高考专题数形结合思想练习作业

合集下载

高三数形结合专题训练(含答案)

高三数形结合专题训练(含答案)

数形结合1.设,m n Z ∈,函数()()2log 4f x x =-+的定义域是[],m n ,值域是[]0,2,若关于x 的方程012||=++m x 有唯一的实数解,则m n += ▲ .12.已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是________.(0,1)3.已知函数2,01,()12, 1.2x x x f x x +<⎧⎪=⎨+⎪⎩≤≥若0a b >≥,且()()f a f b =,则()bf a 的取值范围是 ▲ . 5[,3)4 4. 已知曲线C :()(0)a f x x a x=>+,直线l :y x =,在曲线C 上有一个动点P ,过点P 分别作直线l 和y 轴的垂线,垂足分别为,A B .再过点P 作曲线C 的切线,分别与直线l 和y 轴相交于点,M N ,O 是坐标原点.若ABP △的面积为12,则OMN △的面积为 ▲ .4 5.已知f (x )=2mx +m 2+2,m ≠0,m ∈R ,x ∈R .若|x 1|+|x 2|=1,则)()(21x f x f 的取值 范围是 .⎥⎦⎤⎢⎣⎡+-22,221 6.设曲线()1e x y ax =-在点()01,A x y 处的切线为1l ,曲线()1e x y x -=-在点()02,A x y 处的切线为2l .若存在030,2x ⎡⎤∈⎢⎥⎣⎦,使得12l l ⊥,则实数a 的取值范围是 ▲ .31,2⎡⎤⎢⎥⎣⎦7.设函数12,0()(1),0x x f x f x x -⎧≤=⎨->⎩,方程f(x)=x+a 有且只有两相不等实数根,则实a 的取值范围为 .8.设直线y=a 分别与曲线2y x =和x y e =交于点M,N ,则当线段MN 长取得最小值时a 的值为________.29.已知函数f (x )=⎩⎨⎧e x -k ,x ≤0,(1-k )x +k ,x >0是R 上的增函数,则实数k 的取值范围是 ▲[12,1) 10.已知函数f (x )=2x 2+m 的图象与函数g (x )=ln |x |的图象有四个交点,则实数m 的取值范围为 (-∞,-12-ln2) ▲ . 11.已知函数11()2x f x -⎛⎫= ⎪⎝⎭,[]2()22,1,3g x x ax x =-+∈,对于,m R ∀∈均能在区间[]1,3内找到两个不同的n ,使()()f m g n =,则实数a 的值是 ▲ .212.记定义在R 上的函数y =f (x )的导函数为f′(x ).如果存在x 0∈[a ,b ],使得f (b )-f (a )=f′(x 0)(b -a )成立,则称x 0为函数f (x )在区间[a ,b ]上的“中值点”.那么函数f (x )=x 3-3x 在区间[-2,2]上“中值点”的个数为 ▲ 2 .1.已知函数)(3)(3R a ax x x f ∈-=,()ln g x x =.(Ⅰ)当1=a 时,求)(x f 在区间[2,2]-上的最小值;(Ⅱ)若在区间[1,2]上()f x 的图象恒在()g x 图象的上方,求a 的取值范围; 解:(1)2()330f x x '=-=1x ∴=±……………………………………………………2分列表得min ()2f x =-………………………………………………………………5分(2)在区间[1,2]上()f x 的图象恒在()g x 图象的上方33ln x ax x ∴-≥在[1,2]上恒成立得2ln 3x a x x≤-在[1,2]上恒成立…………7分 设()h x =2ln x x x-则3221ln 2ln 1()2x x x h x x x x -+-'=-= 3210,ln 0()0x x h x '-≥≥∴≥min ()(1)1h x h ∴== ………………………9分13a ∴≤ ……………………………………………………………………………10分 2.设函数32()2f x x a x b x a =+++,2()32gx x x =-+,其中x R ∈,a 、b 为常数,已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l 。

专题1 数形结合思想【高考文科数学】数学思想方法 含答案

专题1 数形结合思想【高考文科数学】数学思想方法 含答案

第二讲数形结合思想1.数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.2.数形结合思想的实质、关键及运用时应注意的问题:其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化,在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参,合理用参,建立关系,由数思形,以形思数,做好数形转化;第三是正确确定参数的取值范围.3.实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;(4)所给的等式或代数式的结构含有明显的几何意义.如等式(x-2)2+(y-1)2=4,表示坐标平面内以(2,1)为圆心,以2为半径的圆.1.(2013·重庆)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为( ) A.52-4 B.17-1C.6-2 2 D.17答案 A解析设P(x,0),设C1(2,3)关于x轴的对称点为C1′(2,-3),那么|PC1|+|PC2|=|PC1′|+|PC2|≥|C1′C2|=2-32+-3-42=5 2.而|PM|=|PC1|-1,|PN|=|PC2|-3,∴|PM|+|PN|=|PC1|+|PC2|-4≥52-4.2. (2011·大纲全国)已知a、b是平面内两个互相垂直的单位向量,若向量c满足(a-c)·(b -c)=0,则|c|的最大值是( )A.1 B.2 C. 2 D.2 2答案 C解析 如图,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA →⊥CB →,∴O 、A 、C 、B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC →|= 2.3. (2013·山东)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12答案 C解析 如图,由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0得A (3,-1).此时直线OM 的斜率最小,且为-13.4. (2013·课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x , x ≤0,ln x +1, x >0.若|f (x )|≥ax ,则a的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]答案 D解析 函数y =|f (x )|的图象如图. ①当a =0时,|f (x )|≥ax 显然成立. ②当a >0时,只需在x >0时, ln(x +1)≥ax 成立.比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,∴a ≥-2.综上所述:-2≤a ≤0.故选D.5. (2012·天津)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.答案 (0,1)∪(1,4)解析 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1x >1或x <-1,-x -1-1≤x <1.在直角坐标系中作出该函数的图象,如图中实线所示. 根据图象可知,当0<k <1或1<k <4时有两个交点.题型一 数形结合解决方程的根的个数问题 例1 (2012·福建)对于实数a和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.审题破题 本题以新定义为背景,要先写出f (x )的解析式,然后将方程f (x )=m 根的个数转化为函数y =f (x )的图象和直线y =m 的交点个数.答案 ⎝ ⎛⎭⎪⎫1-316,0解析 由定义可知,f (x )=⎩⎪⎨⎪⎧2x -1x ,x ≤0,-x -1x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3. 不妨设x 1<x 2<x 3, 易知x 2>0,且x 2+x 3=2×12=1,∴x 2x 3<14.令⎩⎪⎨⎪⎧2x -1x =14,x <0,解得x =1-34.1-34<x1<0,∴1-316<x1x2x3<0.∴反思归纳 研究方程的根的个数、根的范围等问题时,经常采用数形结合的方法.一般 地,方程f (x )=0的根,就是函数f (x )的零点,方程f (x )=g (x )的根,就是函数f (x )和g (x )的图象的交点的横坐标.变式训练1 已知:函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是( )A .5B .7C .9D .10答案 C解析 由题意可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.题型二 数形结合解不等式问题例2 设有函数f (x )=a +-x 2-4x 和g (x )=43x +1,已知x ∈[-4,0]时恒有f (x )≤g (x ),求实数a 的取值范围.审题破题 x ∈[-4,0]时恒有f (x )≤g (x ),可以转化为x ∈[-4,0]时,函数f (x )的图象都在函数g (x )的图象下方或者两图象有交点. 解 f (x )≤g (x ),即a +-x 2-4x ≤43x +1,变形得-x 2-4x ≤43x +1-a ,令y =-x 2-4x , ① y =43x +1-a .②①变形得(x +2)2+y 2=4(y ≥0),即表示以(-2,0)为圆心,2为半径的圆的上半圆;②表示斜率为43,纵截距为1-a 的平行直线系.设与圆相切的直线为AT ,AT 的直线方程为: y =43x +b (b >0), 则圆心(-2,0)到AT 的距离为d =|-8+3b |5,由|-8+3b |5=2得,b =6或-23(舍去).∴当1-a ≥6即a ≤-5时,f (x )≤g (x ).反思归纳 解决含参数的不等式和不等式恒成立问题,可以将题目中的某些条件用图象表现出来,利用图象间的关系以形助数,求方程的解集或其中参数的范围.变式训练2 已知不等式x 2+ax -2a 2<0的解集为P ,不等式|x +1|<3的解集为Q ,若P ⊆Q ,求实数a 的取值范围.解 x 2+ax -2a 2=(x +2a )(x -a )<0. |x +1|<3⇒Q ={x |-4<x <2}.当-2a <a ,即a >0时,P ={x |-2a <x <a }.∵P ⊆Q ,∴⎩⎪⎨⎪⎧-2a ≥-4,a ≤2,a >0.解得0<a ≤2.当-2a =a ,即a =0时,P =∅,P ⊆Q . 当-2a >a ,即a <0时,P ={x |a <x <-2a },∵P ⊆Q ,∴⎩⎪⎨⎪⎧a ≥-4,-2a ≤2,a <0,解得-1≤a <0,综上可得-1≤a ≤2.题型三 数形结合解决有明显几何意义的式子(概念)问题例3 已知函数f (x )=ax 2+bx -1(a ,b ∈R 且a >0)有两个零点,其中一个零点在区间(1,2)内,则ba +1的取值范围为( )A .(-∞,1)B .(-∞,1]C .(-2,1]D .(-2,1)审题破题 先根据图象确定a ,b 满足的条件,然后利用ba +1的几何意义——两点(a ,b ),(-1,0)连线斜率求范围.答案 D解析 因为a >0,所以二次函数f (x )的图象开口向上.又f (0)=-1,所以要使函数f (x )的一个零点在区间(1,2)内,则有⎩⎪⎨⎪⎧a >0,f 1<0,f 2>0,即⎩⎪⎨⎪⎧a >0,a +b -1<0,4a +2b -1>0.如图所示的阴影部分是上述不等式组所确定的平面区域,式 子ba +1表示平面区域内的点 P (a ,b )与点Q (-1,0)连线的斜率.而直线QA 的斜率k =1-00--1=1,直线4a +2b -1=0的斜率为-2,显然不等式组所表示的平面区域不包括边界,所以P ,Q 连线的斜率的取值范围为(-2,1).故选D. 反思归纳 如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有: (1)b -n a -m ↔(a ,b )、(m ,n )连线的斜率; (2)a -m2+b -n2↔(a ,b )、(m ,n )之间的距离;(3)a 2+b 2=c 2↔a 、b 、c 为直角三角形的三边; (4)f (a -x )=f (b +x )↔f (x )图象的对称轴为x =a +b2.只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.变式训练3 已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是( )A .[2,4]B .[2,16]C .[4,10]D .[4,16]答案 B解析 画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射线x -y -1=0(x ≥0)的距离d 的平方,最大值为|QA |2=16.∵d 2=⎝⎛⎭⎪⎫|3-0-1|12+-122=(2)2=2. ∴取值范围是[2,16]. 题型四 数形结合解几何问题例4 已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .(14,-1)B .(14,1)C .(1,2)D .(1,-2)审题破题 本题可以结合图形将抛物线上的点P 到焦点的距离转化为到准线的距离,再探求最值. 答案 A解析 定点Q (2,-1)在抛物线内部,由抛物线的定义知,动点P到抛物线焦点的距离等于它到准线的距离,问题转化为当点P 到点Q 的距离和点P 到抛物线的准线距离之和最小时,求点P 的坐标,显然点P 是直线y =-1和抛物线y 2=4x的交点时,两距离之和取最小值,解得这个点的坐标是(14,-1).反思归纳 在几何中的一些最值问题中,可以根据图形的性质结合图形上点的条件进行转换,快速求得最值.变式训练4 已知P 是直线l :3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,求四边形PACB 面积的最小值. 解 从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形PAC 的面积S Rt △PAC=12|PA |·|AC |=12|PA |越来越大,从而S 四边形PACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S四边形PACB变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线l 时,S四边形PACB应有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3, 从而|PA |=|PC |2-|AC |2=2 2.∴(S 四边形PACB )min =2×12×|PA |×|AC |=2 2.典例 (12分)已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.规范解答解 (1)f ′(x )=3x 2-3a =3(x 2-a ), 当a <0时,对x ∈R ,有f ′(x )>0,∴当a <0时,f (x )的单调增区间为(-∞,+∞); 当a >0时,由f ′(x )>0,解得x <-a 或x >a , 由f ′(x )<0,解得-a <x <a ,∴当a >0时,f (x )的单调增区间为(-∞,-a ),(a ,+∞); 单调减区间为(-a ,a ). [4分](2)∵f (x )在x =-1处取得极值, ∴f ′(-1)=3×(-1)2-3a =0,∴a =1. [6分]∴f (x )=x 3-3x -1,f ′(x )=3x 2-3,由f ′(x )=0, 解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.因为直线y =m 与函数y =f (x )的图象有三个不同的交点, 结合如图所示f (x )的图象可知:m 的取值范围是(-3,1).[12分]评分细则 (1)求出f ′(x )给1分,不写出单调区间扣1分;(2)只画图象没有说明极值扣2分;(3)没有结论扣1分,结论中范围写成不等式形式不扣分.阅卷老师提醒 (1)解答本题的关键是数形结合,根据函数的性质勾画函数的大致图象; (2)解答中一定要将函数图象的特点交待清楚,单调性和极值是勾画函数的前提,然后结合图象找出实数m 的取值范围.1. 设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (13)<f (2)<f (12)B .f (12)<f (2)<f (13)C .f (12)<f (13)<f (2)D .f (2)<f (12)<f (13)答案 C解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2).2. 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为( )A .1B .2C .3D .4答案 C解析 由f (-4)=f (0) 得16-4b +c =c .由f (-2)=-2,得4-2b +c =-2. 联立两方程解得:b =4,c =2.于是,f (x )=⎩⎪⎨⎪⎧x 2+4x +2, x ≤0,2, x >0.在同一直角坐标系内,作出函数y =f (x )与函数y =x 的图象,知它们有3个交点,进而函数亦有3个零点.3. 若方程x +k =1-x 2有且只有一个解,则k 的取值范围是( )A .[-1,1)B .k =± 2C .[-1,1]D .k =2或k ∈[-1,1)答案 D解析 令y =x +k ,令y =1-x 2,则x 2+y 2=1(y ≥0). 作出图象如图:而y =x +k 中,k 是直线的纵截距,由图知:方程有一个解⇔直线与 上述半圆只有一个公共点⇔k =2或-1≤k <1.4. 设a ,b ,c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为( ) A .-2 B.2-2 C .-1D .1- 2答案 D解析 由于(a -c )·(b -c )=-(a +b )·c +1,因此等价于求(a +b )·c 的最大值,这个最大值只有当向量a +b 与向量c 同向共线时取得.由于a ·b =0,故a ⊥b ,如图所示,|a +b |=2,|c |=1,当θ=0时,(a +b )·c 取最大值2,故所求的最小值为1- 2. 5. 当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝⎛⎭⎪⎫22,1 C .(1,2)D .(2,2)答案 B解析 由0<x ≤12,且log a x >4x>0,可得0<a <1,12由4 =log a 12可得a =22.令f (x )=4x,g (x )=log a x , 若4x<log a x ,则说明当0<x ≤12时,f (x )的图象恒在g (x )图象的下方(如图所示),此时需a >22. 综上可得a 的取值范围是⎝⎛⎭⎪⎫22,1. 6. 已知P 为抛物线y =14x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(2,0),则|PA |+|PM |的最小值是________. 答案5-1解析 如图,抛物线y =14x 2,即x 2=4y 的焦点F (0,1),记点P 在抛物线的准线l :y =-1上的射影为P ′,根据抛物线的定义知, |PP ′|=|PF |,则|PP ′|+|PA |=|PF |+|PA |≥|AF |=22+12=5.所以(|PA |+|PM |)min =(|PA |+|PP ′|-1)min =5-1.专题限时规范训练一、选择题1. 已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )·cos x <0的解集是( )A.⎝ ⎛⎭⎪⎫-3,-π2∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3B.⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3 C .(-3,-1)∪(0,1)∪(1,3)D.⎝ ⎛⎭⎪⎫-3,-π2∪(0,1)∪(1,3) 答案 B解析 根据对称性画出f (x )在(-3,0)上的图象如图,结合y =cos x 在(-3,0),(0,3)上函数值的正负,易知不等式f (x )cos x <0的解集是⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3.2. 已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a 、b 、c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)答案 C解析 a ,b ,c 互不相等,不妨设a <b <c , ∵f (a )=f (b )=f (c ),由图象可知,0<a <1,1<b <10,10<c <12. ∵f (a )=f (b ),∴|lg a |=|lg b |,即lg a =lg 1b ,a =1b.则ab =1,所以abc =c ∈(10,12).3. 用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x } (x≥0),则f (x )的最大值为( )A .4B .5C .6D .7答案 C解析 画出y =2x,y =x +2,y =10-x 的图象,如图所示,观察图象,可知当0≤x ≤2,f (x )=2x,当2<x ≤4时,f (x )=x +2,当x >4时,f (x )=10-x ,f (x )的最大值在x =4时取得,为6.4. 函数f (x )=(12)x-sin x 在区间[0,2π]上的零点个数为( ) A .1 B .2 C .3D .4答案 B解析 函数f (x )=(12)x-sin x 在区间[0,2π]上的零点个数即为方程(12)x -sin x =0在区间[0,2π]上解的个数.因此可以转化为两函数y =(12)x 与y=sin x 交点的个数.根据图象可得交点个数为2,即零点个数为2.5. 已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)答案 C解析 ∵渐近线y =bax 与过焦点F 的直线l 平行,或渐近线从该位置绕原点按逆时针旋转时,直线l 与双曲线的右支有一个交点,∴b a≥3,即c 2=a 2+b 2≥4a 2,∴e ≥2.6. 设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( ) A .a <b <c B .a <c <b C .b <c <aD .b <a <c答案 D解析 a =sin 5π7=sin ⎝⎛⎭⎪⎫π-2π7=sin 2π7,又π4<2π7<π2,可通过单位圆中的三角函数线进行比较:如图所示,cos 2π7=OA ,sin 2π7=AB ,tan 2π7=MN ,∴cos 2π7<sin 2π7<tan 2π7,即b <a <c .7. 不等式x 2-log a x <0在x ∈(0,12)时恒成立,则a 的取值范围是( )A .0<a <1 B.116≤a <1C .a >1D .0<a ≤116答案 B解析 不等式x 2-log a x <0转化为x 2<log a x , 由图形知0<a <1且 (12)2≤log a 12, ∴a ≥116,故a 的取值范围为⎣⎢⎡⎭⎪⎫116,1.8. 函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8 答案 D解析 令1-x =t ,则x =1-t .由-2≤x ≤4,知-2≤1-t ≤4,所以-3≤t ≤3. 又y =2sin πx =2sin π(1-t )=2sin πt .在同一坐标系下作出y =1t和y =2sin πt 的图象.由图可知两函数图象在[-3,3]上共有8个交点,且这8个交点两两关于原点对称.因此这8个交点的横坐标的和为0,即t 1+t 2+…+t 8=0.也就是1-x 1+1-x 2+…+1-x 8=0, 因此x 1+x 2+…+x 8=8. 二、填空题9. 若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则yx的最小值是________.答案 2解析 可行域如图所示.又y x的几何意义是可行域内的点与坐标原点连线的斜率k . 由图知,过点A 的直线OA 的斜率最小.联立⎩⎪⎨⎪⎧x -y +1=0,y =2,得A (1,2),∴k OA =2-01-0=2.∴y x的最小值为2.10.设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m的取值范围是__________. 答案 m ≥2-1解析 集合A 是一个圆x 2+(y -1)2=1上的点的集合,集合B 是一个不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),即直线x +y +m =0应与圆相切或相离(在圆的下方),而当直线与圆相切时有|m +1|2=1,又m >0,∴m =2-1,故m 的取值范围是m ≥2-1.11.若函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________.答案 a >1解析 设函数y =a x(a >0且a ≠1)和函数y =x +a .则函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,就是函数y =a x(a >0且a ≠1)的图象与函数y =x +a 的图象有两个交点.由图象可知,当0<a <1时,两函数只有一个交点,不符合;当a >1时,因为函数y =a x(a >1)的图象过点(0,1),而直线y =x +a 的图象与y 轴的交点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.12.已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≥0-2x ,x <0,则关于x 的方程f [f (x )]+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________.(把所有满足要求的命题序号都填上) 答案 ①②解析 依题意知函数f (x )>0,又f [f (x )]=依据y =f [f (x )]的大致图象(如图)知,存在实数k ,使得方程f [f (x )]+k =0恰有1个实根;存在实数k ,使得方程f [f (x )]+k=0恰有2个不相等的实根;不存在实数k ,使得方程恰有3个不相等的实根;不存在实数k ,使得方程恰有4个不相等的实根.综上所述,其中正确命题的序号是①②. 三、解答题13.已知函数f (x )=x 3+ax 2+bx .(1)若函数y =f (x )在x =2处有极值-6,求y =f (x )的单调递减区间; (2)若y =f (x )的导数f ′(x )对x ∈[-1,1]都有f ′(x )≤2,求ba -1的范围.解 (1)f ′(x )=3x 2+2ax +b ,依题意有⎩⎪⎨⎪⎧ f ′2=0,f 2=-6.即⎩⎪⎨⎪⎧12+4a +b =0,8+4a +2b =-6,解得⎩⎪⎨⎪⎧a =-52,b =-2.∴f ′(x )=3x 2-5x -2.由f ′(x )<0,得-13<x <2.∴y =f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,2. (2)由⎩⎪⎨⎪⎧f ′-1=3-2a +b ≤2,f ′1=3+2a +b ≤2,得⎩⎪⎨⎪⎧2a -b -1≥0,2a +b +1≤0.不等式组确定的平面区域如图阴影部分所示:由⎩⎪⎨⎪⎧ 2a -b -1=0,2a +b +1=0,得⎩⎪⎨⎪⎧a =0,b =-1. ∴Q 点的坐标为(0,-1). 设z =ba -1,则z 表示平面区域内的点(a ,b )与点P (1,0)连线的斜率.∵k PQ =1,由图可知z ≥1或z <-2, 即ba -1∈(-∞,-2)∪[1,+∞).14.设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实根α、β.(1)求实数a 的取值范围; (2)求α+β的值.解 方法一(1)设x =cos θ,y =sin θ,则由题设知,直线l :3x +y +a =0与圆x 2+y 2=1有两个不同的交点A (cos α,sin α)和B (cos β,sin β).所以原点O 到直线l 的距离小于半径1,即 d =||0+0+a 32+12=|a |2<1,∴-2<a <2. 又∵α、β∈(0,2π),且α≠β. ∴直线l 不过点(1,0),即3+a ≠0.∴a ≠-3,即a ∈(-2,-3)∪(-3,2).(2)如图,不妨设∠xOA =α,∠xOB =-β,作OH ⊥AB ,垂足为H ,则∠BOH =α-β2.∵OH ⊥AB ,∴kAB ·k OH =-1.∴tan α+β2=33.又∵α+β2∈(0,2π),∴α+β=π3或α+β=7π3.方法二 (1)原方程可化为sin (θ+π3)=-a 2,作出函数y =sin (x +π3)(x ∈(0,2π))的图象.由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎪⎨⎪⎧-1<-a2<1-a 2≠32,即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈⎝ ⎛⎭⎪⎫-1,32时,直线y =-a 2与三角函数y =sin(x+π3)的图象交于C 、D 两点,它们中点的横坐标为7π6,∴α+β2=7π6,∴α+β=7π3. 当-2<a <-3,即-a 2∈⎝ ⎛⎭⎪⎫32,1时,直线y =-a 2与三角函数y =sin(x +π3)的图象有两交点A 、B ,由对称性知,α+β2=π6,∴α+β=π3,综上所述,α+β=π3或α+β=7π3.。

