细胞信号转导的分子ppt课件
合集下载
精品医学课件-细胞信号转导

游的蛋白激酶,通过多种途径逐级磷酸化细胞内某 些蛋白,进一步影响相关基因的表达。
52
53
多种途径逐 级磷酸化
54
2. JAK-STAT途径
• 配体:干扰素、白介素等细胞因子 • 受体:酪氨酸蛋白激酶型受体 • 效应蛋白及其作用:胞质PTK(非受体型的PTK),如JAK
(Janus kinase)。活化的JAK激活其底物信号转导子和转 录激活子(signal transducer and activator of transcription, STAT),STAT激活一系列后续蛋白质,调节基因表达。
• 两种形式:载体介导和通道介导
10
(二)主动转运(active transport)
1. 原发性主动转运
• ATP直接供能 • Na+-K+泵,ATP酶活性
11
2. 继发性主动转运或协同转运
• ATP间接供能 • Na+依赖式转运体蛋白
12
(三)胞吐与胞吞式转运
• 胞吐:通过一个耗能过程将细胞内物质分泌到细 胞外的过程。(固有性胞吐、调节性胞吐)
虽然这些微小的蛋白质看不见摸不着, 但是它们与我们的日常生活息息相关, 如果没有G蛋白偶联受体,人类根本无 法生存下去。如果没有视紫质,我们将 看不见光线;如果没有嗅觉受体,我们 将闻不见气味;如果没有β-肾上腺素受 体,我们将无法调节血糖;如果没有毒 蕈碱受体,乙酰胆碱将无法将心跳速度 限定在合理范围内;如果没有5-羟色胺 受体,我们甚至无法感受幸福……
15
(三)化学通讯
• 间接通讯方式:信 号分子→靶细胞
• 分3类:
1. 内分泌(endocrine) --血液循环 2. 旁分泌(paracrine) --扩散作用 3. 自分泌(autocrine) --同类或同一细胞 (常见于癌变细胞)
52
53
多种途径逐 级磷酸化
54
2. JAK-STAT途径
• 配体:干扰素、白介素等细胞因子 • 受体:酪氨酸蛋白激酶型受体 • 效应蛋白及其作用:胞质PTK(非受体型的PTK),如JAK
(Janus kinase)。活化的JAK激活其底物信号转导子和转 录激活子(signal transducer and activator of transcription, STAT),STAT激活一系列后续蛋白质,调节基因表达。
• 两种形式:载体介导和通道介导
10
(二)主动转运(active transport)
1. 原发性主动转运
• ATP直接供能 • Na+-K+泵,ATP酶活性
11
2. 继发性主动转运或协同转运
• ATP间接供能 • Na+依赖式转运体蛋白
12
(三)胞吐与胞吞式转运
• 胞吐:通过一个耗能过程将细胞内物质分泌到细 胞外的过程。(固有性胞吐、调节性胞吐)
虽然这些微小的蛋白质看不见摸不着, 但是它们与我们的日常生活息息相关, 如果没有G蛋白偶联受体,人类根本无 法生存下去。如果没有视紫质,我们将 看不见光线;如果没有嗅觉受体,我们 将闻不见气味;如果没有β-肾上腺素受 体,我们将无法调节血糖;如果没有毒 蕈碱受体,乙酰胆碱将无法将心跳速度 限定在合理范围内;如果没有5-羟色胺 受体,我们甚至无法感受幸福……
15
(三)化学通讯
• 间接通讯方式:信 号分子→靶细胞
• 分3类:
1. 内分泌(endocrine) --血液循环 2. 旁分泌(paracrine) --扩散作用 3. 自分泌(autocrine) --同类或同一细胞 (常见于癌变细胞)
细胞信号转导 ppt课件

• Born: 29 January 1947, Seattle, WA, USA
• Affiliation at the time of the award: Fred Hutchinson Cancer Research Center, Seattle, WA, USA
18
The Nobel Prize in Physiology or Medicine 2004 to them:
②激活的视蛋白与无活性 的Gt-GDP结合并介导GDP
被GTP置换。
③Gt三聚体蛋白解离形成 游离的GT,通过与cGMP
磷酸二酯酶(PDE)抑制 性 亚基结合导致PDE活化。
④ 亚基与催化性 和
亚基分离。
⑤由于抑制的解除,cGMP 转换成GMP。
⑥cGMP水平降低导致 GMP-门控阳离子通道的关 闭,膜瞬间超级化。
2. cAMP-PKA信号通路对真核细胞基因表达的 调控:
21
胞外
肝细胞质膜 激活性配体
肾上腺素 前列腺素E1
胰高血糖素
促肾上腺皮质激素
腺苷
抑制性配体
酶的活化
酶的抑制
基质
激活性激素受体
腺苷酸环化酶
抑制性激素受体
激活型G蛋白复合物
抑制型G蛋白复合物
the activation of Gs & Gi protein-coupled systems
合的GDP被GTP取代,引 发三聚体Gi蛋白解离,使
激活的βγ复合物
细胞外
细胞质膜
胞质溶胶激活的α亚基 Nhomakorabea通道打开
