中考数学专题复习_数形结合思想
中考数学总复习《数形结合问题》考点梳理及典例讲解课件
(2)结合函数图象可得,当 y1>y2 时,x<1.
例 1:甲、乙两地之间是一条直路,在全民健身活 动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从 乙地往甲地,两人同时出发,王浩月先到达目的地,
两人之间的距离 s(单位:km)与运动时间 t(单位:h)的
函数关系大致如图所示,下列说法中错误的是( )
A.两人出发 1 h 后相遇 B.赵明阳跑步的速度为 8 km/h C.王浩月到达目的地时两人相距 10 km D.王浩月比赵明阳提前 1.5 h 到目的地 答案:C
例 2:如图,AB,CD 是⊙O 的两条互相垂直的直 径,点 P 从点 O 出发,沿 O→C→B→O 的路线匀速运 动,设∠APD=y(单位:度),那么 y 与点 P 运动的时
间(单位:秒)的关系图是( )
A
B
C
D
答案:B
例 3:如下图,抛物线 y=-14 x2-x+2 的顶点为
A,与 y 轴交于点 B. (1)求点 A,点 B 的坐标; (2)若点P是 x 轴上任意一点,
n=(BC+CD+DE+EF+FA )÷2=(BC+DE+AB +AF)÷2=(8+6+6+8+6)÷2=17.
(3)解:由图 2 知,点 P 在 BC 上运动时,0≤t≤4, ∴S=12 ×6×2t=6t,即 S=6t(0≤t≤4); ∵由图 2 知,点 P 在 DE 上运动时,6≤t≤9, ∴S=12 ×6×(2t-4)=6t-12,即 S=6t-12 (6≤t≤9).
当点 P 在 x 轴上又异于 AB 的延长线与 x 轴的交点
时,
在点 P,A,B 构成的三角形中,PA -PB<AB. 综合上述,PA -PB≤AB.
中考数学专题复习 专题48 中考数学数形结合思想(教师版含解析)
中考专题48 中考专题数学数形结合思想数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。
中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。
作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。
“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。
1.数形结合思想的含义数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
2.数形结合思想应用常见的四种类型(1)实数与数轴。
实数与数轴上的点具有一一对应关系,借助数轴观察数的特点,直观明了。
(2)在解方程(组)或不等式(组)中的应用。
利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题直观,形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解。
(3)在函数中的应用。
借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
(4)在几何中的应用。
对于几何问题,我们常通过图形,找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等。
3.数形结合思想解题方法“数”和“形”是数学中两个最基本的概念, 每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的知识,解决几何的问题.实现了抽象概念与具体图形的联系和转化,化难为易,化抽象为直观.【经典例题1】(2020年•遵义)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°=AC CD =12+√3=2−√3(2+√3)(2−√3)=2−√3.类比这种方法,计算tan22.5°的值为( )A .√2+1B .√2−1C .√2D .12 【标准答案】B【分析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,根据tan22.5°=AC CD 计算即可. 【答案剖析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,∴tan22.5°=AC CD =11+√2=√2−1 【知识点练习】(2019•湖北省仙桃市)不等式组的解集在数轴上表示正确的是( )A. B.C.D.【标准答案】C【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2【经典例题2】(2020年•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,方程x+5=ax+b的解是( )A.x=20 B.x=5 C.x=25 D.x=15【标准答案】A【分析】两直线的交点坐标为两直线答案剖析式所组成的方程组的解.【答案剖析】∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴直线y=x+5和直线y=ax+b相交于点P为x=20.【知识点练习】(2020年株洲模拟)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.【标准答案】4【答案剖析】本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.【经典例题3】(2020年通化模拟)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE 与△BHD面积之和的最大值,并简要说明理由.【标准答案】见答案剖析。
专题复习数形结合(含答案)
专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。
2。
」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。
中考数学专题之数形结合
中考数学专题 数形结合知识梳理数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.典型例题一、在数与式中的应用【例1】实数a 、b 在数轴上的位置如图所示,化简2a ab +-=_________.【分析】 由数轴上a ,b 的位置可以得到a 〈0,b>0且a <b .∴2a a =-,a b b a -=-.【解】()22a a b a b a a b +-=-+-=-+【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴_________根.【分析】 由图形可知,搭1条金鱼需要8根火柴棒,后面每多一条就多6根火柴棒,所以搭n 条金鱼共需8+6(n -1)=(6n+2)根火柴棒. 【解】6n+2二、在方程、不等式中的应用【例3】 (08聊城)已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是___________.【分析】解不等式组得解集为2x ax >⎧⎨<⎩,我们可以将x<2标注在数轴上,要使得不等式组有2个整数解,由图象可知整数解为0,1,则a 应在-1~0之间,且可以等于-1,但不能为0,所以以的取值范围是-l ≤a <0.【解】 1≤n 〈0【例4】(08南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.203210x yx y+-=⎧⎨--=⎩B.2103210x yx y--=⎧⎨--=⎩C.2103250x yx y--=⎧⎨+-=⎩D.20210x yx y+-=⎧⎨--=⎩【分析】根据图象我们可以知道这个方程组的解为11xy=⎧⎨=⎩,只要将解进行代入检验即可.【解】D【例5】已知二次函数y=a x2+bx+c的图象如图所示,若关于x的方程a x2+bx+c-k=0有两个不相等的实数根,则k的取值范围为()A.k〉3 B.k=3 C.k<3 D.无法确定【分析】如果根据b2-4a c的符号来判别解的情况,本题将无从入手,可将原方程变形为a x2+bx+c=k,从而理解成是两个函数的交点问题,即2y ax bx cy k⎧=++⎨=⎩,由图象可知只要y=k〈3就一定定与抛物线有两个不同的交点,所以答案选C.【解】C三、在函数中的应用【例6】(08安徽)如图为二次函数y=a x2+bx+c的图象,在下列说法中:①a c<0 ②方程a x2+bx+c=0的根是x1=-1,x2=3 ③a+b+c>0 ④当x>1时,y随x的增大而增大正确的说法有__________.(把正确的答案的序号都填在横线上)【分析】由图象可知,开口向上,与x轴交于-1和3两点,与y轴交于负半轴,则a>0,c〈0;由对称性知对称轴x=1,所以结论①②④正确.【解】①②④【例7】某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线如图所示,为经过原点O 的一条抛物线(图中标出的数据为已知条件).要跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误, (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中运动路线是如图抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3导米,问此次跳水会不会失误?并通过计算说明理由.【分析】(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为23. (2)求出抛物线的解析式后,要判断此次跳水会不会失误, 就是要看当该运动员在距池边水平距离为335米,3332155x =-=时, 该运动员距水面高度与5米的关系.【解】(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=a x 2+bx+c ,由图可知,O ,B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23,则2042104243c a b c ac b a ⎧⎪=⎪⎪++=-⎨⎪-⎪=⎪⎩,解得2561030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩或3220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩抛物线的对称轴在y 轴右侧,∴02b a ->.