空间中直线与平面之间的位置关系和平面与平面之间的位置关系-数学高一上必修2第二章2.1.3,2.1.4人教版
【精编】高中数学必修二2.1.32.1.4空间中直线与平面之间的位置关系平面与平面之间
2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系【选题明细表】1.(2018·四川泸州模拟)设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( D )(A)a∥b,b⊂α,则a∥α(B)a⊂α,b⊂β,α∥β,则a∥b(C)a⊂α,b⊂α,a∥β,b∥β,则α∥β(D)α∥β,a⊂α,则a∥β解析:A,B,C错;在D中,α∥β,a⊂α,则a与β无公共点,所以a∥β,故D正确.故选D.2.(2018·广东珠海高一月考)如图,在正方体ABCD A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( D )(A)不存在(B)有1条(C)有2条(D)有无数条解析:由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共直线l,在平面ADD1A1内与l平行的直线有无数条,且它们都不在平面D1EF内,则它们都与平面D1EF平行,故选D.3.已知a,b是异面直线,直线c平行于直线a,那么c与b( C )(A)一定是异面直线 (B)一定是相交直线(C)不可能是平行直线(D)不可能是相交直线解析:由已知得,直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a,b为异面直线相矛盾.故选C.4.给出下列几个说法:①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③过平面外一点有且只有一条直线与该平面平行;④过平面外一点有且只有一个平面与该平面平行.其中正确说法的个数为( B )(A)0 (B)1 (C)2 (D)3解析:(1)当点在已知直线上时,不存在过该点的直线与已知直线平行,故①错;(2)由于垂直包括相交垂直和异面垂直,因而过一点与已知直线垂直的直线有无数条,故②错;(3)过棱柱的上底面内的一点在上底面内任意作一条直线都与棱柱的下底面平行,所以过平面外一点与已知平面平行的直线有无数条,故③错;(4)过平面外一点与已知平面平行的平面有且只有一个,故④对.5.梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的直线的位置关系只能是( B )(A)平行 (B)平行或异面(C)平行或相交(D)异面或相交解析:如图所示,CD与平面α不能有交点,若有,则一定在直线AB上,从而矛盾.故选B.6.(2018·湖北武昌调研)已知直线l和平面α,无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l( C ) (A)相交(B)平行(C)垂直(D)异面解析:当直线l与平面α平行时,在平面α内至少有一条直线与直线l 垂直;当直线l⊂平面α时,在平面α内至少有一条直线与直线l垂直;当直线l与平面α相交时,在平面α内至少有一条直线与直线l垂直,所以无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l垂直.故选C.7.如图的直观图,用符号语言表述为(1) , (2) .答案:(1)a∩b=P,a∥平面M,b∩平面M=A(2)平面M∩平面N=l,a∩平面N=A,a∥平面M8.(2018·云南玉溪模拟)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若α∥β,α∥γ,则β∥γ;②若α⊥β,m∥α,则m⊥β;③若m⊥α,m∥β,则α⊥β;④若m⊥α,m⊥n,则n∥α其中正确命题的序号是( A )(A)①③(B)①④(C)②③(D)②④解析:对于①,若α∥β,α∥γ,易得到β∥γ;故①正确;对于②,若α⊥β,m∥α,m与β的关系不确定;故②错误;对于③,若m⊥α,m∥β,可以在β内找到一条直线n与m平行,所以n ⊥α,故α⊥β;故③正确;对于④,若m⊥α,m⊥n,则n与α可能平行或者n在α内;故④错误.故选A.9.(2018·南昌调研)若α,β是两个相交平面,则在下列命题中,真命题的序号为.(写出所有真命题的序号)①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线;②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直;③若直线m⊂α,则在平面β内,不一定存在与直线m垂直的直线;④若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线.解析:对于①,若直线m⊥α,如果α,β互相垂直,则在平面β内,存在与直线m平行的直线,故①错误;对于②,若直线m⊥α,则直线m垂直于平面α内的所有直线,则在平面β内,一定存在无数条直线与直线m 垂直,故②正确;对于③④,若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线,故③错误,④正确.答案:②④10.(2018·贵州贵阳期末)已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的序号是.(将你认为正确的序号都填上)解析:①错.a与b也可能异面.②错.a与b也可能平行.③对.因为α∥β,所以α与β无公共点.又因为a⊂α,b⊂β,所以a与b无公共点.④对.由③知a与b无公共点,那么a∥b或a与b异面.⑤错.a与β也可能平行.答案:③④11.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系并证明你的结论.解:a∥b,a∥β,理由:由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,因为α∥β,a⊂α,b⊂β,所以a,b无公共点.又因为a⊂γ,且b⊂γ,所以a∥b.因为α∥β,所以α与β无公共点,又a⊂α,所以a与β无公共点,所以a∥β.12.如图所示,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,C∉l,直线AB与l不平行,那么平面ABC与平面β的交线与l有什么关系?证明你的结论.解:平面ABC与β的交线与l相交.证明:因为AB与l不平行,且AB⊂α,l⊂α,所以AB与l一定相交,设AB∩l=P,则P∈AB,P∈l.又因为AB⊂平面ABC,l⊂β,所以P∈平面ABC,P∈β.所以点P是平面ABC与β的一个公共点,而点C也是平面ABC与β的一个公共点,且P,C是不同的两点,所以直线PC就是平面ABC与β的交线.即平面ABC∩β=PC,而PC∩l=P,所以平面ABC与β的交线与l相交.。
高中数学人教版必修二2.1.3,2.14空间中直线与平面,平面与平面之间的位置关系
①若a∥b,b,则a∥ ②若a∥,b∥,则
a∥b ③若a∥b,b∥,则a∥ ④若a∥,
b,则a∥b 新疆 王新敞 奎屯
其中正确命题的个数是
( A)
(A)0个 (B)1个 (C)2个 (D)3个
巩固练习:
3.已知m,n为异面直线,m∥平面,n∥ 平面,∩=l,则l ( C ) (A)与m,n都相交 (B)与m,n中至少一条相交 (C)与m,n都不相交 (D)与m,n中一条相交
a
/ /
a
/
/
面//面
线//面
④ 1、下列正确的有
:
①直线 l 平行于平面 α 内的无数条直线,则 l∥α;
②若直线 a 在平面 α 外,则 a∥α;
③若直线 a∥b,直线 b⊂α,则 a∥α;
④若直线 a∥b,b⊂α,那么直线 a 就平行于平面 α 内的无数条直线.
