2017年山东省临沂市蒙阴县中考数学二模试卷

合集下载

初中数学17年山东省临沂市中考模拟数学模拟考试卷(4)含答案解析

初中数学17年山东省临沂市中考模拟数学模拟考试卷(4)含答案解析

xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:﹣3的绝对值是()A.﹣3 B.±3 C.+3 D.以上都不对试题2:我省大力开展节能增产活动,开发利用煤矿安全“杀手”煤层瓦斯发电.经测算,我省深层煤层瓦斯资源量可发电1400亿千瓦时以上,1400亿千瓦时用科学记数法表示为()A.1.4×1012千瓦时 B.1.4×1011千瓦时C.1.4×1010千瓦时 D.14×1010千瓦时试题3:如图,直线a∥b,则∠A的度数是()A.38° B.48° C.42° D.39°试题4:下列各式中计算正确的是()A.x3•x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t试题5:评卷人得分不等式组的解集在数轴上表示正确的是()A. B.C. D.试题6:化简的结果是()A. B. C.(x+1)2 D.(x﹣1)2试题7:一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2π B.6π C.7π D.8π试题8:一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A. B. C. D.试题9:如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k 的值为()A.﹣6 B.﹣3 C.3 D.6试题10:如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2 B.4 C.4 D.8试题11:一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2 B.k<2 C.k<2且k≠1 D.k>2且k≠1试题12:如图,AB是斜靠在墙上的长梯,D是梯上一点,梯脚B与墙脚的距离为1.6m(即BC的长),点D与墙的距离为1.4m(即DE的长),BD长为0.55m,则梯子的长为()A.4.50m B.4.40m C.4.00m D.3.85m在图1、图2、图3…中,菱形A1B1C1D1、菱形A2B2C2D2、菱形A3B3C3D3…都是由全等的小三角形拼成,菱形A n B n C n D n中有200个全等的小三角形,则n的值为()A.10 B.15 C.20 D.25试题14:已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A. B. C.D.分解因式:﹣3x3y+27xy= .试题16:已知5个数据:8,8,x,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是.试题17:设x,y为任意实数,定义运算:x*y=(x+1)(y+1)﹣1,得到下列五个命题:①x*y=y*x;②x*(y+z)=x*y+x*z;③(x+1)*(x﹣1)=(x*x)﹣1;④x*0=0;⑤(x+1)*(x+1)=x*x+2*x+1;其中正确的命题的序号是.试题18:如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是.试题19:如图,直线y=x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=的图象上,CD平行于y轴,S△OCD=,则k的值为.试题20:计算:|1﹣|+(π﹣2015)0﹣2sin45°+()﹣2.试题21:已知:如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.①试说明四边形AEDF的形状,并说明理由.②连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?③在②的条件下,当△ABC满足什么条件时,四边形AEDF为正方形,不说明理由.试题22:某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查得到一组数据,下面两图(如图)是根据这组数据绘制的两幅不完整的统计图.请你根据图中所提供的信息解答下列问题:(1)求在这次活动中一共调查了多少名学生;(2)在扇形统计图中,求“教师”所在扇形的圆心角的度数;(3)补全两幅统计图.试题23:甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)描述乙队在0~6(h)内所挖河渠的长度变化情况;(2)请你求出:乙队在2≤x≤6的时段内,y与x之间的函数关系式;(3)当x为何值时,甲队在施工过程中所挖河渠的长度y的值在30和50之间变化?试题24:如图在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB,分别交于点D、E,且∠CBD=∠A;2·1·c·n·j·y(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=2,求BD的长.试题25:问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.试题26:如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.试题1答案:C【考点】绝对值.【分析】根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣3|=3.故﹣3的绝对值是3.故选C.试题2答案:B【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1 400亿千瓦时用科学记数法表示为1.4×1011千瓦时.故选B.试题3答案:B【考点】平行线的性质;三角形的外角性质.【分析】根据平行线的性质和三角形外角的性质求解.【解答】解:∵a∥b,∴∠DBC=80°(两直线平行,内错角相等)∵∠DBC=∠ADB+∠A(三角形的一个外角等于它不相邻的两个内角之和),∴∠A=∠DBC﹣∠ADB=80°﹣32°=48°.故选B.试题4答案:D【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别进行同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法等运算结合选项选出正确答案即可.【解答】解;A、x3•x3=x6,原式计算错误,故本选项错误;B、(xy2)3=x3y6,原式计算错误,故本选项错误;C、(a3)2=a6,原式计算错误,故本选项错误;D、t10÷t9=t,原式计算正确,故本选项正确;故选D.试题5答案:D【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由①得x>3,由②得x≤﹣1,则不等式组的解集为空集.故选D.试题6答案:D【考点】分式的混合运算.【分析】将原式括号中的两项通分并利用同分母分式的减法法则计算,分子合并,同时将除式的分母利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后即可得到最简结果.【解答】解:(1﹣)÷=÷=•(x+1)(x﹣1)=(x﹣1)2.故选D试题7答案:D【考点】由三视图判断几何体;圆柱的计算.【分析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积.【解答】解:∵正视图和俯视图是矩形,左视图为圆形,∴可得这个立体图形是圆柱,∴这个立体图形的侧面积是2π×3=6π,底面积是:π•12=π,∴这个立体图形的表面积为6π+2π=8π;故选D.试题8答案:B【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出这两个球上的两个数字之和为负数的情况数,即可求出所求的概率.【解答】解:列表得:3 1 ﹣23 ﹣﹣﹣(1,3)(﹣2,3)1 (3,1)﹣﹣﹣(﹣2,1)﹣2 (3,﹣2)(1,﹣2)﹣﹣﹣所有等可能的情况有6种,其中两个数字之和为负数的情况有2种,则P==.故选:B.试题9答案:D【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】根据菱形的对称性求出点A的坐标,再根据反比例函数图象上点的坐标特征代入函数解析式进行计算即可得解.【解答】解:∵菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),∴点A的坐标为(3,2),∵反比例函数y=(x>0)的图象经过点A,∴=2,解得k=6.故选D.试题10答案:C【考点】垂径定理;等腰直角三角形;圆周角定理.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE 为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.试题11答案:C【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的根的判别式,以及二次项系数不等于0,建立关于k的不等式组,求出k的取值范围.【解答】解:∵a=1﹣k,b=﹣2,c=﹣1,方程有两个不相等的实数根.∴△=b2﹣4ac=4+4(1﹣k)=8﹣4k>0∴k<2又∵一元二次方程的二次项系数不为0,即k≠1.∴k<2且k≠1.故选C.试题12答案:B【考点】解直角三角形的应用.【分析】可由平行线分线段成比例建立线段之间的关系,进而求解线段AB的长度即可.【解答】解:由图可得,,又BC=1.6m,DE=1.4,BD=0.55m,代入可得:,解得:AB=4.40m,故选:B.试题13答案:A【考点】规律型:图形的变化类.【分析】仔细观察图形发现图形变化的规律,利用发现的规律解题即可.【解答】解:第一个图形中有1×2=2个小三角形,第二个图形有2×4=8个小三角形,第三个图形有3×6=18个小三角形,…第n个图形有n×2n=2n2个小三角形,当2n2=200时,解得:n=10,故选A.试题14答案:A【考点】动点问题的函数图象.【分析】根据等边三角形,菱形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.【解答】解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选:A.试题15答案:﹣3xy(x+3)(x﹣3).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式﹣3xy,再对余下的多项式利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:﹣3x3y+27xy,=﹣3xy(x2﹣9),﹣﹣(提取公因式)=﹣3xy(x+3)(x﹣3).﹣﹣(平方差公式).试题16答案:8或10 .【考点】中位数;算术平均数;众数.【分析】根据这组数据的某个众数与平均数相等,得出平均数等于8或10,求出x从而得出中位数,即是所求答案.【解答】解:设众数是8,则由,解得:x=4,故中位数是8;设众数是10,则由,解得:x=14.故中位数是10.故答案为:8或10.试题17答案:①③.【考点】整式的混合运算.【分析】根据题中规定的运算法则对各选项新定义的运算进行计算,判断即可解答.【解答】解:①x*y=y*x=xy+x+y,正确;②x*(y+z)=(x+1)*(y+z+1)﹣1,错误;③(x+1)*(x﹣1)=(x+2)x﹣1=(x*x)﹣1,正确;④x*0=x,错误;⑤(x+1)*(x+1)=x*x﹣1,错误.故答案为①③.试题18答案:(1,0).【考点】坐标与图形变化﹣旋转.【分析】先画出旋转后的图形,然后写出B′点的坐标.【解答】解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为:(1,0).试题19答案:5 .【考点】反比例函数与一次函数的交点问题.【分析】根据点C在直线y=x﹣2,可得点C的坐标,根据三角形的面积,可得DC的长,可得D点的坐标,根据待定系数法,可得答案.【解答】解;∵直线y=x﹣2,点C在直线上,且点C的纵坐标为﹣1,∴x=2,∴点C(2,﹣1),∵CD平行于y轴,∴O到CD的距离是2,设D(2,y),则DC=y+1∵S△OCD==,∴y=,∴D(2,)∵点D在反比例函数y=的图象上∴k=xy=2×=5,故答案为:5.试题20答案:解:原式=﹣1+1﹣+4=4.试题21答案:【考点】正方形的判定;平行四边形的判定;菱形的判定.【分析】①根据DE∥AC,DF∥AB可判断四边形AEDF为平行四边形;②由四边形AEDF为菱形,能得出AD为∠BAC的平分线即可;③由四边形AEDF为正方形,得∠BAC=90°,即当△ABC是以BC为斜边的直角三角形即可.【解答】解:①∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形;②∵四边形AEDF为菱形,∴AD平分∠BAC,则AD平分∠BAC时,四边形AEDF为菱形;③由四边形AEDF为正方形,∴∠BAC=90°,∴△ABC是以BC为斜边的直角三角形即可.试题22答案:【考点】折线统计图;全面调查与抽样调查;扇形统计图.【分析】(1)通过对比条形统计图和扇形统计图可知:喜欢的职业是公务员的有40人,占样本的20%,所以被调查的学生数即可求解;(2)各个扇形的圆心角的度数=360°×该部分占总体的百分比,乘以360度即可得到“教师”所在扇形的圆心角的度数;(3)找出两个统计图中共同的已知量,就可以求出教师、其它所占的百分比,以及教师、医生的人数,将图形补充完整即可.【解答】解:(1)被调查的学生数为(人)(2)“教师”所在扇形的圆心角的度数为(1﹣15%﹣20%﹣10%﹣×100%)×360°=72°(3)如图,补全图如图,补全图试题23答案:【考点】一次函数的应用.【分析】(1)根据河渠的长度y(m)与挖掘时间x(h)之间的图象关系即可作出描述.(2)设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=kx+b,根据函数过点(2,30)、(6,50),可求出k与b的值,进而确定关系式.(3)设甲队在0≤x≤6的时段内y与x之间的函数关系式y=kx,由图可知,函数图象过点(6,60),从而解出k的值,然后根据30≤y≤50可得出x的范围.【解答】解:(1)如图,乙队从挖河渠开始至2时,长度由0米增加到30米,从第2时至6时,长度由30米增加到60米.(2)设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=kx+b,由图可知,函数图象过点(2,30)、(6,50),∴,解得,∴y=5x+20;(3)设甲队在0≤x≤6的时段内y与x之间的函数关系式y=kx,由图可知,函数图象过点(6,60),∴6k=60,解得k=10,∴y=10x.当y=30时,x=3;当y=50时,x=5.∴当3≤x≤5时,甲队所挖河渠的长度y的值在30和50之间变化.试题24答案:【考点】直线与圆的位置关系;直角三角形的性质;相似三角形的判定与性质.【分析】(1)结论:BD是圆的切线,已知此线过圆O上点D,连接圆心O和点D(即为半径),再证垂直即可;(2)通过作辅助线,根据已知条件求出∠CBD的度数,在Rt△BCD中求解即可.【解答】解:(1)直线BD与⊙O相切.证明:如图,连接OD.∵OA=OD∴∠A=∠ADO∵∠C=90°,∴∠CBD+∠CDB=90°又∵∠CBD=∠A∴∠ADO+∠CDB=90°∴∠ODB=90°∴直线BD与⊙O相切.(2)解法一:如图,连接DE.∵AE是⊙O的直径,∴∠ADE=90°∵AD:AO=8:5∴cosA=AD:AE=4:5∵∠C=90°,∠CBD=∠Acos∠CBD=BC:BD=4:5∵BC=2,BD=;解法二:如图,过点O作OH⊥AD于点H.∴AH=DH=AD∵AD:AO=8:5∴cosA=AH:AO=4:5∵∠C=90°,∠CBD=∠A∴cos∠CBD=BC:BD=4:5,∵BC=2,∴BD=.试题25答案:【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质;等边三角形的性质.【分析】特例探究:利用等边三角形的三条边都相等、三个内角都是60°的性质推知AB=AC,∠DBA=∠EAC=60°,然后结合已知条件BD=AE,利用全等三角形的判定定理SAS证得△ABD≌△CAE.归纳证明:△ABD与△CAE全等.利用等边三角形的三条边都相等、三个内角都是60°的性质以及三角形外角定理推知AB=AC,∠DBA=∠EAC=120°,然后结合已知条件BD=AE,利用全等三角形的判定定理SAS证得△ABD≌△CAE;拓展应用:利用全等三角形(△ABD≌△CAE)的对应角∠BDA=∠AEC=32°,然后由三角形的外角定理求得∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.试题26答案:【考点】二次函数综合题.【分析】方法一:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.(3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.方法二:(1)略.(2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,从而求出圆心坐标.(3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出△MBC的面积函数,从而求出M点.【解答】方法一:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即 M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.方法二:(1)略.(2)∵y=(x﹣4)(x+1),∴A(﹣1,0),B(4,0).C(0,﹣2),∴K AC==﹣2,K BC==,∴K AC×K BC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0).(3)过点M作x轴的垂线交BC′于H,∵B(4,0),C(0,﹣2),∴l BC:y=x﹣2,设H(t,t﹣2),M(t,t2﹣t﹣2),∴S△MBC=×(H Y﹣M Y)(B X﹣C X)=×(t﹣2﹣t2+t+2)(4﹣0)=﹣t2+4t,∴当t=2时,S有最大值4,∴M(2,﹣3).。

山东省临沂市2017年中考数学模拟试卷(10)(含解析)

山东省临沂市2017年中考数学模拟试卷(10)(含解析)

2017年山东省临沂市中考数学模拟试卷(10)一、选择题(本题共14个小题,每小题3分,共42分)1.|﹣5|的相反数是()A.5 B.﹣5 C.﹣ D.2.长江三峡工程电站的总装机容量用科学记数法表示为 1.82×107千瓦,把它写成原数是()A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦3.如图,a∥b,点A在直a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=25°,则∠2的度数为()A.75° B.70° C.65° D.25°4.下列四个算式中,正确的个数有()①a4•a3=a12;②a5+a5=a10;③a5÷a5=a;④(a3)3=a6;⑤(﹣3)0=1.A.0个B.1个C.2个D.3个5.把不等式组,的解集表示在数轴上,正确的是()A.B. C.D.6.计算的结果是()A.B.C.x2+1 D.x2﹣17.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60π B.70π C.90π D.160π8.方程x2﹣6x+1=0经过配方后,其结果正确的是()A.(x﹣3)2=8 B.(x+3)2=35 C.(x﹣3)2=35 D.(x+3)2=89.在一个不透明的袋子中装有2个红球,2个白球,它们除颜色外其余均相同,随机从中一次摸出两球,恰为一个红球和一个白球的概率是()A.B.C.D.10.如图,菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A恰好落在BD 上的点F,那么∠BFC的度数是()A.60° B.70° C.75° D.80°11.以点P(1,2)为圆心,r为半径画圆,与坐标轴恰好有三个交点,则r应满足()A.r=2或B.r=2 C.r=D.2≤r≤12.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBC=,则AD 的长为()A.2 B.4 C.D.13.四个小朋友站成一排,老师按图中所示的规则数数,数到2014时对应的小朋友可得一朵红花.那么,得红花的小朋友是()A.小沈 B.小叶 C.小李 D.小王14.如图,直线y=kx+b(k<0,b>0)与x轴、y轴分别相交于B、A两点,C为线段AB上的一动点,CD⊥x轴于D点,设△OCD的面积为S,C点横坐标为x,下列图象中,能表示S 与x的函数关系式的图象可能是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)15.因式分解:2x3﹣8x= .16.若一组数据3,4,x,5,8的平均数是4,则该组数据的中位数是.17.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是.(填写所有正确结论的序号)①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.5成立.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC 上的动点,则△BEQ周长的最小值为.19.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.三、解答题(本大题共7小题,共63分)20.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?21.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.22.“知识改变命运,科技繁荣祖国”.我区中小学每年都要举办一届科技比赛.如图为我区某校2011年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图(1)该校参加机器人、建模比赛的人数分别是人和人;(2)该校参加科技比赛的总人数是人,电子百拼所在扇形的圆心角的度数是°,并把条形统计图补充完整;(3)从全区中小学参加科技比赛选手中随机抽取80人,其中有32人获奖.今年我区中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?23.某化工厂现有甲种原料7吨,乙种原料5吨,现计划用这两种原料生产两种不同的化工产品A和B共8吨,已知生产每吨A,B产品所需的甲、乙两种原料如下表:销售A,B两种产品获得的利润分别为0.45万元/吨、0.5万元/吨.若设化工厂生产A产品x吨,且销售这两种产品所获得的总利润为y万元.(1)求y与x的函数关系式,并求出x的取值范围;(2)问化工厂生产A产品多少吨时,所获得的利润最大?最大利润是多少?24.如图,在半径为5的⊙O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动.(1)当点P与点C关于AB对称时,求CP的长;(2)当点P运动到弧AB的中点时,求CP的长;(3)点P在弧AB上运动时,求CP的长的取值范围.25.情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D 的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是,∠CAC′=°.问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.26.如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.2017年山东省临沂市中考数学模拟试卷(10)参考答案与试题解析一、选择题(本题共14个小题,每小题3分,共42分)1.|﹣5|的相反数是()A.5 B.﹣5 C.﹣ D.【考点】相反数;绝对值.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:|﹣5|=5,5的相反数是﹣5,故选:B.2.长江三峡工程电站的总装机容量用科学记数法表示为 1.82×107千瓦,把它写成原数是()A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦【考点】科学记数法—原数.【分析】把数据1.82×107写成原数,就是把1.82的小数点向右移动7位.【解答】解:把数据1.82×107中1.82的小数点向右移动7位就可以得到,为18 200 000.故选C.3.如图,a∥b,点A在直a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=25°,则∠2的度数为()A.75° B.70° C.65° D.25°【考点】平行线的性质;等腰三角形的性质.【分析】根据等腰直角三角形性质求出∠ACB,求出∠ACE的度数,根据平行线的性质得出∠2=∠ACE,代入求出即可.【解答】解:如图.∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵∠1=25°,∴∠ACE=25°+45°=70°,∵a∥b,∴∠2=∠ACE=70°,故选B.4.下列四个算式中,正确的个数有()①a4•a3=a12;②a5+a5=a10;③a5÷a5=a;④(a3)3=a6;⑤(﹣3)0=1.A.0个B.1个C.2个D.3个【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据同底数幂的乘法,可判断①,根据合并同类项,可判断②,根据同底数幂的除法,可判断③,根据幂的乘方,可判断④,根据0指数幂,可判断⑤.【解答】解:①底数不变指数相加,故①错误;②系数相加字母部分不变,故②错误;③底数不变指数相减,故③错误;④底数不变指数相乘,故④错误;⑤非0的0次幂等于1,故⑤正确;故选;B.5.把不等式组,的解集表示在数轴上,正确的是()A.B. C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【解答】解:解得,故选:D.6.计算的结果是()A.B.C.x2+1 D.x2﹣1【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到最简结果.【解答】解:原式=[+]•(x+1)(x﹣1)=2x+(x﹣1)2=x2+1,故选C7.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60π B.70π C.90π D.160π【考点】由三视图判断几何体.【分析】易得此几何体为空心圆柱,圆柱的体积=底面积×高,把相关数值代入即可求解.【解答】解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为10×(42π﹣32π)=70π,故选:B.8.方程x2﹣6x+1=0经过配方后,其结果正确的是()A.(x﹣3)2=8 B.(x+3)2=35 C.(x﹣3)2=35 D.(x+3)2=8【考点】解一元二次方程﹣配方法.【分析】方程常数项移到右边,两边加上9变形得到结果,即可做出判断.【解答】解:方程变形得:x2﹣6x=﹣1,配方得:x2﹣6x+9=8,即(x﹣3)2=8,故选A9.在一个不透明的袋子中装有2个红球,2个白球,它们除颜色外其余均相同,随机从中一次摸出两球,恰为一个红球和一个白球的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出一红一白的情况数,即可求出所求的概率.【解答】解:列表如下:所有等可能的情况数有12种,其中恰为一个红球和一个白球的情况有8种,则P(一红一白)==.故选A10.如图,菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A恰好落在BD 上的点F,那么∠BFC的度数是()A.60° B.70° C.75° D.80°【考点】菱形的性质;翻折变换(折叠问题).【分析】根据菱形的性质可得AB=BC,∠A+∠ABC=180°,BD平分∠ABC,然后再计算出∠FBC=30°,再证明FB=BC,再利用等边对等角可得∠BFC=∠BCF,利用三角形内角和可得答案.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∠A+∠ABC=180°,BD平分∠ABC,∵∠A=120°,∴∠ABC=60°,∴∠FBC=30°,根据折叠可得AB=BF,∴FB=BC,∴∠BFC=∠BCF=÷2=75°,故选:C.11.以点P(1,2)为圆心,r为半径画圆,与坐标轴恰好有三个交点,则r应满足()A.r=2或B.r=2 C.r=D.2≤r≤【考点】直线与圆的位置关系;坐标与图形性质;勾股定理.【分析】由以点P(1,2)为圆心,r为半径画圆,与坐标轴恰好有三个交点,可得⊙P与x 轴相切或⊙P过原点,然后分别分析求解即可求得答案.【解答】解:∵以点P(1,2)为圆心,r为半径画圆,与坐标轴恰好有三个交点,∴⊙P与x轴相切(如图1)或⊙P过原点(如图2),当⊙P与x轴相切时,r=2;当⊙P过原点时,r=OP==.∴r应满足:r=2或.故选A.12.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBC=,则AD 的长为()A.2 B.4 C.D.【考点】解直角三角形.【分析】先由等腰直角三角形的性质得出BC=AC=6,再解Rt△DBC,求出DC的长,然后根据AD=AC﹣DC即可求解.【解答】解:在等腰Rt△ABC中,∵∠C=90°,AC=6,∴BC=AC=6.在Rt△DBC中,∵∠C=90°,∴tan∠DBC==,∴DC=BC=4,∴AD=AC﹣DC=6﹣4=2.故选A.13.四个小朋友站成一排,老师按图中所示的规则数数,数到2014时对应的小朋友可得一朵红花.那么,得红花的小朋友是()A.小沈 B.小叶 C.小李 D.小王【考点】规律型:数字的变化类.【分析】从图上可以看出,去掉第一个数,每6个数一循环,用÷6算出余数,再进一步确定2014的位置即可.【解答】解:去掉第一个数,每6个数一循环,÷6=2013÷6=335…3,所以2014时对应的小朋友与4对应的小朋友是同一个.故选:D.14.如图,直线y=kx+b(k<0,b>0)与x轴、y轴分别相交于B、A两点,C为线段AB上的一动点,CD⊥x轴于D点,设△OCD的面积为S,C点横坐标为x,下列图象中,能表示S 与x的函数关系式的图象可能是()A.B.C.D.【考点】动点问题的函数图象.【分析】先确定B点坐标为(﹣,0),再根据三角形的面积公式得到S=kx2+bx(0≤x≤﹣),然后根据抛物线的性质进行判断.【解答】解:把y=0代入y=kx+b 得kx+b=0,解得x=﹣,则B 点坐标为(﹣,0), ∵C 为线段AB 上的一动点,CD ⊥x 轴于D ,∴C 点坐标为(x ,kx+b )(0≤x ≤﹣),∴S=OD•CD=•x•(kx+b )=kx 2+bx (0≤x ≤﹣), ∵k <0,b >0,∴S 与x 的函数关系式的图象为开口向下的抛物线在第一象限的部分(含与坐标轴的交点). 故选C .二、填空题(本大题共5小题,每小题3分,共15分) 15.因式分解:2x 3﹣8x= 2x (x+2)(x ﹣2) . 【考点】提公因式法与公式法的综合运用.【分析】先提公因式2x ,分解成2x (x 2﹣4),而x 2﹣4可利用平方差公式分解. 【解答】解:2x 3﹣8x=2x (x 2﹣4)=2x (x+2)(x ﹣2). 故答案为:2x (x+2)(x ﹣2).16.若一组数据3,4,x ,5,8的平均数是4,则该组数据的中位数是 4 . 【考点】中位数;算术平均数.【分析】首先根据平均数为4,求出x 的值,然后根据中位数的概念求解.【解答】解:根据题意可得, =4,解得:x=0,这组数据按照从小到大的顺序排列为:0,3,4,5,8, 则中位数为:4. 故答案为:4.17.设[x )表示大于x 的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是 ④ .(填写所有正确结论的序号)①[0)=0;②[x )﹣x 的最小值是0;③[x )﹣x 的最大值是0;④存在实数x ,使[x )﹣x=0.5成立.【考点】一元一次不等式组的应用.【分析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【解答】解:①[0)=1,故本项错误;②[x)﹣x>0,但是取不到0,故本项错误;③[x)﹣x≤1,即最大值为1,故本项错误;④存在实数x,使[x)﹣x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC 上的动点,则△BEQ周长的最小值为 6 .【考点】轴对称﹣最短路线问题;正方形的性质.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.19.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为 2 .【考点】反比例函数图象上点的坐标特征;解一元二次方程﹣因式分解法.【分析】先确定B点坐标(1,6),根据反比例函数图象上点的坐标特征得到k=6,则反比例函数解析式为y=,设AD=t,则OD=1+t,所以E点坐标为(1+t,t),再利用根据反比例函数图象上点的坐标特征得(1+t)•t=6,利用因式分解法可求出t的值.【解答】解:∵OA=1,OC=6,∴B点坐标为(1,6),∴k=1×6=6,∴反比例函数解析式为y=,设AD=t,则OD=1+t,∴E点坐标为(1+t,t),∴(1+t)•t=6,整理为t2+t﹣6=0,解得t1=﹣3(舍去),t2=2,∴正方形ADEF的边长为2.故答案为:2.三、解答题(本大题共7小题,共63分)20.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【考点】一元二次方程的应用;分式方程的应用.【分析】(1)利用原工作时间﹣现工作时间=4这一等量关系列出分式方程求解即可;(2)根据矩形的面积和为56平方米列出一元二次方程求解即可.【解答】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:﹣=4解得:x=2000,经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为a米,根据题意得,(20﹣3a)(8﹣2a)=56解得:a=2或a=(不合题意,舍去).答:人行道的宽为2米.21.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.【考点】矩形的判定与性质;勾股定理;平行四边形的性质.【分析】(1)利用三线合一定理可以证得∠ADB=90°,根据矩形的定义即可证得;(2)利用勾股定理求得BD的长,然后利用矩形的面积公式即可求解.【解答】解:(1)∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠ADB=90°,∵四边形ADBE是平行四边形.∴平行四边形ADBE是矩形;(2)∵AB=AC=5,BC=6,AD是BC的中线,∴BD=DC=6×=3,在直角△ACD中,AD===4,∴S矩形ADBE=BD•AD=3×4=12.22.“知识改变命运,科技繁荣祖国”.我区中小学每年都要举办一届科技比赛.如图为我区某校2011年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图(1)该校参加机器人、建模比赛的人数分别是 4 人和 6 人;(2)该校参加科技比赛的总人数是24 人,电子百拼所在扇形的圆心角的度数是120 °,并把条形统计图补充完整;(3)从全区中小学参加科技比赛选手中随机抽取80人,其中有32人获奖.今年我区中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由图知参加机器人、建模比赛的人数;(2)参加建模的有6人,占总人数的25%,根据总人数=参加航模比赛的人数÷25%,算出电子百拼比赛的人数,再算出所占的百分比×360°;(3)先求出随机抽取80人中获奖的百分比,再乘以我市中小学参加科技比赛比赛的总人数.【解答】解:(1)由条形统计图可得:该校参加机器人、建模比赛的人数分别是4人,6人;故答案为:4,6.(2)该校参加科技比赛的总人数是:6÷25%=24,电子百拼所在扇形的圆心角的度数是:(24﹣6﹣6﹣4)÷24×360°=120°,故答案为:24,120.(3)32÷80=0.4,0.4×2485=994,答:今年参加科技比赛比赛的获奖人数约是994人.23.某化工厂现有甲种原料7吨,乙种原料5吨,现计划用这两种原料生产两种不同的化工产品A和B共8吨,已知生产每吨A,B产品所需的甲、乙两种原料如下表:销售A,B两种产品获得的利润分别为0.45万元/吨、0.5万元/吨.若设化工厂生产A产品x吨,且销售这两种产品所获得的总利润为y万元.(1)求y与x的函数关系式,并求出x的取值范围;(2)问化工厂生产A产品多少吨时,所获得的利润最大?最大利润是多少?【考点】一次函数的应用.【分析】(1)求函数关系式不难.求x的取值范围要考虑甲乙两种原材料的数量.(2)因为利润与产品A的关系式已求出,根据函数性质,结合自变量的取值范围即可求出函数的最值.【解答】解:(1)据题意得:y=0.45x+(8﹣x)×0.5=﹣0.05x+4,因为生产两种产品所需的甲种原料为:0.6x+1.1×(8﹣x),所需的乙种原料为:0.8x+0.4×(8﹣x),则可得不等式组,解得3.6≤x≤4.5;(2)因为函数关系式y=﹣0.05x+4中的﹣0.05<0,所以y随x的增大而减小.则由(1)可知当x=3.6时,y取最大值,且为3.82万元.答:化工厂生产A产品3.6吨时,所获得的利润最大,最大利润是3.82万元.24.如图,在半径为5的⊙O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动.(1)当点P与点C关于AB对称时,求CP的长;(2)当点P运动到弧AB的中点时,求CP的长;(3)点P在弧AB上运动时,求CP的长的取值范围.【考点】圆周角定理;勾股定理;垂径定理.【分析】(1)由点P与点C关于AB对称,根据垂径定理,即可得CD=PD,又由AB为⊙O的直径,即可得∠ACB是直角,然后根据勾股定理与相交弦定理,即可求得CP的长;(2)首先连接PB,过点B作BE⊥PC于点E,由点P运动到弧AB的中点,根据圆周角定理,即可求得PB的长,∠BCP的度数,由勾股定理,求得BE的长,继而求得CP的长;(3)由点P在弧AB上运动时,恒有 CP>CA,当CP过圆心O,即PC取最大值10,则可求得CP的长的取值范围.【解答】解:(1)∵点P与点C关于AB对称,∴CP⊥AB,设垂足为D.∵AB为⊙O的直径,∴∠ACB=90°.∴AB=10,BC:CA=4:3,∴BC=8,AC=6.又∵AC•BC=AB•CD,∴CD=4.8,∴CP=2CD=9.6;(2)当点P运动到弧AB的中点时,连接PB,过点B作BE⊥PC于点E.∵P是弧AB的中点,∴AP=BP=5,∠ACP=∠BCP=45°,∵BC=8,∴CE=BE=4,∴PB=5,∴PE==3,∴CP=CE+PE=7;(3)点P在弧AB上运动时,恒有 CP>CA,即CP>6,当CP过圆心O,即PC取最大值10,∴CP的取值范围是6<CP≤10.25.情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D 的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是AD或A′D,∠CAC′=90 °.问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】(1)根据将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,利用矩形性质即可得出与BC相等的线段以及∠CAC′的度数;(2)根据全等三角形的判定得出△ABG≌△EAP,进而求出AG=EP.同理AG=FQ,即EP=FQ.【解答】解:(1)根据将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,∴与BC相等的线段是 AD或A′D,∵∠C′AD=∠C,∠C+∠CAB=90°,∴∠C′AD+∠CAB=90°∴∠CAC′=90°;(2)EP=FQ,理由如下:∵Rt△ABE是等腰三角形,∴EA=BA,∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG,∴,∴△ABG≌△EAP(AAS),∴AG=EP.同理AG=FQ.∴EP=FQ.26.如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.【考点】二次函数综合题;根的判别式;勾股定理的应用;圆的综合题;解直角三角形的应用.【分析】(1)根据抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),利用待定系数法求抛物线解析式;(2)如答图1,由已知条件,可以计算出OD、AE等线段的长度.当PQ⊥AD时,过点O作OF⊥AD于点F,此时四边形OFQP、OFAE均为矩形.则在Rt△ODF中,利用勾股定理求出DF 的长度,从而得到时间t的数值;(3)因为OB为定值,欲使△ROB面积最大,只需OB边上的高最大即可.按照这个思路解决本题.如答图2,当直线l平行于OB,且与抛物线相切时,OB边上的高最大,从而△ROB的面积最大.联立直线l和抛物线的解析式,利用一元二次方程判别式等于0的结论可以求出R点的坐标.【解答】解:(1)∵抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),∴,解得∴抛物线的解析式为:y=x2﹣2x.(2)如答图1,连接AC交OB于点E,由垂径定理得AC⊥OB.∵AD为切线,∴AC⊥AD,∴AD∥OB.过O点作OF⊥AD于F,∴四边形OFAE是矩形,∵tan∠AOB=,∴sin∠AOB=,∴AE=OA•sin∠AOB=4×=2.4,OD=OA•tan∠OAD=OA•tan∠AOB=4×=3.当PQ⊥AD时,OP=t,DQ=2t.在Rt△ODF中,∵OD=3,OF=AE=2.4,DF=DQ﹣FQ=DQ﹣OP=2t﹣t=t,由勾股定理得:DF===1.8,∴t=1.8秒;(3)如答图2,设直线l平行于OB,且与抛物线有唯一交点R(相切),此时△ROB中OB边上的高最大,所以此时△ROB面积最大.∵tan∠AOB=,∴直线OB的解析式为y=x,由直线l平行于OB,可设直线l解析式为y=x+b.∵点R既在直线l上,又在抛物线上,∴x2﹣2x=x+b,化简得:2x2﹣11x﹣4b=0.∵直线l与抛物线有唯一交点R(相切),∴判别式△=0,即112+32b=0,解得b=﹣,此时原方程的解为x=,即x R=,而y R=x R2﹣2x R=∴点R的坐标为R(,).。

