专题11 排列组合、二项式定理-三年高考(2014-2016)数学(理)试题分项版解析(原卷版)

合集下载

三年高考(2014-2016)数学(理)真题分项版解析—— 专题11 排列组合、二项式定理

三年高考(2014-2016)数学(理)真题分项版解析—— 专题11 排列组合、二项式定理

三年高考(2014-2016)数学(理)试题分项版解析第十一章排列、组合、二项式定理一、选择题1.【2016高考新课标2理数】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()(A)24 (B)18 (C)12 (D)9【答案】B【解析】试题分析:由题意,小明从街道的E处出发到F处最短有24C条路,再从F处到G处最短共有13C条路,则小明到老年公寓可以选择的最短路径条数为214318C C⋅=条,故选B.考点:计数原理、组合.【名师点睛】分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.2.【2016年高考四川理数】设i为虚数单位,则6()x i+的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4 【答案】A考点:二项展开式,复数的运算.【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式6()x i +的展开式可以改为6()i x +,则其通项为66r r r C i x -,即含4x 的项为46444615C i x x -=-.3. 【2014高考广东卷.理.8】设集合(){}{}12345,,,,1,0,1,1,2,3,4,5iA x x x x x x i =∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A .60B .90C .120D .130 【答案】D【考点定位】本题考查分类计数原理,属于拔高题【名师点晴】本题主要考查的是分类计数原理,属于难题.解题时一定要注意选出的元素是否与顺序有关,否则很容易出现错误.利用排列组合计数时,关键是正确进行分类和分步,分类时要做到不重不漏,防止出现错误.4. 【 2014湖南4】5122x y ⎛⎫- ⎪⎝⎭的展开式中32y x 的系数是( ) A.20- B.5- C.5 D.20 【答案】A【解析】根据二项式定理可得第1n +项展开式为()55122nnn C x y -⎛⎫- ⎪⎝⎭,则2n =时,()()2532351*********nn n C x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,所以23x y 的系数为20-,故选A.【考点定位】二项式定理【名师点睛】本题主要考查的是二项式定理,属于容易题,解本题需要掌握的知识点是二项式定理,即二项式()n a b +的展开式的通项是1C k n k kk n ab -+T =,然后令n 选取恰当的值得到结果.5. 【2016年高考四川理数】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A )24 (B )48 (C )60 (D )72 【答案】D 【解析】试题分析:由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5中之一,其他位置共有随便排共44A 种可能,所以其中奇数的个数为44372A =,故选D. 考点:排列、组合【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.在本题中,个位是特殊位置,第一步应先安排这个位置,第二步再安排其他四个位置..6. 【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n a b -+T =.7. 【2016高考新课标3理数】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共 有( )(A )18个 (B )16个 (C )14个 (D )12个 【答案】C 【解析】试题分析:由题意,得必有10a =,81a =,则具体的排法列表如下:【方法点拨】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.8.【2014四川,理2】在6+的展开式中,含3x项的系数为()x x(1)A.30B.20C.15D.10【答案】C【解析】试题分析:623456+=++++++,所以含3x项的x x x x x x x x x(1)(161520156)系数为15.选C【考点定位】二项式定理.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.10.【2014四川,理6】六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【答案】B【解析】试题分析:最左端排甲,有5!120⨯=种=种排法;最左端排乙,有44!96排法,共有12096216+=种排法.选B.【考点定位】排列组合.【名师点睛】涉及排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.11.【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()(A)144个(B)120个(C)96个(D)72个【答案】B【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.12.【2015高考新课标1,理10】25x y的系数++的展开式中,52x x y()为( )(A)10 (B)20 (C)30 (D)60 【答案】C【解析】在25++的5个因式中,2个取因式中2x剩余的3个因式()x x y中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C. 【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.14. 【2014年.浙江卷.理5】在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 210 答案:C 解析:由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C考点:二项式系数.【名师点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.求二项展开式中的项的方法:求二项展开式的特定项问题,实质是考查通项1k n k k k n T C a b -+=的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程;(3)有理项:令通项中“变元”的幂指数为整数建立方程.特定项的系数问题及相关参数值的求解等都可依据上述方法求解.15.【2014高考重庆理第9题】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168 【答案】B考点:1、分类加法计数原理;2、排列.【名师点睛】本题考查了综合应用排列与组合知识解决实际的计数问题,属于中档题目,根据条件将分类,然后用分类计数原获得结果. 16. 【2014湖北卷2】若二项式7)2(xa x +的展开式中31x的系数是84,则实数=a ( )A.2B. 54C. 1D. 42 【答案】C 【解析】试题分析:因为r r r r r r r x a C xax C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得1=a ,故选C.考点:二项式定理的通项公式,容易题.【名师点睛】本题考查了二项式定理的运用,其解题的关键是根据已知建立方程关系,属容易题.充分体现了方程思想在数学解题中的应用,能较好的考查学生对教材中的基本概念、基本规律和基本操作的识记能力和运算能力.17. 【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A.122 B .112 C.102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.【考点定位】二项式系数,二项式系数和.【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:n nn n nn C C C C 2210=+⋅⋅⋅+++,奇数项的二项式系数和与偶数项的二项式系数和相等=⋅⋅⋅++++420n n n C C C 15312-=⋅⋅⋅++++n n n nC C C . 18. 【2014辽宁理6】把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .24 【答案】C考点:排列组合.【名师点睛】本题考查简单排列组合应用问题.从近几年高考对这部分内容的考查看,基本是排列与组合相结合,多可以结合图表分析解题途径.本题首先将座位编号,分析任何两人都不相邻的情况,再安排人员就坐,现实背景熟悉,分析形象直观,易于理解.本题是一道基础题,考查排列组合基础知识,同时考查考生的计算能力及分析问题解决问题的能力.19. 【2015湖南理2】已知5的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D. 【解析】试题分析:r rrrr xa C T -+-=2551)1(,令1=r ,可得6305-=⇒=-a a ,故选D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握n b a )(+的二项展开式的通项第1+r 项为r r n r n r b a C T -+=1,即可建立关于a 的方程,从而求解. 二、填空题1. 【2016年高考北京理数】在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 【答案】60. 【解析】试题分析:根据二项展开的通项公式16(2)r r r r T C x +=-可知,2x 的系数为226(2)60C -=,故填:60.考点:二项式定理.【名师点睛】1.所谓二项展开式的特定项,是指展开式中的某一项,如第n 项、常数项、有理项、字母指数为某些特殊值的项.求解时,先准确写出通项r r n r n r b a C T -+=1,再把系数与字母分离出来(注意符号),根据题目中所指定的字母的指数所具有的特征,列出方程或不等式来求解即可;2、求有理项时要注意运用整除的性质,同时应注意结合n 的范围分析.2. 【2016高考新课标1卷】5(2)x +的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10考点:二项式定理3. 【2016高考天津理数】281()x x-的展开式中x 2的系数为__________.(用数字作答)【答案】56- 【解析】试题分析:展开式通项为281631881()()(1)r r r r r r r T C x C x x--+=-=-,令1637r -=,3r =,所以7x 的338(1)56C -=-.故答案为56-. 考点:二项式定理【名师点睛】1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r );第二步是根据所求的指数,再求所求解的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.4. 【2016高考山东理数】若(a x 2)5的展开式中x 5的系数是—80,则实数a =_______. 【答案】-2 【解析】试题分析:因为5102552155()r rrr r rr T Cax C a x ---+==,所以由510522r r -=⇒=,因此252580 2.C a a -=-⇒=- 考点:二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项公式,往往是考试的重点.本题难度不大,易于得分.能较好的考查考生的基本运算能力等.5.【2015高考天津,理12】在614xx⎛⎫-⎪⎝⎭的展开式中,2x的系数为 .【答案】1516【考点定位】二项式定理及二项展开式的通项.【名师点睛】本题主要考查二项式定理及二项展开式的通项的应用.应用二项式定理典型式的通项,求出当2r=时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题.6. 【2013高考北京理第12题】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__________.【答案】96【解析】试题分析:连号有4种情况,从4人中挑一人得到连号参观券,其余可以全排列,则不同的分法有4×1343C A=96(种).考点:排列组合.名师点睛:本题考查排列、组合及计数原理有关问题,本题属于中等难度问题,高考每年都会考查这个问题,题目或简或难,由于命题可以很灵活,可以考查简单的计数,也可以考查具体的排列组合基本方法如:相邻问题捆绑法、不邻插空法、分排问题直排法、有序问题用除法、隔板法等,本题为先选后排问题,从4人中挑一人得到连号参观券,其余可以全排列,而得连号有四种可能情况发生,解决这样的问题需要学生不但要有扎实的基本功,还要有分析问题和解决问题的能力.7. 【2014高考北京理第13题】把5件不同产品摆成一排,若产品A 与产品B 相邻, 且产品A 与产品C 不相邻,则不同的摆法有 种. 【答案】36考点:排列组合,容易题.【名师点睛】本题考查排列、组合及计数原理有关问题,本题属于中等难度问题,高考每年都会考查这个问题,题目或简或难,由于命题可以很灵活,可以考查简单的计数,也可以考查具体的排列组合基本方法如:相邻问题捆绑法、不邻插空法、分排问题直排法、有序问题用除法、隔板法等,需要学生不但要有扎实的基本功,还要有分析问题和解决问题的能力.8. 【2015高考北京,理9】在()52x +的展开式中,3x 的系数为.(用数字作答)【答案】40【解析】利用通项公式,5152r r r r T C x -+=⋅,令3r =,得出3x 的系数为325240C ⋅=【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.【名师点睛】本题考查二项式定理,利用通项公式求出指定项的系数,本题属于基础题,要求正确使用通项公式1r n r r r n T C a b -+=,准确计算指定项的系数.9. 【2014高考广东卷.理.11】从0.1.2.3.4.5.6.7.8.9中任取七个不同的数,则这七个数的中位数是6的概率为 . 【答案】16.【解析】上述十个数中比6小的数有6个,比6大的数有3个,要使得所选的七个数的中位数为6,则应该在比6大的数中选择3个,在比6大的数中也选择3个,因此所求事件的概率为336371016C C P C ==.【考点定位】本题考查排列组合与古典概型的概率计算,属于能力题. 【名师点晴】本题主要考查的是排列组合和古典概型,属于中等题.解题时要抓住重要字眼“中位数是6”,否则很容易出现错误.用排列组合列举基本事件一定要做到不重不漏,防止出现错误.解本题需要掌握的知识点是古典概型概率公式,即()A P A =包含的基本事件的个数基本事件的总数.10. 【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟记二项展开式的通项即展开式的第1r +项为:()*12,r n r r r n T C a b n N n r N -+=∈≥∈且.11. 【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.【解析】依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了24040391560A =⨯=条毕业留言,故应填入1560.【考点定位】排列问题.【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清40人两两彼此给对方仅写一条毕业留言是个排列问题. 12.【2014山东.理14】 若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 . 【答案】2【名师点睛】本题考查二项式定理及其通项公式、基本不等式.从近几年高考对二项式定理的考查看,基本是以通项公式为解题的突破口,本题对有理指数幂的运算要求较高,容易出现计算不准而使解答陷入误区.本题是一道小综合题,重点考查二项式定理及其通项公式、基本不等式等基础知识,同时考查考生的计算能力及分析问题解决问题的能力.13.【2014新课标,理13】 ()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 【答案】12【解析】因为10110r r rr T C x a -+=,所以令107r -=,解得3r =,所以373410T C x a ==157x ,解得12a =. 【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的通项公式,属于基础题,利用通项公式写出特定项的系数,是二项式题目的最常见题目. 14.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.【名师点睛】本题考查二项式定理,准确写出二项展开式,能正确求出奇数次幂项以及相应的系数和,从而列方程求参数值,属于中档题.15. 【2015高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.16. 【2016高考上海理数】在nx x ⎪⎭⎫⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________. 【答案】112 【解析】 试题分析:因为二项式所有项的二项系数之和为n 2,所以n 2256=,所以n 8=,二项式展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x --+=-=-,令84r 033-=,得r 2=,所以3T 112=.考点:1.二项式定理;2.二项展开式的系数.【名师点睛】根据二项式展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项式展开式的通项求解. 本题能较好地考查考生的思维能力、基本计算能力等.17. 【2014课标Ⅰ,理13】()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案)【答案】20-【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理的应用,考查考生的记忆能力和计算能力.18.【2014年.浙江卷.理14】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).答案:60解析:不同的获奖分两种,一是有一人获两张将卷,一人获一张,共有223436C A=,二是有三人各获得一张,共有3424A=,因此不同的获奖情况有60种考点:排列组合.【名师点睛】本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要掌握分类讨论的处理方法;解决排列问题的主要方法(1)“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看做一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列.(5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.两类组合问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.19. 【2015高考重庆,理12】53x ⎛+ ⎝的展开式中8x 的系数是________(用数字作答). 【答案】52【解析】二项展开式通项为7153521551()()2kkkkk k k T C x C x --+==,令71582k -=,解得2k =,因此8x 的系数为22515()22C =. 【考点定位】二项式定理【名师点晴】()na b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指k n C ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.20. 【2014,安徽理13】设n a ,0≠是大于1的自然数,na x ⎪⎭⎫⎝⎛+1的展开式为n n x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .【答案】3考点:1.二项展开式的应用.【名师点睛】二项式常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.本题要结合图形给定的条件与二项式展开中各项的表示. 21.【2015高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案) 【答案】35【解析】由题意,二项式371()x x+展开的通项372141771()()r r r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =. 【考点定位】1.二项式定理的展开式应用.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.22.【2015高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答) 【答案】80【解析】()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80. 【考点定位】二项式定理.【名师点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度. 23.【2016高考江苏卷】(本小题满分10分)(1)求3467–47C C 的值;(2)设m ,n ∈N *,n ≥m ,求证:(m +1)C m m +(m +2)+1C m m +(m +3)+2C m m +…+n –1C mn +(n +1)C m n =(m +1)+2+2C m n .【答案】(1)0(2)详见解析试题解析:解:(1)3467654765474740.3214321C C ⨯⨯⨯⨯⨯-=⨯-⨯=⨯⨯⨯⨯⨯(2)当n m =时,结论显然成立,当n m >时11(1)!(1)!(1)(1)(1),1,2,,.!()!(1)![(k 1)(m 1)]!m m k k k k k k C m m C k m m n m k m m +++⋅++==+=+=++-++-+又因为122112,m m m k k k C C C +++++++=所以2221(1)(1)(),k m 1,m+2,n.m m m k k k k C m C C +++++=+-=+,因此12122222222232432122(1)(2)(3)(n 1)(1)[(2)(3)(n 1)](1)(1)[()()()](1)m m mmm m m nm m mmm m m n m m m m m m m m m m m m n n m n m C m C m C C m C m C m C C m Cm CCCCCCm C +++++++++++++++++++++++++++=+++++++=+++-+-+-=+考点:组合数及其性质【名师点睛】本题从性质上考查组合数性质,从方法上考查利用数学归纳法解决与自然数有关命题,从思想上考查运用算两次解决二项式有关模型. 组合数性质不仅有课本上介绍的111m m m k k k C C C ++++=、=m k m k k C C -,更有11k k n n kC nC --=,现在又有11(1)(m 1),(,1,,)m m k k k C C k m m n +++=+=+,这些性质不需记忆,但需会推导,更需会应用.。

