最新人教版2018-2019学年七年级数学上册:一元一次方程应用题集锦及答案解析-精编试题

合集下载

(完整版)最新人教版七年级上册数学一元一次方程应用题及答案

(完整版)最新人教版七年级上册数学一元一次方程应用题及答案

一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2。

一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为( )A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x—80%×(1+45%)x = 50 D。

80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.7.某市移动通讯公司开设了两种通讯业务:“全球通"使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0。

2018-2019学年数学人教版(五四学制)七年级上册11.4一元一次方程与 实际问题 同步练习(1)

2018-2019学年数学人教版(五四学制)七年级上册11.4一元一次方程与 实际问题 同步练习(1)

2019-2019学年数学人教版(五四学制)七年级上册11.4一元一次方程与实际问题同步练习(1)一、选择题1.今年“六一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了()件A. 4,5B. 3,4C. 2,3D. 1,32.一条公路甲队独修需24天,乙队需40天,若甲、乙两队同时分别从两端开始修,()天后可将全部修完.A. 24B. 40C. 15D. 163.选择题:用一个正方形在日历中任意圈出相邻的2×2个数,使这4个数的和为64,则这4个数分别是()A. 12,13,18,19B. 13,14,15,19C. 12,13,19,20D. 11,12,19,224.一根铁丝用去3/5后,还剩下10m,这根铁丝原来的长是多少米?如果设这根铁丝原来的长是xm,那么列出的方程是()A. x-3/5=10B. x-10=3/5C. x-(3/5)x=10D. (3/5)x=105.某车间有26名工人,每人每天可以生产800个螺栓或1000个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,设安排x名工人生产螺母,则下面所列方程正确的是()A. 2×800(26﹣x)=1000x B. 800(13﹣x)=1000xC. 800(26﹣x)=2×1000xD. 800(26﹣x)=1000x6.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A. B. C. D.7.某班分两组志愿者去社区服务,第一组20人,第二组26人.现第一组发现人手不够,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A.20=2(26﹣x)B.20+x=2×26C.2(20+x)=26﹣xD.20+x=2(26﹣x)二、填空题8.某服装厂专门安排160名工人手工缝制衬衣,每件衬衣由2个衣袖、1个衣身组成,如果每人每天能够缝制衣袖10个或衣身15个,那么应安排________名工人缝制衣袖,才能使每天缝制出的衣袖、衣身正好配套。

人教版七年级数学上册《一元一次方程应用题》期末专题练习-带答案

人教版七年级数学上册《一元一次方程应用题》期末专题练习-带答案

人教版七年级数学上册《一元一次方程应用题》期末专题练习-带答案学校:班级:姓名:考号:1.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?2.列方程解决问题:某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,两种笔共卖出60支,卖得金额84元.求卖出铅笔的支数.3.家具厂制作一张桌子需要一个桌面和3条桌腿,1立方米木材可制作20个桌面,或者制作360条桌腿,现有7立方米木材,应该用多少立方米木材生产桌面,才能使所有木材生产出的桌面与桌腿正好配套?4.一项工程,甲队独做10ℎ完成,乙队独做15ℎ完成,丙队独做20ℎ完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6ℎ,问甲队实际工作了几小时?5.某机械加工厂计划在规定期限内完成一批零件的生产任务,如果每天生产零件25个,那么到期将比原计划少生产100个;如果每天生产零件30个,那么到期将比原计划多生产80个,求原计划几天完成任务?6.某儿童服装店欲购进A、B两种型号的儿童服装;经调查:B型号童装的进货单价是A型号童装的进货单价的两倍,购进A型号童装60件和B型号童装40件共用去2100元.求A、B两种型号童装的进货单价各是多少元?7.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,已知每名同级别的技工每天的工作效率相同,每名一级技工比二级技工一天多粉刷10m2墙面.求每个一级技工和二级技工每天粉刷的墙面各是多少平方米?8.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域交流越来越深,在北京故宫博物院成立90周年院庆时,两岸故宫同根同源,合作举办了多项纪念活动.据统计,北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中台北故宫博物院藏品数量比北京故宫博物院藏品数量的12还少25万件,求北京故宫博物院约有多少万件藏品?9.举世瞩目的2019年中国北京世界园艺博览会在长城脚下的北京延庆开园,它给人们提供了看山、看水、看风景的机会.一天小龙和朋友几家去延庆世园会游玩,他们购买普通票比购买优惠票的数量少5张,买票共花费了1400元,符合他们购票的条件如下表,请问他们买了多少张优惠票?平日普通票•适用所有人•除指定日外任一平日参观120 优惠票•适用残疾人士、60周岁以上老年人、学生、中国现役军人(具体人群规则同指定日优惠票)•购票及入园时需出示相关有效证件•除指定日外任一平日参观8010.某商场开展优惠促销活动,将甲种商品六折出存,乙种商品八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,问:商场销售甲、乙两种商品各一件时是盈利还是亏损了?具体金额是多少?11.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示:品名甲种乙种进价(元/kg)7 12售价(元/kg)10 16(1)求这两种水果各购进多少千克?(2)如果这批水果当天售完,水果店除进货成本外,还需其它成本0.1元/kg,那么水果店销售完这批水果获得的利润是多少元?(利润=售价-成本)12.为开展阳光体育活动,某班需要购买一批羽毛球拍和羽毛球,现了解情况如下:甲、乙两家商店出售同样品牌的羽毛球拍和羽毛球,羽毛球拍每副定价30元,羽毛球每盒定价5元,且两家都有优惠:甲店每买一副球拍赠一盒羽毛球;乙店全部按定价的9折优惠.(1)若该班需购买羽毛球拍5副,购买羽毛球x盒(不小于5盒)当购买多少盒羽毛球时,在两家商店购买所花的钱相等?(2)若需购买10副羽毛球拍,30盒羽毛球,怎样购买更省钱?13.某商场十月以每件500元的进价购进一批羽绒服,当月以标价销售,售出20件.十一月搞促销活动,每件降价50元,售出的数量是十月的1.5倍,这样销售额比十月增加了5500元.(1)求每件羽绒服的标价是多少元?(2)十二月商场决定把剩余的羽绒服按十月标价的八折销售,如果全部售完这批羽绒服总获利12700元,求这批羽绒服共购进多少件?14.庆祝建党100周年,学校七、八年级开展“追寻建党足迹,传承红船精神”的革命纪念馆研学活动,根据防控要求,入馆前需体温检测.其中A通道是电子测温,B通道是人工测温,A通道每分钟通过的人数是B通道的2倍.已知该校七、八年级学生人数分别为96人和144人,七年级学生进馆时,同时开通了A、B两通道,经过4分钟,学生全部进馆.(1)分别求A、B两通道每分钟通过的人数.(2)八年级学生进馆时,先同时开通A、B两通道,1分钟后增开一个人工测温通道C,已知C通道每分,求八年级学生全部进馆所需时间.钟通过的人数是B通道的3415.为庆祝新年晚会,各学校准备参加县里组织的文艺汇演,其中甲、乙两所学校共有102人参加(甲学校的人数多于乙学校的人数,且甲学校的人数不足100人),两学校准备购买统一服装参加演出,下面是服装厂给出的演出服的价格表.服装套数1~50套51~100套101套及以上每套演出服的价格70元60元50元(1)如果两所学校分别购买演出服,那么一共应付6570元,甲乙两所学校各有多少名学生准备参加演出?(2)请你为两所学校设计一种最省钱的购买方案,并计算出这种方案比两所学校分别购买演出服省了多少钱?16.桐梓县为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,娄山关街道进行住房改造工程,有甲乙两个工程队加入到住房改造中来,如果由甲工程队单独做需要30天完成,甲、乙两个工程队合做12天完成.(1)求乙工程队单独完成这项工程需要几天?(2)甲工程队先单独做6天,因特殊事物离开,余下的乙工程队单独做.因2020年脱贫攻坚收官之年,为了是人民能够更快住上干净漂亮的房屋,要求乙工程队提高一倍的工作效率来完成房屋改造工程,问乙工程队还需要几天完成此项工程?17.某超市先后以每千克12元和每千克14元的价格两次共购进大葱800千克,且第二次付款是第一次付款的1.5倍.(1)求两次各购进大葱多少千克?(2)该超市以每千克18元的标价销售这批大葱,售出500千克后,受市场影响,把剩下的大葱标价每千克22元,并打折全部售出.已知销售这批大葱共获得利润4440元,求超市对剩下的大葱是打几折销售的?(总利润=销售总额-总成本)倍18.贵阳市人民广场某超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?19.暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:船型两人船(仅限两人)四人船(仅限四人)六人船(仅限六人)八人船(仅限八人)每船租金(元/小时)100 130(1)其中,两人船项目和八人船项目单价模糊不清,通过询问,了解到以下信息:①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元;②租2只两人船,3只八人船,游玩一个小时,共需花费630元.请根据以上信息,求出两人船项目和八人船项目每小时的租金;(2)若该班本次共有18名同学一起来游玩,每人乘船的时间均为1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.参考答案1.解:设剩下的部分由乙单独做,由题意得4×(110+115)+x15=1解得x=5.答:乙还需5天完成.2.解:设卖出铅笔的支数为x,则圆珠笔卖出了(60-x)支根据题意得:1.2x+2(60-x)=84解得:x=45∴卖出铅笔45支.3.解:设用x立方米木材生产桌面3×20x=360(7−x)x=6答:用6立方米木材生产桌面.4.解:设三队合作时间为xh,乙、丙两队合作为(6−x)ℎ,总工程量为1由题意得:(110+115+120)x+(115+120)(6−x)=1解得:x=3答:甲队实际工作了3小时5.解:设原计划x天完成任务由题意得:25x+100=30x−80解得x=36答:原计划36天完成任务.6.解:设A型号的进货单价为x元,则B型号的进货单价为2x元根据题意得:60x+40×2x=2100 解得:x=15,则2x=30答:A、B两种型号童装的进货单价分别是15元、30元7.解:设每个二级技工每天刷 xm2,则每个一级技工每天刷(x+10)m2依题意得5x−40 10=3(x+10)+508解得x=112x+10=122答:每个一级和二级技工每天粉刷的墙面各是 122 和 112平方米.8.解:设北京故宫博物院约有x万件藏品,则台北故宫博物院约有(12x−25)万件藏品.根据题意列方程得x+(12x−25)=245解得x=180.答:北京故宫博物院约有180万件藏品.故答案为180万件.9.解:设小龙和几个朋友购买了x张优惠票,则普通票购买了(x-5)张根据题意列方程,得:80x+120(x-5)=140080x+120x-600=1400200x=2000x=10答:小龙和几个朋友购买了10张优惠票.10.(1)解:设甲商品原销售单价为x元,则乙商品的原销售单价为(1400-x)元根据题意得:0.6x+0.8(1400-x)=1000解得:x=600∴1400-x=800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)解:设甲商品的进价为a元/件,乙商品的进价为b元/件根据题意得:(1-25%)a=60%×600,(1+25%)b=80%×800解得:a=480,b=512∴1000-a-b=1000-480-512=8.答:商场在这次促销活动中盈利,盈利了8元.11.(1)解:设购进甲种水果xkg,则购进乙种水果(50-x)kg,根据题意得7x+12(50-x)=500解之:x=20则50-x=50-20=30答:购进甲种水果20kg,则购进乙种水果30kg。

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。

最新人教版七年级上册数学一元一次方程应用题及答案

最新人教版七年级上册数学一元一次方程应用题及答案

最新人教版七年级上册数学一元一次方程应用题及答案一元一次方程应用题例1:某车间有22名工人生产螺钉和螺母,每人每天平均生产1200个螺钉或2000个螺母。

一个螺钉需要两个螺母进行配对。

为了使每天的产品刚好配对,需要分配多少名工人生产螺钉和螺母?2.一张方桌由一个桌面和四条桌腿组成。

如果现有的木料可以做方桌的桌面和桌腿,那么需要多少立方米的木料制作桌面,多少立方米的木料制作桌腿才能使桌面和桌腿正好配对?3.某车间有22名工人生产螺钉和螺母,每人每天平均生产1600个螺钉或2000个螺母。

两个螺钉需要三个螺母进行配对。

为了使每天的产品刚好配对,工人能生产多少套这组零件?4.一套仪器由一个A部件和三个B部件构成。

用1钢材可做40个A部件或240个B部件。

现要用6钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好制作出多少套这种仪器?5.某水利工地派48人去挖土和运土。

如果每人每天平均挖土5方或运土3方,那么应该如何安排人员,才能使挖土的土及时运走?6.机械厂加工车间有85名工人,平均每人每天加工16个大齿轮或10个小齿轮。

已知两个大齿轮与三个小齿轮配成一套,问工人需加工多少套这组零件,才能使每天加工的大小齿轮刚好配对?7.某厂生产一批西装,每3米布料可以裁剪2件上衣或3条裤子。

一件上衣和一条裤子为一套。

现用600米长的这种布料生产,为了使上衣和裤子配对,裁剪上衣和裤子各需要多少米?8.某车间有22名工人生产螺钉和螺母,每人每天平均生产1200个螺钉或2000个螺母。

一个螺钉需要四个螺母进行配对。

为了使每天的产品刚好配对,需要分配多少名工人生产螺钉和螺母?知能点2:工程问题工作量 = 工作效率 ×工作时间工作效率 = 工作量 ÷工作时间工作时间 = 工作量 ÷工作效率完成某项任务的各工作量的和 = 总工作量 = 116.甲独自完成一件工作需要10天,乙独自完成同样的工作需要8天。