B 2、若直线 a 不平行于平面 α 且 a α 内,则下列结论成立的是( )
∨ 任意一条直线都没有公共点。( )
复习引入: 1、空间两直线的位置关系 (1)相交;(2)平行;(3)异面 2.公理4的内容是什么? 平行于同一条直线的两条直线互相平行. 3.等角定理的内容是什么? 空间中如果两个角的两边分别对应平行,那么 这两个角相等或互补。 新疆
王新敞 奎屯
4.等角定理的推论是什么? 如果两条相交直线和另两条相交直线分别平行, 那么这两条直线所成的锐角(或直角)相等.
X X X
例4、判断下列命题的正确
(1)若直线 l上有无数个点不在平面 内,
则 l// 。( )
(2)若直线l与平面 平行,则l与平面 内的任
意一条直线都平行。(
)
(3)如果两条平行直线中的一条与一个平面平行, 那么另一条也与这个平面平行。( )
2.1.3-2.1.4空间中直线与平面、平面与平面之间的位置关系
探究( 探究(二):平面与平面之间的位置关系
思考1:拿出两本书,看作两个平面, 思考1:拿出两本书,看作两个平面,上 1:拿出两本书 左右移动和翻转, 下、左右移动和翻转,它们之间的位置 关系有几种变化? 关系有几种变化? 思考2:如图,围成长方体 思考2:如图, 2:如图 ABCD-A′B′C′D′的 ABCD-A′B′C′D′的 D′ 六个面, 六个面,两两之间 A′ 的位置关系有几种? 的位置关系有几种? D
课堂练习( ):过平面外一点可作多 课堂练习(一):过平面外一点可作多 少条直线与这个平面平行? 少条直线与这个平面平行?无数条 若直线l平行于平面α 则直线 与平面 若直线 平行于平面α,则直线l与平面 平行于平面 内的直线的位置关系如何? α内的直线的位置关系如何? 平行或异面
P
l
α
α
课堂练习( ):若两条平行直线中有 课堂练习(二):若两条平行直线中有 一条平行于一个平面, 一条平行于一个平面,那么另一条也平 行于这个平面吗? 行于这个平面吗?
课堂练习( ):已知平面α 课堂练习(三):已知平面α,β和直 已知平面 ,则直 线a,b,且α∥β,a ⊂ α , b ⊂ β,则直 与平面β的位置关系如何?直线a 线a与平面β的位置关系如何?直线a与 直线b的位置关系如何? 直线b的位置关系如何?
a α
b β
理论迁移
给出下列四个命题: 例1 给出下列四个命题: (1)若直线 上有无数个点不在平面α内,则 (1)若直线l上有无数个点不在平面α 若直线 上有无数个点不在平面 l∥α. (×) ∥α. (2)若直线 与平面α平行, 与平面 若直线l与平面 与平面α (2)若直线 与平面α平行,则l与平面α内的 任意一条直线都平行. 任意一条直线都平行. (×) (3)如果两条平行直线中的一条与一个平面平 (3)如果两条平行直线中的一条与一个平面平 那么另一条也与这个平面平行. 行,那么另一条也与这个平面平行. (×) (4)若直线 与平面α平行, 与平面 若直线l与平面 与平面α (4)若直线 与平面α平行,则l与平面α内的 任意一条直线都没有公共点. 任意一条直线都没有公共点. ( ) 其中正确命题的个数共有__ __个 其中正确命题的个数共有__个. 1
人教版高中数学必修2 2.1.3 空间中直线与平面之间的位置关系 课件
线AB和平面的位置关系一定是( C) (A)平行 (B)相交 (C)平行或相交 (D)AB
6.已知m,n为异面直线,m∥平面,n∥ 平面b,∩b=l,则l ( C) (A)与m,n都相交 (B)与m,n中至少一条相交 (C)与m,n都不相交 (D)与m,n中一条相交
课堂小结
直线与平面的位置关系有且只有三种:
直线与平面的位置关系有且只有三种:
(1)直线在平面内-----有无数个公共点
a 如图:
a
a (2)直线在平面外:
a
.A
①直线a和面α相交 :
a A 如图:
②直线a和面α平行 :
a
a // 如图:
小试牛刀
✘ ✘ ✘
1.判断下列命题的正确
(1)若 直 线 l上有无数个点不在平面 内,则
l // .( )
(2)若直线 l 与平面 平行,则l 与平面 内
的任意一条直线都平行.(
)
(3)如果两条平行直线中的一条与一个平面平
行,那么另一条也与这个平面平行.( )
(4)若直线 l 与平面 平行,则l 与平面 内
的任意一条直线都没有公共点.( )
✔
2、若直线a不平行平面 ,且
则下列结论成立的是( )
B
a
(A) 内所有直线与a异面
(B) 内不存在与a平行的直线
(C) 内存在唯一的直线与a平行
(D) 内的直线与a都相交
问题探究
问题1、平行于同一平面的两条直线一定是两条平行直线吗?
问题2、两条平行线中的一条平行一个平面,则另一条也一 定平行于这个平面吗?
问题3、无公共点的两条D直′ 线一定是C平′ 行直线吗?