2019年高考苏教版(理科)数学练习题之数形结合思想(含答案及解析)

2019年高考苏教版(理科)数学练习题之数形结合思想(含答案及解析)

2019年高考苏教版(理科)数学练习题之数形结合思想典例1设M={(x,y)|y=2a2-x2,a>0},N={(x,y)|(x-1)2+(y-3)2=a2,a>0}且M∩N≠∅,求a的最大值和最小值.分析根据点集M,N中方程的特点,联想两个方程所表示的曲线,以形助数.解如图,集合M表示以O(0,0)为圆心,r1=2a为半径的上半圆,集合N表示以O′(1,3)为圆心,r2=a为半径的圆.∵M∩N≠∅,∴半圆O和圆O′有公共点.当半圆O和圆O′外切时,a最小;内切时,a最大.∵OO′=2,∴外切时,2a+a=2,a=22+1=22-2.内切时,2a-a=2,a=22+2.∴a的最大值为22+2,a的最小值为22-2.点评本题巧妙地转化为圆与圆的位置关系问题,可谓是极具创新性的解题,避免常规方法中的繁杂与高难度,又能通过图形非常直观地加以处理方程的问题,真正达到数形结合的最佳效果.典例2 已知向量a =(1,1),b =(-1,1),设向量c 满足(2a -c )·(3b -c )=0,则|c |的最大值为________.分析 建立坐标系,用轨迹法. 解析 设c =(x ,y ),则2a -c =(2-x,2-y ),3b -c =(-3-x,3-y ), 由(2a -c )·(3b -c )=0,有 (2-x )(-3-x )+(2-y )(3-y )=0, 化简整理得⎝⎛⎭⎫x +122+⎝⎛⎭⎫y -522=132, 即向量c 的坐标(x ,y )在以M ⎝⎛⎭⎫-12,52为圆心,r =132为半径的圆上. 从而求|c |的最大值,即圆⎝⎛⎭⎫x +122+⎝⎛⎭⎫y -522=132上的点到坐标原点距离的最大值, 又坐标原点在此圆上,所以|c |的最大值为2r =26. 答案26点评 设点研究得出点的轨迹方程,从几何角度得到点在圆上,再寻找最值,体现了数形结合思想的典型运用.典例3 若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围.分析 这个问题从表面上看是方程与不等式的问题,如果用求根公式得出小根在0和1之间,大根在1和2之间来解不等式组是很麻烦的,并且不易解出.如果我们根据题意,通过满足条件的函数图象,由根的分布情况分析函数值的大小问题,解不等式组得到相应的实数k 的取值范围.解 设函数f (x )=x 2+(k -2)x +2k -1,结合草图可知,函数f (x )=x 2+(k -2)x +2k -1的图象开口向上,零点x 1∈(0,1),x 2∈(1,2),那么⎩⎪⎨⎪⎧f 0>0,f 1<0,f 2>0,即⎩⎪⎨⎪⎧2k -1>0,1+k -2+2k -1<0,4+2k -2+2k -1>0,解得⎩⎪⎨⎪⎧k >12,k <23,k >14,即12<k <23,所以实数k 的取值范围为⎝⎛⎭⎫12,23. 点评 利用函数f (x )=x 2+(k -2)x +2k -1的图象来研究相应的方程与不等式的问题,可以化代数问题为几何问题,通过图形非常直观地处理相应的问题.思路清晰,简单易懂. 从上面的例题可以看出数形结合思想解题思路如下:1.“形”中觅“数”.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.2.“数”上构“形”.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.3.用图形分析的方法解决问题,一方面要发挥图形的直观、形象地作用,另一方面则要注意画图的准确性、完整性和对图形观察的细致,并注意结合数学运算来完成. 跟踪演练1.(2017·江苏启东模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图,则∑n =12 017f ⎝⎛⎭⎫n π6=________.答案1解析 由题意得T 4=2π4ω=5π12-π6⇒ω=2,又f ⎝⎛⎭⎫π6=1,所以sin ⎝⎛⎭⎫π3+φ=1,|φ|<π2⇒φ=π6, 所以f (x )=sin ⎝⎛⎭⎫2x +π6. 因为f ⎝⎛⎭⎫n π6=sin ⎝⎛⎭⎫n π3+π6,周期为6,一个周期的和为零,所以∑n =12 017f ⎝⎛⎭⎫n π6=f (1)=sin π2=1. 2.(2017·江苏宿迁中学月考)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos πx |,则函数h (x )=g (x )-f (x )在⎣⎡⎦⎤-12,32上的零点个数为________. 答案 6解析 根据题意,函数y =f (x )是周期为2的偶函数且当0≤x ≤1时,f (x )=x 3, 则当-1≤x ≤0时,f (x )=-x 3,且g (x )=|x cos πx |, 所以当x =0时,f (x )=g (x ).当x ≠0时,若0<x ≤12,则x 3=x cos πx ,即x 2=cos πx .再根据函数性质画出⎣⎡⎦⎤-12,32上的图象,在同一个坐标系中作出所得关系式等号两边函数的图象如图所示,有5个交点.所以h (x )总共有6个零点.3.设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有两个不同的实根α,β. (1)求实数a 的取值范围; (2)求α+β的值.解 方法一 (1)设x =cos θ,y =sin θ,则由题设知,直线l :3x +y +a =0与圆x 2+y 2=1有两个不同的交点A (cos α,sin α)和B (cos β,sin β),所以原点到直线l 的距离小于半径1,即d =|0+0+a |r(32+12)=|a |2<1,所以-2<a <2. 又因为α,β∈(0,2π),α≠β. 所以直线l 不过点(1,0), 即3+a ≠0,即a ≠-3, 即a ∈(-2,-3)∪(-3,2).(2)如图,不妨设∠xOA =α,∠xOB =β,作OH ⊥AB ,垂足为H ,则∠xOH =α+β2,因为OH ⊥AB , 所以k AB ·k OH =-1, 所以tan α+β2=33,因为α+β2∈(0,2π),所以α+β=π3或α+β=7π3.方法二 (1)原方程可化为sin ⎝⎛⎭⎫θ+π3=-a2, 作出函数y =sin ⎝⎛⎭⎫x +π3(x ∈(0,2π))的图象,由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎨⎧-1<-a2<1,-a 2≠32,即-2<a <-3或-3<a <2.(2)由图知,当-3<a <2,即-a 2∈⎝⎛⎭⎫-1,32时,直线y =-a 2与y =sin ⎝⎛⎭⎫x +π3的图象交于C ,D 两点,它们中点的横坐标为7π6,所以α+β2=7π6,所以α+β=7π3,当-2<a <-3,即-a 2∈⎝⎛⎭⎫32,1时,直线y =-a 2与y =sin ⎝⎛⎭⎫x +π3的图象交于A ,B 两点, 由对称性知α+β2=π6,所以α+β=π3.综上所述,α+β=π3或α+β=7π3.4.已知f (x )=x 2+3x +1,g (x )=a -1x -1+x .(1)当a =2时,求y =f (x )和y =g (x )图象的公共点个数; (2)当a 为何值时,y =f (x )和y =g (x )的公共点个数恰为2.解 (1)当a =2时,联立⎩⎪⎨⎪⎧y =f x ,y =g x ,得x 2+3x +1=1x -1+x ,整理得x 3+x 2-x -2=0(x ≠1),即联立⎩⎪⎨⎪⎧y =0,y =x 3+x 2-x -2x ≠1,令y ′=3x 2+2x -1=0,得x 1=-1,x 2=13,得到极值点分别在-1和13处,且极大值、极小值都是负值,图象如图,故交点只有一个.即y =f (x )和y =g (x )图象的公共点个数为1.(2)联立⎩⎪⎨⎪⎧y =f x ,y =gx ,得x 2+3x +1=a -1x -1+x ,整理得a =x 3+x 2-x (x ≠1),即联立⎩⎪⎨⎪⎧y =a ,y =hx =x 3+x 2-xx ≠1,对h (x )求导可以得到极值点分别在-1和13处,h (-1)=1,h ⎝⎛⎭⎫13=-527, 画出草图如图.当a =h (-1)=1时,y =a 与y =h (x )仅有一个公共点(因为(1,1)点不在y =h (x )曲线上),故当a =-527时恰有两个公共点.。

高考数学运用数形结合的思想方法解题专项练习(含答案解析)

高考数学运用数形结合的思想方法解题专项练习(含答案解析)

高考数学运用数形结合的思想方法解题专项练习(含答案解析)一、单选题1.(2023春·江苏盐城·高三盐城中学校考)若直线():40l x m y +−=与曲线x =有两个交点,则实数m 的取值范围是( )A .0m <<B .0m ≤<C .0m <≤D .0m ≤【答案】B【解析】x =()0,0,半径为2的圆在y 轴以及右侧的部分,如图所示:直线():40l x m y +−=必过定点()0,4, 当直线l 与圆相切时,直线和圆恰有一个交点,2=,结合直线与半圆的相切可得m =当直l 的斜率不存在时,即0m =时,直线和曲线恰有两个交点, 所以要使直线和曲线有两个交点,则0m ≤故选:B.2.(2023春·湖北随州·高三随州市曾都区第一中学校考阶段练习)已知x ,y 是实数,且22410x y x +−+=,则21y x ++的最大值是( )A B .116C .336D 【答案】D【解析】方程可化为()223x y −+=,表示以()2,021y x ++的几何意义是圆上一点与点A ()1,2−−连线的斜率,设21k y x =++,即()21y k x +=+,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB 时斜率最大.=k =,所以21y x ++故选:D .3.(2023春·陕西渭南·高一统考)已知函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()24f x x x =−.若函数()()()R g x f x m m =+∈,则函数()g x 的零点个数不可能是( )A .1B .2C .3D .4【答案】A【解析】函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()224(2)4f x x x x =−=−−,作出()f x 的图像如图:,故当0m =时,()()g x f x =有3个零点;当0m <或4m =时,()()g x f x m =+的图像与x 轴有两个交点,则函数有2个零点; 当04m <<时,()()g x f x m =+的图像与x 轴有4个交点,则函数有4个零点;由于()()g x f x m =+也为偶函数,结合()f x 图像可知,()()g x f x m =+不可能有1个零点, 故选:A4.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨−<⎩, 若函数()()()g x f x f x =−−,则函数()g x 的零点个数为( ) A .1 B .3 C .4 D .5【答案】D【解析】当0x >时,0x −<,()3f x x −=当0x <时,0x −>,()e xf x −−=()()()3e ,00,0e 3,0x x x x g x f x f x x x x −⎧−>⎪∴=−−==⎨⎪+<⎩,()()()()g x f x f x g x −=−−=−,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =−>,()3e 0x g x '=−>,令()3e 0x g x '=−>,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln3)3ln330g =−>,而()226e 0g =−<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=−< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞−上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.5.(2023春·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)若函数()f x 的定义域为(),1f x −R 为偶函数,当1x ≥−时,()31xf x −=−,则函数()()12g x f x =−的零点个数为( )A .0B .1C .2D .4【答案】D【解析】令310x −−≥解得0x ≤,令310x −−<解得0x >, 所以当1x ≥−时,()11,1033111,03xxxx f x x −⎧⎛⎫−−≤≤⎪ ⎪⎪⎝⎭=−=⎨⎛⎫⎪−+> ⎪⎪⎝⎭⎩, ()1f x −为偶函数,所以()1f x −的图像关于y 轴对称,所以()f x 的图像关于直线=1x −轴对称, 故作出()f x 的图像如下,令()()102g x f x =−=,即()12f x =, 由图像可知,()f x 的图像与12y =的图像共有四个交点, 所以函数()()12g x f x =−的零点个数为4个.故选:D.6.(2023·山东潍坊·统考模拟预测)已知函数()f x 是定义域为R 的偶函数,且(1)f x −是奇函数,当01x 剟时,有()f x =()(2021)y f x k x =−−的零点个数为5,则实数k 取值范围是( ) A .15<2<1kB .16<3<1kC k k =D .k <k 【答案】C【解析】∵偶函数()f x ,()()f x f x ∴−=,(1)f x −是奇函数,得(1)(1)f x f x −=−−−,即 ()(2)f x f x =−−−,(2)()f x f x −−−=−,得4T =,()(2021)0f x k x −−=,即()y f x =与(2021)y k x =−的图像交点的个数,因为4T =,即为()y f x =与(1)y k x =−的图像交点的个数,因为()f x =k 应该在1k 与2k 之间或为3k ,213k k k ==k k =故选:C.7.(2023·全国·高三专题练习)已知函数()()ln2,01ln 2ln 2,12xx f x x x ⎧<<⎪=⎨−+≤<⎪⎩,若存在02a b c <<<<使得()()()f a f b f c ==,则111ab bc ca++的取值范围是( ) A .20,93⎛⎫⎪⎝⎭B .20,3⎛⎫+∞ ⎪⎝⎭C .∞⎫+⎪⎪⎣⎭ D .⎫⎪⎪⎣⎭【答案】A【解析】∵()()ln 2ln2ln 22x x ⎡⎤−+=−⎣⎦,∴ln 2y x =与()ln 2ln2y x =−+的图像关于直线1x =对称,作出()f x 的大致图像如图所示,易知2b c +=,由ln2ln2a b =,即ln 2ln 2a b −=,ln 40ab =,得14ab =, ∵112b <<,∴11124a<<,得1142a <<,∴()()421621112181244a a a a b c a c ab bc ca abc a a+++++++====−−. 设81t a =−, 则()1,3t ∈,111117184t ab bc ca t ⎛⎫++=++ ⎪⎝⎭. 17t t+≥=t 故当()1,3t ∈时,令()1718h t t t +=+,()h t 单减,()()80136,33h h ==, 故1172018,943t t ⎛⎫⎛⎫++∈ ⎪ ⎪⎝⎭⎝⎭. 故选:A 二、多选题8.(2023·全国·高三专题练习)已知1F ,2F 是双曲线()2222:10,0x yE a b a b−=>>的左、右焦点,过1F 作倾斜角为30的直线分别交y 轴与双曲线右支于点,M P ,1PM MF =,下列判断正确的是( )A .2160PF F ∠=,B .2112MF PF =C .ED .E的渐近线方程为y =【答案】BCD【解析】如下图所示,因为1PM MF =,即M 为1PF 中点,O 为12F F 中点,所以2//OM PF ,因为12OM F F ⊥,所以212PF F F ⊥,所以212PF F π∠=,2112MF PF =,A 错误,B 正确; 由212PF F F ⊥知:22b PF a=,又122F F c =,1230PF F ∠=,2c =)222c a ac −=220e −,解得:e =C 正确;所以==c e a 223c a =,所以22222b c a a =−=,所以ba= 所以E 的渐近线方程为y =,D 正确.故选:BCD .9.(2023·全国·高三专题练习)已知直线l 过抛物线2:8C y x =的焦点F l 与抛物线交于,P Q 两点(P 在第一象限),以,PF QF 为直径的圆分别与y 轴相切于,A B 两点,则下列结论正确的是( ) A .32||3PQ =B .AB =C .若M 为抛物线C 上的动点,(2,1)N ,则min (||||)4MF MN +=D .若0(,M x 为抛物线C 上的点,则9MF = 【答案】ABC【解析】设直线PQ 的方程为:y x ﹣2),与28y x =联立整理可得:3x 2﹣20x +12=0,解得:x 23=或6,则P (6,,Q (23,;所以|PQ |=623++4323=,选项A 正确;因为F (2,0),所以PF ,QF 的中点分别为:(4,,(43,,所以A (0,,B (0,,所以|AB =, 选项B 正确;如图M 在抛物线上,ME 垂直于准线交于E ,可得|MF |=|ME |, 所以|MF |+|MN |=|ME |+|MN |≥NE =2+2=4,当N ,M ,E 三点共线时, |MF |+|MN |最小,且最小值为4,选项C 正确;对于选项D ,若0(M x 为抛物线C 上的点,则05x =,又4p =, 所以072pMF x =+=,选项D 错误. 故选:ABC.10.(2023春·河南·高三校联考)在三棱锥A BCD −中,平面ABD ⊥平面BCD ,BD CD ⊥,2BD CD ==,ABD △为等边三角形,E 是棱AC 的中点,F 是棱AD 上一点,若异面直线DE与BF AF 的值可能为( ) A .23B .1C .43D .53【答案】AC【解析】由ABD △为等边三角形,取BD 的中点O ,连接AO ,则AO BD ⊥ 又平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD = 所以AO ⊥平面BCD ,由BD CD ⊥过O 作与CD 平行的直线为y 轴,分别以,OB OA 为,x z 轴建立如图所示的空间直角坐标系,因为2BD CD ==,则()1,0,0B ,()()(1,0,0,1,2,0,D C A −−,所以12E ⎛− ⎝⎭.设()F a ,则12DE ⎛= ⎝⎭,()BF a =−,则28=13a =−或23a =−, 故1233AF AD ==或2433AF AD ==.故选:AC11.(2023秋·福建三明·高一福建省宁化第一中学校考阶段练习)已知G 为ABC 的重心,60BAC ∠=︒,2AB AC ⋅=,则||AG uuu r的可能取值为( )A .23B .1CD .32【答案】CD【解析】如图,G 是ABC 的重心,记,,AB c AC b AB a ===, 则2211()()3323AG AD AB AC AB AC ==⨯+=+, 222222111()(2)(4)999AG AB AC AB AB AC AC b c =+=+⋅+=++,又1cos6022AB AC bc bc ⋅=︒==,即4bc =,所以2228b c bc +≥=,当且仅当2b c ==时等号成立,所以214(84)93AG ≥⨯+=.即233AG ≥CD 满足. 故选:CD .12.(2023春·湖北黄冈·高三校考开学考试)已知ABC 的重心为G ,过G 点的直线与边AB ,AC 的交点分别为M ,N ,若AM MB λ=,且AMN 与ABC 的面积之比为920,则λ的可能取值为( )A .43B .32C .53D .3【答案】BD【解析】如图,()AM MB AB AM λλ==−,1AM AB λλ∴=+,即1AB AM λλ+=,设AC t AN =,则11()333tAG AB AC AM AN λλ+=+=+, M G N 、、三点共线,1=133t λλ+∴+,12t λ∴=−, 所以12AC AN λ⎛⎫=− ⎪⎝⎭,AMN ∴与ABC 的面积之比为920,191sin sin 2202AM AN A AB AC A ∴=⨯⨯, 即112029λλλ+⎛⎫⎛⎫−=⎪⎪⎝⎭⎝⎭,化简得22990λλ−+=,解得32λ=或3. 故选:BD13.(2023春·湖南长沙·高三长沙一中校联考)在三维空间中,定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件:①()a a b ⊥⨯,()b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量的方向依次与右手的拇指、食指、中指的指向一致,如图所示);②a b ⨯的模sin ,a b a b a b ⨯=,(,a b 表示向量a ,b 的夹角). 在正方体1111ABCD A B C D −中,有以下四个结论,正确的有( )A .11AB AC AD DB ⨯=⨯ B .111AC A D ⨯与1BD 共线C .AB AD AD AB ⨯=⨯ D .6BC AC ⨯与正方体表面积的数值相等【答案】ABD【解析】对于A ,设正方体的棱长为1,在正方体中1,60AB AC =︒,则111sin ,2AB AC AB AC AB AC ⨯===, 因为11//BD B D ,且1160AD B ∠=︒,所以1,120AD DB =︒,所以111sin ,2AD DB AD DB AD DB ⨯=== 所以11AB AC AD DB ⨯=⨯,所以A 正确;对于B ,1111AC B D ⊥,111AC BB ⊥,1111B B B D B ⋂=,111,B B B D ⊂平面11BB D D ,11AC ⊥平面11BB D D ,因为1BD ⊂平面11BB D D ,所以111BD AC ⊥,同理可证11BD A D ⊥, 再由右手系知,111AC A D ⨯与1BD 同向,所以B 正确;对于C ,由a ,b 和a b ⨯构成右手系知,a b ⨯与b a ⨯方向相反, 又由a b ⨯模的定义知,sin ,sin ,a b a b a b b a a b b a ⨯===⨯, 所以a b ba ⨯=−⨯,则AB AD AD AB ⨯=−⨯,所以C 错误; 对于D ,正方体棱长为a ,266sin 456BC AC BC AC a a ⨯=⋅︒=⨯, 正方体表面积为26a ,所以D 对. 故选:ABD .三、填空题14.(2023·全国·高三专题练习)已知函数243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩.若关于x 的方程()()()2[]2110f x m f x m +−−+=有6个不同的实数根,则m 的取值范围___________.【答案】7,5⎛− ⎝⎭【解析】因为243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩,所以当0x ≤时,()243f x x x =++开口向上,对称轴为2x =−,()()min 21f x f =−=−,两零点为1,3x x =−=−;当0x >时,()411f x x =−+,则()f x 在()0,∞+上单调递减,零点为3x =,且()1f x >−; 由此作出()f x 的图像如图,.令()t f x =,则当13t −<<时,()t f x =有三个实数根,因为()()()2[]2110f x m f x m +−−+=有6个不同的实数根,所以()22110t m t m +−−+=必须有两个不等实根12,t t ,且()21,1,3t t ∈−,令()()2211g t t m t m =+−−+,则()()103021132Δ0g g m ⎧−>⎪>⎪⎪⎨−−<−<⎪⎪>⎪⎩,即()()()()212110932110621221410m m m m m m m ⎧−−−+>⎪+−−+>⎪⎨−<−<⎪⎪−−−+>⎩,解得75m −<<7,5m ⎛∈− ⎝⎭.故答案为:7,5⎛− ⎝⎭. 15.(2023春·全国·高一期末)已知函数241,1()log 3,1xx f x x x ⎧−⎪=⎨+>⎪⎩…集合21()2()02M x f x t f x t ⎧⎫⎛⎫=−++=⎨⎬ ⎪⎝⎭⎩⎭∣,若集合M 中有3个元素,则实数t 的取值范围为________.【答案】{|0t t =或1}2t ≥【解析】令()f x m =,记21()(2)2g m m t m t =−++的零点为12,m m ,因为集合M 中有3个元素,所以()f x 的图像与直线12,y m y m ==共有三个交点,则,12001m m =⎧⎨<<⎩或12101m m =⎧⎨<<⎩或12001m m >⎧⎨<<⎩当10m =时,得0=t ,212m =,满足题意; 当11m =时,得12t =,212m =,满足题意;当12001m m >⎧⎨<<⎩时,(0)01(1)1202g t g t t =>⎧⎪⎨=−−+<⎪⎩,解得12t >. 综上,t 的取值范围为{|0t t =或1}2t ≥.故答案为:{|0t t =或1}2t ≥16.(2023秋·黑龙江绥化·高一校考期末)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知30,12=︒=A b ,若ABC 有两解,写出a 的一个可能的值为__________.【答案】7(满足(612)a ∈,均可,答案不唯一) 【解析】由于满足条件的ABC 有两个,则sin b A a b <<,即612a <<.故答案为:7(满足(612)a ∈,均可,答案不唯一).17.(2023·海南·统考模拟预测)已知函数()314f x x m π⎛⎫=++− ⎪⎝⎭在3,04π⎡⎤−⎢⎥⎣⎦上有3个零点1x ,2x ,3x ,其中123x x x <<,则1232x x x ++=______. 【答案】53π−【解析】令()0f x =314x m π⎛⎫++= ⎪⎝⎭,故()314f x x m π⎛⎫++− ⎪⎝⎭的零点为函数()314g x x π⎛⎫++ ⎪⎝⎭与函数y =m 交点的横坐标,作出函数g (x )在3,04π⎡⎤−⎢⎥⎣⎦上的大致图像:令3()42x k k πππ+=+∈Z ,解得()123k x k ππ=+∈Z , 令1k =−,得4x π=−,则由图知2322=4x x ππ⎛⎫+=⨯−− ⎪⎝⎭,令2k =−,得712x π=−,则由图知12772=126x x ππ⎛⎫+=⨯−− ⎪⎝⎭, 故123752263x x x πππ++=−−=−. 故答案为:53π−﹒18.(2023春·辽宁沈阳·高三沈阳市第一二〇中学校考阶段练习)已知双曲线22:14x y C m −=与直线2y x =无交点,则m 的取值范围是_____. 【答案】(]0,16【解析】依题意,由22:14x y C m −=可得0m >,双曲线C 的渐近线方程为y =,因为双曲线C 与直线2y x =无交点,所以直线2y x =应在两条渐近线上下两部分之间,2≤,解得016m <≤,即(]0,16m ∈. 故答案为:(]0,16..。