专题11 排列组合与二项式定理2023年高考真题和模拟题数学分项汇编(全国通用)(原卷版)

专题11 排列组合与二项式定理2023年高考真题和模拟题数学分项汇编(全国通用)(原卷版)

专题11 排列组合与二项式定理(新课标全国Ⅰ卷)1.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).(新课标全国Ⅰ卷)2.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A .4515400200C C ⋅种B .2040400200C C ⋅种 C .3030400200C C ⋅种 D .4020400200C C ⋅种 (全国乙卷数学(理))3.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A .30种B .60种C .120种D .240种(全国甲卷数学(理))4.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为( )A .120B .60C .40D .30 (新高考天津卷)5.在6312x x ⎛⎫- ⎪⎝⎭的展开式中,2x 项的系数为_________.1.(2023·河北沧州·校考模拟预测)()52x x y -+的展开式中52x y 的系数为( ) A .10- B .10 C .30- D .302.(2023·河南·校联考模拟预测)古代中国的太极八卦图是以同圆内的圆心为界,画出形状相同的两个阴阳鱼,阳鱼的头部有个阴眼,阴鱼的头部有个阳眼,表示万物都在相互转化,互相渗透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,由八卦模型图可抽象得到正八边形,从该正八边形的8个顶点中任意取出4个构成四边形,其中梯形的个数为( )A .8B .16C .24D .323.(2023·北京海淀·北大附中校考三模)在32x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为( ) A .1 B .3 C .6 D .12 4.(2023·河北衡水·衡水市第二中学校考三模)第19届亚运会将于2023年9月在杭州举行,在杭州亚运会三馆(杭州奥体中心主体育馆、游泳馆和综合训练馆)对外免费开放预约期间,甲、乙、丙、丁4人预约参观,且每人预约了1个或2个馆,则这4人中每个馆恰有2人预约的不同方案有( )A .76种B .82种C .86种D .90种5.(2023·新疆喀什·校考模拟预测)魔方,又叫鲁比克方块,最早是由匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974年发明的机械益智玩具.魔方拥有竞速、盲拧、单拧等多种玩法,风靡程度经久未衰,每年都会举办大小赛事,是最受欢迎的智力游戏之一.已知经典三阶魔方(如图)自由转动之后的色块组合约有4.3×1019种,现将下图已还原的魔方按5步打乱,且每一步互相独立,则共有( )种打乱方式.A .518AB .527AC .185D .1956.(2023·广东汕头·金山中学校考三模)安排A ,B ,C ,D ,E ,F 共6名义工照顾甲、乙、丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A 不安排照顾老人甲,则安排方法共有( )种A .60B .61C .62D .637.(2017·辽宁沈阳·校联考一模)4()x y z ++的展开式共( )A .10项B .15项C .20项D .21项 8.(2023·河南·校联考模拟预测)101x x ⎛⎫- ⎪⎝⎭的展开式中,7x -的系数等于( ) A .45 B .10 C .45- D .10-9.(2023·广东·校联考模拟预测)某人从上一层到二层需跨10级台阶,他一步可能跨1级台阶,称为一阶步,也可能跨2级台阶,称为二阶步,最多能跨3级台阶,称为三阶步,从一层上到二层他总共跨了6步,而且任何相邻两步均不同阶,则他从一层到二层可能的不同走法共有( )种.A .10B .9C .8D .12 10.(2023·河南驻马店·统考三模)在()72x y z -+的展开式中,322x y z 项的系数为( )A .1680B .210C .-210D .-168011.(2024·安徽黄山·屯溪一中校考模拟预测)已知8280128()(2)f x x a a x a x a x =-=++++,则下列描述正确的是 ( )A .1281a a a +++=B .(1)f -除以5所得的余数是1C .812383a a a a +++⋯+=D .2382388a a a +++=- 12.(2024·安徽黄山·屯溪一中校考模拟预测)为庆祝广益中学建校130周年,高二年级派出甲、乙、丙、丁、戊5名老师参加“130周年办学成果展”活动,活动结束后5名老师排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则排法共有( )种.A .40B .24C .20D .1213.(2023·山东泰安·统考模拟预测)若()()()550153411x a a x a x -=+-+⋅⋅⋅+-,则123452345a a a a a ++++=____.14.(2023·云南保山·统考二模)春节(Spring Festival ),即中国农历新年(Chinese New Year ),俗称“新春”“新岁”“岁旦”等,又称“过年”“过大年”,是集除旧布新、拜神祭祖、祈福辟邪、亲朋团圆、欢庆娱乐和饮食为一体的民俗大节.某商家在春节前开展商品促销活动,凡购物顾客都可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,其中恰有2人领取的礼品种类相同,则不同的情况共有______种.15.(2023·河北衡水·衡水市第二中学校考三模)6112x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中3x 的系数为______.(用数字作答)16.(2023·广东·校联考模拟预测)已知12nx x ⎛⎫- ⎪⎝⎭的二项式系数的和为64,则其展开式的常数项为______.(用数字作答)17.(2023·广东东莞·校联考模拟预测)甲、乙、丙3所学校每所学校各派出两名同学,现从这六名同学中任取两名,安排到甲、乙、丙3所学校交流.每所学校至多安排一名同学,每名同学只能去一所学校且不能去自己原先的学校,则不同的安排方法有________种. 19.(2023·湖南衡阳·衡阳市八中校考模拟预测)在132x x ⎛⎫- ⎪⎝⎭的展开式中,二次项系数是___________.(用数字作答)20.(2023·浙江温州·乐清市知临中学校考二模)一个圆的圆周上均匀分布6个点,在这些点与圆心共7个点中,任取3个点,这3个点能构成不同的等边三角形个数为__________.。

