴 家(2)根据扎西的路程+边巴的路程=全程,你列出的方程是.2.一天早上,扎西以每分钟80米的速度从家里出发上学去,5分钟后,扎西的巴啦发现扎西忘了带藏语书,于是巴啦以每分钟180米的速度去追扎西.巴啦追上扎西用了多长时间?(3) 设巴啦追上扎西用了x 分钟,根据题意填下图.家追上处(2) 解:设巴啦追上扎西用了x 分钟.根据题意,列方程得 .解方程得 .答:巴啦追上扎西用了 分钟.3.思考题:如果扎西家离学校只有700米,巴啦能否在路上追上扎西?为什么?1.填空:(1)加工60个零件,甲单独做20小时完成,甲每小时加工零件个;(2)加工60个零件,甲单独做20小时完成,甲4小时加工零件个;(3)加工60个零件,甲单独做20小时完成,甲x小时加工零件个;(4)一件工作,甲单独做20小时完成,甲每小时完成工作的;(用分数表示)(5) 一件工作,甲单独做20小时完成,甲4小时完成工作的;(6) 一件工作,甲单独做20小时完成,甲x小时完成工作的 .2.完成下面的思考和解题过程:一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙一起做.剩下的部分需要几小时完成?(1)甲的工作效率=,乙的工作效率= .(2)如果设剩下的部分需要x小时完成,那么乙做了小时,甲共做了小时.(3)根据题意填图:甲工作 小时乙工作 小时(4)根据甲的工作量+乙的工作量=1列出方程 .(5)解:设剩下的部分需要x小时完成.根据题意,列方程得 .解方程得 .答:剩下的部分需要小时完成.1、填空:(1)某厂去年的产值是100万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(2)某厂去年的产值是200万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(3)某厂去年的产值是x万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元.2、某公司去年的产值是400万元,今年的产值是500万元,则今年比去年增长().(A)20% (B)25% (C)80% (D)125%3、全校学生人数为x,女生占全校学生数的52%,则女生人数是,男生人数是,女生人数比男生人数多;4、一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。
七年级数学下册第6章一元一次方程6.2解一元一次方程教学课件新版华东师大版
*一元一次方程的定义: 一元一次方程的特征:
*解一元一次方程(去括号)
(1)移项要变号; (2)去括号时,括号前是“-”,去括号后要将括 号内的各项改变符号;
2.1当x取何值时, 代数式3(2 x)和2(3 x)的值相等?
解不变. 2.把方程两边都乘以或除以(不等零)的同一个数,方程
的解不变.第①种变形又叫移项,移项别忘了要先变号, 注意移项与在方程的一边交换两项的位置有本质的区别.
练习
(1) 8x = 2x-7 ;
(2) 6 = 8+2x;
(3) 2y- 1 = 1 y-3 ; 22
(4) 10m+5= 17m-5-2m.
请同学们分别将x=7+5与原方程x-5=7;x=3x-4-3 与原方程4x=3x-4比较,你 发现这些方程的变形有什 么共同特点?
思考与小结
像这样,将方程两边都加上(或减去)同一个数或 同一个整式,就相当于把方程中的某些项改变符号 后,从方程的一边移到另一边,这样的变形叫做移 项.
注意:“移项”是指将方程的某些项从等号的左 边移到右边或从右边移到左边,移项时要变号.
解 : 3(2 x) 2(3 x)
6 3x 6 2x
3x 2x 6 6
5x 0 x0
答 :当x 0时, 代数式3(2 x)和2(3 x)的值相等.
2.2当y取何值时,2(3y 4)的值比5(2 y 7)的值大3?
解 : 2(3y 4) 5(2 y 7) 3 6 y 8 10 y 35 3 6 y 8 10 y 32 8 32 10 y 6 y 40 4 y 4 y 40 y 10.