关于数形结合的高考题

关于数形结合的高考题

1. 题目:一个正方形的边长为2cm,一条与其边平行的线段将该正方形分成两个小正方形和两个等边三角形。

求线段的长度。

答案:线段的长度为2√2 cm。

2. 题目:一个圆的半径为3cm,在圆的内部画一个正方形,且正方形的四个顶点分别位于圆的四个切点上。

求正方形的面积。

答案:正方形的面积为18 cm²。

3. 题目:一个长方体的长、宽、高分别为3cm、4cm和5cm,将它剖开后得到的截面是一个等腰梯形,底边长度为6cm,顶边长度为2cm。

求截面的高度。

答案:截面的高度为3cm。

4. 题目:一个球的体积为36πcm³,将其剖开后得到的截面是一个等边三角形。

求球的半径。

答案:球的半径为3 cm。

5. 题目:一个正方体的表面积为96 cm²,将其剖开后得到的截面是一个正方形。

求正方体的边长。

答案:正方体的边长为4 cm。

6. 题目:一个圆柱的底面积为16πcm²,高度为10 cm。

将它剖开后得到的截面是一个等腰梯形,底边长度为8cm,顶边长度为2cm。

求圆柱的半径。

答案:圆柱的半径为2 cm。

7. 题目:一个圆锥的底面积为9πcm²,高度为12 cm。

将它剖开后得到的截面是一个等边三角形。

求圆锥的半径。

答案:圆锥的半径为3 cm。

8. 题目:一个正方体的表面积为150 cm²,将其剖开后得到的截面是一个等边三角形。

求正方体的边长。

答案:正方体的边长为5 cm。

9. 题目:一个圆柱的底面积为25πcm²,高度为8 cm。

将它剖开后得到的截面是一个正方形。

求圆柱的半径。

答案:圆柱的半径为2 cm。

10. 题目:一个圆锥的底面积为16πcm²,高度为6 cm。

将它剖开后得到的截面是一个正方形。

求圆锥的半径。

答案:圆锥的半径为2 cm。

《名师伴你行》2022高考数学(理)二轮复习检测:专项突破训练2数形结合思想 Word版含答案

《名师伴你行》2022高考数学(理)二轮复习检测:专项突破训练2数形结合思想 Word版含答案

专项突破训练(二)数形结合思想(时间:45分钟分数:80分)一、选择题(每小题5分,共30分)1.(2021·东北三省四市联考)已知集合A={x|-1≤x≤1},B={x|x2-2x≤0},则A∩B=()A. [-1,0]B. [-1,2]C. [0,1]D. (-∞,1]∪[2,+∞)答案:C解析:x2-2x≤0⇒0≤x≤2,∴B={x|0≤x≤2}.通过画数轴,可知A∩B=[0,1],故选C.2.(2021·福建福州质检)执行如图所示的程序框图,输出S的值为()A.-1 B.1 C.0 D.-2 014答案:C解析:由程序框图可知,第一次循环,S=-1,n=2;其次次循环,S=0,n=3;第三次循环,S=-1,n=4;第四次循环,S=0,n=5;……;当n=2 015时是第2 014次循环,于是输出S=0,故选C.3.(2021·贵州遵义联考)为了解某校今年新入学的高一某班同学的体重状况,将所得的数据整理后,画出了频率分布直方图(如图),已知高一某班同学人数为48人,图中从左到右的前3个小组的频率之比为1∶2∶3,则第2小组的人数为()A.16 B.14 C.12 D.11答案:C解析:设从左到右第1小组的频率为x,则由题意可得x+2x+3x+(0.013+0.037)×5=1,∴x=0.125,∴第2小组的人数为0.125×2×48=12(人).4.(2021·内蒙古呼和浩特模拟)变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -3y +2≤0,x +y -6≤0,x -y ≥0时,x -2y +m ≤0恒成立,则实数m 的取值范围为( )A .[0,+∞)B .[1,+∞)C .(-∞,3]D .(-∞,0]答案:D解析:由题意作出可行域,如图阴影部分所示,不等式x -2y +m ≤0表示直线x -2y +m =0及其上方的部分.由⎩⎨⎧y =6-x ,x =3y -2,解得⎩⎨⎧x =4,y =2,所以4-2×2+m ≤0,解得m ≤0.故选D.5.(2021·湖北七市联考)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图象如图所示,为了得到g (x )=3sin 2x 的图象,只需将f (x )的图象( )A.向左平移2π3个单位长度 B .向左平移π3个单位长度 C .向右平移2π3个单位长度 D .向右平移π3个单位长度 答案:B解析:由图象,得A =3,周期T =2⎝ ⎛⎭⎪⎫5π6-π3=π,则ω=2ππ=2;又函数f (x )的图象过点⎝⎛⎭⎪⎫π3,0,得sin ⎝⎛⎭⎪⎫2π3+φ=0,则φ=-2π3,得f (x )=3sin ⎝⎛⎭⎪⎫2x -2π3=3sin2⎝⎛⎭⎪⎫x -π3,即把f (x )的图象向左平移π3个单位长度得g (x )的图象,故选B. 6.(2021·东北三校一模)不等式组⎩⎪⎨⎪⎧-2≤x ≤2,0≤y ≤4表示的点集记为A ,不等式组⎩⎪⎨⎪⎧x -y +2≥0,y ≥x 2表示的点集记为B .在A 中任取一点P ,则P ∈B 的概率为( ) A.932 B.732 C.916 D.716 答案:A解析:如图,作出A ,B 所表示的平面区域,则S A =4×4=16,S B =12×(1+4)×3-⎠⎛-12x 2d x =⎪⎪⎪10-13x 32-1=92,由几何概型知,P ∈B 的概率为9216=932.故选A.二、填空题(每小题5分,共20分)7.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.答案:(-13,13)解析:如图,圆x 2+y 2=4的半径为2,圆上有且仅有四个点到直线12x -5y +c =0的距离为1,问题转化为坐标原点(0,0)到直线12x -5y +c =0的距离小于1.即|c |122+52<1,|c |<13,∴-13<c <13.8.(2021·重庆一模)已知函数f (x )=⎩⎪⎨⎪⎧3x -1,x ≤1,f (x -1)+2,x >1,则方程f (x )=2x 在[0,2 015]内的根的个数是________.答案:2 016解析:画出y =f (x )与y =2x 的图象如图所示,由图象可得,方程f (x )=2x 在[0,2 015]内的根分别是x =0,1,2,3,…,2 015,共2 016个.9.(2021·黑龙江哈尔滨三中一模)已知椭圆C :x 216+y 212=1,点M 与C 的焦点不重合,若点M 关于C 的两焦点的对称点分别为P ,Q ,线段MN 的中点在C 上,则|PN |+|QN |=________.答案:16解析:如图所示,设椭圆的两焦点分别为F 1,F 2,线段MN 的中点为D ,连接DF 1,DF 2.由已知条件可知,DF 1,DF 2分别是△MPN ,△MQN 的中位线,所以|PN |+|QN |=2||DF 1+2||DF 2.又依据椭圆的定义,||DF 1+||DF 2=2a =8, 所以|PN |+|QN |=2×8=16.10.(2021·甘肃兰州诊断)已知函数f (x )=x ()ln x -ax 有两个极值点,则实数a 的取值范围是________.答案:⎝ ⎛⎭⎪⎫0,12 解析 :由函数f (x )=x ⎝⎛⎭⎫ln x -ax ,则f ′(x )=ln x -ax +x ⎝ ⎛⎭⎪⎫1x -a =ln x -2ax +1,令f ′(x )=ln x -2ax +1=0,得ln x =2ax -1,由于函数f (x )=x ⎝⎛⎭⎫ln x -ax 有两个极值点,所以f ′(x )=ln x -2ax +1有两个零点,等价于函数y =ln x 与y =2ax -1的图象有两个交点,在同一个坐标系中作出它们的图象,过点(0,-1)作y =ln x 的切线,设切点为(x 0,y 0),则切线的斜率k =1x 0,切线方程为y =1x 0x -1. 切点在切线上,则y 0=x 0x 0-1=0,又切点在曲线y =ln x 上,则ln x 0=0⇒x 0=1,即切点为(1,0),则切线方程为y =x -1, 再由直线y =2ax -1与曲线y =ln x 有两个交点,知直线y =2ax -1位于两直线y =0和y =x -1之间,其斜率2a 满足:0<2a <1,解得实数a 的取值范围是⎝ ⎛⎭⎪⎫0,12.三、解答题(每题15分,共30分)11.(2021·东北三校一模)在平面直角坐标系xOy 中,已知动圆过点(2,0),且被y 轴所截得的弦长为4.(1) 求动圆圆心的轨迹C 1的方程;(2) 过点P (1,2)分别作斜率为k 1,k 2的两条直线l 1,l 2,交C 1于A ,B 两点(点A ,B 异于点P ),若k 1+k 2=0,且直线AB 与圆C 2:(x -2)2+y 2=12相切,求△P AB的面积.解: (1) 设动圆圆心坐标为(x ,y ),半径为r ,由题可知⎩⎪⎨⎪⎧(x -2)2+y 2=r 2,22+x 2=r 2,消去r ,得y 2=4x ,所以动圆圆心的轨迹方程为y 2=4x .(2) 设直线l 1斜率为k ,则l 1:y -2=k (x -1); l 2:y -2=-k (x -1). 点P (1,2)在抛物线y 2=4x 上,所以⎩⎪⎨⎪⎧y 2=4x ,y -2=k (x -1)⇒ky 2-4y +8-4k =0.设A (x 1,y 1),B (x 2,y 2),Δ>0恒成立,即()k -12>0,有k ≠1.所以y 1y P =8-4kk .由于y P =2,所以y 1=4-2kk .代入直线方程可得x 1=(k -2)2k 2. 同理可得x 2=(2+k )2k 2,y 2=4+2k-k .k AB =y 2-y 1x 2-x 1=4+2k -k -4-2kk (k +2)2-(k -2)2k 2=-1.不妨设l AB :y =-x +b .由于直线AB 与圆C 相切,所以|b -2|2=22,解得b =3或1,当b =3时, 直线AB 过点P ,舍去.当b =1时, 由⎩⎪⎨⎪⎧y =-x +1,y 2=4x⇒x 2-6x +1=0,Δ=32,|AB |=1+1×32=8.P 到直线AB 的距离为d =2,△P AB 的面积为4 2. 12.(2021·东北四市联考)已知函数f (x )=x 3-ax 2,常数a ∈R . (1)若a =1,过点(1,0)作曲线y =f (x )的切线l ,求l 的方程;(2)若曲线y =f (x )与直线y =x -1只有一个交点,求实数a 的取值范围. 解:函数求导,得f ′(x )=3x 2-2ax . (1)当a =1时,有f ′(x )=3x 2-2x . 设切点P 为(x 0,y 0),则k =f ′(x 0)=3x 20-2x 0,则P 处的切线方程为y =(3x 20-2x 0)(x -x 0)+x 30-x 20.该直线经过点(1,0),所以有0=(3x 20-2x 0)(1-x 0)+x 30-x 20, 化简得x 30-2x 20+x 0=0,解得x 0=0或x 0=1,所以切线方程为y =0和y =x -1.(2)解法一:由题意得方程x 3-ax 2-x +1=0只有一个根, 设g (x )=x 3-ax 2+x +1,则g ′(x )=3x 2-2ax -1, 由于Δ=4a 2+12>0,所以g ′(x )有两个零点x 1,x 2,即3x 2i -2ax i -1=0(i =1,2), 且x 1x 2<0,a =3x 2i -12x i,不妨设x 1<0<x 2,所以g (x )在(-∞,x 1),(x 2,+∞)单调递增,在(x 1,x 2)单调递减,g (x 1)为极大值,g (x 2)为微小值,方程x 3-ax 2-x +1=0只有一个根等价于g (x 1)>0且g (x 2)>0,或者g (x 1)<0且g (x 2)<0,又g (x i )=x 3i -ax 2i -x i +1=x 3i -3x 2i -12x ix 2i -x i +1=-12x 3i -x i 2+1(i =1,2),设h (x )=-12x 3-x 2+1,所以h ′(x )=-32x 2-12<0,所以h (x )为减函数, 又h (1)=0,所以x <1时h (x )>0,x >1时h (x )<0,所以x i (i =1,2)大于1或小于1,由x 1<0<x 2知,x i (i =1,2)只能小于1, 所以由二次函数g ′(x )=3x 2-2ax -1性质可得g ′(1)=3-2a -1>0,所以a <1.解法二:曲线y =f (x )与直线y =x -1只有一个交点, 等价于关于x 的方程ax 2=x 3-x +1只有一个实根. 明显x ≠0,所以方程a =x -1x +1x 2只有一个实根. 设函数g (x )=x -1x +1x 2,则g ′(x )=1+1x 2-2x 3=x 3+x -2x 3.设h (x )=x 3+x -2,h ′(x )=3x 2+1>0,h (x )为增函数,又h (1)=0. 所以当x <0时,g ′(x )>0,g (x )为增函数; 当0<x <1时,g ′(x )<0,g (x )为减函数; 当x >1时,g ′(x )>0,g (x )为增函数. 所以g (x )在x =1时取微小值1.又当x 趋向于0时,g (x )趋向于正无穷; 又当x 趋向于负无穷时,g (x )趋向于负无穷; 又当x 趋向于正无穷时,g (x )趋向于正无穷. 所以g (x )图象大致如图所示,所以方程a =x -1x +1x 2只有一个实根时,实数a 的取值范围为(-∞,1).。

高考数学(理科)- 数形结合思想-专题练习(含答案与解析)

高考数学(理科)- 数形结合思想-专题练习(含答案与解析)

)()
1,+∞
,2
=,则BC
AF BF
(2)求线段AB 的中点M 的轨迹C 的方程;
(3)是否存在实数k ,使得直线():4l y k =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.
)()
1,+∞
如图,525,33D ⎛⎫ ⎪ ⎪⎝⎭,E ⎛ ⎝联立直线l 的方程与曲线C ]{}
,GH GI k k 53,44⎤⎧⎫
-⎨⎬⎥⎩⎭⎦
高考数学(理科)专题练习
数形结合思想
解析
1.∵a>0,∴a2+1>1.
而y=|x2-2x|的图象如图,
∴y=|x2-2x|的图象与y=a2+1的图象总有2个交点.
的交点的横坐标.因为f(-
,1]时,f(x)=x3,则在平
由图易得两函数图象共有7个交点,不妨设从左到右依次为
=0,x3+x5=2,x4=1,x6+x7=4,所以x1+x2+
上的零点的和为7,故选A.
4.函数f(x)=a+sin x在[π,2π]上有且只有一个零点,即方程
②若0≤a≤1,则a3≤a2,函数一个公共点.
③若a>1,则a3>a2,函数个公共点.
综上,a<0或a>1.6.记y=log x(a>0,
-12≤-k <1
2或-k =1, 即-12<k ≤1
2或k =-1.]
则圆心C 的坐标为(3,4)半径m 的最大值,即求圆C 上的点即m 的最大值为6.。