打开的K+通道
K+ 激活的βγ复合物
G 亚 基得以释放,进而致
使心肌细胞质膜上相关的
• Affiliation at the time of the award: Fred Hutchinson Cancer Research Center, Seattle, WA, USA
18
The Nobel Prize in Physiology or Medicine 2004 to them:
②激活的视蛋白与无活性 的Gt-GDP结合并介导GDP
被GTP置换。
③Gt三聚体蛋白解离形成 游离的GT,通过与cGMP
磷酸二酯酶(PDE)抑制 性 亚基结合导致PDE活化。
④ 亚基与催化性 和
亚基分离。
⑤由于抑制的解除,cGMP 转换成GMP。
⑥cGMP水平降低导致 GMP-门控阳离子通道的关 闭,膜瞬间超级化。
2. cAMP-PKA信号通路对真核细胞基因表达的 调控:
21
胞外
肝细胞质膜 激活性配体
肾上腺素 前列腺素E1
胰高血糖素
促肾上腺皮质激素
腺苷
抑制性配体
酶的活化
酶的抑制
基质
激活性激素受体
腺苷酸环化酶
抑制性激素受体
激活型G蛋白复合物
抑制型G蛋白复合物
the activation of Gs & Gi protein-coupled systems
合的GDP被GTP取代,引 发三聚体Gi蛋白解离,使
激活的βγ复合物
细胞外
细胞质膜
胞质溶胶激活的α亚基 Nhomakorabea通道打开
打开的K+通道
K+ 激活的βγ复合物
G 亚 基得以释放,进而致
使心肌细胞质膜上相关的
《细胞信号转导》课件

03 肿瘤细胞信号转导与血管生成
肿瘤细胞通过信号转导通路调节血管生成,为肿 瘤提供营养和氧气,促进肿瘤生长和扩散。
信号转导异常与代谢性疾病
01
胰岛素信号转导与 糖尿病
胰岛素信号转导通路的异常可导 致胰岛素抵抗和糖尿病的发生, 影响糖代谢和脂肪代谢。
02
瘦素信号转导与肥 胖
瘦素信号转导通路的异常可导致 肥胖的发生,影响能量代谢和脂 肪分布。
03
炎症信号转导与非 酒精性脂肪肝
炎症信号转导通路的异常可导致 非酒精性脂肪肝的发生,影响脂 肪代谢和炎症反应。
信号转导异常与神经退行性疾病
Tau蛋白磷酸化与神经退行性疾病
Tau蛋白的异常磷酸化是神经退行性疾病如阿尔茨海默病和帕金森病的重要特征,影响神 经元突起生长和神经元网络连接。
α-synuclein异常磷酸化与帕金森病
信号转导蛋白
01
信号转导蛋白是一类在细胞内传递信息的蛋白质,包括G蛋白、 酶和离子通道等。
02
G蛋白是一类位于细胞膜上的三聚体GTP结合蛋白,能够偶联受
体和效应器,起到传递信号的作用。
酶是另一类重要的信号转导蛋白,能够催化细胞内的生化反应
03
,如磷酸化、去磷酸化等,从而调节细胞的生理功能。
效应蛋白
基因敲入技术
通过将特定基因的突变版本引入细胞 或生物体中,以研究基因突变对细胞 信号转导的影响。
蛋白质组学技术
01
蛋白质印迹
通过抗体检测细胞中特定蛋白质的表达和修饰情 况,了解蛋白质在信号转导中的作用。
02
蛋白质相互作用研究
利用蛋白质组学技术,如酵母双杂交、蛋白质芯 片等,研究蛋白质之间的相互作用和复合物的形
细胞信号转导是生物体感受、传递、放大和响应 外界刺激信息的重要过程,是生物体内一切生命 活动不可缺少的环节。
肿瘤细胞通过信号转导通路调节血管生成,为肿 瘤提供营养和氧气,促进肿瘤生长和扩散。
信号转导异常与代谢性疾病
01
胰岛素信号转导与 糖尿病
胰岛素信号转导通路的异常可导 致胰岛素抵抗和糖尿病的发生, 影响糖代谢和脂肪代谢。
02
瘦素信号转导与肥 胖
瘦素信号转导通路的异常可导致 肥胖的发生,影响能量代谢和脂 肪分布。
03
炎症信号转导与非 酒精性脂肪肝
炎症信号转导通路的异常可导致 非酒精性脂肪肝的发生,影响脂 肪代谢和炎症反应。
信号转导异常与神经退行性疾病
Tau蛋白磷酸化与神经退行性疾病
Tau蛋白的异常磷酸化是神经退行性疾病如阿尔茨海默病和帕金森病的重要特征,影响神 经元突起生长和神经元网络连接。
α-synuclein异常磷酸化与帕金森病
信号转导蛋白
01
信号转导蛋白是一类在细胞内传递信息的蛋白质,包括G蛋白、 酶和离子通道等。
02
G蛋白是一类位于细胞膜上的三聚体GTP结合蛋白,能够偶联受
体和效应器,起到传递信号的作用。
酶是另一类重要的信号转导蛋白,能够催化细胞内的生化反应
03
,如磷酸化、去磷酸化等,从而调节细胞的生理功能。
效应蛋白
基因敲入技术
通过将特定基因的突变版本引入细胞 或生物体中,以研究基因突变对细胞 信号转导的影响。
蛋白质组学技术
01
蛋白质印迹
通过抗体检测细胞中特定蛋白质的表达和修饰情 况,了解蛋白质在信号转导中的作用。
02
蛋白质相互作用研究
利用蛋白质组学技术,如酵母双杂交、蛋白质芯 片等,研究蛋白质之间的相互作用和复合物的形
细胞信号转导是生物体感受、传递、放大和响应 外界刺激信息的重要过程,是生物体内一切生命 活动不可缺少的环节。