2017年山东省临沂市中考数学模拟试卷2附答案解析

2017年山东省临沂市中考数学模拟试卷2附答案解析

2017年山东省临沂市中考数学模拟试卷(2)一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的1.﹣3的绝对值是()A.﹣3 B.﹣ C.D.32.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,将67500用科学记数法表示为()A.6.75×104吨 B.67.5×103吨 C.0.675×103吨D.6.75×10﹣4吨3.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于()A.18°B.36°C.45°D.54°4.下列各式正确的是()A.2a+3b=5ab B.a2×2a4=2a4C.(﹣a2b2)2=a4b4D.a4÷a2=a35.计算﹣9的结果是()A.B.﹣C.﹣D.6.计算÷(+)的结果是()A.2 B. C.D.7.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2 C.3 D.48.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A.B. C.πD.9.小明家凉台呈圆弧形,凉台的宽度AB为8m,凉台的最外端C点离AB的距离CD为2m,则凉台所在圆的半径为()A.4m B.5m C.6m D.7m10.如图所示的平面图是4×4方格,若向方格面掷飞镖,飞镖落在黑色区域的概率为()A.B.C.D.11.如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴,y轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S212.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()A.25海里B.25海里C.50海里D.25海里13.根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的()A.B.C.D.14.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:a2b﹣b3=.16.分式方程=0的解是.17.如图1是边长为18cm的正方形纸板,截掉阴影部分后将其折叠成如图2所示的长方体盒子.已知该长方体的宽是高的2倍,则它的体积是cm3.18.用“☆”、“★”定义新运算:对于任意有理数a、b,都有a☆b=a b和a★b=b a,那么(﹣3☆2)★1=.19.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.三、解答题(本大题共7小题,共63分)20.计算:(1﹣)0+(﹣1)2014﹣tan30°+()﹣2.21.南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?22.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店各应付多少元?(2)单独请哪组,商店所付费用较少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工有利于商店经营?说说你的理由.23.已知:如图,AB是⊙O的直径,C、D为⊙O上两点,CF⊥AB于点F,CE⊥AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)若AD=CD=6,求四边形ABCD的面积.24.某次海军舰艇演习中,甲、乙两舰艇同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束.已知B港位于A港、C岛之间,且A、B、C在一条直线上.设甲、乙两舰艇行驶x(h)后,与B港的距离分别为y1和y2(km),y1、y2与x的函数关系如图所示.(1)求A港与C岛之间的距离;(2)分别求出甲、乙两舰艇的航速及图中点M的坐标;(3)若甲、乙两舰艇之间的距离不超过20km时就属于最佳通讯距离,试求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.25.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.26.如图,在平面直角坐标系中,二次函数y=﹣x2+4x+5的图象交x轴于点A、B(点A在点B 的右边),交y轴于点C,顶点为P.点M是射线OA上的一个动点(不与点O重合),点N是x 轴负半轴上的一点,NH⊥CM,交CM(或CM的延长线)于点H,交y轴于点D,且ND=CM.(1)求证:OD=OM;(2)设OM=t,当t为何值时以C、M、P为顶点的三角形是直角三角形?(3)问:当点M在射线OA上运动时,是否存在实数t,使直线NH与以AB为直径的圆相切?若存在,请求出相应的t值;若不存在,请说明理由.2017年山东省临沂市中考数学模拟试卷(2)参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的1.﹣3的绝对值是()A.﹣3 B.﹣ C.D.3【考点】绝对值.【分析】根据绝对值的定义直接解答即可.【解答】解:∵﹣3的绝对值表示﹣3到原点的距离,∴|﹣3|=3,故选D.2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,将67500用科学记数法表示为()A.6.75×104吨 B.67.5×103吨 C.0.675×103吨D.6.75×10﹣4吨【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故选:A.3.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于()A.18°B.36°C.45°D.54°【考点】平行线的性质.【分析】根据角平分线的定义求出∠BCD,再根据两直线平行,内错角相等可得∠B=∠BCD.【解答】解:∵CE平分∠BCD,∠DCE=18°,∴∠BCD=2∠DCE=2×18°=36°,∵AB∥CD,∴∠B=∠BCD=36°.故选B.4.下列各式正确的是()A.2a+3b=5ab B.a2×2a4=2a4C.(﹣a2b2)2=a4b4D.a4÷a2=a3【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】分别利用单项式乘以单项式以及积的乘方和同底数幂的除法运算法则求出即可.【解答】解:A、无法计算,故此选项错误;B、a2×2a4=2a6,此选项错误;C、(﹣a2b2)2=a4b4,此选项正确;D、a4÷a2=a2,此选项错误;故选:C.5.计算﹣9的结果是()A.B.﹣C.﹣D.【考点】二次根式的加减法.【分析】首先化简二次根式,进而合并求出即可.【解答】解:﹣9=2﹣9×=2﹣3=﹣.故选:B.6.计算÷(+)的结果是()A.2 B. C.D.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=2.故选A7.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2 C.3 D.4【考点】矩形的性质;角平分线的性质.【分析】根据平行线的性质以及角平分线的性质证明∠ADE=∠AED,根据等角对等边,即可求得AE的长,在直角△ABE中,利用勾股定理求得BE的长,则CE的长即可求解.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE===8,∴CE=BC﹣BE=AD﹣BE=10﹣8=2.故选B.8.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A.B. C.πD.【考点】圆锥的计算;由三视图判断几何体.【分析】利用三视图可判断该几何体为圆柱,然后利用圆柱体的侧面展开图为矩形和矩形的面积公式计算.【解答】解:该几何体为圆柱,它的侧面积=1×2π•=π.故选C.9.小明家凉台呈圆弧形,凉台的宽度AB为8m,凉台的最外端C点离AB的距离CD为2m,则凉台所在圆的半径为()A.4m B.5m C.6m D.7m【考点】垂径定理的应用;勾股定理.【分析】设圆心为O点,连接OA,OD,根据题意得:OC⊥AB,利用垂径定理得到D为AB的中点,求出AD的长,由OC﹣CD求出OD的长,在直角三角形AOD中,设OA=r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,即为圆的半径.【解答】解:设圆心为O点,连接OA,OD,根据题意得:OC⊥AB,∴D为AB的中点,即AD=BD=AB=4(m),设圆半径为r,则有OD=OC﹣CD=(r﹣2)m,在Rt△AOD中,OA2=AD2+OD2,即r2=42+(r﹣2)2,解得:r=5,则凉台所在圆的半径为5m.故选B10.如图所示的平面图是4×4方格,若向方格面掷飞镖,飞镖落在黑色区域的概率为()A.B.C.D.【考点】几何概率.【分析】飞镖落在黑色区域的概率等于黑色区域面积与正方形总面积之比.【解答】解:∵阴影部分面积为:4,∴飞镖落在黑色区域的概率为:=.故选:C.11.如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴,y轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2【考点】反比例函数系数k的几何意义.【分析】根据题意,易得AB两点关与原点对称,可设A点坐标为(m,﹣n),则B的坐标为(﹣m,n);在Rt△EOF中,由AE=AF,可得A为EF中点,分析计算可得S2,矩形OCBD中,易得S1,比较可得答案.【解答】解:设A点坐标为(m,﹣n),过点O的直线与双曲线y=交于A、B两点,则A、B两点关与原点对称,则B的坐标为(﹣m,n);矩形OCBD中,易得OD=n,OC=m;则S1=mn;在Rt△EOF中,AE=AF,故A为EF中点,由中位线的性质可得OF=2n,OE=2m;则S2=OF×OE=2mn;故2S1=S2.故选:B.12.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()A.25海里B.25海里C.50海里D.25海里【考点】解直角三角形的应用﹣方向角问题.【分析】根据方向角的定义得出∠ACB的度数以及BC的长,进而得出AC的长.【解答】解:∵轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,∴BC=25海里,∠ABC=75°﹣30°=45°,∵在C处观测灯塔A位于北偏东60°方向上,∴∠BCA=90°,∴△ACB是等腰直角三角形,∴BC=AC=25(海里).故选:D.13.根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的( )A .B .C .D .【考点】规律型:数字的变化类.【分析】观察不难发现,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【解答】解:由图可知,每4个数为一个循环组依次循环,2012÷4=503, 即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .14.如图,在平面直角坐标系中,边长为1的正方形ABCD 中,AD 边的中点处有一动点P ,动点P 沿P→D→C→B→A→P 运动一周,则P 点的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )A .B .C .D .【考点】动点问题的函数图象.【分析】将动点P 的运动过程划分为PD 、DC 、CB 、BA 、AP 共5个阶段,分别进行分析,最后得出结论.【解答】解:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.结合函数图象,只有D选项符合要求.故选:D.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:a2b﹣b3=b(a+b)(a﹣b).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b),故答案为:b(a+b)(a﹣b)16.分式方程=0的解是x=﹣3.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1+2=0,解得:x=﹣3,经检验x=﹣3是分式方程的解.故答案为:x=﹣3.17.如图1是边长为18cm的正方形纸板,截掉阴影部分后将其折叠成如图2所示的长方体盒子.已知该长方体的宽是高的2倍,则它的体积是216cm3.【考点】展开图折叠成几何体.【分析】设该长方体的高为x,则长方体的宽为2x,利用展开图得到2x+2x+x+x=18,然后解方程得到x的值,从而得到该长方体的高、宽、长,于是可计算出它的体积.【解答】解:设该长方体的高为x,则长方体的宽为2x,2x+2x+x+x=18,解得x=3,所以该长方体的高为3,则长方体的宽为6,长为18﹣6=12,所以它的体积为3×6×12=216(cm2).故答案为216.18.用“☆”、“★”定义新运算:对于任意有理数a、b,都有a☆b=a b和a★b=b a,那么(﹣3☆2)★1=1.【考点】有理数的乘方.【分析】先根据题意得出(﹣3☆2)★1=[(﹣3)2]★1=9★1=19即可.【解答】解:∵a☆b=a b和a★b=b a,∴(﹣3☆2)★1=[(﹣3)2]★1=9★1=19=1.故答案为:1.19.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【考点】菱形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.【解答】解:延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°∴AB=AD,∠A=60°,∵BM=AE,∴AD=ME,∵△DEF为等边三角形,∴∠DAE=∠DFE=60°,DE=EF=FD,∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,∴∠MEF=∠ADE,∴在△DAE和△EMF中,∴△DAE≌EMF(SAS),∴AE=MF,∠M=∠A=60°,又∵BM=AE,∴△BMF是等边三角形,∴BF=AE,∵AE=t,CF=2t,∴BC=CF+BF=2t+t=3t,∵BC=4,∴3t=4,∴t=故答案为:.三、解答题(本大题共7小题,共63分)20.计算:(1﹣)0+(﹣1)2014﹣tan30°+()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用特殊角的三角函数值计算,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=1+1﹣×+9=10.21.南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?【考点】扇形统计图;条形统计图.【分析】(1)用参加坐位体前摆的人数与仰卧起坐的人数的人数除以其所占的百分比即可得到测试人数;(2)用总人数减去其他各项人数即可得到参加立定跳远的人数,补全统计图即可;(3)用总人数乘以其所占的比即可得到参加仰卧起坐的人数.【解答】解:(1)由图可知,坐位体前摆的人数与仰卧起坐的人数是25+20=45人,这些人占班级参加测试总人数的百分数为(1﹣10%)=90%,所以这个班参加测试的学生有45÷90%=50人,答:该学校九年级一班参加体育达标测试的学生有50人.(2)立定跳远的人数为50﹣25﹣20=5人,(3)用样本估计总体,全校参加仰卧起坐达标测试的人数有1200×(20÷50)=480人,答:估计参加仰卧起坐测试的有480人.22.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店各应付多少元?(2)单独请哪组,商店所付费用较少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工有利于商店经营?说说你的理由.【考点】二元一次方程组的应用.【分析】(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,根据总费用与时间的关系建立方程组求出其解即可;(2)设工作总量为单位1,甲组工作效率为x,乙组工作效率为y,建立方程组求出结果就可以求出甲乙单独完成需要的时间,再求出甲、乙两组单独完成的费用进行比较就可以得出结论;(3)先比较甲、乙单独装修的时间和费用谁对商店经营有利,再比较合作装修与甲单独装修对商店的有利经营情况,从而可以得出结论.【解答】解:(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元.由题意可得:,解得:.答:甲组单独工作一天商店应付300元,乙组单独工作一天商店应付140元.(2)设工作总量为单位1,甲组工作效率为x,乙组工作效率为y.由题意可得:,解得:,∴甲组单独完成装修需(天),乙组单独完成装修需(天),∴单独请甲组需付300×12=3600(元),单独请乙组需付140×24=3360(元),∵3600>3360,∴单独请乙组费用较少;(3)由题意,得①甲组单独做12天完成,商店需付款3600元;乙组单独做24天完成,商店需付款3360元;但甲组比乙组早12天完工,商店12天的利润为200×12=2400元,即开支为3600﹣2400=1200元<3360元,故选择甲组单独做比选择乙组单独做划算.②甲、乙合作8天可以完成,需付费用3520元,此时工期比甲单独做少4天,商店开业4天的利润为4×200=800元,开支为3520﹣800=2720元<3600元;则甲、乙合作比甲单独做12天合算.综上所述,甲、乙合作这一方案最优.23.已知:如图,AB是⊙O的直径,C、D为⊙O上两点,CF⊥AB于点F,CE⊥AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)若AD=CD=6,求四边形ABCD的面积.【考点】切线的判定与性质;圆周角定理.【分析】(1)连接OC.根据角平分线性质定理的逆定理,得∠CAE=∠CAB.根据OC=OA,得到∠CAB=∠OCA,从而得到∠CAE=∠OCA,根据内错角相等,两条直线平行,得到OC∥AE,从而根据切线的判定证明结论;(2)根据AD=CD,得到∠DAC=∠DCA=∠CAB,从而DC∥AB,得到四边形AOCD是平行四边形.根据平行四边形的性质,得OC=AD=6,则AB=12.根据∠CAE=∠CAB,得到弧CD=弧CB,则△OCB是等边三角形,根据等边三角形的性质求得CF=3,再根据梯形的面积公式进行计算.【解答】解:(1)连接OC.∵CF⊥AB,CE⊥AD,且CE=CF,∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA,∴∠CAE=∠OCA,∴OC∥AE,∴OC⊥CE,又∵OC是⊙O的半径,∴CE是⊙O的切线;(2)∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB.∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形.∴OC=AD=6,AB=12.∵∠CAE=∠CAB,∴弧CD=弧CB,∴CD=CB=6,∴△OCB是等边三角形,∴,=.∴S四边形ABCD24.某次海军舰艇演习中,甲、乙两舰艇同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束.已知B港位于A港、C岛之间,且A、B、C在一条直线上.设甲、乙两舰艇行驶x(h)后,与B港的距离分别为y1和y2(km),y1、y2与x的函数关系如图所示.(1)求A港与C岛之间的距离;(2)分别求出甲、乙两舰艇的航速及图中点M的坐标;(3)若甲、乙两舰艇之间的距离不超过20km时就属于最佳通讯距离,试求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.【考点】一次函数的应用.【分析】(1)利用甲船与B港的距离y1(km)与行驶时间x(h)的函数图象如图所示.结合已知条件“B港位于A港、C岛之间,且A、B、C在一条直线上”来求A港与C岛之间的距离;(2)利用速度=来求甲、乙两舰艇的航速;点M即为y1、y2与交点;(3)需要分类讨论:甲舰艇追上乙舰艇之前、后两种情况下,两舰艇处于最佳通讯距离时x的取值范围.【解答】解:(1)40+160=200(km),即A港与C岛之间的距离为200km;(2)甲航速为=80(km/h),乙航速为=60(km/h).当0.5≤x≤时,y1=80x﹣40 ①,当0≤x≤2时,y2=60x ②,①②联立成方程组解得即M点坐标为(2,120);(3)当甲舰艇追上乙舰艇之前两舰艇处于最佳通讯距离时,(80﹣60)x≥40﹣20,解得x≥1.当甲舰艇追上乙舰艇之后两舰艇处于最佳通讯距离时,(80﹣60)(x﹣2)≤20,解得,x≤3.∴在演习第一阶段两舰艇处于最佳通讯距离时的x的取值范围是1≤x≤2.25.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.【考点】一次函数的应用;一元一次方程的应用.【分析】(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.【解答】解:(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40,∴a=40.答:a=40,m=1;(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得40=k1,∴y=40x当1<x≤1.5时,y=40;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得:,∴y=40x﹣20.y=;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得:,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.=,.答:乙车行驶小时或小时,两车恰好相距50km.26.如图,在平面直角坐标系中,二次函数y=﹣x2+4x+5的图象交x轴于点A、B(点A在点B 的右边),交y轴于点C,顶点为P.点M是射线OA上的一个动点(不与点O重合),点N是x 轴负半轴上的一点,NH⊥CM,交CM(或CM的延长线)于点H,交y轴于点D,且ND=CM.(1)求证:OD=OM;(2)设OM=t,当t为何值时以C、M、P为顶点的三角形是直角三角形?(3)问:当点M在射线OA上运动时,是否存在实数t,使直线NH与以AB为直径的圆相切?若存在,请求出相应的t值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据题意可证明∠OND=∠OCM,则△DON≌△MOC,则OD=OM;(2)根据抛物线的解析式求得点C、P的坐标,从而得出直线PC的解析式,根据两直线垂直,比例系数k互为负倒数,从而得出t的值;(3)假设存在实数t,以AB为直径的圆的半径为3,假设圆心为E,与直线NH的切点为F,可得△EFN∽△COM,根据相似三角形的性质求得t.【解答】解:(1)∵NH⊥CM,∴∠OND+∠OMC=90°,∵∠OCM+∠OMC=90°,∴∠OND=∠OCM,∵ND=CM,∴△DON≌△MOC,∴OD=OM;(2)二次函数y=﹣x2+4x+5的顶点P(2,9),点C的坐标为(0,5),∴直线PC的解析式为y=2x+5,∵PC⊥CM,∴直线MC的解析式为y=﹣x+5,∴点M的坐标为(10,0),∴t=10;∴当t为10时,以C、M、P为顶点的三角形是直角三角形;设M(b,0)CM2=25+b2PM2=81+(b﹣2)281+(b﹣2)2+20=25+b2b=20M(20,0)当t=20时以C、M、P为顶点的三角形是直角三角形.(3)假设存在实数t,使直线NH与以AB为直径的圆相切,设圆心为E,与直线NH的切点为F,由(1)可得△EFN∽△COM,∴=,∴=,解得t=,∴存在实数t=,使直线NH与以AB为直径的圆相切.。

