高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

一、高中物理精讲专题测试动能定理的综合应用

1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为

()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨

道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。

【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】

(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为

2sin cos 4.4m/s mg mg a m

βμβ

-=

=

设物体与A 点之间的距离为0L ,由几何关系可得

0 2.2m sin37

h

L ︒

=

= 设物体从静止运动到A 所用的时间为t ,由2

012

L at =

,得 1s t =

(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得

cos3700mgh mgs μ︒=--

代入数据解得

s =8.25m

(3)假设物体能依次到达B 点、D 点,由动能定理有

2

01(sin37)cos37()2

B mg h L mg L L mv μ︒︒+=

-- 解得

20B v <

说明小环到不了B 点,最终停在A 点处

2.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大;

(2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大;

(3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。

【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】

(1)运动员和自行车整体的向心力

F n =2(m)M v R

+

解得

F n =700N

(2)自行车所受支持力为

()cos45N M m g F +=

解得

F N 2N

根据牛顿第三定律可知

F 压=F N 2N

(3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh =

212

mv

W F =2

FL h =

1

cos 452

d o =1.9m W f 克=521J

3.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250

17

N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =

17

5

m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:

(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;

(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.

【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】

对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】

(1)小球从A 到B 过程,由动能定理得:212

B Fx mv = 解得:v B =10 m/s

(2)在C 点,由牛顿第二定律得mg +F N =2

c v m R

又据题有:F N =2.6mg 解得:v C =6 m/s.

(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22

1122

c B mv mv - 解得克服摩擦力做的功:W f =12 J

(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =

12

gt 2 由小球垂直打在斜面上可知:c

gt

v =tan 45°

联立解得:h =0.2 m 【点睛】

本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.

4.如图所示,轨道ABC 被竖直地固定在水平桌面上,A 距水平地面高H =0.75m ,C 距水平地面高h =0.45m 。一个质量m =0.1kg 的小物块自A 点从静止开始下滑,从C 点以水平速度飞出后落在地面上的D 点。现测得C 、D 两点的水平距离为x =0.6m 。不计空气阻力,取g =10m/s 2。求

(1)小物块从C 点运动到D 点经历的时间t ; (2)小物块从C 点飞出时速度的大小v C ;

(3)小物块从A 点运动到C 点的过程中克服摩擦力做的功。 【答案】(1) t=0.3s (2) v C =2.0m/s (3)0.1J 【解析】 【详解】

(1)小物块从C 水平飞出后做平抛运动,由212

h gt = 得小物块从C 点运动到D 点经历的时间20.3h

t g

==s (2)小物块从C 点运动到D ,由C x v t = 得小物块从C 点飞出时速度的大小C x

v t

=

=2.0m/s (3)小物块从A 点运动到C 点的过程中,根据动能定理 得()2

102

f C m

g H

h W mv -+=

- ()2

12

f C W mv m

g H

h =

--= -0.1J

相关文档
最新文档