《生物化学》课件 第十一章细胞信号转导 ppt

2、细胞表面受体:
该受体位于靶细胞膜表面,其配体为水溶性信号分 子和膜结合型信号分子(如生长因子、细胞因子、水溶 性激素分子、粘附分子等)。
目录
目录
一种受体分子转换的信号,可通过 一条或多条信号转导通路进行传递。而 不同类型受体分子转换的信号,也可通 过相同的信号通路进行传递。
不同的信号转导通路之间亦可发生 交叉调控,形成复杂的信号转导网络。
信号转导通路和网络的形成是动态 过程,随着信号的种类和强弱而不断的 变化。
目录
(二)受体与配体相互作的特点
1、高度专一性 2、高度亲和力 3、可饱和性 4、可 逆 性 5、特定的作用模式
目录
三、膜受体介导的信号转导
(一)蛋白激酶A(PKA)通路
该通路以靶细胞内cAMP浓度改变和PKA 激活为主要特征。
1、细胞内信号转导分子异常激活
信号转导分子的结构发生改变,可导 致其激活并维持在活性状态。
2、细胞内信号转导分子异常失活
信号转导分子表达降低或结构改变, 可导致其失活。
目录
(三)信号转导异常可导致疾病的发生 异常的信号转导可使细胞获得异常
功能或者失去正常功能,从而导致疾 病的发生,或影响疾病的过程。许多 疾病的发生和发展都与信号转导异常 有关。
不能正常传递 持续高度激活 受体功能异常 信号转导分子功能异常
目录
(一)受体异常激活和失能
1、受体异常激活
基因突变可导致异常受体的产生, 不依赖外源信号的作用而激活细胞内 的信号通路。
2、受体异常失能
受体分子数量、结构或调节功能 发生异常,导致受体异常失能,不能 正常递信号。
目录Βιβλιοθήκη (二)信号转导分子的异常激活和失活
细胞外信号
该受体位于靶细胞膜表面,其配体为水溶性信号分 子和膜结合型信号分子(如生长因子、细胞因子、水溶 性激素分子、粘附分子等)。
目录
目录
一种受体分子转换的信号,可通过 一条或多条信号转导通路进行传递。而 不同类型受体分子转换的信号,也可通 过相同的信号通路进行传递。
不同的信号转导通路之间亦可发生 交叉调控,形成复杂的信号转导网络。
信号转导通路和网络的形成是动态 过程,随着信号的种类和强弱而不断的 变化。
目录
(二)受体与配体相互作的特点
1、高度专一性 2、高度亲和力 3、可饱和性 4、可 逆 性 5、特定的作用模式
目录
三、膜受体介导的信号转导
(一)蛋白激酶A(PKA)通路
该通路以靶细胞内cAMP浓度改变和PKA 激活为主要特征。
1、细胞内信号转导分子异常激活
信号转导分子的结构发生改变,可导 致其激活并维持在活性状态。
2、细胞内信号转导分子异常失活
信号转导分子表达降低或结构改变, 可导致其失活。
目录
(三)信号转导异常可导致疾病的发生 异常的信号转导可使细胞获得异常
功能或者失去正常功能,从而导致疾 病的发生,或影响疾病的过程。许多 疾病的发生和发展都与信号转导异常 有关。
不能正常传递 持续高度激活 受体功能异常 信号转导分子功能异常
目录
(一)受体异常激活和失能
1、受体异常激活
基因突变可导致异常受体的产生, 不依赖外源信号的作用而激活细胞内 的信号通路。
2、受体异常失能
受体分子数量、结构或调节功能 发生异常,导致受体异常失能,不能 正常递信号。
目录Βιβλιοθήκη (二)信号转导分子的异常激活和失活
细胞外信号
第八章细胞信号转导(0001)ppt课件

1A型: Gsα等位基因的单个基因突变; 有 AC相连的激素抵抗症(TSH、LH、FSH等) 1B型:Gs正常、仅对PTH抵抗
3、 肢端肥大症和巨人症
GH释放激素 Gs + AC cAMP
Adult?
GH分泌
child
三、细胞内信号转导分子、转 录因子异常与疾病
(一)NO与缺血-再灌注损伤 心肌缺血 NO合酶 NO cGMP PKG
家族性高胆固醇血症*
家族性肾性尿崩症
遗传性受体病
甲状腺素抵抗综合征*
重症肌无力
自身免疫受体病
自身免疫性甲状腺病
继发性受体异常
损伤性:膜磷脂分解 代偿性:ligand
家族性高胆固醇血症(familial hypercholesterolemia, FH)
LDL-R
1、合成障碍 2、转运障碍 数目
3、与配体结合障碍 4、内吞缺陷
21000~28000
位于细胞内
只有G α功能
(Ras ,微管蛋白 β亚基)
在将信号从细胞膜外传递至细胞核的过程中, Ras蛋白起着非常重要的作用。整个过程开 始于生长因子(如EGF或PDFG)等与各自
受体的细胞外功能域结合
G 蛋白介导的细胞信号转导途径
G蛋白
腺苷酸环化酶 (AC)
PLC β
DG-蛋白激酶C
cell
Vascular smooth muscle
cell
Vascular GC signal transduction system
cytokines CO
Ca2+
GTP
Ach-R arg
NO
synthase NO
sG
GRC
C cGM
3、 肢端肥大症和巨人症
GH释放激素 Gs + AC cAMP
Adult?