又抛物线开口向下,∴256a =-,103b =,c=0,∴2251063y x x =-+.(2)当运动员在空中距池边距离为335米时,即383255x=-=时,63y=-,∴此时运动员距水面高为16410533-=<.因此,试跳会出现失误.四、在概率统计中的应用【例8】(05江西)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点;(3)请你根据上述数据,对该报社提出一条合理的建议.【分析】观察条形统计图可以计算出调查总人数,画扇形统计图需计算出第一版、第二版的百分比和圆心角,分别为15003601085000⨯︒=︒,500360365000⨯︒=︒,建议可从不足的方面提出.【解】(1)参加调查的人数为5000人;(2)如图所示:条形统计图能清楚地表示出喜欢各版面的读者人数.扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比.(3)如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些.综合训练1.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2",这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .数形结合C .换元法D .分类讨论2.(08大连)如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高 ( )A .5℃B .7℃C .12℃D .-12℃3.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是( )4.若M 112y ⎛⎫- ⎪⎝⎭,,N 214y ⎛⎫- ⎪⎝⎭,,312y ⎛⎫ ⎪⎝⎭,三点都在函数ky x=(k<0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2〉y 1>y 3C .y 3>y 1〉y 2D .y 3〉y 2〉y 15.关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在A .第一象限B .第二象限C .第三象限D .第四象限( )6.(08临沂)若不等式组302741x a x x +<⎧⎨+>-⎩的解集为x 〈0,则a 的取值范围为 ( )A .a 〉0B .a =0C .a >4D .a =47.(08镇江)福娃们在一起探讨研究下面的题目:函数y=x 2-x+m (m 为常数)的图象如图所示,如果x=a 时,y<0;那么x=a -1时,函数值( )下面是福娃们的讨论,请你解答该题.贝贝:我注意到当x=0时,y=m〉0.晶晶:我发现图象的对称轴为x=1 2欢欢:我判断出x1<a〈x2.迎迎:我认为关键要判断a-1的符号.妮妮:m可以取一个特殊的值.A.y<0 B.0<y<m C.y〉m D.y=m8.如图,在平面直角坐标系中,∠AOB=150°,OA=OB=2,则点A、B的坐标分别是_________和_________.9.在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b)如图1,把余下的部分剪拼成一个矩形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是_______________.10.(08绍兴)如图,已知函数y=x+b和y=a x+3的图象交点为P,则不等式x+b>a x+3的解集为__________.11.方程组211y xy x=-⎧⎨=--⎩的解是__________.12.(08广州)如图,为实数a 、b 在数轴上的位置,化简()222a b a b ---.13.(02南京)(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,AB OB b a b ===-; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边AB OB OA b a b a a b =-=-=-=-; ②如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b =-=-=---=-; ③如图4,点A 、B 在原点的两边,()AB OB OA a b a b a b =+=+=+-=-.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_______,数轴上表示-2和-5的两点之间的距离是_______,数轴上表示1和-3的两点之间的距离是________;②数轴上表示x 和-1的两点A 和B 之间的距离是_________,如果2AB =,那么x 为__________; ③当代数式12x x ++-取最小值时,相应的x 的取值范围是____________.14.(08苏州)某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度_________月份的产量最高.(2)该厂一月份产量占第一季度总产量的_______%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格的产品?(写出解答过程)15.(08恩施)如图所示,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8;设CD=x .(1)用含x 的代数式表示AC+CE 的长;(2)请问点C 满足什么条件时,AC+CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式()224129x x ++-+的最小值.16.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。
【中考数学必备专题】数形结合专题(含答案)
【中考数学必备专题】数形结合专题一、单选题(共2道,每道10分)1.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为().A.在A,C点的右边;B.在A,C点的左边;C.在A,C点之间;D.以上三种情况都有可能答案:C解题思路:画数轴,借助数形结合,|a-b|是AB的长度,|b-c|是BC的长度,|a-c|是AC的长度,又因为a,b,c不相等,所以B点应在A、C之间试题难度:三颗星知识点:绝对值2.若m,n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<nB.a<m<n<bC.a<m<b<nD.m<a<n<b答案:A解题思路:将1-(x-a)(x-b)=0整理成(x-a)(x-b)=1的形式,就知道m,n是y=(x-a)(x-b)图象与直线y=1交点的横坐标,而a、b是y=(x-a)(x-b)与x轴交点的横坐标。
画出图象及可以比较大小试题难度:三颗星知识点:二次函数的应用二、填空题(共6道,每道10分)1.关于x的不等式组只有4个整数解,则a的取值范围是.答案:5<a≤6解题思路:分三步走,第一步解出不等式的解题;第二步画数轴,根据只有四个整数解确定a的大致取值范围;第三步,借助数轴看等号是否成立试题难度:三颗星知识点:不等式的整数解2.已知一次函数y=-x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是.答案:k>4解题思路:因为画图象,很难直接看出k的取值范围,借助于代数的方法,联立表达式,让关于x的一元二次方程无解,进而确定k的取值范围试题难度:三颗星知识点:反比例函数与一次函数的交点问题3.直线y=mx+4经过A点,直线y=kx-3过B点,且两直线交于P(,n)点,则不等式kx-3≤mx+4<kx的解集是.答案:解题思路:利用函数图象,数形结合的方法求解集:将y=kx-3向上平移三个单位,得到y=kx 的图象,然后观察几何特征,存在A字型相似,进而知道对应高之比就等于对应边之比,从而确定另外一个点的横坐标是-2试题难度:三颗星知识点:一次函数的应用4.已知a、b均为正数,且a+b=2。
高中数学二轮专题复习——数形结合思想
思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。
三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。
四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。
中考数学复习专题 数形结合思想(含答案)
数形结合思想一、选择题1、已知点M(1-a ,a+2)在第二象限,则a 的取值范围是( )(A )a>-2 (B)-2<a<1 (C)a<-2 (D)a>1 2、在频率分布直方图中,小长方形的面积等于( )(A )相应各组的频数 (B )组数 (C )相应各组的频率 (D )组距 3、已知一次函数y kx b =+的图象如图所示,当y <0时,x 的取值范围是( )A .x >0B .x <0C .-2<x <0D .x <1 4、过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm . 则OM 的长为( )A.3cmB .5cmC .2cmD .3cm5、一个圆锥的侧面积是底面积的2倍,则这个圆锥的侧面展开图(扇形)的圆心角的度数为( ) A .600B .1800C .300D .9006、若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序。