高考数学试题解析专题11 排列组合、二项式定理(教师版) 理

高考数学试题解析专题11 排列组合、二项式定理(教师版) 理

2012年高考试题分项版解析数学(理科)专题11 排列组合、二项式定理(教师版)一、选择题:1.(2012年高考新课标全国卷理科2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()()A12种()B10种()C9种()D8种【答案】A【解析】甲地由1名教师和2名学生:122412C C=种.2. (2012年高考北京卷理科6)从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24B. 18C. 12D. 63.(2012年高考浙江卷理科6)若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种 B.63种 C.65种 D.66种4.(2012年高考山东卷理科11)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()(A )232 (B)252 (C)472 (D)4845. (2012年高考辽宁卷理科5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )(A)3×3! (B) 3×(3!)3(C)(3!)4(D) 9! 【答案】C【解析】此排列可分两步进行,先把三个家庭分别排列,每个家庭有3!种排法,三个家庭共有33!3!3!(3!)⨯⨯=种排法;再把三个家庭进行全排列有3!种排法。

因此不同的坐法种数为4(3!),答案为C【考点定位】本题主要考查分步计数原理,以及分析问题、解决问题的能力,属于中档题。

6.(2012年高考天津卷理科5)在251(2)x x-的二项展开式中,x 的系数为( ) (A )10 (B)-10 (C)40 (D)-407.(2012年高考安徽卷理科7)2521(2)(1)x x+-的展开式的常数项是( ) ()A 3- ()B 2- ()C 2 ()D 3 【答案】D【解析】第一个因式取2x ,第二个因式取21x得:1451(1)5C ⨯-= 第一个因式取2,第二个因式取5(1)-得:52(1)2⨯-=- 展开式的常数项是5(2)3+-=.8.(2012年高考安徽卷理科10)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )()A 1或3 ()B 1或4 ()C 2或3 ()D 2或4 【答案】D【解析】261315132C -=-=①设仅有甲与乙,丙没交换纪念品,则收到4份纪念品的同学人数为2人 ②设仅有甲与乙,丙与丁没交换纪念品,则收到4份纪念品的同学人数为4人. 9. (2012年高考湖北卷理科5)设a ∈Z ,且0≤a ≤13,若512012+a 能被13整除,则a=( )A.0B.1C.11D.1210. (2012年高考陕西卷理科8)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( ) (A ) 10种 (B )15种 (C ) 20种 (D ) 30种11.(2012年高考四川卷理科1)7(1)x +的展开式中2x 的系数是( ) A 、42 B 、35 C 、28 D 、21 【答案】D【解析】二项式7)1(x +展开式的通项公式为1+k T =k k x C 7,令k=2,则2273x C T 、=21C x 272=∴的系数为.【考点定位】高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力.12. (2012年高考四川卷理科11)方程22ay b x c =+中的,,{3,2,0,1,2,3}a b c ∈--,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A 、60条B 、62条C 、71条D 、80条13.(2012年高考全国卷理科11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( ) (A )12种(B )18种(C )24种(D )36种14. (2012年高考重庆卷理科4)82x x 的展开式中常数项为( )A.1635 B.835 C.435 D.105 【答案】B 【解析】1,2x x取得次数为1:1(4:4),展开式中常数项为448135()28C ⨯=. 二、填空题:1. (2012年高考广东卷理科10)261()x x+的展开式中3x 的系数为______.(用数字作答)2. (2012年高考福建卷理科11)4)(x a +的展开式中3x 的系数等于8,则实数=a _________.【答案】2【解析】4)(x a +中含3x 的一项为r rrr x aC T -+=441,令3=r ,则83434=-a C ,即2=a .【考点定位】本题考查的知识点为二项式定理的展开式,直接应用即可.3.(2012年高考上海卷理科5)在6)2(xx -的二项展开式中,常数项等于 .4. (2012年高考湖南卷理科13) ( x x6的二项展开式中的常数项为 .(用数字作答) 【答案】-160 【解析】( 2x x6的展开式项公式是663166C (2(C 2(1)r r r r rr r r T x x x ---+==-.由题意知30,3r r -==,所以二项展开式中的常数项为33346C 2(1)160T =-=-.【考点定位】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法.5. (2012年高考陕西卷理科12)5()a x +展开式中2x 的系数为10, 则实数a 的值为 .6.(2012年高考全国卷理科15)若1()nx x+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为 .。

高考数学总复习 专题11 排列组合、二项式定理分项练习(含解析)理1

高考数学总复习 专题11 排列组合、二项式定理分项练习(含解析)理1

专题11 排列组合、二项式定理一.基础题组1. 【2012全国,理2】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种 B .10种 C .9种 D .8种 【答案】A2. 【2011全国新课标,理8】51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为( ) A .-40B .-20C .20D .40【答案】D 【解析】3. 【2011全国,理7】某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( ) A .4种 B .10种 C .18种 D .20种【答案】B【解析】第一类:从中取出的4本中有1本画册,3本集邮册,赠送给4位朋友有14C 种不同的赠送方法;第二类:从中取出的4本中有2本画册,2本集邮册,赠送给4位朋友有24C 种不同的赠送方法。

故共有124410C C +=种方法。

4. 【2009全国卷Ⅰ,理5】甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A.150种 B.180种 C.300种 D.345种 【答案】D5. 【2014课标Ⅰ,理14】甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市. 丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________ 【答案】A【解析】由丙说可知,乙至少去过A,B,C 中的一个城市,由甲说可知,甲去过A,C 且比乙去过的城市多,故乙只去过一个城市,且没去过C 城市,故乙只去过A 城市.6. 【2006全国,理15】安排7位工作人员在5月1日至5月7日值勤班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日。

高考数学分项汇编 专题11 排列组合、二项式定理(含解析)理-人教版高三全册数学试题

高考数学分项汇编 专题11 排列组合、二项式定理(含解析)理-人教版高三全册数学试题

专题11 排列组合、二项式定理1. 【2005高考重庆理第8题】若)12(x x -n 展开式中含21x 项的系数与含41x项的系数之比为-5,则n 等于( ) A .4B .6C .8D .10 【答案】B 2. 【2006高考重庆理第5题】若nx x ⎪⎪⎭⎫ ⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为( ) (A )-540 (B )-162 (C )162 (D )540【答案】A3. 【2006高考重庆理第8题】将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )(A )30种 (B )90种 (C )180种 (D )270种【答案】B4. 【2007高考重庆理第4题】若nx x )1(+展开式的二项式系数之和为64,则展开式的常数项为( )A.10B.20C.30D.120【答案】B5. 282()x x +的展开式中4x 的系数是( )A .16B .70C .560D .1120 【答案】6. 【2010高考重庆理第9题】某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天.若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有 ( )A .504种B .960种C .1 008种D .1 108种【答案】C7. 【2011高考重庆理第4题】()13nx +(其中n N ∈且6a ≥)的展开式中5x 与6x 的系数相等,则n = (A )6 (B)7(C) 8 (D)9【答案】B 。

8. 【2012高考重庆理第4题】812x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为 A.1635 B.835 C.435 D.105 【答案】B9. 【2014高考重庆理第9题】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168【答案】B考点:1、分类加法计数原理;2、排列.10. 【2007高考重庆理第15题】某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有___________种。