人教A版 必修2
高中数学必修2立体几何常考题型:空间中直线与平面、平面与平面之间的位置关系
空间中直线与平面、平面与平面之间的位置关系【知识梳理】1.直线与平面的位置关系位置关系直线a在平面α内直线a在平面α外直线a与平面α相交直线a与平面α平行公共点无数个公共点一个公共点没有公共点符号暗示a⊂αa∩α=A a∥α图形暗示2.两个平面的位置关系位置关系图示暗示法公共点个数两平面平行α∥β没有公共点两平面相交α∩β=l 有无数个公共点(在一条直线上)【常考题型】题型一、直线与平面的位置关系【例1】下列说法:①若直线a在平面α外,则a∥α;②若直线a∥b,直线b⊂α,则a∥α;③若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.其中说法正确的个数为()A.0个B.1个C.2个D.3个[解析]对于①,直线a在平面α外包孕两种情况:a∥α或a与α相交,∴a和α纷歧定平行,∴①说法错误.对于②,∵直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴a纷歧定平行于α.∴②说法错误.对于③,∵a∥b,b⊂α,∴a⊂α或a∥α,∴a与平面α内的无数条直线平行.∴③说法正确.[答案] B【类题通法】空间中直线与平面只有三种位置关系:直线在平面内、直线与平面相交、直线与平面平行.在判断直线与平面的位置关系时,这三种情形都要考虑到,避免疏忽或遗漏.另外,我们可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,以便于正确作出判断,避免凭空臆断.【对点训练】1.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条与一个平面平行,则另一条必然与这个平面平行.A.0 B.1C.2 D.3解析:选C①正确;②错误,如图1所示,l1∥m,而m⊂α,l1⊂α;③正确,如图2所示,在正方体ABCD-A1B1C1D1中,直线A1C1与直线BD异面,A1C1⊂平面A1B1C1D1,且BD∥平面A1B1C1D1,故③正确;④错误,直线还可能与平面相交.由此可知,①③正确,故选C.题型二、平面与平面的位置关系【例2】(1)平面α内有无数条直线与平面β平行,问α∥β是否正确,为什么?(2)平面α内的所有直线与平面β都平行,问α∥β是否正确,为什么?[解](1)不正确.如图所示,设α∩β=l,则在平面α内与l平行的直线可以有无数条:a1,a2,…,a n,…,它们是一组平行线,这时a1,a2,…,a n,…与平面β都平行(因为a1,a2,…,a n,…与平面β无交点),但此时α与β不平行,α∩β=l.(2)正确.平面α内所有直线与平面β平行,则平面α与平面β无交点,符合平面与平面平行的定义.【类题通法】两个平面的位置关系同平面内两条直线的位置关系类似,可以从有无公共点区分:如果两个平面有一个公共点,那么由公理3可知,这两个平面相交于过这个点的一条直线;如果两个平面没有公共点,那么就说这两个平面互相平行.这样我们可以得出两个平面的位置关系:①平行——没有公共点;②相交——有且只有一条公共直线.若平面α与β平行,记作α∥β;若平面α与β相交,且交线为l,记作α∩β=l.【对点训练】2.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有________组互相平行的面.与其中一个侧面相交的面共有________个.解析:六棱柱的两个底面互相平行,每个侧面与其直接相对的侧面平行,故共有4组互相平行的面.六棱柱共有8个面围成,在其余的7个面中,与某个侧面平行的面有1个,其余6个面与该侧面均为相交的关系.答案:4 63.如图所示,平面ABC与三棱柱ABC-A1B1C1的其他面之间有什么位置关系?解:∵平面ABC与平面A1B1C1无公共点,∴平面ABC与平面A1B1C1平行.∵平面ABC与平面ABB1A1有公共直线AB,∴平面ABC与平面ABB1A1相交.同理可得平面ABC与平面ACC1A1及平面BCC1B1均相交.【练习反馈】1.M∈l,N∈l,N∉α,M∈α,则有()A.l∥αB.l⊂αC.l与α相交D.以上都有可能解析:选C由符号语言知,直线l上有一点在平面α内,另一点在α外,故l与α相交.2.如图所示,用符号语言可暗示为()A.α∩β=lB.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α解析:选D显然图中α∥β,且l⊂α.3.平面α∥平面β,直线a⊂α,则a与β的位置关系是________.答案:平行4.经过平面外两点可作该平面的平行平面的个数是________.解析:若平面外两点所在直线与该平面相交,则过这两个点不存在平面与已知平面平行;若平面外两点所在直线与该平面平行,则过这两个点存在独一的平面与已知平面平行.答案:0或15.三个平面α、β、γ,如果α∥β,γ∩α=a,γ∩β=b,且直线c⊂β,c∥b.(1)判断c与α的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由.解:(1)c∥α.因为α∥β,所以α与β没有公共点,又c⊂β,所以c与α无公共点,则c∥α.(2)c∥a.因为α∥β,所以α与β没有公共点,又γ∩α=a,γ∩β=b,则a⊂α,b⊂β,且a,b⊂γ,所以a,b没有公共点.由于a、b都在平面γ内,因此a∥b,又c∥b,所以c∥a.。
高一数学必修2课件:2.1 空间中直线与平面、平面与平面直线之间的位置关系
D′
A′
M
D N
A
C′
B′
P
C
PQ 4 10 3
Q
B
E
第十二页,编辑于星期日:二十二点 十八分。
课后作业
1.教材第51页 习题2.1 第4、5、6、7、8题
第十三页,编辑于星期日:二十二点 十八分。
1、直线与平面的位置关系:
a α
a
.P
α
a α
直线在平面内 直线与平面相交 直线与平面平行
a
a P a //
直线在平面外: a
第三页,编辑于星期日:二十二点 十八分。
1、直线与平面的位置关系: 直线在平面内---有无数个公共点 直线与平面相交---有且只有一个公共点 直线与平面平行---没有公共点.
课堂练习(二)
已知平面α,β和直线a,b,且α∥β,
a , b ,则直线a与平面β的位置
关系如何?直线a与直线b的位置关系如何?
a α
β
b
第九页,编辑于星期日:二十二点 十八分。
课堂练习(三)
如果三个平面两两相交,那么它们的交线有多少 条?画出图形表示你的结论.
γ
l
abc γ
第十页,编辑于星期日:二十二点 十八分。
直线与平面相交与平行的情况统称为 直线在平面外.
第四页,编辑于星期日:二十二点 十八分。
课堂练习(一)
(1)过平面外一点可作多少条直线与这
个平面平行?