山东省临沂市蒙阴县2017年中考数学二模试卷(含解析)

山东省临沂市蒙阴县2017年中考数学二模试卷(含解析)

2017年山东省临沂市蒙阴县中考数学二模试卷一、选择题:(每小题3分,本题满分共42分,)在每小题所给的四个选选项中,只有一项是符合题目要求的.1.的相反数是()A.2 B.﹣2 C.D.﹣2.下列计算正确的是()A.x+x2=x3B.x2•x3=x6C.(x3)2=x6D.x9÷x3=x33.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE4.如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是()A.B.C.D.5.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()捐款(元)10 15 20 50人数 1 5 4 2A.15,15 B.17.5,15 C.20,20 D.15,206.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠17.化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a28.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°9.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.10.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.111.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.1612.如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x 轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为()A.1 B.2 C.3 D.413.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a214.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=+bx+c的顶点,则抛物线y=+bx+c与直线y=1交点的个数是()A.0个或1个B.0个或2个C.1个或2个D.0个、1个或2个二、填空题(本大题共5个小题.每小题3分,共15分)15.分解因式:2x2﹣8= .16.方程﹣=0的解为x= .17.有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC,用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r= .18.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= .19.如果一个数的平方等于﹣1,记作i2=﹣1,这个数叫做虚数单位.形如a+bi(a,b为有理数)的数叫复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.如:(2+i)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i,(5+i)×(3﹣4i)=5×3+5×(﹣4i)+i×3+i×(﹣4i)=15﹣20i+3i﹣4×i2=15﹣17i﹣4×(﹣1)=19﹣17i.请根据以上内容的理解,利用以前学习的有关知识将(1+i)(1﹣i)化简结果为为.三、解答题(本大题共7小题,共63分)20.计算:()﹣1﹣(﹣2014)0﹣2cos45°+.21.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:AD=CE;(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)24.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)…30 40 50 60 …每天销售量y(件)…500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?25.问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求出∠AEB的度数以及判断线段CM、AE、BE 之间的数量关系,并说明理由.26.如图,点A的坐标为(﹣8,0),点P的坐标为,直线y=x+b过点A,交y 轴于点B,以点P为圆心,以PA为半径的圆交x轴于点C.(1)判断点B是否在⊙P上?说明理由.(2)求过A、B、C三点的抛物线的解析式;并求抛物线与⊙P另外一个交点为D的坐标.(3)⊙P上是否存在一点Q,使以A、P、B、Q为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.2017年山东省临沂市蒙阴县中考数学二模试卷参考答案与试题解析一、选择题:(每小题3分,本题满分共42分,)在每小题所给的四个选选项中,只有一项是符合题目要求的.1.的相反数是()A.2 B.﹣2 C.D.﹣【考点】15:绝对值;14:相反数.【分析】根据相反数的概念和绝对值的性质进行解答.【解答】解:的相反数是﹣.故选D.2.下列计算正确的是()A.x+x2=x3B.x2•x3=x6C.(x3)2=x6D.x9÷x3=x3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B、原式=x5,错误;C、原式=x6,正确;D、原式=x6,错误.故选C.3.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE【考点】J9:平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确.B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、BC、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误;D、∠C=∠ABE不能判断出EB∥AC,故本选项错误;故选:A.4.如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据俯视图是从上面看到的图形判定即可.【解答】解:从上面可看到从左往右有三个正方形,故选:A.5.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()捐款(元)10 15 20 50人数 1 5 4 2A.15,15 B.17.5,15 C.20,20 D.15,20【考点】W4:中位数;W5:众数.【分析】根据众数的定义即可得到捐款金额的众数是15;在12个数据中,第6个数和第7个数分别是15元,20元,然后根据中位数的定义求解.(15+20)【解答】解:共有数据12个,第6个数和第7个数分别是15元,20元,所以中位数是:÷2=17.5(元);捐款金额的众数是15元.故选:B.6.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠1【考点】AA:根的判别式;A1:一元二次方程的定义.【分析】根据判别式的意义得到△=22﹣4(k﹣1)×(﹣2)>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,∴△=22﹣4(k﹣1)×(﹣2)>0,解得k>;且k﹣1≠0,即k≠1.故选:C.7.化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【考点】66:约分.【分析】首先将分式的分子因式分解,进而约分求出即可.【解答】解: ==﹣ab.故选:B.8.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°【考点】M5:圆周角定理.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.9.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组;D1:点的坐标.【分析】根据P为第四象限点,得到横坐标大于0,纵坐标小于0,列出关于x的不等式组,求出不等式组的解集,表示在数轴上即可得到结果.【解答】解:根据题意得:,由①得:x>﹣3;由②得:x<4,则不等式组的解集为﹣3<x<4,表示在数轴上,如图所示:.故选C.10.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.1【考点】X4:概率公式;R5:中心对称图形.【分析】先判断出圆、矩形、等边三角形、等腰梯形中的中心对称图形,再根据概率公式解答即可.【解答】解:圆、矩形、等边三角形、等腰梯形中,中心对称图形有圆,矩形2个;则P(中心对称图形)==.故选B.11.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16【考点】L3:多边形内角与外角.【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【解答】解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.12.如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x 轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为()A.1 B.2 C.3 D.4【考点】G5:反比例函数系数k的几何意义.【分析】根据反比例函数图象和圆的性质得到点P与点Q关于直线y=x对称,Q点的坐标为(3,1),则图中阴影部分为两个边长分别为1和2的矩形,然后根据矩形的面积公式求解.【解答】解:∵双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,∴点P与点Q关于直线y=x对称,∴Q点的坐标为(3,1),∴图中阴影部分的面积=2×(3﹣1)=4.故选D.13.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形PCQE的面积求解.【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.14.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=+bx+c的顶点,则抛物线y=+bx+c与直线y=1交点的个数是()A.0个或1个B.0个或2个C.1个或2个D.0个、1个或2个【考点】H3:二次函数的性质.【分析】令y=x2+bx+c,y=1,要求方程x2+bx+c=1的解的个数,只需求抛物线y=x2+bx+c与直线y=1有没有交点即可.【解答】解:由抛物线y=x2+bx+c的图象可知,该抛物线与x轴没有交点,即:△<0,则:b2﹣4c<0,又点M是直线y=2与x轴之间的一个动点,点M的坐标为:(﹣,),所以,0<<2,即:﹣8<b2﹣4c<0,令y=x2+bx+c﹣1,则要求方程x2+bx+c=1的解得个数,只需判定抛物线y=x2+bx+c ﹣1与x轴有无交点及交点的个数即可.又因为,△=b2﹣4ac=b2﹣4(c﹣1)=b2﹣4c+4,所以,﹣4<b2﹣4c+4<4,即:①当﹣4<b2﹣4c+4<0时,抛物线y=x2+bx+c﹣1与x轴没有交点;②b2﹣4c+4=0时,抛物线y=x2+bx+c﹣1与x轴有一个交点;③0<b2﹣4c+4<4时,抛物线y=x2+bx+c﹣1与x轴有两个交点.故选:D.二、填空题(本大题共5个小题.每小题3分,共15分)15.分解因式:2x2﹣8= 2(x+2)(x﹣2).【考点】53:因式分解﹣提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).16.方程﹣=0的解为x= 2 .【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣3﹣x﹣1=0,解得:x=2,经检验x=2是分式方程的解.故答案为:217.有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC,用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r= .【考点】MP:圆锥的计算.【分析】连接OA,作OD⊥AB于点D,利用三角函数以及垂径定理即可求得AB的长,然后利用扇形的弧长公式即可求得弧长,然后利用圆的周长公式即可求得半径.【解答】解:连接OA,作OD⊥AB于点D.则∠DAO=×60°=30°,OD=1,则AD=OD=,∴AB=2.则扇形的弧长是: =,根据题意得:2πr=,解得:r=.故答案是:.18.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= .【考点】L8:菱形的性质;J5:点到直线的距离;KQ:勾股定理.【分析】因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.【解答】解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO•BO=AB•OH,OH=.故答案为:.19.如果一个数的平方等于﹣1,记作i2=﹣1,这个数叫做虚数单位.形如a+bi(a,b为有理数)的数叫复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.如:(2+i)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i,(5+i)×(3﹣4i)=5×3+5×(﹣4i)+i×3+i×(﹣4i)=15﹣20i+3i﹣4×i2=15﹣17i﹣4×(﹣1)=19﹣17i.请根据以上内容的理解,利用以前学习的有关知识将(1+i)(1﹣i)化简结果为为 2 .【考点】2C:实数的运算;4F:平方差公式.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题意得:(1+i)(1﹣i)=1﹣i+i+1=2,故答案为:2.三、解答题(本大题共7小题,共63分)20.计算:()﹣1﹣(﹣2014)0﹣2cos45°+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=()﹣1﹣(﹣2014)0﹣2cos45°+=2﹣1﹣2×+2=3﹣.21.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.22.已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:AD=CE;(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.【考点】LC:矩形的判定;KH:等腰三角形的性质;L5:平行四边形的性质.【分析】(1)利用等边对等角以及平行四边形的性质可以证得∠EDC=∠ACB,则易证△ADC ≌△ECD,利用全等三角形的对应边相等即可证得;(2)根据平行四边形性质推出AE=BD=CD,AE∥CD,得出平行四边形,根据AC=DE推出即可.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,又∵▱ABDE中,AB=DE,AB∥DE,∴∠B=∠EDC=∠ACB,AC=DE,在△ADC和△ECD中,,∴△ADC≌△ECD(SAS).(2)解:点D在BC的中点上时,四边形ADCE是矩形,理由如下:∵四边形ABDE是平行四边形,∴AE=BD,AE∥BC,∵D为边长BC的中点,∴BD=CD,∴AE=CD,AE∥CD,∴四边形ADCE是平行四边形,∵△ADC≌△ECD,∴AC=DE,∴四边形ADCE是矩形.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【考点】M5:圆周角定理;KD:全等三角形的判定与性质;MO:扇形面积的计算.【分析】(1)解直角三角形求出OB,求出AB,根据圆周角定理求出∠ACB,解直角三角求出AC即可;(2)求出△ACF和△AOF全等,得出阴影部分的面积=△AOD的面积,求出三角形的面积即可.【解答】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF+S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.24.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)…30 40 50 60 …每天销售量y(件)…500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?【考点】HE:二次函数的应用;FH:一次函数的应用.【分析】(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)利润=销售总价﹣成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)根据自变量的取值范围结合函数图象解答.【解答】解:(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴解得∴函数关系式是:y=﹣10x+800(20≤x≤80)(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000,(20≤x≤80)∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=﹣10(x﹣50)2+9000,当x≤45时,W的值随着x值的增大而增大,∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.25.问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求出∠AEB的度数以及判断线段CM、AE、BE 之间的数量关系,并说明理由.【考点】KY:三角形综合题.【分析】问题探究:(1)证明△CDA≌△CEB,根据全等三角形的性质解答;(2)根据全等三角形的性质得到∠CEB=∠CDA=120°,计算即可;问题变式:(1)证明△CDA≌△CEB,根据全等三角形的性质解答;(2)根据全等三角形的性质、直角三角形的性质解答.【解答】解:问题探究:(1)∵△ACB和△DCE均为等边三角形,∴∠ACB=∠DCE=60°,CA=CB,CD=CE,∴∠ACD=∠BCE,在△CDA和△CEB中,,∴△CDA≌△CEB,∴AD=BE;(2)∵△CDA≌△CEB,∴∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°﹣60°=60°;问题变式:(1)∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB=∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°;(2)AE=2CM+BE,在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE∴AE=2CM+BE.26.如图,点A的坐标为(﹣8,0),点P的坐标为,直线y=x+b过点A,交y 轴于点B,以点P为圆心,以PA为半径的圆交x轴于点C.(1)判断点B是否在⊙P上?说明理由.(2)求过A、B、C三点的抛物线的解析式;并求抛物线与⊙P另外一个交点为D的坐标.(3)⊙P上是否存在一点Q,使以A、P、B、Q为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把A(﹣8,0)代入y=x+b得到点B(0,6),即OB=6,根据勾股定理即可得到结论;(2)AC=2PA=,则OC=,点C,得到抛物线的解析式为y=﹣x2﹣x+6,直线x=是抛物线和圆P的对称轴,于是得到结论;(3)当点Q在⊙P上时,有PQ=PA=,如图1所示,假设AB为菱形的对角线,如图2所示,假设AB、AP为菱形的邻边,如图3所示,假设 AB、BP为菱形的邻边,于是得到结论.【解答】解:(1)∵A(﹣8,0)在直线y=x+b上,则有b=6,∴点B(0,6),即OB=6,在Rt△BOP中,由勾股定理得PB=,则PB=PA,∴点B在⊙P上;(2)AC=2PA=,则OC=,点C,抛物线过点A、C,则设所求抛物线为y=a(x+8)(x﹣),代入点C,则有a=,抛物线的解析式为y=﹣x2﹣x+6,直线x=是抛物线和圆P的对称轴,点B的对称点为D,由对称可得D;(3)当点Q在⊙P上时,有PQ=PA=,如图1所示,假设AB为菱形的对角线,那么PQ⊥AB且互相平分,由勾股定理得PE=,则2PE≠PQ,所以四边形APBQ不是菱形.如图2所示,假设AB、AP为菱形的邻边,则AB≠AP,所以四边形APQB不是菱形.如图3所示,假设 AB、BP为菱形的邻边,则AB≠BP,所以四边形AQPB不是菱形.综上所述,⊙P上不存在点Q,使以A、P、B、Q为顶点的四边形.。

(完整)2017年山东省临沂市中考数学试卷(含答案解析版)(2),推荐文档

(完整)2017年山东省临沂市中考数学试卷(含答案解析版)(2),推荐文档

2017年山东省临沂市中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.﹣的相反数是()A.B.﹣C.2017 D.﹣20172.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°3.下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2•a3=a6 D.(ab2)2=a2b44.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.5.如图所示的几何体是由五个小正方体组成的,它的左视图是()A.B.C. D.6.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.7.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形8.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=9.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:部门人数每人创年利润(万元)A110B38C75D43这15名员工每人所创年利润的众数、中位数分别是()A.10,5 B.7,8 C.5,6.5 D.5,510.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A.2 B.﹣πC.1 D. +π11.将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n 个图形中“○”的个数是78,则n的值是()A.11 B.12 C.13 D.1412.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形13.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.414.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 B.10 C.2D.2二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:m3﹣9m=.16.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=.17.计算:÷(x﹣)=.18.在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是.19.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是(填上所有正确答案的符号).三、解答题(本大题共7小题,共63分)20.计算:|1﹣|+2cos45°﹣+()﹣1.21.为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计9要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表百分比节目人数(名)最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.23.如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.24.某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?25.数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.26.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.2017年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.﹣的相反数是()A.B.﹣C.2017 D.﹣2017【考点】14:相反数.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:A.2.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°【考点】JA:平行线的性质;IL:余角和补角.【分析】首先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选A.3.下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2•a3=a6 D.(ab2)2=a2b4【考点】47:幂的乘方与积的乘方;44:整式的加减;46:同底数幂的乘法.【分析】根据去括号、同底数幂的乘法底数不变指数相加,积的乘方,可得答案.【解答】解:A、括号前是负号,去括号全变号,故A不符合题意;B、不是同底数幂的乘法指数不能相加,故B不符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、积的乘方等于乘方的积,故D符合题意;故选:D.4.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,故选:B.5.如图所示的几何体是由五个小正方体组成的,它的左视图是()A.B.C. D.【考点】U2:简单组合体的三视图.【分析】根据三视图定义分别作出三视图即可判断.【解答】解:该几何体的三视图如下:主视图:;俯视图:;左视图:,故选:D.6.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:=.故选C.7.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】L3:多边形内角与外角.【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.8.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】根据甲乙的效率,可设未知数,根据甲乙的工作时间,可列方程.【解答】解:设乙每小时做x个,甲每小时做(x+6)个,根据甲做90个所用时间与乙做60个所用时间相等,得=,故选:B.9.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:部门人数每人创年利润(万元)A110B38C75D43这15名员工每人所创年利润的众数、中位数分别是()A.10,5 B.7,8 C.5,6.5 D.5,5【考点】W5:众数;W4:中位数.【分析】根据表格中的数据可以将这组数据按照从小到大的顺序排列起来,从而可以找到这组数据的中位数和众数.【解答】解:由题意可得,这15名员工的每人创年利润为:10、8、8、8、5、5、5、5、5、5、5、3、3、3、3,∴这组数据的众数是5,中位数是5,故选D.10.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A.2 B.﹣πC.1 D. +π【考点】MC:切线的性质;MO:扇形面积的计算.【分析】设AC交⊙O于D,连结BD,先根据圆周角定理得到∠ADB=90°,则可判断△ADB、△BDC都是等腰直角三角形,所以AD=BD=CD=AB=,然后利.用弓形AD的面积等于弓形BD的面积得到阴影部分的面积=S△BTD【解答】解:∵BT是⊙O的切线;设AT交⊙O于D,连结BD,∵AB是⊙O的直径,∴∠ADB=90°,而∠ATB=45°,∴△ADB、△BDT都是等腰直角三角形,∴AD=BD=TD=AB=,∴弓形AD的面积等于弓形BD的面积,=××=1.∴阴影部分的面积=S△BTD故选C.11.将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n 个图形中“○”的个数是78,则n的值是()A.11 B.12 C.13 D.14【考点】38:规律型:图形的变化类.【分析】根据小圆个数变化规律进而表示出第n个图形中小圆的个数,进而得出答案.【解答】解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n个图形有1+2+3+…+n=个小圆;∵第n个图形中“○”的个数是78,∴78=,解得:n1=12,n2=﹣13(不合题意舍去),故选:B.12.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【考点】LC:矩形的判定;L9:菱形的判定.【分析】由矩形的判定和菱形的判定即可得出结论.【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A 错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.13.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】HE:二次函数的应用.【分析】由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,可得y=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判断.【解答】解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误.∴正确的有②③,故选B.14.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 B.10 C.2D.2【考点】G5:反比例函数系数k的几何意义;PA:轴对称﹣最短路线问题.【分析】由正方形OABC的边长是6,得到点M的横坐标和点N的纵坐标为6,求得M(6,),N(,6),根据三角形的面积列方程得到M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,根据勾股定理即可得到结论.【解答】解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6﹣,BM=6﹣,∵△OMN的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k=24,∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选C.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:m3﹣9m=m(m+3)(m﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式,再根据平方差公式进行二次分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m3﹣9m,=m(m2﹣9),=m(m+3)(m﹣3).故答案为:m(m+3)(m﹣3).16.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=4.【考点】S4:平行线分线段成比例.【分析】根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:∵AB∥CD,∴==,即=,解得,AO=4,故答案为:4.17.计算:÷(x﹣)=.【考点】6C:分式的混合运算.【分析】先算括号内的减法,把除法变成乘法,再根据分式的乘法法则进行计算即可.【解答】解:原式=÷=•=,故答案为:.18.在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是24.【考点】L5:平行四边形的性质;T7:解直角三角形.【分析】作OE⊥CD于E,由平行四边形的性质得出OA=OC,OB=OD=BD=5,CD=AB=4,由sin∠BDC=,证出AC⊥CD,OC=3,AC=2OC=6,得出▱ABCD的面积=CD•AC=24.【解答】解:作OE⊥CD于E,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD=BD=5,CD=AB=4,∵sin∠BDC==,∴OE=3,∴DE==4,∵CD=4,∴点E与点C重合,∴AC⊥CD,OC=3,∴AC=2OC=6,∴▱ABCD的面积=CD•AC=4×6=24;故答案为:24.19.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是①③④(填上所有正确答案的符号).【考点】LM:*平面向量;6E:零指数幂;T7:解直角三角形.【分析】根据向量垂直的定义进行解答.【解答】解:①因为2×(﹣1)+1×2=0,所以与互相垂直;②因为cos30°×1+tan45°•sin60°=×1+1×=≠0,所以与不互相垂直;③因为(﹣)(+)+(﹣2)×=3﹣2﹣1=0,所以与互相垂直;④因为π0×2+2×(﹣1)=2﹣2=0,所以与互相垂直.综上所述,①③④互相垂直.故答案是:①③④.三、解答题(本大题共7小题,共63分)20.计算:|1﹣|+2cos45°﹣+()﹣1.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】根据绝对值的意义、特殊角的三角函数值、二次根式的化简和负指数幂的运算,分别求得每项的值,再进行计算即可.【解答】解:|1﹣|+2cos45°﹣+()﹣1=﹣1+2×﹣2+2=﹣1+﹣2+2=1.21.为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计9要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表百分比节目人数(名)最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=50,a=20,b=30;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.【考点】VC:条形统计图;V5:用样本估计总体;VA:统计表.【分析】(1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;(2)根据a的值,补全条形统计图即可;(3)由中国诗词大会的百分比乘以1000即可得到结果.【解答】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】延长CD,交AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC﹣ED求出DC的长即可.【解答】解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30m,∠EAD=30°,∴ED=AEtan30°=10m,在Rt△ABC中,∠BAC=30°,BC=30m,∴AB=30m,则CD=EC﹣ED=AB﹣ED=30﹣10=20m.23.如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.【考点】MA:三角形的外接圆与外心.【分析】(1)由角平分线得出∠ABE=∠CBE,∠BAE=∠CAD,得出,由圆周角定理得出∠DBC=∠CAD,证出∠DBC=∠BAE,再由三角形的外角性质得出∠DBE=∠DEB,即可得出DE=DB;(2)由(1)得:,得出CD=BD=4,由圆周角定理得出BC是直径,∠BDC=90°,由勾股定理求出BC==4,即可得出△ABC外接圆的半径.【解答】(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.24.某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?【考点】FH:一次函数的应用.【分析】(1)根据函数图象可以分别设出各段的函数解析式,然后根据函数图象中的数据求出相应的函数解析式;(2)根据题意对x进行取值进行讨论,从而可以求得该用户二、三月份的用水量各是多少m3.【解答】解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,15k=27,得k=1.8,即当0≤x≤15时,y与x的函数关系式为y=1.8x,当x>15时,设y与x的函数关系式为y=ax+b,,得,即当x>15时,y与x的函数关系式为y=2.4x﹣9,由上可得,y与x的函数关系式为y=;(2)设二月份的用水量是xm3,当15<x≤25时,2.4x﹣9+2.4(40﹣x)﹣9=79.8,解得,x无解,当0<x≤15时,1.8x+2.4(40﹣x)﹣9=79.8,解得,x=12,∴40﹣x=28,答:该用户二、三月份的用水量各是12m3、28m3.25.数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【考点】RB:几何变换综合题.【分析】(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CE+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.26.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)待定系数法即可得到结论;(2)连接AC,作BF⊥AC交AC的延长线于F,根据已知条件得到AF∥x轴,得到F(﹣1,﹣3),设D(0,m),则OD=|m即可得到结论;(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,于是得到△ABF≌△NME,证得NE=AF=3,ME=BF=3,得到M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,于是得到结论.【解答】解:(1)由y=ax2+bx﹣3得C(0.﹣3),∴OC=3,∵OC=3OB,∴OB=1,∴B(﹣1,0),把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,∴,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设连接AC,作BF⊥AC交AC的延长线于F,∵A(2,﹣3),C(0,﹣3),∴AF∥x轴,∴F(﹣1,﹣3),∴BF=3,AF=3,∴∠BAC=45°,设D(0,m),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D1(0,1),D2(0,﹣1);(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF ⊥x轴于F,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a﹣1|=3,∴a=3或a=﹣2,∴M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,∴M(0,﹣3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,11)或(0,﹣3).。

2017年山东省临沂市中考数学试卷(word版含解析)

2017年山东省临沂市中考数学试卷(word版含解析)