GH分泌
child
三、细胞内信号转导分子、转 录因子异常与疾病
(一)NO与缺血-再灌注损伤 心肌缺血 NO合酶 NO cGMP PKG
家族性高胆固醇血症*
家族性肾性尿崩症
遗传性受体病
甲状腺素抵抗综合征*
重症肌无力
自身免疫受体病
自身免疫性甲状腺病
继发性受体异常
损伤性:膜磷脂分解 代偿性:ligand
家族性高胆固醇血症(familial hypercholesterolemia, FH)
LDL-R
1、合成障碍 2、转运障碍 数目
3、与配体结合障碍 4、内吞缺陷
21000~28000
位于细胞内
只有G α功能
(Ras ,微管蛋白 β亚基)
在将信号从细胞膜外传递至细胞核的过程中, Ras蛋白起着非常重要的作用。整个过程开 始于生长因子(如EGF或PDFG)等与各自
受体的细胞外功能域结合
G 蛋白介导的细胞信号转导途径
G蛋白
腺苷酸环化酶 (AC)
PLC β
DG-蛋白激酶C
cell
Vascular smooth muscle
cell
Vascular GC signal transduction system
cytokines CO
Ca2+
GTP
Ach-R arg
NO
synthase NO
sG
GRC
C cGM
第十二章细胞信号转导ppt课件

➢ 激素(hormone):内分泌细胞分泌 特点:低浓度、长距离、长时效、全身性
➢ 神经递质:神经突触释放 特点:短距离、短时间
➢ 局部介质:各种细胞 旁分泌(paracrine)或自分泌(autocrine) 的生长因子、细胞因子、NO 特点:短距离、长时效
细胞内信号分子:传导方式
a. 2 b. 5 c. 4 d. 3
9、生长因子是细胞内的(
)。
a. 营养物质
b. 能源物质
c. 结构物质
d. 信息分子
比较题
1、酪氨酸蛋白激酶和丝氨酸/苏氨酸蛋白激 酶
2、磷脂酶C和蛋白激酶C
cAMP作用的靶分子
cAMP-PKA通路调节基因转录
cAMP信号传递模型
钙信号的消除
两种鸟 苷酸环 化酶: mGC、
(3)丝\苏氨酸激酶
通过变构而激活蛋白,催化底物蛋白丝\苏氨酸残 基磷酸化。 包括:蛋白激酶A(protein kinase A, PKA)、PKB、PKC、 PKG、CaMK和丝裂原激的蛋白激酶(mitogenactivated protein kianse, MAPK)、Raf-1等均属此类。
信号转导与信号传导(cell signalling)
➢ 信号转导强调信号的转换, 胞外信号转换为胞内信 号,包括即信号的识别与转换。
➢ 信号传导强调信号的传递,包括信号的产生、分泌 与传递
细胞通讯(cell communication):
细胞与细胞之间的信息交流
细胞通讯的几种方式
1.信号分子 2.细胞接触 或连接 3.细胞外基质
A 与配体有高度亲和力和特异性 B 受体与配体的结合有可逆性 C 受体与配体的结合有一定的数量限度 (饱 和性) D 立体构型决定受体的特异性 E 磷酸化与去磷酸化调节受体的活性
➢ 神经递质:神经突触释放 特点:短距离、短时间
➢ 局部介质:各种细胞 旁分泌(paracrine)或自分泌(autocrine) 的生长因子、细胞因子、NO 特点:短距离、长时效
细胞内信号分子:传导方式
a. 2 b. 5 c. 4 d. 3
9、生长因子是细胞内的(
)。
a. 营养物质
b. 能源物质
c. 结构物质
d. 信息分子
比较题
1、酪氨酸蛋白激酶和丝氨酸/苏氨酸蛋白激 酶
2、磷脂酶C和蛋白激酶C
cAMP作用的靶分子
cAMP-PKA通路调节基因转录
cAMP信号传递模型
钙信号的消除
两种鸟 苷酸环 化酶: mGC、
(3)丝\苏氨酸激酶
通过变构而激活蛋白,催化底物蛋白丝\苏氨酸残 基磷酸化。 包括:蛋白激酶A(protein kinase A, PKA)、PKB、PKC、 PKG、CaMK和丝裂原激的蛋白激酶(mitogenactivated protein kianse, MAPK)、Raf-1等均属此类。
信号转导与信号传导(cell signalling)
➢ 信号转导强调信号的转换, 胞外信号转换为胞内信 号,包括即信号的识别与转换。
➢ 信号传导强调信号的传递,包括信号的产生、分泌 与传递
细胞通讯(cell communication):
细胞与细胞之间的信息交流
细胞通讯的几种方式
1.信号分子 2.细胞接触 或连接 3.细胞外基质
A 与配体有高度亲和力和特异性 B 受体与配体的结合有可逆性 C 受体与配体的结合有一定的数量限度 (饱 和性) D 立体构型决定受体的特异性 E 磷酸化与去磷酸化调节受体的活性
细胞生物学第八章细胞信号转导ppt课件

(1)根据靶细胞上受体存在的部位,可将手提取分为
细胞内受体:位于细胞质基质或核基质中,主要是别和结合小
的脂溶性信号分子。
细胞表面受体:主要识别和结合亲水性信号分子。
(2)根据信号转导机制和受体蛋白类型的不同,细胞报名受体分属 三大家族(尤凯他们详细讲述)
① 离子通道耦联受体
② G蛋白耦联受体