(2)若直线l平行于平面α,则直线l与平 面α内的直线的位置关系如何? 平行或异面
l
P
第五页,编辑于星期日:二十二点 十八分。
(3) 判断下列四个命题的对错.
高一年级数学必修2
高一数学 必修二《空间中直线与平面、平面与平面的位置关系》教学课件
a 直线与平面无公共点
直线与平面平行
a
直线与平面有一个公
A 共点直线与平面相交
符号语言
a∥
a 直线上所有的点都在
平面内直线在平面内
(4)空间中面与面的位置关系
图形 文字语言(读法)
符号语言
两个平面无公共点 两个平面平行
α∥β
β
两个平面有一公共直线
两个平面相交 α
×(3)如果两条平行直线中的一条与一个平面平行, 那么另一条也与这个平面平行.
√ (4)若l // ,则直线l 与平面内任意一条直线都
没有公共点.
D'
C'
A' D
B' C
A B
P49 练习
a
a a
a
D'
C'
A' D
A
B' C
B
第一、二层的底面α和β无 论怎样延伸都没有公共点;
前、后两面房顶γ和δ则 有一条交线AB.
空间中直线与平面、 平面与平面之间的位置关系
观察下列直线和平面ABCD的关系
D' A'
D A
C' B'
C
B
一、直线与平面的位置关系
a
a
A
a
自然 语言
直线a在平面内
直线a与平面相交 直线a与平面平行
几何 语言
a
a∩=A
a //
交点 个数
无数个
1个
0个
例1:判断对错
×(1)若直线l上有所无有数个点点不在平面内,则l // . ×(2)若l // ,则直线l 与平面内任无一数条条直线都平行.
高中数学必修2--第二章《直线与平面的位置关系》知识点总结与练习
[知识能否忆起]、平面的基本性质 名称图示文子表示 付号表示公理1如果一条直线上的两 点在一个平面内,那么 这条直线在此平面内 A € l , B € l ,且 A €a,B € 0? 1? a公理2过不在一条直线上的 三点,有且只有一个平面\公理3如果两个不重合的平 面有一个公共点,那么 它们有且只有一条过该点的公共直线P € a ,且 P € 3? aCl 3 =l ,且 P € l二、空间直线的位置关系 1. 位置关系的分类相交直线:同一平面内, {共面直线|平行直线:同一平面内,•异面直线:不同在任何一个平面内, 2. 平行公理平行于同一条直线的两条直线互相平行. 3. 等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4. 异面直线所成的角(或夹角)(1) 定义:设a, b 是两条异面直线,经过空间中任一点 0作直线a '// a, b '// b ,把a ' 与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角.I U I空间点、直线、平面间的位置关系基础知iR 襄打牟11 C H U Z H I $ H I Y A 0 A L A 0强取基 固本源 得募础分I 事覆程廈有且只有一个公共点;没有公共点;没有公共点(2)范围:三、直线与平面的位置关系/亠护¥方位置大糸图示付号表示公共点个数直线1在平面a内1? a无数个直线l与平面a相交八/l Cl a= A一个直线l与平面a平行Z / 1 〃a0个四、平面与平面的位置关系/亠护¥方位置大糸图示付号表示公共点个数两个平面平行\Aall 30个7两个平面相交aC 3= l无数个(这些公共点均在交线1上)1•三个公理的作用(1) 公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内.(2) 公理2的作用:确定平面的依据,它提供了把空间问题转化为平面问题的条件.(3) 公理3的作用:①判定两平面相交;②作两相交平面的交线;③证明多点共线.2. 异面直线的有关问题(1) 判定方法:①反证法;②利用结论即过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线,如图.(2) 所成的角的求法:平移法.師吾点]学技法]得拔高分| 拿握狸度i**-平面的基本性质及应用■典题导入[例1](2012湘潭模拟)如图所示,在正方体ABCD —A i B i C i D i中,E为AB的中点,F 为A i A的中点,求证:CE , D i F, DA三线共点.[自主解答]•EF 綊qCD i,•••直线D i F和CE必相交.设D i F n CE = P,••P Pi F 且D i F?平面AA i D i D,••P € 平面AA i D i D.又P €EC且CE?平面ABCD ,••P € 平面ABCD ,即P是平面ABCD与平面AA i D i D的公共点.而平面ABCD n平面AA i D i D = AD.••P 3D.•CE、D i F、DA三线共点.本例条件不变试证明E , C, D i, F四点共面.证明:••E, F分别是AB和AA i的中点,i•'EF 綊2A i B.又A i D i 綊B i C i 綊BC. •四边形A i D i CB为平行四边形. ••A i B CD i,从而EF CD i.•'EF与CD i确定一个平面. ••E, C i, F, D四点共面.占由题悟法i. 证明线共点问题常用的方法是:先证其中两条直线交于一点,再证交点在第三条直线上.2•证明点或线共面问题一般有以下两种途径:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余线(或点)均在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证平面重合.3以题试法1. (1)(2012江•西模拟)在空间中,下列命题正确的是()A .对边相等的四边形一定是平面图形B .四边相等的四边形- -定是平面图形C.有一组对边平行的四边形一定是平面图形D .有一组对角相等的四边形一定是平面图形⑵对于四面体ABCD,下列命题正确的是 __________ (写出所有正确命题的编号).①相对棱AB与CD所在直线异面;②由顶点A作四面体的高,其垂足是△ BCD三条高线的交点;③若分别作△ ABC和厶ABD的边AB上的高,则这两条高所在的直线异面;④分别作三组相对棱中点的连线,所得的三条线段相交于一点.解析:(1)由“两平行直线确定一个平面”知C正确.(2)由四面体的概念可知,AB与CD所在的直线为异面直线,故①正确;由顶点A作四面体的高,只有当四面体ABCD的对棱互相垂直时,其垂足是厶BCD的三条高线的交点,故②错误;当DA = DB , CA= CB时,这两条高线共面,故③错误;设AB , BC, CD , DA的中点依次为E, F, M , N,易证四边形EFMN为平行四边形,所以EM与FN相交于一点,易证另一组对棱中点的连线也过它们的交点,故④正确.