高考总复习北师大版数学文数学思想专项训练四 数形结合思想

高考总复习北师大版数学文数学思想专项训练四 数形结合思想

数学思想专项训练(四)数形结合思想方法概述适用题型所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化,将反映问题的抽象数量关系与直观图形结合起来,也是将抽象思维与形象思维有机地结合起来的一种解决数学问题的重要思想方法.数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题形象化,有助于把握数学问题的本质.它是数学的规律性与灵活性的有机结合.数形结合思想解决的问题常有以下几种:(1)构建函数模型并结合其图象求参数的取值范围;(2)构建函数模型并结合其图象研究方程根的范围;(3)构建函数模型并结合其图象研究量与量之间的大小关系;(4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;(5)构建立体几何模型研究代数问题;(6)构建解析几何中的斜率、截距、距离等模型研究最值问题;(7)构建方程模型,求根的个数;(8)研究图形的形状、位置关系、性质等.一、选择题1.已知点P在抛物线y2=4x上,那么点P到Q(2,—1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P的坐标为()A.错误!B.错误!C.错误!D.错误!解析:选A 定点Q(2,—1)在抛物线内部,由抛物线的定义知,动点P到抛物线焦点的距离等于它到准线的距离,问题转化为当点P到点Q和到抛物线的准线距离之和最小时,求点P的坐标,显然点P是直线y=—1和抛物线y2=4x的交点,解得这个点的坐标是错误!.2.已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a—c)·(b—c)=0,则|c|的最大值是()A.1B.2C.错误!D.错误!解析:选C 因为(a—c)·(b—c)=0,所以(a—c)⊥(b—c).如图所示,设OC=c,OA=a,OB=b,CA=a—c,CB=b—c,即AC⊥BC,又OA⊥OB,所以O,A,C,B四点共圆.当且仅当OC为圆的直径时,|c|最大,且最大值为错误!.3.设点P(x,y),变量x、y满足约束条件错误!点Q的坐标为(4,3),O为坐标原点,λ|OQ|=OP·OQ,则λ的最大值是()A.错误!B.错误!C.8 D.错误!解析:选D λ|OQ|=OP·OQ,即5λ=4x+3y,设z=4x+3y,它表示斜率为—错误!,纵截距为错误!z的一组直线系.画出不等式组所表示的可行域,如图,由图可知,当直线经过可行域上的点M时,纵截距错误!z最大,即z 取得最大值,此时λ也取得最大值.容易求得点M的坐标为错误!,则z max=错误!,即5λ=错误!,所以λ的最大值是错误!.4.已知f(x)=错误!则任意x∈[—1,1],|f(x)|≥ax成立的充要条件是()A.a∈(—∞,—1]∪[0,+∞)B.a∈[—1,0]C.a∈[0,1]D.a∈[—1,0)解析:选B 当x∈[—1,0]时,原不等式可变为|x2—2|≥ax,即2—x 2≥ax,f(x)=错误!图象如图所示;当x∈(0,1]时,原不等式可变为|3x—2|≥ax,g(x)=|3x—2|的图象如图所示,当|f(x)|≥ax恒成立时,由图可知a的取值范围是[—1,0].5.已知f(x)是定义在(—3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,那么不等式f(x)cos x<0的解集是()A.错误!∪(0,1)∪错误!B.错误!∪(0,1)∪错误!C.(—3,—1)∪(0,1)∪(1,3)D.错误!∪(0,1)∪(1,3)解析:选B 不等式f(x)cos x<0等价于错误!或错误!画出f(x)在(—3,3)上的图象,运用数形结合,如图所示,从“形”中找出图象分别在x轴上、下部分的对应“数”的区间为错误!∪(0,1)∪错误!.6.已知:函数f(x)满足下面关系.1f(x+1)=f(x—1);2当x∈[—1,1]时,f(x)=x2.则方程f(x)=lg x解的个数是()A.5B.7C.9 D.10解析:选C 由题意可知,f(x)是以2为周期,值域为[0,1]的函数,又f(x)=lg x,则x∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.二、填空题7.已知向量a,b的夹角为60°,且|a|=2|b|,则向量a与向量a+2b的夹角为________.解析:由向量的几何意义可知,若OA=a,OB=b,OC=2b,则OD=a+2b,∠AOC=60°(如图),由平行四边形法则,可知四边形OADC为菱形,所以向量a与向量a+2b的夹角为30°.8.在平面直角坐标系xOy中,设椭圆错误!+错误!=1(a>b>0)的焦距为2c,以点O为圆心,a为半径作圆M.若过点P错误!作圆M的两条切线互相垂直,则该椭圆的离心率为________.解析:设切点为A,如图所示,切线AP、PB互相垂直,又半径OA垂直于AP,所以△OPA为等腰直角三角形,可得错误!a=错误!,所以e=错误!=错误!.答案:错误!9.已知实数x,y满足错误!,若不等式a(x2+y2)≥(x+y)2恒成立,则实数a的最小值是________.解析:作出满足题中方程组的可行域,如图阴影部分所示:由题可得a≥错误!=错误!=1+错误!.设错误!=t(t表示过原点和点(x,y)的直线的斜率),则t∈[2,4],t+错误!∈错误!,错误!,故错误!max=错误!,所以a≥错误!,即a min=错误!.答案:错误!10.设有函数f(x)=a+错误!和g(x)=错误!x+1,已知x∈[—4,0]时恒有f(x)≤g(x),则实数a的取值范围是________.解析:由f(x)≤g(x),得a+错误!≤错误!x+1,变形得错误!≤错误!x+1—a,令y1=错误!,y2=错误!x+1—a,y1变形得(x+2)2+y2=4(y≥0),即表示以(—2,0)为圆心,2为半径的圆的上半圆;y2表示斜率为错误!,纵截距为1—a的平行直线系.若不等式成立,则直线在半圆上方,∴错误!解得:a≤—5.答案:(—∞,—5]11.求函数f(θ)=错误!的最大值.解:错误!可以与两点连线的斜率联系起来,它实际上是点P(cos θ,sin θ)与点A(—错误!,0)连线的斜率,而点P(cos θ,sin θ)在单位圆上移动,问题变为:求单位圆上的点与A(—错误!,0)连线斜率的最大值.如图,显然,当P点移动到B点(此时,AB与圆相切)时,AP的斜率最大,最大值为tan ∠BAO=错误!=1.12.已知A(1,1)为椭圆错误!+错误!=1内一点,F1为椭圆左焦点,P为椭圆上一动点,求|PF|+|PA|的最大值和最小值.1解:由错误!+错误!=1可知a=3,b=错误!,c=2,左焦点F1(—2,0),右焦点F2(2,0).由椭圆定义,|PF1|=2a—|PF2|=6—|PF2|,∴|PF1|+|PA|=6—|PF2|+|PA|=6+|PA|—|PF2|.如图,由||PA|—|PF2||≤|AF2|=错误!=错误!,知—错误!≤|PA|—|PF2|≤错误!.当P在AF2的延长线上的P2处时,取右“=”;当P在AF2的反向延长线的P1处时,取左“=”,即|PA|—|PF2|的最大、最小值分别为错误!,—错误!.于是|PF1|+|PA|的最大值是6+错误!,最小值是6—错误!.13.(2013·洛阳统考)某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数;(2)已知这批产品中每个产品的利润y(单位:元)与产品净重x(单位:克)的关系式为y=错误!求这批产品平均每个的利润.解:(1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.设样本容量为n.∵样本中产品净重小于100克的个数是36,∴错误!=0.300,∴n=120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.(2)产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100,(0.100+0.150+0.125)×2=0.750,0.075×2=0.150.∴其相应的频数分别为120×0.100=12,120×0.750=90,120×0.150=18.∴这批产品平均每个的利润为错误!(12×3+90×5+18×4)=4.65(元).。

【高考第一轮复习数学】函数思想渗透

【高考第一轮复习数学】函数思想渗透

思想渗透1、数形结合思想典型例题:求函数y=│x+1│+│x-2│的值域.思路分析:要求函数y 的值域,关键是去掉绝对值符号,将含绝对值的解析式转化为不含绝对值的解析式,画出它的图像,根据图象求出值域..解析:将函数的解析式中的绝对值符号去掉,化成分段函数的形式:⎪⎩⎪⎨⎧>-≤<--≤+-=)2(12)21(3)1(12)(x x x x x x f该函数的图象如图所示,由图象可知,函数y 的值域是[)+∞,3点拨:结合函数图象,将抽象的问题形象化是求解复杂函数性质的一种重要方法,是数形结合思想在解题中应用的典范..2. 分类讨论思想典型例题:函数y=-(x-3)·|x| 的递增区间是________. 思路分析:本题|x|中x 的值不能确定,需要讨论. 解析:分类讨论,当X>0时,那么,等效于y= -(x-3)x ,这是一个开口向下的抛物线,对称轴=3/2,根据图像性质,[0,3/2]单调递增,当X<0时,那么等效于y= (x-3)x ,这是一个开口向上的抛物线,对称轴=3/2,根据图像性质,(负无穷,0)单调递减, 那么,递增区间是[0,3/2]点拨:含有绝对值的函数或方程问题,往往需要根据自变量的取值,对自变量进行分类讨论.3、函数与方程思想典型例题:(2004•广东)设函数f (x )=x-In (x+m ),其中常数m 为整数. (1)当m 为何值时,f (x )≥0;(2)定理:若函数g (x )在[a ,b]上连续,且g (a )与g (b )异号,则至少存在一点x 0∈(a ,b ),使g (x 0)=0.试用上述定理证明:当整数m >1时,方程f (x )=0,在[e -m -m ,e 2m-m]内有两个实根.典型例题:若函数f(x)的定义域为(-1,1)且在定义域内单调递减,又当a 、b ∈(-1,1),且a+b=0时,f(a)+f(b)=0,解不等式0)1()1(2>-+-m f m f .思路分析:利用单调性的定义,实现单调性与自变量和函数值之间的大小转化. 解:由题意知f(x)在(-1,1)上是减函数且为奇函数, ∴0)1()1(2>-+-mf m f ,即为)1()1(2->-m f m f。

2023届高三化学高考备考二轮复习专题训练 水溶液中的离子平衡

2023届高三化学高考备考二轮复习专题训练  水溶液中的离子平衡

水溶液中的离子平衡1.数形结合思想应用——分布系数曲线真题研究1.(2017·全国卷Ⅱ,12)常温下,改变0.1 mol·L-1二元弱酸H2A溶液的pH,溶液中的H2A、HA-、A2-的物质的量分数δ(X)随pH的变化如图所示[已知δ(X)=c(X)c(H2A)+c(HA-)+c(A2-)]。

下列叙述错误的是()A.pH=1.2时,c(H2A)=c(HA-)B.lg[K2(H2A)]=-4.2C.pH=2.7时,c(HA-)>c(H2A)=c(A2-)D.pH=4.2时,c(HA-)>c(A2-)>c(H+)2.(2022·辽宁,15)甘氨酸(NH2CH2COOH)是人体必需氨基酸之一。

在25 ℃时,NH+3CH2COOH、NH+3CH2COO-和NH2CH2COO-的分布分数[如δ(A2-)=c(A2-)c(H2A)+c(HA-)+c(A2-)]与溶液pH关系如图。

下列说法错误的是()A.甘氨酸具有两性B.曲线c代表NH2CH2COO-C.NH+3CH2COO-+H2O NH+3CH2COOH+OH-的平衡常数K=10-11.65D.c2(NH+3CH2COO-)<c(NH+3CH2COOH)·c(NH2CH2COO-)3.(2020·全国卷Ⅰ,13)以酚酞为指示剂,用0.100 0 mol·L-1的NaOH溶液滴定20.00 mL未知浓度的二元酸H2A溶液。

溶液中,pH、分布系数δ随滴加NaOH溶液体积V NaOH的变化关系如下图所示。

[比如A2-的分布系数:δ(A2-)=c(A2-)c(H2A)+c(HA-)+c(A2-)]下列叙述正确的是()A.曲线①代表δ(H2A),曲线②代表δ(HA-)B.H2A溶液的浓度为0.200 0 mol·L-1C.HA-的电离常数K a=1.0×10-2D.滴定终点时,溶液中c(Na+)<2c(A2-)+c(HA-)模拟演练1.(2022·福建漳州一模)边搅拌边向Na2CO3溶液中通入SO2制备NaHSO3溶液,水溶液中H2SO3、HSO-3、SO2-3的分布系数δ随pH的变化关系如图所示。

高考数学思想02 运用数形结合的思想方法解题(精讲精练)(解析版)

高考数学思想02 运用数形结合的思想方法解题(精讲精练)(解析版)