2017年山东省临沂市中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求1.(3分)﹣的相反数是()A.B.﹣C.2017D.﹣20172.(3分)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°3.(3分)下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4C.a2•a3=a6D.(ab2)2=a2b44.(3分)不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.5.(3分)如图所示的几何体是由五个小正方体组成的,它的左视图是()A.B.C.D.6.(3分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.7.(3分)一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形8.(3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=9.(3分)某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:部门人数每人所创年利润(单位:万元)A110B38C75D43这15名员工每人所创年利润的众数、中位数分别是()A.10,5B.7,8C.5,6.5D.5,510.(3分)如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A.2B.﹣πC.1D.+π11.(3分)将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n 个图形中“○”的个数是78,则n的值是()A.11B.12C.13D.1412.(3分)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形13.(3分)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是()A.1B.2C.3D.414.(3分)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6B.10C.2D.2二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)分解因式:m3﹣9m=.16.(3分)如图,已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=.17.(3分)计算:÷(x﹣)=.18.(3分)在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是.19.(3分)在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是(填上所有正确答案的符号).三、解答题(本大题共7小题,共63分)20.(7分)计算:|1﹣|+2cos45°﹣+()﹣1.21.(7分)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:学生最喜爱的节目人数统计表节目人数(名)百分比最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.(7分)如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.23.(9分)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.24.(9分)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?25.(11分)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.26.(13分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.2017年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求1.【解答】解:﹣的相反数是:.故选:A.2.【解答】解:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:A.3.【解答】解:A、括号前是负号,去括号全变号,﹣(a﹣b)=﹣a+b,故A不符合题意;B、a2+a2=2a2,故B不符合题意;C、同底数幂的乘法底数不变指数相加,a2•a3=a5,故C不符合题意;D、积的乘方等于乘方的积,故D符合题意;故选:D.4.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,故选:B.5.【解答】解:该几何体的三视图如下:主视图:;俯视图:;左视图:,故选:D.6.【解答】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:=.故选:C.7.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.8.【解答】解:设乙每小时做x个,甲每小时做(x+6)个,根据甲做90个所用时间与乙做60个所用时间相等,得=,故选:B.9.【解答】解:由题意可得,这15名员工的每人创年利润为:10、8、8、8、5、5、5、5、5、5、5、3、3、3、3,∴这组数据的众数是5,中位数是5,故选:D.10.【解答】解:∵BT是⊙O的切线;设AT交⊙O于D,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,而∠ATB=45°,∴△ADB、△BDT都是等腰直角三角形,∴AD=BD=TD=AB=,∴弓形AD的面积等于弓形BD的面积,∴阴影部分的面积=S△BTD=××=1.故选:C.11.【解答】解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n个图形有1+2+3+…+n=个小圆;∵第n个图形中“○”的个数是78,∴78=,解得:n1=12,n2=﹣13(不合题意舍去),故选:B.12.【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.13.【解答】解:由题意,抛物线的解析式为h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,h=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,h=11.25,故④错误.∴正确的有②③,故选:B.14.【解答】解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6﹣,BM=6﹣,∵△OMN的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k=24或﹣24(舍去),∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选:C.二、填空题(本大题共5小题,每小题3分,共15分)15.【解答】解:m3﹣9m,=m(m2﹣9),=m(m+3)(m﹣3).故答案为:m(m+3)(m﹣3).16.【解答】解:∵AB∥CD,∴==,即=,解得,AO=4,故答案为:4.17.【解答】解:原式=÷=•=,故答案为:.18.【解答】解:作OE⊥CD于E,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD=BD=5,CD=AB=4,∵sin∠BDC==,∴OE=3,∴DE==4,∵CD=4,∴点E与点C重合,∴AC⊥CD,OC=3,∴AC=2OC=6,∴▱ABCD的面积=CD•AC=4×6=24;故答案为:24.19.【解答】解:①因为2×(﹣1)+1×2=0,所以与互相垂直;②因为cos30°×1+tan45°•sin60°=×1+1×=≠0,所以与不互相垂直;③因为(﹣)(+)+(﹣2)×=3﹣2﹣1=0,所以与互相垂直;④因为π0×2+2×(﹣1)=2﹣2=0,所以与互相垂直.综上所述,①③④互相垂直.故答案是:①③④.三、解答题(本大题共7小题,共63分)20.【解答】解:|1﹣|+2cos45°﹣+()﹣1=﹣1+2×﹣2+2=﹣1+﹣2+2=1.21.【解答】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.【解答】解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30m,∠EAD=30°,∴ED=AE tan30°=10m,在Rt△ABC中,∠BAC=30°,BC=30m,∴AB=30m,则CD=EC﹣ED=AB﹣ED=30﹣10=20m.23.【解答】(1)证明:∵AD平分∠BAC,BE平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.24.【解答】解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,15k=27,得k=1.8,即当0≤x≤15时,y与x的函数关系式为y=1.8x,当x>15时,设y与x的函数关系式为y=ax+b,,得,即当x>15时,y与x的函数关系式为y=2.4x﹣9,由上可得,y与x的函数关系式为y=;(2)设二月份的用水量是xm3,当15<x≤25时,2.4x﹣9+2.4(40﹣x)﹣9=78≠79.8,故此种情况不符合题意,当0<x≤15时,令1.8x+2.4(40﹣x)﹣9=79.8,解得,x=12,∴40﹣x=28,答:该用户二、三月份的用水量各是12m3、28m3.25.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,连接AE,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=90°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CD+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.26.【解答】解:(1)由y=ax2+bx﹣3得C(0.﹣3),∴OC=3,∵OC=3OB,∴OB=1,∴B(﹣1,0),把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,∴,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设连接AC,作BF⊥AC交AC的延长线于F,∵A(2,﹣3),C(0,﹣3),∴AF∥x轴,∴F(﹣1,﹣3),∴BF=3,AF=3,∴∠BAC=45°,设D(0,m),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D1(0,1),D2(0,﹣1);(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴于E,AF⊥x轴于F,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a﹣1|=3,∴a=4或a=﹣2,∴M(4,5)或(﹣2,5);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,∴M(0,﹣3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,5)或(0,﹣3).。

2017年山东省临沂市中考数学模拟试卷(2) 有答案

2017年山东省临沂市中考数学模拟试卷(2) 有答案

2017年山东省临沂市中考数学模拟试卷(2)一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的1.﹣3的绝对值是()A.﹣3 B.﹣ C.D.32.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,将67500用科学记数法表示为()A.6.75×104吨 B.67.5×103吨 C.0.675×103吨D.6.75×10﹣4吨3.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于()A.18°B.36°C.45°D.54°4.下列各式正确的是()A.2a+3b=5ab B.a2×2a4=2a4C.(﹣a2b2)2=a4b4D.a4÷a2=a35.计算﹣9的结果是()A.B.﹣C.﹣D.6.计算÷(+)的结果是()A.2 B. C.D.7.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2 C.3 D.48.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A.B. C.πD.9.小明家凉台呈圆弧形,凉台的宽度AB为8m,凉台的最外端C点离AB的距离CD为2m,则凉台所在圆的半径为()A.4m B.5m C.6m D.7m10.如图所示的平面图是4×4方格,若向方格面掷飞镖,飞镖落在黑色区域的概率为()A.B.C.D.11.如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴,y轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S212.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()A.25海里B.25海里C.50海里D.25海里13.根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的()A.B.C.D.14.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:a2b﹣b3=.16.分式方程=0的解是.17.如图1是边长为18cm的正方形纸板,截掉阴影部分后将其折叠成如图2所示的长方体盒子.已知该长方体的宽是高的2倍,则它的体积是cm3.18.用“☆”、“★”定义新运算:对于任意有理数a、b,都有a☆b=a b和a★b=b a,那么(﹣3☆2)★1=.19.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.三、解答题(本大题共7小题,共63分)20.计算:(1﹣)0+(﹣1)2014﹣tan30°+()﹣2.21.南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?22.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店各应付多少元?(2)单独请哪组,商店所付费用较少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工有利于商店经营?说说你的理由.23.已知:如图,AB是⊙O的直径,C、D为⊙O上两点,CF⊥AB于点F,CE⊥AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)若AD=CD=6,求四边形ABCD的面积.24.某次海军舰艇演习中,甲、乙两舰艇同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束.已知B港位于A港、C岛之间,且A、B、C在一条直线上.设甲、乙两舰艇行驶x(h)后,与B港的距离分别为y1和y2(km),y1、y2与x的函数关系如图所示.(1)求A港与C岛之间的距离;(2)分别求出甲、乙两舰艇的航速及图中点M的坐标;(3)若甲、乙两舰艇之间的距离不超过20km时就属于最佳通讯距离,试求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.25.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.26.如图,在平面直角坐标系中,二次函数y=﹣x2+4x+5的图象交x轴于点A、B(点A在点B 的右边),交y轴于点C,顶点为P.点M是射线OA上的一个动点(不与点O重合),点N是x 轴负半轴上的一点,NH⊥CM,交CM(或CM的延长线)于点H,交y轴于点D,且ND=CM.(1)求证:OD=OM;(2)设OM=t,当t为何值时以C、M、P为顶点的三角形是直角三角形?(3)问:当点M在射线OA上运动时,是否存在实数t,使直线NH与以AB为直径的圆相切?若存在,请求出相应的t值;若不存在,请说明理由.2017年山东省临沂市中考数学模拟试卷(2)参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的1.﹣3的绝对值是()A.﹣3 B.﹣ C.D.3【考点】绝对值.【分析】根据绝对值的定义直接解答即可.【解答】解:∵﹣3的绝对值表示﹣3到原点的距离,∴|﹣3|=3,故选D.2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,将67500用科学记数法表示为()A.6.75×104吨 B.67.5×103吨 C.0.675×103吨D.6.75×10﹣4吨【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故选:A.3.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于()A.18°B.36°C.45°D.54°【考点】平行线的性质.【分析】根据角平分线的定义求出∠BCD,再根据两直线平行,内错角相等可得∠B=∠BCD.【解答】解:∵CE平分∠BCD,∠DCE=18°,∴∠BCD=2∠DCE=2×18°=36°,∵AB∥CD,∴∠B=∠BCD=36°.故选B.4.下列各式正确的是()A.2a+3b=5ab B.a2×2a4=2a4C.(﹣a2b2)2=a4b4D.a4÷a2=a3【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】分别利用单项式乘以单项式以及积的乘方和同底数幂的除法运算法则求出即可.【解答】解:A、无法计算,故此选项错误;B、a2×2a4=2a6,此选项错误;C、(﹣a2b2)2=a4b4,此选项正确;D、a4÷a2=a2,此选项错误;故选:C.5.计算﹣9的结果是()A.B.﹣C.﹣D.【考点】二次根式的加减法.【分析】首先化简二次根式,进而合并求出即可.【解答】解:﹣9=2﹣9×=2﹣3=﹣.故选:B.6.计算÷(+)的结果是()A.2 B. C.D.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=2.故选A7.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2 C.3 D.4【考点】矩形的性质;角平分线的性质.【分析】根据平行线的性质以及角平分线的性质证明∠ADE=∠AED,根据等角对等边,即可求得AE的长,在直角△ABE中,利用勾股定理求得BE的长,则CE的长即可求解.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE===8,∴CE=BC﹣BE=AD﹣BE=10﹣8=2.故选B.8.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A.B. C.πD.【考点】圆锥的计算;由三视图判断几何体.【分析】利用三视图可判断该几何体为圆柱,然后利用圆柱体的侧面展开图为矩形和矩形的面积公式计算.【解答】解:该几何体为圆柱,它的侧面积=1×2π•=π.故选C.9.小明家凉台呈圆弧形,凉台的宽度AB为8m,凉台的最外端C点离AB的距离CD为2m,则凉台所在圆的半径为()A.4m B.5m C.6m D.7m【考点】垂径定理的应用;勾股定理.【分析】设圆心为O点,连接OA,OD,根据题意得:OC⊥AB,利用垂径定理得到D为AB的中点,求出AD的长,由OC﹣CD求出OD的长,在直角三角形AOD中,设OA=r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,即为圆的半径.【解答】解:设圆心为O点,连接OA,OD,根据题意得:OC⊥AB,∴D为AB的中点,即AD=BD=AB=4(m),设圆半径为r,则有OD=OC﹣CD=(r﹣2)m,在Rt△AOD中,OA2=AD2+OD2,即r2=42+(r﹣2)2,解得:r=5,则凉台所在圆的半径为5m.故选B10.如图所示的平面图是4×4方格,若向方格面掷飞镖,飞镖落在黑色区域的概率为()A.B.C.D.【考点】几何概率.【分析】飞镖落在黑色区域的概率等于黑色区域面积与正方形总面积之比.【解答】解:∵阴影部分面积为:4,∴飞镖落在黑色区域的概率为:=.故选:C.11.如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴,y轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2【考点】反比例函数系数k的几何意义.【分析】根据题意,易得AB两点关与原点对称,可设A点坐标为(m,﹣n),则B的坐标为(﹣m,n);在Rt△EOF中,由AE=AF,可得A为EF中点,分析计算可得S2,矩形OCBD中,易得S1,比较可得答案.【解答】解:设A点坐标为(m,﹣n),过点O的直线与双曲线y=交于A、B两点,则A、B两点关与原点对称,则B的坐标为(﹣m,n);矩形OCBD中,易得OD=n,OC=m;则S1=mn;在Rt△EOF中,AE=AF,故A为EF中点,由中位线的性质可得OF=2n,OE=2m;则S2=OF×OE=2mn;故2S1=S2.故选:B.12.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()A.25海里B.25海里C.50海里D.25海里【考点】解直角三角形的应用﹣方向角问题.【分析】根据方向角的定义得出∠ACB的度数以及BC的长,进而得出AC的长.【解答】解:∵轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,∴BC=25海里,∠ABC=75°﹣30°=45°,∵在C处观测灯塔A位于北偏东60°方向上,∴∠BCA=90°,∴△ACB是等腰直角三角形,∴BC=AC=25(海里).故选:D.13.根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的()A.B.C.D.【考点】规律型:数字的变化类.【分析】观察不难发现,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【解答】解:由图可知,每4个数为一个循环组依次循环,2012÷4=503,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D.14.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】将动点P的运动过程划分为PD、DC、CB、BA、AP共5个阶段,分别进行分析,最后得出结论.【解答】解:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.结合函数图象,只有D选项符合要求.故选:D.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:a2b﹣b3=b(a+b)(a﹣b).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b),故答案为:b(a+b)(a﹣b)16.分式方程=0的解是x=﹣3.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1+2=0,解得:x=﹣3,经检验x=﹣3是分式方程的解.故答案为:x=﹣3.17.如图1是边长为18cm的正方形纸板,截掉阴影部分后将其折叠成如图2所示的长方体盒子.已知该长方体的宽是高的2倍,则它的体积是216cm3.【考点】展开图折叠成几何体.【分析】设该长方体的高为x,则长方体的宽为2x,利用展开图得到2x+2x+x+x=18,然后解方程得到x的值,从而得到该长方体的高、宽、长,于是可计算出它的体积.【解答】解:设该长方体的高为x,则长方体的宽为2x,2x+2x+x+x=18,解得x=3,所以该长方体的高为3,则长方体的宽为6,长为18﹣6=12,所以它的体积为3×6×12=216(cm2).故答案为216.18.用“☆”、“★”定义新运算:对于任意有理数a、b,都有a☆b=a b和a★b=b a,那么(﹣3☆2)★1=1.【考点】有理数的乘方.【分析】先根据题意得出(﹣3☆2)★1=[(﹣3)2]★1=9★1=19即可.【解答】解:∵a☆b=a b和a★b=b a,∴(﹣3☆2)★1=[(﹣3)2]★1=9★1=19=1.故答案为:1.19.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【考点】菱形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.【解答】解:延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°∴AB=AD,∠A=60°,∵BM=AE,∴AD=ME,∵△DEF为等边三角形,∴∠DAE=∠DFE=60°,DE=EF=FD,∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,∴∠MEF=∠ADE,∴在△DAE和△EMF中,∴△DAE≌EMF(SAS),∴AE=MF,∠M=∠A=60°,又∵BM=AE,∴△BMF是等边三角形,∴BF=AE,∵AE=t,CF=2t,∴BC=CF+BF=2t+t=3t,∵BC=4,∴3t=4,∴t=故答案为:.三、解答题(本大题共7小题,共63分)20.计算:(1﹣)0+(﹣1)2014﹣tan30°+()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用特殊角的三角函数值计算,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=1+1﹣×+9=10.21.南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?【考点】扇形统计图;条形统计图.【分析】(1)用参加坐位体前摆的人数与仰卧起坐的人数的人数除以其所占的百分比即可得到测试人数;(2)用总人数减去其他各项人数即可得到参加立定跳远的人数,补全统计图即可;(3)用总人数乘以其所占的比即可得到参加仰卧起坐的人数.【解答】解:(1)由图可知,坐位体前摆的人数与仰卧起坐的人数是25+20=45人,这些人占班级参加测试总人数的百分数为(1﹣10%)=90%,所以这个班参加测试的学生有45÷90%=50人,答:该学校九年级一班参加体育达标测试的学生有50人.(2)立定跳远的人数为50﹣25﹣20=5人,(3)用样本估计总体,全校参加仰卧起坐达标测试的人数有1200×(20÷50)=480人,答:估计参加仰卧起坐测试的有480人.22.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店各应付多少元?(2)单独请哪组,商店所付费用较少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工有利于商店经营?说说你的理由.【考点】二元一次方程组的应用.【分析】(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,根据总费用与时间的关系建立方程组求出其解即可;(2)设工作总量为单位1,甲组工作效率为x,乙组工作效率为y,建立方程组求出结果就可以求出甲乙单独完成需要的时间,再求出甲、乙两组单独完成的费用进行比较就可以得出结论;(3)先比较甲、乙单独装修的时间和费用谁对商店经营有利,再比较合作装修与甲单独装修对商店的有利经营情况,从而可以得出结论.【解答】解:(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元.由题意可得:,解得:.答:甲组单独工作一天商店应付300元,乙组单独工作一天商店应付140元.(2)设工作总量为单位1,甲组工作效率为x,乙组工作效率为y.由题意可得:,解得:,∴甲组单独完成装修需(天),乙组单独完成装修需(天),∴单独请甲组需付300×12=3600(元),单独请乙组需付140×24=3360(元),∵3600>3360,∴单独请乙组费用较少;(3)由题意,得①甲组单独做12天完成,商店需付款3600元;乙组单独做24天完成,商店需付款3360元;但甲组比乙组早12天完工,商店12天的利润为200×12=2400元,即开支为3600﹣2400=1200元<3360元,故选择甲组单独做比选择乙组单独做划算.②甲、乙合作8天可以完成,需付费用3520元,此时工期比甲单独做少4天,商店开业4天的利润为4×200=800元,开支为3520﹣800=2720元<3600元;则甲、乙合作比甲单独做12天合算.综上所述,甲、乙合作这一方案最优.23.已知:如图,AB是⊙O的直径,C、D为⊙O上两点,CF⊥AB于点F,CE⊥AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)若AD=CD=6,求四边形ABCD的面积.【考点】切线的判定与性质;圆周角定理.【分析】(1)连接OC.根据角平分线性质定理的逆定理,得∠CAE=∠CAB.根据OC=OA,得到∠CAB=∠OCA,从而得到∠CAE=∠OCA,根据内错角相等,两条直线平行,得到OC∥AE,从而根据切线的判定证明结论;(2)根据AD=CD,得到∠DAC=∠DCA=∠CAB,从而DC∥AB,得到四边形AOCD是平行四边形.根据平行四边形的性质,得OC=AD=6,则AB=12.根据∠CAE=∠CAB,得到弧CD=弧CB,则△OCB 是等边三角形,根据等边三角形的性质求得CF=3,再根据梯形的面积公式进行计算.【解答】解:(1)连接OC.∵CF⊥AB,CE⊥AD,且CE=CF,∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA,∴∠CAE=∠OCA,∴OC∥AE,∴OC⊥CE,又∵OC是⊙O的半径,∴CE是⊙O的切线;(2)∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB.∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形.∴OC=AD=6,AB=12.∵∠CAE=∠CAB,∴弧CD=弧CB,∴CD=CB=6,∴△OCB是等边三角形,∴,=.∴S四边形ABCD24.某次海军舰艇演习中,甲、乙两舰艇同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束.已知B港位于A港、C岛之间,且A、B、C在一条直线上.设甲、乙两舰艇行驶x(h)后,与B港的距离分别为y1和y2(km),y1、y2与x的函数关系如图所示.(1)求A港与C岛之间的距离;(2)分别求出甲、乙两舰艇的航速及图中点M的坐标;(3)若甲、乙两舰艇之间的距离不超过20km时就属于最佳通讯距离,试求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.【考点】一次函数的应用.【分析】(1)利用甲船与B港的距离y1(km)与行驶时间x(h)的函数图象如图所示.结合已知条件“B港位于A港、C岛之间,且A、B、C在一条直线上”来求A港与C岛之间的距离;(2)利用速度=来求甲、乙两舰艇的航速;点M即为y1、y2与交点;(3)需要分类讨论:甲舰艇追上乙舰艇之前、后两种情况下,两舰艇处于最佳通讯距离时x的取值范围.【解答】解:(1)40+160=200(km),即A港与C岛之间的距离为200km;(2)甲航速为=80(km/h),乙航速为=60(km/h).当0.5≤x≤时,y1=80x﹣40 ①,当0≤x≤2时,y2=60x ②,①②联立成方程组解得即M点坐标为(2,120);(3)当甲舰艇追上乙舰艇之前两舰艇处于最佳通讯距离时,(80﹣60)x≥40﹣20,解得x≥1.当甲舰艇追上乙舰艇之后两舰艇处于最佳通讯距离时,(80﹣60)(x﹣2)≤20,解得,x≤3.∴在演习第一阶段两舰艇处于最佳通讯距离时的x的取值范围是1≤x≤2.25.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.【考点】一次函数的应用;一元一次方程的应用.【分析】(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.【解答】解:(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40,∴a=40.答:a=40,m=1;(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得40=k1,∴y=40x当1<x≤1.5时,y=40;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得:,∴y=40x﹣20.y=;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得:,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.=,.答:乙车行驶小时或小时,两车恰好相距50km.26.如图,在平面直角坐标系中,二次函数y=﹣x2+4x+5的图象交x轴于点A、B(点A在点B 的右边),交y轴于点C,顶点为P.点M是射线OA上的一个动点(不与点O重合),点N是x 轴负半轴上的一点,NH⊥CM,交CM(或CM的延长线)于点H,交y轴于点D,且ND=CM.(1)求证:OD=OM;(2)设OM=t,当t为何值时以C、M、P为顶点的三角形是直角三角形?(3)问:当点M在射线OA上运动时,是否存在实数t,使直线NH与以AB为直径的圆相切?若存在,请求出相应的t值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据题意可证明∠OND=∠OCM,则△DON≌△MOC,则OD=OM;(2)根据抛物线的解析式求得点C、P的坐标,从而得出直线PC的解析式,根据两直线垂直,比例系数k互为负倒数,从而得出t的值;(3)假设存在实数t,以AB为直径的圆的半径为3,假设圆心为E,与直线NH的切点为F,可得△EFN∽△COM,根据相似三角形的性质求得t.【解答】解:(1)∵NH⊥CM,∴∠OND+∠OMC=90°,∵∠OCM+∠OMC=90°,∴∠OND=∠OCM,∵ND=CM,∴△DON≌△MOC,∴OD=OM;(2)二次函数y=﹣x2+4x+5的顶点P(2,9),点C的坐标为(0,5),∴直线PC的解析式为y=2x+5,∵PC⊥CM,∴直线MC的解析式为y=﹣x+5,∴点M的坐标为(10,0),∴t=10;∴当t为10时,以C、M、P为顶点的三角形是直角三角形;设M(b,0)CM2=25+b2PM2=81+(b﹣2)281+(b﹣2)2+20=25+b2b=20M(20,0)当t=20时以C、M、P为顶点的三角形是直角三角形.(3)假设存在实数t,使直线NH与以AB为直径的圆相切,设圆心为E,与直线NH的切点为F,由(1)可得△EFN∽△COM,∴=,∴=,解得t=,∴存在实数t=,使直线NH与以AB为直径的圆相切.。