答案:(1)C (2)①④异面直线的判定由典题导入[例2] (2012金华模拟)在图中,G, N , M, H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH , MN是异面直线的图形有___________ .(填上所有正确答案的序号)①②③④[自主解答]图①中,直线GH /MN ;图②中,G , H , N三点共面,但M?面GHN ,因此直线GH与MN异面;图③中,连接MG, GM /HN,因此GH与MN共面;图④中,G , M , N共面,但H?面GMN ,因此GH与MN异面.所以图②④中GH与MN异面.[答案]②④石由题悟法1•异面直线的判定常用的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面. 此法在异面直线的判定中经常用到.2.客观题中,也可用下述结论:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.&以题试法2. 已知m, n, I为不同的直线,a, B为不同的平面,有下面四个命题:①m, n为异面直线,过空间任一点P, —定能作一条直线I与m, n都相交.②m, n为异面直线,过空间任一点P, —定存在一个与直线m, n都平行的平面.③a丄B, aA 3= I, m? a, n? 3, m, n与I都斜交,则m与n—定不垂直;④m, n是a内两相交直线,则a与3相交的充要条件是m, n至少有一条与3相交.则四个结论中正确的个数为( )A. 1B. 2C. 3D. 4解析:选B①错误,因为过直线m存在一个与直线n平行的平面,当点P在这个平面内且不在直线m上时,就不满足结论;②错误,因为过直线m存在一个与直线n平行的平面,当点P在这个平面内时,就不满足结论;③正确,否则,若m丄n,在直线m上取一点作直线a丄I,由a丄3得a丄n.从而有n丄a,贝U n丄I :④正确.LI 典题导入[例3] (2012大纲全国卷)已知正方体 ABCD — A 1B 1C 1D 1中,E , F 分别为BB i , CC i 的 中点,那么异面直线 AE 与D 1F 所成角的余弦值为 ___________ .[自主解答]连接DF ,则AE/DF , •••D 1FD 即为异面直线 AE 与D 1F 所成的角. 设正方体棱长为a ,则 D 1D = a , DF = ~25a , D 1F = ~25a ,… 3 [答案]5-由题悟法求异面直线所成的角一般用平移法,步骤如下: (1) 一作:即找或作平行线,作出异面直线所成的角; ⑵二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角,如果求出的角是锐角或直角,则它就是要求的角, 如果求出的角是钝角,则它的补角才是要求的角.初以题试法3. (2012唐山模拟)四棱锥P — ABCD 的所有侧棱长都为.5,底面ABCD 是边长为2的 正方形,则CD 与PA 所成角的余弦值为()D.;解析:选B 如图所示,因为四边形ABCD 为正方形,故CD // AB ,则CD 与PA 所成的角即为 AB 与FA 所成的角/ PAB ,在△ FAB 内,FB = FA = ■.5, AB = 2,利用余弦定理可知:PA 2+ AB 2- PB 2_ 5+ 4— 5 _近 2X FA X AB 2X 2八 55[小题能否全取]A. 2 *5 5B.cos / FAB =1.(教材习题改编)已知a, b是异面直线,直线c平行于直线a,那么c与b()A .异面B.相交C.不可能平行D.不可能相交解析:选C 由已知直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b // c,贝U a// b.与a, b是异面直线相矛盾.2. (2012东北三校联考)下列命题正确的个数为()①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A. 0B. 1C. 2D. 3解析:选C ①④错误,②③正确.3. 已知空间中有三条线段AB, BC和CD,且/ ABC =Z BCD,那么直线AB与CD的位置关系是()A. AB / CDB. AB与CD异面C. AB与CD相交D. AB / CD或AB与CD异面或AB与CD相交解析:选D 若三条线段共面,如果AB, BC, CD构成等腰三角形,则直线AB与CD相交,否则直线AB与CD平行;若不共面,则直线AB与CD是异面直线.4. (教材习题改编)如图所示,在正方体ABCD —A i B i C i D i中,E,F分别是AB , AD的中点,则异面直线B i C与EF所成的角的大小为解析:连接B i D i, D i C,则B i D i/EF,故ZDi B i C 为所求,又B i D i= B i C= D i C,••』i B i C= 60 °答案:60°5. (教材习题改编)平行六面体ABCD —A i B i C i D i中既与AB共面又与CC i共面的棱的条数为________ .解析:如图,与AB和CC i都相交的棱有BC;与AB相交且与CC i平行的棱有AA i,BB i;与AB平行且与CC i相交的棱有CD , C1D1,故符合条件的棱共有5条.答案:5基础MliR靈扫年J I C H U Z H D S H I YAOIRALAO[知识能否忆起]一、直线与平面平行1. 判定定理文字语言图形语言符号语言判定定理平面外一条直线与此平—面内的一条直线平行, 则直线与此平面平行—a?a、b? a b //a」^ ? a / a2.性质定理文字语言图形语言付号语言性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行a/ a '卜? a // baCl 6= b j二、平面与平面平行直线、平面平行的判定及性质1.判定定理判定定理一个平面内的两条相交直线与另一个平面平 行,则这两个平面平行a? a 、 b? aa Ab = P » ? a// a / 3 b / 3' 32.两平面平行的性质定理文字语言图形语言付号语言性质定理如果两个平行平面同时 和第三个平面相交,那 么它们的交线平行a// 3、aA Y a * ? a // b 3A Y b J7,心/IX1.平行问题的转化关系:2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化, 即从“线线平行”到“线面平行”,再到“面面平行”;而在性质定理的应用中,其顺序恰好相反, 但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3•辅助线(面)是求证平行问题的关键,注意平面几何中位线,平行四边形及相似中有 关平行性质的应用.