2019年高考数学真题分类汇编:专题(11)排列组合、二项式定(理科)及答案

2019年高考数学真题分类汇编:专题(11)排列组合、二项式定(理科)及答案

专题十一 排列组合、二项式定理1.【2018高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( ) A .4 B .5 C .6 D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r rr n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C .【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n a b -+T =.2.【2018高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( ) (A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解. 3.【2018高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个 【答案】B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B.【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.4.【2018高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为( ) A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 【考点定位】二项式系数,二项式系数和.【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:n n n n n n C C C C 2210=+⋅⋅⋅+++,奇数项的二项式系数和与偶数项的二项式系数和相等=⋅⋅⋅++++420n n n C C C 15312-=⋅⋅⋅++++n n n n C C C .5、【2018高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.【考点定位】排列问题.【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清40人两两彼此给对方仅写一条毕业留言是个排列问题.6.【2018高考重庆,理12】53x ⎛ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =. 【考点定位】二项式定理【名师点晴】()na b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指kn C ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别. 7.【2018高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrrr r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟记二项展开式的通项即展开式的第1r +项为:()*12,r n r rr n T C a b n N n r N -+=∈≥∈且.8.【2018高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.9.【2018高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144rrr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.【考点定位】二项式定理及二项展开式的通项.【名师点睛】本题主要考查二项式定理及二项展开式的通项的应用.应用二项式定理典型式的通项,求出当2r =时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题.10.【2018高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案) 【答案】35【解析】由题意,二项式371()x x +展开的通项372141771()()rr r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =.【考点定位】1.二项式定理的展开式应用.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.11.【2018高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答) 【答案】80【解析】()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80.【考点定位】二项式定理.【名师点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度.12.【2018高考北京,理9】在()52x +的展开式中,3x 的系数为 .(用数字作答)【答案】40【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.【名师点睛】本题考查二项式定理,利用通项公式求出指定项的系数,本题属于基础题,要求正确使用通项公式1r n r r r n T C a b -+=,准确计算指定项的系数.13.【2018高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.【名师点睛】本题考查二项式定理,准确写出二项展开式,能正确求出奇数次幂项以及相应的系数和,从而列方程求参数值,属于中档题.【2018高考湖南,理6】已知5的展开式中含32x 的项的系数为30,则a =( )C.6 D-6 【答案】D. 【解析】试题分析:r rr rr x a C T -+-=2551)1(,令1=r ,可得6305-=⇒=-a a ,故选D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r n r b a C T -+=1,即可建立关于a 的方程,从而求解.【2018高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示).【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式【名师点睛】(1)求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r+1,代回通项公式即可.(2)对于三项式问题一般先变形化为二项式再解决.【2018高考上海,理8】在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【答案】120【解析】由题意得,去掉选5名女教师情况即可:55961266120.C C-=-=【考点定位】排列组合【名师点睛】涉及排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.。

高考数学理真题分类汇编专题11排列组合二项式定理

高考数学理真题分类汇编专题11排列组合二项式定理

专题十一 排列组合、二项式定理1.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( ) A .4 B .5 C .6 D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r r r n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k kk n ab -+T =. 2.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.3.【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个 【答案】B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B.【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类. 4.【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为( )A.122 B .112 C .102 D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 【考点定位】二项式系数,二项式系数和.【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:n n n n n n C C C C 2210=+⋅⋅⋅+++,奇数项的二项式系数和与偶数项的二项式系数和相等=⋅⋅⋅++++420n n n C C C 15312-=⋅⋅⋅++++n n n n C C C .5、【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.【考点定位】排列问题.【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清40人两两彼此给对方仅写一条毕业留言是个排列问题.6.【2015高考重庆,理12】53x ⎛ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =. 【考点定位】二项式定理【名师点晴】()na b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指knC ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.7.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrrr r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟记二项展开式的通项即展开式的第1r +项为:()*12,r n r r r n T C a b n N n r N -+=∈≥∈且.8.【2015高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.9.【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144rrr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.【考点定位】二项式定理及二项展开式的通项.【名师点睛】本题主要考查二项式定理及二项展开式的通项的应用.应用二项式定理典型式的通项,求出当2r =时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题.10.【2015高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案) 【答案】35【解析】由题意,二项式371()x x +展开的通项372141771()()r r r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =.【考点定位】1.二项式定理的展开式应用.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.11.【2015高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答) 【答案】80【解析】()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80.【考点定位】二项式定理.【名师点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度.12.【2015高考北京,理9】在()52x +的展开式中,3x 的系数为 .(用数字作答)【答案】40【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.【名师点睛】本题考查二项式定理,利用通项公式求出指定项的系数,本题属于基础题,要求正确使用通项公式1r n r r r n T C a b -+=,准确计算指定项的系数.13.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =. 【考点定位】二项式定理.【名师点睛】本题考查二项式定理,准确写出二项展开式,能正确求出奇数次幂项以及相应的系数和,从而列方程求参数值,属于中档题.【2015高考湖南,理6】已知5的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D. 【解析】试题分析:r rr r r x a C T -+-=2551)1(,令1=r ,可得6305-=⇒=-a a ,故选D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r nr b a C T -+=1,即可建立关于a 的方程,从而求解. 【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式【名师点睛】(1)求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.(2)对于三项式问题一般先变形化为二项式再解决.【2015高考上海,理8】在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【答案】120【解析】由题意得,去掉选5名女教师情况即可:55961266120.C C-=-=【考点定位】排列组合【名师点睛】涉及排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.。