再有就是一种细胞具有一套多种类型的受体,应答多种不同的 胞外信号从而启动细胞不同生物学效应。
(4)第二信使和分子开关
第二信使:是指在胞内产生的小分子,其浓度变化应应答胞外信号 与细胞表面受体的结合,并在细胞信号转导中行使功能。(cAMP、 cGMP、Ca2+、二酰甘油DAG、1,4,5—肌醇三磷酸 IP3)
特性:
1、电荷选择性: 间隙连接的通透能力与底物所带电荷有关。
2、组织特异性:
由不同连接蛋白所构成的连接子,在导电率、通透性
和可调控方面是不同的。由不同连接蛋白组成的异聚体连接子一般具有通透
功能,但在有些情况下却没有通透功能。如:Cx43与Cx40连接蛋白形成间隙
连接时,连接子没有通透功能。
3、动态结构:
(二)信号分子与受体
1、信号分子:是细胞的信息载体,种类繁多,包括化学信号诸如各 类激素、局部介质和神经递质等,以及物理信号诸如声、光、电和 温度变化等。
亲水性和亲脂性信号分子
根据信号分子的溶解性可分为亲水性和亲脂性两类。亲水性信号分子 的主要代表是神经递质、含氮类激素(除甲状腺激素)、局部介质等, 它们不能穿过靶细胞膜,只能通过与细胞表面受体结合,再经信号转 换机制,在细胞内产生“第二信使”(如cAMP)或激活膜受体的激酶活 性(如蛋白激酶),跨膜传递信息,以启动一系列反应而产生特定的生 物学效应。
细胞信号转导PPT演示课件

Department of Biochemistry & Molecular Biology
甾体激素NR
类别
非甾体激素NR
Байду номын сангаас孤儿NR
被领养的孤儿NR
未被领养的孤儿NR (配体不明或不需要)
NR的分类
成员 糖皮质激素受体 盐皮质激素受体
雄激素受体 雌激素受体 孕激素受体 甲状腺激素受体
维甲酸受体
维生素D3 受体
配体 糖皮质激素 盐皮质激素
雄激素 雌激素 孕激素 甲状腺激素
全反式维甲酸
维生素D3
PPARα PPARγ PPARβ/δ
FXR LXRs PXR RXRs CAR RORs HNF4 ERR SXR SF-1 COUP-TFs GCNF Nor1 Nurr1 Nurr77 PNR TR2/4 Rev-erbs TLX
Clinical tips
➢Why glucocorticoid( 糖 皮 质 激 素 ) can promote glyconeogenesis(糖异生) in hypoglycaemia(低血糖)?
➢Why thyroxin deficiency can result in cretinism(呆小 症 ), and much higher level of thyroxin is closely associated with the hypermetabolism( 高 代 谢 ) in hyperthyroidism (甲亢)?
domain(配体依赖性转录激活功能域)
Nomenclature of NR
➢ 1999年,NR命名委员会根据NR的C和E结构域的同源性对NR 进行了系统命名,用NRXYZ来表示,其中NR表示核受体,X 和Z是阿拉伯数字,Y是大写英文字母。X代表NR的亚家族, Y代表亚家族中的组别,Z代表组别中的成员。 例如:FXR:NR1H4; LXRα:NR1H3; LXRβ:NR1H2.
甾体激素NR
类别
非甾体激素NR
Байду номын сангаас孤儿NR
被领养的孤儿NR
未被领养的孤儿NR (配体不明或不需要)
NR的分类
成员 糖皮质激素受体 盐皮质激素受体
雄激素受体 雌激素受体 孕激素受体 甲状腺激素受体
维甲酸受体
维生素D3 受体
配体 糖皮质激素 盐皮质激素
雄激素 雌激素 孕激素 甲状腺激素
全反式维甲酸
维生素D3
PPARα PPARγ PPARβ/δ
FXR LXRs PXR RXRs CAR RORs HNF4 ERR SXR SF-1 COUP-TFs GCNF Nor1 Nurr1 Nurr77 PNR TR2/4 Rev-erbs TLX
Clinical tips
➢Why glucocorticoid( 糖 皮 质 激 素 ) can promote glyconeogenesis(糖异生) in hypoglycaemia(低血糖)?
➢Why thyroxin deficiency can result in cretinism(呆小 症 ), and much higher level of thyroxin is closely associated with the hypermetabolism( 高 代 谢 ) in hyperthyroidism (甲亢)?
domain(配体依赖性转录激活功能域)
Nomenclature of NR
➢ 1999年,NR命名委员会根据NR的C和E结构域的同源性对NR 进行了系统命名,用NRXYZ来表示,其中NR表示核受体,X 和Z是阿拉伯数字,Y是大写英文字母。X代表NR的亚家族, Y代表亚家族中的组别,Z代表组别中的成员。 例如:FXR:NR1H4; LXRα:NR1H3; LXRβ:NR1H2.