由典题导入[例1] (2011福建高考)如图,正方体 ABCD — A i B i C i D i 中,AB = 2, 点E 为AD 的中点,点F 在CD 上•若EF //平面ABQ ,则线段EF 的长 度等于 _______________ .线//线判定判定 ------------- 判定 -------------- 性质 |线/面—质勺面/面性质[自主解答] 因为直线 EF //平面AB i C , EF?平面ABCD ,且平面 AB i C Q 平面ABCD = AC ,所以EF /AC.又因为点E 是DA 的中点,所以F 是DC 的中点,由中位线定理可得 EF1=2AC.又因为在正方体 ABCD — A i B i C i D i 中,AB = 2,所以AC = 2 2•所以EF = 2.[答案],2本例条件变为“ E 是AD 中点,F , G , H , N 分别是AA i , A i D i , DD i 与D i C i 的中点,解:如图,••G N //平面AA i C i C , EG //平面 AA i C i C , 又 GN n EG = G ,•••平面EGN //平面AA i C i C.•••当M 在线段EG 上运动时,恒有 MN //平面AA i C i C.呂由题悟法解决有关线面平行、面面平行的基本问题要注意:(i)判定定理与性质定理中易忽视的条件,如线面平行的判定定理中条件线在面外易忽 视.⑵结合题意构造或绘制图形,结合图形作出判断. (3)举反例否定结论或用反证法推断命题是否正确.&以题试法i . (i)(20i2浙江高三调研)已知直线I //平面a, P € a,那么过点P 且平行于直线I 的直 线() A •只有一条,不在平面 a 内 B .有无数条,不一定在平面 a 内C .只有一条,且在平面 a 内D .有无数条,一定在平面a 内解析:选C 由直线I 与点P 可确定一个平面 3,且平面a, B 有公共点,因此它们有若M 在四边形EFGH 及其内部运动”,则M 满足什么条件时,有 MN //平面A i C i CA.一条公共直线,设该公共直线为m ,因为I // a,所以I // m ,故过点P且平行于直线I的直线只有一条,且在平面a内.(2)(2012潍坊模拟)已知m, n, l i, I2表示直线,a, B表示平面.若m? a, n? a, l i? B, 12? B IE 12= M,贝U all B的一个充分条件是()A. m l B且l i l a B • m // B且n// BC. m l B 且n l I2 D . m l l i 且n l I2解析:选D 由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D可推知al B-直线与平面平行的判定与性质[例2] (2012辽宁高考)如图,直三棱柱ABC —A' B ' C', / BAC= 90° AB= AC =羽,AA' = 1,点M , N 分别为A' B 和B' C'的中点.(1) 证明:MN l 平面A' ACC ';1(2) 求三棱锥A' —MNC的体积.(锥体体积公式V = §Sh,其中S为底面面积,h为高)[自主解答](1)证明:法一:连接AB'、AC ',因为点M , N 分别是A' B和B' C'的中点,所以点M为AB'的中点.又因为点N为B ' C'的中点,所以MN /AC'又MN?平面A' ACCAC' ?平面A' ACC',因此MN l平面A' ACC'.法二:取A' B '的中点P.连接MP.而点M, N分别为AB '与B ' C'的中点,所以MP/AA ' , PN/A ' C '.所以MP l 平面A ' ACC ' , PN l 平面A ' ACC ' •又MP n PN= P,因此平面MPN l平面A ' ACC ' •而MN?平面MPN ,因此MN //平面A ' ACC(2)法一:连接 BN ,由题意得 A ' N IB ' C ',平面 A B ' C 'Q 平面 B ' BCC '=B 'C ',所以A ' N 丄平面NBC. 又 A ' N = 1B ' C ' = 1 ,吕由题悟法利用判定定理证明线面平行的关键是找平面内与已知直线平行的直线,可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过 已知直线作一平面找其交线.畐以题试法2. (2012淄博模拟)如图,在棱长为2的正方体 ABCD — A 1B 1C 1D 1中,E , F 分别是BD , BB 1的中点.(1) 求证:EF //平面 A 1B 1CD ; (2) 求证:EF 丄 AD 1.解:(1)在正方体ABCD — A 1B 1C 1D 1中,连接B 1D , 在平面BB 1D 内,E , F 分别为BD , BB 1的中点, ••EF BD.又•••B 1D?平面 A 1B 1CD. EF?平面 A 1B 1CD , ••EF //平面A 1B 1CD.⑵'-ABCD — A 1B 1C 1D 1 是正方体,•'AD 1 ^A 1 D , AD 1 JA 1B 1. 又 A 1D n A 1B 1 = A 1, ••AD 1 丄平面 A 1B 1D.故 V A ' - MNC = V N -A ' MC = 2V N -A ' BC = gV A '—NBC = 16.法二:V A ' -MNC = V A-NBC —V M — NBC =1V A '— NBC =••AD1I B1D.又由(1)知,EF B1D , /-EF_LAD1.平面与平面平行的判定与性质i典题导入[例3]如图,已知ABCD —A i B i C i D i是棱长为3的正方体,点E 在AA i 上,点 F 在CC i 上,G 在BB i 上,且AE = FC i = B i G= 1, H 是B i C i的中点.⑴求证:E, B, F , D i四点共面;⑵求证:平面A i GH //平面BED i F.5[自主解答](i)在正方形AA i B i B中,'•AE = B i G= i,••BG = A i E= 2,••BG 綊A i E.•四边形A i GBE是平行四边形.•■AiG /BE.又C i F 綊B i G,•四边形C i FGB i是平行四边形.••FG 綊C i B i 綊D i A i.•四边形A i GFD i是平行四边形.• A i G 綊D i F.•D i F 綊EB.故E, B, F, D i四点共面.3⑵--H是B i C i的中点,• B i H = 2厂B i G 2又B i G= i, /B1H= 3.又EC = f,且/FCB = /GB i H = 90 ° BC 3•••△i HG s/CBF.