2017年山东省临沂市中考数学模拟试卷

2017年山东省临沂市中考数学模拟试卷

2017年山东省临沂市中考数学模拟试卷(一)一、选择题1.﹣的相反数是()A. 2B. ﹣2C. ﹣D.2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A. 44×108B. 4.4×109C. 4.4×108D. 4.4×10103.一个两边平行的纸条,如图那样折叠一下,则∠1的度数是()A. 30°B. 40°C. 50°D. 60°4.下列各式计算正确的是()A. a2+a2=a4B. (﹣2x)3=﹣8x3C. a3•a4=a12D. (x﹣3)2=x2﹣95.下面四个手机应用图标中是轴对称图形的是()A. B. C. D.6.某校九年级一班学生参加体育考试,第一小组学生引体向上的成绩如表所示:则这组学生引体向上个数的众数和中位数分别为()A. 10和9B. 9和10C. 10和9.5D. 9.5和107.不等式组的整数解有()A. 3个B. 4个C. 5个D. 6个8.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为()A. B. C. D.9.当x=3时,分式(﹣x﹣1)÷ 的值为()A. B. C. D.10.如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=40°,点D是弧BAC上一点,连结CD.则∠D的度数是()A. 50°B. 45°C. 40°D. 35°11.如图,客轮在海上以30km/h的速度由B向C航行,在B处测得灯塔A的方向角为北偏东80°,测得C 处的方向角为南偏东25°,航行1小时后到达C处,在C处测得A的方向角为北偏东20°,则C到A的距离是()A. 15 kmB. 15 kmC. 15(+ )kmD. 5(+3 )km12.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有()A. 1个B. 2个C. 3个D. 4个13.如图,已知动点P在函数y= (x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=﹣x+1交于点E,F,则AF•BE的值为()A. 4B. 2C. 1D.14.如图,已知△ABC中,AB=AC=2,∠B=30°,P是BC边上一个动点,过点P作PD⊥BC,交△ABC的AB 边于点D.若设PD为x,△BPD的面积为y,则y与x之间的函数关系的图象大致是()A. B. C. D.二、填空题15.因式分解:3x2y﹣27y=________.16.某药品原价是95元,经连续两次降价后,价格变为60.8元,如果每次降价的百分率是一样的,那么每次降价的百分率是________.17.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB=6cm,高OC=8cm.则这个圆锥漏斗的侧面积是________.18.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为________.19.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长C n=________.三、三.解答题20.计算:﹣32+6cos45°﹣(2﹣)+| ﹣3|.21.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?22.如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N.(1)求证:MN是⊙O的切线;(2)若∠BAC=120°,AB=2,求图中阴影部分的面积.24.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y 与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.25.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系________;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.26.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.答案解析部分一、<b >选择题</b>1.【答案】D2.【答案】B3.【答案】C4.【答案】B5.【答案】D6.【答案】A7.【答案】A8.【答案】C9.【答案】B10.【答案】A11.【答案】D12.【答案】D13.【答案】C14.【答案】C二、<b >填空题</b>15.【答案】3y(x+3)(x﹣3)16.【答案】20%17.【答案】60π18.【答案】19.【答案】2n+1三、<b >三</b><b >.</b><b>解答题</b>20.【答案】解:﹣32+6cos45°﹣(2﹣)+| ﹣3| =﹣9+6× ﹣2 ﹣2+3﹣=﹣9+3 ﹣2 +1﹣=﹣821.【答案】(1)解:总人数=15÷25%=60(人).A类人数=60﹣24﹣15﹣9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)解:抽到选“体育特长类”或“艺术特长类”的学生的概率= =(3)解:∵800×25%=200,200÷20=10,∴开设10个“实验活动类”课程的班级数比较合理22.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE= BC=CE,同理,AF= AD=CF,∴AE=CE=AF=CF,∴四边形AECF是菱形(2)解:连接EF交AC于点O,如图所示:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC= BC=5,AB= AC=5 ,∵四边形AECF是菱形,∴AC⊥EF,OA=OC,∴OE是△ABC的中位线,∴OE= AB= ,∴EF=5 ,∴菱形AECF的面积= AC•EF= ×5×5 = .23.【答案】(1)解:证明:连接OM.∵OM=OB,∴∠B=∠OMB.∵AB=AC,∴∠B=∠C.∴∠OMB=∠C.∴OM∥AC.∵MN⊥AC,∴OM⊥MN.∵点M在⊙O上,∴MN是⊙O的切线(2)解:连接AM.∵AB为直径,点M在⊙O上,∴∠AMB=90°.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∴∠AOM=60°.又∵在Rt△AMC中,MN⊥AC于点N,∴∠AMN=30°.∴AN=AM•sin∠AMN=AC•sin30°•sin30°= .∴MN=AM•cos∠AMN=AC•sin30°•cos30°= .∴S梯形ANMO= ,S扇形OAM= ,∴S阴影= = ﹣.24.【答案】(1)解:若派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30﹣x)台,派往B地区的乙型收割机为(30﹣x)台,派往B地区的甲型收割机为20﹣(30﹣x)=(x﹣10)台.∴y=1600x+1800(30﹣x)+1200(30﹣x)+1600(x﹣10)=200x+74 000,x的取值范围是:10≤x≤30,(x是正整数)(2)解:由题意得200x+74 000≥79 600,解不等式得x≥28,由于10≤x≤30,x是正整数,∴x取28,29,30这三个值,∴有3种不同的分配方案.①当x=28时,即派往A地区的甲型收割机为2台,乙型收割机为28台;派往B地区的甲型收割机为18台,乙型收割机为2台;②当x=29时,即派往A地区的甲型收割机为1台,乙型收割机为29台;派往B地区的甲型收割机为19台,乙型收割机为1台;③当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B 地区(3)解:由于一次函数y=200x+74 000的值y是随着x的增大而增大的,所以当x=30时,y取得最大值,如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时y=6000+74 000=80 000.建议农机租赁公司将30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区,可使公司获得的租金最高25.【答案】(1)AF= AE(2)解:如图②中,结论:AF= AE.理由:连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF= AE(3)解:如图③中,结论不变,AF= AE.理由:连接EF,延长FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF= AE26.【答案】(1)解:把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n得,解得,∴抛物线解析式为y=﹣x2+ x+2(2)解:存在.抛物线的对称轴为直线x=﹣= ,则D(,0),∴CD= = = ,如图1,当CP=CD时,则P1(,4);当DP=DC时,则P2(,),P3(,﹣),综上所述,满足条件的P点坐标为(,4)或(,)或(,﹣)(3)解:当y=0时,=﹣x2+ x+2=0,解得x1=﹣1,x2=4,则B(4,0),设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,C的解析式为y=﹣x+2,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+ x+2),∴FE=﹣x2+ x+2﹣(﹣x+2)=﹣x2+2x,∵S△BCF=S△BEF+S△CEF= •4•EF=2(﹣x2+2x)=﹣x2+4x,而S△BCD= ×2×(4﹣)= ,∴S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+ (0≤x≤4),=﹣(x﹣2)2+ .当x=2时,S四边形CDBF有最大值,最大值为. ,此时E点坐标为(2,1)。

2017年临沂数学中考模拟真题及答案(2)

2017年临沂数学中考模拟真题及答案(2)

2017年临沂数学中考模拟真题及答案(2)【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A.y=x+5B.y=x+10C.y=﹣x+5D.y=﹣x+10【考点】待定系数法求一次函数解析式;矩形的性质.【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.【点评】本题主要考查矩形的性质及点的坐标的意义,根据坐标的意义得出x、y之间的关系是解题的关键.三、解答题(本大题共9个小题,满分70分)15.(7分)计算:先化简,再求值:,其中x=1.【考点】分式的化简求值.菁优网版权所有【分析】先算括号里面的,再算除法,或者利用乘法分配律进行化简,最后把x的值代入进行计算即可.【解答】当时,原式= .【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.16.(7分),∠ADB=∠AEC,AD=AE.求证:BE=CD.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定和性质即可得到结论.【解答】证明:在△ADB和△AEC中∵ ∠ADB=∠AEC,AD=AE,∠DAB=∠EAC∴ △ADB≌△AEC∴ AB=AC又∵ AD=AE∴ BE=CD【点评】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.17.(7分),长4m的楼梯AB的倾斜角∠ABD为45°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为30°,求调整后的楼梯AC的长.(精确到0.1m,, )【考点】解直角三角形的应用;坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ADB中,∵sin∠ABD= ,∴AD=4sin45°= (m),在Rt△ACD中,∵sin∠ACD= ,∴AC= (m).答:调整后的楼梯AC的长约为5.6 m【点评】本题考查了解直角三角形的实际应用中的坡度坡角问题,难度不大,注意细心运算即可.18.(8分)荔枝是云南省的特色水果,小明的妈妈先购买了2千克酸味和3千克甜味,共花费90元;后又购买了1千克酸味和2千克甜味,共花费55元.(每次两种荔枝的售价都不变)(1)求酸味和甜味的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求甜味的数量不少于酸味数量的两倍,请设计一种购买方案,使所需总费用最低.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设酸味售价为每千克x元,甜味售价为每千克y元,根据题意列出方程组即可解决问题.(2)设购买酸味n千克,总费用为m元,则购买甜味12﹣n千克,路程不等式求出n的范围,再构建一次函数,利用一次函数的性质解决最值问题.【解答】解:(1)设酸味售价为每千克x元,甜味售价为每千克y元,根据题意得:解得:答:酸味售价为每千克15元,甜味售价为每千克20元.(2)设购买酸味n千克,总费用为m元,则购买甜味12-n千克,∴12-n≥2n ∴n≤4m=15n+20(12-n)=-5n +240∵k=-5<0 ∴m随n的增大而减小∴当n=4时,m =220答:购买酸味4千克,甜味8千克时,总费用最少.【点评】本题考查一次函数的应用、二元一次方程组等知识,解题的关键是学会设未知数,列出解方程组解决问题,学会构建一次函数,利用一次函数的性质解决最值问题,属于中考常考题型.19.(8分),转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别标有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相加(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)若规定两个数字的和为5时甲赢,两个数字的和为4时乙赢,请问这个游戏对甲、乙两人是否公平?【考点】游戏公平性;列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)分别求出定两个数字的和为5时和两个数字的和为4时的概率,即可知道游戏是否公平不公平.【解答】(1)画树状图得:(或者列表得)和 1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 7则共有12种等可能的结果;(2)∵两个数字的和为5或者和为4都是有3种情况,∴两个数字的和为5或者和为4的概率都是: .∴这个游戏对甲、乙两人是公平的.【点评】本题考查游戏公平性、列表法和树状图法,解答此类问题的关键是明确题意,写出所有的可能性.20.(7分),菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【考点】矩形的判定;菱形的性质.【专题】证明题.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.21.(9分)某学校为了增强学生体质,决定开放以下球类活动项目:A.篮球、B.乒乓球、C.排球、D.足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(①,图②),请回答下列问题:(1)这次被调查的学生共有多少人?(2)请你将条形统计图补充完整;(3)若该校共有学生1900人,请你估计该校喜欢D项目的人数.【考点】条形统计图;用样本估计总体;扇形统计图.菁优网版权所有【分析】(1)用喜欢篮球的人数除以喜欢篮球的人数所占的百分比,即可求出这些被调查的学生数;(2)用总人数减去喜欢篮球、乒乓球和足球的人数,即可求出喜欢排球的人数,从而补全统计图;(3)用总人数乘以喜欢足球的人数所占的百分比即可.【解答】解:(1)由扇形统计图可知:扇形A的圆心角是36°,所以喜欢A项目的人数占被调查人数的百分比= ×100%=10%.由条形图可知:喜欢A类项目的人数有20人,所以被调查的学生共有20÷10%=200(人).(2)喜欢C项目的人数=200-(20+80+40)=60(人),因此在条形图中补画高度为60的长方条,所示.(3)1900×(40÷200)=380(人).答:该校喜欢D项目的人数约为380人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分),在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于F.(1)求证:DF是⊙O的切线;(2)若⊙O的半径为2,BC= ,求DF的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)欲证明DF是⊙O的切线只要证明DF⊥OD,只要证明OD∥AC即可.(2)连接AD,首先利用勾股定理求出AD,由△ADC∽△DFC可得,列出方程即可解决问题.【解答】(1)证明:连接OD,∵OB=OD ∴∠ABC=∠ODB∴AB=AC ∴∠ABC=∠ACB∴∠ODB=∠ACB ∴OD∥AC∵DF⊥AC∴DF⊥OD∴DF是⊙O的切线(2)连接AD,∵AB是⊙O的直径∴AD⊥BC 又∵AB=AC∴BD=DC=∴AD=∵DF⊥AC ∴△ADC∽△DFC∴ ∴DF=【点评】本题考查切线的判定、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.23.(9分),抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)把A点和B点坐标分别代入y=ax2+bx中得到关于a、b的方程组,然后解方程组即可得到抛物线解析式;(2)计算函数值为3所对应的自变量的值即可得到C点,然后根据三角形面积公式计算△ABC的面积;(3)作PD⊥BH,,设P(m,﹣m2+4m),则利用S△ABH+S梯形APDH=S△PBD+S△ABP可得到关于m的方程,然后解方程求出m即可得到P点坐标.【解答】解:(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,得∴抛物线表达式为:y=﹣x2+4x;(2)点C的坐标为(3,3),又∵点B的坐标为(1,3),∴BC=2,∴S△ABC= ×2×3=3;(3)过P点作PD⊥BH交BH于点D,设点P(m,﹣m2+4m),根据题意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,∴S△ABP=S△ABH+S四边形HAPD﹣S△BPD,6= ×3×3+ (3+m﹣1)(m2﹣4m)﹣ (m﹣1)(3+m2﹣4m),∴3m2﹣15m=0,m1=0(舍去),m2=5,∴点P坐标为(5,﹣5).【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x 轴没有交点.。

2017年山东省临沂市中考数学模拟试卷(5)

2017年山东省临沂市中考数学模拟试卷(5)

2017年XX省临沂市中考数学模拟试卷(5)一、选择题(本大题共14小题,每小题3分,共42分,在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3分)的负倒数是()A.B.C.3 D.﹣32.(3分)某种禽流感病毒变异后的直径为0.00000012米,将这个数写成科学记数法是()A.1.2×10﹣5B.0.12×10﹣6C.1.2×10﹣7D.12×10﹣83.(3分)如图,在△ABC中,∠C=90°,EF∥AB,∠1=33°,则∠A的度数为()A.57°B.47°C.43°D.33°4.(3分)下列运算正确的是()A.a n•a2=a2n B.a3•a2=a6C.a n•(a2)n=a2n+2D.a2n﹣3÷a﹣3=a2n5.(3分)不等式组的解集是()A.x≥8 B.x>2 C.0<x<2 D.2<x≤86.(3分)若,则的值为()A.B.C.D.7.(3分)如图是某几何体的三视图,则此几何体的体积是()A.672 B.1120 C.1344 D.20168.(3分)一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.9.(3分)若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长为()A.22 B.26 C.22或26 D.2810.(3分)如图,在⊙O中,弦AB∥CD,若∠ABC=36°,则∠BOD等于()A.18°B.36°C.54°D.72°11.(3分)若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣ B.C.D.﹣12.(3分)如图AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB=()A.B.C.D.13.(3分)如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2014次相遇在边()A.AB上B.BC上C.CD上D.DA上14.(3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)分解因式:x3﹣4x2y+4xy2=.16.(3分)某校把学生的笔试、实践能力和成长记录三项成绩分别按50%、20%和30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩(单位:分)如下表,学期总评成绩优秀的学生是.纸笔测试实践能力成长记录甲9083 95乙8890 95丙9088 9017.(3分)规定一种新运算a※b=a2﹣2b,如1※2=﹣3,则※(﹣2)=.18.(3分)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=.19.(3分)如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P,Q分别从A,C,同时出发,点P以2cm/s的速度向点B移动,到达B点后停止,点Q以1cm/s 的速度向点D移动,到达D点后停止,P,Q两点出发后,经过秒时,线段PQ 的长是10cm.三、解答题(本大题共7小题,共63分)20.(7分)某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%.(1)根据物价局规定,此商品每件售价最高可定为多少元?(2)若每件商品售价定为x元,则可卖出(170﹣5x)件,商店预期要盈利280元,那么每件商品的售价应定为多少元?21.(7分)如图,已知双曲线y=与直线y=kx+b交于第一象限点P(2,3),且直线穿过点A(0,2)(1)求两个函数的解析式;的值.(2)若直线与x轴交于点B,求S△BOP22.(7分)为迎接癸巳年炎帝故里寻根节,某校开展了主题为“炎帝文化知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了如图不完整的表格和扇形统计图.等级非常了解比较了解基本了解不太了解频数50m4020根据以上提供的信息解答下列问题:(1)本次问卷调查共抽取的学生数为人,表中m的值为.(2)计算等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数,并补全扇形统计图.(3)若该校有学生1500人,请根据调查结果估计这些学生中“不太了解”炎帝文化知识的人数约为多少?23.(9分)我市农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A、B、C三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A、C两种水果重量之和.水果品种A B C每辆汽车运装量(吨) 2.2 2.12每吨水果获利(百元)685(1)设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并写出自变量的取值范围;(2)设此次外销活动的利润为Q(万元),求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.24.(9分)如图,OA是⊙O的半径,弦CD垂直平分OA于点B,延长CD至点P,过点P作⊙O的切线PE,切点为E,连接AE交CD于点F.(1)若CD=6,求⊙O的半径;(2)若∠A=20°,求∠P的度数.25.(11分)情境创设:如图1,两块全等的直角三角板,△ABC≌△DEF,且∠C=∠F=90°,现如图放置,则∠ABE=°.问题探究:如图2,△ABC中,AH⊥BC于H,以A为直角顶点,分别以AB、AC为直角边,向△ABC形外作等腰直角△ABE和等腰直角△ACF,过点E、F作射线HA的垂线,垂足分别为M、N,试探究线段EM和FN之间的数量关系,并说明理由.拓展延伸:如图3,△ABC中,AH⊥BC于H,以A为直角顶点,分别以AB、AC为一边,向△ABC形外作正方形ABME和正方形ACNF,连接E、F交射线HA于G点,试探究线段EG和FG之间的数量关系,并说明理由.26.(13分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.2017年XX省临沂市中考数学模拟试卷(5)参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分,在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2017•临沂模拟)的负倒数是()A.B.C.3 D.﹣3【考点】倒数.【分析】根据倒数的定义,互为倒数的两数乘积为1,3×=1.再求出3的相反数即可解答.【解答】解:根据倒数的定义得:3×=1.因此的负倒数是﹣3.故选D.【点评】主要考查倒数的概念与性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2015•陆良县一模)某种禽流感病毒变异后的直径为0.00000012米,将这个数写成科学记数法是()A.1.2×10﹣5B.0.12×10﹣6C.1.2×10﹣7D.12×10﹣8【考点】科学记数法—表示较小的数.【分析】用科学记数法表示比较小的数时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.【解答】解:0.000 000 12=1.2×10﹣7.故选:C.【点评】把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.3.(3分)(2017•临沂模拟)如图,在△ABC中,∠C=90°,EF∥AB,∠1=33°,则∠A的度数为()A.57°B.47°C.43°D.33°【考点】平行线的性质;直角三角形的性质.【分析】先根据平行线的性质求出∠B的度数,再由直角三角形的性质求出∠A 的度数即可.【解答】解:∵EF∥AB,∠1=33°,∴∠B=∠1=33°,∵△ABC中,∠C=90°,∠B=33°,∴∠A=90°﹣∠B=90°﹣33°=57°.故选A.【点评】本题考查的是平行线的性质与直角三角形的性质,用到的知识点为:两直线平行,内错角相等.4.(3分)(2017•临沂模拟)下列运算正确的是()A.a n•a2=a2n B.a3•a2=a6C.a n•(a2)n=a2n+2D.a2n﹣3÷a﹣3=a2n【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据同底数幂的除法法则、同底数幂的乘法法则计算,判断即可.【解答】解:a n•a2=a2+n,A选项错误;a3•a2=a5,B选项错误;a n•(a2)n=a3n,C选项错误;a2n﹣3÷a﹣3=a2n,D选项正确,故选:D.【点评】本题考查的是同底数幂的除法、同底数幂的乘法,掌握同底数幂的除法法则:底数不变,指数相减是解题的关键.5.(3分)(2013•临沂)不等式组的解集是()A.x≥8 B.x>2 C.0<x<2 D.2<x≤8【考点】解一元一次不等式组.【分析】先求出不等式的解集,再根据不等式的解集找出不等式组的解集即可.【解答】解:∵解不等式①得:x>2,解不等式②得:x≤8,∴不等式组的解集为2<x≤8,故选D.【点评】本题考查了解一元一次不等式(组)的应用,关键是能根据不等式的解集找出不等式组的解集.6.(3分)(2017•临沂模拟)若,则的值为()A.B.C.D.【考点】分式的化简求值.【分析】先通分得到原式=,然后约分得到原式=,再把a=代入计算即可.【解答】解:原式==,当a=时,原式==.故选D.【点评】本题考查了分式的化简求值:先通分,再进行约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.7.(3分)(2014•萧山区模拟)如图是某几何体的三视图,则此几何体的体积是()A.672 B.1120 C.1344 D.2016【考点】由三视图判断几何体.【分析】首先根据该几何体的三视图判断该几何体的形状,然后根据各部分的尺寸计算其体积即可.【解答】解:观察该几何体的三视图发现该几何体为三棱柱;三棱柱的底面是等腰三角形,高为14,所以体积为×12×8×14=672,故选A.【点评】本题主要考查三视图的应用,利用三视图将几何体进行还原是解决三视图题目的关键,要求熟练掌握柱体的体积公式.8.(3分)(2014•义乌市)一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.【考点】概率公式.【分析】用红球的个数除以球的总个数即可.【解答】解:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选:D.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.9.(3分)(2017•临沂模拟)若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长为()A.22 B.26 C.22或26 D.28【考点】矩形的性质.【分析】根据AD∥BC,理解平行线的性质,以与角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=3cm,DE=5cm和AE=5cm,DE=3cm两种情况即可求得矩形的边长,从而求解.【解答】解:∵AD∥BC,∴∠AEB=∠EBC又∵BE平分∠ABC,即∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE.当AE=3cm,DE=5cm时,AD=BC=8cm,AB=CD=AE=3cm.∴矩形ABCD的周长是:2×8+2×3=22cm;当AE=3cm,DE=2cm时,AD=BC=8cm,AB=CD=AE=5cm,∴矩形ABCD的周长是:2×8+2×5=26cm.故矩形的周长是:22cm或26cm.故选C.【点评】此题考查了矩形的性质以与等腰三角形的判定与性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.10.(3分)(2017•临沂模拟)如图,在⊙O中,弦AB∥CD,若∠ABC=36°,则∠BOD等于()A.18°B.36°C.54°D.72°【考点】圆周角定理.【分析】由在⊙O中,弦AB∥CD,若∠ABC=36°,根据平行线的性质,可求得∠C的度数,又由圆周角定理,即可求得答案.【解答】解:∵弦AB∥CD,∠ABC=36°,∴∠C=∠ABC=36°,∴∠BOD=2∠C=72°.故选D.【点评】此题考查了圆周角定理以与平行线的性质.此题难度不大,注意掌握数形结合思想的应用.11.(3分)(2016•枣阳市模拟)若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣ B.C.D.﹣【考点】二元一次方程组的解;二元一次方程的解.【分析】将k看做已知数求出x与y,代入2x+3y=6中计算即可得到k的值.【解答】解:,①+②得:2x=14k,即x=7k,将x=7k代入①得:7k+y=5k,即y=﹣2k,将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,解得:k=.故选B.【点评】此题考查了二元一次方程组的解,以与二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.12.(3分)(2008•乐山)如图AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB=()A.B.C.D.【考点】解直角三角形.【分析】根据勾股定理可求AC的长度;由三边长度判断△ABC为直角三角形.根据三角函数定义求解.【解答】解:由勾股定理知,AC2=CD2+AD2=25,∴AC=5.∵AC2+BC2=169=AB2,∴△CBA是直角三角形.∴sinB==.故选A.【点评】本题利用了勾股定理和勾股定理的逆定理,考查三角函数的定义.13.(3分)(2014•苏州模拟)如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2014次相遇在边()A.AB上B.BC上C.CD上D.DA上【考点】正方形的性质.【分析】因为乙的速度是甲的速度的4倍,所以第1次相遇,甲走了正方形周长的×=;从第2次相遇起,每次甲走了正方形周长的,从第2次相遇起,5次一个循环,从而不难求得它们第2014次相遇位置.【解答】解:根据题意分析可得:乙的速度是甲的速度的4倍,故第1次相遇,甲走了正方形周长的×=;从第2次相遇起,每次甲走了正方形周长的,从第2次相遇起,5次一个循环.因此可得:从第2次相遇起,每次相遇的位置依次是:DC,点C,CB,BA,AD;依次循环.故它们第2014次相遇位置与第四次相同,在边BC上.故选B.【点评】考查了正方形的性质,本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.14.(3分)(2016•黔南州)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.【解答】解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.【点评】本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)(2014•丹东)分解因式:x3﹣4x2y+4xy2=x(x﹣2y)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,然后利用完全平方差公式进行二次分解即可.【解答】解:x3﹣4x2y+4xy2=x(x2﹣2xy+4y2)=x(x﹣2y)2.故答案是:x(x﹣2y)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.16.(3分)(2012•麻城市校级自主招生)某校把学生的笔试、实践能力和成长记录三项成绩分别按50%、20%和30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩(单位:分)如下表,学期总评成绩优秀的学生是甲、乙.纸笔测试实践能力成长记录甲9083 95乙8890 95丙9088 90【考点】加权平均数.【分析】分别计算三人的加权平均数,然后与90比较大小即可.【解答】解:由题意知,甲的学期总评成绩=90×50%+83×20%+95×30%=90.1,乙的学期总评成绩=88×50%+90×20%+95×30%=90.5,丙的学期总评成绩=90×50%+88×20%+90×30%=89.6,故答案为甲、乙.【点评】本题考查了加权成绩的计算.平均数等于所有数据的和除以数据的个数.17.(3分)(2010•XX一模)规定一种新运算a※b=a2﹣2b,如1※2=﹣3,则※(﹣2)=6.【考点】二次根式的混合运算.【分析】认真观察新运算法则的特点,找出其中的规律,再代数计算.【解答】解:∵a※b=a2﹣2b,∴※(﹣2)=()2﹣2×(﹣2)=2+4=6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.18.(3分)(2014•宜宾)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′= 1.5.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得BE=EB′,AB′=AB=3,然后设BE=EB′=x,则EC=4﹣x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案.【解答】解:根据折叠可得BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,∵∠B=90°,AB=3,BC=4,∴在Rt△ABC中,由勾股定理得,,∴B′C=5﹣3=2,在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2,解得x=1.5,故答案为:1.5.【点评】此题主要考查了翻折变换,关键是分析清楚折叠以后哪些线段是相等的.19.(3分)(2014•襄阳模拟)如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P,Q分别从A,C,同时出发,点P以2cm/s的速度向点B移动,到达B点后停止,点Q以1cm/s的速度向点D移动,到达D点后停止,P,Q两点出发后,经过或8秒时,线段PQ的长是10cm.【考点】矩形的性质;勾股定理.【分析】连接PQ,过Q作QM⊥AB,设经过x秒,线段PQ的长是10cm,根据题意可得PM=(16﹣3x)cm,QM=6cm,利用勾股定理可得(16﹣3x)2+62=102,再解方程即可.【解答】解:连接PQ,过Q作QM⊥AB,设经过x秒,线段PQ的长是10cm,∵点P以2cm/s的速度向点B移动,到达B点后停止,点Q以1cm/s的速度向点D移动,∴PM=(16﹣3x)cm,QM=6cm,根据勾股定理可得:(16﹣3x)2+62=102,解得:x1=8,x2=,故答案为:或8.【点评】此题主要考查了矩形的性质,以与勾股定理的应用,关键是掌握矩形对边相等.三、解答题(本大题共7小题,共63分)20.(7分)(2014•厦门模拟)某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%.(1)根据物价局规定,此商品每件售价最高可定为多少元?(2)若每件商品售价定为x元,则可卖出(170﹣5x)件,商店预期要盈利280元,那么每件商品的售价应定为多少元?【考点】一元二次方程的应用.【分析】(1)原价加上原价的30%即为最高售价;(2)根据:每件盈利×销售件数=总盈利额;其中,每件盈利=每件售价﹣每件进价.建立等量关系.【解答】解:(1)16(1+30%)=20.8,答:此商品每件售价最高可定为20.8元.(2)(x﹣16)(170﹣5x)=280,整理,得:x2﹣50x+600=0,解得:x1=20,x2=30,因为售价最高不得高于20.8元,所以x2=30不合题意应舍去.答:每件商品的售价应定为20元.【点评】本题考查了一元二次方程的应用,解一元二次方程的应用题,需要检验结果是否符合题意.21.(7分)(2017•临沂模拟)如图,已知双曲线y=与直线y=kx+b交于第一象限点P(2,3),且直线穿过点A(0,2)(1)求两个函数的解析式;的值.(2)若直线与x轴交于点B,求S△BOP【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法分别求出反比例函数与一次函数解析式即可;(2)利用(1)中所求一次函数解析式得出B点坐标,进而得出BO的长,即可的值.得出S△BOP【解答】解;(1)∵双曲线y=与直线y=kx+b交于第一象限点P(2,3),且直线穿过点A(0,2),∴m=2×3=6,,解得:.∴直线解析式为:y=x+2,双曲线解析式为:y=;(2)连接OP,作PE⊥x轴于点E,∵y=x+2=0时,x=﹣4,∴直线与x轴交于点(﹣4,0),∴BO=4,∵点P(2,3),∴PE的长为:3,∴S△BOP=×BO×PE=×4×3=6.【点评】此题主要考查了待定系数法求反比例函数和一次函数解析式以与三角形面积求法等知识,根据已知得出B点坐标是解题关键.22.(7分)(2013•随州)为迎接癸巳年炎帝故里寻根节,某校开展了主题为“炎帝文化知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了如图不完整的表格和扇形统计图.等级非常了解比较了解基本了解不太了解频数50m4020根据以上提供的信息解答下列问题:(1)本次问卷调查共抽取的学生数为200人,表中m的值为90.(2)计算等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数,并补全扇形统计图.(3)若该校有学生1500人,请根据调查结果估计这些学生中“不太了解”炎帝文化知识的人数约为多少?【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)利用基本了解的人数÷基本了解的人数所占百分比即可算出本次问卷调查共抽取的学生数;m=抽查的学生总数×比较了解的学生所占百分比;(2)等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数=360°×所占百分比,再补图即可;(3)利用样本估计总体的方法,用1500人×调查的学生中“不太了解”的学生所占百分比.【解答】解:(1)40÷20%=200(人),200×45%=90(人),故答案为:200;90.(2)×100%×360°=90°,如图所示:(3)1500×(1﹣25%﹣20%﹣45%)=150(人),答:这些学生中“不太了解”炎帝文化知识的人数约150人.【点评】此题主要考查了扇形统计图,以与样本估计总体,关键是正确从扇形统计图和表中得到所用信息.23.(9分)(2008•双柏县)我市农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A、B、C三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的重量不超过装运的A、C两种水果重量之和.水果品种A B C每辆汽车运装量(吨) 2.2 2.12每吨水果获利(百元)685(1)设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并写出自变量的取值范围;(2)设此次外销活动的利润为Q(万元),求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.【考点】一次函数的应用.【分析】(1)关键描述语:某乡组织30辆汽车装运A、B、C三种水果共64吨到外地销售,根据每辆汽车运装量和汽车的辆数,可列出y与x之间的函数关系式,再根据装运每种水果的汽车不少于4辆,装运的B种水果的重量不超过装运的A、C两种水果重量之和.可将自变量x的取值范围求出;(2)根据水果品种每吨水果的利润和销售的数量,可将此次外销活动的利润Q 表示出来,根据x的取值范围,从而将最大利润时车辆的分配方案求出.【解答】解:(1)由题得到:2.2x+2.1y+2(30﹣x﹣y)=64,所以y=﹣2x+40,又因为x≥4,y≥4,30﹣x﹣y≥4,则﹣2x+40≥4,30﹣x﹣(﹣2x+40)≥4,得到14≤x≤18;∵y≤x+30﹣x﹣y,y=﹣2x+40,∴x≥12.5,∴14≤x≤18;(2)Q=6×2.2x+8×2.1y+5×2(30﹣x﹣y)=﹣10.4x+572,Q随着x的减小而增大,又因为14≤x≤18,所以当x=14时,Q取得最大值,即Q=42640(元)=4.264(万元).此时应这样安排:A水果用14辆车,B水果用12辆车,C水果用4辆车.【点评】本题主要考查一次函数在实际生活中的应用,在解题过程中应确定未知量的取值范围.24.(9分)(2017•临沂模拟)如图,OA是⊙O的半径,弦CD垂直平分OA于点B,延长CD至点P,过点P作⊙O的切线PE,切点为E,连接AE交CD于点F.(1)若CD=6,求⊙O的半径;(2)若∠A=20°,求∠P的度数.【考点】切线的性质.【分析】(1)首先连接OC,由PC垂直平分⊙O的半径OA,可求得BC与OC的长,由勾股定理即可求得⊙O的半径;(2)由PE是⊙O的切线,可求得∠AEO=90°,又由∠A=20°,可求得∠AOE的度数,继而求得答案.【解答】解:(1)连接OC,∵PC垂直平分⊙O的半径OA,∴BC=CD=×6=3,OC=2OB,∵OB2+BC2=OC2,∴OC=2;(2)∵PE是⊙O的切线,∴∠PEO=90°,∵OE=OA,∴∠AEO=∠A=20°,∴∠AOE=140°,∴∠P=360°﹣90°﹣90°﹣140°=40°.【点评】此题考查了切线的性质、勾股定理以与等腰三角形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.25.(11分)(2017•临沂模拟)情境创设:如图1,两块全等的直角三角板,△ABC≌△DEF,且∠C=∠F=90°,现如图放置,则∠ABE=90°.问题探究:如图2,△ABC中,AH⊥BC于H,以A为直角顶点,分别以AB、AC为直角边,向△ABC形外作等腰直角△ABE和等腰直角△ACF,过点E、F作射线HA的垂线,垂足分别为M、N,试探究线段EM和FN之间的数量关系,并说明理由.拓展延伸:如图3,△ABC中,AH⊥BC于H,以A为直角顶点,分别以AB、AC为一边,向△ABC形外作正方形ABME和正方形ACNF,连接E、F交射线HA于G点,试探究线段EG和FG之间的数量关系,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形;正方形的性质.【分析】(1)求出∠A=∠EDF,∠A+∠ABC=90°,推出∠EDF+∠ADC=90°,求出∠ADE的度数即可;(2)根据全等三角形的判定得出△EAM≌△ABH,进而求出EM=AH.同理AH=FN,因而EM=FN.(3)与(2)证法类似求出EG=FG,求出△EPG≌△FQG即可.【解答】解:(1)∵△ABC≌△DEF,∴∠A=∠EDF,∵∠C=90°,∴∠A+∠ABC=90°,∴∠EDF+∠ADC=90°,∴∠ADE=180°﹣90°=90°,故答案为:90;(2)解:EM=FN,如图2,理由如下:∵Rt△ABE是等腰三角形,∴EA=BA,∠BAE=90°,∴∠BAH+∠MAE=90°,∵AH⊥BC,EM⊥AH,∴∠AME=∠AHB=90°,∴∠ABH+∠BAH=90°,∴∠ABH=∠MAE,在△EAM与△ABH中∴△EAM≌△ABH(AAS),∴EM=AH.同理AH=FN.∴EM=FN;(3)解:EG=FG,如图3,作EP⊥HG,FQ⊥HG,垂足分别为P、Q,由(2)可得EP=FQ,∵EP⊥HG,FQ⊥HG,∴∠EPG=∠FQG=90°,在△EPG和△FQG中∵,∴△EPG≌△FQG,∴EG=FG.【点评】本题考查了全等三角形的性质和判定,注意:①全等三角形的对应角相等,对应边相等,②全等三角形的判定定理有SAS,ASA,AAS,SSS.26.(13分)(2012•连云港)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.【考点】二次函数综合题.【分析】(1)在矩形OCEF中,已知OF、EF的长,先表示出C、E的坐标,然后利用待定系数法确定该函数的解析式.(2)根据(1)的函数解析式求出A、B、D三点的坐标,以AB为底、D点纵坐标的绝对值为高,可求出△ABD的面积.(3)首先根据旋转条件求出G点的坐标,然后将点G的坐标代入抛物线的解析式中直接进行判定即可.【解答】解:(1)∵四边形OCEF为矩形,OF=2,EF=3,∴点C的坐标为(0,3),点E的坐标为(2,3).把x=0,y=3;x=2,y=3分别代入y=﹣x2+bx+c中,得,解得,∴抛物线所对应的函数解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为D(1,4),∴△ABD中AB边的高为4,令y=0,得﹣x2+2x+3=0,解得x1=﹣1,x2=3,所以AB=3﹣(﹣1)=4,∴△ABD的面积=×4×4=8;(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1,∴点A对应点G的坐标为(3,2),当x=3时,y=﹣32+2×3+3=0≠2,所以点G不在该抛物线上.【点评】这道函数题综合了图形的旋转、面积的求法等知识,考查的知识点不多,难度适中.。