人教版七年级上册数学 期末专题训练 一元一次方程 应用题

人教版七年级上册数学    期末专题训练   一元一次方程   应用题

人教版七年级上册数学期末专题训练一元一次方程应用题1.为了打赢蓝天保卫战,某市环保局对一段长2400m的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成30m,乙工程队每天完成50m.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时60天,求甲、乙工程队分别整治了多长的河道.2.为了迎接亚洲冬季运动会,现要修一条公路,甲工程队单独修需30天完成,乙工程队单独完成需要的天数是甲工程单独完成天数的710少1天.(1)乙工程队单独完成需要多少天?(2)若甲先单独修5天,之后甲乙合作修完这条公路,求甲乙还需合作几天修完这条路?3.用边长为12cm的正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19 张硬纸板,裁剪时 x 张用 A 方法,其余用 B 方法.(1)用 x 的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?4.琪琪爸爸在一家电信公司了解到两种移动电话计费方法:计费方法A是每月收月租费30元,通话时间120分钟内免费,超过120分的部分按每分钟0.25元加收通话费;计费方法B是每月收月租费50元,通话时间200分钟内免费,超过200分的部分按每分钟0.2元收通话费.(1)若琪琪爸爸一个月的通话时间大约在150分钟和160分钟之间,请通过计算说明选用哪种计费方式,可以节省费用?(2)琪琪爸爸当前选择了计费方式A,有一个月累计通话240分钟,话费m元.若改成用计费方法B,则同样话费m元,可多通话多少分钟?5.某水果商人以每千克20元的价格购进一批草莓,售完后,又再次购进一批,由于第二批草莓的进货价格比第一批每千克便宜2元,故多购进50千克,两批草莓共花费4700元.(1)该商人第二批购进多少千克的草莓?(2)水果商人将第二批购进的草莓平均分给甲、乙两家水果店零售,零售价为每千克30元.甲店按零售价卖出m千克后,剩余的按零售价的八折全部售出;乙店同样按零售价卖出m千克,然后将n千克按零售价打九折售出,剩余的按零售价打七折全部售出,结果销售额与甲店相同.①求m与n的数量关系;②已知乙店按零售价打九折售出的数量不超过按零售价卖出的数量,那么乙店的利润能恰好为588元吗?请说明理由.6.某服装厂加工A、B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)将这100件学生服送到商场销售,A种学生服售价200元,B种学生服售价220元.若销售过程中发现A 种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的七折出售,两种学生服全部卖出后,共获利9840元,则A种学生服卖出多少件后打折销售?7.为庆祝“六一”儿童节,某县中小学统组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表,购买服装的套数1套至45数46套至90套91套以上每套服装的价格60元50元40元(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买方式.8.随着生活水平的提高,人们越来越重视运动健身.为了满足大众需求,某体育运动品牌店铺推出了A,B 两种运动套装,每套A运动套装的成本为120元,每套B运动套装的成本为100元,每套B运动套装的售价比每套A运动套装的售价少40元,卖3套A运动套装的利润和卖4套B运动套装的利润相同.(1)求每套A运动套装和B运动套装的售价;(2)为了吸引顾客,该体育运动品牌店铺针对这两种运动套装新推出以下两种促销方案:方案一:50元购买一张打折优惠券后(限购一张),买这两种运动套装均打七五折;方案二:每满50元立减10元.若乐乐准备购买1套A运动套装和1套B运动套装,请你算算,哪种方案更划算?9.某工厂一车间有50名工人,某月接到加工两种轿车零件的生产任务.每个工人每天能加工甲种零件30个,或加工乙种零件20个.(1)若一辆轿车只需要甲零件1个和乙零件1个使每天能配套生产轿车,问应安排多少工人加工甲种零件?(2)若一辆轿车需要甲零件7个和乙零件2个使每天能配套生产轿车,若加工一件甲种零件加工费为10元,加工一件乙种零件加工费为12元,若50名工人正好使得每天加工零件能配套生产轿车,求一天这50名工人所得加工费一共多少元?14.某文艺团体开展文艺演出,为“乡村振兴工程”募捐,已知成人票每张40元,学生票每张25元.(1)某场演出共售出1000张票,筹得票款34750元.问成人票与学生票各售出多少张?(2)若票价不变,仍售出1000张票,所得的票款可能是36450元吗?为什么?(3)已知某单位按(1)中成人及学生数购票,与演出组织单位达成票价打折的优惠方案,共少付票款6975元.若成人票打九折,则学生票打几折?15.某钢材加工厂生产甲、乙两种型号的商品,商品的体积和质量分别如下表所示:体积(3m/件)质量(吨/件)甲种商品0.80.5乙种商品21(1)已知一批商品包含甲、乙两种型号,体积共326m,质量共14吨,求甲、乙两种型号的商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为36m,收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费250元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送付费方式,能够使得运费最少?并求出该方式下的运费是多少元?16.某学校六年级参加春游的一共270人,租一辆45座的小客车租金为250元,租一辆60座的大客车租金为300元,如果租用的大客车比小客车多一辆,恰好坐满.(1)需要租用的大客车和小客车各多少辆?(2)应付租金多少元?(3)如果全部租用小客车或全部租用大客车,哪一种方式更省钱?a,b=;(1)设答对一题记a分,答错一题记b分,则=(2)参赛者D说他得了80分,你认为可能吗,为什么?19.某工厂车间有60个工人生产A零件和B零件,每人每天可生产A零件15个或B零件20个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.工厂将零件批发给商场时,每个A零件可获利10元,每个B零件可获利5元.(1)求该工厂有多少工人生产A零件?(2)因市场需求,该工厂每天要多生产出一部分A零件供商场零售使用,现从生产B零件的工人中调出多少名工人生产A零件,才能使每日生产的零件总获利比调动前多600元?20.某景区门票价格为50元/人,为吸引游客,特规定:非节假日时,门票打6折销售;节假日时按团队人数分段定价售票,即10人以下(含10人)的团队按原价售票,超过 10 人的团队,其中 10 人仍按原价售票,超过 10人部分的游客打8 折购票.x x 人,(1)若某旅游团到该景区游玩,游客人数为(10)①若在非节假日,应付票款___________元;②若在节假日,应付票款___________元.(2)某旅行社于今年5月1日(节假日)组织A团,5月10日(非节假日)组织B团到该景区旅游,两次共付门票款1840元,已知A、B两个团游客共计50人,问A、B两个团各有游客多少人?。

人教版七年级上册数学第3章《一元一次方程》实际问题应用题分类训练(含答案)

人教版七年级上册数学第3章《一元一次方程》实际问题应用题分类训练(含答案)

一.行程问题1.相遇问题1.快车以200km/h的速度由甲地开往乙地再返回甲地,慢车以75km/h的速度同时从乙地出发开往甲地.已知当快车回到甲地时,慢车距离甲地还有225km,则(1)甲乙两地相距多少千米?(2)从出发开始,经过多长时间两车相遇?(3)几小时后两车相距100千米?2.已知数轴上有A,B,C三点,分别表示﹣12,﹣5,5,两只电子蚂蚁甲、乙分别从A,C 两点同时出发,甲的速度是每秒2个单位,乙的速度是每秒3个单位.(1)AB=,BC=,AC=.(2)若甲、乙相向而行,则甲、乙在多少秒后数轴上相遇?该相遇点在数轴上表示的数是什么?(3)若甲、乙相向而行,则多少秒后甲到A,B,C三点的距离之和为22个单位?3.列方程解应用题:周末,小明从城里去渡假村接父母回家,为了欣赏路边的风景,小明从城里步行出发,同时父母也从渡假村步行出发,相向而行,城里距渡假村14km,小明每小时走4km,父母每小时走3km,如果小明带一只狗和他同时出发,狗以每小时8km的速度向父母方向跑去,遇到父母后又立即回头跑向小明,遇到小明后又立即回头跑向父母,这样往返直到二人相遇.(1)小明与父母经过多少小时相遇?(2)这只狗共跑了多少km呢?2.追击问题4.已知甲、乙两地相距160km,A、B两车分别从甲、乙两地同时出发,A车速度为85km/h,B车速度为65km/h.(1)A、B两车同时同向而行,A车在后,经过几小时A车追上B车?(2)A、B两车同时相向而行,经过几小时两车相距20km?5.小明每天早上7:30从家出发,到距家1000m的学校上学,一天,小明以80m/min的速度上学,5min后小明爸爸发现他发现忘带语文书,爸爸立即带上语文书去追赶小明.(1)如果爸爸以160m/min的速度追小明,爸爸追上小明时距离学校多远?(2)如果爸爸刚好能在学校门口追上小明,爸爸的速度是多少?(3)爸爸以180m/min的速度追赶小明,他把书给小明后及时原路原速返回(交书耽误的时间忽略不计),返回家的时间是多少?6.一天早晨,乐乐以80米/分的速度上学,5分钟后乐乐的爸爸发现他忘了带数学书,爸爸立即骑自行车以280米/分的速度去追乐乐,并且在途中追上了他,请解决以下问题:(1)爸爸追上乐乐用了多长时间?(2)爸爸追上乐乐后,乐乐搭爸爸的自行车回到学校,结果提前了10分钟到校,若爸爸搭上乐乐后的骑行速度为240米/分,求乐乐家离学校有多远.二.水流问题7.列方程求解:轮船沿江从A港顺流航行到B港,比从B港返回A港少用2小时,若轮船在静水中的速度为18km/h,水流的速度为2km/h,则A港和B港相距多少km?8.某船顺水航行了4h,逆水航行了3h.在静水中的速度是mkm/h,水流的速度是akm/h,则轮船共航行了多少千米?9.某人乘船从A地顺流去B地,用时3小时;从B地返回A地用时5小时.已知船在静水中速度为40km/h,求水的速度与AB间距离.三.数轴动点问题10.在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的2倍,我们就把点C叫做【A,B】的和谐点.例如:图中,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1.那么点C是【A,B】的和谐点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.(1)当点A表示的数为﹣4,点B表示的数为8时,①若点C表示的数为4,则点C(填“是”或“不是”)【A,B】的和谐点;②若点D是【B,A】的和谐点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为﹣2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止,问点C运动多少秒时,C,A,B中恰有一个点为其余两点的和谐点?11.如图1,已知数轴上A,B两点表示的数分别为﹣9和7.(1)AB=(2)点P、点Q分别从点A、点B出发同时向右运动,点P的速度为每秒4个单位,点Q的速度为每秒2个单位,经过多少秒,点P与点Q相遇?(3)如图2,线段AC的长度为3个单位线段BD的长度为6个单位,线段AC以每秒4个单位的速度向右运动,同时线段BD以每秒2个单位的速度向左运动,设运动时间为t秒.①t为何值时,点B恰好在线段AC的中点M处.②t为何值时,AC的中点M与BD的中点N距离2个单位.12.如图,点O为原点,A、B为数轴上两点,点A表示的数a,点B表示的数是b,且|ab+32|+(b﹣4)2=0(1)a=,b=;(2)在数轴上是否存在一点P,使PA﹣PB=2OP,若有,请求出点P表示的数,若没有,请说明理由?(3)点M从点A出发,沿A→O→A的路径运动,在路径A→O的速度是每秒2个单位,在路径O→A上的速度是每秒4个单位,同时点N从点B出发以每秒3个单位长向终点A 运动,当点M第一次回到点A时整个运动停止.几秒后MN=1?四.数字表格问题13.已知一个由正奇数排成的数阵.用如图所示的四边形框去框住四个数.(1)若设框住四个数中左上角的数为n,则这四个数的和为(用n的代数式表示);(2)平行移动四边形框,若框住四个数的和为228,求出这4个数;(3)平行移动四边形框,能否使框住四个数的和为508?若能,求出这4个数;若不能,请说明理由.14.把2018个正整数1,2,3,4,…,2018按如图方式排列成一个表;(1)用如图方式框住表中任意4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是、、(请直接填写答案)(2)用(1)中方式被框住的4个数之和可能等于2019吗?如果可能,请求出x的值;如果不可能,请说明理由.15.小明是个爱动脑筋的同学,在发现教材中的用方框在日历中移动的规律后,突发奇想,将连续的得数2,4,6,8,…,排成如图形式:并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)请你选择十字框中你喜欢的任意位置的一个数,将其设为x,并用含x的代数式表示十字框中五个数的和.(2)若将十字框上下左右移动,可框住另外的五个数,试间:十字框能否框住和等于2015的五个数,如能,请求出这五个数;如不能,说明理由.五.分段收费问题16.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格.阶梯用户年用气量(单位:立方米)2018年单价(单位:元/立方米)2019年单价(单位:元/立方米)第一阶梯0﹣300(含)a 3第二阶梯300﹣600(含)a+0.5 3.5第三阶梯600以上a+1.5 5(1)甲用户家2018年用气总量为280立方米,则总费用为元(用含a的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?17.阅读材料:为落实水资源管理制度,大力促进水资源节约,本市居民用水实行阶梯水价,按年度用水量计算,将居民家庭全年用水量划分为三档,水价分档递增,实施细则如表:本市居民用水阶梯水价表:(单位:元/立方米)水价供水类型阶梯户年用水量x(立方米)自来水第一阶梯0≤x≤180 5第二阶梯180<x≤260 7第三阶梯x>260 9如某户居民去年用水量为190立方米,则其应缴纳水费为180×5+(190﹣180)×7=970元.(1)若小明家去年用水量为100立方米,则小明家应缴纳的水费为元;(2)若截止10月底,小明家今年共纳水费1145元,则小明家共用水立方米;(3)若小明家全年用水量x不超过270立方米,则应缴纳的水费为多少元?(用含x的代数式表示)六.工程问题18.一项工程,甲队单独施工需要15天完成,乙队单独施工需要9天完成.现在由甲队先工作3天,剩下的由甲、乙两队合作,还需要几天才能完成任务?19.甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?20.某市要对水利工程进行改造,甲队单独做这项工程需要10天完成,乙队单独需要做这项工程需要15天完成,丙队单独做这项工程需要20天完成,开始时三队共同做,中途甲队被调走另有任务,由乙、丙两队完成,从开始到工程完成共用了6天,问:甲队实际做了几天?七.比赛积分问题21.某小组6名同学参加一次知识竞赛,共答20道题,每题分值相同,答对得分,答错或不答扣分,下面是前5名同学的得分情况(如表):序号答对题数答错或不答题数得分1 182 842 17 m763 20 0 1004 19 1 925 10 10 n(1)表中的m=,n=;(2)该小组第6名同学说:“这次知识竞赛我得了0分”,请问他的说法是否正确?如果正确,请求出这位同学答对了多少题;如果不正确,请说明理由.22.2019年11月,我区组织了一次职工篮球联赛,比赛分初赛阶段和决赛阶段,在初赛阶段中,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,输一场得1分,积分超过15分才能获得决赛资格.(1)若乙队初赛获得4场胜利,问乙队是否有资格参加决赛?请说明理由.(2)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;23.某电视台组织知识竞赛,共设30道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况.参赛者答对题数答错题数得分A28 2 108B26 4 96C24 6 84 (1)每答对1题得多少分?(2)参赛者D得54分,他答对了几道题?八.销售打折问题24.成都华联商场经销甲、乙两种商品,甲种商品每件进价150元,售价200元;乙种商品每件进价350元,售价450元.(1)该商场在“十一”黄金周期间销售甲、乙两种商品共100件,销售额为35000元,求甲、乙两种商品各销售了多少件?(2)假若该商场在“十一”黄金周期间销售甲、乙两种商品进行如表优惠活动:打折前一次性购物总金额优惠措施不超过3000元不优惠超过3000元且不超过4000元总售价打九折超过4000元总售价打八折按上述优惠条件,若小王第一天只购买甲种商品一次性付款2000元,第二天只购买乙种商品打折后一次性付款3240元,那么这两天他在该商场购买甲、乙两种商品一共多少件?25.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是:买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是:购买10本以上,每本按标价的8折卖.(1)小明要买20本时,到哪个商店交省钱?(2)小明要买10本以上时,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本?26.李阿姨逛街时发现.大润发超市和永辉超市有如下促销活动(两超市相同商品标价相同):大润发:所有商品打8.8折;永辉:消费总金额不超过100元时,不打折;消费总金额超过100元,不超过300元时,打9折;消费总金额超过300元时,300元部分打9折,超出300元部分打8折.(1)李阿姨购买多少元的商品时,两个超市实际付款一样多?(2)活动期间李阿姨在永辉超市购买了两次商品,第一次实付款99元,第二次实付款286元,请问李阿姨两次购买商品的总价共为多少元?参考答案1.解:(1)设甲、乙两地相距x千米,依题意,得:=,解得:x=900.答:甲、乙两地相距900千米.(2)设经过y小时两车相遇.第一次相遇,(200+75)y=900,解得:y=;第二次相遇,200y﹣75y=900,解得:y=.答:从出发开始,经过或小时两车相遇.(3)设t小时后两车相距100千米.第一次相距100千米时,200t+75t=900﹣100,解得:t=;第二次相距100千米时,200t+75t=900+100,解得:t=;第三次相距100千米时,200t﹣75t=900﹣100,解得:t=;第四次相距100千米时,200t﹣75t=900+100,解得:t=8.答:经过,,或8小时后两车相距100千米.2.解:(1)AB=﹣5﹣(﹣12)=﹣5+12=7,BC=5﹣(﹣5)=5+5=10,AC=5﹣(﹣12)=5+12=17.故答案为:7,10,17;(2)设甲、乙行驶x秒时相遇,根据题意得:2x+3x=17,解得:x=3.4,﹣12+2×3.4=﹣5.2.答:甲、乙在3.4秒后在数轴上相遇,该相遇点在数轴上表示数是﹣5.2.(3)设y秒后甲到A,B,C三点的距离之和为22个单位,B点距A,C两点的距离为7+10=17<20,A点距B、C两点的距离为7+17=24>20,C点距A、B的距离为17+10=27>20,故甲应位于AB或BC之间.①AB之间时:2y+(7﹣2y)+(7﹣2y+10)=22,解得:y=1;②BC之间时:2y+(2y﹣7)+(17﹣2y)=22,解得:y=6.答:1秒或6秒后甲到A,B,C三点的距离之和为22个单位.3.解:(1)设小明与父母经过x小时相遇,由题意得4x+3x=14,解得:x=2.答:两个人经过2小时相遇.(2)8×2=16(km).答:这只狗共跑了16千米.4.解:(1)设经过x小时A车追上B车,依题意,得:85x﹣65x=160,解得:x=8.答:经过8小时A车追上B车.(2)设经过y小时两车相距20km.两车相遇前,85y+65y=160﹣20,解得:y=;两车相遇后,85y+65y=160+20,解得:y=.答:经过或小时两车相距20km.5.解:(1)设爸爸追上小明时距离学校xm,依题意,得:﹣=5,解得:x=200.答:爸爸追上小明时距离学校200m.(2)小明到校所需时间为1000÷80=(min),爸爸的速度为1000÷(﹣5)=(m/min).答:爸爸的速度为m/min.(3)设爸爸需要ymin可追上小明,依题意,得:180y=80(y+5),解得:y=4,∴30+5+4+4=43.答:爸爸返回家的时间是7:43.6.解:(1)设爸爸追上乐乐用了x分钟,则此时乐乐出门(x+5)分钟,依题意,得:280x=80(x+5),解得:x=2.答:爸爸追上乐乐用了2分钟.(2)设爸爸搭上乐乐到学校共骑行了s米,依题意,得:﹣=10,解得:s=1200,1200+280×2=1760(米).答:乐乐家离学校共1760米.7.解:设轮船从A港顺流航行到B港用时x小时,依题意得:(18+2)x=(18﹣2)(x+2),解得x=8,则(18+2)x=160(km),答:A港和B港相距160km.8.解:4(m+a)+3(m﹣a)=(7m+a)千米.故轮船共航行了(7m+a)千米.9.解:设水速为xkm/h,则3(40+x)=5(40﹣x),∴x=10,∴AB间距离=3×(40+10)=150(km),答:水的速度为10km/h,AB间距离为150km.10.解:(1)①点C到点A的距离为4﹣(﹣4)=8,点C到点B的距离为8﹣4=4,∵8=2×4,∴点C是【A,B】的和谐点.故答案为:是.②设点D表示的数为x,则点D到点B的距离为|x﹣8|,点D到点A的距离为|x+4|,依题意,得:|x﹣8|=2|x+4|,即x﹣8=2x+8或x﹣8=﹣2x﹣8,解得:x=﹣16或x=0.故答案为:﹣16或0.(2)设运动时间为t秒,则BC=t,AC=6﹣t.当C是【A,B】的和谐点时,6﹣t=2t,解得:t=2;当C是【B,A】的和谐点时,t=2(6﹣t),解得:t=4;当A是【B,C】的和谐点时,6=2(6﹣t),解得:t=3;当B是【A,C】的和谐点时,6=2t,解得:t=3.答:点C运动2秒、3秒、4秒时,C,A,B中恰有一个点为其余两点的和谐点.11.解:(1)∵数轴上A,B两点表示的数分别为﹣9和7,∴AB=|﹣9﹣7|=16.故答案为:16.(2)设经过x秒,点P与点Q相遇,依题意,得:4x﹣2x=16,解得:x=8,答:经过8秒,点P与点Q相遇.(3)当运动时间为t秒时,点A表示的数为4t﹣9,点C表示的数为4t﹣9+3=4t﹣6,点B表示的数为﹣2t+7,点D表示的数为﹣2t+7+6=﹣2t+13,∵点M为线段AC的中点,点N为线段BD的中点,∴点M表示的数为=4t﹣,点N表示的数为=﹣2t+10.①∵点B恰好在线段AC的中点M处,∴﹣2t+7=4t﹣,∴t=.答:当t为时,点B恰好在线段AC的中点M处.②∵AC的中点M与BD的中点N距离2个单位,∴|4t﹣﹣(﹣2t+10)|=2,即6t﹣=2或6t﹣=﹣2,∴t=或t=.答:当t为或时,AC的中点M与BD的中点N距离2个单位.12.解:(1)∵|ab+32|+(b﹣4)2=0,∴,∴.故答案为:﹣8;4.(2)设点P表示的数为x.当﹣8<x≤0时,x﹣(﹣8)﹣(4﹣x)=﹣2x,解得:x=﹣1;当0<x≤4时,x﹣(﹣8)﹣(4﹣x)=2x,该方程无解;当x>4时,x﹣(﹣8)﹣(x﹣4)=2x,解得:x=6.答:在数轴上存在一点P,使PA﹣PB=2OP,点P表示的数为﹣1或6.(3)设运动时间为t秒.当0≤t≤4时,点M表示的数为2t﹣8,点N表示的数为﹣3t+4,∵MN=1,∴|2t﹣8﹣(﹣3t+4)|=1,即5t﹣12=1或5t﹣12=﹣1,解得:t=或t=;当4<t≤6时,点M表示的数为﹣4(t﹣4)=﹣4t+16,点N表示的数为﹣8,∵MN=1,∴|﹣4t+16﹣(﹣8)|=1,即24﹣4t=1,解得:t=.答:秒、秒或后MN=1.13.解:(1)设框住四个数中左上角的数为n,则其他三个为n+2,n+2+12,n+2+12+2,四个数的和为:n+2+n+2+12+n+2+12+2=4n+32,故答案为:4n+32;(2)由题意得:4n+32=228,n=49,所以这四个数分别是49、51、63、65;(3)不能框住这样的四个数,使四个数的和为508,理由:假设能,则4n+32=508,解得n=119,而119=9×12+11=(10﹣1)×12+11,这样左上角的数119在第10行第6列,所以不能框住这样的四个数,使四个数的和为508.14.解:(1)设左上角的一个数为x,由图表得:其他三个数分分别为:x+8,x+16,x+24.(2)由题意,得x+x+8+x+16+x+24=2019,解得:x=492.75,因为所给的数都是正整数,所以被框住的4个数之和不可能等于2019.故答案为:x+8,x+16,x+24.15.解:(1)设十字框中中间的数为x,则另外四个数分别为x﹣10,x﹣2,x+2,x+10,∴十字框中五个数的和=(x﹣10)+(x﹣2)+x+(x+2)+(x+10)=5x.(2)不能,理由如下:依题意,得:5x=2015,解得:x=403.∵图中各数均为偶数,∴x=403不符合题意,∴十字框不能框住和等于2015的五个数.16.解:(1)甲用户家2018年用气总量为280立方米,则总费用为280a元.(2)根据题意,可得:300a+(450﹣300)(a+0.5)=1200∴300a+150a+75=1200,∴450a=1125,解得a=2.5.(3)设丙用户2019年用气x立方米,则2018年用气(1200﹣x)立方米,①2019年的用气量不超过300立方米时,则2018年用气量1200﹣x>900,3x+2.5×300+(2.5+0.5)×(600﹣300)+(2.5+1.5)×(1200﹣x﹣600)=3625,解得x=425,∵425>300,∴不符合题意.②2019年的用气量超过300立方米,但不超过600立方米时,3×300+3.5×(x﹣300)+750+900+4(600﹣x)=3625,解得x=550,符合题意,1200﹣550=650(立方米)答:该用户2018年和2019年分别用气650立方米、550立方米.故答案为:280a.17.解:(1)∵0<100<180,∴小明家应缴纳的水费为=100×5=500(元),故答案为500;(2)设小明家共用水x立方米,∵180×5<1145<180×5+80×7,∴180<x<260,根据题意得:180×5+(x﹣180)×7=1145解得:x=215,故答案为:215;(3)当0≤x≤180时,水费为5x元,当180<x≤260时,水费为180×5+7×(x﹣180)=(7x﹣360)元,当260<x≤270时,水费为180×5+7×80+9×(x﹣260)=(9x﹣880)元.18.解:设还需x天才能完成任务,根据题意得,解得x=4.5.答:甲、乙两队合作还需4.5天才能完成任务.19.解:设还需x天能完成任务,根据题意可得方程:×2+=1.解得x=10.答:还需10天能完成任务.20.解:设甲队实际做了x天,由题意得++=1,解得:x=3.答:甲队实际做了3天.21.(1)由于共有20道题,m=20﹣17=3,∴由同学3可知:答对一题可得5分,由第3位同学可知答对一题得5,设答错或不答扣x分,则从第1位同学可列方程:18×5﹣2x=84,解得:x=3,n=10×5﹣3×10=20,故答案为:(1)3,20(2)设这位同学答对y道题,则他答错或不答(20﹣y)题,则5y﹣3(20﹣y)=0,解得:y=,因为m不是整数,所以这位同学的说法不正确.22.解:(1)没有资格参加决赛.因为积分为4×2+(10﹣4)×1=14<15.(2)设甲队初赛阶段胜x场,则负了(10﹣x)场,由题意,得:2x+1×(10﹣x)=18,解得:x=8,所以,10﹣x=10﹣8=2,答:甲队初赛阶段胜8场,负2场.23.解:(1)设答对一道题得x分,答错一道题得y分,依题意,得:,解得:.答:每答对1题得4分.(2)设参赛者D答对了m道题,则答错(30﹣m)道题,依题意,得:4m﹣2(30﹣m)=54,解得:m=19.答:参赛者D答对了19道题.24.解:(1)设甲种商品销售了x件,则乙种商品销售了(100﹣x)件,依题意,得:200x+450(100﹣x)=35000,解得:x=40,∴100﹣x=60.答:甲种商品销售了40件,乙种商品销售了60件.(2)设小王在该商场购买甲种商品m件,购买乙种商品n件,依题意,得:200m=2000,450×0.9n=3240或450×0.8n=3240,解得:m=10,n=8或n=9,∴m+n=18或19.答:这两天他在该商场购买甲、乙两种商品一共18件或19件.25.解:(1)甲店:10×1+10×1×70%=17(元),乙店:20×1×80%=16(元).∵17>16,∴买20本时,到乙店较省钱.(2)设购买x本时,两个商店付的钱一样多,依题意,得:10×1+70%(x﹣10)=80%x,解得:x=30.答:当购买30本时,到两个商店付的钱一样多.(3)设最多可买y本.在甲商店购买:10+70%(y﹣10)=32,解得:y==41,∵y为整数,∴在甲商店最多可购买41本;在乙商店购买:80%y=32,解得:y=40.∵41>40,∴最多可买41本.26.解:(1)设李阿姨购买x元的商品时,两个超市实际付款一样多,依题意,得:0.88x=300×0.9+0.8(x﹣300),解得:x=375.答:李阿姨购买375元的商品时,两个超市实际付款一样多.(2)设李阿姨第一次购买商品的价格为m元,第二次购买商品的价格为n元,依题意,得:m=99或0.9m=99,300×0.9+0.8(n﹣300)=286,解得:m=99或m=110,n=320,∴m+n=419或430.。