第五章 细胞信号转导 PPT课件

各种化学通讯方式
细胞信号转导的作用:
①调节代谢:通过对代谢相关酶活性的调节,控 制细胞的物质和能量代谢;
②实现细胞功能:如肌肉的收缩和舒张,腺体分 泌物的释放;
③调节细胞周期:使DNA复制相关的基因表达, 细胞进入分裂和增殖阶段;
④控制细胞分化:使基因有选择性地表达,细胞 不可逆地分化为有特定功能的成熟细胞;
3.突触信号:神经递质(如乙酰胆碱)由突触前膜释放, 经突触间隙扩散到突触后膜,作用于特定的靶细胞。
4.自分泌(autocrine):信号发放细胞和靶细胞为同 类或同一细胞,常见于癌变细胞。如:大肠癌细胞可自 分泌产生胃泌素,介导调节c-myc、c-fos和ras p21等癌 基因表达,从而促进癌细胞的增殖。
三、酶耦联型受体
这类受体本身具有激酶活性,如肽类生长因子 (EGF,PDGF,CSF等)受体;或者是本身没有酶活 性,但可以连接非受体酪氨酸激酶,如细胞因子受 体超家族。 这类受体的共同点是: ①通常为单次跨膜蛋白; ②接受配体后发生二聚化而激活,起动其下游信号 转导。
三、酶耦联型受体
可分为:
一、信号分子:
从溶解性来看又可分为脂溶性和水溶性两类:
脂溶性信号分子:如甾类激素和甲状腺素,可直接 穿膜进入靶细胞,与胞内受体结合形成激素-受体复 合物,调节基因表达。
水溶性信号分子:如神经递质、细胞因子和水溶性 激素,不能穿过靶细胞膜,只能与膜受体结合,经 信号转换机制,通过胞内信使(如cAMP)或激活 膜受体的激酶活性(如受体酪氨酸激酶),引起细 胞的应答反应。
G蛋白耦联型受体
(一)cAMP信号途径
该信号通路根据G蛋白的性质不同又可以分为:Gs调节 模型和Gi调节模型;
1、Gs调节模型:
细胞生物学第八章-细胞信号转导ppt课件

GRF
51
MAPk: Mitogen-activated protein kinase (促分裂原活化蛋白质激酶)
在哺乳动物里 称为 Raf
改变一些蛋白质的活性
改变基因表达状况
在哺乳动物里 称为 MEK
一般俗称为 p38
结果: 促进许多导致细胞分裂 基因的表达 例如, G1-周期蛋白
52
二、细胞表面其他酶连受体
35
(二)磷脂酰肌醇双信使信号通路
1)三种肌醇磷脂 细胞质膜脂类分子外层
细胞质膜脂类分子外层
细胞质膜 脂类分子内层
PI 激酶
PI P 激酶
磷脂酰肌醇(PI)
磷脂酰肌醇-4-磷酸 (PI(4)P)
磷脂酰肌醇-4,5-二磷酸(PI(4,5)P2)36
2)双信使
细胞质膜脂类分子外层
细胞质膜 脂类分子内层
受体蛋白
无活性G-蛋白
信号分子
被激活的G-蛋白亚基
激活的 a 亚基
激活的
28
b/g 亚基
a-亚基的内在GTP酶活性使之失活
靶蛋白
激活的a亚基
a亚基激活其靶蛋白
激活的b/g亚基
a亚基上GTP水解,使该亚基本 身失活,造成和靶蛋白解离
29
失活的a-亚基与bg -复合体结合
无活性G-蛋白 无活性靶蛋白
无活性的细胞核受体
辅激发蛋白
配体
受体结合序列
起始靶基因转录
激活的细胞核受体
20
胞内受体介导 的信号传递过 程
21
甾类激素可以诱导原初反应和次级反应;即:
A:直接诱导少数特殊基因转录的原初反应阶段;
B:基因产物再活化其他基因,产生一种延迟的次级 反应。这种反应对激素原初作用起放大效应。
51
MAPk: Mitogen-activated protein kinase (促分裂原活化蛋白质激酶)
在哺乳动物里 称为 Raf
改变一些蛋白质的活性
改变基因表达状况
在哺乳动物里 称为 MEK
一般俗称为 p38
结果: 促进许多导致细胞分裂 基因的表达 例如, G1-周期蛋白
52
二、细胞表面其他酶连受体
35
(二)磷脂酰肌醇双信使信号通路
1)三种肌醇磷脂 细胞质膜脂类分子外层
细胞质膜脂类分子外层
细胞质膜 脂类分子内层
PI 激酶
PI P 激酶
磷脂酰肌醇(PI)
磷脂酰肌醇-4-磷酸 (PI(4)P)
磷脂酰肌醇-4,5-二磷酸(PI(4,5)P2)36
2)双信使
细胞质膜脂类分子外层
细胞质膜 脂类分子内层
受体蛋白
无活性G-蛋白
信号分子
被激活的G-蛋白亚基
激活的 a 亚基
激活的
28
b/g 亚基
a-亚基的内在GTP酶活性使之失活
靶蛋白
激活的a亚基
a亚基激活其靶蛋白
激活的b/g亚基
a亚基上GTP水解,使该亚基本 身失活,造成和靶蛋白解离
29
失活的a-亚基与bg -复合体结合
无活性G-蛋白 无活性靶蛋白
无活性的细胞核受体
辅激发蛋白
配体
受体结合序列
起始靶基因转录
激活的细胞核受体
20
胞内受体介导 的信号传递过 程
21
甾类激素可以诱导原初反应和次级反应;即:
A:直接诱导少数特殊基因转录的原初反应阶段;
B:基因产物再活化其他基因,产生一种延迟的次级 反应。这种反应对激素原初作用起放大效应。
第5章 细胞信号转导 PPT课件

C
C
CC
C
细
C
Pi
R E
B
Pi
RR EE
Pi
BB
R E Pi
B
胞 核
DNA
CRE
结构基因
蛋白质
2、PLCβ-IP/DG信号转导途径
血管紧张素II 受体通过PLC-IP3/DAG-PKC通路介导信号转
(1)DG-PKC 途径