① 小车从光滑的斜面上滑下(小车的速度与时间的关系)② 一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系) ③ 运动员推出去的铅球(铅球的高度与时间的关系)④ 小杨从A 到B 后,停留一段时间,然后按原速度返回(路程与时间的关系) 正确的顺序是A .③④②①B .①②③④C .②③①④D .④①③②7、小圆圈是网络的结点,结点之间的边线表示它们之间的网线相联,边线标注的数字表示该网线单位时间内可以通过的最大信息量,现在的结O 1-2点A向结点B传递信息,可以分开沿不同的路线同时传递,单位时间内传递的最大信息量为:A.19B.20C.24D.268、如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图像是( )9、如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD面积为()(A)98 (B)196 (C)280 (D) 28410、如图,在□ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,则图中面积相等的平行四边形有()(A)0对(B)1对(C)2对(D)3对二、填空题:1、把正方形ABCD沿着对角线AC的方向移动到正方形A'B'C'D'的位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD面积的一半,若AC=2,则正方形移动的距离AA'是2、如图,在直角坐标系中,矩形ABCD的顶点B的坐标为(4,2),直线12y x b=+恰好将矩形OACB分成面积相等的两部分,则b= 。
初三数学中考复习第十四讲数形结合问题
______________________________________________________________跃龙学堂 您身边的中小学生辅导专家1第十四讲 数形结合问题【典型例题1】如图,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的表达式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.解:(1)设抛物线的表达式为 4)1(21+-=x a y 。
把A (3,0)代入表达式,求得1-=a 。
所以324)1(221++-=+--=x x x y 。
设直线AB 的表达式为 b kx y +=2。
由3221++-=x x y 求得B 点的坐标为)3,0( 。
把)0,3(A ,)3,0(B 代入b kx y +=2中,解得 3,1=-=b k 。
所以32+-=x y 。
(2)因为C 点坐标为(1,4),所以当x =1时,y 1=4,y 2=2。
所以CD =4-2=2。
xCOy ABD 1 1______________________________________________________________ 跃龙学堂 您身边的中小学生辅导专家2 32321=⨯⨯=∆CAB S (平方单位)。
(3)假设存在符合条件的点P ,设P 点的横坐标为x ,△P AB 的铅垂高为h , 则x x x x x y y h 3)3()32(2221+-=+--++-=-=。
由S △P AB =89S △CAB ,得 389)3(3212⨯=+-⨯⨯x x 。
化简得 091242=+-x x 。
解得 23=x 。
将23=x 代入3221++-=x x y 中, 解得P 点坐标为)415,23(。
中考数学二轮总复习 专题五 数形结合思想(无答案) 苏科版
专题五:数形结合思想【知识梳理】 数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.【课前预习】1、实数a 、b 在数轴上的位置如图所示,a b -=_________.2、已知不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是_______.3、如图,已知函数y=x+b 和y=a x+3的图象交点为P ,则不等式x+b>a x+3的解集为__________.4、如图,方程组211y x y x =-⎧⎨=--⎩的解是__________.5、如图,在矩形ABCD 中, AB =4,BC =6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q .BP =x ,CQ =y ,那么y 与x 之间的函数图象大致是( )【例题精讲】例1、当代数式12x x ++-取最小值时,相应的x 的取值范围是_________.例2、已知二次函数y=a x 2+bx+c 的图象如图所示,若关于x 的方程a x 2+bx+c-k=0有两个不相等的实数根,则k 的取值范围为 ( )A .k>3B .k=3C .k<3D .无法确定例3、如图,函数y 1=x 和y 2=13x +43的图象相交于(-1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是 ( )A .x <-1B .-1<x <2C .x >2D .x <-1或x >2例4、如图,C 为BD 上的一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD,连接AC,EC,AB=5,DE=1,BD=8,设CD=x .(1)用含x 的代数式表示AC+CE= .(2)当点C 满足时 时,AC+CE 的值最小;(3)根据(2)规律和结论,请构图求出代数式9)12(422+-++x x 的最小值.例4、如图,在平面直角坐标系xOy 中,AB 在x 轴上,AB =10,以AB 为直径的⊙O′与y 轴正半轴交于点C ,连接BC 、AC ,CD 是⊙O′的切线,AD⊥CD 于点D ,tan∠CAD=12,抛物线y =ax 2+bx +c 过A 、B 、C 三点. (1)求证:∠CAD=∠CAB;(2)①求抛物线的解析式;②判定抛物线的顶点E 是否在直线CD 上,并说明理由;(3)在抛物线上是否存在一点P ,使四边形PBCA 是直角梯形.若存在,直接写出点P 的坐标(不写求解过程);若不存在,请说明理由.【巩固练习】1、如图为二次函数y=a x 2+bx+c 的图象,在下列说法中:①a c<0 ②方程a x 2+bx+c=0的根是x 1=-1,x 2=3 ③a +b+c>0④当x>1时,y 随x 的增大而增大. 正确的说法有__________.2、如图,直线y =x +2与双曲线y =3m x-在第二象限有两个交点,那么m 的取值范围在数轴上表示为 ( )3、如图,在等腰AABC 中,∠ABC =90°,D 为AC 边上的中点,过点D 作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE =4,FC =3,求EF 的长.【课后作业】 班级 姓名一、必做题:1、二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =a x与正比例函数y =bx 在同一坐标系内的大致图象是 ( )2、如图,AB 为半圆的直径,点P 为AB 上一动点,动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t ,分别以AP 与PB 为直径作半圆,则图中阴影部分的面积S 与时间t 之间的函数图象大致为( )3、如图,抛物线y =x 2+1与双曲线y =k x的交点A 的横坐标是1,则关于x 的不等式k x+x 2+1<0的解集是 ( )A .x >1B .x <-1C .0<x <1D .-1<x <0 4、如图,在□AOBC 中,对角线AB 、OC 交于点E ,双曲线y =k x 经过A 、E 两点,若□AOBC 的面积为18,则k =_______.5、如图①,在底面积为100 cm 2,高为20 cm 的长方体水槽内放入一个圆柱形烧杯,以恒定不变的流量先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止.此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度h(单位:cm)与注水时间t(单位:s)之间的函数关系如图②所示.(1)写出函数图象中点A 、点B 的实际意义;(2)求烧杯的底面积;(3)若烧杯的高为9cm ,求注水的速度及注满水槽所用的时间.6、如图,已知反比例函数y =k x (k ≠0)的图象经过点(12,8),直线y =-x +b 经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与反比例函数图象的另—个交点为P ,连接O P 、CQ ,求△OPQ 的面积.二、选做题:7、如图,在Rt△ABC 中,∠C=90°,AC =8,BC =6,点P 在AB 上,AP =2.点E 、F 同时从点P 出发,分别沿PA 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立即以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设E 、F 运动的时间为t 秒(t >0),正方形EFGH 与△ABC 重叠部分面积为S.(1)当t =1时,正方形EFGH 的边长是__________;当t =3时,正方形EFGH 的边长是__________;(2)当0<t ≤2时,求S 与t 的函数关系式;(3)直接答出:在整个运动过程中.......,当t 为何值时,S 最大?最大面积是多少?8、已知二次函数y =-14x 2+32x 的图象如图. (1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴、y 轴的交点分别为A 、B 、C三点.若∠ACB =90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.。
感悟数形结合思想 发展数学核心素养——“解直角三角形中的数形结合”专题复习教学及反思