{3套试卷汇总}2017-2018临沂市中考数学第二次练兵模拟试题

{3套试卷汇总}2017-2018临沂市中考数学第二次练兵模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).x…1-12…y…1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点【答案】B【解析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上 则该二次函数的图像与x 轴有两个交点,且它们分别在y 轴两侧 故选B. 【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.2.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示sinα的值,错误的是( )A .CDBCB .ACABC .ADACD .CDAC【答案】D【解析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案. 【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°, ∴∠ACD=∠B=α, A 、在Rt △BCD 中,sinα=CDBC,故A 正确,不符合题意;B、在Rt△ABC中,sinα=ACAB,故B正确,不符合题意;C、在Rt△ACD中,sinα=ADAC,故C正确,不符合题意;D、在Rt△ACD中,cosα=CDAC,故D错误,符合题意,故选D.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.1【答案】C【解析】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.4.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=【答案】A【解析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BCDF CE=.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.5.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹【答案】B【解析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:∵A、天空划过一道流星说明“点动成线”,∴故本选项错误.∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,∴故本选项正确.∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,∴故本选项错误.∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,∴故本选项错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体. 6.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【答案】A【解析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.8.一个几何体的三视图如图所示,该几何体是( )A .直三棱柱B .长方体C .圆锥D .立方体【答案】A【解析】根据三视图的形状可判断几何体的形状. 【详解】观察三视图可知,该几何体是直三棱柱. 故选A .本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.9.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根 B .0一定不是关于x 的方程x 2+bx+a=0的根 C .1和﹣1都是关于x 的方程x 2+bx+a=0的根 D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根 【答案】D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根.【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根; 当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根. ∵a+1≠0, ∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根. 故选D . 【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.10.下列手机手势解锁图案中,是轴对称图形的是( )A .B .C .D .【答案】D【解析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A 错误;B.既不是轴对称图形,也不是中心对称图形,所以B 错误;C.是中心对称图形,不是轴对称图形,所以C 错误;D.是轴对称图形,不是中心对称图形,所以D 正确. 【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键. 二、填空题(本题包括8个小题)11.如图,在△ABC 中,AB≠AC .D,E 分别为边AB,AC 上的点.AC=3AD,AB=3AE,点F 为BC 边上一点,添加一个条件:______,可以使得△FDB 与△ADE 相似.(只需写出一个)【答案】//DF AC 或BFD A ∠=∠【解析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一. 【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.12.如图,ABC 与ADB △中,90ABC ADB ︒∠=∠=,C ABD ∠=∠,5AC =,4AB =,AD 的长为________.【答案】165【解析】先证明△ABC ∽△ADB ,然后根据相似三角形的判定与性质列式求解即可. 【详解】∵90ABC ADB ︒∠=∠=,C ABD ∠=∠, ∴△ABC ∽△ADB , ∴AB ADAC AB=, ∵5AC =,4AB =,∴454AD =, ∴AD=165.故答案为:165.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.13.已知一组数据-3,x ,-2, 3,1,6的众数为3,则这组数据的中位数为______. 【答案】2【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个. 详解:∵-3,x ,-1, 3,1,6的众数是3, ∴x=3,先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3, ∴这组数的中位数是132+=1. 故答案为: 1.点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数. 14.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则列出的方程组为_____.【答案】2753x y x y+=⎧⎨=⎩【解析】根据图示可得:长方形的长可以表示为x+2y ,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可. 【详解】根据图示可得2753x y x y+=⎧⎨=⎩,故答案是:2753x y x y +=⎧⎨=⎩.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽. 15.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 【答案】3212a b ⎧=⎪⎪⎨⎪=-⎪⎩【解析】分析:利用关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩可得m 、n 的数值,代入关于a 、b 的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,∴将解12x y =⎧⎨=⎩代入方程组3526x my x ny -=⎧⎨+=⎩ 可得m=﹣1,n=2∴关于a 、b 的二元一次方程组()()()()3=526a b m a b a b n a b ⎧+--⎪⎨++-=⎪⎩整理为:42546a b a +=⎧⎨=⎩ 解得:3212a b ⎧=⎪⎪⎨⎪=-⎪⎩点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显. 16.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为 . 【答案】1【解析】考点:圆锥的计算.分析:求得扇形的弧长,除以1π即为圆锥的底面半径.解:扇形的弧长为:1445180π⨯=4π;这个圆锥的底面半径为:4π÷1π=1.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.17.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是cm.【答案】2或14【解析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF−OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.18.在△ABC中,若∠A,∠B满足|cosA-12|+(sinB-22)2=0,则∠C=_________.【答案】75°【解析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.【详解】∵|cosA-12|+(sinB-22)2=0,∴cosA=12,sinB=22,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为:75°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB 的值,另外要求我们熟练掌握一些特殊角的三角函数值.三、解答题(本题包括8个小题)19.已知关于x的方程x1+(1k﹣1)x+k1﹣1=0有两个实数根x1,x1.求实数k的取值范围;若x1,x1满足x11+x11=16+x1x1,求实数k的值.【答案】(2) k≤54;(2)-2.【解析】试题分析:(2)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k 的取值范围;(2)由根与系数的关系可得x2+x2=2﹣2k、x2x2=k2﹣2,将其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.试题解析:(2)∵关于x的方程x2+(2k﹣2)x+k2﹣2=0有两个实数根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴实数k的取值范围为k≤.(2)∵关于x的方程x2+(2k﹣2)x+k2﹣2=0有两个实数根x2,x2,∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.考点:一元二次方程根与系数的关系,根的判别式.20.2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.【答案】原计划每天安装100个座位.【解析】根据题意先设原计划每天安装x 个座位,列出方程再求解.【详解】解:设原计划每天安装x 个座位,采用新技术后每天安装()125%x +个座位, 由题意得:()247647624764764125%x x ---=+. 解得:100x =.经检验:100x =是原方程的解.答:原计划每天安装100个座位.【点睛】此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.21.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【答案】共有7人,这个物品的价格是53元.【解析】根据题意,找出等量关系,列出一元一次方程.【详解】解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程的应用.22.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?【答案】(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元.【解析】分析:(1)设进价为x 元,则标价是1.5x 元,根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8-8x ,将标价直降100元销售7辆获利是(1.5x-100)×7-7x ,根据利润相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x ,再解方程即可得到进价,进而得到标价;(2)设该型号自行车降价a 元,利润为w 元,利用销售量×每辆自行车的利润=总利润列出函数关系式,再利用配方法求最值即可.详解:(1)设进价为x 元,则标价是1.5x 元,由题意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x ,解得:x=1000,1.5×1000=1500(元),答:进价为1000元,标价为1500元;(2)设该型号自行车降价a 元,利润为w 元,由题意得:w=(51+20a ×3)(1500-1000-a ), =-320(a-80)2+26460, ∵-320<0, ∴当a=80时,w 最大=26460,答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w 与a 的关系式,进而求出最值.23.我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?【答案】(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】(1)设这项工程的规定时间是x 天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】解:(1)设这项工程规定的时间是x 天 根据题意,得1010511.5x x++= 解得x =20经检验,x =20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天) (6500+3500)×12=120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.24.先化简代数式:222111a a a a a +⎛⎫-÷⎪---⎝⎭,再代入一个你喜欢的数求值. 【答案】13【解析】先根据分式的运算法则进行化简,再代入使分式有意义的值计算. 【详解】解:原式2211(1)(1)a a a a a a ⎡⎤+-=-⋅⎢⎥-+-⎣⎦ 2(1)21(1)(1)a a a a a a +---=⋅+- 11a =+. 使原分式有意义的a 值可取2, 当2a =时,原式11213==+. 【点睛】考核知识点:分式的化简求值.掌握分式的运算法则是关键.25.计算:(()2122sin 30tan 45--+-+°° 【答案】1【解析】试题分析:先计算绝对值,三角函数,零指数,负指数,平方再按照实数的运算计算即可.试题解析:(()2122sin 30tan 45--+︒-+︒=2+2×2-3+1考点:三角函数,实数的运算.26.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.【解析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.1,2y =2.1,∵有利于减少库存,∴y =2.1.答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。

山东省临沂市2017年中考数学模拟试卷(7)(含解析)

山东省临沂市2017年中考数学模拟试卷(7)(含解析)