组成 胞外信息分子,G蛋白 磷脂酶C(phospholipase C, PLC) 甘油二脂(diacylglycerol, DAG) 三磷酸肌醇( inositol 1, 4, 5 triphosphate, IP3 ) 蛋白激酶C(protein kinase C, PKC)
节功能。
磷酸化酶激酶b ATP PKA
PPi 磷蛋白磷酸酶
肾上腺素 +受体
肾上腺素 ·受体复合物
磷酸化酶激酶a ATP
激活G蛋白
激活AC
ATP
cAMP
磷酸化酶b
磷酸化酶a
PPi 磷蛋白磷酸酶
H2O
肾上腺素对糖原 代谢的影响
PKA
ATP
抑制物Ib 抑制物Ia
磷蛋白磷酸酶 PPi
胰高血糖素受体通过AC-cAMP-PKA通路转导信号
丝 氨 酸
调节结构域
磷
脂
DAG Ca2+
酰
丝
氨
酸
催化结构域
底物
(2) PKC 的结构与生理功能
• 结构与分型:其氨基酸序列有四个保守区(C1、C2、C3、 C4 )和可变区(V),分为调节域和催化域。
调节域
C1:富含 Cys,DAG、TPA 结合部位 C2:Ca2+ 结合部位
生物化学课件19第十九章 细胞信号转导

细胞信号转导
细胞信号转导是生物体内一系列的化学反应和信息传递过程,影响细胞的活 动和功能。探索细胞信号转导的奥秘,为科学研究和医学治疗开辟新的可能。
细胞信号转导概述
定义
细胞信号转导是细胞内外信息的转导、传递和转化过程。
种类和特点
细胞信号转导可以通过多种方式进行,如激素、神经递质或细胞间相互作用。
重要性
效应蛋白接收信号并在细胞内 发挥特定的功能。
细胞信号转导的调节机制
1
调节机制的种类和作用
细胞信号转导的调节机制包括阳性和阴
调节机制的具体例子
2
性调节,用于平衡和控制细胞信号的强 度和持续时间。
具体调节机制包括磷酸化、去磷酸化、
蛋白质降解以及转录调节等。
细胞信号转导的应用
在疾病治疗方面的应用
深入研究细胞信号转导可以帮助我们理解疾病发生 的机制,并为疾病治疗提供新的靶点。
细胞信号转导在细胞生存、分化、增殖和适应环境等方面起着至关重要的作用。
细胞信号转导的分子机制
第一类信号转导分子: 第二类信号转导分子: 第三类信号转导分子:
受体蛋白
信号转导途径
效应蛋白
受体蛋白位于细胞膜上,可以 感受并与外界信号结合。
信号转导途径是外界信号通过 一系列蛋白质相互作用传递到 细胞内部的途径。
在生物科技方面的应用
利用细胞信号转导的原理,我们可以开发新型药物、 制备生物工程产品和改造生物反应器等。
总结
1 细胞信号转导的重要性和应用前景
细胞信号转导是生命的基础,对于理解细胞功能和疾病治疗具有重要意义。
2 发展方ห้องสมุดไป่ตู้和未来发展趋势
随着技术的不断进步,我们可以预见细胞信号转导研究将继续深入,并带来更多创新和 突破。
细胞信号转导是生物体内一系列的化学反应和信息传递过程,影响细胞的活 动和功能。探索细胞信号转导的奥秘,为科学研究和医学治疗开辟新的可能。
细胞信号转导概述
定义
细胞信号转导是细胞内外信息的转导、传递和转化过程。
种类和特点
细胞信号转导可以通过多种方式进行,如激素、神经递质或细胞间相互作用。
重要性
效应蛋白接收信号并在细胞内 发挥特定的功能。
细胞信号转导的调节机制
1
调节机制的种类和作用
细胞信号转导的调节机制包括阳性和阴
调节机制的具体例子
2
性调节,用于平衡和控制细胞信号的强 度和持续时间。
具体调节机制包括磷酸化、去磷酸化、
蛋白质降解以及转录调节等。
细胞信号转导的应用
在疾病治疗方面的应用
深入研究细胞信号转导可以帮助我们理解疾病发生 的机制,并为疾病治疗提供新的靶点。
细胞信号转导在细胞生存、分化、增殖和适应环境等方面起着至关重要的作用。
细胞信号转导的分子机制
第一类信号转导分子: 第二类信号转导分子: 第三类信号转导分子:
受体蛋白
信号转导途径
效应蛋白
受体蛋白位于细胞膜上,可以 感受并与外界信号结合。
信号转导途径是外界信号通过 一系列蛋白质相互作用传递到 细胞内部的途径。
在生物科技方面的应用
利用细胞信号转导的原理,我们可以开发新型药物、 制备生物工程产品和改造生物反应器等。
总结
1 细胞信号转导的重要性和应用前景
细胞信号转导是生命的基础,对于理解细胞功能和疾病治疗具有重要意义。
2 发展方ห้องสมุดไป่ตู้和未来发展趋势
随着技术的不断进步,我们可以预见细胞信号转导研究将继续深入,并带来更多创新和 突破。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信
使
靶基因转录
5.Ca2+
-
13
五、衔接蛋白与信号转导复合物
(一)定义 衔接蛋白(adaptor protein, adaptin )
连接上游信号转导分子与下游信号转导 分子的接头,参与信号转导分子的联动和 协同的含有组件结构域的蛋白质分子 。
-
14
★(二)衔接蛋白分子的基本特征
(1)无酶活性、亦无转录活性;
细胞信号转导的分子及其 作用
-
1
四、第二信使
(一)第二信使具备的特征 1.浓度或分布在细胞外信号的作用下发生迅速改变; 2.其类似物可模拟细胞外信号的作用; 3.阻断该分子的变化可阻断细胞对外源信号的反应。 4.作为别位效应剂在细胞内有特定的靶蛋白分子。