新人教版初中数学七年级数学上册第三单元《一元一次方程》测试题(有答案解析)(2)

新人教版初中数学七年级数学上册第三单元《一元一次方程》测试题(有答案解析)(2)

一、选择题1.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( ) A .(1-15%)(1+20%)a 元 B .(1-15%)20%a 元C .(1+15%)(1-20%)a元D .(1+20%)15%a 元2.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )3.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个 4.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2t5.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n6.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( ) A .-7B .-1C .5D .117.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ).A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -18.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2-B .13C .23D .329.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++10.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+ B .21x x -+- C .253x x -+- D .2513x x --11.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差12.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +-D .(120%)15%a +二、填空题13.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 14.观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形.15.单项式2335x yz -的系数是___________,次数是___________.16.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★.17.观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2 019个式子为__________. 18.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.19.图中阴影部分的面积为______.20.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.三、解答题21.设A =2x 2+x ,B =kx 2-(3x 2-x+1). (1)当x= -1时,求A 的值;(2)小明认为不论k 取何值,A-B 的值都无法确定.小红认为k 可以找到适当的数,使代数式A-B 的值是常数.你认为谁的说法正确?请说明理由. 22.先化简,再求值 (1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -=23.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.24.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)25.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项. 26.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

人教版七年级上册数学期末一元一次方程应用题(销售盈亏问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(销售盈亏问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(销售盈亏问题)专题训练次进货价格比第一次每千克便宜了1.4元,两次一共购进600千克,且第二次进货的费用是第一次进货费用的1.44倍.(1)该水果店两次分别购进了多少千克的砂糖橘?(2)售卖中,第一批砂糖橘在其进价的基础上加价进行定价,第二批砂糖橘因为进价便宜,因此以第一批砂糖橘的定价再打七折进行销售.销售时,在第一批砂糖橘中有3%的砂糖橘变质不能出售,在第二批砂糖橘中有5%的砂糖橘变质不能出售,该水果店售完这两批砂糖橘能获利1700元,求a 的值.19.现在是互联网的时代,微商小古一次购进了一种时令水果250kg ,开始两天他以每千克高于进价的价格卖出180kg ,第三天他发现网上卖该种水果的商家陡增,于是他果断将剩余的该种水果在前两天的售价基础上打折全部售出.最后他卖该种水果获得元的利润.问:(1)这批水果的进价为多少元?(2)计算小古打折卖出剩余的水果比购进这些水果亏了多少元?20.某商店销售一种电器,先将成本价提高30%作为标价进行出售,结果每销售一件该电器可以获利60元利润.(1)求这种电器的成本价为多少?(2)因市场调整原因,商品需要下架,所以当这批电器销售出100台时,剩下的40台按照标价的五折进行销售,请问:商店是赚了还是亏了?赚了或亏了多少钱,为什么?%a 40%4618参考答案:1.(1)设购买乒乓球盒时,两种优惠办法付款一样(2)去乙店购买,2.(1)到乙超市购物更优惠(2)350元3.(1)七(一)班买了彩灯和射灯各15个,35个(2)4.(1)该店用1300元可以购进A 型号的文具40只,购进B 型号的文具60只(2)若把所购进A ,B 两种型号的文具全部销售完,利润率超过,理由见解析5.(1)甲种商品每件进价为元(2)购进甲商品的数量为件,购进乙商品的数量为件(3)每件乙种商品的售价为元6.(1)元(2)元7.(1)(2)甲(3)在甲,乙两商店购买的本数相同.理由见解答.8.(1)绿叶水果店第一次购进甲种苹果千克,乙种苹果千克(2)第二次乙种苹果按原价打折销售9.712.4元或730元10.(1)第一次购进橙子200千克,第二次购进橙子400千克.(2)a 的值为80.1020m =40%40204062.527060(2.140)x +9540611.(1)每件服装的标价是300元,每件服装的成本是200元(2)712.(1)甲纪念品有40件,乙纪念品有60件(2)3400元13.(1)乙种服装每件进价为80元;(2)商场销售完这批服装,共盈利1450元.60%14.(1)40,(2)购进甲种商品40件15.(1)甲、乙两种文具的每件进价分别为80元和100元;(2)乙种文具每件售价为136元.16.(1)购进甲种水果70千克,乙种水果50千克(2)获得的利润是410元17.(1)甲、乙两种品牌书包每个进价分别是80元、60元(2)每个甲种品牌书包售价为116元18.(1)第一次购进砂糖橘200千克,则第二次进砂糖橘400千克(2)a的值为8019.(1)15元/千克(2)亏了462元20.(1)这种电器的成本价为200元(2)商店赚了3200元,理由见解析。

人教版-学年度上学期七年级数学期末复习试卷三 一元一次方程(含答案)

人教版-学年度上学期七年级数学期末复习试卷三 一元一次方程(含答案)