2017年山东省临沂市中考数学模拟试卷(7)一、选择题:本大题共14小题,每小题3分,共42分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.若x=﹣7,则﹣x的相反数是()A.+7 B.﹣7 C.±7 D.2.已知0.00049=4.9×10n,则n为()A.4 B.﹣4 C.5 D.﹣53.已知,如图,AB∥CD,∠A=70°,∠B=40°,则∠ACD=()A.55° B.70° C.40° D.110°4.下列计算中正确的是()A.2x+3y=5xy B.x•x4=x4C.x8÷x2=x6D.(x﹣y)2=x2﹣y25.若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m=3 C.m≤3 D.m<36.当a=21时,式子的值是()A.21 B.20 C.D.7.某种零件模型如图所示,该几何体(空心圆柱)的从上面看到的形状图是()A.B.C.D.8.袋中装有大小相同的3个绿球、3个黑球和6个蓝球,闭上眼从袋中摸出一个球,则下列事件发生概率最小的是()A.摸出的球颜色为绿色B.摸出的球颜色为蓝色C.摸出的球颜色为白色D.摸出的球颜色为黑色9.如图,四边形ABCD和四边形AEFC都是矩形,点B在EF边上,若矩形ABCD和矩形AEFC 的面积分别为S1,S2,则S1和S2的大小关系是()A.S1>S2B.S1=S2 C.S1<S2D.5S1=4S210.如图△MBC中,∠B=90°,∠C=60°,MB=2,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A.B.C.2 D.311.分式方程的解为()A.x=﹣B.x= C.x= D.12.如图,某轮船在点O处测得一个小岛上的电视塔A在北偏西60°的方向,船向西航行20海里到达B处,测得电视塔A在船的西北方向,若要轮船离电视塔最近,则还需向西航行()A.海里B.海里C.海里D.海里13.已知:如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,面积记作S1;再作第二个正方形A2B2C2A3,面积记作S2;继续作第三个正方形A3B3C3A4,面积记作S3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第6个正方形的面积S6是()A.256 B.900 C.1024 D.409614.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A.B.C.D.二、填空题:本大题共5小题,每小题3分,共15分15.分解因式:a3﹣2a2+a= .16.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是分.17.若规定一种运算为:a★b=(b﹣a),如3★5=(5﹣3)=2.则★= .18.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是.19.如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE 为一边在AE的右下方作正方形AEFG,同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当经过秒时,直线MN和正方形AEFG开始有公共点?三、解答题:本大题共7小题,共63分20.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?21.如图,已知点A是一次函数y=x的图象与反比例函数的图象在第一象限内的交点,点B在x轴的负半轴上且OA=OB,△AOB的面积为.求反比例函数的解析式.22.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在如图中,“7分”所在扇形的圆心角等于°.(2)请你将如图的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.23.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s(千米)和行驶时间t(小时)之间的关系,根据所给图象,解答下列问题:(1)写出甲的行驶路程s和行驶时间t(t≥0)之间的函数关系式;(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度;在哪一段时间内,甲的行驶速度大于乙的行驶速度;(3)从图象中你还能获得什么信息?请写出其中的一条.24.如图,AB是半圆O的直径,AC是弦,点P从点B开始沿BA边向点A以1cm/s的速度移动,若AB长为10cm,点O到AC的距离为4cm.(1)求弦AC的长;(2)问经过几秒后,△APC是等腰三角形.25.【观察发现】如图1,F,E分别是正方形ABCD的边CD、DA上两个动点(不与C、D、A重合),满足DF=AE.直(只线BE、AF相交于点G,猜想线段BE与AF 的数量关系,以及直线BE与直线AF 的位置关系.要求写出结论,不必说出理由)【类比探究】如图2,F,E分别是正方形ABCD的边CD、DA延长线上的两个动点(不与D、A重合),其他条件与【观察发现】中的条件相同,【观察发现】中的结论是否还成立?请根据图2加以说明.【深入探究】若在上述的图1与图2中正方形ABCD的边长为4,随着动点F、E的移动,线段DG的长也随之变化.在变化过程中,线段DG的长是否存在最大值或最小值,若存在,求出这个最大值或最小值,若不存在,请说明理由.(要求:分别就图1、图2直接写出结论,再选择其中一个图形说明理由)26.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t 秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?2017年山东省临沂市中考数学模拟试卷(7)参考答案与试题解析一、选择题:本大题共14小题,每小题3分,共42分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.若x=﹣7,则﹣x的相反数是()A.+7 B.﹣7 C.±7 D.【考点】相反数.【分析】先根据x=﹣7求得﹣x=7,然后再来求7的相反数即可.【解答】解:﹣x的相反数是:﹣(﹣x)=x=﹣7.故选:B.2.已知0.00049=4.9×10n,则n为()A.4 B.﹣4 C.5 D.﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00049=4.9×10﹣4.故选:B.3.已知,如图,AB∥CD,∠A=70°,∠B=40°,则∠ACD=()A.55° B.70° C.40° D.110°【考点】平行线的性质.【分析】本题考查的是平行线的性质,两直线平行,内错角相等.【解答】解:∵AB∥CD,∴∠A=∠ACD,又∵∠A=70°,∴∠ACD=70°.故选B.4.下列计算中正确的是()A.2x+3y=5xy B.x•x4=x4C.x8÷x2=x6D.(x﹣y)2=x2﹣y2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;完全平方公式.【分析】分别进行合并同类项、同底数幂的乘法、同底数幂的除法、完全平方公式的运算,然后选择正确答案.【解答】解:A、2x和3y不是同类项,不能合并,故本选项错误;B、x•x4=x5,原式计算错误,故本选项错误;C、x8÷x2=x6,计算正确,故本选项正确;D、(x﹣y)2=x2﹣2xy+y2,原式计算错误,故本选项错误.故选C.5.若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m=3 C.m≤3 D.m<3【考点】解一元一次不等式组.【分析】首先解第一个不等式求得不等式的解集,然后根据不等式组解集的确定方法,求得m的范围.【解答】解:,解①得:x>3,不等式的解集是:x>3.则m≤3.故选C.6.当a=21时,式子的值是()A.21 B.20 C.D.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把a=21代入进行计算即可.【解答】解:原式=÷=•=,当a=21时,原式==.故选D.7.某种零件模型如图所示,该几何体(空心圆柱)的从上面看到的形状图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:由上向下看空心圆柱,看到的是一个圆环,中间的圆要画成实线.故选C.8.袋中装有大小相同的3个绿球、3个黑球和6个蓝球,闭上眼从袋中摸出一个球,则下列事件发生概率最小的是()A.摸出的球颜色为绿色B.摸出的球颜色为蓝色C.摸出的球颜色为白色D.摸出的球颜色为黑色【考点】概率公式.【分析】由袋中装有大小相同的3个绿球、3个黑球和6个蓝球,利用概率公式即可求得:摸出的球颜色为绿色、蓝色、白色、黑色的概率,比较概率的大小,即可求得答案.【解答】解:∵袋中装有大小相同的3个绿球、3个黑球和6个蓝球,∴共有3+3+6=12种情况,∴P(摸出的球颜色为绿色)==,P(摸出的球颜色为蓝色)==,P(摸出的球颜色为白色)=0,P(摸出的球颜色为黑色)==.∴下列事件发生概率最小的是C.故选C.9.如图,四边形ABCD和四边形AEFC都是矩形,点B在EF边上,若矩形ABCD和矩形AEFC 的面积分别为S1,S2,则S1和S2的大小关系是()A.S1>S2B.S1=S2 C.S1<S2D.5S1=4S2【考点】矩形的性质.【分析】由于矩形ABCD的面积与矩形AEFC的面积都等于2个△ABC的面积,即可得两个矩形的面积关系.【解答】解:∵S矩形ABCD=2S△ABC,S矩形AEFC=2S△ABC,∴S矩形ABCD=S矩形AEFC,即S1=S2.故选B.10.如图△MBC中,∠B=90°,∠C=60°,MB=2,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A.B.C.2 D.3【考点】切线的性质.【分析】在直角三角形BCM中,根据60°的正切函数以及MB的长度,求出BC的长,然后根据AB为直径且AB与BC垂直,得到BC为圆O的切线,又因为CD也为圆O的切线,根据切线长定理得到切线长CD与BC相等,即可得到CD的长.【解答】解:在直角△BCM中,tan60°==,得到BC==2,∵AB为圆O的直径,且AB⊥BC,∴BC为圆O的切线,又CD也为圆O的切线,∴CD=BC=2.故选C.11.分式方程的解为()A.x=﹣B.x= C.x= D.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=2,解得:x=,经检验x=是分式方程的解.故选:B12.如图,某轮船在点O处测得一个小岛上的电视塔A在北偏西60°的方向,船向西航行20海里到达B处,测得电视塔A在船的西北方向,若要轮船离电视塔最近,则还需向西航行()A.海里B.海里C.海里D.海里【考点】解直角三角形的应用﹣方向角问题.【分析】作AC⊥OB于C点,根据题目提供的方向角,并从图中整理出直角三角形的模型,利用解直角三角形的知识求得BC的长即可.【解答】解:作AC⊥OB于C点,只要到C处,轮船离电视塔最近,求出BC长即可,由已知得:∠AOB=30°,∠ABC=45°、OB=20海里,∴BC=AC,CO=AC÷tan∠AOB=AC÷tan30°=,∵CO﹣CB=﹣AC=20,解得:AC=海里,∴BC=AC=10(+1)海里,故选A.13.已知:如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,面积记作S1;再作第二个正方形A2B2C2A3,面积记作S2;继续作第三个正方形A3B3C3A4,面积记作S3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第6个正方形的面积S6是()A.256 B.900 C.1024 D.4096【考点】正方形的性质.【分析】判断出△OA1B1是等腰直角三角形,求出第一个正方形A1B1C1A2的边长为1,再求出△B1C1B2是等腰直角三角形,再求出第2个正方形A2B2C2A3的边长为2,然后依次求出第3个正方形的边长,第4个正方形的边长第5个正方形的边长,第6个正方形的边长,再根据正方形的面积公式列式计算即可得解.【解答】解:∵∠MON=45°,∴△OA1B1是等腰直角三角形,∵OA1=1,∴正方形A1B1C1A2的边长为1,∵B1C1∥OA2,∴∠B2B1C1=∠MON=45°,∴△B1C1B2是等腰直角三角形,∴正方形A2B2C2A3的边长为:1+1=2,同理,第3个正方形A3B3C3A4的边长为:2+2=4,第4个正方形A4B4C4A5的边长为:4+4=8,第5个正方形A5B5C5A6的边长为:8+8=16,第6个正方形A6B6C6A7的边长为:16+16=32,所以,第6个正方形的面积S6是:322=1024.故选C.14.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A.B.C.D.【考点】动点问题的函数图象.【分析】通过相似三角形△EFB∽△EDC的对应边成比例列出比例式=,从而得到y 与x之间函数关系式,从而推知该函数图象.【解答】解:根据题意知,BF=1﹣x,BE=y﹣1,且△EFB∽△EDC,则=,即=,所以y=(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选:C.二、填空题:本大题共5小题,每小题3分,共15分15.分解因式:a3﹣2a2+a= a(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.【解答】解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.16.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是93.6 分.【考点】加权平均数.【分析】因为早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,利用加权平均数的公式即可求出答案.【解答】解:由题意知,小明的体育成绩=94×15%+90×35%+96×50%=93.6(分).故小明的体育成绩是93.6分.故答案为93.6.17.若规定一种运算为:a★b=(b﹣a),如3★5=(5﹣3)=2.则★= .【考点】实数的运算.【分析】根据新定义得到★=(﹣),再进行二次根式的乘法运算.【解答】解:★=(﹣)=×﹣×=﹣2.故答案为﹣2.18.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是(3,3).【考点】坐标与图形变化﹣平移.【分析】先确定右眼B的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案.【解答】解:∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),∴右眼的坐标为(0,3),向右平移3个单位后右眼B的坐标为(3,3).故答案为:(3,3).19.如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG,同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当经过秒时,直线MN和正方形AEFG开始有公共点?【考点】矩形的性质;正方形的性质.【分析】首先过点F作FQ⊥CD于点Q,证明△ADE≌△EQF,进而得出AD=EQ,得出当直线MN和正方形AEFG开始有公共点时:DQ+CM≥8进而求出即可.【解答】解:过点F作FQ⊥CD于点Q,∵在正方形AEFG中,∠AEF=90°,AE=EF,∴∠1+∠2=90°,∵∠DAE+∠1=90°,∴∠DAE=∠2,在△ADE和△EQF中,,∴△ADE≌△EQF(AAS),∴AD=EQ=3,当直线MN和正方形AEFG开始有公共点时:DQ+CM≥8,∴t+3+2t≥8,解得:t≥,故当经过秒时.直线MN和正方形AEFG开始有公共点.故答案是:.三、解答题:本大题共7小题,共63分20.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【考点】分式方程的应用.【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.【解答】解:设第一批盒装花的进价是x元/盒,则2×=,解得 x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.21.如图,已知点A是一次函数y=x的图象与反比例函数的图象在第一象限内的交点,点B在x轴的负半轴上且OA=OB,△AOB的面积为.求反比例函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】设反比例函数的解析式是y=,过A作AC⊥x轴于C,设A的坐标是(x,x),由勾股定理qiuc OA=OB=x,根据△AOB的面积是得出•x•x=,求出x,得出A的坐标,代入y=求出即可.【解答】解:设反比例函数的解析式是y=,过A作AC⊥x轴于C,∵A在函数y=x上,∴设A的坐标是(x,x),则OC=AC=x,由勾股定理得:OA=OB==x,∵△AOB的面积是,∴×OB×AC=∴•x•x=,x=,即A的坐标是(,),代入y=得:k=×=2,即反比例函数的解析式是y=.22.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在如图中,“7分”所在扇形的圆心角等于144 °.(2)请你将如图的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.【考点】扇形统计图;条形统计图;算术平均数;中位数.【分析】(1)根据扇形图中圆形角的度数可以直接求出,“7分”所在扇形的圆心角;(2)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数,即可得出8分的人数;(3)根据把分数从小到大排列,利用中位数的定义解答,根据平均数求法得出甲的平均数.【解答】解:(1)根据扇形图中圆形角的度数可以直接求出,“7分”所在扇形的圆心角为:360°﹣90°﹣72°﹣54°=144,故答案为:144;(2)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数为:5÷=20(人),即可得出8分的人数为:20﹣8﹣4﹣5=3(人),画出图形如图2:(3)甲校9分的人数是:20﹣11﹣8=1(人),甲校的平均分为=(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,∴中位数=(7+7)=7(分);由于两校平均分相等,乙校成绩的中位数大于甲校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.23.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s(千米)和行驶时间t(小时)之间的关系,根据所给图象,解答下列问题:(1)写出甲的行驶路程s和行驶时间t(t≥0)之间的函数关系式;(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度;在哪一段时间内,甲的行驶速度大于乙的行驶速度;(3)从图象中你还能获得什么信息?请写出其中的一条.【考点】一次函数的应用.【分析】(1)甲的图象是过原点的直线,是正比例函数,用待定系数法求解即可;(2)根据图象比较甲乙的速度即可;(3)利用图象中的数据写出信息合理即可.【解答】解:(1)设函数为s=kt,把点(3,6)代入得k=2,所以s=2t;(2)直接从图象上可知:在0<t≤1时,甲的行驶速度小于乙的行驶速度;在t>1时,甲的行驶速度大于乙的行驶速度.(3)只要说法合乎情理即可给分.如当出发3小时时甲乙相遇等等.24.如图,AB是半圆O的直径,AC是弦,点P从点B开始沿BA边向点A以1cm/s的速度移动,若AB长为10cm,点O到AC的距离为4cm.(1)求弦AC的长;(2)问经过几秒后,△APC是等腰三角形.【考点】垂径定理;等腰三角形的判定.【分析】(1)过O作OD⊥AC于D,易知AO=5,OD=4,从而AD=3,AC=6;(2)有三种情况需要考虑:AC=PC,AP=AC,AP=CP,分别求出三种情况下,PB的值,即经过的时间.【解答】解:(1)过O作OD⊥AC于D,易知AO=5,OD=4,从而AD==3,∴AC=2AD=6;(2)设经过t秒△APC是等腰三角形,则AP=10﹣t,①若AC=PC,过点C作CH⊥AB于H,∵∠A=∠A,∠AHC=∠ODA=90°,∴△AHC∽△ADO,∴AC:AH=OA:AD,即AC: =5:3,解得t=s,∴经过s后△APC是等腰三角形;②若AP=AC,由PB=x,AB=10,得到AP=10﹣x,又∵AC=6,则10﹣t=6,解得t=4s,∴经过4s后△APC是等腰三角形;③若AP=CP,P与O重合,则AP=BP=5,∴经过5s后△APC是等腰三角形.25.【观察发现】如图1,F,E分别是正方形ABCD的边CD、DA上两个动点(不与C、D、A重合),满足DF=AE.直线BE、AF相交于点G,猜想线段BE与AF 的数量关系,以及直线BE与直线AF 的位置关系.(只要求写出结论,不必说出理由)【类比探究】如图2,F,E分别是正方形ABCD的边CD、DA延长线上的两个动点(不与D、A重合),其他条件与【观察发现】中的条件相同,【观察发现】中的结论是否还成立?请根据图2加以说明.【深入探究】若在上述的图1与图2中正方形ABCD的边长为4,随着动点F、E的移动,线段DG的长也随之变化.在变化过程中,线段DG的长是否存在最大值或最小值,若存在,求出这个最大值或最小值,若不存在,请说明理由.(要求:分别就图1、图2直接写出结论,再选择其中一个图形说明理由)【考点】四边形综合题.【分析】(1)根据正方形的性质就可以得出AB=AD,∠BAE=∠ADF=90°,进而得出△ABE≌△DAF就可以得出结论;(2)根据正方形的性质就可以得出AB=AD,∠BAE=ADF=90°,进而得出△ABE≌△DAF就可以得出结论;(3)图3中线段DG存在最小值为,不存在最大值,图4中线段DG存在最大值为,不存在最小值,分别有指教三角形的性质和两点之间的距离的性质就可以求出结论.【解答】解:【观察发现】BE=AF,BE⊥AF.理由:∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°.在△ABE和△DAF中,,∴△ABE≌△DAF(SAS),∴BE=AF,∠ABE=∠DAF.∵∠AEB+∠ABE=90°,∴∠AEB+∠DAF=90°,∴∠AGE=90°,∴AF⊥BE.【类比探究】【观察发现】中的结论仍成立,即BE=AF,BE⊥AF.理由:∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°.在△ABE和△DAF中,,∴△ABE≌△DAF(SAS),∴BE=AF,∠ABE=∠DAF.∵∠AEB+∠ABE=90°,∴∠AEB+∠DAF=90°.∵∠DAF=∠GAE,∴∠E+∠GAE=90°∴∠AGE=90°,∴AF⊥BE;【深入探究】图3中线段DG存在最小值为,不存在最大值,图4中线段DG存在最大值为,不存在最小值.理由:如图3,取AB的中点H,连接HD、HG∴HG=AB=2,在Rt△ADH中,有勾股定理,得DH=当H、G、D三点不共线时,DG>DH﹣HG,当H、G、D三点共线时,DG=DH﹣HG,∴线段DG存在最小值为.∵E不与A重合,∴线段DG不存在最大值;如图4,取AB的中点H,连接HD、HG.∴HG=AB=2,在Rt△ADH中,有勾股定理,得DH=当H、G、D三点不共线时,DG<DH+HG,当H、G、D三点共线时,DG=DH+HG,∴线段DG存在最大值为∵E不与A重合,∴线段DG不存在最小值.26.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t 秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?【考点】二次函数综合题.【分析】(1)根据A、B的坐标,可得到OA=6、OB=8、AB=10;当t=3时,AN=5,即N是AB的中点,由此得到点N的坐标.然后利用待定系数法求出抛物线的解析式.(2)△MNA中,过N作MA边上的高NC,先由∠BAO的正弦值求出NC的表达式,而AM=OA ﹣OM,由三角形的面积公式可得到关于S△MNA、t的函数关系式,利用所得函数的性质即可求出△MNA的最大面积.(3)首先求出N点的坐标,然后表示出AM、MN、AN三边的长;由于△MNA的腰和底不确定,若该三角形是等腰三角形,可分三种情况讨论:①MN=NA、②MN=MA、③NA=MA;直接根据等量关系列方程求解即可.【解答】解:(1)由题意,A(6,0)、B(0,8),则OA=6,OB=8,AB=10;当t=3时,AN=t=5=AB,即N是线段AB的中点;∴N(3,4).设抛物线的解析式为:y=ax(x﹣6),则:4=3a(3﹣6),a=﹣;∴抛物线的解析式:y=﹣x(x﹣6)=﹣x2+x.(2)过点N作NC⊥OA于C;由题意,AN=t,AM=OA﹣OM=6﹣t,NC=NA•sin∠BAO=t•=t;则:S△MNA=AM•NC=×(6﹣t)×t=﹣(t﹣3)2+6.∴△MNA的面积有最大值,且最大值为6.(3)∵Rt△NCA中,AN=t,NC=AN•sin∠BAO=t,AC=AN•cos∠BAO=t;∴OC=OA﹣AC=6﹣t,∴N(6﹣t, t).∴NM==;又:AM=6﹣t,AN=t(0<t≤6);①当MN=AN时, =t,即:t2﹣8t+12=0,t1=2,t2=6(舍去);②当MN=MA 时, =6﹣t ,即: t 2﹣12t=0,t 1=0(舍去),t 2=;③当AM=AN 时,6﹣t=t ,即t=;综上,当t 的值取2或或时,△MAN 是等腰三角形.。

2017年山东省临沂市中考数学试题(含解析)

2017年山东省临沂市中考数学试题(含解析)

2017年临沂市初中数学学业水平考试试题第Ⅰ卷(共42分)一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2017山东临沂,1,3分)12007-的相反数是( ) A .12007 B .12007- C .2017 D .2017- 答案:A解析:根据a 与-a 互为相反数可得出12007-的相反数是12007. 2.(2017山东临沂,2,3分)如图,将直尺与含30︒角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A.50︒ B .60︒ C .70︒ D .80︒ 答案:A解析:如图,先根据平行线的性质即可求得∠2=∠3,再根据三角形外角的性质可求得∠3,进而得出答案. ∵长方形的对边平行,∴∠2=∠3,又∵∠3=∠1+30°,∴∠2=∠1+30°=20°+30°=50°,3.(2017山东临沂,3,3分)下列计算正确的是( )A .-(a -b )=-a +bB .224a a a += C .a 2·a 3=a 6D .()2224ab a b =答案:D解析:A 选项,-(a -b )=-a +b ,所以选项A 错误; B 选项,a ²+a ²是同类项,合并后为2a ²,所以选项B 错误;C 选项,a 2·a 3=a 32+=a 5 ,所以选项C 错误;D 选项,()2222224ab a b a b ⨯==,所以选项D 正确.4.(2017山东临沂,4,3分)不等式组21,512x x ->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( )答案:B解析:解不等式2-x >1,得x <1,解不等式512x +≥,得x ≥-3.所以原不等式组的解集为-3≤x <1,而x ≥-3在数轴上表示应该从-3向右画,并且用实心圆点,x <1在数轴上表示应该从1向左画,并且用空心圆圈,所以其解集在数轴上表示正确的应为选项B .5.(2017山东临沂,5,3分)如图所示的几何体是由五个小正方体组成的,它的左视图是( )答案:D解析:几何体的左视图有2列,左边一列小正方形数目是2,右边一列小正方形的数目是1,故选 D . 6.(2017山东临沂,6,3分)小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是( ) A .23 B .12 C .13 D .29答案:C解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果及甲获胜的情况数,再利用概率公式即可求得答案. 画树状图得:∵共有9种等可能的结果,小华获胜的结果有3种,∴一次游戏中小华获胜的概率是:=.7.(2017山东临沂,7,3分)一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形答案:C解析:多边形的外角和是360°,则内角和是2×360°=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.设这个多边形是n边形,根据题意,得:(n﹣2)×180°=2×360°,解得:n=6.即这个多边形为六边形.8.(2017山东临沂,8,3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.90606x x=+B.90606x x=+C.90606x x=-D.90606x x=-答案:B解析:设乙每小时做x个零件,根据“甲做90个所用的时间与乙做60个所用的时间相等”,可列出方程.设乙每小时做x个零件,则甲每小时做(x+6)个零件,由题意得,90606x x=+9.(2017山东临沂,9,3分)某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:这15名员工每人所创年利润的众数、中位数分别是()A.10,5 B.7,8 C.5,6.5 D.5,5答案:D解析:根据表格中的数据可以将这组数据按照从小到大的顺序排列起来,从而可以找到这组数据的中位数和众数.由题意可得,这15名员工的每人创年利润从小到大排列为:3,3,3,3,5,5,5,5,5,5,5,8,8,8,10.∴这组数据的众数是5,中位数是5.10.(2017山东临沂,10,3分)如图,AB是圆O的直径,BT是圆O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是( )A .2B .3124π- C .1 D .1124π+答案:C解析:连接OD ,先由直径AB =2,TB 切⊙O 于B 得出∠ABT =90°,由∠ATB =45°得出△ABT 是等腰直角三角形,根据圆周角定理得出∠ADB =90°,根据S 阴影=S △DBT 进而可得出结论. 连接OD ,∵直径AB =2,TB 切⊙O 于B ,∴OB =OA =1,∠ABT =90°,∠ADB =90°.∵∠ATB =45°,∴△ABT 是等腰直角三角形,∴∠A =45°,∴∠BOD =2∠A =90°,AT =22+22=22. ∴BD =12AT =DT =2.∴S 阴影=S △DBT =12BD ×DT =12×2×2=1.11.(2017山东临沂,11,3分)将一些相同的“”按如图所示摆放,观察每个图形中的“”的个数,若第n 个图形中“”的个数是78,则n 的值是( )A .11B .12C .13D .14 答案:BTATA解析:根据题意,图形中“○”的个数是从1一直加到序数,据此规律可知第n个图形中“○”的个数,再根据题意列出方程可求得n的值.∵第1个图形中“○”的个数为:1个;第2个图形中“○”的个数为:1+2=3个;第3个图形中“○”的个数为:1+2+3=6个;……∴第n个图形中“○”的个数为:1+2+3+……+n=()21+nn个;当()21+nn=78时,解得:n=12.12.(2017山东临沂,12,3分)在△ABC中,点D是边BC上的点(与B、C两点不重合),过点D作DE ∥AC,DF∥AB,分别交AB,AC于E、F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形答案:D解析:根据DE∥AC,DF∥AB,可证明四边形AEDF是平行四边形,再根据矩形、菱形的判定方法依次分析即可做出判断.若AD⊥BC,无法判定四边形AEDF是矩形,所以A错误;若AD垂直平分BC,可以判定四边形AEDF是菱形,所以B错误;若BD=CD,无法判定四边形AEDF是菱形,所以C错误;若AD平分∠BAC,则∠EAD=∠F AD=∠ADF,所以AF=DF,又因为四边形AEDF是平行四边形,所以四边形AEDF是菱形,故D正确;13.(2017山东临沂,13,3分)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线2t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是()A.1 B.2 C.3 D.4答案:B解析:利用待定系数法可求出二次函数解析式;将函数解析式配方成顶点式可得对称轴和足球距离地面的最大高度;求出h =0时t 的值即可得足球的落地时间;求出t =1.5s 时h 的值即可对④作出判断④. (1)由表格可知抛物线过点(0,0)、(1,8),(2,14),设该抛物线的解析式为h =at 2+bt ,将点(1,8)、(2,14)分别代入,得:a +b =8,4a +2b =1484214a b a b +=⎧⎨+=⎩.解得:a =-1,b =9.∴h =﹣t 2+9t =-(t -29)2-481,则足球距离地面的最大高度为814m ,对称轴是直线92t =,所以①错误、②正确;∵h =﹣t 2+9t =0,∴当h =0时,t =0或9,,所以③正确;当t =1.5s 时,h =﹣t 2+9t =11.25,所以④错误14.(2017山东临沂,14,3分)如图,在平面直角坐标系中,反比例函数ky x=(0x >)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,△OMN 的面积为10.若动点P 在x 轴上,则PM +PN 的最小值是( )A. B .10 C. D.答案:C解析:设出M ,N 两点坐标,然后根据△OMN 的面积可以得到关于两点坐标的方程,然后反比例函数的性质xy =k ,得到关于k 的方程,从而求出k ,进一步得到M ,N 的坐标;然后作N 关于x 轴的对称点N ',连接N 'M ,交x 轴于点P ,则此时可得到PM +PN 的最小值; 设点N (a ,6),M (6,b ), 则S △OMN =S OABM -S △MBN -S △OAN =()()()b b a a ⨯⨯----⨯+-621662166621=10 ∵M ,N 两点在反比例函数ky x=(0x >)的图象上,∴6a =k k b k a ==6,6∴a =b .解得a =b =4. ∴点N (4,6),M (6,4);∴k =4×6=24,∴y =24x.作N (4,6)关于x 轴的对称点N '(4,-6),连接N 'M ,交x 轴于点P ,此时PM +PN 值最小.PM +PN 的最小值=MN ′=第Ⅱ卷(共78分)二、填空题(每题3分,满分15分,将答案填在答题纸上)15.(2017山东临沂,15,3分)分解因式:m ³-9m = . 答案:m (m +3)(m -3)解析:观察原式,找到并提出公因式m ,再用公式a 2-b 2=(a +b )(a -b )分解即可得出答案.m ³-9m =m (m 2-9)= m (m +3)(m -3). 16.(2017山东临沂,16,3分)已知AB ∥CD ,AD 与BC 相交于点O .若23BO OC =,AD =10,则AO = .答案:4解析:由AB ∥CD ,可得△AOB ∽△DOC ,然后由相似三角形的对应边成比例,求得ADAO的值. ∵AB ∥CD ,∴△AOB ∽△DOC ,∴32==OD AO OC BO ,∴AD AO =52;∵10AD =,∴4AO =. 17.(2017山东临沂,17,3分)计算:x -y x ÷(x -2xy -y 2x )= .答案:yx 1- 解析:根据分式的运算法则计算,最后化简分式即可.x -y x ÷(x -2xy -y 2x )=()=-÷-=⎪⎪⎭⎫ ⎝⎛+-÷-x y x x y x x y xy x x y x 2222()y x y x x x y x -=-⨯-12. 18.(2017山东临沂,18,3分)在□ABCD 中,对角线AC ,BD 相交于点O .若AB =4,BD =10,3sin 5BDC ∠=,则□ABCD 的面积是 .答案 :24解析:根据3sin 5BDC ∠=可以求出△BCD 中BD 边上的高,从而求出□ABCD 的面积.作CE ⊥BD 于E ,在Rt △BDE 中,∵3sin 5BDC ∠==AB CE CD CE =,4AB =,∴CE =512,ABCD S =122BD CE ⨯⨯⨯=2419.(2017山东临沂,19,3分)在平面直角坐标系中,如果点P 坐标为(),m n ,向量OP 可以用点P 的坐标表示为OP =(m ,n ).已知:OA =(x 1,y 1),OB =(x 2,y 2),如果12120x x y y ⋅+⋅=,那么OA 与OB 互相垂直.下列四组向量:①OC =(2,1),OB =(-1,2);②OE =(cos 30°,tan 45°),OF =(1,sin 60°); ③OG =(3-2,-2),OH =(3+2,21);④OM =(π0,2),ON =(2,-1). 其中互相垂直的是 (填上所有正确答案的序号). 答案:①③④解析:原式利用题中的新定义计算即可得到结果.①OC =(2,1),OB =(-1,2)中,()0222112=+-=⨯+-⨯,所以垂直; ②OE =(cos 30°,tan 45°),OF =(1,sin 60°)中,cos 30°⨯1+tan 45°⨯sin 60°=32323=+,所以不垂直; ③OG =(3-2,-2),OH =(3+2,21)中, ()()()2122323⨯-++-=()123-+-=0,所以垂直;④OM =(π0,2),ON =(2,-1)中()01220=-⨯+⨯π,所以垂直.三、解答题 (本大题共7小题,共63分.解答应写出文字说明、证明过程或演算步骤.)20.(2017山东临沂,20,7分)计算:11122cos 4582-⎛⎫-+︒-+ ⎪⎝⎭.思路分析:先根据二次根式的化简、负整指数幂运算法则、绝对值的意义、特殊角的三角函数值分别求出12-、8、1)21(-、cos 45°的值,然后根据实数的加减运算法则进行计算. 解:|1-2|+2cos 45°-8+(21)1-=2-1+2×22-22+2=121.(2017山东临沂,21,7分)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表: 学生最喜爱的节目人数统计表 节目 人数(名) 百分比 最强大脑 5 10% 朗读者 15 b % 中国诗词大会 a 40% 出彩中国人1020%根据以上提供的信息,解答下列问题: (1)x =______,a =______,b =______; (2)补全上面的条形统计图;(3)若该校共有学生1000名.根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名. 思路分析:(1)根据最喜欢最强大脑的人数5占x 的10%,可得出x 的值,再根据x 的值出a 的值;用15除以x 的值,即可得出b 的值;(2)根据a 的值可在图中直接补全图形;(3)根据最喜爱《中国诗词大会》节目的百分比,可以直接估算出结果. 解:⑴ x =5÷10%=50,a =40%×50=20,b =15÷50=30% ⑵⑶1000×40%=400(名)答:喜爱《中国诗词大会》节目的学生大约有400名.22.(2017山东临沂,22,7分)如图,两座建筑物的水平距离BC =30m ,从A 点测得D 点的俯角α为30°,测得C 点的俯角β为60°,求这两座建筑物的高度.思路分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.解:过A 作AE ⊥CD 的延长线交于点E ,则四边形ABCE 是矩形,AE =BC =30,AB =CE在Rt △ADE 中,∠E =90°,∠DAE =30°,∴DE =AE ·tan 30°=30×33=103. AD =2DE =203 ∵∠CAE =60°,∴∠CAD =60°-30°=30°,∠ACE =90°-60°=30°,∴∠CAD =∠ACE ∴CD =AD =203,∴AB =CE =DE +CD =103+203=303 答:这两座建筑物的高度分别是303m ,203m.23.(2017山东临沂,23,9分)如图,BAC ∠的平分线交ABC 的外接圆于点D ,ABC ∠的平分线交AD 于点E .(1)求证:DE DB =;(2)若∠BAC =90°,BD =4,求△ABC 的外接圆半径.思路分析:(1)利用角平分线的定义和圆周角的性质通过判定∠EBD =∠BED ,得出结论;(2)根据等弧得出CD 的长,根据∠BAC =90°得出BC 为直径,进而利用勾股定理求得BC 的长度,进而得出△ABC 外接圆半径的长度.证明:⑴连接BD ,CD .∵AD 平分∠BAC∴∠BAD =∠CAD又∵∠CBD =∠CAD∴∠BAD =∠CBD∵BE 平分∠ABC∴∠CBE =∠ABE∴∠DBE =∠CBE +∠CBD =∠ABE +∠BAD又∵∠BED =∠ABE +∠BAD∴∠DBE =∠BED∴BD =DE⑵∵∠BAC =90°∴BC 是直径∴∠BDC =90°∵AD 平分∠BAC ,BD =4∴BD =CD =4 EBA∴BC =22CD BD +=42∴半径为2224.(2017山东临沂,24,9分)某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y (元)与每月用水量x (3m )之间的关系如图所示.(1)求y 关于x 的函数解析式;(2)若某用户二、三月份共用水40m ³(二月份用水量不超过25m ³),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m ³?思路分析:(1)由图像可以得到这是分段函数,0<x <15是过原点、(15,27)的直线,x ≥15时直线过(15,27),(20,39),运用待定系数法可以得到分段函数的解析式;(2)由(1)知自变量x 是以15为分界点的,而二月份用水量不超过25m ³超过了15,所以要分类讨论然后得到结论. 解:⑴⎪⎪⎩⎪⎪⎨⎧≤≤=)>(-)(15x 9x 51215x 0 x 59y ⑵设二月用水量为xm ³,则三月用水量为(40-x )m ³∵x ≤25,所以40-x ≥15①当0≤x ≤15时,59x +512(40-x )-9=79.8,解得:x =12,∴40-x =28 ②当15<x ≤25时,512×40-9=87≠79.8,不合题意. 答:二月份用水量为12 m ³,三月份用水量是28 m ³.25.(2017山东临沂,25,11分)数学课上,张老师出示了问题:如图1,AC 、BD 是四边形ABCD 的对角线,若∠ACB =∠ACD =∠ABD =∠ADB =60°,则线段BC ,CD ,AC 三者之间有何等量关系? 经过思考,小明展示了一种正确的思路:如图2,延长CB 到E ,使BE =CD ,连接AE ,证得△ABE ≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD =∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD =∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.思路分析:(1)延长CB到E,使BE=CD,连接AE,构造△ADC≌△ABE,从而得到AE=AC,进而得出结论;(2)延长CB到E,使BE=CD,连接AE,构造△ADC≌△ABE,从而得到AE=AC,作AF⊥EC,,得∠E=α,则EB=AC,cosα从而得到结论.解:⑴结论:BC+CD=2AC证明如下:方法①,如图2,延长CB到E,使BE=CD,连接AE.∵∠ACB=∠ACD=∠ABD=∠ADB=45°∴∠BAD=90°,∠BCD=90°,AD=AB∴∠ABC+∠ADC=180°又∵∠ABE +∠ABC =180°∴∠ADC =∠ABE∴△ADC ≌△ABE∴AC =AE ,∠CAD =∠EAB∴∠EAC =∠BAD =90°∴CE =2AC∴BC +CD =2AC方法②,如图3,将△ABC 绕着点A 逆时针旋转90°至△ADF 位置,使AB 与AD 重合,易得C 、D 、F 三点共线,以下与方法①雷同,证略.⑵BC +CD =2ACcosα26.(2017山东临沂,26,13分)如图,抛物线23y ax bx =+-经过点A (2,-3),与x 轴负半轴交于点B ,与y 轴交于点C ,且OC =3OB .(1)求抛物线的解析式;(2)点D 在y 轴上,且∠BDO =∠BAC ,求点D 的坐标;(3)点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点A ,B ,M ,N 为顶点的四边形是平行四边形?若存在.求出所有符合条件的点M 的坐标;若不存在,请说明理由.思路分析:(1)本题需先根据已知条件,求出C 点,即OC ,进而根据OC =3OB 求出点B 的坐标,再根据过A ,B 两点,即可得出结果;(2)过点B 作BE ⊥x 轴交AC 的延长线于点E ,由∠BDO =∠BAC ,∠BOD =∠BEA =90°得到Rt △BDO 和Rt △BAE 相似,得到OB ,进而得到点D 的坐标;(3)根据题意可知N 点在对称轴x =1上,而A ,B ,M ,N 四点构成平行四边形符合题意的有三种情况:①BM //AN ,AM //BN ;②BN //AM ,AB //MN ;③BM //AN ,AB //MN ,然后根据平行直线k 相同可以得到点M 的坐标.解:⑴令x =0,由y =ax 2+bx -3得,y =-3,∴C (0,-3)∴OC =3又∵OC =3OB ,∴OB =1,∴B (-1,0)把点B (-1,0)和A (2,-3)分别代入y =ax 2+bx -3 得:⎩⎨⎧==33b 2a 403b a --+--解得:⎩⎨⎧==2b 1a -∴该二次函数的解析式为:y =x 2-2x -3⑵过点B 作BE ⊥x 轴交AC 的延长线于点E .∵∠BDO =∠BAC ,∠BOD =∠BEA =90°∴Rt △BDO ∽Rt △BAE∴OD :OB =AE :BE∴OD :1=3:3∴OD =1∴D 点坐标为(0,1)或(0,-1)⑶M1(0,-3);M2(4,5);M3(-2,5)。