思想02运用数形结合的思想方法解题【命题规律】高考命题中,以知识为载体,以能力立意、思想方法为灵魂,以核心素养为统领,兼顾试题的基础性、综合性、应用性和创新性,展现数学的科学价值和人文价值.高考试题一是着眼于知识点新颖巧妙的组合,二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学的内容,可用文字和符号来记录和描述,那么数学思想方法则是数学的意识,重在领会、运用,属于思维的范畴,用于对数学问题的认识、处理和解决.高考中常用到的数学思想主要有分类讨论思想、数形结合思想、函数与方程思想、转化与化归思想等.【核心考点目录】核心考点一:研究函数的零点、方程的根、图象的交点核心考点二:解不等式、求参数范围、最值问题核心考点三:解决以几何图形为背景的代数问题核心考点四:解决数学文化、情境问题【真题回归】1.(2022·北京·统考高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-【答案】D【解析】依题意如图建立平面直角坐标系,则()0,0C ,()3,0A ,()0,4B ,因为1PC =,所以P 在以C 为圆心,1为半径的圆上运动,设()cos ,sin P θθ,[]0,2θπ∈,所以()3cos ,sin PA θθ=-- ,()cos ,4sin PB θθ=--,所以()()()()cos 3cos 4sin sin PA PB θθθθ⋅=-⨯-+-⨯-22cos 3cos 4sin sin θθθθ=--+13cos 4sin θθ=--()15sin θϕ=-+,其中3sin 5ϕ=,4cos 5ϕ=,因为()1sin 1θϕ-≤+≤,所以()415sin 6θϕ-≤-+≤,即[]4,6PA PB ⋅∈-;故选:D2.(2022·天津·统考高考真题)设a ∈R ,对任意实数x ,记(){}2min 2,35f x x x ax a =--+-.若()f x 至少有3个零点,则实数a 的取值范围为______.【答案】10a ≥【解析】设()235g x x ax a =-+-,()2h x x =-,由20x -=可得2x =±.要使得函数()f x 至少有3个零点,则函数()g x 至少有一个零点,则212200a a ∆=-+≥,解得2a ≤或10a ≥.①当2a =时,()221g x x x =-+,作出函数()g x 、()h x的图象如下图所示:此时函数()f x 只有两个零点,不合乎题意;②当2a <时,设函数()g x 的两个零点分别为1x 、()212x x x <,要使得函数()f x 至少有3个零点,则22x ≤-,所以,()2224550ag a ⎧<-⎪⎨⎪-=+-≥⎩,解得a ∈∅;③当10a =时,()21025g x x x =-+,作出函数()g x 、()h x的图象如下图所示:由图可知,函数()f x 的零点个数为3,合乎题意;④当10a >时,设函数()g x 的两个零点分别为3x 、()434x x x <,要使得函数()f x 至少有3个零点,则32x ≥,可得()222450a g a ⎧>⎪⎨⎪=+-≥⎩,解得4a >,此时10a >.综上所述,实数a 的取值范围是[)10,+∞.故答案为:[)10,+∞.3.(2022·全国·统考高考真题)已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.【答案】13【解析】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE直线DE的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c ∆=+⨯⨯=⨯⨯,∴122264613cDE y =-=⨯⨯⨯⨯=,∴138c =,得1324a c ==,∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.4.(2022·浙江·统考高考真题)设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++ 的取值范围是_______.【答案】[12+【解析】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,如图所示:则1345726(0,1),,,(1,0),,,(0,1),,,(1,0)222222A A A A A A A ⎛⎫⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,822A ⎛- ⎝⎭,设(,)P x y ,于是()2222212888PA PA PA x y +++=++ ,因为cos 22.5||1OP ≤≤,所以221cos 4512x y +≤+≤,故222128PA PA PA +++的取值范围是[12+.故答案为:[12+.5.(2022·天津·统考高考真题)在ABC 中,,CA a CB b == ,D 是AC 中点,2CB BE = ,试用,a b表示DE 为___________,若AB DE ⊥,则ACB ∠的最大值为____________【答案】3122b a - 6π【解析】方法一:31=22DE CE CD b a -=- ,,(3)()0AB CB CA b a AB DE b a b a =-=-⊥⇒-⋅-=,2234b a a b+=⋅223cos 4a b b a ACB a b a b ⋅+⇒∠==a = 时取等号,而0πACB <∠<,所以(0,6ACB π∠∈.故答案为:3122b a - ;6π.方法二:如图所示,建立坐标系:(0,0),(1,0),(3,0),(,)E B C A x y ,3(,(1,)22x y DE AB x y +=--=--,23(1)022x y DE AB x +⊥⇒-+= 22(1)4x y ⇒++=,所以点A 的轨迹是以(1,0)M -为圆心,以2r =为半径的圆,当且仅当CA 与M 相切时,C ∠最大,此时21sin ,426r C C CM π===∠=.故答案为:3122b a - ;6π.【方法技巧与总结】1、以形助数(数题形解):借助形的生动性和直观性来阐述数与形之间的关系,把抽象问题具体化,把数转化为形,即以形作为手段,数作为目的解决数学问题的数学思想.2、以数辅形(形题数解):借助于数的精确性、规范性、严密性来阐明形的某些属性,把直观图形数量化,即以数作为手段,形作为目的解决问题的数学思想.【核心考点】核心考点一:研究函数的零点、方程的根、图象的交点【典型例题】例1.(2023·河北衡水·高三周测)设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x -=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,则在区间(]2,6-内关于x 的方程()()2log 20f x x -+=的根的个数为()A .1B .2C .3D .4【答案】D【解析】因为()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x -=+,所以(2)(2)(2)f x f x f x -=+=-,即()(4)f x f x =+,所以函数()f x 的周期为4,当[0,2]x ∈时,则[2,0]x -∈-,此时()()112xf x f x -⎛⎫-=-= ⎪⎝⎭,即()21,[0,2]xf x x =-∈,由()2log (2)0f x x -+=,(]2,6x ∈-,得()2log (2)f x x =+,分别作出函数()y f x =和2log (2)y x =+,(]2,6x ∈-的图象,如图所示,则由图象可知两个函数的图象的交点个数为4个,即方程()()2log 20f x x -+=的零点个数为4个.故选:D .例2.(2023·全国·高三专题练习)已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-【答案】C【解析】设函数1y kx =-00(,)P x y 关于直线1y =-对称的点为(,)P x y ',则00,12y y x x +==-,所以02y y =--,而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--,所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =,所以ln122AC k k =-=-=-;(2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得=1x -,所以2(1)31AB k k =-=-+=,故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点;在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-.故选:C .例3.(2023·上海·高三专题练习)已知函数f (x )=x 2+ex -12(x <0)与g (x )=x 2+ln (x +a )的图象上存在关于y 轴对称的点,则实数a 的取值范围是()A .(-∞B .(-∞C .)+∞D .)+∞【答案】B【解析】()()2102xx e f x x =+-<关于y 轴对称得到的函数为()()2102x h x x e x -=+->,依题意可知()h x 与()g x 在()0,∞+上有公共点,由()()h x g x =得()221ln 2x x e x x a -+-=++,()11ln 2x x a e =++.对于函数1xy e =,在()0,∞+上单调递减,且()0,1y ∈.对于函数()1ln 2y x a =++,在()0,∞+上单调递增.当0a ≤时,1ln 2x +的图像向右平移a 个单位得到()1ln 2y x a =++,与1x y e =图像在()0,∞+上必有1个交点.当0a >时,1ln 2x +的图像向左平移a 个单位得到()1ln 2y x a =++,要使()1ln 2y x a =++与1x y e=图像在()0,∞+上有交点,则需当0x =时(也即y 轴上),()1ln 2y x a =++的函数值小于1xy e =的函数值,即0111ln ,ln 22a a e +<<,解得0a <<.综上所述,a 的取值范围是(-∞.故选:B .例4.(2023·全国·高三专题练习)设()f x 是定义在R 上的偶函数,对任意的x R ∈,都有()()22f x f x -=+,且当[]2,0x ∈-时,()122xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()log 20(01)a f x x a -+=<<恰有三个不同的实数根,则实数a 的取值范围是()A .1,42⎫⎪⎪⎝⎭B .4⎛ ⎝⎭C .10,2⎛⎫⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A【解析】 对于任意的x R ∈,都有(2)(2)f x f x -=+,∴函数()f x 关于直线2x =对称,又 当[2x ∈-,0]时,1()2()2xf x =-,且函数()f x 是定义在R 上的偶函数,故函数()f x 在区间(2-,6]上的图象如下图所示:若在区间(2-,6]内关于x 的方程()log (2)0a f x x -+=恰有3个不同的实数解则log 42a >-,log 82a <-,解得:1(,)42a ∈故选:A核心考点二:解不等式、求参数范围、最值问题【典型例题】例5.(2023春·山东枣庄·高三枣庄市第三中学校考阶段练习)设函数()()()222ln 2f x x a x a =-+-,其中0x >,a R ∈,若存在0x R ∈,使得()045f x ≤成立,则实数a 的值是A .15B .25C .35D .45【答案】A【解析】函数()f x 可以看作是动点2(,)M x lnx 与动点(,2)N a a 之间距离的平方,动点M 在函数2y lnx =的图象上,N 在直线2y x =的图象上,问题转化为求直线上的动点到曲线的最小距离,由2y lnx =得,22y x'==,解得1x =,∴曲线上点(1,0)M 到直线2y x =的距离最小,最小距离5d ==,则4()5f x ,根据题意,要使04()5f x ,则04()5f x =,此时N 恰好为垂足,由2021112MN a a k a a -===---,解得15a =.故选A .例6.(2023·全国·m ≥对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是()A .1,2⎛⎤-∞ ⎝⎦B.2⎛-∞ ⎝⎦C.(-∞D .(],2-∞【答案】B【解析】设T =T 的几何意义是直线y x =上的点(,)P a a 与曲线()ln f x x =上的点(,ln )Q b b 的距离,将直线y x =平移到与面线()ln f x x =相切时,切点Q 到直线y x =的距离最小.而()1f x x '=,令()0011f x x ='=,则01x =,可得(1,0)Q ,此时,Q 到直线y x =2=,故min ||2PQ =,所以2m ≤.故选:B例7.(2023春·黑龙江黑河·高三嫩江市高级中学校考期中)设函数()2x f x xe a =+,()x g x e ax =+,其中1a <,若存在唯一的整数0x 使得00()()f x g x <,则a 的取值范围是()A .3[2e-,1)B .3[2e,1)C .3[2e -,34D .3[2e ,3)4【答案】B【解析】由题意可知,存在唯一的整数x ,使得(21)x x e ax a -<-,构造函数()(21)x h x x e =-,则()(21)x h x x e '=+.当12x <-时,()0h x '<;当12x >-时,()0h x '>.所以,函数()(21)x h x x e =-的单调递减区间为1(,)2-∞-,单调递增区间为1(,)2-+∞.函数()y h x =在12x =-处取得极小值1(2h -=如下图所示,由于(0)1h =-,3(1)h e-=-,所以,(1)(0)h h -<,结合图象可知,(0)0(1)(1)h a a h a a <⨯-⎧⎨-⨯--⎩,解得312a e < .故选:B核心考点三:解决以几何图形为背景的代数问题【典型例题】例8.(2023·全国·高三专题练习)已知3,||,||AB AC AB t AC t ⊥==,若点P 是ABC 所在平面内的一点,且3||||AB ACAP AB AC =-,则PB PC ⋅ 的最大值等于()A .8B .10C .12D .13【答案】C【解析】∵AB AC ⊥,∴可以A 为原点,,AB AC 所在直线为坐标轴建立平面直角坐标系;不妨设()30,,(,0)B t C t ,则(0,1)3(1,0)(3,1)AP =-=- ,故点P 坐标为(3,1)-则()33,1,(3,1)PB t PC t =--=-- ,∴()333(3)1310PB PC t t t t ⋅=---+-=-++ 令3()310,0f t t t t =-++>,则2(333(1)(1),0f t t t t t -+=-+-≥',则当(0,1)t ∈时,()0f t '>,当(1,)t ∈+∞时,()0f t '<,则函数()f t 在[0,1)递增,在(1,)+∞上递减,则max ()(1)12f t f ==,即PB PC ⋅的最大值为12.故选:C .例9.(2023春·浙江杭州·高二学军中学阶段练习)2≤的解集为[],a b ,则ab 的值是()A .5B.C .6D .7【答案】D【解析】设23y =,则y =2≤.2=.2=±2=,两边平方可得,()()2222154x y x y -+=-+±,整理可得,27x =-,两边平方整理可得()22313y x --=.2=表示的点(),x y 在双曲线()22313y x --=上.2≤表示的点(),x y 在双曲线()22313yx--=上及其内部.2≤与不等式组()2223133y x y ⎧--≤⎪⎨⎪=⎩同解,整理可得2670x x -+≤.由已知可得,不等式2670x x -+≤的解集是[],a b ,所以2670x x -+=的两个解为a 、b ,根据韦达定理有7ab =.故选:D .例10.(2023春·安徽六安·(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,则k =()A .3B C D .2【答案】C【解析】如图所示:因为y =4为半径位于x 轴上方(含和x 轴交点)的半圆,(0)y kx k =>表示过坐标原点及第一三象限内的直线,(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,即半圆位于直线下方的区间长度为2,所以2,4a b ==,所以直线与半圆的交点(2,,所以2k ==故选:C .核心考点四:解决数学文化、情境问题【典型例题】例11.(2023·全国·高三专题练习)几何学史上有一个著名的米勒问题:“设点M ,N 是锐角AQB ∠的一边QA 上的两点,试在QB 边上找一点P ,使得MPN ∠最大.”如图,其结论是:点P 为过M ,N 两点且和射线QB 相切的圆与射线QB 的切点.根据以上结论解决以下问题:在平面直角坐标系xOy 中,给定两点M (-1,2),N (1,4),点P 在x 轴上移动,当MPN ∠取最大值时,点P 的横坐标是()A .1B .-7C .1或-1D .2或-7【答案】A【解析】由题M (-1,2),N (1,4),则线段MN 的中点坐标为(0,3),易知1MN k =,则经过M ,N 两点的圆的圆心在线段MN 的垂直平分线3y x =-上.设圆心为(),3S a a -,则圆S 的方程为()()()222321x a y a a -+-+=+.当MPN ∠取最大值时,圆S 必与x 轴相切于点P (由题中结论得),则此时P 的坐标为(),0a ,代入圆S 的方程,得()()22213a a +=-,解得1a =或7a =-,即对应的切点分别为P (1,0)和()7,0P '-.因为对于定长的弦在优弧上所对的圆周角会随着圆的半径减小而角度增大,又过点M ,N ,P '的圆的半径大于过点M ,N ,P 的圆的半径,所以MPN MP N ∠>∠',故点P (1,0)为所求,即点P 的横坐标为1.故选:A .例12.(2023春·北京大兴·高三校考阶段练习)数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线22:C x y x y +=+就是一条形状优美的曲线,对于此曲线,给出如下结论:①曲线C 围成的图形的面积是2π+;②曲线C 上的任意两点间的距离不超过2;③若(),P m n 是曲线C 上任意一点,则3m n +-的最小值是1.其中正确结论的个数为()A .0B .1C .2D .3【答案】C【解析】当0x 且0y 时,曲线C 的方程可化为22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;当0x 且0y 时,曲线C 的方程可化为22111222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭;当0x 且0y 时,曲线C 的方程可化为22111222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭;当0x 且0y 时,曲线C 的方程可化为22111222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,曲线C 的图像如图所示;由图可知,曲线C从而曲线C所围成的面积2114π2π22⨯⨯+=+,故①正确;过原点O 且连接两个半圆圆心M 、N 的直线交曲线C 于D 、E两点,如下图所示:则|||||MN DM EN ===,所以,||||||||2DE MN DM EN =++=>,故命题②错误;因为(,)P m n 到直线30x y +-=的距离为d ,所以|3|m n +-=,当d 最小时,易知(,)P m n 在曲线C 的第一象限内的图象上,因为曲线C 的第一象限内图象是圆心为11,22⎛⎫ ⎪⎝⎭的半圆,所以圆心11,22⎛⎫ ⎪⎝⎭到直线30x y +-=的距离d '所以min d d ='⎭所以|3|m n +-的最小值为12=,故③正确.故选:C例13.(2023·青海海东·统考一模)窗花是贴在窗纸或窗户玻璃上的前纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 在 BC 的中点,则()PA PB PO +⋅=___________.【答案】8【解析】方法一:图3如图3,取BC 中点为E ,连结PO ,显然PO 过E 点.易知,90BPC ∠=o ,45BPE ∠= ,则1EP EB EC ===,PB =2PO PE OE =+=.所以,cos PB PO PB PO BPE ⋅=∠ 222=⨯=.图4如图4,延长PO 交AD 于F ,易知F 是AD 的中点,且PF AD ⊥.则3PF PE EF =+=,1AF =,在Rt AFP 中,AP ==,cos10PF APF PA ∠==所以,cos PO PA PO PA APF ⋅=∠ 26==.所以,()8PA PB PO PA PO PB PO +⋅⋅==⋅+.故答案为:8.方法二:图5取BC 中点为E ,连结PO ,显然PO 过E 点.易知,90BPC ∠=o ,45BPE ∠= ,1PE =如图5,取AB 中点为G ,显然OG PO ⊥,1OG =,2PO PE OE =+=.在Rt GOP 中,PG ==cosOP GPO PG ∠===.又G 为AB 中点,则2G PA B P P =+.所以,()2PA PB PO PG PO +⋅=⋅ cos 2GPO PG PO =∠ 228==.故答案为:8.【新题速递】一、单选题1.(2023春·江苏盐城·高三盐城中学校考)若直线():40l x m y +-=与曲线x =有两个交点,则实数m 的取值范围是()A .03m <<B .0m ≤<C .0m <≤D .0m ≤≤【答案】B【解析】x =表示的曲线是圆心为()0,0,半径为2的圆在y 轴以及右侧的部分,如图所示:直线():40l x m y +-=必过定点()0,4,当直线l 与圆相切时,直线和圆恰有一个交点,2=,结合直线与半圆的相切可得m =,当直l 的斜率不存在时,即0m =时,直线和曲线恰有两个交点,所以要使直线和曲线有两个交点,则0m ≤<故选:B.2.(2023春·湖北随州·高三随州市曾都区第一中学校考阶段练习)已知x ,y 是实数,且22410x y x +-+=,则21y x ++的最大值是()A .66B .116C .336D .66【答案】D【解析】方程可化为()223x y -+=,表示以()2,021y x ++的几何意义是圆上一点与点A ()1,2--连线的斜率,设21k y x =++,即()21y k x +=+,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB 时斜率最大.=,66k =,,所以21y x ++的最大值为66.故选:D .3.(2023春·陕西渭南·高一统考)已知函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()24f x x x =-.若函数()()()R g x f x m m =+∈,则函数()g x 的零点个数不可能是()A .1B .2C .3D .4【答案】A【解析】函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()224(2)4f x x x x =-=--,作出()f x的图象如图:,故当0m =时,()()g x f x =有3个零点;当0m <或4m =时,()()g x f x m =+的图象与x 轴有两个交点,则函数有2个零点;当04m <<时,()()g x f x m =+的图象与x 轴有4个交点,则函数有4个零点;由于()()g x f x m =+也为偶函数,结合()f x 图象可知,()()g x f x m =+不可能有1个零点,故选:A4.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩,若函数()()()g x f x f x =--,则函数()g x 的零点个数为()A .1B .3C .4D .5【答案】D【解析】当0x >时,0x -<,()3f x x-=当0x <时,0x ->,()exf x --=()()()3e ,00,0e 3,0x x x xg x f x f x x x x -⎧->⎪∴=--==⎨⎪+<⎩,()()()()g x f x f x g x -=--=-,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =->,()3e 0x g x '=->,令()3e 0x g x '=->,解得0ln 3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln 3)3ln 330g =->,而()226e 0g =-<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=-< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞-上也有2个零点,且()00g =,故()g x 共5个零点,故选:D.5.(2023春·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)若函数()f x 的定义域为(),1f x -R 为偶函数,当1x ≥-时,()31x f x -=-,则函数()()12g x f x =-的零点个数为()A .0B .1C .2D .4【答案】D 【解析】令310x --≥解得0x ≤,令310x --<解得0x >,所以当1x ≥-时,()11,1033111,03xx x x f x x -⎧⎛⎫--≤≤⎪ ⎪⎪⎝⎭=-=⎛⎫⎪-+> ⎪⎪⎝⎭⎩,()1f x -为偶函数,所以()1f x -的图象关于y 轴对称,所以()f x 的图象关于直线=1x -轴对称,故作出()f x的图象如下,令()()102g x f x =-=,即()12f x =,由图象可知,()f x 的图象与12y =的图象共有四个交点,所以函数()()12g x f x =-的零点个数为4个.故选:D.6.(2023·山东潍坊·统考模拟预测)已知函数()f x 是定义域为R 的偶函数,且(1)f x -是奇函数,当01x 时,有()f x =()(2021)y f x k x =--的零点个数为5,则实数k 取值范围是()A .15<2<1kB .16<3<1kC .12<4<k 或12k =-D .31<2k -<-或12<3<k 【答案】C【解析】∵偶函数()f x ,()()f x f x ∴-=,(1)f x -是奇函数,得(1)(1)f x f x -=---,即()(2)f x f x =---,(2)()f x f x ---=-,得4T =,()(2021)0f x k x --=,即()y f x =与(2021)y k x =-的图像交点的个数,因为4T =,即为()y f x =与(1)y k x =-的图像交点的个数,因为()f x =k 应该在1k 与2k 之间或为3k ,21341212k k k ===-12<4<k 或12k =,故选:C.7.(2023·全国·高三专题练习)已知函数()()ln2,01ln 2ln 2,12x x f x x x ⎧<<⎪=⎨-+≤<⎪⎩,若存在02a b c <<<<使得()()()f a f b f c ==,则111ab bc ca ++的取值范围是()A .20,93⎛⎫ ⎪⎝⎭B .20,3⎛⎫+∞ ⎪⎝⎭C .∞⎫+⎪⎪⎣⎭D .⎫⎪⎪⎣⎭【答案】A【解析】∵()()ln 2ln2ln 22x x ⎡⎤-+=-⎣⎦,∴ln 2y x =与()ln 2ln2y x =-+的图象关于直线1x =对称,作出()f x的大致图象如图所示,易知2b c +=,由ln2ln2a b =,即ln 2ln 2a b -=,ln 40ab =,得14ab =,∵112b <<,∴11124a <<,得1142a <<,∴()()421621112181244a a a a b c a c ab bc ca abc a a+++++++====--.设81t a =-,则()1,3t ∈,111117184t ab bc ca t ⎛⎫++=++ ⎪⎝⎭.17t t+≥=t 故当()1,3t ∈时,令()1718h t t t +=+,()h t 单减,()()80136,33h h ==,故1172018,943t t ⎛⎫⎛⎫++∈ ⎪ ⎪⎝⎭⎝⎭.故选:A二、多选题8.(2023·全国·高三专题练习)已知1F ,2F 是双曲线()2222:10,0x y E a b a b-=>>的左、右焦点,过1F 作倾斜角为30 的直线分别交y 轴与双曲线右支于点,M P ,1PM MF =,下列判断正确的是()A .2160PF F ∠= ,B .2112MF PF =C .ED .E的渐近线方程为y =【答案】BCD 【解析】如下图所示,因为1PM MF =,即M 为1PF 中点,O 为12F F 中点,所以2//OM PF ,因为12OM F F ⊥,所以212PF F F ⊥,所以212PF F π∠=,2112MF PF =,A 错误,B 正确;由212PF F F ⊥知:22b PF a=,又122F F c =,1230PF F ∠= ,2c =)222c a ac -=220e -=,解得:e =C 正确;所以==c e a ,所以223c a =,所以22222b c a a =-=,所以b a=所以E 的渐近线方程为y =,D 正确.故选:BCD .9.(2023·全国·高三专题练习)已知直线l 过抛物线2:8C y x =的焦点F ,l 与抛物线交于,P Q两点(P 在第一象限),以,PF QF 为直径的圆分别与y 轴相切于,A B 两点,则下列结论正确的是()A .32||3PQ =B .ABC .若M 为抛物线C 上的动点,(2,1)N ,则min (||||)4MF MN +=D .若0(,M x 为抛物线C 上的点,则9MF =【答案】ABC【解析】设直线PQ 的方程为:y =x ﹣2),与28y x =联立整理可得:3x 2﹣20x +12=0,解得:x 23=或6,则P (6,,Q (23,3-);所以|PQ |=623++4323=,选项A 正确;因为F (2,0),所以PF ,QF 的中点分别为:(4,,(43,3-),所以A (0,,B (0,3-),所以|AB 33=,选项B 正确;如图M 在抛物线上,ME 垂直于准线交于E ,可得|MF |=|ME |,所以|MF |+|MN |=|ME |+|MN |≥NE =2+2=4,当N ,M ,E 三点共线时,|MF |+|MN |最小,且最小值为4,选项C 正确;对于选项D ,若0(M x 为抛物线C 上的点,则05x =,又4p =,所以072p MF x =+=,选项D 错误.故选:ABC.10.(2023春·河南·高三校联考)在三棱锥A BCD -中,平面ABD ⊥平面BCD ,BD CD ⊥,2BD CD ==,ABD △为等边三角形,E 是棱AC 的中点,F 是棱AD 上一点,若异面直线DE 与BF 所成角的余弦值为28,则AF 的值可能为()A .23B .1C .43D .53【答案】AC【解析】由ABD △为等边三角形,取BD 的中点O ,连接AO ,则AO BD⊥又平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD=所以AO ⊥平面BCD ,由BD CD⊥过O 作与CD 平行的直线为y 轴,分别以,OB OA 为,x z 轴建立如图所示的空间直角坐标系,因为2BD CD ==,则()1,0,0B ,()()(1,0,0,1,2,0,D C A --,所以1,1,22E ⎛- ⎝⎭.设()F a,则12DE ⎛= ⎝⎭,()BF a =- ,则28=13a =-或23a =-,故1233AF AD ==或2433AF AD ==.故选:AC11.(2023秋·福建三明·高一福建省宁化第一中学校考阶段练习)已知G 为ABC 的重心,60BAC ∠=︒,2AB AC ⋅= ,则||AG uuu r 的可能取值为()A .23B .1CD .32【答案】CD【解析】如图,G 是ABC 的重心,记,,AB c AC b AB a ===,则2211()()3323AG AD AB AC AB AC ==⨯+=+ ,222222111()(2)(4)999AG AB AC AB AB AC AC b c =+=+⋅+=++ ,又1cos 6022AB AC bc bc ⋅=︒== ,即4bc =,所以2228b c bc +≥=,当且仅当2b c ==时等号成立,所以214(84)93AG ≥⨯+=.即3AG ≥ .只有CD 满足.故选:CD .12.(2023春·湖北黄冈·高三校考开学考试)已知ABC 的重心为G ,过G 点的直线与边AB ,AC 的交点分别为M ,N ,若AM MB λ= ,且AMN 与ABC 的面积之比为920,则λ的可能取值为()A .43B .32C .53D .3【答案】BD【解析】如图,()AM MB AB AM λλ==- ,1AM AB λλ∴=+ ,即1AB AM λλ+= ,设AC t AN = ,则11()333t AG AB AC AM AN λλ+=+=+ ,M G N 、、三点共线,1=133t λλ+∴+,12t λ∴=-,所以12AC AN λ⎛⎫=- ⎪⎝⎭ ,AMN ∴ 与ABC 的面积之比为920,191sin sin 2202AM AN A AB AC A ∴=⨯⨯ ,即112029λλλ+⎛⎫⎛⎫-= ⎪⎪⎝⎭⎝⎭,化简得22990λλ-+=,解得32λ=或3.故选:BD13.(2023春·湖南长沙·高三长沙一中校联考)在三维空间中,定义向量的外积:a b ⨯ 叫做向量a 与b 的外积,它是一个向量,满足下列两个条件:①()a a b ⊥⨯ ,()b a b ⊥⨯ ,且a ,b 和a b ⨯ 构成右手系(即三个向量的方向依次与右手的拇指、食指、中指的指向一致,如图所示);②a b ⨯ 的模sin ,a b a b a b ⨯= ,(,a b 表示向量a ,b 的夹角).在正方体1111ABCD A B C D -中,有以下四个结论,正确的有()A .11AB AC AD DB⨯=⨯ B .111AC A D ⨯ 与1BD 共线C .AB AD AD AB ⨯=⨯ D .6BC AC ⨯ 与正方体表面积的数值相等【答案】ABD【解析】对于A ,设正方体的棱长为1,在正方体中1,60AB AC =︒ ,则111sin ,AB AC AB AC AB AC ⨯= ,因为11//BD B D ,且1160AD B ∠=︒,所以1,120AD DB =︒ ,所以111sin ,2AD DB AD DB AD DB ⨯== 所以11AB AC AD DB ⨯=⨯ ,所以A 正确;对于B ,1111AC B D ⊥,111A C BB ⊥,1111B B B D B ⋂=,111,B B B D ⊂平面11BB D D ,11A C ⊥平面11BB D D ,因为1BD ⊂平面11BB D D ,所以111BD A C ⊥,同理可证11BD A D ⊥,再由右手系知,111AC A D ⨯ 与1BD 同向,所以B 正确;对于C ,由a ,b 和a b ⨯ 构成右手系知,a b ⨯ 与b a ⨯ 方向相反,又由a b ⨯ 模的定义知,sin ,sin ,a b a b a b b a a b b a ⨯===⨯ ,所以a b b a ⨯=-⨯ ,则AB AD AD AB ⨯=-⨯ ,所以C 错误;对于D ,正方体棱长为a ,266sin 4566BC AC BC AC a a ⨯=⋅︒=⨯⨯,正方体表面积为26a ,所以D 对.故选:ABD .三、填空题14.(2023·全国·高三专题练习)已知函数243,0()41,01x x x f x x x ⎧++≤⎪=⎨->⎪+⎩.若关于x 的方程()()()2[]2110f x m f x m +--+=有6个不同的实数根,则m 的取值范围___________.【答案】7,5⎛- ⎝⎭【解析】因为243,0()41,01x x x f x x x ⎧++≤⎪=⎨->⎪+⎩,所以当0x ≤时,()243f x x x =++开口向上,对称轴为2x =-,()()min 21f x f =-=-,两零点为1,3x x =-=-;当0x >时,()411f x x =-+,则()f x 在()0,∞+上单调递减,零点为3x =,且()1f x >-;由此作出()f x的图像如图,.令()t f x =,则当13t -<<时,()t f x =有三个实数根,因为()()()2[]211f x m f x m +--+有6个不同的实数根,所以()22110t m t m +--+=必须有两个不等实根12,t t ,且()21,1,3t t ∈-,令()()2211g t t m t m =+--+,则()()103021132Δ0g g m ⎧->⎪>⎪⎪⎨--<-<⎪⎪>⎪⎩,即()()()()212110932110621221410m m m m m m m ⎧---+>⎪+--+>⎪⎨-<-<⎪⎪---+>⎩,解得75m -<<7,52m ⎛∈-- ⎝⎭.故答案为:7,5⎛- ⎝⎭.15.(2023春·全国·高一期末)已知函数241,1()log 3,1x x f x x x ⎧-⎪=⎨+>⎪⎩ 集合21()2()02M x f x t f x t ⎧⎫⎛⎫=-++=⎨⎬ ⎪⎝⎭⎩⎭∣,若集合M 中有3个元素,则实数t 的取值范围为________.【答案】{|0t t =或1}2t ≥【解析】令()f x m =,记21()(2)2g m m t m t =-++的零点为12,m m ,因为集合M 中有3个元素,所以()f x 的图象与直线12,y m y m ==共有三个交点,则,12001m m =⎧⎨<<⎩或12101m m =⎧⎨<<⎩或12001m m >⎧⎨<<⎩当10m =时,得0=t ,212m =,满足题意;当11m =时,得12t =,212m =,满足题意;当12001m m >⎧⎨<<⎩时,(0)01(1)1202g t g t t =>⎧⎪⎨=--+<⎪⎩,解得12t >.综上,t 的取值范围为{|0t t =或1}2t ≥.故答案为:{|0t t =或1}2t ≥16.(2023秋·黑龙江绥化·高一校考期末)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知30,12=︒=A b ,若ABC 有两解,写出a 的一个可能的值为__________.【答案】7(满足(612)a ∈,均可,答案不唯一)【解析】由于满足条件的ABC 有两个,则sin b A a b <<,即612a <<.故答案为:7(满足(612)a ∈,均可,答案不唯一).17.(2023·海南·统考模拟预测)已知函数()sin 314f x x m π⎛⎫++- ⎪⎝⎭在3,04π⎡⎤-⎢⎥⎣⎦上有3个零点1x ,2x ,3x ,其中123x x x <<,则1232x x x ++=______.【答案】53π-【解析】令()0f x =314x m π⎛⎫++= ⎪⎝⎭,故()314f x x m π⎛⎫=++- ⎪⎝⎭的零点为函数()314g x x π⎛⎫=++ ⎪⎝⎭与函数y =m 交点的横坐标,作出函数g (x )在3,04π⎡⎤-⎢⎥⎣⎦上的大致图象:令3()42x k k πππ+=+∈Z ,解得()123k x k ππ=+∈Z ,令1k =-,得4x π=-,则由图知2322=4x x ππ⎛⎫+=⨯-- ⎪⎝⎭,令2k =-,得712x π=-,则由图知12772=126x x ππ⎛⎫+=⨯-- ⎪⎝⎭,故123752263x x x πππ++=--=-.故答案为:53π-﹒18.(2023春·辽宁沈阳·高三沈阳市第一二〇中学校考阶段练习)已知双曲线22:14x y C m-=与直线2y x =无交点,则m 的取值范围是_____.【答案】(]0,16【解析】依题意,由22:14x y C m -=可得0m >,双曲线C 的渐近线方程为2y x =±,因为双曲线C 与直线2y x =无交点,所以直线2y x =应在两条渐近线上下两部分之间,2≤,解得016m <≤,即(]0,16m ∈.故答案为:(]0,16..。