2018-2019七上期末复习试题三学生版第三章一元一次方程检测卷(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.如果方程(m-1)x+3=0是关于x 的一元一次方程,那么m 的取值范围( ) A.m ≠0 B.m ≠1 C.m = - 1 D. m>1 2.以下等式变形不正确的是( )A.由x+2=y+2,得到x=yB.由2a-3=6-3,得到2a=bC.由am=an,得到m=nD.由m=n ,得到2am=2an 3.下列判断错误的是( )A.若a=b ,则a-3=b-3B.若a=b,则20192019ba -=- C.若ax=bx ,则a=b D.若x=2018,则x x 20182=4.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A .x =-5 B .x =-3 C .x =-1 D .x =5 5.在3×3方格上做填数字游戏,要求第行、每列及每条对角线上的三个格子中的数字之和都等于s ,且填在三个格子中的数字如图所示,若要能填成,则( )A .s =24B .s =30C .s =31D .s =396.解方程3x +312-x =3-21+x ,去分母正确的是( ) A .18x +2(2x -1)=18-3(x +1) B .3x +(2x -1)=3-(x +1)C .18x +(2x -1)=18-(x +1)D .3x +2(2x -1)=3-3(x +1)7.用一根长为(单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ),得到新的正方形,则这根铁丝需增加( ).A.4cmB.8cmC.( +4) cmD. (+8) cm8.如果,长方形ABCD 中有6个形状、大小相同的小长方形,且EF =3,CD =12.则图中阴影部分的面积为( )A .108B .72C .60D .489.某市举行歌手大奖赛,今年共有a 人参加,比赛的人数比去年增加20%还多3人,则去年参赛的有( )人.A. B. (1+20%)a+3 C. D.(1+20%)a-310.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )A.1.2×0.8x+2×0.9(60+x) =87B.1.2×0.8x+2×0.9(60-x) =87C.2×0. 9x+l.2×0.8(60+x) =87D.2×0.9x+l.2×0.8(60-x) =87二、填空题(每小题3分,共15分)11.若方程(a-3)x|a|-2-7=0是一个一元一次方程,则a= .12.已知关于x的方程2x+a-5=0的解是x=2,则a的值为.13.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是.14.关于x的方程=1-的解是整数,则整数m= .15. 一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.三、解答题(共75分)16.(6分)解下列方程;(1))20-y=6y-4(y-11);(2)=1+;17.(6分)当k为何整数时,关于x的方程2kx-4=x+5的解是整数?18.(7分)关于x的方程-2=a与方程8x-2(3x+2)=-5的解互为倒数,求a的值.19.(7分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?20.(8分攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了24.8元.求该同学的家到学校的距离在什么范围?思路分析:先列一元一次方程求出付费24.8元时可行驶的最大距离,再根据题意和所得结果求出付费24.8元时的距离范围.21.(8分)为迎接“七·一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个。

七年级上册新人教版教材一元一次方程应用题带答案

七年级上册新人教版教材一元一次方程应用题带答案

【教材上出现的应用题】问题1 某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?(P86)答案:解:设前年购买了x台,则x+2x+4x=140解得x=20答:前年购买了20台问题2 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?(P88)答案:解:(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45答:这个班有45名学生.例4 某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量比环保限制的最大量少100t,新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?(P90)答案:解:设新、旧工艺的废水排量分别为2xt、5xt,则依题意得5x-200=2x+100,解得 x=100.则2x=200,5x=500.答:新、旧工艺的废水排量分别为200t、500t.11.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗,求参与种树的人数.(P91)答案:解:设有x人种树,则树苗共有(10x+6)棵.12x-(10x+6)=6x=6答:参与种树人数为6人13.一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和等于9,这个两位数是多少?(P92)答案:解:设个位数为xx+3x+1=9解得x=2十位上的数:9―2=7答:这个两位数是:7×10+2=72一艘船从甲码头到乙码头顺流而行,用了2h;从乙码头返回甲码头逆流而行,用了2.5h 。

已知水流的速度是3㎞/h ,求船在静水中的平均速度.(P94)答案:解:设船在静水中的速度为x 千米/时,则顺流的速度为(x+3)千米/时,逆流的速度为:(x-3)千米/时, 由题意得:2(3+x )=2.5(x-3), 解得:x=27.答:船在静水中的平均速度为27千米/小时.10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36km ,到中午12时,两人又相距36km ,求A 、B 两地间的路程。

人教版七年级上册数学期末一元一次方程应用题(配套问题)专题训练(含答案)

人教版七年级上册数学期末一元一次方程应用题(配套问题)专题训练(含答案)

7.(1)七年级 2001 班有男生 20 人,女生 30 人 (2)应该分配 30 人剪筒身,20 人剪筒底
8.(1)裁剪出的侧面个数是 4x ;裁剪出的底面个数是 6x 672 (2)A 方法裁剪 84 张,B 方法裁剪 28 张,能做 84 个盒子
9.应该分配 27 名学生做机身,18 名学生做机翼,每小时能够做出 540 套
(1)请用含 x 的代数式分别表示裁剪出的侧面和底面个数; (2)若裁剪出的侧面和底面恰好全部用完,问 A 方法、B 方法各裁剪几张?能做多少个盒 子?
9.初一年级共 45 名学生参与科技节活动,制作纸飞机模型.每人每小时可做 20 个机 身或 60 个机翼,一个飞机模型要 1 个机身配 2 个机翼,为了使每小时制作的成品刚好 配套,应该分配多少名学生做机身?多少名学生做机翼?在刚好配套的情况下,每小时 能够做出多少套?
5.一套仪器由一个 A 部件和三个 B 部件构成.用1m3 钢材可做 40 个 A 部件或 200 个 B 部件.现要用 8m3 钢材制作这种仪器,应用多少钢材做 A 部件,多少钢材做 B 部件,恰 好配成这种仪器多少套?
6.某瓷器厂共有工人120 人,每个工人一天能做 200 只茶杯或 50只茶壶.如果 8 只茶杯 和一只茶壶为一套. (1)应安排多少人生产茶杯,可使每天生产的瓷器配套. (2)按(1)中的安排,每天可以生产多少套茶具?
17.(1)侧面数:5x+90;底面数:120﹣4x;(2)若裁剪出的侧面和底面恰好全部用完, 能做 32 个盒子. 18.(1)20 立方米 (2)800 元
(1)按 B 种方法剪裁的有______张白板纸;(用含 x 的代数式表示) (2)将 5 32 名工人生产桌子和椅子,每人每天平均生产 15 张桌子或 50 把椅子,一 张桌子要配两把椅子.已知车间每天安排 x 名工人生产桌子. (1)求车间每天生产桌子和椅子各多少?(用含 x 的式子表示) (2)当每天安排多少名工人生产桌子时,生产的桌子和椅子刚好配套?

2018-2019学年七年级上册一元一次方程综合测试题含答案解析

2018-2019学年七年级上册一元一次方程综合测试题含答案解析

2018-2019年七年级数学上一元一次方程综合测试题含答案解析一、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)1.若2a与1﹣a互为相反数,则a=.2.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为.2a﹣23.如果3x﹣4=0是关于x的一元一次方程,那么a=.4.在等式中,已知S=800,a=30,h=20,则b=.5.(3分)将1000存入银行2年,年利息为5%,扣除20%的利息税,到期可取得本息和为.6.(3分)小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是岁.7.(3分)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需小时才能完成工作.8.(3分)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是.二、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)9.下列方程中,是一元一次方程的是()2A.x+x﹣3=x(x+2)B.x+(4﹣x)=0C.x+y=1D.10.与方程x﹣1=2x的解相同的方程是()A.x﹣2=1+2xB.x=2x+1C.x=2x﹣1D.11.(3分)下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bc C.若=则2a=3bD.若x=y,则=12.(3分)某商场把进价为2400元的商品,标价3200元打折出售,仍获利20%,则该商品的打几折出售?()A.六B.七C.八D.九13.小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:12y+y﹣,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它是()A.1B.2C.3D.4 14.把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1B.3x﹣2(x﹣1)=6C.3x﹣2x﹣2=6D.3x+2x﹣2=615.如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c三种物体的质量判断正确的是()A.a<c<bB.a<b<cC.c<b<aD.b<a<c16.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定三、解答题(本题共8小题,每小题16分,共72分.)17.(16分)解方程(1)3(x+1)﹣2(x+2)=2x+3(2)(3)x﹣﹣1(4).18.已知y=6﹣x,y=2+7x,若①y=2y,求x的值;②当x取何值时,y比y小﹣3;③当x取121212何值时,y与y互为相反数?1219.老师在黑板上出了一道解方程的题=1﹣,小明马上举起了手,要求到黑板上去做,他是这样做的:4(2x﹣1)=1﹣3(x+2)①8x﹣4=1﹣3x﹣6②8x+3x=l﹣6+4③11x=﹣1④x=﹣⑤老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第2步(填编号);然后,你自己细心地解下面方程:+=1,相信你,一定能做对.20.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?21.(11分)解有关行程的问题(应用题):(1)甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍.若两人同向而行,骑自行车先出发2小时,问摩托车经过多少时间追上自行车?(2)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.22.情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.23.小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是,购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是,从第一本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(2)买多少本时给两个商店付相等的钱?(3)小明现有24元钱,最多可买多少本?24.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?参考答案与试题解析3一、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)1.若2a与1﹣a互为相反数,则a=﹣1.【考点】解一元一次方程;相反数.【专题】计算题.【分析】本题考查列一元一次方程和解一元一次方程的能力,因为2a与1﹣a互为相反数,所以可得方程2a+1﹣a=0,进而求出a值.【解答】解:由题意得:2a+1﹣a=0,解得:a=﹣1.故填:﹣1.【点评】根据题意列方程要注意题中的关键词的分析理解,只有正确理解题目所述才能列出方程.2.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为5.【考点】一元一次方程的解.【分析】把x=2代入方程得到一个关于a的方程,即可求得a的值.【解答】解:把x=2代入方程得:4+a﹣9=0,解得:a=5.故答案是:5.【点评】本题考查了方程的解得定义,理解定义是关键.2a﹣23.如果3x﹣4=0是关于x的一元一次方程,那么a=.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.据此即可得到一个关于a 的方程,从而求解.【解答】解:根据题意,得2a﹣2=1,解得:a=.故答案是:.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.4.在等式中,已知S=800,a=30,h=20,则b=50.【考点】解一元一次方程.【专题】计算题.【分析】将S=800,a=30,h=20,代入中,求出b的值即可.【解答】解:把S=800,a=30,h=20,代入中,800=,解得b=50.故答案为50.【点评】本题比较简单,只是考查一元一次方程的解法.45.(3分)将1000存入银行2年,年利息为5%,扣除20%的利息税,到期可取得本息和为1080元.【考点】有理数的混合运算.【专题】应用题.【分析】由于利息=本金×利率×年份,本息和=本金+利息,利用这些关系式即可求解.【解答】解:依题意得1000+1000×5%×(1﹣20%)×2=1000+1000×5%×80%×2=1000+80=1080(元).故到期可取得本息和为1080元.故答案为:1080元.【点评】此题主要考查了有理数的混合运算在实际问题中的应用,解题的关键是利用利息=本金×利率×年份,本息和=本金+利息解决问题.6.(3分)小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是7岁.【考点】一元一次方程的应用.【分析】设小郑今年的年龄是x岁,则今年妈妈的年龄是5x 岁,根据小郑的年龄比妈妈小28岁列出方程解答即可.【解答】解:设小郑今年的年龄是x岁,则今年妈妈的年龄是5x岁,由题意得5x﹣x=28,解得:x=7.答:小郑今年的年龄是7岁.故答案为:7.【点评】此题考查一元一次方程的实际运用,找出题目蕴含的数量关系:妈妈的年龄﹣小郑的年龄=28是解决问题的关键.7.(3分)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需小时才能完成工作.【考点】一元一次方程的应用.【分析】把整个工作看作单位“1”,设甲、乙一起做还需x小时才能完成工作,根据甲先做30分钟,然后甲、乙一起做,完成的工作总量为1列出方程解答即可.【解答】解:设甲、乙一起做还需x小时才能完成工作,由题意得+(+)x=1,解得:x=.小时才能完成工作.答:甲、乙一起做还需故答案为:.【点评】此题考查一元一次方程的实际运用,掌握工作总量、工作效率、工作时间三者之间的关系是解决问题的关键.58.(3分)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是738.【考点】一元一次方程的应用.【专题】数字问题.【分析】设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x﹣1,根据这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,列出方程解答即可.【解答】解:设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x﹣1,由题意得100(3x﹣1)+10x+(2x+1)=100(2x+1)+10x+(3x﹣1)+99解得:x=3,则2x+1=7,3x﹣1=8,所以原来的三位数为738.故答案为:738.【点评】此题考查一元一次方程的实际运用,掌握数的计数方法,找出题目蕴含的数量关系是解决问题的关键.二、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)9.下列方程中,是一元一次方程的是()2A.x+x﹣3=x(x+2)B.x+(4﹣x)=0C.x+y=1D.【考点】一元一次方程的定义.【专题】计算题.【分析】根据一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0),进行选择.2【解答】解:A、x+x﹣3=x(x+2),是一元一次方程,正确;B、x+(4﹣x)=0,不是一元一次方程,故本选项错误;C、x+y=1,不是一元一次方程,故本选项错误;D、+x,不是一元一次方程,故本选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.10.与方程x﹣1=2x的解相同的方程是()A.x﹣2=1+2xB.x=2x+1C.x=2x﹣1D.【考点】同解方程.【分析】求出已知方程的解,再把求出的数代入每个方程,看看左、右两边是否相等即可.【解答】解:x﹣1=2x,解得:x=﹣1,A、把x=﹣1代入方程得:左边≠右边,故本选项错误;B、把x=﹣1代入方程得:左边=右边,故本选项正确;C、把x=﹣1代入方程得:左边≠右边,故本选项错误;D、把x=﹣1代入方程得:左边≠右边,故本选项错误;6。

七年级上册数学一元一次方程应用题及答案

七年级上册数学一元一次方程应用题及答案

1.小明买了一些苹果,一共花了100元。

如果每个苹果2元,他一共买了多少个苹果?解:设苹果的个数为x,则2x=100,解得x=50。

小明买了50个苹果。

2.甲乙两个人一起跑步,甲每分钟跑500米,乙每分钟跑400米。

他们同时出发,如果甲跑了12分钟后才追上乙,请问甲跑了多少米?解:设甲跑了x米,则12分钟后甲共跑了12*500=6000米。

乙已经跑了400*12=4800米。

所以甲比乙多跑了6000-4800=1200米。

3.一辆汽车以每小时60公里的速度行驶,从A地到B地全程300公里。

如果汽车从A地出发一段时间后遇到雨,速度减少为每小时50公里,这时到达B地需要多少时间?解:设汽车在遇到雨前行驶了t小时。

则在遇到雨前汽车已经行驶了60t公里。

从遇到雨到到达B地,汽车的速度变为50公里/小时,所以这段路程需要的时间为(300-60t)/50小时。

所以汽车从A地到B地一共需要的时间为t+(300-60t)/50小时。

4.小明爸爸的年龄是小明年龄的3倍,两人的总年龄是60岁。

请问小明的年龄是多少?解:设小明的年龄为x岁,则小明爸爸的年龄为3x岁。

根据题意,有x+3x=60,解得x=15、所以小明的年龄是15岁。

5.一只小猫每天要吃掉它体重的1/10的食物,如果小猫每天吃1斤食物,请问它需要多少天才能吃完自己的体重?解:设小猫需要吃x天才能吃完自己的体重。

根据题意,有x*(1/10)=1,解得x=10。

所以小猫需要10天才能吃完自己的体重。

6.高铁的速度是普通列车的2倍,假设普通列车从A地到B地需要5小时,高铁从A地到B地需要多少小时?解:设高铁从A地到B地需要x小时。

根据题意,有5/x=2,解得x=2.5、所以高铁从A地到B地需要2.5小时。

7.一个矩形的长度是宽度的2倍,如果周长为30米,请问这个矩形的长和宽各是多少米?解:设矩形的宽度为x米,则矩形的长度为2x米。

根据题意,有2*(x+2x)=30,解得x=4、所以矩形的长度为8米,宽度为4米。

人教版七年级上册第三章《一元一次方程》实际应用题专项练习(含解析)