•••启i GH = ZCFB = ZFBG.••HG /FB.••GH ?面FBED i, FB?面FBED i ,「GH //面BED i F.由⑴知A i G/BE, A i G?面FBED i, BE?面FBED i,AG //面BED i F.且HG A A i G = G ,•平面A i GH //平面BED i F.占由题悟法常用的判断面面平行的方法(1) 利用面面平行的判定定理;(2) 面面平行的传递性(all 3,训Y all Y;⑶利用线面垂直的性质(I丄a, I丄3? a// 3 .血以题试法3. (20i2北京东城二模)如图,矩形AMND所在的平面与直角梯形MBCN 所在的平面互相垂直,MB // NC , MN丄MB.(1) 求证:平面AMB //平面DNC ;(2) 若MC丄CB,求证:BC丄AC.证明:(i)因为MB /NIC , MB?平面DNC , NC?平面DNC ,所以MB //平面DNC.又因为四边形AMND为矩形,所以MA /DN.又MA?平面DNC, DN?平面DNC.所以MA //平面DNC.又MA A MB = M,且MA, MB?平面AMB ,所以平面AMB //平面DNC.(2)因为四边形AMND是矩形,所以AM丄/IN.因为平面AMND丄平面MBCN,且平面AMND A平面MBCN = MN ,所以AM丄平面MBCN.因为BC?平面MBCN ,所以AM JBC.因为MC _LBC, MC A AM = M , 所以BC丄平面AMC.因为AC? 平面AMC,所以BC JAC.[ 小题能否全取]1.(教材习题改编)下列条件中,能作为两平面平行的充分条件的是()A •一个平面内的一条直线平行于另一个平面B .一个平面内的两条直线平行于另一个平面C. 一个平面内有无数条直线平行于另一个平面D •一个平面内任何一条直线都平行于另一个平面解析:选D 由面面平行的定义可知,一平面内所有的直线都平行于另一个平面时,两平面才能平行,故D正确.2. 已知直线a, b,平面a,则以下三个命题:①若a// b, b? a,贝U a// a;②若 a / b, a // a,贝U b // a;③若a/ a, b// a,贝U all b.其中真命题的个数是()A. 0B. 1C. 2D. 3解析:选A 对于命题①,若a// b, b? a ,贝U应有a// a或a? a,所以①不正确;对于命题②,若a// b , a// a ,则应有b// a或b? a,因此②也不正确;对于命题③,若a//a, b // a,则应有a // b或a与b相交或a与b异面,因此③也不正确.3. (教材习题改编)若一直线上有相异三个点A , B , C到平面a的距离相等,那么直线I与平面a的位置关系是()A . I // a B. I 丄aC. I与a相交且不垂直D. I // a或I? a解析:选D 由于I上有三个相异点到平面a的距离相等,贝U I与a可以平行,I? a时也成立.4. ___________________________________________________________ 平面a//平面3, a? a, b? 3,则直线a, b的位置关系是______________________________________________ 解析:由a//3可知,a, b的位置关系是平行或异面.答案:平行或异面5. (2012衡阳质检)在正方体ABCD —A1B1C1D1中,E是DD 1的中点,则BD i与平面ACE 的位置关系为_________解析:如图.连接AC, BD交于O点,连接OE,因为OE /BD1,而OE?平面ACE,BD1?平面ACE,所以BD1 /平面ACE.答案:平行基础知MW1 I C M U Z H I S H I Y A 0[知识能否忆起]一、直线与平面垂直1. 直线和平面垂直的定义直线I与平面a内的任意一条直线都垂直,就说直线I与平面a互相垂直.2.直线与平面垂直的判定定理及推论文字语言图形语言付号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直1心k a, b? a] a A b = O.r ? I 丄a1丄aI丄b 」推论如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面ab7 a / b、\? b丄aa丄a_直线、平面垂直的判定与性质3.直线与平面垂直的性质定理文字语言图形语言付号语言性质定理垂直于冋一个平面的两条直线平行a匚—b7a丄ab丄a€ a// b、平面与平面垂直1.平面与平面垂直的判定定理文字语言图形语言付号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直□a 丄3l丄aa j2.平面与平面垂直的性质定理文字语言图形语言付号语言性质定理a_L 3 、》? 1丄a ad 3= a1丄a」两个平面垂直,则一个平面内垂直于父线的直线垂直于另一个平面L71•在证明线面垂直、面面垂直时,一定要注意判定定理成立的条件. 同时抓住线线、线面、面面垂直的转化关系,即:线血垂百线线垂直、一…厂:面面垂直-------- 性质---------------2•在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决,如有平面垂直时,一般要用性质定理.3•几个常用的结论:(1) 过空间任一点有且只有一条直线与已知平面垂直.(2) 过空间任一点有且只有一个平面与已知直线垂直.垂直关系的基本问题高频考点3EIB美GAOP1N K.AOI>IAN YAOLI典题导入[例1](2012襄州模拟)若m, n为两条不重合的直线,a, B为两个不重合的平面,给出下列命题:①若m,n都平行于平面a,则m,n—定不是相交直线;②若m、n都垂直于平面a,贝U m, n—定是平行直线;③已知a, B互相垂直,m, n互相垂直,若m丄a,则n丄④m,n在平面a内的射影互相垂直,则m,n互相垂直.其中的假命题的序号是________________ .[自主解答]①显然错误,因为平面a//平面平面a内的所有直线都平行所以3内的两条相交直线可同时平行于a;②正确;如图1所示,若aCl 3= I,且n/,当m丄a时,mln,但n//3,所以③错误;如图2显然当m' Jn'时,m不垂直于n,所以④错误.[答案]①③④-由题悟法解决此类问题常用的方法有:①依据定理条件才能得出结论的,可结合符合题意的图形作出判断;②否定命题时只需举一个反例. ③寻找恰当的特殊模型(如构造长方体)进行筛选.