高考数学(理)二轮专题练习【专题8】(2)数形结合思想(含答案)

高考数学(理)二轮专题练习【专题8】(2)数形结合思想(含答案)

第2讲数形结合思想1.数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2.运用数形结合思想分析解决问题时,要遵循三个原则:(1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应.(2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错.(3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线.3.数形结合思想解决的问题常有以下几种:(1)构建函数模型并结合其图象求参数的取值范围.(2)构建函数模型并结合其图象研究方程根的范围.(3)构建函数模型并结合其图象研究量与量之间的大小关系.(4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式.(5)构建立体几何模型研究代数问题.(6)构建解析几何中的斜率、截距、距离等模型研究最值问题.(7)构建方程模型,求根的个数.(8)研究图形的形状、位置关系、性质等.4.数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点:(1)准确画出函数图象,注意函数的定义域.(2)用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解.热点一 利用数形结合思想讨论方程的根例1 (2014·山东)已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)答案 B解析 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的范围为(12,1). 思维升华 用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2, x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( ) A .1 B .2 C .3 D .4答案 C解析 由f (-4)=f (0),f (-2)=-2,解得b =4,c =2,∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2, x >0.作出函数y =f (x )及y =x 的函数图象如图所示,由图可得交点有3个.热点二 利用数形结合思想解不等式、求参数范围例2 (1)已知奇函数f (x )的定义域是{x |x ≠0,x ∈R },且在(0,+∞)上单调递增,若f (1)=0,则满足x ·f (x )<0的x 的取值范围是________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.答案 (1)(-1,0)∪(0,1) (2)⎝⎛⎦⎤-∞,12 解析 (1)作出符合条件的一个函数图象草图即可,由图可知x ·f (x )<0的x 的取值范围是(-1,0)∪(0,1).(2)作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12.思维升华 求参数范围或解不等式问题时经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决问题,往往可以避免烦琐的运算,获得简捷的解答.(1)设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m 的取值范围是__________.(2)若不等式9-x 2≤k (x +2)-2的解集为区间[a ,b ],且b -a =2,则k =________. 答案 (1)[2-1,+∞) (2) 2解析 (1)集合A 是一个圆x 2+(y -1)2=1上的点的集合,集合B 是一个不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),即直线x +y +m =0应与圆相切或相离(在圆的下方),而当直线与圆相切时有|m +1|2=1,又m >0,所以m =2-1,故m 的取值范围是m ≥2-1. (2)令y 1=9-x 2,y 2=k (x +2)-2,在同一个坐标系中作出其图象,因9-x 2≤k (x +2)-2的解集为[a ,b ]且b -a =2.结合图象知b =3,a =1,即直线与圆的交点坐标为(1,22). 又因为点(-2,-2)在直线上, 所以k =22+21+2= 2.热点三 利用数形结合思想解最值问题例3 (1)已知P 是直线l :3x +4y +8=0上的动点,P A 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,则四边形P ACB 面积的最小值为________.(2)已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是( )A .[2,4]B .[2,16]C .[4,10]D .[4,16]答案 (1)22 (2)B解析 (1)从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形P AC 的面积S Rt △P AC =12|P A |·|AC |=12|P A |越来越大,从而S 四边形P ACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S四边形P ACB变小,显然,当点P 到达一个最特殊的位置,即CP垂直直线l 时,S 四边形P ACB 应有唯一的最小值, 此时|PC |=|3×1+4×1+8|32+42=3,从而|P A |=|PC |2-|AC |2=2 2.所以(S 四边形P ACB )min =2×12×|P A |×|AC |=2 2.(2)画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射线x -y -1=0(x ≥0)的距离d 的平方,最大值为|QA |2=16. ∵d 2=(|3-0-1|12+(-1)2)2=(2)2=2.∴取值范围是[2,16].思维升华 (1)在几何的一些最值问题中,可以根据图形的性质结合图形上点的条件进行转换,快速求得最值.(2)如果(不)等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解.(1)(2013·重庆)设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ |的最小值为( ) A .6 B .4 C .3 D .2 (2)若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则yx的最小值是____.答案 (1)B (2)2解析 (1)由题意,知圆的圆心坐标为(3,-1),圆的半径长为2,|PQ |的最小值为圆心到直线x =-3的距离减去圆的半径长,所以|PQ |min =3-(-3)-2=4.故选B.(2)可行域如图所示.又yx 的几何意义是可行域内的点与坐标原点连线的斜率k . 由图知,过点A 的直线OA 的斜率最小.联立⎩⎪⎨⎪⎧x -y +1=0,y =2,得A (1,2),所以k OA =2-01-0=2.所以y x 的最小值为2.1.在数学中函数的图象、方程的曲线、不等式所表示的平面区域、向量的几何意义、复数的几何意义等都实现以形助数的途径,当试题中涉及这些问题的数量关系时,我们可以通过图形分析这些数量关系,达到解题的目的.2.有些图形问题,单纯从图形上无法看出问题的结论,这就要对图形进行数量上的分析,通过数的帮助达到解题的目的.3.利用数形结合解题,有时只需把图象大致形状画出即可,不需要精确图象.4.数形结合思想常用模型:一次、二次函数图象;斜率公式;两点间的距离公式(或向量的模、复数的模);点到直线的距离公式等.真题感悟1.(2013·重庆)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ) A .52-4 B.17-1 C .6-2 2 D.17答案 A解析 设P (x,0),设C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C 1′C 2|=(2-3)2+(-3-4)2=5 2. 而|PM |+|PN |=|PC 1|+|PC 2|-4≥52-4.2.(2014·江西)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A.45π B.34π C .(6-25)π D.54π 答案 A解析 ∵∠AOB =90°,∴点O 在圆C 上. 设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离, ∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上, ∴当且仅当O ,C ,D 共线时,圆的直径最小为|OD |. 又|OD |=|2×0+0-4|5=45, ∴圆C 的最小半径为25, ∴圆C 面积的最小值为π(25)2=45π.3.(2013·课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]答案 D解析 函数y =|f (x )|的图象如图. ①当a =0时,|f (x )|≥ax 显然成立. ②当a >0时,只需在x >0时, ln(x +1)≥ax 成立.比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,所以a ≥-2. 综上所述:-2≤a ≤0.故选D.4.(2014·天津)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________. 答案 (0,1)∪(9,+∞)解析 设y 1=f (x )=|x 2+3x |,y 2=a |x -1|,在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点.当4个交点横坐标都小于1时,⎩⎪⎨⎪⎧y =-x 2-3x ,y =a (1-x )有两组不同解x 1,x 2, 消y 得x 2+(3-a )x +a =0,故Δ=a 2-10a +9>0, 且x 1+x 2=a -3<2,x 1x 2=a <1,联立可得0<a <1. 当4个交点横坐标有两个小于1,两个大于1时,⎩⎪⎨⎪⎧y =x 2+3x ,y =a (x -1)有两组不同解x 3,x 4. 消去y 得x 2+(3-a )x +a =0,故Δ=a 2-10a +9>0, 且x 3+x 4=a -3>2,x 3x 4=a >1,联立可得a >9, 综上知,0<a <1或a >9. 押题精练1.方程|x 2-2x |=a 2+1(a >0)的解的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 (数形结合法) ∵a >0,∴a 2+1>1. 而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.2.不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .(-∞,-1]∪[4,+∞) B .(-∞,-2]∪[5,+∞) C .[1,2]D .(-∞,1]∪[2,+∞) 答案 A解析 f (x )=|x +3|-|x -1|=⎩⎪⎨⎪⎧-4 (x <-3),2x +2 (-3≤x <1),4 (x ≥1).画出函数f (x )的图象,如图,可以看出函数f (x )的最大值为4,故只要a 2-3a ≥4即可,解得a ≤-1或a ≥4.正确选项为A.3.经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.答案 [-1,1] [0,π4]∪[3π4,π)解析 如图所示,结合图形:为使l 与线段AB 总有公共点,则k P A ≤k ≤k PB ,而k PB >0,k P A <0,故k <0时,倾斜角α为钝角,k =0时,α=0,k >0时,α为锐角. 又k P A =-2-(-1)1-0=-1,k PB =-1-10-2=1,∴-1≤k ≤1. 又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈[0,π4]∪[3π4,π).4.(2013·山东)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________. 答案2解析 由题意知原点O 到直线x +y -2=0的距离为|OM |的最小值. 所以|OM |的最小值为22= 2. 5.(2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率为________. 答案 -33解析 ∵S △AOB =12|OA ||OB |sin ∠AOB =12sin ∠AOB ≤12.当∠AOB =π2时,S △AOB 面积最大.此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0. 由d =|2k |k 2+1=22得k =-33.6.设函数f (x )=ax 3-3ax ,g (x )=bx 2-ln x (a ,b ∈R ),已知它们在x =1处的切线互相平行. (1)求b 的值;(2)若函数F (x )=⎩⎪⎨⎪⎧f (x ),x ≤0,g (x ),x >0,且方程F (x )=a 2有且仅有四个解,求实数a 的取值范围.解 函数g (x )=bx 2-ln x 的定义域为(0,+∞), (1)f ′(x )=3ax 2-3a ⇒f ′(1)=0, g ′(x )=2bx -1x ⇒g ′(1)=2b -1,依题意得2b -1=0,所以b =12.(2)x ∈(0,1)时,g ′(x )=x -1x <0,即g (x )在(0,1)上单调递减,x ∈(1,+∞)时,g ′(x )=x -1x >0,即g (x )在(1,+∞)上单调递增,所以当x =1时,g (x )取得极小值g (1)=12;当a =0时,方程F (x )=a 2不可能有四个解;当a <0,x ∈(-∞,-1)时,f ′(x )<0,即f (x )在(-∞,-1)上单调递减, x ∈(-1,0)时,f ′(x )>0, 即f (x )在(-1,0)上单调递增,所以当x =-1时,f (x )取得极小值f (-1)=2a , 又f (0)=0,所以F (x )的图象如图(1)所示, 从图象可以看出F (x )=a 2不可能有四个解. 当a >0,x ∈(-∞,-1)时,f ′(x )>0, 即f (x )在(-∞,-1)上单调递增, x ∈(-1,0)时,f ′(x )<0, 即f (x )在(-1,0)上单调递减,所以当x =-1时,f (x )取得极大值f (-1)=2a .又f (0)=0,所以F (x )的图象如图(2)所示,从图(2)看出,若方程F (x )=a 2有四个解,则12<a 2<2a ,所以,实数a 的取值范围是⎝⎛⎭⎫22,2.。