一、内容和内容解析1.内容“解直角三角形中的数形结合”专题复习课包括图1本节课为第1课时,以解直角三角形及其应用为载体,在综合运用相关知识解决问题的过程中,提炼运用数形结合思想方法解题的操作步骤、作用、注意要点等.2.内容解析(1)地位和作用.代数和几何是初中数学的主要研究对象.数形结合是通过数与形的相互转化达到认识和解决问题的一种思想和方法.通过“以形助数”和“以数解形”,准确把握数与形的关联点,可以使抽象的问题形象化、直观的问题精细化,从而快速获取解题思路,逻辑清晰地解决问题.运用数形结合思想解决问题的过程也是学生发展直观想象、数学运算、数学抽象、逻辑推理、数学建模等素养的过程.数形结合在数学学习和研究中占有重要地位,它不仅是一种重要思想,也是一种常用的解题策略与方法.本节课是运用数形结合思想解决相关问题的专题复习课,从具体的锐角三角函数问题的解决开始,总结提炼数形结合思想方法的作用、操作步骤和注意要点,并用于解决综合性问题.锐角三角函数是数形结合的产物,它的概念的产生和应用都与图形有着密切的联系,在历年中考试题中都占有一定的比重.因此,学好本节课的内容对中考备考有重要作用.(2)概念的解析.运用数形结合思想方法解决问题的操作步骤、注收稿日期:2021-01-16基金项目:河南省教育科学规划2020年度一般课题——基于“互联网+信息技术”的初中数学解题教学实践研究(2020YB0980).作者简介:赵智勇(1963—),男,中学高级教师,主要从事中学数学教育教学研究.——“解直角三角形中的数形结合”专题复习教学及反思赵智勇摘要:文章以锐角三角函数知识内容为载体,着眼于数形结合思想方法的深层感悟,实现数与形的双向沟通.通过“解直角三角形中的数形结合”专题复习课的教学,引导学生概括数形结合解决问题的基本思路,体会其作用,归纳其注意要点;引导学生应用概括出的数形结合思想的基本思路解决问题,实现数形结合思想的巩固和迁移;引导学生融合不同的思想方法解决综合性问题,实现思想方法的融合.关键词:数形结合;锐角三角函数;专题复习;教学研究感悟数形结合思想发展数学核心素养··47意要点、作用如下.操作步骤:分析问题结构—构想数形关联—实施数形转换—获得问题答案.注意要点:考虑数形结合解决问题的必要性、可行性和简洁性;解决几何证明题需要几何直观分析、代数抽象分析对应进行;代数性质与几何图形的对应互换.作用:运用数形结合思想方法解决问题能够使抽象的问题形象化,使复杂的关系得到直观、具体的表示,对理解题意、挖掘题目中的各种信息、发现蕴含的条件和关系、获得解题的灵感和方法等都具有重要意义.(3)思想方法.数形结合的实质是把抽象的数量关系与直观的图形表示结合起来,或把几何中的定性结论转化为可计算的定量结果,或以直观图形辅助抽象的代数运算与推理.(4)知识类型.本专题内容属于程序性知识,还是策略性知识,由知识类型所决定.在教学中,教师要注重以问题为引导,以学生活动为主,在独立思考、合作交流中,师生共同提炼数形结合思想方法的操作步骤和核心要点,进一步体会数形结合思想方法的作用;在应用中注重引导学生用数形结合思想方法去分析问题和解决问题.(5)教学重点.基于以上分析,确定本节课的教学重点为:提炼数形结合思想解题的一般步骤和注意要点.二、目标和目标解析1.目标(1)通过解直角三角形及其应用问题,了解数形结合思想的内涵和作用.(2)经历问题解决过程,能抽象概括出用数形结合思想解决问题的操作步骤、注意要点和作用.(3)能正确进行数形互化,运用数形结合思想解决有一定综合性的问题,形成解题策略.2.目标解析达成目标(1)的标志:知道数形结合研究数的精确与形的直观之间的转化,可使解题思路变得简单明了,从而化繁为简、化难为易.达成目标(2)的标志:明确运用数形结合解决问题一般需要经历“分析、构想、建立、求解”四个步骤.数与形的对应转换是运用数形结合解决问题的关键,明确以形助数、以数解形的具体操作步骤.知道在运用数形结合解决问题时,要考虑可行性等,不能用形的显然替代推理论证,既需要进行几何直观分析,又需要通过符号抽象、运算和推理进行量化研究.达成目标(3)的标志:在解决相关问题的过程中,能有意识借助形的几何直观性来阐述数之间的普遍关系和一般规律,借助数的精确性阐述形的某些属性和一般规律;能运用数形结合思想方法解决一些有一定难度的中考试题.三、教学问题诊断分析1.已具备的认知基础学生已经学习了直角三角形的两锐角互余、勾股定理、锐角三角函数等知识,并能运用直角三角形的性质解直角三角形;经历了数轴、坐标系、函数等概念的学习,对数形结合有一定的认识,对数与形的对应和转换有一定的模仿经验,具有一定的解决问题的能力,这为本节课的学习奠定了基础.2.与本课目标的差距分析(知识、能力)初中生运用数形结合解决问题,需要具备以下能力:敏锐的观察能力;准确的语言表达能力;灵活的思维能力;较强的综合应用能力.运用数形结合思想解决有一定难度的综合问题时,需要进一步培养学生敏锐的观察能力和灵活的思维能力.3.可能存在的问题运用数形结合思想解决综合性较强的题目时,纵横联系的知识点多,这对学生的数形结合能力提出了较高的要求.对于某些问题,学生有可能误用形的直观替代严谨的推理论证,也可能抓不住数的特征构建适当的形.4.应对策略本节课需要通过具体实例多次展现数形结合的具体操作步骤,使学生获取更多活动经验,提升学生对数形结合思想的认识和理解.首先,创设问题情境,引导学生利用数形结合思想解决问题;其次,引导学··48生对上述问题分解并进行反思总结,组织学生进行思想方法的交流和一般性思考;最后,通过对例题进行有针对性地指导,使学生经历数形结合解决问题的过程,既进行几何直观分析,又对应进行代数抽象探究,提升学生的认知加工水平和解题能力.基于以上分析,确定本节课的教学难点为:进行数与形的等价转化,并运用数形结合思想解决有一定难度的综合问题.四、教学支持条件分析利用希沃白板制作课件、互动授课;借助希沃授课助手拍照上传、进行投屏等,灵活展示和点评学生的学习成果,呈现课堂细节;结合GeoGebra 软件辅助构图操作,提升课堂效率.五、教学过程设计1.课前检测——针对强化,提升实效检测题1:△ABC 在正方形网格中的位置如图2所示,则sin α的值为().(A )34(B )43(C )35(D )45A BCαACB图3图2补测题:△ABC 在正方形网格中的位置如图3所示,则sin B 的值为.检测题2:如图4,已知在Rt△ABC 中,∠C =90°,tan ∠DBC =13,AD =3,AB =5,则cos A 的值为.A C D B图4DA BC图5补测题:如图5,在Rt△ABC 中,∠C =90°,∠BAC =30°,延长CA 至点D ,使AD =AB ,则tan D 的值为.【设计意图】通过课前检测题,了解学生对本节课的相关基础知识的掌握情况,可以根据检测的结果决定是否需要补测题,为后续提炼数形结合步骤和要点及进一步利用数形结合解决问题做好铺垫.2.解决问题——经历过程,感悟应用问题1:如图6,已知在△ABC中,AB =BC =5,tan∠ABC =43.(1)求AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为点D ,求AD AB的值.师生活动:教师引导学生审清题意,从数与形两个方面的关联分析问题.第(1)小题中,作高构建数所对应的形,根据形所对应的数量关系确定求AC 的长的方法(设未知数,将求AC 的长转化为解方程问题求解).第(2)小题中,从图形特征关联图形对应的数量关系,确定求比值的方法.在引导学生审题和分析问题的过程中,教师结合学生的回答给出如表1所示的数形关联表,然后通过追问使学生理解“图形的形状确定,则图形中对应的数量关系也随之确定”.因此,求图形中两条线段的比值时,不必关注具体的数量,而把目光聚焦到图形中元素间的数量关系上,则求解过程更为简捷.表1追问1:你是如何使用“tan∠ABC =43”这个条件的?AB C图6··49追问2:条件“边BC的垂直平分线与边AB的交点为点D”对应的图形和数量关系表达式是什么?追问3:若将“AB=BC=5”改为“AB=BC”,你还能求出ADAB的值吗?为什么?【设计意图】通过解决第(1)小题,使学生经历以数解形的思考与解决问题的过程,将图形信息转换为具体的数量关系,借助图形的直观性,增加问题解决的准确性,使问题求解更加简明.通过解决第(2)小题,使学生经历以形助数的思考与解决问题的过程,让学生感悟借助图形的几何直观来解决数的问题,常常可以避免复杂的推理计算,使问题化难为易,使抽象的问题具体化.解决问题后,借助数形关联表,通过问题串促进学生对解决问题的过程进行反思总结,提炼运用数形结合解决问题的一般步骤、注意要点和作用,提升学生的思维能力.3.交流提炼——合作交流,提炼方法问题2:结合课前检测和问题1,你能总结一下利用数形结合思想解决问题的一般步骤和作用吗?师生活动:引导学生回顾课前检测题2的问题解决过程,师生共同建立如表2所示的数形关联表.表2结合问题1的解决过程和如表1、表2所示的数形关联表,师生共同归纳上述问题的解题思路和方法,总结提炼数形结合的一般操作步骤、作用和转化策略.作用:实现数与形的相互转化,使抽象思维与形象思维相结合,从而化繁为简、化难为易.一般操作步骤如下.(1)分析问题结构——审题,得到数的关系和形的特征.(2)构想数形关联——从数的角度想象和表示图形特征,从形的角度想象和描述数量关系,找到数与形的关联点,如几何度量(如距离、角度等)或坐标.(3)实施数形转换——构建数所对应的形,对形所对应的数量或数量关系进行符号抽象、运算和推理.(4)获得问题答案——有逻辑地表达解题过程.转化策略:关注具有显著特征的对象,基于基本的几何度量(距离和角度)找出数量关系与几何图形的关联点.【设计意图】概括数学思想方法,需要把数形结合思想的操作过程模型化、程序化、一般化.组织学生相互讨论交流,进一步挖掘数形结合思想的本质内涵,使学生对数形结合思想的认识从内隐转化为外显,实现运用数形结合思想解决问题操作策略的明朗化. 4.迁移应用——知识迁移,能力拓展问题3:如图7,我国两艘海监船A,B在南海海域巡航.某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C.此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向.已知A船的航速为30海里/时,B船的航速为25海里/时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,2≈1.41.)图7AB45°53°C师生活动:学生按以下步骤进行独立探索,并在学案上构建数形关联表,解决问题3.第一步:分析问题结构.过点C作AB所在直线的垂线,垂足为点D,由已知AD=DC,∠CBD=53°,··50AB=5.根据两艘船的速度,求等待时间,就要求AC 和BC的长.已知两角和一边,求另外两条边的长,这其实就是解直角三角形问题.第二步:构想数形关联.当已知角和边的条件时,利用锐角三角函数解决问题,通常要构建直角三角形.第三步:实施数形转换.设未知数,根据图形结构列出方程.第四步:获得问题答案.检验解的意义,得到实际问题的答案.教师在学生的分析、思考过程中,关注学生对数形结合解决问题一般步骤的操作表现,并利用希沃授课助手(手机APP结合电脑端)对学生完成的较规范的数形关联表和解题过程进行拍照上传、展示点评.结合学生的思考,师生共同构建如表3所示的数形关联表,解决问题3.表3【设计意图】通过对问题3的解决,进一步明确运用数形结合解决问题的思考步骤和注意要点,感知数与形之间的关联性,挖掘数与形之间的联系,促使学生自觉运用数形结合思想,提升分析问题和解决问题的能力.问题4:如图8,在△ABC中,AB=AC,AD是边BC上的高,E是AB的中点,F是边AC上一个动点,EF与AD相交于点G,AC=10,cos∠DAC=45.当△AGF为等腰三角形时,求EG的长.