三年高考:数学(理)真题分项版解析—— 专题11 排列组合、二项式定理

三年高考:数学(理)真题分项版解析—— 专题11 排列组合、二项式定理

三年高考(2019-2019)数学(理)试题分项版解析第十一章 排列、组合、二项式定理一、选择题1. 【2019高考新课标2理数】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )(A )24 (B )18 (C )12 (D )9 【答案】B 【解析】试题分析:由题意,小明从街道的E 处出发到F 处最短有24C 条路,再从F 处到G 处最短共有13C 条路,则小明到老年公寓可以选择的最短路径条数为214318C C ⋅=条,故选B.考点: 计数原理、组合.【名师点睛】分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.2. 【2019年高考四川理数】设i 为虚数单位,则6()x i +的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4 【答案】A考点:二项展开式,复数的运算.【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式6()x i +的展开式可以改为6()i x +,则其通项为66r r r C i x -,即含4x 的项为46444615C i x x -=-.3. 【2019高考广东卷.理.8】设集合(){}{}12345,,,,1,0,1,1,2,3,4,5i A x x x x x x i =∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A .60B .90C .120D .130 【答案】D【考点定位】本题考查分类计数原理,属于拔高题【名师点晴】本题主要考查的是分类计数原理,属于难题.解题时一定要注意选出的元素是否与顺序有关,否则很容易出现错误.利用排列组合计数时,关键是正确进行分类和分步,分类时要做到不重不漏,防止出现错误.4. 【 2019湖南4】5122x y ⎛⎫- ⎪⎝⎭的展开式中32y x 的系数是( ) A.20- B.5- C.5 D.20 【答案】A【解析】根据二项式定理可得第1n +项展开式为()55122nn n C x y -⎛⎫- ⎪⎝⎭,则2n =时,()()2532351*********n n n C x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,所以23x y 的系数为20-,故选A. 【考点定位】二项式定理【名师点睛】本题主要考查的是二项式定理,属于容易题,解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n a b -+T =,然后令n 选取恰当的值得到结果.5. 【2019年高考四川理数】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A )24 (B )48 (C )60 (D )72 【答案】D 【解析】试题分析:由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5中之一,其他位置共有随便排共44A 种可能,所以其中奇数的个数为44372A =,故选D. 考点:排列、组合【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.在本题中,个位是特殊位置,第一步应先安排这个位置,第二步再安排其他四个位置..6. 【2019高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k kk n a b -+T =.7. 【2019高考新课标3理数】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共 有( )(A )18个 (B )16个(C )14个(D )12个【答案】C 【解析】试题分析:由题意,得必有10a =,81a =,则具体的排法列表如下:【方法点拨】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.8. 【2019四川,理2】在6(1)x x +的展开式中,含3x 项的系数为( )A .30B .20C .15D .10 【答案】C 【解析】试题分析:623456(1)(161520156)x x x x x x x x x +=++++++,所以含3x 项的系数为15.选C【考点定位】二项式定理.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.10. 【2019四川,理6】六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种 【答案】B 【解析】试题分析:最左端排甲,有5!120=种排法;最左端排乙,有44!96⨯=种排法,共有12096216+=种排法.选B.【考点定位】排列组合.【名师点睛】涉及排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.11. 【2019高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个 【答案】B【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.12.【2019高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.14. 【2019年.浙江卷.理5】在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( ) A.45 B.60 C.120 D. 210 答案:C 解析:由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C考点:二项式系数.【名师点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.求二项展开式中的项的方法:求二项展开式的特定项问题,实质是考查通项1kn kk k n T C ab -+=的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k的取值范围(k =0,1,2,…,n).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程;(3)有理项:令通项中“变元”的幂指数为整数建立方程.特定项的系数问题及相关参数值的求解等都可依据上述方法求解.15.【2019高考重庆理第9题】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168 【答案】B考点:1、分类加法计数原理;2、排列.【名师点睛】本题考查了综合应用排列与组合知识解决实际的计数问题,属于中档题目,根据条件将分类,然后用分类计数原获得结果.16. 【2019湖北卷2】若二项式7)2(x a x +的展开式中31x的系数是84,则实数=a ( ) A.2 B. 54 C. 1 D. 42【答案】C 【解析】试题分析:因为r r r r rrrx a C xa x C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得1=a ,故选C.考点:二项式定理的通项公式,容易题.【名师点睛】本题考查了二项式定理的运用,其解题的关键是根据已知建立方程关系,属容易题.充分体现了方程思想在数学解题中的应用,能较好的考查学生对教材中的基本概念、基本规律和基本操作的识记能力和运算能力.17. 【2019高考湖北,理3】已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A.122 B .112 C .102 D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.【考点定位】二项式系数,二项式系数和.【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:n n n n n n C C C C 2210=+⋅⋅⋅+++,奇数项的二项式系数和与偶数项的二项式系数和相等=⋅⋅⋅++++420n n n C C C 15312-=⋅⋅⋅++++n n n n C C C .18. 【2019辽宁理6】把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .24 【答案】C考点:排列组合.【名师点睛】本题考查简单排列组合应用问题.从近几年高考对这部分内容的考查看,基本是排列与组合相结合,多可以结合图表分析解题途径.本题首先将座位编号,分析任何两人都不相邻的情况,再安排人员就坐,现实背景熟悉,分析形象直观,易于理解.本题是一道基础题,考查排列组合基础知识,同时考查考生的计算能力及分析问题解决问题的能力.19.【2019湖南理2】已知5的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D. 【解析】试题分析:r rr r r x a C T -+-=2551)1(,令1=r ,可得6305-=⇒=-a a ,故选D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r n r b a C T -+=1,即可建立关于a 的方程,从而求解.二、填空题 1. 【2019年高考北京理数】在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 【答案】60. 【解析】试题分析:根据二项展开的通项公式16(2)r r r r T C x +=-可知,2x 的系数为226(2)60C -=,故填:60. 考点:二项式定理.【名师点睛】1.所谓二项展开式的特定项,是指展开式中的某一项,如第n 项、常数项、有理项、字母指数为某些特殊值的项.求解时,先准确写出通项r rn rn r b aC T -+=1,再把系数与字母分离出来(注意符号),根据题目中所指定的字母的指数所具有的特征,列出方程或不等式来求解即可;2、求有理项时要注意运用整除的性质,同时应注意结合n 的范围分析.2.【2019高考新课标1卷】5(2x +的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10考点:二项式定理3. 【2019高考天津理数】281()x x-的展开式中x 2的系数为__________.(用数字作答)【答案】56- 【解析】试题分析:展开式通项为281631881()()(1)rr r r r r r T C x C x x--+=-=-,令1637r -=,3r =,所以7x 的338(1)56C -=-.故答案为56-.考点:二项式定理【名师点睛】1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r );第二步是根据所求的指数,再求所求解的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.4.【2019高考山东理数】若(a x2)5的展开式中x5的系数是—80,则实数a=_______. 【答案】-2【解析】试题分析:因为5102552155()rr r r r rrT C ax C a x---+==,所以由510522r r-=⇒=,因此252 580 2.C a a-=-⇒=-考点:二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项公式,往往是考试的重点.本题难度不大,易于得分.能较好的考查考生的基本运算能力等.5.【2019高考天津,理12】在614xx⎛⎫-⎪⎝⎭的展开式中,2x的系数为 .【答案】15 16【考点定位】二项式定理及二项展开式的通项.【名师点睛】本题主要考查二项式定理及二项展开式的通项的应用.应用二项式定理典型式的通项,求出当2r=时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题.6.【2019高考北京理第12题】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__________.【答案】96【解析】试题分析:连号有4种情况,从4人中挑一人得到连号参观券,其余可以全排列,则不同的分法有4×1343C A=96(种).考点:排列组合.名师点睛:本题考查排列、组合及计数原理有关问题,本题属于中等难度问题,高考每年都会考查这个问题,题目或简或难,由于命题可以很灵活,可以考查简单的计数,也可以考查具体的排列组合基本方法如:相邻问题捆绑法、不邻插空法、分排问题直排法、有序问题用除法、隔板法等,本题为先选后排问题,从4人中挑一人得到连号参观券,其余可以全排列,而得连号有四种可能情况发生,解决这样的问题需要学生不但要有扎实的基本功,还要有分析问题和解决问题的能力.7. 【2019高考北京理第13题】把5件不同产品摆成一排,若产品A 与产品B 相邻, 且产品A 与产品C 不相邻,则不同的摆法有 种. 【答案】36考点:排列组合,容易题.【名师点睛】本题考查排列、组合及计数原理有关问题,本题属于中等难度问题,高考每年都会考查这个问题,题目或简或难,由于命题可以很灵活,可以考查简单的计数,也可以考查具体的排列组合基本方法如:相邻问题捆绑法、不邻插空法、分排问题直排法、有序问题用除法、隔板法等,需要学生不但要有扎实的基本功,还要有分析问题和解决问题的能力.8. 【2019高考北京,理9】在()52x +的展开式中,3x 的系数为.(用数字作答)【答案】40【解析】利用通项公式,5152r r r r T C x -+=⋅,令3r =,得出3x 的系数为325240C ⋅=【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.【名师点睛】本题考查二项式定理,利用通项公式求出指定项的系数,本题属于基础题,要求正确使用通项公式1r n r r r n T C a b -+=,准确计算指定项的系数.9. 【2019高考广东卷.理.11】从0.1.2.3.4.5.6.7.8.9中任取七个不同的数,则这七个数的中位数是6的概率为 . 【答案】16. 【解析】上述十个数中比6小的数有6个,比6大的数有3个,要使得所选的七个数的中位数为6,则应该在比6大的数中选择3个,在比6大的数中也选择3个,因此所求事件的概率为336371016C C P C ==. 【考点定位】本题考查排列组合与古典概型的概率计算,属于能力题.【名师点晴】本题主要考查的是排列组合和古典概型,属于中等题.解题时要抓住重要字眼“中位数是6”,否则很容易出现错误.用排列组合列举基本事件一定要做到不重不漏,防止出现错误.解本题需要掌握的知识点是古典概型概率公式,即()A P A =包含的基本事件的个数基本事件的总数.10. 【2019高考广东,理9】在4)1(-x 的展开式中,x 的系数为 .【答案】6.【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟记二项展开式的通项即展开式的第1r +项为:()*12,r n r rr n T C a b n N n r N -+=∈≥∈且.11. 【2019高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.【解析】依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了24040391560A =⨯=条毕业留言,故应填入1560.【考点定位】排列问题.【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清40人两两彼此给对方仅写一条毕业留言是个排列问题.12.【2019山东.理14】 若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 . 【答案】2【名师点睛】本题考查二项式定理及其通项公式、基本不等式.从近几年高考对二项式定理的考查看,基本是以通项公式为解题的突破口,本题对有理指数幂的运算要求较高,容易出现计算不准而使解答陷入误区.本题是一道小综合题,重点考查二项式定理及其通项公式、基本不等式等基础知识,同时考查考生的计算能力及分析问题解决问题的能力.13.【2019新课标,理13】 ()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 【答案】12【解析】因为10110r r r r T C x a -+=,所以令107r -=,解得3r =,所以373410T C x a ==157x ,解得12a =. 【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的通项公式,属于基础题,利用通项公式写出特定项的系数,是二项式题目的最常见题目.14.【2019高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =. 【考点定位】二项式定理.【名师点睛】本题考查二项式定理,准确写出二项展开式,能正确求出奇数次幂项以及相应的系数和,从而列方程求参数值,属于中档题.15. 【2019高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.16. 【2019高考上海理数】在nx x ⎪⎭⎫⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________. 【答案】112 【解析】 试题分析:因为二项式所有项的二项系数之和为n2,所以n2256=,所以n 8=,二项式展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x --+=-=-,令84r 033-=,得r 2=,所以3T 112=.考点:1.二项式定理;2.二项展开式的系数.【名师点睛】根据二项式展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项式展开式的通项求解. 本题能较好地考查考生的思维能力、基本计算能力等.17. 【2019课标Ⅰ,理13】()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 【答案】20-【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理的应用,考查考生的记忆能力和计算能力.18. 【2019年.浙江卷.理14】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).答案:60解析:不同的获奖分两种,一是有一人获两张将卷,一人获一张,共有223436C A =,二是有三人各获得一张,共有3424A =,因此不同的获奖情况有60种考点:排列组合.【名师点睛】本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要掌握分类讨论的处理方法;解决排列问题的主要方法(1)“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看做一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列.(5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.两类组合问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.19. 【2019高考重庆,理12】53x ⎛ ⎝的展开式中8x 的系数是________(用数字作答). 【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =. 【考点定位】二项式定理【名师点晴】()na b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指k n C ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.20. 【2019,安徽理13】设n a ,0≠是大于1的自然数,na x ⎪⎭⎫⎝⎛+1的展开式为n n x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .【答案】3考点:1.二项展开式的应用.【名师点睛】二项式常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.本题要结合图形给定的条件与二项式展开中各项的表示.21.【2019高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案)【答案】35【解析】由题意,二项式371()x x+展开的通项372141771()()r rr r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =. 【考点定位】1.二项式定理的展开式应用.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.22.【2019高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答) 【答案】80【解析】()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80.【考点定位】二项式定理.【名师点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度. 23.【2019高考江苏卷】(本小题满分10分)(1)求3467–47C C 的值;(2)设m ,n ∈N *,n ≥m ,求证:(m +1)C mm +(m +2)+1C m m +(m +3)+2C m m +…+n –1C m n +(n +1)C mn =(m +1)+2+2C m n .【答案】(1)0(2)详见解析试题解析:解:(1)3467654765474740.3214321C C ⨯⨯⨯⨯⨯-=⨯-⨯=⨯⨯⨯⨯⨯(2)当n m =时,结论显然成立,当n m >时11(1)!(1)!(1)(1)(1),1,2,,.!()!(1)![(k 1)(m 1)]!m m k k k k k k C m m C k m m n m k m m +++⋅++==+=+=++-++-+又因为122112,m m m k k k C C C +++++++=所以2221(1)(1)(),k m 1,m+2,n.m m m k k k k C m C C +++++=+-=+,因此12122222222232432122(1)(2)(3)(n 1)(1)[(2)(3)(n 1)](1)(1)[()()()](1)m m mmm m m nm m mmm m m n m m m m m m m m m m m m n n m n m C m C m C C m C m C m C C m Cm CCCCCCm C +++++++++++++++++++++++++++=+++++++=+++-+-+-=+考点:组合数及其性质【名师点睛】本题从性质上考查组合数性质,从方法上考查利用数学归纳法解决与自然数有关命题,从思想上考查运用算两次解决二项式有关模型. 组合数性质不仅有课本上介绍的111m m m k k k C C C ++++=、=m k mk k C C -,更有11k k n n kC nC --=,现在又有11(1)(m 1),(,1,,)m m k k k C C k m m n +++=+=+,这些性质不需记忆,但需会推导,更需会应用.。