人教版七年级上册第三章《一元一次方程》实际应用题专项练习(含解析)

《一元一次方程》实际应用题专项练习(二)一.选择题1.如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65m/min的速度、乙从B点以75m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DC C.AD D.AB2.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1 B.3 C.4 D.63.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元4.某种商品的进价为100元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为()A.116元B.145元C.150元D.160元5.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了()A.5 折B.5.5折C.7折D.7.5折6.欣欣服装店某天用相同的价格a(a≥0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.亏损B.盈利C.不盈不亏D.与进价有关7.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元8.已知某种商品的销售标价为204元,即使促销降价20%仍有20%的利润,则该商品的成本价是()A.133 B.134 C.135 D.1369.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.5 10.某商场出售甲、乙、丙三种型号的电动车,已知甲型车在第一季度的销售额占这三种车总销售额的56%,第二季度乙、丙两种型号的车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%.则a的值为()A.8 B.6 C.3 D.2二.填空题11.为节约用电,长沙市实“阶梯电价”具体收费方法是第一档每户用电不超过240度,每度电价0.6元;第二档用电超过240度,但不超过400度,则超过部分每度提价0.05元;第三档用电超过400度,超过部分每度提高0.3元,某居民家12月份交电费222元,则该居民家12月份用电度.12.有2020个数排成行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2020个数的和是.13.在“五一节”期间,某商场对该商场商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施小于等于400元不优惠超过400元,但不超过600元按售价打九折超过600元其中600元部分八折优惠,超过600元的部分打六折优惠按上述优惠条件,若小华一次性购买售价为80元/件的商品n件时,实际付款504元,则n=.14.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.15.如图,一块长4厘米、宽1厘米的长方形纸板①,一块长5厘米、宽2厘米的长方形纸板②与一块正方形纸板③以及另两块长方形纸板④和⑤,恰好拼成一个大正方形,则大正方形的面积是平方厘米.三.解答题16.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?17.列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:购买贺卡数不超过30张30张以上不超过5050张以上张每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?18.为了鼓励节约用电,电业局规定:如果每月每户用电不超过150度,那么每度电0.5元;如果该月用电超过150度,那么超过部分每度电0.8元.(1)如果小明家一个月用电128度,那么这个月应缴纳电费多少元?(2)如果小明家一个月用电a度(a>150),那么这个月应缴纳电费多少元?(用含a的代数式表示)(3)如果这个月小明家缴纳电费为87.8元,那么他们家这个月用电多少度?19.【新定义】:A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的3倍,我们就称点C是【A,B】的幸运点.【特例感知】(1)如图1,点A表示的数为﹣1,点B表示的数为3.表示2的点C到点A的距离是3,到点B的距离是1,那么点C是【A,B】的幸运点.①【B,A】的幸运点表示的数是;A.﹣1;B.0;C.1;D.2②试说明A是【C,E】的幸运点.(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4,则【M,N】的幸运点表示的数为.【拓展应用】(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以3个单位每秒的速度向左运动,到达点A停止.当t 为何值时,P、A和B三个点中恰好有一个点为其余两点的幸运点?20.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?参考答案一.选择题1.解:设乙行走tmin后第一次追上甲,根据题意,可得:甲的行走路程为65tm,乙的行走路程75tm,当乙第一次追上甲时,270+65t=75t,∴t=27min,此时乙所在位置为:75×27=2025m,2025÷(90×4)=5…225,∴乙在距离B点225m处,即在AD上,故选:C.2.解:由题意,可得8+x=2+7,解得x=1.故选:A.3.解:设盈利的衣服的进价为x元,亏损的衣服的进价为y元,依题意,得:135﹣x=25%x,135﹣y=﹣25%y,解得:x=108,y=180.∵135﹣108+(135﹣180)=﹣18,∴该商贩赔18元.故选:C.4.解:8折=0.8,设标价为x元,由题意得:0.8x﹣100=160.8x=100+160.8x=116x=145故选:B.5.解:设第一件商品x元,买两件商品共打了y折,根据题意可得:x+0.5x=2x•,解得:y=7.5即相当于这两件商品共打了7.5折.故选:D.6.解:设第一件衣服的进价为x元,第二件衣服的进价为y元,由题意得:(1+20%)x=a,(1﹣20%)y=a∴(1+20%)x=(1﹣20%)y整理得:3x=2y∴y=1.5x∴该服装店卖出这两件服装的盈利情况是:20%x﹣20%y=0.2x﹣0.2y×1.5=﹣0.1x<0即赔了0.1x元.故选:A.7.解:设该商品每件的进价为x元,依题意,得:12×0.8﹣x=2,解得:x=7.6.故选:C.8.解:设商品的成本价是x元,依题意得:204(1﹣20%)=1.2x,解得:x=136元.则该商品的成本价是136元.故选:D.9.解:(1)当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50,解得t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.故选:A.10.解:把第一季度的销售额看作单位1;则有56%×(1+23%)+(1﹣56%)•(1﹣a%)=1+12%,故选:D.二.填空题(共5小题)11.解:因为222<0.6×240+(400﹣240)×0.65=248,所以该居民家今年12月份的用电量是多于240度而少于400度.设该居民家12月份的用电量为x,则240×0.6+(x﹣240)×0.65=222,解得x=360.答:该居民家12月份用电360度.故答案是:360.12.解:由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,∵2020÷6=336…4,∴这2020个数的和是:0×336+(0+1+1+0)=2,故答案为:2.13.解:设小华打折前应付款x元,①打折前购物金额超过400元,但不超过600元,由题意得0.9x=504,解得:x=560,560÷80=7(件),②打折前购物金额超过600元,600×0.8+(x﹣600)×0.6=504,解得:x=640,640÷80=8(件),综上可得小华在该商场购买商品件7件或8件.故答案为:7或8.14.解:设商店打x折,依题意,得:180×﹣120=120×20%,故答案为:8.15.解:设小正方形的边长为x,依题意得1+x+2=4+5﹣x,解得x=3,∴大正方形的边长为6厘米,∴大正方形的面积是6×6=36(平方厘米),答:大正方形的面积是36平方厘米.故答案是:36.三.解答题(共5小题)16.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.17.解:(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,依题意,得:=,解得:x=12,∴24﹣x=12.答:应该分配12名工人生产螺栓,12名工人生产螺母.(2)(i)七(01)班购买贺卡费用为3×24+2.5×46=187(元),七(02)班购买贺卡费用为2×70=140(元).187>140,187﹣140=47(元).答:七(01)班购买贺卡费用为187元,七(02)班购买贺卡费用为140元,七(02)班费用更节省,省47元.(ii)设第一次购买贺卡m张,则第二次购买贺卡(70﹣m)张.当0<m<20时,3m+2(70﹣m)=150,当20<m≤30时,3m+2.5(70﹣m)=150,解得:m=﹣50(不合题意,舍去);当30<m<35时,2.5m+2.5(70﹣m)=175≠150,无解.答:第一次购买贺卡10张,第二次购买贺卡60张.18.解:(1)0.5×128=64(元)答:这个月应缴纳电费64元;(2)0.5×150+0.8(a﹣150)=75+0.8a﹣120=0.8a﹣45答:这个月应缴纳电费(0.8a﹣45)元;(3)∵87.8>150×0.5∴所用的电超过了150度设此时用电a度,根据题意得:0.5×150+0.8(a﹣150)=87.8∴75+0.8a﹣120=87.8∴a=166答:他们家这个月用电166度.19.解:(1)①由题意可知,点0到B是到A点距离的3倍,即EA=1,EB=3,故选B.②由数轴可知,AC=3,AE=1,∴AC=3AE,∴A是【C,E】的幸运点.(2)设【M,N】的幸运点为P,P表示的数为p,∴PM=3PN,∴|p+2|=3|p﹣4|,∴p+2=3(p﹣4)或p+2=﹣3(p﹣4),∴p=7或p=2.5;故答案为7或2.5;(3)由题意可得,AB=60,BP=3t,AP=60﹣3t,①当P是【A,B】的幸运点时,PA=3PB,∴60﹣3t=3×3t,∴t=5;②当P是【B,A】的幸运点时,PB=3PA,∴3t=3×(60﹣3t),∴t=15;③当A是【B,P】的幸运点时,AB=3PA,∴60=3(60﹣3t)∴t =;④当B是【A,P】的幸运点时,AB=3PB,∴60=3×3t,∴t =;∴t为5秒,15秒,秒,秒时,P、A、B中恰好有一个点为其余两点的幸运点.20.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.11。

(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(附解析)

(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(附解析)

《一元一次方程》应用题分类:相遇与追击类问题综合练习1.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)2.一架飞机往返于两城之间,顺风需要5小时30分,逆风时需6小时,已知风速是每小时24千米,求两城之间的距离.3.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?4.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开出时间迟到15分钟.若李伟打算在火车开出前10分钟到达火车站,求李伟此时骑摩托车的速度该是多少?5.一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们首次相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们首次相遇?6.运动场跑道周长400m,爷爷跑步的速度是小红的.(1)他们从同一起点沿跑道的相反方向同时出发,min后两人第一次相遇,求他们的跑步速度;(2)如果他们第一次相遇后小红立即转身也沿爷爷的方向跑,那么几分钟后他们再次相遇?7.某学校的一名学生从家到校去上课,他先以每小时4千米的速度步行了全程的一半后,再搭上速度为20千米/时的顺路班车,所以比原来需要的时间早到了一小时,问他家到学校的距离是多少千米?8.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?9.列方程解应用题:成都到雅安的高速公路全长147千米,上午八时一辆货车由雅安到成都,车速是每小时60千米,半小时后,一辆小轿车从雅安出发去追赶货车,车速是每小时80千米.问:小轿车从雅安出发到追到货车用了多少小时?10.某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是5千米/时.(人上下车的时间不记)(1)若小汽车送4人到达考场后再返回到出故障处接其他4人.请你通过计算说明能否在截止进考场的时刻前到达考场?(2)带队老师提出一种方案:先将4人用车送到考场,另外4人同时步行前往考场,小汽车到达考场后返回再接步行的4人到达考场.请你通过计算说明方案的可行性.(3)所有学生、老师都到达考场,最少需要多少时间?参考答案1.解:设连云港至徐州客运专线的铁路全长为xkm,列方程得:﹣=260,1.7x=358.8,解得x=,≈352km/h.答:提速后的火车速度约是352km/h.2.解:设两城之间的距离为x千米,由题意得:﹣=24×2解得:x=3168答:两城之间的距离为3168千米.3.解:由题目分析,根据时间差可列一元一次方程:x﹣x=,即:x=,解得:x=30千米.答:小张家到火车站有30km.4.解:设火车开出时间为x小时,由题意得:30(x﹣)=18(x+),解得x=1.设李伟骑车速度为每小时y千米,y==27.故李伟骑车速度为每小时27千米.5.解:(1)设甲、乙两人同时同地反向出发,x分钟后他们首次相遇.则(550+250)x=400,解得x=.故甲、乙两人同时同地反向出发,分钟后他们首次相遇.(2)设甲、乙两人同时同地同向出发,y分钟后他们首次相遇.则(550﹣250)y=400,解得y=.故甲、乙两人同时同地同向出发,分钟后他们首次相遇.6.解:(1)设小红的跑步速度是xm/min,则爷爷跑步的速度是xm/min,由题意得:x+×x=400,解得:x=200.x=120.答:小红的跑步速度是200m/min,则爷爷跑步的速度是120m/min.(2)设y分钟后他们再次相遇.由题意得:200y﹣120y=400,解得:y=5.答:5分钟后两人首次相遇.7.解:设他家到学校的距离是x千米,﹣1=,5x﹣40=x,x=10,故他家到学校的距离是10千米.8.解:设平路所用时间为x小时,29分=小时,25分=小时,则依据题意得:10(﹣x)=18(),解得:x=,则甲地到乙地的路程是15×+10×()=6.5km,答:从甲地到乙地的路程是6.5km.9.解:设轿车从出发到追上货车用了x小时,由题意得:60×+60x=80x解得:x=1.5;答:轿车从出发到追上货车用了1.5小时.10.解:(1)所需要的时间是:15×3÷60×60=45分钟,∵45>42,∴不能在截至进考场的时刻前到达考场;(2)先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为=0.25(h)=15(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后与先步行的4人相遇,5t+60t=13.75,解得t=.汽车由相遇点再去考场所需时间也是h.所以用这一方案送这8人到考场共需15+2××60≈40.4<42.所以这8个人能在截止进考场的时刻前赶到;(3)8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需(h),汽车从出发点到A处需(h)先步行的4人走了5×(km),设汽车返回t(h)后与先步行的4人相遇,则有60t+5t=x﹣5×,解得t=,所以相遇点与考场的距离为:15﹣x+60×=15﹣(km).由相遇点坐车到考场需:(﹣)(h).所以先步行的4人到考场的总时间为:(++﹣)(h),先坐车的4人到考场的总时间为:(+)(h),他们同时到达则有:++﹣=+,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(+)×60=37(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.。

2018-2019学年数学人教版(五四学制)七年级上册11.4一元一次方程与 实际问题 同步练习(3)

2018-2019学年数学人教版(五四学制)七年级上册11.4一元一次方程与 实际问题 同步练习(3)

2019-2019学年数学人教版(五四学制)七年级上册11.4一元一次方程与实际问题同步练习(3)一、选择题1.某市为节约用水,制定了如下标准:用水不超过20吨,按每吨1.2元收费;超过20吨,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费( )A. 20元B. 24元C. 30元D. 36元2.杨老师利用暑假带领团员们乘汽车到农村进行社会调查,每张汽车票原价是50元。

甲车主说:乘我的车,全部8折优惠;乙车主说;乘我的车,学生9折优惠,老师不要票.杨老师计算了一下,发现无论乘哪辆车花费都一样。

杨老师去农村带领的团员人数为()A. 6B. 7C. 8D. 93.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定购一只茶壶赠一只茶杯,某人共付款171元,得茶壶、茶杯共30只(含赠品在内),则此人购得茶壶的只数为( )A. 8B. 9C. 10D. 114.某市居民生活用电基本价格为每度0.4元,若每月用电量超过a度,超过部分按每度0.6元收费,若某户居民九月份用电84度,共交电费40.4元,则a为( )A. 50度B. 55度C. 60度D. 65度5.一个两位数,十位上的数字是个位数字的2倍,将个位数字与十位数字调换,得到一个新的两位数,这两个两位数的和是132,则原来的两位数为( )A. 48B. 84C. 36D. 636.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为()A. 6名B. 7名C. 8名D. 9名二、填空题7.某校为学生购买名著《三国演义》100套、《西游记》80套,共用了12019元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x元,可列方程为________.8.某校初一所有学生将在大礼堂内参加2019年“元旦联欢晚会”,若每排坐30人,则有8人无座位;若每排坐31人,则空26个座位,则初一年级共有多少名学生?设大礼堂内共有x排座位,可列方程为________9.全班同学去春游,准备租船游玩,如果比计划减少一条船,则每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班有________个同学,计划租用________条船。

(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:数轴类综合练习(附解析)

(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:数轴类综合练习(附解析)