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题(含解析)高中数学数形结合思想经典例题一、选择题1.已知函数f (x )=3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0)D .(0,1)3.函数f (x )=ln|x +cos x |的图象为( )4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)5.实数x ,y 满足不等式组x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .256.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.128.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<1<="" bdsfid="103" p="">9.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定10.设关于x ,y 的不等式组2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259D.26912.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( ) A.15 B.25 C.12D .113.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3D .214.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( )A .1B .2C .3D .4二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.17.已知变量x ,y 满足约束条件x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.19.已知函数f (x )=?-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.20.已知函数f (x )=?|x|,x≤m ,x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是________.高中数学数形结合思想经典例题解析一、选择题1.已知函数f (x )=?3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数【答案】 B【解析】作出函数f (x )的图象,如图所示,可知A ,C ,D 均错.f (f (14))=3log 214=3-2=19,故B 正确.2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1)【答案】 C【解析】∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点.又∵f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0,∴(6a +5)(2a +3)<0,解得-32<-5<="" bdsfid="173" p=""><-5<="" bdsfid="175" p="">6.<-5<="" bdsfid="177" p="">又∵a ∈Z ,∴a =-1.<-5<="" bdsfid="179" p="">不等式f (x )>1,即-x 2-x >0.解得-1<="" )=ln|x="" 3.函数f=""<-5<="" bdsfid="182" p=""><-5<="" bdsfid="184" p="">【答案】 A<-5<="" bdsfid="186" p="">【解析】因为f (0)=ln|cos0|=0,故排除C ,D ;又f (1)=ln|1+cos1|>ln 1=0,故排除B ,选A.<-5<="" bdsfid="188" p="">4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )<-5<="" bdsfid="190" p="">x <0的解集为( )<-5<="" bdsfid="192" p="">A .(-2,0)∩(2,+∞)<-5<="" bdsfid="194" p="">B .(-∞,-2)∪(0,2)<-5<="" bdsfid="196" p="">C .(-∞,-2)∪(2,+∞)<-5<="" bdsfid="198" p="">D .(-2,0)∪(0,2)<-5<="" bdsfid="200" p="">【答案】 D<-5<="" bdsfid="202" p="">【解析】由已知条件可以画出函数f (x )的草图,如图所示.由函数f (x )为奇函数可化简不等式f (x )-f (-x )x <0为2f (x )<-5<="" bdsfid="204" p="">x <0.若x >0,则需<-5<="" bdsfid="206" p="">有f (x )<0,结合图象可知00,结合图象可知<-5<="" bdsfid="209" p="">-2<0.综上可知,不等式的解集为(-2,0)∪(0,2).<="" bdsfid="210" p=""><-5<="" bdsfid="212" p="">5.实数x ,y 满足不等式组<-5<="" bdsfid="214" p="">?x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )<-5<="" bdsfid="216" p="">A.215<-5<="" bdsfid="218" p="">5<-5<="" bdsfid="220" p="">B .21<-5<="" bdsfid="222" p="">C .20<-5<="" bdsfid="224" p="">D .25<-5<="" bdsfid="226" p="">【答案】 B<-5<="" bdsfid="228" p="">【解析】作出不等式组表示的平面区域,如下图中阴影部分所示.z =|x +2y -4|=|x +2y -4| <-5<="" bdsfid="230" p="">5<-5<="" bdsfid="232" p="">·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.<-5<="" bdsfid="234" p="">由?<-5<="" bdsfid="236" p="">x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max<-5<="" bdsfid="238" p="">=21.<-5<="" bdsfid="240" p="">6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A .(0,12)<-5<="" bdsfid="242" p="">B .(1<-5<="" bdsfid="244" p="">2,1)<-5<="" bdsfid="246" p="">C .(1,2)<-5<="" bdsfid="248" p="">D .(2,+∞)<-5<="" bdsfid="250" p="">【答案】 B<-5<="" bdsfid="252" p="">【解析】在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故1<-5<="" bdsfid="254" p="">2<-5<="" bdsfid="256" p=""><1.<="" bdsfid="257" p=""> <-5<="" bdsfid="259" p=""><-5<="" bdsfid="261" p="">7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +y<-5<="" bdsfid="263" p="">x +y 的最小值为( )<-5<="" bdsfid="265" p="">A.53 B .2 C.35<-5<="" bdsfid="267" p="">D.12<-5<="" bdsfid="269" p="">【答案】 A<-5<="" bdsfid="271" p="">【解析】依题意,得实数x ,y 满足<-5<="" bdsfid="273" p="">?x +y -3≥0,x -y -3≤0,0≤y≤1,画出可行域如图阴<-5<="" bdsfid="275" p="">影部分所示,其中A (3,0),C (2,1),z =2+y<-5<="" bdsfid="277" p="">x 1+y x =1+11+y x ∈[5<-5<="" bdsfid="279" p="">3,2],故<-5<="" bdsfid="281" p="">选A.<-5<="" bdsfid="283" p="">8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<="" p="" 【答案】=""><-5<="" bdsfid="286" p="">【解析】本题考查函数的性质.在同一坐标系下,画出函数y =10x 与y =|lg(-x )|的图象,结合图象不难看出,它们的两个交点中,其中一个交点横坐标属于<-5<="" bdsfid="288" p="">(-∞,-1),另一个交点横坐标属于(-1,0),即在x 1,x 2中,其中一个属于(-∞,-1),另一个属于(-1,0),不妨设x 1∈(-∞,-1),x 2∈(-1,0),则有10x 1=|lg(-x 1)|=lg(-x 1),10x 2=|lg(-x 2)|=-lg(-x 2),10x 1-10x 2=lg(-x 1)+lg(-x 2)=lg(x 1x 2)<0,0<="" )在(0,1)内的一段图象是如图所示的一段曲线,若0<x="" 1x="" 1<x="" 2 <-5<="" bdsfid="291" p=""><-5<="" bdsfid="293" p="">A.f (x 1)x 1<f (x 2)x 2<-5<="" bdsfid="295" p="">B.f (x 1)x 1=f (x 2)<-5<="" bdsfid="297" p="">x 2<-5<="" bdsfid="299" p="">C.f (x 1)x 1>f (x 2)x 2<-5<="" bdsfid="301" p="">D .不能确定<-5<="" bdsfid="303" p="">【答案】 C<-5<="" bdsfid="305" p="">【解析】如图,设曲线上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),kOP 1=<-5<="" bdsfid="307" p="">f (x 1)-0x 1-0=f (x 1)x 1,kOP 2=f (x 2)-0x 2-0<-5<="" bdsfid="309" p="">=f (x 2)<-5<="" bdsfid="311" p="">x 2,由于0<x 1<-5<="" bdsfid="313" p=""><x 2<1,根据斜率与倾斜角之间的关系,显然有kOP 1>kOP 2,即f (x 1)x 1>f (x 2)<-5<="" bdsfid="315" p="">x 2<-5<="" bdsfid="317" p="">,故选C. 10.设关于x ,y 的不等式组<-5<="" bdsfid="319" p="">?2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0 <-5<="" bdsfid="321" p="">=2,求m 的取值范围是( ) A .(-∞,4<-5<="" bdsfid="323" p="">3)<-5<="" bdsfid="325" p="">B .(-∞,1<-5<="" bdsfid="327" p="">3)<-5<="" bdsfid="329" p="">C .(-∞,-2<-5<="" bdsfid="331" p="">3)<-5<="" bdsfid="333" p="">D .(-∞,-5<-5<="" bdsfid="335" p="">3<-5<="" bdsfid="337" p="">)<-5<="" bdsfid="339" p="">【答案】 C<-5<="" bdsfid="341" p="">【解析】作出不等式组所表示的平面区域,根据题设条件分析求解.当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.<-5<="" bdsfid="343" p="">要使可行域内包含y =1<-5<="" bdsfid="345" p="">2<-5<="" bdsfid="347" p="">x -1上的点,只需可行域边界点(-m ,m )在直线y =<-5<="" bdsfid="349" p="">12x -1的下方即可,即m <-12m -1,解得m <-23<-5<="" bdsfid="351" p="">. 11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259 D.269<-5<="" bdsfid="353" p="">【答案】 B<-5<="" bdsfid="355" p="">【解析】由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →<-5<="" bdsfid="357" p="">=0,又因为AB 和AC 为三角形的两条边,不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 为x 轴,以AB 为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0),由E ,F 为BC 的三等分点知E (23,23),F (13,4<-5<="" bdsfid="359" p="">3),所以AE →=(23,<-5<="" bdsfid="361" p="">23),AF →=(13,4<-5<="" bdsfid="363" p="">3),所以AE →·AF →=23×13+23×43=109<-5<="" bdsfid="365" p="">. 12.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤4 <-5<="" bdsfid="367" p="">5成立,则实数a<-5<="" bdsfid="369" p="">的值为( ) A.15 B.2<-5<="" bdsfid="371" p="">5 C.12<-5<="" bdsfid="373" p="">D .1 【答案】 A<-5<="" bdsfid="375" p="">【解析】(x -a )2+(ln x 2-2a )2表示点P (x ,ln x 2)与点Q (a ,2a )距离的平方.而点P 在曲线g (x )=2ln x 上,点Q (a ,2a )在直线y =2x 上.<-5<="" bdsfid="377" p="">因为g ′(x )=2x ,且y =2x 表示斜率为2的直线,所以由2<-5<="" bdsfid="379" p="">x<-5<="" bdsfid="381" p="">=2,解得x =1.<-5<="" bdsfid="383" p="">从而曲线g (x )=2ln x 在x =1处的切线方程为y =2(x -1),又直线y =2(x -1)与直线y =2x 平行,且它们间的距离为<-5<="" bdsfid="385" p="">222+(-1)2<-5<="" bdsfid="387" p="">=25<-5<="" bdsfid="389" p="">5,如图所示.<-5<="" bdsfid="391" p=""><-5<="" bdsfid="393" p="">故|PQ |的最小值为25<-5<="" bdsfid="395" p="">5<-5<="" bdsfid="397" p="">,<-5<="" bdsfid="399" p="">即f (x )=(x -a )2+(ln x 2-2a )2的最小值为(255)2=4<-5<="" bdsfid="401" p="">5,当|PQ |最小时,P 点的坐标为(1,0),所以<-5<="" bdsfid="403" p="">2a -0a -1<-5<="" bdsfid="405" p="">×2=-1,解得a =1<-5<="" bdsfid="407" p="">5.<-5<="" bdsfid="409" p="">13.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →<-5<="" bdsfid="411" p="">,则|QF |=( ) A.72 B.52 C .3 D .2<-5<="" bdsfid="413" p="">【答案】 C<-5<="" bdsfid="415" p="">【解析】利用FP →=4FQ →<-5<="" bdsfid="417" p="">转化长度关系,再利用抛物线定义求解.∵FP →=4FQ →,∴|FP →|=4|FQ →|. ∴<-5<="" bdsfid="419" p="">|PQ||PF|=3<-5<="" bdsfid="421" p="">4<-5<="" bdsfid="423" p="">.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4. ∴<-5<="" bdsfid="425" p="">|PQ||PF|=|QQ′||AF|=3<-5<="" bdsfid="427" p="">4<-5<="" bdsfid="429" p="">.∴|QQ ′|=3. 根据抛物线定义可知|QQ ′|=|QF |=3,故选C.<-5<="" bdsfid="431" p="">14.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于3<-5<="" bdsfid="433" p="">4,抛物线E :y 2=<-5<="" bdsfid="435" p="">2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:<-5<="" bdsfid="437" p="">x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4<-5<="" bdsfid="439" p="">【答案】 B<-5<="" bdsfid="441" p="">【解析】 x 2<-5<="" bdsfid="443" p="">a 2-4y 2=1的右顶点坐标为(a ,0),一条渐近线为<-5<="" bdsfid="445" p="">x -2ay =0.由点到直线的距离公式得d =<-5<="" bdsfid="447" p="">|a|12+4a 2=34<-5<="" bdsfid="449" p="">,解得a =<-5<="" bdsfid="451" p="">3<-5<="" bdsfid="453" p="">2或a =-32(舍去),故双曲线的方程为4x 2<-5<="" bdsfid="455" p="">3<-5<="" bdsfid="457" p="">-4y 2=1.因为c =<-5<="" bdsfid="459" p="">34+14<-5<="" bdsfid="461" p="">=1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p =2,x =-1是抛物线的准线,如图,作MA ⊥l 1于点A ,MB ⊥l 2于<-5<="" bdsfid="463" p="">点B ,设抛物线的焦点为F ,连接MF ,则由抛物线的定义知|MB |=|MF |,当M ,A ,F 三点共线时,距离之和最小,其最小值是点F 到l 1的距离,由点到直线的距离公式可得d 1=|4+6|<-5<="" bdsfid="465" p="">(-3)2+42=10<-5<="" bdsfid="467" p="">5=2,即距离之和的最小值为2,选B.<-5<="" bdsfid="469" p="">二、填空题<-5<="" bdsfid="471" p="">15.已知函数y =|x 2-1|<-5<="" bdsfid="473" p="">x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是<-5<="" bdsfid="475" p="">__________.<-5<="" bdsfid="477" p="">【答案】 (0,1)∪(1,4) 【解析】根据绝对值的意义,<-5<="" bdsfid="479" p="">y =|x 2-1|x -1=<-5<="" bdsfid="481" p="">x +1,x>1或x<-1,-x -1,-1≤x<1.<-5<="" bdsfid="483" p=""><-5<="" bdsfid="485" p="">在直角坐标系中作出该函数的图象,如下图中实线所示.根据图象可知,当0<1或1<4时有两个交点.<="" bdsfid="486" p=""><-5<="" bdsfid="488" p=""><-5<="" bdsfid="490" p="">16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.【答案】 (-7,3)<-5<="" bdsfid="492" p="">【解析】当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).<-5<="" bdsfid="494" p="">17.已知变量x ,y 满足约束条件<-5<="" bdsfid="496" p="">?x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值<-5<="" bdsfid="498" p="">为________.【答案】-2<-5<="" bdsfid="500" p="">【解析】 F (x ,y )=log 2(y +1)+log 12(x +1)=log 2(y +1)-log 2(x +1)=log 2y +1x +1,令k =y +1<-5<="" bdsfid="502" p="">x +1<-5<="" bdsfid="504" p="">=<-5<="" bdsfid="506" p="">y -(-1)<-5<="" bdsfid="508" p="">x -(-1)<-5<="" bdsfid="510" p="">,则k 表示可行域内(如图所示)的点与P (-1,-1)所在直线的斜率.<-5<="" bdsfid="512" p=""><-5<="" bdsfid="514" p="">18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.【答案】 14<-5<="" bdsfid="516" p="">【解析】如图所示,圆的方程可化为(x -2)2+y 2=1,抛物线的焦点F (2,0),准线x =-2.<-5<="" bdsfid="518" p=""><-5<="" bdsfid="520" p="">由y =x -2,y 2=8x ,<-5<="" bdsfid="522" p="">得x 2-12x +4=0,设直线与抛物线交于A (x A ,y A ),D (x D ,y D ),则x A +x D =12. |AB |+|CD |=(|AF |-|BF |)+(|DF |-|CF |)=(|AF |-1)+(|DF |-1)=|AF |+|DF |-2,由抛物线的定义得|AF |=x A +2,|DF |=x D +2,故|AB |+|CD |=(|AF |+|DF |)-2=x A +x D +2=14.<-5<="" bdsfid="524" p="">19.已知函数f (x )=?<-5<="" bdsfid="526" p="">-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.<-5<="" bdsfid="528" p="">【答案】 [-2,0]<-5<="" bdsfid="530" p="">【解析】画出函数|f (x )|的图象,数形结合求解.<-5<="" bdsfid="532" p=""><-5<="" bdsfid="534" p="">作出函数y =|f (x )|的图象,如图,当|f (x )|≥ax 时,必有k ≤a ≤0,<-5<="" bdsfid="536" p="">其中k 是y =x 2-2x (x ≤0)在原点处的切线斜率,显然,k =-2. ∴a 的取值范围是[-2,0].<-5<="" bdsfid="538" p="">20.已知函数f (x )=?<-5<="" bdsfid="540" p="">|x|,x≤m ,<-5<="" bdsfid="542" p="">x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b<-5<="" bdsfid="544" p="">有三个不同的根,则m 的取值范围是________.【答案】 (3,+∞)<-5<="" bdsfid="546" p="">【解析】 f (x )=?<-5<="" bdsfid="548" p="">|x|,x≤m ,<-5<="" bdsfid="550" p="">x 2-2mx +4m ,x>m ,当x >m 时,f (x )=x 2-2mx +4m =(x -m )2+4m -m 2,<-5<="" bdsfid="552" p="">其顶点为(m ,4m -m 2);当x ≤m 时,函数f (x )的图象与直线x<-5<="" bdsfid="554" p="">=m 的交点为Q (m ,m ).①当m>0,<-5<="" bdsfid="556" p="">4m -m 2≥m ,<-5<="" bdsfid="558" p="">即0<="" bdsfid="559" p="" ≤3时,函数f=""><-5<="" bdsfid="561" p="">直线y =b 与函数f (x ) 的图象有一个或两个不同的交点,不符合题意;②当?<-5<="" bdsfid="563" p="">4m -m 2<=""><-5<="" bdsfid="566" p="">m>0,即<-5<="" bdsfid="568" p="">m >3时,函数f (x )的图象如图2所示,则存在实数b 满足4m -m 2<-5<="" bdsfid="571" p=""><-5<="" bdsfid="573" p="">。

2023年高考数学填选压轴题专题20 用数形结合法求解零点问题

2023年高考数学填选压轴题专题20 用数形结合法求解零点问题

专题20 用数形结合法求解零点问题【方法点拨】1.函数的零点的实质就是函数图象与x 轴交点的横坐标,解决实际问题时,往往需分离函数,将零点个数问题转化为两个函数图象交点个数问题,将零点所在区间问题,转化为交点的横坐标所在区间问题.2.分离函数的基本策略是:一静一动,一直一曲,动直线、静曲线,要把构造“好函数”作为第一要务.3.作图时要注意运用导数等相关知识分析函数的单调性、奇偶性、以及关键点线(如渐进线),以保证图像的准确.【典型题示例】例1 已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2g x f x kx x =-- (k R ∈)恰有4个零点,则k 的取值范围是( ) A. 1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B. 1,(0,22)2⎛⎫-∞- ⎪⎝⎭C. (,0)(0,22)-∞D. (,0)(22,)-∞+∞【答案】D【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.点评:本题是一道由函数零点个数求参数的取值范围的问题,其基本思路是运用图象,将零点个数问题转化为两函数图象交点个数,考查函数与方程的应用、数形结合思想、转化与化归思想、导数知识、一元二次方程、极值不等式、特值等进行分析求参数的范围.例2 已知函数()2e 143,13xx f x x x x ⎧≤⎪=⎨-+-<<⎪⎩,,若函数()()2g x f x k x =-+有三个零点,则实数k的取值范围是__________.【答案】151e 0,,15e 3⎛⎫⎛⎤⎪ ⎥ ⎪⎝⎦⎝⎭ 【解析】作()2e ,143,13xx f x x x x ⎧≤⎪=⎨-+-<<⎪⎩与2y k x =+图象,由243(2),0,2x x k x k x -+-=+>>-得2222(1)(44)430k x k x k ++-++=由2222(44)4(1)(43)0k k k ∆=--++=得2101515k k k =>∴=,对应图中分界线①; 由(2),0,2y k x k x =+>>-过点(1,)e 得3ek =,对应图中分界线②; 当(2),0,2y k x k x =+>>-与x y e =相切于00(,)x x e 时,因为e xy '=,所以0001(2)01,x k e k x k x k e==+>∴=-=,对应图中分界线③;因为函数()()2g x f x k x =-+有三个零点,所以实数k的取值范围是1e ,e 3⎛⎛⎤⎥ ⎝⎦⎝⎭ 故答案为:1e 0,,15e 3⎛⎛⎤⎥ ⎝⎦⎝⎭ 例3 已知函数与的零点分别为 和.若,则实数的取值范围是 .【答案】(),1-∞-【分析】将问题转化为函数y m =与函数1()1h x x x =--和1()ln 2e x x x =-交点的大小问题,作出函数图像,观察图像可得结果.【解析】由2()(1)10f x x m x =-+-=,得11m x x=--, 对于函数1()1h x x x=--,在()0,∞+上单调递增,在(),0-∞上单调递减, 由()ln 220g x x x m =--=,得1ln 2m x x =-,对于1()ln 2e x x x =-,'112122x y x x -=-=得1ln 2y x x =-在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,最大值为111ln 222-,其图像如图, 2()(1)1f x x m x =-+-()ln 22g x x x m =--12x x ,34x x ,1324x x x x <<<m令111ln 2x x x x --=-得(1,1)A -, 要1324x x x x <<<,则直线y m =要在A 点下方,1m ∴<-,∴实数的取值范围是(,1)-∞-.例4 已知函数22(1), 0()2, 0k x f x xx k x ⎧-<⎪=⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且仅有四个不同的零点,则实数k 的取值范围是 . 【答案】(27,+∞)【分析】由()()()g x f x f x =-+知,()()()g x f x f x =-+是偶函数,研究“一半”,问题转化为22(), 0k g x x k x x =+->有且仅有两个不同的零点,分离函数得()21210x x k x=-+>,两边均为基本初等函数,当曲线在一点相切时,两曲线只有一个交点,利用导数知识求出切点坐标,当抛物线开口变大,即函数值小于切点的纵坐标即可. 【解析】易知()()()g x f x f x =-+是偶函数,问题可转化为22(), 0kg x x k x x=+->有且仅有两个不同的零点. 分离函数得()21210x x k x=-+>,由图形易知k >0, 问题进一步转化为()21210y x y x k x==-+>、有两个交点问题.先考察两曲线相切时的“临界状态”,此时,两曲线只有一个交点m所以当21133k ⨯<时,即k >27时,上述两个函数图象有两个交点 综上所述,实数k 的取值范围是(27,+∞). 点评:1.本题解法较多,但利用“形”最简单,只要函数分离的恰当,这种题实现“分分钟”解决也是可及的.2.有关函数零点的问题解法灵活,综合考察函数的图象与性质、导数的几何意义、分离函数的意识、分离参数的意识等,综合性强,较难把握.3.利用“数学结合法”求解零点问题的要点有二.一是分离函数,基本策略是“一静一动、一直一曲,动直线、定曲线”,函数最好是基本初等函数;二是求解过程中的“临界状态”的确定,若是一直一曲,一般相切是“临界状态”,若是两曲,一般公切是“临界状态”(曲线的凸凹性相反,即曲线在公切线的两侧)例5 已知函数2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,若函数()f x 有四个不同的零点,则实数m 的取值范围是 .【答案】2(,)4e -∞-【解析】2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,是偶函数,问题转化为2=0x e mx +,即2=x e mx -(0x >)有两个零点易知0m <,两边均为曲线,较难求解.两边取自然对数,()=ln 2ln x m x -+,即()ln 2ln x m x --= 问题即为:()()ln g x x m =--与()2ln h x x =有两个交点先考察直线y x b =+与()2ln h x x =相切,即只有一点交点的“临界状态” 设切点为00(,2ln )x x ,则002()1h x x '==,解得02x =,此时切点为(2,2ln 2)代入2ln22b =-再求()()ln g x x m =--与()2ln h x x =有两个交点时,m 的取值范围 由图象知,当()()ln g x x m =--在直线y x b =+下方时,满足题意 故()ln 2ln 22m b --<=-,解之得24e m <-,此时也符合0m <所以实数m 的取值范围是2(,)4e -∞-.点评:取对数的目的在于“化双曲为一直一曲”,简化了运算、难度,取对数不影响零点的个数. 例6 若函数3||()2x f x kx x =-+有三个不同的零点,则实数k 的取值范围为 . 【答案】 27(,)32-∞-⋃+∞(0,) 【分析】本题的难点是“分离函数”,函数分离的是否恰当、易于进一步解题,是分离时应综合考虑的重要因素,也是学生数学素养、能力的综合体现.本例中,可将已知变形为下列多种形式:3||2x kx x =+2||(2)x kx x x =+、3||(2)x k x x=+,31(2)x x k x +=,···,但利用31(2)x x k x +=较简单. 【解析】易知0是函数3||()2x f x kx x =-+一个的零点, 当x ≠0时,3||()02x f x kx x =-=+可化为31(2)x x k x +=,考虑1y k=与3(2)()x x g x x +=有且只有两个非的取值范围是 .【答案】()4ln 2,ln(e 1)2+-【分析】从结构上看,首先考虑“对化指”,方程24242ln(e1)2e1e0x x x a x a --+-+=+-⇔+-=,属于复合函数的零点问题,内函数是指数型,外函数是二次函数.设242()e 1ex x a h x -+-=+-,x R ∈,则()h x 为偶函数,研究 “一半”, 令2ex t -=,x >0,则关于t 的方程2e 10at t -+=在(2e -,+∞)内有两个不相等的实根,分离参数,利用“形”立得. 【解析】方程24242()()ln(e 1)2e1e0x x x a f x g x x a --+-=⇔+=+-⇔+-=令242()e1ex x a h x -+-=+-,x R ∈,则显然()h x 为偶函数,所以方程()()f x g x =有四个实根⇔函数242()e 1e x x a h x -+-=+-,x >0有两个零点,令2ex t -=,x >0,则关于t 的方程2e 10at t -+=,即1e at t=+在(2e -,+∞)内有两个不相等的实根,结合函数1y t t=+,2e t ->的图像,得222e e e a -<<+,即4ln 2ln(e 1)2a <<+-,则实数a 的取值范围是()4ln 2,ln(e 1)2+-.【巩固训练】1.已知函数22()(21)(31)(2)(2)xx f x a a e a x e x =---+++有四个零点,则实数a 的取值范围是__________.A. 1,12⎛⎫⎪⎝⎭ B. 11,2e +⎛⎫ ⎪⎝⎭C. 11,22e +⎛⎫⎪⎝⎭ D. 11,11,22e +⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数21,0()1,02x xx x x f x e e x x ⎧++≥⎪=⎨+<⎪⎩,()xg x me =(其中m 是非零实数),若函数()y f x =与函数()y g x =的图象有且仅有两个交点,则m 的取值范围为 .3.已知函数32ln ,0(),0e x xf x x x x >⎧=⎨+≤⎩,若函数2()()g x f x ax =-有三个不同的零点,则实数a 的取值范围是_____.4.已知e 为自然对数的底数,若方程|xlnx —ex +e |=mx 在区间[e1,e 2]上有三个不同实数根,则实数m 的取值范围是________. 5.已知关于x 的方程2x kx x =-有三个不同的实数解,则实数k 的取值范围是______6.已知关于x 的方程33kx x x =+有三个不同的实数解,则实数k 的取值范围是 .7. 若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为____________.8. 若函数有两个零点,则实数的取值范围是 . 9.已知函数()2x f x e x a =-+有零点,则实数a 的取值范围是____________. 10. 已知函数()f x ax =,ln ()x g x x =,其中a 为实数.若关于x 的方程()()f x g x =在1,e e ⎡⎤⎢⎥⎣⎦上有两个实数解,则实数a 的取值范围为 .11. 已知函数32, 0(), 0ax x x f x x x ⎧++<⎪=⎨>⎪⎩,若函数()(1)(1)g x f x f x =-+-有且仅有四个不同的零点,则实数a 的取值范围是 . 12.已知函数3()f x x a a x=--+,,若关于的方程()2f x =有且仅有三个不同的实根,且它们成等差数列,则实数取值的集合为 .()(0a 1)xf x a x a a =--≠>),且a a R ∈x a【答案与提示】1.【答案】 D【提示】()(2)(21)(2)x xf x ae x a e x ⎡⎤⎡⎤=-+--+⎣⎦⎣⎦,根据对称性,只需考察1(2)x e x a=+有两个零点,得0a e <<,故有002121a e a e a a <<⎧⎪<-<⎨⎪≠-*⎩,前两者是保证两方程各自有两解,这里(*)易漏,它是保证两方程解不相同的.2.【答案】⎪⎭⎫⎢⎣⎡⋃⎪⎭⎫ ⎝⎛e 3,121,0【提示】转化为函数21,0()11,02xx x x e F x x x ⎧++≥⎪⎪=⎨⎪+<⎪⎩与函数()G x m =的图象有且仅有两个交点最简.3.【答案】(0,1){2}-【提示】易知0是其中一个零点,问题转化为y a =与函数22ln ,0()1,0e xx x k x x x⎧>⎪⎪=⎨⎪+<有两个不同的零点.4.【答案】1eln ex ex,问题转化为)yf 与m 的图象在区间[e1,e 2]上有三个交点.∵221(e x ef x xx x, ∴当1(,)xe e时,()0f x ,()f x 减;当2(,)x e e 时,()0f x ,()f x 增.故当x e 时,()f x 取得极小值,且20e .又(1)f 210e e ,21()20f e e e作出()y f x 的图象,由图象知实数m 的取值范围是:12,2ee e).5.【答案】102k <<【解析】1,021,02,0x x k x x R x ⎧>⎪-⎪⎪=-<⎨-⎪=⎪⎪⎩,画图得出k 的取值范围.6.【答案】0>k 或41-<k . 【提示】参见例6.思路二:(半分)32, 0t at t t -=-->12.【答案】95⎧⎪-⎨⎪⎪⎩⎭【提示】变形为3=+3x a a x -+转化为y x a a =-+与3=+3y x有且仅有三个不同的交点,而函数y x a a =-+的图象是定点在直线y x =上、开口向上的V 形折线.。