(浙江版)高考数学分项汇编专题11排列组合、二项式定理(含解析)理

(浙江版)高考数学分项汇编专题11排列组合、二项式定理(含解析)理

第十一章 排列组合、二项式定理一.基础题组1. 【2014年.浙江卷.理5】在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( ) A.45 B.60 C.120 D. 210【答案】:C2. 【2014年.浙江卷.理14】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).【答案】:60【解析】:3. 【2013年.浙江卷.理11】设二项式53x x ⎛- ⎪⎝⎭的展开式中常数项为A ,则A =__________. 【答案】:-104. 【2013年.浙江卷.理14】将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有__________种(用数字作答).【答案】:480【解析】:如图六个位置.若C 放在第一个位置,则满足条件的排法共有55A 种情况;若C 放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A ,B ,再在余下的3个位置排D ,E ,F ,5. 【2012年.浙江卷.理6】若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种【答案】D6. 【2012年.浙江卷.理14】若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=__________.【答案】107. 【2011年.浙江卷.理13】若二项式)0(6>⎪⎪⎭⎫ ⎝⎛-a x a x 的展开式中x 3的系数为A , 常数项为B ,若4B A =,则a 的值是 .【答案】 28. 【2009年.浙江卷.理4】在二项式251()x x -的展开式中,含4x 的项的系数是( )A .10-B .10C .5-D .5答案:B 【解析】对于()251031551()()1r r r r r r r T C x C x x--+=-=-,对于1034,2r r -=∴=,则4x 的项的系数是225(1)10C -=9. 【2009年.浙江卷.理16】甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).【答案】:33610. 【2008年.浙江卷.理4】在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是(A )-15 (B )85 (C )-120 (D )274【答案】A11. 【2006年.浙江卷.理8】若多项式210910019109(1)(1)(1),x x a a x a x a x +=+++++++=则a (A)9 (B)10 (C)-9 (D)-10【答案】D【解析】因为 ()()2102101111x x x x +=+-++-⎡⎤⎡⎤⎣⎦⎣⎦,所以()1910110a C =⨯-=- ,故选D.12. 【2005年.浙江卷.理5】在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( )(A) 74 (B) 121 (C) -74 (D) -121【答案】D二.能力题组1. 【2008年.浙江卷.理16】用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是 (用数字作答)。

高考数学总复习 专题11 排列组合、二项式定理分项练习

高考数学总复习 专题11 排列组合、二项式定理分项练习

专题11 排列组合、二项式定理1. 【2009高考北京文第3题】若4(1,a a b +=+为有理数),则a b +=( )A .33B . 29C .23D .19【答案】B2. 【2009高考北京文第5题】用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为 ( )A .8B .24C .48D .120【答案】C【解析】本题主要考查排列组合知识以及分步计数原理知识. 属于基础知识、基本运算的考查.2和4排在末位时,共有122A =种排法,其余三位数从余下的四个数中任取三个有3443224A =⨯⨯=种排法,于是由分步计数原理,符合题意的偶数共有22448⨯=(个).故选C.3. 【2006高考北京文第4题】在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有 A.36B.24C.18D.6【答案】A【解析】若各位数字之和为偶数,则需2个奇数字1个偶数字,奇数字的选取为C 23,偶数字的选取为C 12,∴所求为C 23·C 12·A 33=36.4. 【2007高考北京文第5题】某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( )A.()2142610C A 个 B.242610A A 个 C.()2142610C 个 D.242610A 个 【答案】A【试题分析】汽车牌照号码前两位是可重复排列,分别由26个英文字母任选一个排列,有1226()C 种排法,后四位是从10个数字中任取4个互不相同的数的排列,有410A 种排法,故所有号码共有()2142610C A 个,故选A. 【考点】乘法原理,可重复排列和不重复排列的计算5. 【2005高考北京文第8题】五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( ) (A )1444C C 种 (B )1444C A 种 (C )44C 种 (D )44A 种【答案】B6. 【2005高考北京文第10题】61()x x -的展开式中的常数项是 (用数字作答)【答案】20- 【解析】二项式展开式的通项为()66216611rr r r r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令620r -=得3r =,所以展开式中常数项是()3306120C x -=-。

排列组合二项式定理单元测试题(带答案)

排列组合二项式定理单元测试题(带答案)

排列、组合、二项式定理与概率测试题(理)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、如下图的是2008年奥运会的会徽,其中的“中国印”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( ) A. 8种 B. 12种C. 16种D. 20种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( ) A .96种 B .180种C .240种 D .280种3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则不同的选排方法共有( )A .12种B .20种C .24种D .48种4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A . 10种 B. 20种 C. 30种 D . 60种5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (mod m )。

已知a =1+C 120+C 220·2+C 320·22+…+C 2020·219,b ≡a (mod 10),则b 的值可以是( )A.2015 B.2011 C.2008 D.20066、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种C .24种 D .25种7、令1)1(++n n x a 为的展开式中含1-n x项的系数,则数列}1{na 的前n 项和为()A .2)3(+n n B .2)1(+n n C .1+n n D .12+n n8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A .32B .1C .-1D .-329、二项式23nx ⎛⎝*()n N ∈展开式中含有常数项,则n 的最小取值是 ( )A5 B6 C7 D 810、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( )A .150种B .147种C .144种D .141种11、两位到旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有() A .1440 B .960 C .720 D .480 12、若x∈A 则x 1∈A,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4} 的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25二、填空题(每小题4分,共16分,把答案填在题中横线上) 13.四封信投入3个不同的信箱,其不同的投信方法有_________种. 14、在72)2)(1(-+x x 的展开式中x 3的系数是 .15、已知数列{n a }的通项公式为121+=-n n a ,则01n C a +12n C a + +33n C a +n n n C a 1+=16、对于任意正整数,定义“n 的双阶乘n!!”如下:对于n 是偶数时, n!!=n·(n-2)·(n-4)……6×4×2;对于n 是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.三、解答题(本大题共6小题,前5小题每小题12分,最后1小题14分,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)17、某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法.那么该小组中男、女同学各有多少人?18、设m,n∈Z+,m、n≥1,f(x)=(1+x)m+(1+x)n的展开式中,x的系数为19.(1)求f(x)展开式中x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、n的值,求x7的系数.19、7位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?20、已知1()2nxx的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。

2014届高三名校数学(理)试题分省分项汇编 专题11 排列组合、二项式定理

2014届高三名校数学(理)试题分省分项汇编 专题11 排列组合、二项式定理

一.基础题组 1.二.能力题组 1. 【南京市、盐城市2014届高三第一次模拟考试】 设m 是给定的正整数,有序数组(1232,,,m a a a a )中2i a =或2-(12)i m ≤≤. (1)求满足“对任意的1k m ≤≤,*k N ∈,都有2121k ka a -=-”的有序数组(1232,,,m a a a a )的个数A ;(2)若对任意的1k l m ≤≤≤,k ,*l N ∈,都有221||4li i k a =-≤∑成立,求满足“存在1k m ≤≤,使得2121k ka a -≠-”的有序数组(1232,,,m a a a a )的个数B .试题解析:(1)因为对任意的1k m ≤≤,都有2121k ka a -=-,则212(,)(2,2)k k a a -=-或212(,)(2,2)k k a a -=-共有2种,所以1232(,,,,)m a a a a ⋅⋅⋅共有2m 种不同的选择,所以2m A =. ……5分 (2)当存在一个k 时,那么这一组有12m c 种,其余的由(1)知有12m -,所有共有1122m m c -;当存在二个k 时,因为条件对任意的1k l m ≤≤≤,都有221||4li i k a =-≤∑成立得这两组共有22m c ,其余的由(1)知有22m -,所有共有2222m m c -;依次类推得:1122222222(32)m m mm m m m m B c c c --=++⋅⋅⋅+=-. ………10分考点:分步(乘法)计数原理,二项式定理应用.2. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】 已知{}n a 为等差数列,且0≠n a ,公差0d ≠.(1)数列满足结论212111a a da a =-;01222221231232C C C d a a a a a a -+=;试证:012333333123412346C C C C d a a a a a a a a -+-=; (2)根据(1)中的几个等式,试归纳出更一般的结论,并用数学归纳法证明.(7分)k k a a a d k 211)!1(--=k k a a a d k 321)!1(---)()!1(11211a a a a a d k k k k --=+- 121!+=k k k a a a a d k , 所以,当1+=k n 时,结论也成立.综合①②知,nn n n n n n n n a a a d n a C a C a C a C 211111321211101)!1()1(---+----=-+-+-对2≥n 都成立……10分 考点:1.归纳推理;2.数学归纳法;3.组合数性质3. 【江苏省扬州中学2013—2014学年第一学期月考】设函数()(,n)1n f x x =+,()n N *∈.(1)求(,6)f x 的展开式中系数最大的项;(2)若(,n)32f i i =(i 为虚数单位),求13579n n n n n C C C C C -+-+.。

高考数学(理科)- 排列组合、二项式定理-专题练习(含答案与解析)

高考数学(理科)- 排列组合、二项式定理-专题练习(含答案与解析)