《一元一次方程》应用题分类:数轴类综合练习(一)1.如图,小亮把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.2.【新定义】:A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的3倍,我们就称点C是【A,B】的幸运点.【特例感知】(1)如图1,点A表示的数为﹣1,点B表示的数为3.表示2的点C到点A的距离是3,到点B的距离是1,那么点C是【A,B】的幸运点.①【B,A】的幸运点表示的数是;A.﹣1;B.0;C.1;D.2②试说明A是【C,E】的幸运点.(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4,则【M,N】的幸运点表示的数为.【拓展应用】(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以3个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B三个点中恰好有一个点为其余两点的幸运点?3.已知数轴上点A、点B、点C所对应的数分别是﹣6,2,12.(1)点M是数轴上一点,点M到点A、B、C三个点的距离和是35,直接写出点M对应的数;(2)若点P和点Q分别从点A和点B出发,分别以每秒3个单位和每秒1个单位的速度向点C运动,P点到达C点后,立即以同样的速度返回点A,点Q到达点C即停止运动,求点P和点Q运动多少秒时,点P和点Q相距2个单位长度?4.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?5.(直接填答案,不写推演过程)观察数轴,充分利用数形结合的思想.若点A,B在数轴上分别表示数a,b,则A,B两点的距离可表示为AB=|a﹣b|.根据以上信息回答下列问题:已知多项式2x4y2﹣3x2y﹣x﹣4的次数是b,3a与b互为相反数,在数轴上,点O是数轴原点,点A表示数a,点B 表示数b.设点M在数轴上对应的数为m.(1)A,B两点之间的距离是.(2)若满足AM=BM,则m=.(3)若A,M两点之间的距离为3,则B,M两点之间的距离是.(4)若满足AM+BM=12,则m=.(5)若动点M从点A出发第一次向左运动1个单位长度,在此新位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动了2019次时,则点M所对应的数m=.6.如图,已知数轴上点A表示的数为﹣1,点B表示的数为3,点P为数轴上一动点.(1)点A到原点O的距离为个单位长度;点B到原点O的距离为个单位长度;线段AB的长度为个单位长度;(2)若点P到点A、点B的距离相等,则点P表示的数为;(3)数轴上是否存在点P,使得PA+PB的和为6个单位长度?若存在,请求出PA的长;若不存在,请说明理由?(4)点P从点A出发,以每分钟1个单位长度的速度向左运动,同时点Q从点B出发,以每分钟2个单位长度的速度向左运动,请直接回答:几分钟后点P与点Q重合?7.如图,点A、B都在数轴上,O为原点.(1)线段AB中点表示的数是;(2)若点B以每秒3个单位长度的速度沿数轴向右运动了t秒,当点B在点O左边时,OB=,当点B至点O右边时,OB=;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.8.如图,A、B、C为数轴上三点,A,B在数轴上对应的数分别为﹣12,16,点P与点Q分别从A、B两点同时当发,在数轴上运动,它们的速度分别是2个单位/秒,4个单位/秒,设它们运动的时间为t秒.(1)若点P与点Q在A、B两点之间相向运动,当它们相遇时,点P对应的数是;(2)若点P与点Q都向左运动,当点Q追上点P时,求点P对应的数.9.已知数轴上有A ,B ,C 三点,分别代表﹣36,﹣10,10,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A ,B ,C 的距离和为60个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A 、B 、C 的距离和为60个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.10.已知数轴上两点A 、B 对应的数分别是6,﹣8,M 、N 、P 为数轴上三个动点,点M 从A点出发,速度为每秒2个单位,点N 从点B 出发,速度为M 点的3倍,点P 从原点出发,速度为每秒1个单位.(1)若点M 向右运动,同时点N 向左运动,求多长时间点M 与点N 相距54个单位?(2)若点M 、N 、P 同时都向右运动,求多长时间点P 到点M ,N 的距离相等?(3)当时间t 满足t 1<t ≤t 2时,M 、N 两点之间,N 、P 两点之间,M 、P 两点之间分别有55个、44个、11个整数点,请直接写出t 1,t 2的值.参考答案1.解:(1)由图可知,到广济街的距离等于2站地的是西门和端履门.故答案为:西门和端履门.(2)这8个站间隔相等,距离之和最小的站地应该是位于中间的两个,即广济站和钟楼站,最小值是:1+2+3+1+2+3+4=16.∴到这8个站距离之和最小的站地存在,是广济站和钟楼站,最小值是16.(3)①∵|a﹣2|+|a+1|=3,∴当a≤﹣1时,2﹣a﹣a﹣1=3,∴a=﹣1;当﹣1<a<2时,2﹣a+a+1=3,∴当﹣1<a<2时,满足条件a的站地表示的数为0或1;当2≤a≤3时,a﹣2+a+1=3,∴a=2.综上,满足条件a的所有站地表示的数为﹣1、0、1或2.②∵|a﹣4|+|a+1|=10,∴当a≤﹣1时,4﹣a﹣a﹣1=10,∴a=﹣3.5;当﹣1<a≤4时,4﹣a+a+1=10,∴此时a无解;当a>4时,a﹣4+a+1=10,∴a=6.5.综上,满足条件的a的值为﹣3.5或6.5.2.解:(1)①由题意可知,点0到B是到A点距离的3倍,即EA=1,EB=3,故选B.②由数轴可知,AC=3,AE=1,∴AC=3AE,∴A是【C,E】的幸运点.(2)设【M,N】的幸运点为P,P表示的数为p,∴PM=3PN,∴|p+2|=3|p﹣4|,∴p+2=3(p﹣4)或p+2=﹣3(p﹣4),∴p=7或p=2.5;故答案为7或2.5;(3)由题意可得,AB=60,BP=3t,AP=60﹣3t,①当P是【A,B】的幸运点时,PA=3PB,∴60﹣3t=3×3t,∴t=5;②当P是【B,A】的幸运点时,PB=3PA,∴3t=3×(60﹣3t),∴t=15;③当A是【B,P】的幸运点时,AB=3PA,∴60=3(60﹣3t)∴t=;④当B是【A,P】的幸运点时,AB=3PB,∴60=3×3t,∴t=;∴t为5秒,15秒,秒,秒时,P、A、B中恰好有一个点为其余两点的幸运点.3.解:设点M对应的数为x,当点M在点A左侧,由题意可得:12﹣x+2﹣x+(﹣6)﹣x=35,解得x=﹣9,当点M在线段AB上,由题意可得:12﹣x+2﹣x+x﹣(﹣6)=35,解得:x=﹣15(不合题意舍去);当点M在线段BC上时,由题意可得12﹣x+x﹣2+x+6=35,解得:x=19(不合题意舍去);当点M在点C右侧时,由题意可得:x﹣12+x﹣2+x+6=35,解得:x=,综上所述:点M对应的数为﹣9或;(2)设点P运动x秒时,点P和点Q相距2个单位长度,点P没有到达C点前,由题意可得:|3x﹣(8+x)|=2,解得:x=5或3;点P返回过程中,由题意可得:3x﹣18+8+x+2=18或3x﹣18+8+x=18+2,解得:x=或;综上所述:当点P运动5或3秒或或时,点P和点Q相距2个单位长度.4.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.5.解:(1)由多项式的次数是6可知b=6,又3a和b互为相反数,故a=﹣2.∴A,B两点之间的距离是6﹣(﹣2)=8,故答案为:8;(2)∵AB=8,∴AM=BM=4,∴6﹣m=4,∴m=2,故答案为:2.(3)∵A,M两点之间的距离为3,∴|m+2|=3∴m=1或﹣5,∴BM=5或11;故答案为:5或11;(4)①当M在A左侧时,∵AM+MB=12,∴﹣2﹣x+6﹣x=12,∴x=﹣4;②M在A和B之间时,∵AM+MB=AB=8≠12,∴点M不存在;③点M在B点右侧时,∵AM+MB=12,∴x+2+x﹣6=12,∴x=8;故答案为:﹣4或8.(5)依题意得:﹣2﹣1+2﹣3+4﹣5+6﹣7+……+2018﹣2019=﹣2+1009﹣2019=﹣1012.∴点M对应的有理数为﹣1012.故答案为:﹣1012.6.解:(1)∵点A表示的数为﹣1,点B表示的数为3,∴点A到原点O的距离为1个单位长度,点B到原点O的距离为3个单位长度,线段AB 的长度为4个单位长度;故答案为:1,3,4;(2)设点P表示的数为x,∵点P到点A、点B的距离相等,∴3﹣x=x﹣(﹣1)∴x=1,∴点P表示的数为1,故答案为1;(3)存在,设点P表示的数为y,当y<﹣1时,∵PA+PB=﹣1﹣y+3﹣y=6,∴y=﹣2,∴PA=﹣1﹣(﹣2)=1,当﹣1≤y≤3时,∵PA+PB=y﹣(﹣1)+3﹣y=6,∴无解,当y>3时,∵PA+PB=y﹣(﹣1)+y﹣3=6,∴y=4,∴PA=5;综上所述:PA=1或5.(4)设经过t分钟后点P与点Q重合,2t﹣t=4,∴t=4答:经过4分钟后点P与点Q重合.7.解:(1)线段AB中点表示的数是:=﹣1.故答案是:﹣1;(2)当点B在点O左边时,OB=4﹣3t,当点B至点O右边时,OB=3t﹣4;故答案是:4﹣3t,3t﹣4;(3)①当点O是线段AB的中点时,OB=OA4﹣3t=2+tt=0.5②当点B是线段OA的中点时,OA=2OB2+t=2(3t﹣4)t=2;③当点A是线段OB的中点时,OB=2OA3t﹣4=2(2+t)t=8.综上所述,符合条件的t的值是0.5,2或8.8.解:(1)根据题意,得2t+4t=28解得t=∴2t=﹣12=﹣∴P对应的数是﹣.(2)根据题意,得4t﹣2t=28解得t=14∴﹣12﹣2t=﹣12﹣28=﹣40答:点P对应的数是﹣40.9.解:(1)设x秒后,甲到A,B,C的距离和为60个单位.B点距A,C两点的距离为26+20=46<60,A点距B、C两点的距离为26+46=72>60,C点距A、B的距离为46+20=66>40,故甲应位于AB或BC之间.①AB之间时:4x+(26﹣4x)+(26﹣4x+20)=60,x=3;②BC之间时:4x+(4x﹣26)+(46﹣4x)=60,x=10,综上所述,经过3s或10s后,甲到A,B,C的距离和为60个单位;(2)设ts后甲与乙相遇4t+6t=46,解得:x=4.6,4×4.6=18.4,﹣36+18.4=﹣17.6答:甲,乙在数轴上的点﹣17.6相遇;(3)设y秒后甲到A,B,C三点的距离之和为60个单位,①甲从A向右运动3秒时返回,此时甲、乙表示在数轴上为同一点,所表示的数相同.甲表示的数为:﹣36+4×3﹣4y;乙表示的数为:10﹣6×3﹣6y,依据题意得:﹣36+4×3﹣4y=10﹣6×3﹣6y,解得:y=8,相遇点表示的数为:﹣36+4×3﹣4y=﹣56(或:10﹣6×3﹣6y=﹣56),②甲从A向右运动10秒时返回,设y秒后与乙相遇.甲表示的数为:﹣36+4×10﹣4y;乙表示的数为:10﹣6×10﹣6y,依据题意得:﹣36+4×10﹣4y=10﹣6×10﹣6y,解得:y=﹣27(不合题意舍去),即甲从A向右运动3秒时返回,能在数轴上与乙相遇,相遇点表示的数为﹣56.10.解:(1)设运动时间为t秒,由题意可得:6+8+2t+6t=54,∴t=5,∴运动5秒点M与点N相距54个单位;(2)设运动时间为t秒,由题意可知:M点运动到6+2t,N点运动到﹣8+6t,P点运动到t,当t<1.6时,点N在点P左侧,MP=NP,∴6+t=8﹣5t,∴t=s;当t>1.6时,点N在点P右侧,MP=NP,∴6+t=﹣8+5t,∴t=s,∴运动s或s时点P到点M,N的距离相等;(3)由题意可得:M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动=5s时,P在5,M在16,N在﹣38,①如上图,当t1再往前一点,MP之间的距离即包含11个整数点,NP之间有44个整数点;②当N继续以6个单位每秒的速度向左移动,P点向右运动,若N点移动到﹣39时,此时N、P之间仍为44个整数点,若N点过了﹣39时,此时N、P之间为45 个整数点故t2=+5=s∴t1=5s,t2=s.。

人教版七年级数学上册 3.4 一元一次方程应用题分类集训(word版有答案)

人教版七年级数学上册 3.4 一元一次方程应用题分类集训(word版有答案)