师生活动:首先,引导学生关注问题中的特殊元素,如两个中点E,D,连接ED构造△AGF∽△DGE;其次,解题需要关注主要构图对象,借助GeoGebra软件中的“复选框”功能简化图形,最终将问题转化为“在△DEG中,DE=5,cos∠EDG=45,当△DEG为等腰三角形时,求EG的长”.再运用GeoGebra软件中的“滑动条”控制动点F在边AC上移动,通过分类讨论,师生共同构建如表4所示的数形关联表,利用数形结合解决问题.代数关系式由BD=DC,BE=EA,得△AGF∽△DGE.由△AGF为等腰三角形,得△DGE为等腰三角形.得DE=5,cos∠EDG=45情况1:DE=EG;情况2:DE=DG;情况3:EG=DG对应的几何图形EDG(舍去)情况1EGDEGD(方法1)(方法2)情况2EGDEGD(方法1)(方法2)情况3AEFGDB CEGD5表4AEFGDB C图8··51追问1:此题还有其他解法吗?追问2:“EG=ED”这种情况不存在,我们还可以怎样说明?追问3:当EG=DG时,E G的长有限制吗?【设计意图】通过对问题4的解决,以数形结合、分类讨论思想为基础,引导学生在分析问题、规划思路时,将目光聚焦在特殊的视角和特殊的对象(等腰、中点、平行线)上,根据已有的数学活动经验合理寻求解决问题的突破口,体会利用数形结合进行推理得到的结论具有一般性,掌握目标导向的认知策略,使学生进一步感知数与形之间的关联性,挖掘数与形之间的必然联系,提升分析问题和解决问题的能力.追问4:结合以上问题,你能总结一下利用数形结合解决问题的注意要点和转化策略吗?注意要点如下.(1)代数性质与几何图形要对应互换.(2)考虑数形结合解决问题的必要性、可行性和简洁性.(3)不能用图形的直观代替严密的逻辑推理,既需要几何直观分析,又需要进行对应的代数抽象分析.5.反思总结——回顾思考,深化思维(1)数形结合的作用是什么?(2)运用数形结合解决问题可以分为哪些步骤?(3)运用数形结合解决问题的过程中最关键是哪一步?需要注意什么?(4)你还有哪些收获?师生共同总结出如图9所示的框图.数形结合作用实现数与形的相互转化,使抽象思维与形象思维相结合化繁为简,化难为易1.分析问题结构2.构想数形关联3.实施数形转换4.获得问题答案转化策略:找出数量关系与几何图形的关联点操作步骤注意要点1.考虑数形结合解决问题的必要性、可行性和简洁性2.几何证明题需几何直观分析、代数抽象分析对应进行3.代数性质与几何图形的对应互换图9【设计意图】回顾本节课的学习历程,并再次总结数形结合思想的解题思路、操作步骤、要点和作用,深化学生对数形结合思想的理解,强化目标导向的认知策略.六、目标检测——自我检测,巩固反馈1.新冠肺炎疫情期间,教育部号召各地各类学生居家学习.为支持小明学习,妈妈特意买了新台灯.图10(1)是放置在水平桌面上的台灯,图10(2)是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,AC 可以绕点A上下调节一定的角度,CD可以绕点C上下调节一定的角度.使用时发现:当灯臂与底座构成的夹角∠CAB=53°,∠ACD=157°时,台灯光线最佳.求光线最佳时点D到桌面的距离为多少?(结果保留一位小数.参考数据:sin53°≈45,cos53°≈35.)A BCD(2)(1)图102.如图11,在Rt△ABC中,∠C=90°,sin B=45,AC=4.D是BC的延长线上的一个动点,∠EDA=∠B,AE∥BC.当△ADE为等腰三角形时,求AE的长.AB C DE图11【设计意图】巩固利用数形结合思想解决问题的过程与方法,对应知应会的核心知识进行检测,为下节课的解题课奠定基础.通过解决问题,进一步体现数形结合思想应用的广泛性和有效性,提高学生对数学思想的感悟层次,提升学生分析问题和解决问题的能力,感受数形结合的育人价值.··52七、教学反思教学设计是静态的,而课堂生成是动态的.通过对数形结合的设计和实施教学,笔者认为,在教学中,教师引导学生感悟数形结合思想方法,发展数学学科核心素养应注意以下几点.1.进行单元整体教学从整体上把握教学内容,整体构思单元各课时的教学内容,注重知识的前后联系,以及对后续学习的重要作用,体现数学知识的整体性、逻辑的连贯性、思想的一致性和方法的一般性.在相互联系中引导学生感悟其中蕴涵的数学思想方法,发展学生的数学素养,有利于深化学生对数形结合思想的理解,培养理性精神和探究精神,提升中考数学备考能力.2.发挥一般观念的引领作用本节课的教学设计和实施是在一般观念的指导下,以数学知识的内在逻辑构建自然而然的研究过程.以解直角三角形内容为载体,根据题目条件和数学知识的内在逻辑关系设计系列问题串,自然引出数形关联表,利用问题串和数形关联表引导学生概括总结问题的解决思路和方法,提炼数形结合的作用、一般操作步骤、转化策略,形成基本套路,提升教学的整体性和思想性,帮助学生体会数形结合思想方法,使学生透过现象看本质,从复杂问题中抓住关键要素,从而化繁为简,形成数学的思维方式,提升发现问题、提出问题、分析问题和解决问题的能力. 3.遵循数学思想方法教学的原理数学思想方法的学习要经历“解决问题—概括提炼—迁移应用—联系发展”这四个阶段.本节课以此为依据进行教学设计.首先,通过具体问题的解决,体会数形结合思想;其次,将如何分析问题结构、构想数形关联、实施数形转换这一操作过程显性化,明确其作用、操作步骤和要点,提炼和概括数形结合思想;最后,让学生用概括出来的数形结合思想解决新的问题,感悟利用数形结合解决问题的关键是从数的角度观察图形特征,从形的角度实现数量代换,找到数与形的关联点,使学生内化数形结合思想,形成数学活动的经验.例如,在回顾检测题2和问题1时,给表格加个题目“数形关联表”,在对照表格进行引导时用“数量关系关联的几何图形”和“几何图形关联的数量关系”等语言,可以促进学生使用“关联”进行概括.4.精选样例引导学生感悟数形结合思想方法,重要的是精选适当的题目,利用题目归纳操作流程.巩固操作流程可以利用相关的变式题目和拓展题目进行迁移训练,使学生在合作探究中内化数形结合的操作流程,在反思总结中形成有结构的知识经验.5.坚持以学为中心在以学生活动为主、以感悟数形结合思想为目标的复习教学中,教师需要注意鼓励学生积极思考、提出有价值的问题,关注学生是否能够用数学的思维方式观察、分析、解决问题,使学生感受数与形之间的相互转化,使抽象思维与形象思维相结合;合理运用信息技术手段,有利于增强学生的学习兴趣,提高课堂学习效果.教学时,若教师不揭示方法的本质,学生只会看到简单的数学操作,看不到问题的本质.数学思想是对数学知识的更高层次的概括与提炼,是培养学生的数学能力、发展数学学科核心素养的重要环节.数学思想方法的教学对解题教学具有十分重要的指导作用,有助于提升学生的解题能力和应用能力,发展学生的理性思维和科学精神,有效发挥数学学科的育人价值.参考文献:[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.[2]章建跃.章建跃数学教育随想录[M].杭州:浙江教育出版社,2017.[3]吴增生.科学用脑高效复习:初中数学总复习教学设计[M].杭州:浙江科技出版社,2018.[4]吴增生.整体建构核心素养导向下的总复习教学策略体系[J].中国数学教育(初中版),2019(7/8):3-11,37.[5]王华鹏.“四个理解”指导下的教学设计新思路:以“位似”教学设计为例[J].中国数学教育(初中版),2019(9):3-8,13.··53。
中考总复习数学专题优化训练: 数形结合思想
专题训练五 数形结合思想一、选择题1.已知在第二象限内,点P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是A.(2,3)B.(-2,3)C.(-3,2)D.(3,2)2.把不等式组⎩⎨⎧≤->+01,01x x 的解集表示在数轴上,正确的是图2-33.若M(-21,y 1)、N(-41,y 2)、P(21,y 3)三点都在函数y=xk (k <0)的图象上,则y 1、y 2、y 3的大小关系为A.y 2>y 3>y 1B.y 2>y 1>y 3C.y 3>y 1>y 2D.y 3>y 2>y 14.已知二次函数y=ax 2+bx+c 的图象如图2-4所示,则a 、b 、c 满足图2-4A.a <0,b <0,c >0B.a <0,b <0,c <0C.a <0,b >0,c >0D.a >0,b <0,c >05.已知二次函数y=x 2-2x-3,当_______________时,y 随x 的增大而增大;当_______________时,y 的值小于0A.x <1;-1<x <3B.x >1;x <-1或x >3C.x >1;-1<x <3D.x <-1;x <-1或x >3二、填空题6.实数a 、b 在数轴上的位置如图2-5所示,化简2a +∣a-b ∣=__________________.图2-57.若不等式组⎩⎨⎧->+<12,1m x m x 无解,则m 的取值范围是________________.8.青岛市是严重缺水地区,自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费是用水量的函数,其图象如图2-6所示:观察函数图象,回答自来水公司采取的收费标准______________________________________ _______________________________________________________________________________ .图2-69.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;图2-7(2)通过猜想写出与第n个点阵相对应的等式为___________________.10.如图2-8,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A(-1,0)、B(3,0)和C(0,-3),一次函数的图象与抛物线交于B、C两点.图2-8(1)二次函数的解析式为_______________________.(2)当自变量x_______________时,两函数的函数值都随x增大而增大.(3)当自变量_______________时,一次函数值大于二次函数值.(4)当自变量x_______________时,两函数的函数值的积小于0.三、解答题11.某广电局与长江证券公司联合推出广电宽带网业务,用户通过宽带网可以享受新闻点播、影视欣赏、股市大户室等项服务,用户交纳上网费的方式有:方式一,每月80元包干;方式二,每月上网时间x(小时)与上网费y(元)的函数关系用图2-9中的折线表示;方式三,以0小时为起点,每小时收费1.6元,月收费不超过120元.若设一用户每月上网x小时,月上网费为y元.