高考数学(理科)专题练习 排列组合、二项式定理[A 组高考题、模拟题重组练] 一、排列、组合1.(2016·全国甲卷)如图22­1,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )图22­1A .24B .18C .12D .9 2.(2016·四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A .24B .48C .60D .723.(2016·全国丙卷)定义“规范01数列”{a n }如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意122k k m a a a ≤⋯,,,,中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个4.(2012·全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种 B .10种 C .9种D .8种5.(2016·哈尔滨一模)某中学高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,不同的选取法的种数为( )排列组合、二项式定理排列组合、二项式定理解析[A组高考题、模拟题重组练]一、排列、组合1.B[从E到G需要分两步完成:先从E到F,再从F到G.从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条.如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F.因为从A到F 或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.]2.D[第一步,先排个位,有C13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有C13·A44=72(个).]3.C[由题意知:当m=4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a1=0,a8=1.不考虑限制条件“对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数”,则中间6个数的情况共有C36=20(种),其中存在k≤2m,a1,a2,…,a k中0的个数少于1的个数的情况有:①若a2=a3=1,则有C14=4(种);②若a2=1,a3=0,则a4=1,a5=1,只有1种;③若a2=0,则a3=a4=a5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C.]4.A[分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C12=2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6(种)选派方法.由分步乘法计数原理得,不同的选派方案共有2×6=12(种).]5.B[分两类,不选三班的同学,利用间接法,没有条件得选择3人,再排除3个同学来自同一班,有C312-3C34=208种;选三班的一位同学,剩下的两位同学从剩下的12人中任选2人,有C14·C212=264种.根据分类计数原理,得208+264=472,故选B.]6.A[从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法是选一个,8克,一种方法,选两个,1+7,2+6,3+5,共3种方法,选三个,1+2+5,只有一种方法,其他不含1的三个的和至少是2+3+4>8.四个以上的和都大于8,因此共有方法数为5.A中,x8的系数是1+3+1=5(x8,x·x7,x2·x6,x3·x5,x·x2·x5),B中,x8的系数大于1×2×3×4×5×6×7×8,C中,x8的系数大于8(8x8的系数就是8),D中,x8的系数大于C49>8(有四个括号里取x2,其余取1时系数为C49).因此只有A是正确的,故选A.]7.B[法一:五本书分给四名同学,每名同学至少1本,那么这四名同学中有且仅有一名同学分到两本书,第一步骤,先选出一名同学,即C14;这名同学分到的两本书有三种情况:两本小说,两本诗集或是一本小说和一本诗集,因为小说、诗集都不区别,所以在第一种情况下有C13种分法(剩下三名同学中选一名同学分到一本小说,其余两名同学各分到一本诗集),在第二种情况下有1种分法(剩下三名同学各分到一本小说),在第三种情况下有C13种分法(剩下三名同学中选一名同学分到一本诗集,其余两名同学各分到一本小说),这样第二步骤共有情况数是C13+1+C13=7,故本题的答案是7C14=28,选B.法二:将3本相同的小说记为a,a,a;2本相同的诗集记为b,b,将问题分成3种情况,分别是①aa,a,b,b,此种情况有A24=12种;②bb,a,a,a,此种情况有C14=4种;③ab,a,a,b,此种情况有A24=12种,总共有28种,故选B.]二、二项式定理8.C[法一:(x2+x+y)5=[(x2+x)+y]5,含y2的项为T3=C25(x2+x)3·y2.其中(x2+x)3中含x5的项为C13x4·x=C13x5.所以x5y2的系数为C25C13=30.故选C.法二:(x2+x+y)5为5个x2+x+y之积,其中有两个取y,两个取x2,一个取x即可,所以x5y2的系数为C25C23C11=30.故选C.]9.B[(x+y)2m展开式中二项式系数的最大值为C m2m,∴a=C m2m.同理,b=C m+12m+1.∵13a =7b ,∴13·C m 2m =7·C m +12m +1.∴13·2m !m !m !=7·2m +1!m +1!m !. ∴m =6.] 10.D[(1+x )5中含有x 与x 2的项为T 2=C 15x =5x ,T 3=C 25x 2=10x 2,∴x 2的系数为10+5a =5,∴a =-1,故选D .]11.10[(2x +x )5展开式的通项为T r +1=C r 5(2x )5-r (x )r =25-r ·C r 5·.令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10.]12.-2[T r +1=C r 5·(ax 2)5-r⎝⎛⎭⎫1x r =C r 5·a5-r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2.]13.3[设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5. 令x =1,得(a +1)×24=a 0+a 1+a 2+a 3+a 4+a 5.① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.②①-②,得16(a +1)=2(a 1+a 3+a 5)=2×32,∴a =3.] 14.-20[x 2y 7=x ·(xy 7),其系数为C 78,x 2y 7=y ·(x 2y 6),其系数为-C 68,∴x 2y 7的系数为C 78-C 68=8-28=-20.]15.0[设(1+x )6=b 0+b 1x +b 2x 2+…+b 6x 6,则a 1=b 0+mb 1,a 3=b 2+mb 3,a 5=b 4+mb 5,a 7=b 6, 所以a 1+a 3+a 5+a 7=(b 0+b 2+b 4+b 6)+m (b 1+b 3+b 5),又由二项式定理知 b 0+b 2+b 4+b 6=b 1+b 3+b 5=12(1+1)6=32,所以32+32m =32,m =0.] [B 组“10+5”模拟题提速练] 一、选择题 1.B[因为甲和丙同地,甲和乙不同地,所以有2,2,1和3,1,1两种分配方案, ①2,2,1方案:甲、丙为一组,从余下3人选出2人组成一组,然后排列,共有C 23×A 33=18种;②3,1,1方案:在丁、戊中选出1人,与甲丙组成一组,然后排列,共有C 12×A 33=12种.所以选派方案共有18+12=30种,故选B .] 2.D[因为(1+x )10=(-2+1-x )10,所以a 8等于C 810(-2)2=45×4=180.故选D .]3.B[甲乙相邻,将甲乙捆绑在一起看作一个元素,共有A 44A 22种排法,甲乙相邻且在两端有C 12A 33A 22种排法,故甲乙相邻且都不站在两端的排法有A 44A 22-C 12A 33A 22=24(种).]4.D[令x =1得a 0+a 1+a 2+…+a 9+a 10=1,再令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0,又易知a 1=C 910×21×(-1)9=-20,所以a 2+a 3+…+a 9+a 10=20.]5.D[T r +1=C r 4·(ax 6)4-r·⎝⎛⎭⎫b x r =C r 4a 4-r b r x24-7r,令24-7r =3,得r =3,则4ab 3=20,∴ab 3=5.] 6.C[由题意可得丙、丁、戊中有1人没有抢到红包,且抢到红包的4人中有2人抢到2元红包,另2人抢到3元红包,则甲、乙两人都抢到红包的情况有C 13C 24=18种,故选C .]7.B[不妨令乙丙在甲左侧,先排乙丙两人,有A 22种站法,再取一人站左侧有C 14×A 22种站法,余下三人站右侧,有A 33种站法,考虑到乙丙在右侧的站法,故总的站法总数是2×A 22×C 14×A 22×A 33=192,故选B .]8.B[分2步进行分析:第1步,先将3个歌舞类节目全排列,有A 33=6种情况,排好后,有4个空位, 第2步,因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目, 分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C 12A 22=4种情况,排好后,最后1个小品类节目放在两端,有2种情况, 此时同类节目不相邻的排法种数是6×4×2=48种; ②将中间2个空位安排2个小品类节目,有A 22=2种情况, 排好后,有6个空位,相声类节目有6个空位可选,即有6种情况, 此时同类节目不相邻的排法种数是6×2×6=72种. 则同类节目不相邻的排法种数是48+72=120,故选B .] 9.C[因为⎝⎛⎭⎫1+x +1x 2 01510=⎣⎡⎦⎤1+x +1x 2 01510 =(1+x )10+C 110(1+x )91x 2 015+…+C 1010⎝⎛⎭⎫1x 2 01510,所以x 2项只能在(1+x )10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45,故选C .]10.B[由题意,⎝⎛⎭⎫x 6+1x x n 的展开式的项为T r +1=C r n (x 6)n -r ⎝⎛⎭⎫1x x r=,令6n -152r =0,得n =54r ,当r =4时,n 取到最小值5.]32T r +1=C r 7(3x )7-r ⎝⎛⎭⎪⎫-13x 2r =C r 7·37-r ·x 7-r ·(-x )r=(-1)r C r 737-rx ,由7-53r =-3,得r =6,所以1x 3的系数是C r 7·(-1)6·3=21.]1418[由题意,不考虑特殊情况,共有C316种取法,其中每一种卡片各取三张,有4C34种取法,两种红色卡片,共有C24C112种取法,故所求的取法共有C316-4C34-C24C112=560-16-72=472.]11/ 11。