一元一次方程应用题分类集训和差倍分问题1.某县有一些农户处于贫困状态,去年这些农户中有25%脱离贫困状态,但仍有600户处于贫困状态,求这个县原来贫困农户有多少户?(1)设这个县原来贫困农户有x户,①由这个县原有贫困农户=脱离贫困农户+未脱离贫困农户,可以得到的方程是;②由脱离贫困农户=这个县原有贫困农户-未脱离贫困农户,可以得到的方程是;③由未脱离贫困农户=这个县原有贫困农户-脱离贫困农户,可以得到的方程是;(2)解决这个问题,得x= .答:这个县原来贫困农户有户.2.某校号召学生为贫困地区的学生捐献图书,初中和高中的同学共捐书5 200册,经过统计知道初中学生捐的书是高中学生捐的书的30%,求高中学生捐的书为多少册?3.某产品的成本价为25元,现在按标价的8折销售,还可以有10元的利润,求此产品的标价.4.学校组织七年级同学参加植树劳动,七年级甲班和七年级乙班共种树31株,其中甲班种的树比乙班种的树的2倍多1株,求两班各种树多少株?5.挖一条长为1 320 m 的水渠,由甲、乙两队从两头同时施工,甲队每天挖130 m ,乙队每天挖90 m ,需要几天才能挖好?6.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?7.三个连续偶数和为24,求这三个数.8.一个数的4倍与这个数的13的差为1112,求这个数.9.甲、乙、丙三个数的和是14,已知甲数是乙数的2倍,丙数是乙数的一半,求三个数各是多少?10.一个两位数,把十位数字与个位数字对调后所得的数比90小4,那么这个两位数是( ) A.86 B.64 C.46 D.6811.某农场有试验田1 080 m2,种植A,B,C三种农作物.已知三种农作物的种植面积比是2∶3∶4,求三种农作物的种植面积分别是多少.设A种农作物的种植面积是2x m2,根据题意可列出方程为 .12.某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?13.中国古代有很多经典的数学题,例如《孙子算经》卷下第17题是一首诗:“妇人洗碗在河滨,路人问她客几人?答曰不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”这首诗翻译成现代文就是:每两位客人合用1只饭碗,三位合用1只汤碗,四位合用1只肉碗,共用65只碗,问有多少客人?14.七年级(1)班的学生分成三个小组,利用星期日的时间去参加公益活动,第一组有学生m 名,第二组的学生数比第一组学生数的2倍少10人,第三组的学生数是第二组学生数的一半.(1)七年级(1)班共有多少名学生?(用含m的式子表示)(2)若七年级(1)班共有45名学生,求m的值.15.如图是由一些奇数排成的数阵,用一长方形框在表中任意框住4个数.(1)若这样框出的四个数的和是156,求这四个数.(2)能否框住这样的四个数,它们的和为220,为什么?16.某蔬菜经营户,用160元从某蔬菜市场批发了茄子和豆角共50 kg,茄子、豆角当天的批发价和零售价如下表所示:品名茄子豆角批发价(元·kg-1) 3.0 3.5这天该经营户批发了茄子和豆角各多少千克?路程问题及工程问题相遇问题1.小明和小刚从相距25.2 km的两地同时相向而行,小明每小时走4 km,3 h后两人相遇,设小刚的速度为x km/h,列方程得( )A.4+3x=25.2B.3×4+x=25.2C.3(4+x)=25.2D.3(x-4)=25.22.A、B两地相距70 km,甲从A地出发,每小时行15 km,乙从B地出发,每小时行20 km.若两人同时出发,相向而行,则经过几小时两人相遇?3.A,B两地相距300 km.甲车从A地出发,每小时行驶60 km,乙车从B地出发,每小时行驶40 km.甲车从A地开出1小时后,乙车从B地出发,两车相向而行,则乙车出发几小时后两车相遇?追及问题4.(衡水安平县期末)小刚、小强两人练习赛跑,小刚每秒跑7米,小强每秒跑6.5米,小刚让小强先跑5米,设x秒钟后,小刚追上小强,下列四个方程中不正确的是( )A.7x=6.5x+5B.7x-5=6.5C.(7-6.5)x=5D.6.5x=7x-55.已知A,B两地相距90 km,甲、乙两车分别从A,B两地同时出发,已知甲车速度为115 km/h,乙车速度为85 km/h,两车同向而行,快车在后,求经过几小时快车追上慢车?6.列方程解应用题.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?7.汽车从甲地到乙地,如果以35 km/h的速度行驶,就要迟到2小时;如果以50 km/h的速度行驶,那么可以提前1小时到达.设甲、乙两地相距x千米,则所列方程为 .8.上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1 180公里,问两车几点相遇?9.甲、乙两辆汽车同时从两个村庄出发,相向而行,4小时后相遇,已知乙车每小时比甲车多走12 km,相遇时乙车所走的路程是甲车的1.5倍.求甲、乙两车的速度.10.某中学学生步行到郊外旅行,七年级(1)班学生组成前队,步行速度为4千米/小时,七(2)班的学生组成后队,速度为6千米/小时.前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.(1)后队追上前队需要多长时间?(2)后队追上前队的时间内,联络员走的路程是多少?(3)七年级(1)班出发多少小时后两队相距2千米?(直接写出结果)11.列方程解应用题:成雅高速公路全长147 km,上午八时一辆货车由雅安到成都,车速是每小时60 km,半小时后,一辆小轿车从雅安出发去追赶货车,车速是80 km/h,问:(1)小车几小时能追上货车?(2)小车追到货车时行驶了多少千米?(3)能在到达成都之前追上货车吗?(4)小轿车追上货车时距离成都还有多少千米?12.列方程解应用题:如图,现有两条乡村公路AB,BC,AB长为1 200米,BC长为1 600米,一个人骑摩托车从A处以200 m/min的速度匀速沿公路AB,BC向C处行驶;另一人骑自行车从B处以100 m/min的速度从B向C行驶,并且两人同时出发.(1)求经过多少分钟摩托车追上自行车?(2)求两人均在行驶途中时,经过多少分钟两人在行进路线上相距150米?工程问题1.甲、乙两个人给花园浇水,甲单独做需要4小时完成任务,乙单独做需要6小时完成任务,现在由甲、乙合做,完成任务需要几个小时?2.一项工程,甲队单独做需要5天完成,乙队单独做需要8天完成,甲队和乙队先合做一段时间,后来又有新任务,剩下的工作由乙队来完成,结果这项工程用了4天就全部竣工了,求甲队干了几天?3.一项工作,小李单独做需要6小时完成,小王单独做需要9小时完成,现小李先做几小时后,再由小李和小王合做125小时完成,求小李单独做的小时数.4.整理一批图书,由一个人做要40 h 完成,现计划由一部分人先做4 h ,然后增加2人与他们一起再做8 h ,就能完成这项工作.假设这些人的工作效率相同,具体应先安排的人数为 .5.修筑一条公路,由3个工程队分筑,第一工程队筑全路的13;第二工程队筑剩下的13;第三工程队筑了20 km 把这条公路筑完.问:这条公路共长多少千米?6.一项工程,甲独做需要10天,乙独做需要12天,丙独做需要15天.现甲、乙、丙3人合做2天后,乙因有事提前离去,余下的由甲和丙合作完成.问还需几天能完成这项工程?7.整理一批图书,若由一个人独做需要80个小时完成,假设每人的工作效率相同. (1)若限定32小时完成,一个人先做8小时,需再增加多少人帮忙才能在规定的时间内完成? (2)计划由一部分人先做4小时,然后增加3人与他们一起做4小时,正好完成这项工作的34,应该安排多少人先工作?储蓄、利润及增长率问题 增长率问题1.某农场今年粮食总产量为500吨,比去年增产25%,求去年粮食总产量,设去年粮食总产量为x吨,则可列出方程( )A.25%x=500B.(1+25%)x=500C.x=500×25%D.(1-25%)x=5002.一件羽绒服降价10%后售出价是270元,设原价x元,得方程( )A.x(1-10%)=270-xB.x(1+10%)=270C.x(1+10%)=x-270D.x(1-10%)=2703.某所中学现有学生4 200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校在校生将增加10%,问:这所学校现在的初中在校生和高中在校生人数分别是多少?4.国家规定:银行一年定期储蓄的年利率为 3.25%.小明有一笔一年定期存款,如果到期后全取出,可取回1 239元.若设小明的这笔一年定期存款是x元,则下列方程中正确的是( ) A.x+3.25%=1 239 B.3.25%x=1 239C.1+3.25%x=1 239D.x+3.25%x=1 2395.王海的爸爸想用一笔钱买年利率为5.5%的5年期国库券,如果他想5年后本息和为2万元,现在应买这种国库券多少元?如果设应买这种国库券x元,那么可以列出方程( )A.x×(1+5.5%×5)=20 000B.5x×(1+5.5%)=20 000C.x×(1+5.5%)5=20 000D.x×5.5%×5=20 0006.王先生手中有30 000元钱,想买年利率为5.18%的三年期国库券,到银行时,银行所剩国库券已不足30 000元,王先生全部买下这部分国库券后,余下的钱改存三年定期银行存款,年利率为5%,三年后,王先生得到的本息和为34 608元.求王先生买了多少元国库券?在银行存款是多少元?7.某商店进行年终促销活动,将一件标价为690元的羽绒服7折售出,仍获利15%,则这件羽绒服的进价为( )A.380元B.420元C.460元D.480元8.苏宁电器元旦促销,将某品牌彩电按进价提高40%,然后在广告上写“元旦大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电进价是多少元?9.某商品的售价为每件900元,为了参与市场竞争,商店按售价的九折再让利40元销售,此时可获利10%.求此商品的进价.10.高速发展的芜湖奇瑞汽车公司,去年汽车销量达到18万辆,该公司今年汽车总销售目标为25.2万辆,则奇瑞公司今年的汽车销量将比去年增加的百分率为( )A.40%B.32%C.9%D.15%11.已知银行一年期定期储蓄的年利率为3.25%,所得利息要缴纳20%的利息税,例如:某人将100元按一年期的定期储蓄存入银行,到期储户纳税后所得利息的计算公式为:税后利息=100×3.25%-100×3.25%×20%=100×3.25%×(1-20%).已知某储户有一笔一年期的定期储蓄,到期纳税后,得到利息650元,问:该储户存入了多少本金?12.一个计算器,若卖100元,可赚原价的25%;若卖120元,则可以赚原价的百分之几?13.时代中学现有校舍面积20 000平方米,为改善办学条件,计划拆除部分旧校舍,新建教学楼.如果新建教学楼的面积是拆除旧校舍面积的3倍,那么计划完成后校舍总面积增加20%,拆除旧校舍多少平方米?14.某商品的进价是100元,提高50%后标价售出,在销售旺季过后,经营者想得到5%的销售利润,请你帮他想一想,该商品需打几折销售?15.如表是某电脑进货单,其中进价一栏被墨迹污染,请求出这台电脑的进价.商场进货单进价(进货价格)标价(预售价格) 5 850元折扣8折利润率 20%16.一家商店因换季准备将某种服装打折销售,每件服装如果按标价的五折出售将亏20元,而按标价的八折出售将赚40元.问:(1)每件服装的标价是多少?(2)每件服装的成本是多少?(3)为保证不亏本,最多能打几折?17.某集团公司有甲、乙两个商场,一月份甲、乙两商场销售总额为2 000万元,二月份甲商场因内部装修,影响销售,致使销售额比一月份下降10%;而乙商场大搞促销活动,因而销售额比一月份增加了20%,这样整个集团公司(甲、乙两商场)的销售总额比一月份还要增加3.5%.问甲、乙两商场二月份的销售额分别是多少万元?18.某汽车队运送一批货物,若每辆汽车装4吨,则还剩下8吨装不下;若每辆汽车装4.5吨,则恰好装完,该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,则可列方程为( )A.4x +8=4.5xB.4x -8=4.5xC.4x =45x +8D.4(x +8)=4.5x19.设有x 个人共种m 棵树苗,若每人种8棵,则剩下2棵树苗未种;若每人种10棵,则缺6棵树苗.根据题意,列方程正确的是( )A.x 8-2=x 10+6B.x 8+2=x10-6 C.m -28=m +610 D.m +28=m -61020.某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,请问该小组共有多少人?计划做多少个“中国结”? 根据题意,小明、小红分别列出了如下尚不完整的方程: 小明:5x□( )=4x□( ); 小红:y□( )5=y□( )4.(1)根据小明、小红所列的方程,其中“□”中是运算符号,“( )”中是数字,请你分别指出未知数x 、y 表示的意义:小明所列方程中x 表示 小红所列方程中y 表示 .(2)请选择小明、小红中任意一种方法,完整的解答该题目.等积变形问题1.根据图中给出的信息,可得正确的方程是( )A.π×(82)2×x =π×(62)2×(x +5)B.π×82×x =π×62×5C.π×(82)2×x =π×(62)2×(x -5)D.π×82×x =π×62×(x -5)2.一块棱长2分米的立方体钢块,可以锻造成一块长8分米、宽25分米、厚 分米的钢板.3.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80 cm 2,100 cm 2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲中的水位高度低了8 cm ,求甲中水的高度.4.全班同学去春游,准备租船游玩,如果比计划减少一条船,那么每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班共有 个同学.5.已知5台A 型机器一天生产的产品装满8箱后还剩4个,7台B 型机器一天生产的产品装满11箱后还剩1个,每台A 型机器比B 型机器一天多生产1个产品.求每箱装多少个产品.6.桌面上有甲、乙两个圆柱形的杯子,杯深均为20 cm,各装有10 cm高的水且下表记录了甲、乙两个杯子的底面积.今小明将甲杯内一些水倒入乙杯,过程中水没溢出,使得甲、乙两杯内水的高度比变为3∶4.若不计杯子厚度,则甲杯内水的高度变为多少厘米?几何图形及动点问题几何图形问题1.一个正方形花圃边长增加2 m,所得新正方形花圃的周长是28 m,设原正方形花圃的边长为x m,由此可得方程为( )A.x+2=28B.4(x+2)=28C.2(x+2)=28D.4x+2=282.一块长方形黎锦的周长为80 cm,已知这块黎锦的长比宽多5 cm,求它的长和宽.设这块黎锦的宽为x cm,则所列方程正确的是( )A.x+(x+5)=40B.x+(x-5)=40C.x+(x+5)=80D.x+(x-5)=803.一个三角形的三边长的比为3∶4∶5,最短的边比最长的边短6 cm,则这个三角形的周长为 cm.4.一个角的余角的3倍比它的补角小10°,求这个角的度数.5.如图,用总长为6米的铝合金条制作“日”字形窗框,已知窗框的高比宽多0.5米,求窗框的高和宽.动点问题6.已知:如图所示,在△ABC中,AB=5 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.如果P,Q分别从A,B同时出发,那么几秒后,BP=BQ?7.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则所列方程为8.图1是边长为30 cm的正方形纸板,裁掉阴影后将其折叠成图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm3.9.如图,悦悦将一张正方形纸片剪去一个宽为3 cm的长方形纸条,再从剩下的长方形纸片上剪去一个宽为1 cm的长条,如果第一次剪下的长方形纸条的周长恰好是第二次剪下的长方形纸条周长的2倍.求:(1)原正方形纸片的边长;(2)第二次剪下的长方形纸条的面积.10.如图,在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B,点C表示的数;(2)在(1)的条件之下,若小虫P从点B出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q恰好从点C出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的D点相遇,求D点表示的数是多少?11.将长为40 cm,宽为15 cm的长方形白纸按如图所示的方法粘合起来,粘合部分宽为5 cm.你认为白纸粘合起来总长度可能为2 019 cm吗?为什么?12.如图1,在长方形ABCD中,AB=12 cm,BC=6 cm,点P沿AB边从点A开始向点B以2 cm/s 的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P,Q同时出发,用t(s)表示移动的时间,那么:(1)如图1,当点P到达点B,或点Q到达点A时,两点都停止运动.①当t=3时,分别求AQ和BP的长;②当t为何值时,BP=7?(2)如图2,若P,Q到达B,A后速度不变继续运动,点Q开始向点B移动,P点返回向点A 移动,其中一点到达目标点后就停止运动.问当t为何值时,线段PQ的长度等于线段BC长度的一半?图1 图2一元一次方程应用题分类集训答案和差倍分问题1.某县有一些农户处于贫困状态,去年这些农户中有25%脱离贫困状态,但仍有600户处于贫困状态,求这个县原来贫困农户有多少户?(1)设这个县原来贫困农户有x户,①由这个县原有贫困农户=脱离贫困农户+未脱离贫困农户,可以得到的方程是x=25%x+600;②由脱离贫困农户=这个县原有贫困农户-未脱离贫困农户,可以得到的方程是25%x=x-600;③由未脱离贫困农户=这个县原有贫困农户-脱离贫困农户,可以得到的方程是600=x-25%x;(2)解决这个问题,得x=800.答:这个县原来贫困农户有800户.2.某校号召学生为贫困地区的学生捐献图书,初中和高中的同学共捐书5 200册,经过统计知道初中学生捐的书是高中学生捐的书的30%,求高中学生捐的书为多少册?解:设高中学生捐的书为x册,则初中学生捐的书为30%x册,根据题意,得x+30%x=5 200.解得x=4 000.答:高中学生捐的书为4 000册.3.某产品的成本价为25元,现在按标价的8折销售,还可以有10元的利润,求此产品的标价.解:设此产品的标价为x元,依题意,得80%x-25=10.解得x=43.75.答:此产品的标价为43.75元.4.学校组织七年级同学参加植树劳动,七年级甲班和七年级乙班共种树31株,其中甲班种的树比乙班种的树的2倍多1株,求两班各种树多少株?解:设乙班种树x株,则甲班种树(2x+1)株,依题意,有x+(2x+1)=31.解得x=10.则2x+1=20+1=21.答:甲班种树21株,乙班种树10株.5.挖一条长为1 320 m 的水渠,由甲、乙两队从两头同时施工,甲队每天挖130 m ,乙队每天挖90 m ,需要几天才能挖好? 解:设需要x 天才能挖好,根据题意,得 130x +90x =1 320. 解得x =6.答:需要6天才能挖好.6.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?解:设这本名著共有x 页,根据题意,得 36+14(x -36)=38x ,解得x =216.答:这本名著共有216页.7.三个连续偶数和为24,求这三个数.解:设这三个连续偶数分别为n -2,n ,n +2.依题意,得 n -2+n +n +2=24.解得n =8.从而有n -2=6,n +2=10. 答:这三个数分别为6,8,10.8.一个数的4倍与这个数的13的差为1112,求这个数.解:设这个数为x ,依题意,得 4x -13x =1112.解得x =14.答:这个数为14.9.甲、乙、丙三个数的和是14,已知甲数是乙数的2倍,丙数是乙数的一半,求三个数各是多少?解:设乙数为x ,则甲数为2x ,丙数为12x ,依题意,得x +2x +12x =14.解得x =4.从而有2x =8,12x =2.答:甲、乙、丙三个数分别为8,4,2.10.一个两位数,把十位数字与个位数字对调后所得的数比90小4,那么这个两位数是(D) A.86 B.64 C.46 D.6811.某农场有试验田1 080 m 2,种植A ,B ,C 三种农作物.已知三种农作物的种植面积比是2∶3∶4,求三种农作物的种植面积分别是多少.设A 种农作物的种植面积是2x m 2,根据题意可列出方程为2x +3x +4x =1_080.12.某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 解:设应安排x 名工人生产螺钉,则安排(22-x)名工人生产螺母.根据题意,得 2 000(22-x)=2×1 200x. 解得x =10. 则22-x =12.答:应安排10名工人生产螺钉,12名工人生产螺母.13.中国古代有很多经典的数学题,例如《孙子算经》卷下第17题是一首诗:“妇人洗碗在河滨,路人问她客几人?答曰不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”这首诗翻译成现代文就是:每两位客人合用1只饭碗,三位合用1只汤碗,四位合用1只肉碗,共用65只碗,问有多少客人?解:设有x名客人,依题意,得1 2x+13x+14x=65.解得x=60.答:有60名客人.14.七年级(1)班的学生分成三个小组,利用星期日的时间去参加公益活动,第一组有学生m 名,第二组的学生数比第一组学生数的2倍少10人,第三组的学生数是第二组学生数的一半.(1)七年级(1)班共有多少名学生?(用含m的式子表示)(2)若七年级(1)班共有45名学生,求m的值.解:(1)根据题意,得第二组有(2m-10)人,第三组有12(2m-10)=(m-5)人,则三个小组一共有m+(2m-10)+(m-5)=(4m-15)人.(2)因为七年级(1)班共有45名学生,所以4m-15=45,解得m=15.15.(邯郸魏县期中)如图是由一些奇数排成的数阵,用一长方形框在表中任意框住4个数.(1)若这样框出的四个数的和是156,求这四个数.(2)能否框住这样的四个数,它们的和为220,为什么?解:(1)记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是x+2,x+10,x+12.根据题意,得x+(x+2)+(x+10)+(x+12)=156.解得x=33.从而有x+2=35,x+10=43,x+12=45.答:这四个数分别是33,35,43,45.(2)不能.理由如下:假设能框住这样的4个数,它们的和等于220,则x+(x+2)+(x+10)+(x+12)=220,解得x=49.则x+2=51,x+10=59,x+12=61.因为49在最右边,51在最左边,所以不能.16.某蔬菜经营户,用160元从某蔬菜市场批发了茄子和豆角共50 kg,茄子、豆角当天的批发价和零售价如下表所示:这天该经营户批发了茄子和豆角各多少千克?解:设这天该经营户批发茄子x kg,则批发豆角(50-x)kg.由题意,得3.0x+3.5(50-x)=160.解得x=30.从而有50-30=20(kg).答:批发茄子30 kg,批发豆角20 kg.路程问题及工程问题相遇问题1.小明和小刚从相距25.2 km的两地同时相向而行,小明每小时走4 km,3 h后两人相遇,设小刚的速度为x km/h,列方程得(C)A.4+3x=25.2B.3×4+x=25.2C.3(4+x)=25.2D.3(x-4)=25.22.A、B两地相距70 km,甲从A地出发,每小时行15 km,乙从B地出发,每小时行20 km.若两人同时出发,相向而行,则经过几小时两人相遇?解:设经过x小时两人相遇,依题意,得15x+20x=70.解得x=2.答:经过2小时两人相遇.3.A,B两地相距300 km.甲车从A地出发,每小时行驶60 km,乙车从B地出发,每小时行驶40 km.甲车从A地开出1小时后,乙车从B地出发,两车相向而行,则乙车出发几小时后两车相遇?解:设乙车出发x小时后两车相遇.依题意,得60+(60+40)x=300.解得x=2.4.答:乙车出发2.4小时后两车相遇.追及问题4.(衡水安平县期末)小刚、小强两人练习赛跑,小刚每秒跑7米,小强每秒跑6.5米,小刚让小强先跑5米,设x秒钟后,小刚追上小强,下列四个方程中不正确的是(B)A.7x=6.5x+5B.7x-5=6.5C.(7-6.5)x=5D.6.5x=7x-55.已知A,B两地相距90 km,甲、乙两车分别从A,B两地同时出发,已知甲车速度为115 km/h,乙车速度为85 km/h,两车同向而行,快车在后,求经过几小时快车追上慢车?解:设经过x小时快车追上慢车.根据题意,得115x-85x=90,解得x=3.答:经过3小时快车追上慢车. 6.(衡水枣强县期中)列方程解应用题.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?解:设快马x 天可以追上慢马,由题意,得 240x -150x =150×12. 解得x =20.答:快马20天可以追上慢马.7.汽车从甲地到乙地,如果以35 km/h 的速度行驶,就要迟到2小时;如果以50 km/h 的速度行驶,那么可以提前1小时到达.设甲、乙两地相距x 千米,则所列方程为x 35-2=x50+1. 8.上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1 180公里,问两车几点相遇?解:设从北京到上海的G5次列车行驶x 小时与G102次列车相遇,根据题意,得 200(x +12)+280x =1 180.解得x =2.25. 2.25时=2时15分, 7时+2时15分=9时15分. 答:两车于9点15分相遇.9.甲、乙两辆汽车同时从两个村庄出发,相向而行,4小时后相遇,已知乙车每小时比甲车多走12 km ,相遇时乙车所走的路程是甲车的1.5倍.求甲、乙两车的速度. 解:设甲车每小时走x km ,则乙车每小时走(x +12)km.由题意,得 4(x +12)=1.5×4x. 解得x =24.则x +12=24+12=36.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3.1从实际问题到方程一、本课重点,请你理一理 列方程解应用题的一般步骤是:(1)“设”:用字母(例如x )表示问题的_未知量__; (2)“找”:看清题意,分析题中及其关系,找出用来列方程的_ 等量关系_____;(3)“列”:用字母的代数式表示相关的量,根据 等量关系____列出方程; (4)“解”:解方程;(5)“验”:检查求得的值是否正确和符合实际情形,并写出答案;(6)“答”:答出题目中所问的问题。