苏科版数学七年级第一学期《用一元一次方程解决问题》第6课时 打折销售问题
苏科版数学七年级第一学期《用一元一次方程解决问题》第6课时打折销售问题练习一、选择题1. 一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件服装仍可获利24元,则这种服装每件的成本是()A.100元B.180元C.200元D.205元2. 某书店把一本新书按标价的八折出售,仍可获利10%,若该书的进价为24元,则标价为()A.30元B.31元C.32元D.33元3.某品牌服装店一次同时售出两件上衣,每件售价都是135元,若按成本计算,其中一件盈利25%,另一件亏损25%,则这家商店在这次销售过程中()A.盈利为0B.盈利为9元C.亏损为8元D.亏损为18元4. 某品牌手机在元旦期间,进行促销活动,首先按标价降价8%在此基础上,商场又返还标价5%的现金,此时买这个品牌的手机需要1740元,那么这个手机的标价是()元.A.2400B.2200C.2100D.20005.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250元C.270元D.300元6.随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180B.170C.160D.1507. 互联网“微商”经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为()A.80元B.100元C.150元D.180元8. 商场将进价为100元的商品提高80%后标价,销售时按标价打折销售,结果仍获利44%,则这件商品销售时打几折()A.7折B.7.5折C.8折D.8.5折二、填空题9. 十一期间,新世界百货将标价为160元的T恤按7.5折出售仍可获利20%,则每件T恤的进价是_____元.10. 某商品进价是180元,标价是270元,要使该商品利润率为20%,则该商品应按_____折销售.11.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是_____元.12. 某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打_____折.13.某品牌的衬衣每件进价是80元,售价为120元,“五•一”期间搞活动打9折,则销售1件衬衣的利润是_____元14.某商品的价格标签丢失,售货员只知道它的进价为80元,按标价打7折出售后仍可获利5%.那么标签上的价格是元_____.15.元旦当天,怡佳商场把品牌彩电按标价的8折出售,仍然获利20%,若该彩电的进价为3000元,则标价是_____元.16.一家商店将某种微波炉按原价提高20%后标价,又以9折优惠卖岀,结果每台微波炉比原价多赚了80元,这种微彼炉原价是_____元.三、解答题17.一书店按定价的五折购进某种图书800本,在实际销售中,500本按定价的七折批发售出,300本按八五折零售,若这种图书最终获利8200元,问该图书批发与零售价分别是多少元?18.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,这件夹克衫的成本价是多少元?19.某班级想购买若干个篮球和排球,某文具店篮球和排球的单价之和为35元,篮球的单价比排球的单价的2倍少10元.(1)求篮球和排球的单价各是多少元;(2)该文具店有两种让利活动,购买时只能选择其中一种方案.方案一:所有商品打7.5折销售;方案二:全场购物每满100元,返购物券30元(不足100元不返券),购物券全场通用,若该班级需要购买15个篮球和10个排球,则哪一种方案更省钱,并说明理由.20.某商店卖出一套衣服,亏损了8元,其中裤子是按60元卖出的,盈利了25%;上衣亏损了25%.求:(1)这套衣服中裤子的进价是多少元?(2)这套衣服中上衣是按多少元卖出的?打折销售问题练习答案1、C2、D3、D4、 D5、D6、A7、C8、C9、100 10、8 11、100 12、8 13、28 14、120 15、4500 16、1000 17、18、19、20、。
七年级数学下册 第六章 一元一次方程 华东师大版
第六章一元一次方程应知一、基本概念方程:含有未知数的等式叫做方程。
一元一次方程:只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。
方程的解:能使方程两边相等的未知数的值叫做方程的解。
解方程:求方程解的过程叫做解方程。
【注意】解方程时,要用到等式的性质:(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
二、基本法则列一元一次方程的步骤:①弄清题意(设未知数):求什么?用字母表示适当的未知数;②分析条件(找等量关系):找出已给出的数量及未知数之间的等量关系;③组织方程(列方程):对等量关系中涉及的量,列出所需的表达式,根据等量关系得到方程。
【注意】此三步骤适用于列各种方程。
2. 解一元一次方程的步骤:①去分母。
②去括号。
③移项。
(根据等式性质推出:a.方程两边都加上或都减去同一个数或同一个整式,方程的解不变;2)方程两边都乘以或都除以同一个不为零的数,方程的解不变)。
④合并同类项。
⑤化未知项的系数为1。
⑥检验方程的解(一般不需答出,但要养成检验的习惯)。
应会列一元一次方程。
解一元一次方程。
用一元一次方程解答实际问题。
【注意】1.判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+xx等都不是一元一次方程.2.解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.例题1. 解下列方程:(1)10x-4(3-x)-5(2+7x)=15x-9(x-2)(2)3(2-3x)-3[3(2x-3)+3]=5(3)()()()3413231121+-=-+++xxx2. 一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?3. 小明和小红做游戏,小明拿出一张日历:“我用笔圈出了2×2的一个正方形,它们数字的和是76,你知道我圈出的是哪几个数字吗?”你能帮小红解决吗?4. 有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船,正好每条船坐9人,问这个班共多少同学?5. 丢番图的墓志铭:“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一。
七年级数学下册第6章一元一次方程6.2解一元一次方程2解一元一次方程第3课时一元一次方程的简单应用课
归纳小结 用方程解实际问题的过程:
分析和抽象的过程包括: (1)弄清题意,设未知数; (2)找相等关系; (3)列方程.