图2-9(1)根据图2-9,写出方式二中y与x的函数关系式;(2)试写出方式三中y与x的函数关系式;(3)若此用户每月上网60小时,选用哪种方式上网费用最少?最少费用是多少?12.如图2-10,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.图2-10(1)建立如图所示的直角坐标系,求抛物线的解析式.(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,它跳离地面的高度是多少?一、选择题1答案:C提示:点P到x轴的距离是2,所以y=2;到y轴的距离是3,所以x=3.2答案:B提示:不等式组的解集在数轴上表示,要注意实心点和空心点的区别.3答案:B提示:由k<0,反比例函数的图象过第二、四象限,由此可知y1、y2为正值,y3为负值;然后再根据增减性确定y1、y2的大小.4答案:A提示:二次函数y=ax 2+bx+c 图象中,a 决定抛物线的开口方向,c 决定抛物线与y 轴交于正半轴或负半轴,a 、b 同号对称轴为负,a 、b 异号对称轴为正.5答案:C提示:求出抛物线的对称轴,以及抛物线和x 轴的交点坐标,通过数形结合,得出答案.二、填空题6答案:b-2a提示:根据绝对值意义和二次根式化简.7答案:m ≥2提示:不等式组⎩⎨⎧->+<12,1m x m x 无解,即2m-1≥m+1.8答案:用水量不超过5吨时,每吨0.72元;当用水量超过5吨时,超过5吨的部分,每吨0.9元提示:5吨水花费3.6元,便可求出单价.超过5吨水后,每用3吨花费2.7元,便可求出水的单价.9答案:(1)1+3+5+7=42 1+3+5+7+9=52 (2)1+3+5+7+…+(2n-1)=n 2提示:点阵中点的总数实际上可以看作正方形的面积.10答案:(1)y=x 2-2x-3 (2)x >1 (3)0<x <3 (4)<-1提示:用待定系数法求出函数解析式,再由图象判断.11答案:(1)y=⎩⎨⎧>-≤≤.50,22.1,500,58x x x (2)y=⎩⎨⎧>≤≤.75,120,750,6.1x x x (3)第二种费用最少,最少费用为70元.提示:运用待定系数法求直线解析式.12答案:(1)y=-51x 2+3.5;(2)0.2米. 提示:把实际问题转化为数学问题:求抛物线上点的坐标.。
数形结合的思想—2024年中考数学思想方法专项突破(全国通用)(解析版)
数形结合的思想目录数形结合的思想 (1)一、数形结合在解一元二次不等式中的应用 (1)二、数形结合在求最值中的应用 (6)三、方程中数形结合的应用 (10)四、三角函数中数形结合的应用 (12)五、数形结合在函数中的应用 (13)数形结合思想的运用贯穿于整个初中数学阶段的学习 , 而数形结合思想又可以细分为“以形助数”“以数解形”和“数形互化”三个方面 , 本专题从这三个方面入手 , 结合精选例题深入剖析分析数形结合思想在初中数学教学中的运用.一、数形结合在解一元二次不等式中的应用做题思路:一元二次不等式往往可以转化为二次函数的图象来解决,首先把一元二次不等式化为一般形式20ax bx c ++>,然后令2y ax bx c =++,作出二次函数2y ax bx c =++的图象,求出图象与坐标轴的交点,然后观察图象即可得出一元二次不等式20ax bx c ++>的解集. 1.阅读理解:自主学习,请阅读下列解题过程. 解一元二次不等式:250x x −>.解:设250x x −=,解得10x =,25x =,则抛物线25y x x =−与x 轴的交点坐标为(0,0)和(5,0),画出二次函数25y x x =−的大致图象(如图所示),由图象可知:当0x <或5x >时函数图象位于x 轴上方,此时0y >,即250x x −>,所以,一元二次不等式250x x −>的解集为0x <或5x >.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题: (1)上述解题过程中,渗透的数学思想有 .(2250x x −…的解集为 . (3)用类似的方法解一元二次不等式:2340x x −−+>.【思路分析】(1)根据题意容易得出结论;(2)观察图象即可写出一元二次不等式250x x −…的解集;(3)先设函数解析式,根据a 的值确定抛物线的开口向上,再找出抛物线与x 轴相交的两点,大致画出画出抛物线,根据0y >确定一元二次不等式2340x x −−+>的解集即可.【详细解答】解:(1)根据解题过程中,渗透了转化思想和数形结合思想. 故答案为:转化思想和数形结合.(2)由图象可知:当05x ……时函数图象位于x 轴及其下方,此时0y …,即250x x −…, ∴一元二次不等式250x x −…的解集为:05x …….故答案为:05x …….(3)设2340x x −−+>,解得:14x =−,21x =,∴抛物线234y x x =−−−与x 轴的交点坐标为(4,0)−和(1,0).如图:画出二次函数234y x x =−−−的图象,由图象可知:当41x −<<时,函数图象位于x 轴上方,此时0y >,即2340x x −−+>, ∴一元二次不等式2340x x −−+>的解集为:41x −<<.2.请阅读下列解题过程:解一元二次不等式:2230x x −−<. 解:设2230x x −−=,解得:11x =−,23x =,则抛物线223y x x =−−与x 轴的交点坐标为(1,0)−和(3,0). 画出二次函数223y x x =−−的大致图象(如图所示). 由图象可知:当13x −<<时函数图象位于x 轴下方, 此时0y <,即2230x x −−<.所以一元二次不等式2230−−<的解集为:13x x−<<.x通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的和(只填序号).①转化思想;②分类讨论思想;③数形结合思想.(2)用类似的方法解一元二次不等式:220−+>.x x(3)某“数学兴趣小组”根据以上的经验,对函数(1)(||3)=−−−的图象和性质进行了y x x探究,探究过程如下,请补充完整:①自变量x的取值范围是;x与y的几组对应值如表,其中m=;②如图,在直角坐标系中画出了函数的部分图象,用描点法将这个图象补画完整;③结合函数图象,解决下列问题:解不等式:3(1)(||3)0…….−−−−x x【思路分析】(1)依据解答过程体现的数学思想方法解答即可; (2)利用题干中的方法,画出函数的图象,观察图象解答即可; (3)①依据函数的解析式填表计算即可; ②利用描点法解答即可; ③观察图象解答即可.【详细解答】解:(1)上述解题过程中,渗透了下列数学思想中的转化思想和数形结合思想, 故答案为:①;③;(2)解一元二次不等式:220x x −+>. 设220x x −+=,解得:10x =,22x =,则抛物线22y x x =−+与x 轴的交点坐标为(0,0)和(2,0). 画出二次函数22y x x =−+的大致图象(如图所示),由图象可知:当02x <<时函数图象位于x 轴上方,此时0y >,即220x x −+>. 所以一元二次不等式220x x −+>的解集为:02x <<;(3)①自变量x 的取值范围是:任意实数;x 与y 的几组对应值如表,其中4m =−. 故答案为:任意实数,4−; ②如图,③由图象可知:当32x −−……或01x ……或34x ……时函数图象位于3−与0之间,此时30y −……,即3(1)(||3)0x x −−−−…….所以不等式3(1)(||3)0x x −−−−……的解集为:32x −−……或01x ……或34x …….3.已知关于x 的方程 x 2 - 2kx +3k - 2 = 0,求当方程有两个实数根时,k 的取值范围 .思路解析:代入k 并 根 据 求 根 公 式 得 出Δ= 4k 2 - 12k +8, 由于公式Δ含有未知数k ,得到一个关于Δ和k 的二次函数 ,其中k 为自变量 ,Δ 为因变量 ,画出 “函数 ”Δ=4k 2 - 12k+8的图象就可以 判断出 “函 数 ”的 正 负 了 . 要 想 画 出 “函 数 ”大 致 图 象 ,需要 先 判 断 出 函 数 开口 , 再 判 断 函 数 是 否 有 零 点 ,这时就要使用以数解形的思想: 函数Δ的零点实质就是在 解 Δ= 0的根 , 使 用 因 式 分 解 法 将 4k 2 -12k+8= 0这个方程化为 4(k 2-3k+2)= 0,进一 步因式分 解 得 到 :4(k - 1)(k - 2)= 0, , 就 可以解出方程有两个根分别为1和2,再回到函数上 , 可以得到函数的两个零点的坐标分别为(1,0) , (2,0)就 可以画出函数Δ=4k 2 - 12k+8的大致图象 :通过图象 ,学生就能很容易地看出Δ的正负随k 改变的情况.二、数形结合在求最值中的应用解题思路:在求此类函数y可以看做点(x ,0)到(0,4)和(2,1)的距离和最小.典例精析1.已知正实数x ,求y 【思路分析】根据轴对称的性质和勾股定理即可得到结论.【详细解答】解:由y =, 故可理解为(,0)M x 到(0,4)A 和(2,1)B 的距离和的最小值. 作A 关于轴的对称点(0,4)A '−,连接A B ',与x 轴交点即为M , 则(,0)M x 到(0,4)A 和(2,1)B 的距离的最小值A B =', 过B 作BD y ⊥轴于D ,在Rt △A DB '中,A B '==y ∴=.2.【问题情境】如图1,已知点A ,B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小军的思路是:如图2,作点A 关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点P 即为所求.【启发应用】请参考小军同学的思路,探究并解答下列问题:(1)如图3,在图2的基础上,设AA '与直线l 的交点为点C ,过点B 作BD l ⊥,垂足为点D .若1CP =,2PD =,1AC =,求出此时AP BP +的最小值;(2)如图3,若1AC =,2BD =,6CD =,则此时AP BP +的最小值为 ;(3)的最小值.【思路分析】(1)根据等腰三角形的判定证得ACP ∆和BDP ∆为等腰直角三角形,利用勾股定理求得PA 和PB ,从而求得PA PB +;(2)作//A E l ',交BD 的延长线于E ,根据已知条件求得BE 、A E ',然后根据勾股定理即可求得A B ',从而求得AP BP +的值;(3)设53AC m =−,1PC =,可得PA ,设85BD m =−,3PD =,可得PB ,结合(2)即可求解.