二、基础题,请你做一做1、已知小帅和大帅共有100元钱,设小帅有x 元,则大帅有 (100—x ) 元2、一个数x 的2倍减去7的差, 得36 ,列方程为 ___ 2x —7=36_______; 三、综合题,请你试一试 1.完成下面的解题过程:小帅种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100厘米?解:设x 周后树苗长高到100厘米.根据题意,得40+15x=100 . 解方程,得 x=4 . 答: 4 周后树苗长高到100厘米.2 (年龄问题)在课外活动中,张老师发现同学们的年龄大多是13岁.就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”解:设x 年后,学生的年龄是张老师年龄的三分之一,依题意,得113(45)3x x +=+解得x=3答:3年后,学生的年龄是张老师年龄的三分之一。

3甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支? 解:设有甲种铅笔x 支,依题意,得0.30.6(20)9x x +-=解得x=10乙种铅笔有20-10=10支 答:甲、乙两种铅笔各有10支。

6.3.2 行程问题一、本课重点,请你理一理1.基本公式:__路程=速度×时间__2.基本类型: 相遇问题、 追及问题、环形跑道问题、航行问题、飞行问题。

3.航行问题的数量关系:(1)顺水航行的路程=逆水航行的路程 (2)顺水速度=静水速度+水速逆水速度=静水速度-水速 4.飞行问题基本等量关系: 顺风速度=无风速度+风速 逆风速度=无风速度-风速 二、基础题,请你做一做1、甲的速度是每小时行4千米,则他x 小时行( 4x )千米.2、乙3小时走了x 千米,则他的速度是每小时行( 3x )千米.3、甲每小时行4千米,乙每小时行5千米,则甲、乙一小时共行( 9 )千米,y 小时共行( 9y )千米.4、某一段路程 x 千米,如果火车以49千米/时的速度行驶,那么火车行完全程需要( 49x )小时. 三、综合题,请你试一试1.甲、乙两地路程为180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同时出发,相向而行,问经过多少时间两人相遇? 解:易知摩托车的速度是每小时45千米。

设经过x 小时两人相遇,依题意,得15x+45x=180解得x=3答:经过3小时两人相遇。

2. 甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且先出发2小时,问摩托车经过多少时间追上自行车?解:设摩托车经过x小时追上自行车,依题意,得45x—15(x+2)=180解得x=7答:摩托车经过7小时追上自行车3.一架直升机在A,B两个城市之间飞行,顺风飞行需要4小时,逆风飞行需要5小时 .如果已知风速为30km/h,求A,B两个城市之间的距离.解:设飞机无风时的速度为x 千米/小时,依题意,得4(30)5(30)x x+=-解得x=270所以(270+30)× 4=1200(千米)答:A,B两个城市之间的距离为1200千米。

4.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行............,甲的速度为100米/分,乙的速度是甲速度的32倍,问(1)经过多少时间后两人首次相遇(2)第二次相遇呢?解:乙的速度是10032⨯ =150米/分。

(1)设经过x分钟后两人首次相遇,依题意,得150100400x x-=解得x=8(2)设经过x分钟后两人第二次相遇,依题意,得150100800x x-=解得x=16答:(1)设经过8分钟后两人首次相遇;(2)设经过16分钟后两人第二次相遇。

注:环形跑道问题,通常转化为追及、相遇问题。

6.3.3调配问题一、本课重点,请你理一理初步学会列方程解调配问题各类型的应用题;各部分量之和等于总量是解决这类应用题的基关键所在.二、基础题,请你做一做1.某人用三天做零件330个,已知第二天比第一天多做3个,第三天做的是第二天的2倍少3个,则他第一天做了多少个零件?解:设他第一天做零件 x 个,则他第二天做零件__(x+3)________个,第三天做零件__[2(x+3)-3_]_______个,根据“某人用三天做零件330个”列出方程得:___x+x+3+_2(x+3)-3=330__.解这个方程得:____x=84__________.答:他第一天做零件 ___84_____ 个.2.初一甲、乙两班各有学生48人和52人,现从外校转来12人插入甲班 x 人,其余的都插入乙班,问插入后,甲班有学生__48+x__人,乙班有学生_52+12-x______人,若已知插入后,甲班学生人数的3倍比乙班学生人数的2倍还多4人,列出方程是:__3(48+x)=2(52+12-x)+4__三、综合题,请你试一试1、有23人在甲处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动的人数是在乙处劳动的人数的2倍,应调往甲、乙两处各多少人?解:设应调往甲处x人,依题意,得232(1720)x x+=+-解得x=17答:应调往甲处17人,调往乙处3人。

2.配制一种混凝土,水泥、沙、石子、水的质量比是1:3:10:4,要配制这种混凝土360千克,各种原料分别需要多少千克?解:设有水泥x千克,依题意得3104360x x x x+++=解得x=20所以沙有20×3=60千克石子有20×10=200千克水有20×4=80千克答:水泥、沙、石子、水分别需要20千克、60千克、200千克、80千克。

3、为鼓励节约用水,某地按以下规定收取每月的水费:如果每月每户用水不超过20吨,那么每吨水按1.2元收费;如果每月每户用水超过20吨,那么超过的部分按每吨2元收费。

若某用户五月份的水费为平均每吨1.5元,问,该用户五月份应交水费多少元?解:设该用户五月份共用水x吨,依题意,得20 1.22(20) 1.5x x⨯+-=解得x=32水费为1.53248⨯=答:该用户五月份应交水费48元注:本题不是“求什么设什么”。

所以同学们要学会设一个合适的未知量,以便于列方程。

有了这道题目的解答,请同学们解决《基础训练》P42,12题和P44,19题。

6.3.4 工程问题一、本课重点,请你理一理1.工程问题中的基本关系式:工作总量=工作效率×工作时间各部分工作量之和 = 工作总量二、基础题,请你做一做1.做某件工作,甲单独做要8小时才能完成,乙单独做要12小时才能完成,问:①甲做1小时完成全部工作量的几分之几?1 8②乙做1小时完成全部工作量的几分之几?1 12③甲、乙合做1小时完成全部工作量的几分之几?11812+④甲做x小时完成全部工作量的几分之几?18x⑤甲、乙合做x小时完成全部工作量的几分之几?11()812x+⑥甲先做2小时完成全部工作量的几分之几?128⨯乙后做3小时完成全部工作量的几分之几?1312⨯甲、乙再合做x小时完成全部工作量的几分之几?11()812x+三次共完成全部工作量的几分之几?结果完成了工作,则可列出方程:111123()1812812x⨯+⨯++=三、综合题,请你试一试1.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?解:设还需要x天完成,依题意,得111()41101515x+⨯+=解得x=5答:还需要5天完成2.食堂存煤若干吨,原来每天烧煤4吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量.解:设原存煤量为x吨,依题意,得15151024x x---=解得x=55答:原存煤量为55吨3.一水池,单开进水管3小时可将水池注满,单开出水管4小时可将满池水放完。

现对空水池先打开进水管2小时,然后打开出水管,使进水管、出水管一起开放,问再过几小时可将水池注满?解:设再过x 小时可将水池注满,依题意,得 1112()1334x ⨯+-= 解得x=4答:再过4小时可将水池注满。

6.3.5销售储蓄问题一、本课重点,请你理一理1、本金、利率、利息、本息和这四者之间的关系: (1)利息=本金×利率×期数 (2)本息和=本金+利息-利息税 (3)利息税=利息×利息税率(20%)2、售价=标价×折×101,利润=售价-成本(成本也称进价),成本利润利润率=,(易知:利润=成本×利润率)。

二、基础题,请你做一做1.某商品按定价的八折出售,售价14.80元, 则原定价是__18.5_元。

解:设定价为x 元,0.8x=14.8,解得x=18.52.小帅把爸、妈给的压岁钱1000元按定期一年存入银行。

当时一年期定期存款的年利率为1.98%,利息税的税率为20%。

到期支取时,利息为_19.8元___,税后利息__15.84元___,小帅实得本息和为_1015.84元___.3.A 、B 两家售货亭以同样价格出售商品,一星期后A 家把价格降低了10%,再过一个星期又提高20%,B 家只是在两星期后才提价10%,两星期后_____家售货亭的售价低。

解:设两家售亭一开始的价格为x , A :(1-10%)(1+20%)x=1.08x B :(1+10%)x=1.1x 答:A 家售货亭的售价低。

4.某服装商贩同时卖出两套服装,每套均卖168元,以成本计算其中一套盈利20%,另一套亏本20%,则这次出售商贩__________(盈利或亏本) 元。

解:设其中一套的成本价为x 元,依题意,得(120%)168x +=解得x=140设另一套的成本价为y 元,依题意,得(120%)168y -=解得y=2102168(140210)14⨯-+=-(元)答:亏本14元。

注:这道题和《基训》P38,5题解题思路一样。

三、综合题,请你试一试1.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,利息税的税率为20%,所得利息正好为小明买了一只价值48.60元的计算器,问小明爸爸前年存了多少元?解:设小明爸爸前年存了x 元,依题意,得2.43%×2×(1-20%)x=48.6 解得x=1250答:小明爸爸前年存了1250元2.一家商店将某种服装按成本价提高40%后标价,又以8折(也就是按标价的80%)卖出,结果每件仍获得利润15元,这种服装每件的成本价是多少元?(提示:每件服装的利润=售价-成本价)解:这种服装每件的成本价是x 元,依题意,得(140%)80%15x x +⨯-=解得x=125答:这种服装每件的成本价是125元数字问题1、有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

相关文档
最新文档