2017年山东省临沂市中考数学试卷(解析版)

2017年山东省临沂市中考数学试卷(解析版)
②因为 cos30°×1+tan45°•sin60°= ×1+1× = ≠0,所以 与 不 互相垂直; ③因为( ﹣ )( + )+(﹣2)× =3﹣2﹣1=0,所以 与 互相垂直; ④因为π0×2+2×(﹣1)=2﹣2=0,所以 与 互相垂直. 综上所述,①③④互相垂直. 三、解答题(共 35 分) 18.答案:1
若 AD 垂直平分 BC,则四边形 AEDF 是菱形,不一定是矩形;选项 B 错误;
若 BD=CD,则四边形 AEDF 是平行四边形,不一定是菱形;选项 C 错误;
若 AD 平分∠BAC,则四边形 AEDF 是菱形;正确;
12.答案:C
试卷第 11页,总 18页
解析:∵正方形 OABC 的边长是 6, ∴点 M 的横坐标和点 N 的纵坐标为 6,
∴OA=OC,OB=OD= BD=5,CD=AB=4,
∵sin∠BDC= = , ∴OE=3,
∴DE=
=4,
∵CD=4, ∴点 E 与点 C 重合, ∴AC⊥CD,OC=3, ∴AC=2OC=6,
∴▱ABCD 的面积=CD•AC=4×6=24;
17.答案:①③④
试卷第 13页,总 18页
解析:①因为 2×(﹣1)+1×2=0,所以 与 互相垂直;
试卷第 4页,总 18页
(3 分)
A. 若 AD⊥BC,则四边形 AEDF 是矩形 B. 若 AD 垂直平分 BC,则四边形 AEDF 是矩形 C. 若 BD=CD,则四边形 AEDF 是菱形 D. 若 AD 平分∠BAC,则四边形 AEDF 是菱形 12.如图,在平面直角坐标系中,反比例函数 y= (x>0)的图象与边长是 6 的正方形 OABC 的两边 AB,BC 分别相交于 M,N 两点,△OMN 的面积为 10. 若动点 P 在 x 轴上,则 PM+PN 的最小值是( )

2017-2018学年山东省临沂市蒙阴县中考数学二模试卷(解析版)

2017-2018学年山东省临沂市蒙阴县中考数学二模试卷(解析版)

18. (3 分)如图,已知点 A(﹣1,0)和点 B(1,2) ,在 x 轴上确定点 P,使得△ABP 为 直角三角形,则满足这样条件的点 P 的坐标是 .
19. (3 分)一般的,如果 a =N(a>0,且 a≠1) ,那么 x 叫做以 a 为底 N 的对数,记作 x =logaN.例如:由于 2 =8,所以 3 是以 2 为底 8 的对数,记作 log28=3;由于 a =a, 所以 1 是以 a 为底 a 的对数,记作 logaa=1. 对数作为一种运算,有如下的运算性质:如果 a>0,且 a≠1,M>0,N>0,那么: (1)loga(M•N)=logaM+logaN; (2)loga =logaM﹣logaN;
2017-2018 学年山东省临沂市蒙阴县中考数学二模试卷
一、选择题(本大题共 14 小题,每小题 3 分,共 42 分)在每小题所给的四个选项中,只 有一项是符合题目要求的. 1. (3 分) 下表是我县四个景区今年 3 月份某天 9 时的气温, 其中气温最低的景区是 ( 景区 气温 蒙山森林公园 ﹣ 1℃ 孟良崮 0℃ 岱崮地貌 ﹣2℃ B.孟良崮 D.云蒙湖 ) D.6 ) 云蒙湖 1℃ )
第 4 页(共 26 页)
3 1
x
(3)logaM =nlogaM. 根据上面的运算性质,计算 log2(4 ×2 )+log26﹣log23 的结果是 三、解答题(本大题共 7 小题,共 63 分) 20. (7 分)计算:﹣1
2018 7 5
n

﹣|1﹣
tan60°|+
×( ) +(2017﹣π)
(2)补全频数分布直方图; (3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;

2017中考数学模拟试卷二(附答题卡)

2017中考数学模拟试卷二(附答题卡)

2017中考数学模拟试卷二
答题卡
一、选择题(30分)
二.填空题(16分,)
11、_______。

12、_______。

13、_______. 14、_______.
三.解答题(每小题6分,共18分)
(1)求双曲线y=kx的解析式;
(2)求tan∠DOB的值。

20、如图,在△ABC中,AB=AC,以AC为直径的O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE。

(1)求证:直线DF与O相切;
(2)若AE=7,BC=6,求AC的长。

27、已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足
△PBC∽△PAM,延长BP交AD于点N,连结CM。

(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;
(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由)
②是否存在满足条件的点P,使得PC=12?请说明理由。

28、如图1,在平面直角坐标系中,抛物线y=ax2+bx+c(a、b、c为常数且a≠0)经过原点O和B (4,4),且对称轴为直线x=32
(1)求抛物线的函数表达式;
(2)在抛物线上是否存在点M,使△MOB中OB边上的高为22√?若存在,求出点M的坐标;若不存在,请说明理由;
(3)如图2,设抛物线与x轴的另一交点为A,点N在抛物线上,满足∠NBO=∠ABO,若D是直线OB 下方的抛物线上且到OB的距离最大的点,试求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省临沂市蒙阴县中考数学二模试卷一、选择题:(每小题3分,本题满分共42分,)在每小题所给的四个选选项中,只有一项是符合题目要求的.1.的相反数是()A.2 B.﹣2 C.D.﹣2.下列计算正确的是()A.x+x2=x3B.x2•x3=x6C.(x3)2=x6D.x9÷x3=x33.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE4.如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是()A.B.C.D.5.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()A.15,15 B.17.5,15 C.20,20 D.15,206.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠17.化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a28.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°9.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.10.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.111.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.1612.如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x 轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为()A.1 B.2 C.3 D.413.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a214.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=+bx+c的顶点,则抛物线y=+bx+c与直线y=1交点的个数是()A.0个或1个B.0个或2个C.1个或2个D.0个、1个或2个二、填空题(本大题共5个小题.每小题3分,共15分)15.分解因式:2x2﹣8= .16.方程﹣=0的解为x= .17.有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC,用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r= .18.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= .19.如果一个数的平方等于﹣1,记作i2=﹣1,这个数叫做虚数单位.形如a+bi(a,b为有理数)的数叫复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.如:(2+i)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i,(5+i)×(3﹣4i)=5×3+5×(﹣4i)+i×3+i×(﹣4i)=15﹣20i+3i﹣4×i2=15﹣17i﹣4×(﹣1)=19﹣17i.请根据以上内容的理解,利用以前学习的有关知识将(1+i)(1﹣i)化简结果为为.三、解答题(本大题共7小题,共63分)20.计算:()﹣1﹣(﹣2014)0﹣2cos45°+.21.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:AD=CE;(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)24.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?25.问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求出∠AEB的度数以及判断线段CM、AE、BE 之间的数量关系,并说明理由.26.如图,点A的坐标为(﹣8,0),点P的坐标为,直线y=x+b过点A,交y 轴于点B,以点P为圆心,以PA为半径的圆交x轴于点C.(1)判断点B是否在⊙P上?说明理由.(2)求过A、B、C三点的抛物线的解析式;并求抛物线与⊙P另外一个交点为D的坐标.(3)⊙P上是否存在一点Q,使以A、P、B、Q为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.2017年山东省临沂市蒙阴县中考数学二模试卷参考答案与试题解析一、选择题:(每小题3分,本题满分共42分,)在每小题所给的四个选选项中,只有一项是符合题目要求的. 1.的相反数是( )A .2B .﹣2C .D .﹣【考点】15:绝对值;14:相反数.【分析】根据相反数的概念和绝对值的性质进行解答.【解答】解:的相反数是﹣. 故选D .2.下列计算正确的是( )A .x+x 2=x 3B .x 2•x 3=x 6C .(x 3)2=x 6D .x 9÷x 3=x 3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】A 、原式不能合并,错误;B 、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C 、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D 、原式利用同底数幂的除法法则计算得到结果,即可做出判断. 【解答】解:A 、原式不能合并,错误; B 、原式=x 5,错误; C 、原式=x 6,正确; D 、原式=x 6,错误. 故选C .3.如图,能判定EB ∥AC 的条件是( )A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE【考点】J9:平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确.B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、BC、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误;D、∠C=∠ABE不能判断出EB∥AC,故本选项错误;故选:A.4.如图是由4个相同的小正方形搭成的一个几何体,则它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据俯视图是从上面看到的图形判定即可.【解答】解:从上面可看到从左往右有三个正方形,故选:A.5.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()A.15,15 B.17.5,15 C.20,20 D.15,20【考点】W4:中位数;W5:众数.【分析】根据众数的定义即可得到捐款金额的众数是15;在12个数据中,第6个数和第7个数分别是15元,20元,然后根据中位数的定义求解.(15+20)【解答】解:共有数据12个,第6个数和第7个数分别是15元,20元,所以中位数是:÷2=17.5(元);捐款金额的众数是15元.故选:B.6.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠1【考点】AA:根的判别式;A1:一元二次方程的定义.【分析】根据判别式的意义得到△=22﹣4(k﹣1)×(﹣2)>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,∴△=22﹣4(k﹣1)×(﹣2)>0,解得k>;且k﹣1≠0,即k≠1.故选:C.7.化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【考点】66:约分.【分析】首先将分式的分子因式分解,进而约分求出即可.【解答】解: ==﹣ab.故选:B.8.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°【考点】M5:圆周角定理.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.9.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组;D1:点的坐标.【分析】根据P为第四象限点,得到横坐标大于0,纵坐标小于0,列出关于x的不等式组,求出不等式组的解集,表示在数轴上即可得到结果.【解答】解:根据题意得:,由①得:x>﹣3;由②得:x<4,则不等式组的解集为﹣3<x<4,表示在数轴上,如图所示:.故选C.10.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A.B.C.D.1【考点】X4:概率公式;R5:中心对称图形.【分析】先判断出圆、矩形、等边三角形、等腰梯形中的中心对称图形,再根据概率公式解答即可.【解答】解:圆、矩形、等边三角形、等腰梯形中,中心对称图形有圆,矩形2个;则P(中心对称图形)==.故选B.11.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16【考点】L3:多边形内角与外角.【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【解答】解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.12.如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x 轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为()A.1 B.2 C.3 D.4【考点】G5:反比例函数系数k的几何意义.【分析】根据反比例函数图象和圆的性质得到点P与点Q关于直线y=x对称,Q点的坐标为(3,1),则图中阴影部分为两个边长分别为1和2的矩形,然后根据矩形的面积公式求解.【解答】解:∵双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,∴点P与点Q关于直线y=x对称,∴Q点的坐标为(3,1),∴图中阴影部分的面积=2×(3﹣1)=4.故选D.13.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【分析】过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形PCQE的面积求解.【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.14.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=+bx+c的顶点,则抛物线y=+bx+c与直线y=1交点的个数是()A.0个或1个B.0个或2个C.1个或2个D.0个、1个或2个【考点】H3:二次函数的性质.【分析】令y=x2+bx+c,y=1,要求方程x2+bx+c=1的解的个数,只需求抛物线y=x2+bx+c与直线y=1有没有交点即可.【解答】解:由抛物线y=x2+bx+c的图象可知,该抛物线与x轴没有交点,即:△<0,则:b2﹣4c<0,又点M是直线y=2与x轴之间的一个动点,点M的坐标为:(﹣,),所以,0<<2,即:﹣8<b2﹣4c<0,令y=x2+bx+c﹣1,则要求方程x2+bx+c=1的解得个数,只需判定抛物线y=x2+bx+c ﹣1与x轴有无交点及交点的个数即可.又因为,△=b2﹣4ac=b2﹣4(c﹣1)=b2﹣4c+4,所以,﹣4<b2﹣4c+4<4,即:①当﹣4<b2﹣4c+4<0时,抛物线y=x2+bx+c﹣1与x轴没有交点;②b2﹣4c+4=0时,抛物线y=x2+bx+c﹣1与x轴有一个交点;③0<b2﹣4c+4<4时,抛物线y=x2+bx+c﹣1与x轴有两个交点.故选:D.二、填空题(本大题共5个小题.每小题3分,共15分)15.分解因式:2x2﹣8= 2(x+2)(x﹣2).【考点】53:因式分解﹣提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).16.方程﹣=0的解为x= 2 .【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣3﹣x﹣1=0,解得:x=2,经检验x=2是分式方程的解.故答案为:217.有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC,用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r= .【考点】MP:圆锥的计算.【分析】连接OA,作OD⊥AB于点D,利用三角函数以及垂径定理即可求得AB的长,然后利用扇形的弧长公式即可求得弧长,然后利用圆的周长公式即可求得半径.【解答】解:连接OA,作OD⊥AB于点D.则∠DAO=×60°=30°,OD=1,则AD=OD=,∴AB=2.则扇形的弧长是: =,根据题意得:2πr=,解得:r=.故答案是:.18.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= .【考点】L8:菱形的性质;J5:点到直线的距离;KQ:勾股定理.【分析】因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.【解答】解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO•BO=AB•OH,OH=.故答案为:.19.如果一个数的平方等于﹣1,记作i2=﹣1,这个数叫做虚数单位.形如a+bi(a,b为有理数)的数叫复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.如:(2+i)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i,(5+i)×(3﹣4i)=5×3+5×(﹣4i)+i×3+i×(﹣4i)=15﹣20i+3i﹣4×i2=15﹣17i﹣4×(﹣1)=19﹣17i.请根据以上内容的理解,利用以前学习的有关知识将(1+i)(1﹣i)化简结果为为 2 .【考点】2C:实数的运算;4F:平方差公式.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题意得:(1+i)(1﹣i)=1﹣i+i+1=2,故答案为:2.三、解答题(本大题共7小题,共63分)20.计算:()﹣1﹣(﹣2014)0﹣2cos45°+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=()﹣1﹣(﹣2014)0﹣2cos45°+=2﹣1﹣2×+2=3﹣.21.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.22.已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:AD=CE;(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.【考点】LC:矩形的判定;KH:等腰三角形的性质;L5:平行四边形的性质.【分析】(1)利用等边对等角以及平行四边形的性质可以证得∠EDC=∠ACB,则易证△ADC ≌△ECD,利用全等三角形的对应边相等即可证得;(2)根据平行四边形性质推出AE=BD=CD,AE∥CD,得出平行四边形,根据AC=DE推出即可.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,又∵▱ABDE中,AB=DE,AB∥DE,∴∠B=∠EDC=∠ACB,AC=DE,在△ADC和△ECD中,,∴△ADC≌△ECD(SAS).(2)解:点D在BC的中点上时,四边形ADCE是矩形,理由如下:∵四边形ABDE是平行四边形,∴AE=BD,AE∥BC,∵D为边长BC的中点,∴BD=CD,∴AE=CD,AE∥CD,∴四边形ADCE是平行四边形,∵△ADC≌△ECD,∴AC=DE,∴四边形ADCE是矩形.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【考点】M5:圆周角定理;KD:全等三角形的判定与性质;MO:扇形面积的计算.【分析】(1)解直角三角形求出OB,求出AB,根据圆周角定理求出∠ACB,解直角三角求出AC即可;(2)求出△ACF和△AOF全等,得出阴影部分的面积=△AOD的面积,求出三角形的面积即可.【解答】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF+S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.24.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?【考点】HE:二次函数的应用;FH:一次函数的应用.【分析】(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)利润=销售总价﹣成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)根据自变量的取值范围结合函数图象解答.【解答】解:(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴解得∴函数关系式是:y=﹣10x+800(20≤x≤80)(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000,(20≤x≤80)∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=﹣10(x﹣50)2+9000,当x≤45时,W的值随着x值的增大而增大,∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.25.问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求出∠AEB的度数以及判断线段CM、AE、BE 之间的数量关系,并说明理由.【考点】KY:三角形综合题.【分析】问题探究:(1)证明△CDA≌△CEB,根据全等三角形的性质解答;(2)根据全等三角形的性质得到∠CEB=∠CDA=120°,计算即可;问题变式:(1)证明△CDA≌△CEB,根据全等三角形的性质解答;(2)根据全等三角形的性质、直角三角形的性质解答.【解答】解:问题探究:(1)∵△ACB和△DCE均为等边三角形,∴∠ACB=∠DCE=60°,CA=CB,CD=CE,∴∠ACD=∠BCE,在△CDA和△CEB中,,∴△CDA≌△CEB,∴AD=BE;(2)∵△CDA≌△CEB,∴∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°﹣60°=60°;问题变式:(1)∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB=∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°;(2)AE=2CM+BE,在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE∴AE=2CM+BE.26.如图,点A的坐标为(﹣8,0),点P的坐标为,直线y=x+b过点A,交y 轴于点B,以点P为圆心,以PA为半径的圆交x轴于点C.(1)判断点B是否在⊙P上?说明理由.(2)求过A、B、C三点的抛物线的解析式;并求抛物线与⊙P另外一个交点为D的坐标.(3)⊙P上是否存在一点Q,使以A、P、B、Q为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把A(﹣8,0)代入y=x+b得到点B(0,6),即OB=6,根据勾股定理即可得到结论;(2)AC=2PA=,则OC=,点C,得到抛物线的解析式为y=﹣x2﹣x+6,直线x=是抛物线和圆P的对称轴,于是得到结论;(3)当点Q在⊙P上时,有PQ=PA=,如图1所示,假设AB为菱形的对角线,如图2所示,假设AB、AP为菱形的邻边,如图3所示,假设 AB、BP为菱形的邻边,于是得到结论.【解答】解:(1)∵A(﹣8,0)在直线y=x+b上,则有b=6,∴点B(0,6),即OB=6,在Rt△BOP中,由勾股定理得PB=,则PB=PA,∴点B在⊙P上;(2)AC=2PA=,则OC=,点C,抛物线过点A、C,则设所求抛物线为y=a(x+8)(x﹣),代入点C,则有a=,抛物线的解析式为y=﹣x2﹣x+6,直线x=是抛物线和圆P的对称轴,点B的对称点为D,由对称可得D;(3)当点Q在⊙P上时,有PQ=PA=,如图1所示,假设AB为菱形的对角线,那么PQ⊥AB且互相平分,由勾股定理得PE=,则2PE≠PQ,所以四边形APBQ不是菱形.如图2所示,假设AB、AP为菱形的邻边,则AB≠AP,所以四边形APQB不是菱形.如图3所示,假设 AB、BP为菱形的邻边,则AB≠BP,所以四边形AQPB不是菱形.综上所述,⊙P上不存在点Q,使以A、P、B、Q为顶点的四边形.。

相关文档
最新文档