练习
学校田径队的小刚在400米跑测试时,先以6米/ 秒的速度跑完了大部分路程,最后以8米/秒的速度冲 刺到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了 多少时间?
解:设小刚在冲刺阶段花了 x 秒时间.
(3)某数的一半加上4,比某数的3倍小21;
思考:如何列一元一次方程解答实际问题?
列一元一次方程解答实际问题
列方程解应用题的步骤如下:
(1)审题.弄清题意,找出已知量、未知量. (2)设未知数.对所求的未知量用设未知数表示. (3)列方程.根据题中的等量关系列出方程. (4)解方程.解所列的方程. (5)检验解.检验解出的未知数值是否符合题意. (6)答题.回答题中的问题.
经检验 , 符合题意. 答:小刚在冲刺阶段花了5秒时间.
随堂练习
1. 甲乙两人练习赛跑,甲每秒跑7米,乙每秒跑 6.5米.若甲让乙先跑10米,设甲跑x秒后可以追上
乙,则下列四个方程中不正确的是( D )
A.7x=6.5x+10 B.7x-10=6.5x C.(7-6.5)x=10 D.7x=6.5x-10
解:设应从盘A内拿出盐x g,放到盘B内, 则根据题意,得
51-x=45+x
解这个方程,得 x=3.
经检验,符合题意. 答:应从盘A内拿出盐3g放到盘B内.
例7 学校团委组织65名新团员为学校建花
坛搬砖.女同学每人每次搬6块,男同学每人每次 搬8块,每人各搬了4次,共搬了1800块.问这些 新团员中有多少名男同学?
分析:设男同学有x人,可列出下表.(完成下表)
65-x 8×4 32x 24(65-x) 等量关系:男同学搬砖数+女同学搬砖数=搬砖总数.
人教版七年级数学上册一元一次方程《实际问题与一元一次方程(第6课时)》示范教学课件
13.如图,宽为 50 cm 的长方形图案由 10 个相同的小长方 形拼成,求其中一个小长方形的面积.
解决这类问题的关键是先通过对实际问题进行分析,找出相 等关系,再设未知数列方程求解.
本节课,主要对这几种类型的题目进行复习巩固,进一步 提高同学们分析和解决问题的能力.
类型一、配套问题与工程问题 1.用白铁皮做罐头盒,每张铁皮可制盒身 25 个,或制盒
底 40 个,一个盒身与两个盒底配成一套.现在有 36 张白铁皮, 用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?
(1)现有两种购买方案: ①分两次购买,第一次购买 240 件,第二次购买 460 件; ②一次性购买 700 件. 问哪种购买方案费用较省?省多少元?说明理由. (2)若该客户分两次购买该商品共 700 件(第二次多于第一 次),共付费1 860元,则第一次、第二次分别购买该商品多少件?
解:(1)购买方案②费用较省,理由如下: 购买方案①所需费用为: 3×240+2.5×460=720+1 150=1 870(元); 购买方案②所需费用为:2×700=1 400(元). 因为1 870>1 400,1 870-1 400=470(元), 所以购买方案②费用较省,省470元.