【详细解答】解:(1)AA l '⊥,1AC =,1PC =,AC CP ∴=,90ACP ∠=︒, 45CAP CPA ∴∠=∠=︒,PA ∴=,点A 关于直线l 的对称点为A ',PA PA ∴'== 45CPA CPA ∴∠'=∠=︒,BD l ⊥,45BPD CPA ∠=∠'=︒,904545PBD BPD ∴∠=︒−︒=︒=∠,2BD PD ∴==,PB ∴==AP PB ∴++(2)作//A E l ',交BD 的延长线于E ,如图3,则四边形A EDC '是矩形,6A E DC ∴'==,1DE A C AC ='==,2BD =,3BD AC BD DE ∴+=+=,即3BE =,在Rt △A BE '中,A B '=,AP BP A P BP A B ∴+='+='=故答案为:(3)如图3,设53AC m =−,1PC =,则PA =设85BD m =−,3PD =,则PB =, 53DE AC m ==−,5BE BD DE ∴=+=,4A E CD PC PD '==+=,PA PB A B ∴+='=∴22+=3.探究:如图,C 为线段BD 上一动点,分别过点B 、D 作AB BD ⊥,ED BD ⊥,连接AC 、EC ,已知5AB =,1DE =,8BD =,设CD x =.(1)用含x 的代数式表示AC CE +的值.(2)请问点C 满足什么条件时,AC CE +的值最小?(3)根据(2的最小值.(4x 是任意实数)的最大值.【思路分析】(1)由于ABC ∆和CDE ∆都是直角三角形,故AC ,CE 可由勾股定理求得; (2)若点C 不在AE 的连线上,根据三角形中任意两边之和>第三边知,AC CE AE +>,故当A 、C 、E 三点共线时,AC CE +的值最小;(3)由(1)(2)的结果可作12BD =,过点B 作AB BD ⊥,过点D 作ED BD ⊥,使2AB =,3ED =,连接AE 交BD 于点C ,则AE 的最小值,然后构造矩形AFDB ,Rt AFE ∆,利用矩形和直角三角形的性质可求得AE 的值; (4)过点A 作AB OA ⊥,使3AB =,2OC =,连接BC 交x 轴负半轴于点D ,则BC 的长的最大值,然后构造矩形AOCE ,Rt BCE ∆,利用矩形和直角三角形的性质可求得BC 的值.【详细解答】解:(1)AC CE + (2)当A 、C 、E 三点共线时,AC CE +的值最小;(3)如图1,作12BD =,过点B AB BD ⊥,过点D 作ED BD ⊥,使2AB =,3ED =, 连接AE 交BD 于点C ,设BC x =,则AE 的最小值. 过点A 作//AF BD 交ED 的延长线于点F ,得矩形ABDF , 则2AB DF ==,12AF BD ==,325EF ED DF =+=+=,所以13AE ===,13.的最小值为13;(4)如图2,作4OA =,过点A 作AB OA ⊥,使3AB =,2OC =,连接BC 交x 轴负半轴于点D ,设D 的坐标为(,0)x ,则BC 的最大值,过点C 作CE AB ⊥,则2AE OC ==,4CE OA ==,1BE ∴=.在Rt CBE ∆中,根据勾股定理,得BC ==x三、方程中数形结合的应用1.关于x 的方程2230x kx k ++=的两个相异实根均大于1−且小于3,那么k 的取值范围是()A .10k −<<B .0k <C .3k >或0k <D .1k >−【思路分析】把一元二次方程解的问题转化为抛物线与x 轴的交点问题,则利用题意得抛物线223y x kx k =++与x 轴的两个交点到在(1,0)−和(3,0)之间,利用二次函数图象得到1x =−时,0y >和当3x =时,0y >,接着由△0>确定抛物线与x 轴有2个交点,然后解关于k 的不等式组确定k 的范围.【详细解答】解:关于x 的方程2230x kx k ++=的两个相异实根均大于1−且小于3, ∴抛物线223y x kx k =++与x 轴的两个交点都到在(1,0)−和(3,0)之间,∴△24430k k =−⨯>,解得0k <或3k >,1x =−时,0y >,1230k k ∴−+>,解得1k >−;当3x =时,0y >,9630k k ∴++>,解得1k >−,k ∴的范围为10k −<<.故选:A .2.已知方程2240x ax a ++−=有两个不同的实数根,方程220x ax k ++=也有两个不同的实数根,且其两根介于方程2240x ax a ++−=的两根之间,求k 的取值范围.【思路分析】由方程2240x ax a ++−=恒有相异两实根,则△0>,而△22211544(4)4(4)4[()]24a a a a a =−−=−+=−+,得a 为任意实数,由方程220x ax k ++=也有相异两实根,△2440a k '=−>,即2k a <;并且它的两根介于上面方程的两根之间,可利用二次函数的图象继续求k 的范围.【详细解答】解:方程2240x ax a ++−=有两个不同的实数根∴△0>,而△22144(4)4()15152a a a =−−=−+…. 又方程220x ax k ++=也有两个不同的实数根∴△2440a k '=−>,即2k a <对于二次函数2124y x ax a =++−和222y x ax k =++,它们的对称轴相同,且与x 轴都有两个不同的交点2y 与x 轴的两个交点都在1y 与x 轴的两个交点之间2y ∴与y 轴的交点在1y 与y 轴的交点上方,如图,4k a ∴>−,k ∴的取值范围是:24a k a −<<.四、三角函数中数形结合的应用1.已知11tan,tan23αβ==,求证45αβ+=︒思路分析根据正切函数的定义将图7 翻转形成图8,即可求出.图7 图8证明如图8,连接 BC,可知AD=EC,BD=BE,∠D=∠BEC,所以△ABD≌△CBE,所以AB=BC,∠ABD=∠CBE,从而∠ABC是直角,所以△ABC是等腰直角三角形,所以α+β=45°.五、数形结合在函数中的应用1.求函数y=3x ²+6x +9的图象的基本性质.图 1解:将函数y =3x ²+6x +9变式为y=3(x +1)²+6,如图1所示,对称轴是x =-1.增减性:当x >-1时 ,y 随x 的增大而增大,当x <-1时,y 随x 的增大而减小.最值:当x =-1时,y m =6,顶点坐标为(-1,6)2.如图,抛物线223y x x =−−+与x 轴交于(1,0)A ,(3,0)B −两点,与y 轴交于点C .点P 为抛物线第二象限上一动点,连接PB ,PC ,BC ,求PBC ∆面积的最大值.【思路分析】根据抛物线223y x x =−−+先求出点C 坐标,再用待定系数法求出直线BC 解析式,设P 的横坐标是(30)x x −<<,则P 的坐标是2(,23)x x x −−+,过点P 作y 轴的平行线交BC 于M ,则(,3)M x x +,然后根据三角形的面积公式求出2221133327||(3)3(3)()222228PBC B C S PM x x x x x x x ∆=⋅−=−−⨯=−+=−++,再根据函数的性质求最值.【详细解答】方法一:解:令0x =,则3y =,(0,3)C ∴,设直线BC 的解析式为3(0)y kx k =+≠,把点B 坐标代入3y kx =+得330k −+=,解得1k =,∴直线BC 的解析式为3y x =+,设P 的横坐标是(30)x x −<<,则P 的坐标是2(,23)x x x −−+, 过点P 作y 轴的平行线交BC 于M ,则(,3)M x x +,2223(3)3PM x x x x x ∴=−−+−+=−−,2221133327||(3)3(3)()222228PBC B C S PM x x x x x x x ∆∴=⋅−=−−⨯=−+=−++, 302−<, ∴当32x =−时,PBC S ∆有最大值,最大值是278, PBC ∴∆面积的最大值为278; 方法二:如图6,设P 的坐标是2(,23)x x x −−+且(30)x −<<,连接OP . 2221113(23)3()332223389279()222823327()2722832PBC OBP OCP OBC PBC S SS S x x x x x x S ∆∆=++=⨯−−++⨯−−⨯⨯==−+++−=−++==−最值当时,大图 6。
试析中考数学压轴题中的数学思想及解题思路
试析中考数学压轴题中的数学思想及解题思路
中考数学压轴题是考试中最难的一道题,其难度和复杂程度相对于其他题目较高,需要考生具备一定的数学思想和解题思路才能够解答出来。
以下是对中考数学压轴题的数学思想及解题思路进行分析。
数学思想:
1. 数形结合的思想
数形结合是一种数学思想,指的是通过几何图形来解决数学问题。
在数学压轴题中,考生需要通过画图、构建模型等方式将问题转化成几何图形问题,然后再求解。
2. 数量关系的思想
数量关系是指数学中各种量之间的联系和变化规律。
在数学压轴题中,考生需要通过建立各种量之间的关系,从而解决问题。
3. 分析与综合的思想
分析与综合是人类思维的特点之一,指的是将一个整体拆分成几个部分,对每个部分进行分析,最后将各个部分综合起来,形成一个完整的结论。
在数学压轴题中,考生需要通过分析和综合,找到问题的本质和解决办法。
解题思路:
1. 理清题意
数学压轴题往往涉及多个概念和知识点,考生需要认真读题,理清题意,把握问题的核心和难点,避免在解题过程中出现误解。
2. 分析数据
在理清题意之后,考生需要分析数据,找到其中的规律和特点,将数据转化为数学模型或形式化表示,并用数学方法进行计算和分析。
4. 检查答案
最后,考生需要对答案进行检查,确保计算的准确性和解决方案的可行性。
在此过程中,考生需要回顾一遍题意,确认自己的计算步骤和结果是否符合题目要求。
综上所述,中考数学压轴题需要考生具备数形结合、数量关系、分析与综合等数学思想,并遵循理清题意、分析数据、综合分析、检查答案的解题思路,才能够完成高难度的数学问题。
中考数学专题复习——数形结合思想PPT课件
2 无论 m 为何实数,直线 y = x + 2m 与 y =-x+4的交点不可能在 ( C) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
y
O
x
y=-x+4
3 已 知 二 次 函 数 y1 = ax2 + bx + c (a≠0)与一次函数 y2=kx +m(k≠0) 的 图 象 相 交 于 点 A( - 2,4) , B(8,2) (如图所示),则能使 y1 > y2成立的 x<-2或x>8 x的取值范围是_____
24 24 18 (3)中途加油__升 (4)如果加油站离 12 目的地还有230公里, 6 车速为40公里/小时, 0 1 2 3 4 5 6 7 8 9 10 11 (小时) t
要到达目的地,油箱中的油是否够用?请说明理由 .