高考(2013-2015)数学(理)试题分项:专题11 排列组合、二项式定理

高考(2013-2015)数学(理)试题分项:专题11 排列组合、二项式定理

高考(2013-2015)数学(理)试题分项:专题11 排列组合、二项式定理一、选择题1.【2014天津,理6】如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论: ①BD 平分CBF ;②2FB FD FA ;③AE CE BE DE ;④AF BD AB BF .则所有正确结论的序号是 ( )EFDABC(A )①② (B )③④ (C )①②③ (D )①②④2. 【2015高考天津,理5】如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为( ) (A )83 (B )3 (C )103 (D )523. 【2014高考广东卷.理.8】设集合(){}{}12345,,,,1,0,1,1,2,3,4,5iA x x x x x x i =∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A .60B .90C .120D .1304. 【 2014湖南4】5122x y ⎛⎫- ⎪⎝⎭的展开式中32y x 的系数是( )A.20-B.5-C.5D.205. 【2013山东,理10】用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为().A .243B .252C .261D .2796. 【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .77.【2013课标全国Ⅱ,理5】已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =().A .-4B .-3C .-2D .-18. 【2014四川,理2】在6(1)x x +的展开式中,含3x 项的系数为( )A .30B .20C .15D .109. 【2014四川,理6】六个人从左至右排成一行,最左端只能排甲或乙,学科网最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种10. 【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )6012. 【2013课标全国Ⅰ,理9】设m 为正整数,(x +y )2m展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .813. 【2014年.浙江卷.理5】在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 21014.【2014高考重庆理第9题】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.16815. 【2014年普通高等学校招生全国统一考试湖北卷2】若二项式7)2(x a x +的展开式中31x的系数是84,则实数=a ( )A.2B. 54C. 1D.4216. 【2015高考湖北,理3】已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.122 B .112 C .102D .9218. (2013辽宁,理7)使3nx⎛+ ⎝(n ∈N +)的展开式中含有常数项的最小的n 为( ).A .4B .5C .6D .719. 【2014辽宁理6】把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .2420.【2015湖南理2】已知5的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-621. 【2013四川理8】从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b-的不同值的个数是( )(A )9 (B )10 (C )18 (D )20二、填空题1.【2013天津,理10】6x⎛- ⎝的二项展开式中的常数项为__________.2. 【2013天津,理11】已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为π4,3⎛⎫⎪⎝⎭,则|CP |=__________.3. 【2013天津,理13】如图,△ABC 为圆的内接三角形,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .若AB =AC ,AE =6,BD =5,则线段CF 的长为__________.4. 【2014天津,理13】在以O 为极点的极坐标系中,圆4sin 和直线sin a 相交于,A B 两点.若AOB 是等边三角形,则a 的值为___________.5. 【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .6. 【2013高考北京理第12题】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__________.7. 【2014高考北京理第13题】把5件不同产品摆成一排,若产品A 与产品B 相邻, 且产品A 与产品C不相邻,则不同的摆法有 种.8. 【2015高考北京,理9】在()52x +的展开式中,3x 的系数为.(用数字作答)9. 【2014高考广东卷.理.11】从0.1.2.3.4.5.6.7.8.9中任取七个不同的数,则这七个数的中位数是6的概率为 .10. 【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 .11. 【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)12.【2014山东.理14】 若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 . 13.【2014新课标,理13】 ()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 14.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.15. 【2013四川,理11】二项式5()x y +的展开式中,含23x y 的项的系数是____________.(用数字作答) 16. 【2015高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答).17. 【2014课标Ⅰ,理14】甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市. 丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________18. 【2014课标Ⅰ,理13】()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 19. 【2014年.浙江卷.理14】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).20. 【2013年.浙江卷.理11】设二项式53x x ⎛- ⎪⎝⎭的展开式中常数项为A ,则A =__________. 21. 【2013年.浙江卷.理14】将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有__________种(用数字作答).22.【2013高考重庆理第13题】从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________(用数字作答).23. 【2015高考重庆,理12】532x x ⎛+ ⎪⎝⎭的展开式中8x 的系数是________(用数字作答). 24. 【2014,安徽理13】设n a ,0≠是大于1的自然数,na x ⎪⎭⎫ ⎝⎛+1的展开式为nn x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .25. 【2013,安徽理11】若83x x ⎛ ⎝的展开式中4x 的系数为7,则实数a =______. 26.【2015高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案)27.【2013上海,理5】设常数a ∈R .若25()a x x+的二项展开式中x 7项的系数为-10,则a =______. 28.【2015高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答)。

高考数学分项汇编 专题11 排列组合、二项式定理理

高考数学分项汇编 专题11 排列组合、二项式定理理

专题11 排列组合、二项式定理一.基础题组1. 【2014新课标,理13】 ()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 【答案】122. 【2010全国2,理14】若(x -a x)9的展开式中x 3的系数是-84,则a =________. [答案]:13. 【2006全国2,理13】在(x 4+x1)10的展开式中常数项是 .(用数字作答) 【答案】:45二.能力题组1. 【2013课标全国Ⅱ,理5】已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-1【答案】:D2. 【2011新课标,理8】51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40 【答案】D【解析】3. 【2010全国2,理6】将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A.12种 B.18种 C.36种 D.54种【答案】:B4. 【2005全国3,理3】在8)1x的展开式中5x的系数是()-x(+)(1A.-14 B.14 C.-28 D.28【答案】B【解析】三.拔高题组1. 【2012全国,理11】将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )A.12种 B.18种 C.24种 D.36种【答案】A【解析】如图由于每行、每列的字母都互不相同,故只须排好1,2,3号格即可,显然1号格有3种选择,2,3号格均有两种选择,所以不同的排法共有3×2×2=12种.2. 【2005全国3,理11】不共面的四个定点到平面α的距离都相等,这样的平面α共有()A.3个B.4个C.6个D.7个【答案】D【解析】3. 【2012全国,理15】若(x+1x)n的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__________.【答案】:564. 【2005全国2,理15】在由数字0, 1, 2, 3, 4, 5所组成的没有重复数字的四位数中,不能被5整除的数共有_____________个.【答案】192【解析】首先由这6个数构成的四位数个数为(千位不为0):P(5,1)×P(5,3)=300,能被5整除的尾数为0或5,尾数为0的一共有:P(5,3)=60,尾数为5的千位不能为0,一共有:P(4,1)*P(4,2)=4×4×3=48,所以不能被5整除的数共有:300-60-48=192个.5. 【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年高考(2014-2016)数学(理)试题分项版解析
第十一章 排列、组合、二项式定理
一、选择题
1. 【2016高考新课标2理数】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
(A )24 (B )18 (C )12 (D )9
2. 【2016年高考四川理数】设i 为虚数单位,则6()x i +的展开式中含x 4的项为
(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4
3. 【2014高考广东卷.理.8】设集合(){}{}12345,,,,1,0,1,1,2,3,4,5i A x x x x x x i =∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )
A .60
B .90
C .120
D .130
4. 【 2014湖南4】5
122x y ⎛⎫- ⎪⎝⎭
的展开式中32y x 的系数是( ) A.20- B.5- C.5 D.20 5. 【2016年高考四川理数】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为
(A )24 (B )48 (C )60 (D )72
6. 【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )
A .4
B .5
C .6
D .7
7. 【2016高考新课标3理数】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项 为1,且对任意2k m ≤,12,,
,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共
有( )
(A )18个 (B )16个 (C )14个 (D )12个
8. 【2014四川,理2】在6(1)x x +的展开式中,含3x 项的系数为( )
A .30
B .20
C .15
D .10
9. 【2014四川,理6】六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )
A .192种
B .216种
C .240种
D .288种
10. 【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )
(A )144个 (B )120个 (C )96个 (D )72个
11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )
(A )10 (B )20 (C )30 (D )60
12. 【2013课标全国Ⅰ,理9】设m 为正整数,(x +y )
2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).
A .5
B .6
C .7
D .8 13. 【2014年.浙江卷.理5】在46)1()1(y x ++的展开式中,记n
m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )
A.45
B.60
C.120
D. 210
14.【2014高考重庆理第9题】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )
A.72
B.120
C.144
D.168
15. 【2014年普通高等学校招生全国统一考试湖北卷2】若二项式7)2(x
a x +的展开式中31x 的系数是84,则实数=a ( ) A.2 B. 54 C. 1 D. 4
2 16. 【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )
A.122 B .112 C .102 D .92
17. 【2014辽宁理6】把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )
A .144
B .120
C .72
D .24
18.
【2015湖南理2】已知5
的展开式中含32x 的项的系数为30,则a =( )
B. C.6 D-6
二、填空题
1. 【2016年高考北京理数】在6(12)x -错误!未找到引用源。

的展开式中,
2x 的系数为__________________.(用数字作答)
2.
【2016高考新课标1卷】5(2x 的展开式中,x 3的系数是 .(用数字填写答案) 3. 【2016高考天津理数】281()x x -的展开式中x 2的系数为__________.(用数字作答)
4. 【2016高考山东理数】若(a x 2
)5的展开式中x 5的系数是—80,则实数a =_______. 5. 【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝
⎭ 的展开式中,2x 的系数为 . 6. 【2014高考北京理第13题】把5件不同产品摆成一排,若产品A 与产品B 相邻, 且产品A 与产品C 不相邻,则不同的摆法有 种.
7. 【2015高考北京,理9】在()52x +的展开式中,3x 的系数为 .(用数字作答) 8. 【2014高考广东卷.理.11】从0.1.2.3.4.5.6.7.8.9中任取七个不同的数,则这七个数的中位数是6的概率为 .
9. 【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 .
10. 【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)
11.【2014山东.理14】 若26()b ax x
+的展开式中3x 项的系数为20,则22b a +的最小值 . 12.【2014新课标,理13】 ()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 13.【2015高考新课标2,理15】4
()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.
14. 【2013四川,理11】二项式5()x y +的展开式中,含23x y 的项的系数是____________.(用数字作答) 15. 【2015高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答).
16. 【2016高考上海理数】在n
x x ⎪⎭⎫ ⎝
⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________. 17. 【2014课标Ⅰ,理13】()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 18. 【2014年.浙江卷.理14】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).
19. 【2015高考重庆,理12】5
3
x ⎛+ ⎝
的展开式中8x 的系数是________(用数字作答). 20. 【2014,安徽理13】设n a ,0≠是大于1的自然数,n a x ⎪⎭
⎫ ⎝⎛+1的展开式为n n x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .
21.【2015高考安徽,理11】371()x x
+的展开式中5x 的系数是 .(用数字填写答案) 22.【2015高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答) 23.【2016高考江苏卷】(本小题满分10分)
(1)求3
467–47C C 的值;
(2)设m ,n ∈N *,n ≥m ,求证:
(m+1)C m
m +(m+2)
+1
C m
m
+(m+3)
+2
C m
m
+…+n
–1
C m
n
+(n+1)C m
n
=(m+1)+2
+2
C m
n.
:。

相关文档
最新文档