10
类型三、比赛积分问题与行程问题
5.某市今年公务员录用考试是这样统计成绩的:综合成绩=笔试
成绩×60%+面试成绩×40%.王小明的笔试成绩是 82 分,他的竞争
对手的笔试成绩是 86 分,王小明要使自己的综合成绩追平竞争对手,
北师大版七年级上册数学练习课件-第5章 一元一次方程 6应用一元一次方程——追赶小明
小时相遇?设经过x小时两车相遇.依题意,得45x+35x=40 2
小
时两车相遇.
8
能力提升
8.甲、乙两人在操场上练习竞走,已知操场一周为400 m,甲的速度为100 m/
min,乙的速度为80 m/min,已知两人同时、同地、同向出发x min后第一次相遇,
第五章 一元一次方程
6 应用一元一次方程——追赶小明(一课时)
名师点睛
▪ 知识点 行程问题中的常用等量关系 ▪ (1)相遇问题:甲行驶的路程+乙行驶的路程=总路程. ▪ (2)追及问题:
▪ ①同向同地不同时追及问题:慢者行驶的路程+先行的路程 =快者行驶的路程;
▪ ②同向同时不同地追及问题:快者行驶的路程-慢者行驶的 路程=开始时两者相距的路程;
()
▪ A.4+3x=25.2 B.3×4+x=25.2
▪ C.3(4+x)=25.2 D.3(x-4)=25.2
▪ 2.甲、乙两人从同一地点出发去某地,若甲先走2 h,乙从A
后面追赶,则当乙追上甲时,下列说法正确的是
()
▪ A.甲、乙两人所走的路程相等 B.乙比甲多走2 h
▪ C.乙走的路程比甲多 D.以上答案均不对
▪ ③圆周追及问题(同时同地同向):快者行驶的路程-慢者行 驶的路程=圆周长.
2
▪ (3)环形跑道上的行程问题: ▪ ①同向而行,属于追及问题,其等量关系式:快者行驶的路
程-慢者行驶的路程=环形跑道一圈的长; ▪ ②背向而行,属于相遇问题,第一次相遇的等量关系式:两
人所行驶的路程和=环形跑道一圈的长.
(2)设经过y秒,乙能首次追上甲.根据题意,得7y-6y=300.解得y=300.因为乙 跑一圈需3700秒,所以300秒乙跑了300÷3070=7(圈),即乙跑7圈后能首次追上甲.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河流死亡了,人类还能活吗?
四
河流,是水生动物的摇篮。
河流,是城市和乡村的母乳。就像塞纳河之于巴黎,莱茵河之于科隆,哈得孙河之于纽约,万里长江之于武汉、南京和上海。
当河流死了,别说城市,就连乡村也惟有涸死的下场。
好溪,是一条很聪明的河流,它用甘甜的乳汁,哺育出了一根根崔嵬嶙峋的石笋,一座座青黛蓊葱的奇峰,一条条仙迹荟萃的峡谷,一个个山明水秀的村庄。难怪轩辕黄帝会选择在此“龙去鼎湖”, 诗魔专程来此留下不朽诗篇,范蠡的恩师计倪于此遁世,刘秀至此遇难呈祥,八仙聚此饮山泉尝紫芝,一代大儒朱煮钟此开馆授课。难道唐玄宗会拍案称奇,亲赐“仙都”之名。
世界上没有相同的山,也决不会有相同的河流。如今是,每一条河流几乎都是从一个模子流出来似的。两岸清一色用黄块石砌墙,水泥灌缝,就是活脱脱的“三面光”渠道。河道再无龟藏深洞,鱼 伏草窝,就连水草都难以生长。明仕手机版登录免费下载 雪上加霜的是,虽然国家五令象时常发生。电棒往水里“嗞”一声,大鱼立马就半身不遂,小鱼则直挺挺地昏死过去。炸药往水潭里 “轰”一声,一潭漂白。最可恶的是,药水往源头“咚”一声,整条河流便成了一条白带,老幼无一幸免。