7、思考题:
已知:如图,直线y=-√3 x/3+1和x 轴、 y 轴分别相交于 A、 B 两点,以线段 AB 为 边在第一象限内作一个等边三角形ABC,点P 在第一象限内,且使△ABP与△ABC的面积相 y 等。(1)求C点坐标; (2)求直线PC的解析式; D (3)若点Q的坐标为 C (√3 m,m2-3),问点Q在 P B x 不在直线PC上? A E O
2 例3:已知二次函数 y ax bx c 的图象如图所示
1、试判断a , b , c 的符号 2、点(b , 2a-b)在第
二
象限
3、若M= a b c a b c 则 ( A ) A、M > 0 B、 M = 0 C、M < 0 D、不能确定
2a b 2a b y
运用数形结合的方法,将 函数的解析式、图象和性 质三者有机地结合起来
-1
0
中考代数几何-用数形结合的思想解题
中考用数形结合的思想解题1. 用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.方法点拨数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.类型一、利用数形结合探究数字的变化规律1. 如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A. 39SB. 36SC. 37SD. 43S答案与解析举一反三【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n 面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选 C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.【变式】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是______________.答案与解析【答案】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入 y=kx+b得:解得:则直线A1A2的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴A3C2=A3B3=B3C3=4,∴点B3的坐标为(7,4),∴B1的纵坐标是:1=20,B1的横坐标是:1=21-1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22-1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23-1,∴B n的纵坐标是:2n-1,横坐标是:2n-1,则 B n(2n-1,2n-1).∴B4的坐标是:(24-1,24-1),即(15,8).故答案为:(15,8).类型二、利用数形结合解决数与式的问题2. 已知实数a在数轴上的位置如图所示,则化简|2-a|+的结果为__________.答案与解析【思路点拨】由数轴可知,0<a<2,由此去绝对值,对二次根式化简.【答案与解析】解:∵0<a<2,∴|2-a|+=2-a+a=2.故答案为:2.【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习——数形结合思想 一、知识梳理
数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。
另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的。
华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休。
”这充分说明了数形结合在数学学习中的重要性,是中考数学的一个最重要数学思想。
二、典型例题
(一)在数与式中的应用
例1、实数a 、b 在数轴上的位置如图所示,化简2
||a a b +-=_________。
(二)在方程、不等式中的应用 例2、已知关于x 的不等式组0
20x a x ->⎧⎨
->⎩
的整数解共有2个,则a 的取值范围是____________。
例3、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )
A .203210x y x y +-=⎧⎨--=⎩,
B .2103210x y x y --=⎧⎨--=⎩
,
C .2103250x y x y --=⎧⎨
+-=⎩
,
D .20210x y x y +-=⎧⎨
--=⎩
,
(三)在锐角三角函数中的应用 例4、画△ABC ,使cosA=2
1
,AB =2cm ,∠A 的对边可以在长为1cm 、2cm 、3cm 中任选,这
样的三角形可以画_______个。
(四)在函数中的应用
例5、如图为二次函数2y ax bx c =++的图象,在下列说法中: ①0ac <;②方程20ax bx c ++=的根为11x =-,23x =; ③0a b c ++>;④当1x >时,y 随着x 的增大而增大.
a b
0 · P (1,1)
1 1
2 2
3
3 -1 -1
O
x y
x
y O
3 -1
正确的说法有.(请写出序号)
(五)在概率统计中的应用
例6、某报社为了解读者对本社一种报纸四
个版面的喜欢情况,对读者作了一次问卷调查,
要求读者选出自己最喜欢的一个版面,将所得数
据整理后绘制成了如图所示的条形统计图:
⑴请写出从条形统计图中获得的一条信息;
⑵请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么⑶请你根据上述数据,对该报社提出一条合理的建议。
例7以x为自变量的二次函数y=-x2+2x+m,它的图象与y轴交于点C(0,3),与x轴交于点A、B,点A在点B的左边,点O为坐标原点,
(1)求这个二次函数的解析式及点A,点B的坐标,画出二次函数的图象;
(2)在x轴上是否存在点Q,在位于x轴上方部分的抛物线上是否存在点P,使得以A,P,Q三点为顶点的三角形与△AOC相似(不包含全等)?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.
三、综合训练
1、“数轴上的点并不都表示有理数,如图中数轴上的点A 所表示的数是2”,这种利用图形直观说明问题的方式体现的数学思想方法叫()
A.代入法B.数形结合C.换元法D.分类讨论
2、某人从A地向B地打长途电话6分钟,按通话电话收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是()
3、若M
1
1
,
2
y
⎛⎫
-
⎪
⎝⎭
,N
2
1
,
4
y
⎛⎫
-
⎪
⎝⎭
,P
3
1
,
2
y
⎛⎫
⎪
⎝⎭
三点都在函数(0)
k
y k
x
=<的图象上,则y1,y2,y3的大小关系为()
A、y2>y3>y1
B、y2>y1>y3
C、y3>y1>y2
D、y3>y2>y1
4、关于x的一元二次方程x2―x―n=0没有实数根,则抛物线y=x2―x―n的顶点在()
A、第一象限
B、第二象限
C、第三象限
D、第四象限
5、如图,在平面直角坐标系中,∠AOB =150°,OA=OB=2,
则点A、B的坐标分别是___________和___________。
6、如图,已知函数y x b
=+和3
y ax
=+的图象交点为
P,则不等式3
x b ax
+>+的解集为.
7、如图,为实数a、b在数轴上的位置,
化简222
()
a b a b
---。
O x
y
1
P
y=x+b
y=ax+3
A
1
-1 2
思考题:
5、函数2y x x m =-+(m 为常数)的图象如图,如果x a =时,
0y <;那么1x a =-时,函数值( )
A .0y <
B .0y m <<
C .y m >
D .y m =
2、如图1是一种带有黑白双色、边长是20cm 的正方形装饰瓷砖,用这样的四块瓷砖可以拼成如图2的图案.已知制作图1这样的瓷砖,其黑、白两部分所用材料的成本分别为0.02元/(cm 2)和0.01元
/(cm 2),那么制作这样一块瓷砖所用黑白材料的最低成本是_________元(π取3.14,结果精确到0.01元) 中考链接
1.(湖北中考)将不等式⎪⎩⎪
⎨⎧-≤-<+x x x x 23821148的解集在数轴上表示出来,正确的是(
2.(临沂中考)直线
l
1:y=k1x+b与
直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x+b >k 2x 的解为( )
A.x>-1 B.<-1 C.x<-2 D.x无法确定
3.(威海中考)下列四个点中,有三个点在同一条直线上,不在这条直线上的是( )
A.(-3,-1) B.(1,1) C.(3,2) D.(4,3)
4.(赤峰中考)如下图所示,半径为1的圆和边长为3的正方形如下图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t 的大致图象为( )
x
y
O x 1 x 2
图2
图1
A B C D
5.(金华中考)如图在24个边长为1的小正三角形组成的网格中,以格点P 为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长 .
6.在直角坐标系中,△ABC的三个顶点的位置如图所示,现将△ABC
平移使点A移至图中的点A/的位置.
(1)在直角坐标系中,画出平移后所得的△A/B/C/(其中B/,C/分别是B,C的对应点). (2)计算:对应点的横坐标的差: xA /-xA= ,xB /-xB= , xC/-xC = ;
对应点的枞坐标的差:yA /-yA= ,yB /-yB= ,Yc /- yC = . (3)从(2)的计算中,你发现了什么规律?请你把你发现的规律用文字表述出来. (4)根据上述规律,若将△ABC平移使得点A移至A""(2,-2),那么相应的点B"",C"
"(其中B"",C""分别是B,C的对应点)的坐标分别是
, .
7.(乐山中考)解不等式组⎪⎩⎪
⎨⎧-≤-+>+3122145)1(3x x x x 并将解集在数轴上表示出来.
8.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:
(1)求y l与y2的函数解析式;
(2)解释图中表示的两种方案是如何付推销费的;
(3)如果你是推销员,应如何选择付费方案.
9.(德州中考)某公司专销产品A,第一批产品A上市
40天内全部售完.该公司对第一批产品A上市后的市
场销售情况进行了跟踪调查,调查结果如图所示,其中
图1中的折线表示的是市场日销售量与上市时间的关
系;图2中的折线表示的是每件产品A的销售利润与上
市时间的关系.
(1)试写出第一批产品A的市场日销售量y与上市时间t的关系
式;
(2)第一批产品A上市后,哪一天这家公司市场日销售利润最
大?最大利润是多少万元?
10.(贵阳中考)甲、乙两人骑自行车前往A地,他们距A地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)甲、乙两人的速度各是多少?
(2)求出甲距A地的路程s与行驶时间t之间的函数关系式.
(3)在什么时间段内乙比甲离A地更近?。