高考数学必修内容复习 数形结合思想 试题

高考数学必修内容复习 数形结合思想 试题

卜人入州八九几市潮王学校第三2021届高考数学必修内容复习数形结合思想一、选择题〔此题每一小题5分,一共60分〕 1.集合P={0,m},Q={x │Z x x x∈<-,0522},假设P∩Q≠Φ,那么m 等于〔〕A .1B .2C .1或者25D .1或者22.使得点)2sin ,2(cos ααA 到点)sin ,(cos ααB 的间隔为1的α的一个值是〔〕A .12π B .6πC .3π-D .4π-3.将函数x x f 2sin :→的图象向右平移B=[-1,1]个单位长度,再作关于x 轴的对称变换,得到y x x R =∈c o s 2,的图象,那么f x ()可以是 〔〕A .s i n xB .c o s xC .2s i n xD .2c o s x4.某工厂六年来消费某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,那么该厂六年来这种产品的可用图像表示的是〔〕A.B.C.D.7.直角坐标x O y 平面上,平行直线x =n 〔n =0,1,2,……,5〕与平行直线y =n 〔n =0, 1,2,……,5〕组成的图形中,矩形一共有〔〕36Cot36C ot 36C ot 36C otA .25个B .36个C .100个D .225个8.方程11122=---x y y x所对应的曲线图形是〔〕A .B .C .D .9.设0<x <π,那么函数xxy sin cos 2-=的最小值是〔〕A .3B .2C .3D .2-310.四面体ABCD 的六条棱中,其中五条棱的长度都是2,那么第六条棱长的取值范围是()A .()2,0B .()32,0C .()32,2D .[)4,211.假设直线1+=kx y 与曲线12+=y x 有两个不同的交点,那么k 的取值范围是〔〕A .12-<<-kB .22<<-kC .21<<kD .2-<k或者2>k12.某企业购置了一批设备投入消费,据分析每台设备消费的总利润y 〔单位:万元〕与年数x ()N x ∈满足如图的二次函数关系。

高考数学复习——数形结合难题

高考数学复习——数形结合难题

3.直线y kx =与曲线|ln ||2|x y e x =--有3个公共点时,实数k 的取值范围是__________.4.已知定义在R 上偶函数)(x f ,且0)1(=f ,当0>x 时有0)()(2'>-xx f x xf ,则不等式0)(>x xf 解集为__________.11、已知函数()221log 43x f x x +=-的图像是一个中心对称图形,则()f x 图像的对称中心坐标 . 7.如果二次方程 x 2-px-q=0(p,q∈N*) 的正根小于3, 那么这样的二次方程有___________个13. 已知函数()sin()(,)f x A x A ωϕω=+>>00的图象与直线()y b b A =<<0的三个相邻交点的横坐标分别是2,4,8.则当[0,5]x ∈时,()f x 的单调递增区间是 .14. 设函数()||f x x x bx c =++,则下列命题中正确命题的序号有 .(请将你认为正确命题的序号都填上)①当0b >时,函数()f x 在R 上是单调增函数; ②当0b <时,函数()f x 在R 上有最小值; ③函数()f x 的图象关于点(0,c )对称; ④方程()0f x =可能有三个实数根. 11.对一切实数x ,不等式210x a x ++≥恒成立,则实数a 的取值范围是 . 10.直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .8. 设函数2()21f x x x =+-,若1,a b <<-且()(),f a f b = 则ab a b ++的取值范围为 .14.已知函数),()(,0,3|3|)(2n f m f n m x x f =<<--=则2mn 的取值范围是______6. 若函数212()mm f x x ++=(m N ∈),则)18(f )4(f +与)11(2f 的大小关系为________.13.若关于x 的方程kx x x =-2||有三个不等实数根,则实数k 的取值范围是 . 14. 已知函数21,0,()1,0,x x f x x ⎧+≥=⎨<⎩则满足不等式2(1)(2)f x f x ->的x 的取值范围是____ ____.11.设函数22,0,()log ,0x x f x x x ⎧≤=⎨>⎩,若关于x 的方程2()()0f x af x -=恰有三个不同的实数解,则实数a 的取值范围为___ _____.14.已知定义在R 上的函数()f x 满足()12f =,()1f x '<,则不等式()221f x x <+的解集为 14、设()f x 是定义在R 上的奇函数,且当0≥x 时,2)(x x f =,若对任意的]2,[+∈t t x ,不等式)(2)(x f t x f ≥+恒成立,则实数t 的取值范围是 .14.设函数f (x )的定义域为D ,如果对于任意的D x D x ∈∈21,存在唯一的,使)(2)()(21为常数C C x f x f =+成立,则称函数f (x )在D 上均值为C ,给出下列四个函数 ①3x y =,②x y sin 4=,③x y lg =,④xy 2=,则满足在其定义域上均值为2的函数是 .12.定义运算:⎩⎨⎧>≤=*ba b ba ab a ,,,如121=*,则函数x x x f -*=22)(的值域为______. 11.定义运算b a *为: b a *=⎪⎩⎪⎨⎧≤>)()(b a b b a a ,如221=*,则))(2(1R x x∈*的取值范围为___________.11.关于x 方程)lg()3lg()1lg(x a x x -=-+-)(R a ∈有两个实根,则a 的范围是______.14.设m 为实数,若()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≥+≥-≥--003052,y mx x y x y x (){}25,22≤+⊆y x y x ,则m 的取值范围是____________.12、已知函数)(x f 的导数()(1)(),f x a x x a '=+-若()f x 在x a =处取到极大值,则a 的取值范围是 .13、函数()y f x =是定义在R 上的增函数,函数(2010)y f x =-的图象关于点(2010,0)对称.若实数,x y 满足不等式22(6)(824)0f x x f y y -+-+<,则22x y +的取值范围是 .12、已知二次函数()f x 满足f x f x ()()11+=-,且f f ()()0011==,,若f x ()在区间[]n m ,上的值域是[]n m ,,则mn = .14、二次函数()f x 的二次项系数为负,且对任意实数x ,恒有()(4)f x f x =-,若22(13)(1)f x f x x -<+-,则x 的取值范围是 .12、对于函数)(x f 定义域中任意的1x 、2x (1x ≠2x ),有如下结论: ①12()f x x + = 1()f x 2()f x ; ②)(21x x f ⋅ =1()f x +2()f x;③;0)()(2121>--x x x f x f④2)()()2(2121x f x f x x f +<+当)(x f =2x时,上述结论中正确结论的序号是 .13. 设()f x 是定义在(]2-∞,上的减函数,且22(sin 1)(cos )f a x f a x --+≤对一切x ∈R 都成立,则a 的取值范围是 .14. 设函数()22f x x x bx c =-++,则下列命题中正确命题的序号是 .①当0b <时,()f x 在R 上有最大值; ②函数()f x 的图象关于点()0c ,对称; ③方程()f x =0可能有4个实根; ④当0b >时,()f x 在R 上无最大值;⑤一定存在实数a ,使()f x 在[)a +∞,上单调递减. 14.函数f(x)=2x,对x 1,x 2∈R +,x 1≠x 2,1λαλ+=+12x x ,1λβλ+=+21x x (1λ>),比较大小:f(α)+f(β)______________f(x 1)+f(x 2). 9.若函数y=f(x)的图象与函数g(x)=(12)x-1的图象关于原点对称,则f(2)=__________. 10.若函数f(x)=log a (x+ax-4)(其中a>0且a ≠1)的值域是R ,则实数a 的取值范围是_______________. 11.函数f(x)=⎧⎪⎨⎪⎩1 x >00 x =0-1 x <0,g(x)=x 2f(x-1)(x ∈R),则函数g(x)的单调递减区间是______________.12.已知函数f(x)=13x 3+ax 2-2x 在区间(-1,+∞)上有极大值和极小值,则实数a 的取值范围是__________. 12.如果关于x 的方程213ax x+=有且仅有一个正实数解,则实数a 的取值范围是 .4.已知)()('x f x f 是的导函数,在区间[)0,+∞上'()0f x >,且偶函数)(x f 满足)31()12(f x f <-,则x的取值范围是 .5. 把函数()(0,1)x f x a a a =>≠的图象1C 向左平移一个单位,再把所得图象上每一个点的纵坐标扩大为原来的2倍,而横坐标不变,得到图象2C ,此时图象1C 恰与2C 重合,则a 为 .6.已知方程()f x =22x ax b ++的两个根分别在(0,1),(1,2)内,则22(4)a b +-的取值范围为 . 13.设,m n Z ∈,函数()()2log 4fx x =-+的定义域是[],m n ,值域是[]0,2,若关于x 的方程012||=++m x 有唯一的实数解,则m n += .10.定义在R 上的偶函数)(x g , 当0≥x 时)(x g 单调递减, 若)( )1( m g m g <-, 则m 的取值范围是 . 7. 函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的范围是 .11、已知||2||0a b =≠,且关于x 的函数3211()||32f x x a x a bx =++⋅在R 上有极值,则a 与b 的夹角范围为______.13. 若关于x 的不等式22(21)x ax -≤的解集中的整数恰有2个,则实数a 的取值范围是 . 14.下列说法:①当101ln 2ln x x x x>≠+≥且时,有;②函数x y a =的图象可以由函数2x y a =(其中01a a >≠且)平移得到;③ABC ∆中,A B >是sin A sin B >成立的充要条件;④已知n S 是等差数列{}n a 的前n 项和,若75S S >,则93S S >;⑤函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.其中正确的命题的序号 .13.在直角坐标系中, 如果两点(,),(,)A a b B a b --在函数)(x f y =的图象上,那么称[],A B 为函数()f x 的一组关于原点的中心对称点([],A B 与[],B A 看作一组).函数4sin ,0()2log (1),0x x g x x x π⎧≤⎪=⎨⎪+>⎩,关于原点的中心对称点的组数为 .14. 已知方程42(3)30mx m x m --+=有1个根小于2-,其余3个根都大于1-,则实数m 的取值范围是__________.11. 已知函数2240()04x x x f x x x x⎧+≥⎪=⎨<-⎪⎩,, ,若2(8)(2)f a f a ->,则实数a 的取值范围是__. 14、已知函数1()||(0)f x x a x x =-+>,若1()2f x ≥恒成立,则实数a 的取值范围是 . 14、已知函数2()f x ax x =-,222*()(2)(,)g x x a x a Z b Z =-∈∈,若存在0x ,使0()f x 为()f x 的最小值,0()g x 为()g x 的最大值,则此时数对(,)a b 为14、已知函数()f x =⎩⎨⎧>-≤--)0()1()0(2x x f x a x ,若方程x x f =)(有且只有两个不相等的实数根,则实数a 的取值范围是13、设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为13设,,x x f R x )21()(=∈若不等式k x f x f ≤+)2()(对于任意的R x ∈恒成立,则实数k 的取值范围是14给出定义:若2121+≤<-m x m (其中m 为整数),则m 叫做离实数x 最近的整数,记作{x},即m x =}{.在此基础上给出下列关于函数}{)(x x x f -=的四个命题真命题是 :①函数)(x f y =的定义域是R ,值域是⎥⎦⎤⎢⎣⎡21,0;②函数)(x f y =的图像关于直线)(2Z k kx ∈=对称;③函数)(x f y =是周期函数,最小正周期是1;④函数)(x f y =在⎥⎦⎤⎢⎣⎡-21,21上是增函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题集训·作业(二)一、选择题1.(2014·安徽)若过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π6B.⎝ ⎛⎦⎥⎤0,π3 C.⎣⎢⎡⎦⎥⎤0,π6 D.⎣⎢⎡⎦⎥⎤0,π3 答案 D 解析利用数形结合思想及圆的几何性质求解.方法一 如图,过点P 作圆的切线P A ,PB ,切点为A ,B .由题意知|OP |=2,|OA |=1,则sin α=12,所以α=30°,∠BP A =60°.故直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.故选D.方法二 设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k 2≤1.解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.2.(2014·安徽)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y-ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12 C .2或1 D .2或-1答案 D 解析作出约束条件满足的可行域,根据z =y -ax 取得最大值的最优解不唯一,通过数形结合分析求解.如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.3.(2014·贵阳监测)已知f (x )=14x 2+sin(π2+x ),f ′(x )为f (x )的导函数,则f ′(x )的图像是( )答案 A解析 ∵f ′(x )=12x -sin x ,∴f ′(x )为奇函数,排除B ,D.又当x =-π4时,f ′(x )=22-π8=42-π8>0,排除C ,故选A.4.(2013·江西)已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM |∶|MN |=( )A .2∶ 5B .1∶2C .1∶ 5D .1∶3答案 C解析 根据抛物的定义和相似三角形的判定及性质求解. 如图所示,由抛物线定义知|MF |=|MH |,所以|MF |∶|MN |=|MH |∶|MN |.由于△MHN ∽△FOA ,则|MH ||HN |=|OF ||OA |=12,则|MH |∶|MN |=1∶ 5. 即|MF |∶|MN |=1∶ 5.5.若f (x )=(m -2)x 2+mx +2m +1的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是( )A .(-12,14) B .(-14,12) C .(14,12) D .[14,12]答案 C 解析由选项知m <2,开口向下. 如图,则有⎩⎪⎨⎪⎧f (-1)<0,f (0)>0,f (1)>0,f (2)<0,解得14<m <12,故选C.6.(2013·浙江)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0答案 A解析 根据条件可确定函数图像的开口方向和对称轴,化简即得.因为f (0)=f (4)>f (1),所以函数图像应开口向上,即a >0,且其对称轴为x =2,即-b2a =2,所以4a +b =0,故选A.7.(2014·大连双基测试)已知函数f (x )=1e x -2x -1(其中e 为自然对数的底数),则y =f (x )的图像大致为( )答案 C解析 记g (x )=e x -2x -1,则有g ′(x )=e x -2,当x <ln2时,g ′(x )=e x -2<0,g (x )是减函数;当x >ln2时,g ′(x )=e x -2>0,g (x )是增函数.因此,当x <0时,g (x )=e x -2x -1是减函数,且g (x )>g (0)=0,此时f (x )=1g (x )>0,且f (x )是增函数;当0<x <ln2时,g (x )=e x -2x -1是减函数,g (x )<0,此时f (x )=1g (x )<0,且f (x )是增函数,对比各选项知,选C.8.(2014·新课标全国Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13答案 C 解析由三视图可知几何体是如图所示的两个圆柱的组合体.其中左面圆柱的高为4 cm ,底面半径为2 cm ,右面圆柱的高为2 cm ,底面半径为3 cm ,则组合体的体积V 1=π×22×4+π×32×2=16π+18π=34π(cm 3),原毛坯体积V 2=π×32×6=54π(cm 3),则所求比值为54π-34π54π=1027.9.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,则z =(x +1)2+y 2的最大值为( )A .80B .4 5C .25 D.172答案A解析 作出不等式组 ⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,如右图阴影部分所示.(x +1)2+y 2可看作点(x ,y )到点P (-1,0)的距离的平方,由图可知可行域内的点A 到点P (-1,0)的距离最大.解方程组⎩⎪⎨⎪⎧x =3,x -y +5=0,得A 点的坐标为(3,8),代入z =(x +1)2+y 2,得z max =(3+1)2+82=80.10.(2014·衡水模拟)若a ,b ,c 均为单位向量,且a·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1B .1C. 2 D .2答案 B解析 设OA →=a ,OB →=b ,OC →=c ,因为|a |=|b |=|c |=1,所以点A ,B ,C 在以O 为圆心,1为半径的圆上.易知CA →=a -c ,CB →=b -c ,|c |=|OC →|.由(a -c )·(b -c )≤0,可知CA →·CB →≤0,则π2≤∠BCA <π(因为A ,B ,C 在以O 为圆心的圆上,所以A ,B ,C 三点不能共线,即∠BCA ≠π),故点C 在劣弧AB 上.由a ·b =0,得OA →⊥OB →.设OD →=a +b ,如右图所示,因为a +b -c =OD →-OC →=CD →,所以|a +b -c |=|CD →|,即|a +b -c |为点D 与劣弧AB 上一点C 的距离,显然,当点C 与A 或B 点重合时,CD 最长且为1,即|a +b -c |的最大值为1.11.若点P (x ,y )在直线x +y =12上运动,则x 2+1+y 2+16的最小值为( )A.37+213B.2+137C .13D .1+410答案 C 解析x 2+1+y 2+16=(x -0)2+(0+1)2+(x -12)2+(0-4)2表示点(x,0)到点A (0,-1)与点B (12,4)的距离之和,最小值|AB |=13.12.(2014·安徽)在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b sin θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ →|≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A .1<r <R <3B .1<r <3≤RC .r ≤1<R <3D .1<r <3<R答案 A解析 根据向量数量积的运算性质,求出曲线C 的轨迹,动点Q 满足的条件,根据区域Ω上点的特征为以点Q 为圆心,半径分别为r 和R 的圆环,数形结合求解.∵|a |=|b |=1,a ·b =0,又∵OQ →=2(a +b ),∴|OQ →|2=2|a +b |2=2(a 2+b 2+2a ·b )=4,∴点Q 在以原点为圆心,半径为2的圆上.又OP →=a cos θ+b sin θ,∴|OP →|2=a 2cos 2θ+b 2sin 2θ=cos 2θ+sin 2θ=1. ∴曲线C 为单位圆.又∵Ω= {P |0<r ≤|PQ →|≤R ,r <R },要使C ∩Ω为两段分离的曲线,如图,可知1<r <R <3,其中图中两段分离的曲线是指AB ︵与CD ︵.故选A.二、填空题13. (2014·大纲全国)直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.答案 43 解析利用两点间距离公式及直角三角形求△AOB 各边,进而利用二倍角公式求夹角的正切值.如图,|OA |=12+32=10. ∵半径为2,∴|AB |=|OA |2-|OB |2=10-2=2 2.∴tan ∠OAB =OB AB =222=12. ∴所求夹角的正切值为tan ∠CAB =2tan ∠OAB 1-tan 2∠OAB =2×121-14=43. 14.如图,半径为2的半球,一个侧棱长为1的正三棱柱的三个顶点在半球的底面上,另三个顶点在半球的球面上,则该三棱柱的外接球表面积为________.答案 13π解析 设题中的三棱柱的底面正三角形的外接圆半径是r ,其外接球半径是R ,则由题中的球心到上底面的三个顶点的距离均等于该球的半径得知,该球的球心在上底面上的射影是上底面的中心,因此有r =22-12=3;该三棱柱的外接球球心应是其上、下底面中心连线的中点,因此有R 2=(12)2+r 2=(12)2+(3)2=134,该三棱柱的外接球的表面积等于4πR 2=13π.15. (2014·山西四校联考)已知f (x )=⎩⎪⎨⎪⎧e -x (x ≤0),x (x >0), g (x )=f (x )-12x -b 有且仅有一个零点时,b 的取值范围是________.答案 b ≥1或b =12或b ≤0解析 要使函数g (x )=f (x )-x 2-b 有且仅有一个零点,只需要函数f (x )的图像与函数y =x 2+b 的图像有且仅有一个交点,通过在同一坐标系中同时画出两个函数的图像并观察得,要符合题意,须满足b ≥1或b =12或b ≤0.16.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.答案 14解析 如图所示,圆的方程可化为(x -2)2+y 2=1,抛物线的焦点F (2,0),准线x =-2.由⎩⎪⎨⎪⎧y =x -2,y 2=8x ,得x 2-12x +4=0,设直线与抛物线交于A (x A ,y A ),D (x D ,y D ),则x A +x D =12.|AB |+|CD |=(|AF |-|BF |)+(|DF |-|CF |)=(|AF -1|)+(|DF |-1)=|AF |+|DF |-2,由抛物线的定义,得|AF |=x A +2,|DF |=x D +2,故|AB |+|CD |=(|AF |+|DF |)-2=x A +x D +2=14.三、解答题17.(2013·新课标全国Ⅰ)选修4-5:不等式选讲已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)当a >-1时,且当x ∈[-a 2,12)时,f (x )≤g (x ),求a 的取值范围.解析 (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧ -5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}.(2)当x ∈[-a 2,12)时,f (x )=1+a .不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈[-a 2,12)都成立.故-a 2≥a -2,即a ≤43.从而a 的取值范围是(-1,43].18.如图,有一正方形钢板ABCD 缺损一角(图中的阴影部分),边缘线OC 是以直线AD 为对称轴,以线段AD 的中点O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2 m ,问如何画切割线EF ,可使剩余的直角梯形的面积最大?并求其最大值.解析以A 为坐标原点,直线AB ,AD 分别为x 轴,y 轴,建立如图所示的直角坐标系,则设边缘线OC 的方程为y =ax 2+1(0≤x <2).∵C 点坐标为(2,2),∴4a +1=2,a =14.∴y =14x 2+1(0≤x ≤2).要使梯形ABEF 的面积最大,则EF 所在原直线必与边缘线OC相切,设切点P (t ,14t 2+1)(0<t <2).∵y ′=12x ,∴EF :y -14t 2-1=12t (x -t ),即EF :y =12tx -14t 2+1.由此可求得E (2,t -14t 2+1),F (0,-14t 2+1),∴|AF |=1-14t 2,|BE |=-14t 2+t +1.设梯形ABEF 的面积为S (t ),则S (t )=12|AB |·(|AF |+|BE |)=(1-14t 2)+(-14t 2+t +1)=-12t 2+t +2=-12(t -1)2+52≤52.∴当t =1时,S (t )max =52.故S (t )的最大值为2.5,此时|AF |=0.75,|BE |=1.75.则当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.。

相关文档
最新文档