-
2
(二)种类 1.环核苷酸第二信使 (1)产生与降解
(2)含有保守结构域;如SH2,SH3等 (3)与其他蛋白形成信号转导复合物
(signaling complex)发挥作用。
-
15
(三)衔接蛋白分子的分类
1.胞浆内衔接蛋白(cytoplasmic adapters) 肉瘤衔接蛋白、 生长因子受体结合蛋白2(Grb2)、 Grb2相关衔接蛋白(Gads)等;
EGF:表皮生长因子 IGF-1:胰岛素样生长因子 PDGF:血小板衍生生长因子 FGF:成纤维细胞生长因子
-
23
特性
内源性 配体 结构
跨膜区 段数目
功能 细胞 应答
离子通 道受体 神经递质
寡聚体形 成的孔道
4个
离子通道 去极化与
超极化
三种膜受体的特点
G-蛋白偶联受体
单次跨膜受体
神经递质、激素、趋化因子、 外源刺激(味,光)
-
5
(2)产生与降解
磷脂酶C
-
6
(3)作用
① IP3调控钙离子通道
IP3 + IP3受体 钙离子通道开放,细胞内钙释放
细胞内钙离子浓度迅速增加
② DAG和钙离子激活蛋白激酶C
③PIP3的靶分子是蛋白激酶B
-
7
3.气体第二信使 (1)NO
H2N
+
NH2
NH
+
H2N COO-
精氨酸
NO合酶
H2N O NH
+ NO
+
H2N COO-
胍氨酸
-
8
NO作用
受NO激活和抑制的酶和蛋白质
酶和蛋白质
激活
ADP-核糖转移酶,可溶性鸟苷酸环化酶, 环氧化酶
抑制 细胞色素,顺乌头酸酶,质子ATP酶,运铁
激活或抑制
蛋白,
核糖核苷酸还原酶,脂加氧酶 氨基的亚硝基化,巯基的亚硝基化
-
9
(2) CO
-
10
HO1:也称之为热休克蛋白32(HSP32 ) 作用:
生长因子 细胞因子
单体
具有或不具有催化活 性的单体
7个
1个
激活G蛋白
激活蛋白酪氨酸激酶
去极化与超极化调节蛋白质功 调节蛋白质的功能和
能和表达水平
表达水平,调节细胞
分化和增殖
-
24
(二) 胞内受体1.基本结构-25-26
-
27
-
28
-
29
-
30
3. 2.
1.
BCL-2,Bax bclx
免
-
16
SH结构域:Src同源结构域”(Src homology domain)的缩写
能够与受体酪氨酸激酶磷酸化残基紧紧结 合,形成多蛋白的复合物进行信号转导。
SH2结构域含有约100个氨基酸残基,中间一段为反 平行β-片层,两端各一个α-螺旋 SH2结构域特异性地识别配基上磷酸化的酪氨酸残 基及其c端的3~5个氨基酸残基。
催化CO生成 催化产物(铁蛋白、CO、胆红素)在氧化应 激中起着保护组织细胞的作用 。
上调内质网Fe2+通道,促进胞内Fe2+泵出 。 抑制卡波西肉瘤的生长
-
11
4.蛋白质分子
如,第三信使:是涉及胞浆的信 息分子在细胞核内的信息及其调 控。
➢
-
12
配体+膜受体 第二信使
特定激酶激活
第
三
特定核蛋白磷酸化
疫
组
化 法
(1)方法单一
检
测
,
(2)表达定位描述 等
途 径 描 述 环 节 不 完 善
(1)线粒体途径 cytC、caspase
(2)FasL途径指标 和方法均单一
未 作 药 物 作 用 靶 点 方 面
的
设
计
(3)survivin无 上下游分子设计
不足之处:
-
31
资料可以编辑修改使用 学习愉快!
课件仅供参考哦, 实际情况要实际分析哈!
-
20
2.跨膜衔接蛋白(transmembrane adapters) 存在膜上胆固醇/鞘脂类构成的独特的脂筏微
结构域中。
-
21
六、 细胞受体
(一)膜受体
1.环状受体 (配体依赖性离子通道受体)
2.G蛋白偶联受体 (G-protein coupled receptors, GPCRs)
-
22
3.单个跨膜α螺旋受体
AC
GC
鸟苷酸环化酶
-
3
(2)作用
①激活蛋白激酶A或G ②别构调节离子通道活性; 如:
•视杆细胞膜上富含cGMP-门控阳离子通道
•嗅觉细胞核苷酸-门控钙通道
-
4
2.脂类第二信使
• (1)种类
• 二脂酰甘油(diacylglycerol,DAG) • 花生四烯酸(arachidonic acid,AA) • 磷脂酸(phosphatidic acid, PA) • 溶血磷脂酸(lysophosphatidic acid,LPA) • 4-磷酸磷脂酰肌醇(PI-4-phosphate,PIP) • 磷脂酰肌醇-4,5-二磷酸(phosphatidylinositol -4,5-diphosphate,PIP2) • 肌醇-1,4,5-三磷酸(Inositol-1,4,5-triphosphate,IP3)
感谢您的观看
-
17
➢ 含有SH2结构域的蛋白也常常含有SH3结构 域。
➢ SH3能够识别富含脯氨酸和疏水残基的特 异序列的蛋白质并与之结合,从而介导蛋白 与蛋白相互作用。
➢ 富含脯氨酸的残基(共约10个氨基酸), 核心部分为PXXP(X为除半胱氨酸之外的 任一氨基酸)。
-
18
SH2结构域
SH3结构域
-
19
➢ SH2结构域: 配基序列 ➢ I类: 酪氨酸-亲水-亲水-疏水; ➢ II类:酪氨酸-疏水--X--疏水。