初以题试法1. (2012长春模拟)设a, b是两条不同的直线,a, 3是两个不同的平面,则下列四个命题:①若a丄b, a丄a, b? a,贝U b // a;②若a // a, a丄3贝U a丄3;③若a丄3, a丄3,贝U a// a或a? a;④若a丄b ,a丄a, b丄3,贝U a丄3-其中正确命题的个数为()A. 1B.2C. 3D.4解析:选D对于①,由b不在平面a内知,直线b或者平行于平面a,或者与平面相交,若直线b与平面a相交,则直线b与直线a不可能垂直,这与已知"a丄b”相矛盾, 因此①正确.对于②,由 a // a知,在平面a内必存在直线a1 // a,又a丄3,所以有a j丄3, 所以a丄3,②正确.对于③,若直线a与平面a相交于点A,过点A作平面a 3的交线的垂线m,则m丄3,又a丄3,则有a / m,这与"直线a、m有公共点A”相矛盾,因此③正确.对于④,过空间一点O分别向平面a、3引垂线a1、b1 ,则有a // a1 , b / B ,又a丄b , 所以a1丄b1 ,所以a丄3,因此④正确•综上所述,其中正确命题的个数为 4.直线与平面垂直的判定与性质LI典题导入[例2](2012广东高考)如图所示,在四棱锥P—ABCD中,AB 丄平面PAD , AB // CD, PD = AD , E 是PB 的中点,F 是DC1上的点且DF = 2AB, PH PAD中AD边上的高.(1)证明:PH丄平面ABCD ;⑵若PH = 1 , AD = 2, FC = 1,求三棱锥E—BCF的体积;(3)证EF丄平面[自主解答](1)证明:因为AB丄平面FAD, PH?平面FAD ,所以PH JAB.因为PH为APAD中AD边上的高,所以PH 1AD.因为PH?平面ABCD , AB A AD = A, AB,AD?平面ABCD , 所以PH丄平面ABCD.连接EG.⑵如图,连接BH,取BH的中点G,因为E是PB的中点,所以EG PH ,1 1且EG = -PH = 2.因为PH丄平面ABCD , 所以EG丄平面ABCD.因为AB丄平面PAD , AD?平面PAD,所以AB丄\D.所以底面ABCD为直角梯形.所以V E-BCF = 3S Z SCF EG =1• FC AD EG =鲁.(3) 证明:取PA中点M,连接MD , ME.1 因为E是PB的中点,所以ME綊T^AB.1又因为DF綊^AB,所以ME綊DF,所以四边形MEFD是平行四边形,所以EF /MID.因为PD = AD,所以MD _LPA.因为AB丄平面PAD,所以MD 1AB.因为PA A AB = A,所以MD丄平面FAB,所以EF丄平面FAB.呂由题悟法证明直线和平面垂直的常用方法有:(1)利用判定定理.⑵利用判定定理的推论(a// b, a丄a? b丄汰⑶利用面面平行的性质(a丄a, a// 3? a± 3).(4) 利用面面垂直的性质.当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.EJ以题试法2. (2012启东模拟)如图所示,已知PA丄矩形ABCD所在平面, M , N分别是AB, PC的中点.(1) 求证:MN丄CD ;(2) 若/ PDA = 45°求证:MN丄平面PCD.证明:(1)连接AC, AN, BN,••PA丄平面ABCD , /PA1AC,1在Rt△AC 中,N 为PC 中点,••• AN = ^PC.••PA丄平面ABCD,/PAJBC,又BC _1AB,PA A AB= A,••BC 丄平面PAB./BC1PB.从而在RtAPBC中,BN为斜边PC上的中线,1「BN = ?PC.••AN = BN. •△BN为等腰三角形,又M为AB的中点,• MN _LAB,又TAB CD , AMN JCD.⑵连接PM , MC ,Vz PDA = 45 °PAAAD, A AP = AD.• •四边形ABCD 为矩形,• AD = BC,「AP = BC./?又为AB的中点,••• AM = BM.而/PAM = ZCBM = 90°• △AM 也/CBM .•'PM = CM.又N为PC的中点,• MN JPC.由⑴知,MN _LCD , PC A CD = C,/MN 丄平面PCD.面面垂直的判定与性质[例3] (2012江苏高考)如图,在直三棱柱ABC —A i B i C i中,"B!=A i C i, D, E分别是棱BC, CC i上的点(点D不同于点C),且AD丄DE , F为B iC i的中点.求证:⑴平面ADE丄平面BCC i B i;(2)直线A i F //平面ADE.ti [自主解答](i)因为ABC —A i B i C i是直三棱柱,所以CC i丄平面ABC,又AD?平面ABC,所以CC i L AD.又因为AD IDE , CC i, DE?平面BCC i B i,CC i A DE = E,所以AD丄平面BCC i B i.又AD?平面ADE ,所以平面ADE丄平面BCC i B i.⑵因为A i B i= A i C i, F为B i C i的中点,所以A i F _LBi C i.因为CC i丄平面A i B i C i,且A i F?平面A i B i C i,所以CC il A i F.又因为CC i, B i C i?平面BCC i B i, CC i A B i C i= C i,所以A i F丄平面BCC i B i.由⑴知AD 丄平面BCC i B i ,所以A i F/AD. 又AD?平面ADE , A i F?平面ADE , 所以A i F //平面ADE.呂由题悟法1. 判定面面垂直的方法: (i )面面垂直的定义.⑵面面垂直的判定定理(a 丄B, a? a a 丄2. 在已知平面垂直时,一般要用性质定理进行转化,转化为线面垂直或线线垂直. 转化方法:在一个平面内作交线的垂线, 转化为线面垂直,然后进一步转化为线线垂直.$以题试法3. (20i2泸州一模)如图,在四棱锥P — ABCD 中,底面ABCD 为 菱形,/ BAD = 60° Q 为AD 的中点.⑴若PA = PD ,求证:平面 PQB 丄平面PAD ;⑵若点M 在线段PC 上,且PM = tPC (t>0),试确定实数t 的值, 使得FA //平面MQB.解:(1)因为FA = PD , Q 为AD 的中点,所以 PQ 丄AD. 连接BD ,因为四边形 ABCD 为菱形,/ BAD = 60° 所以AB = BD. 所以BQ 丄\D.因为BQ?平面PQB , PQ?平面PQB , BQ A PQ = Q , 所以AD 丄平面PQB.因为AD?平面PAD ,所以平面 PQB 丄平面PAD.证明如下:连接AC ,设AC n BQ = O ,连接 OM •在△AOQ 与△COB 中, 因为 AD BC ,所以/OQA=ZOBC,ZOAQ = ZOCB. 所以…。
高中数学必修二2-1-3-4《空间中直线与平面、平面与平面之间的位置关系》课件
符号表 示 α⊂α
a∩α=A
a∥α
3.直线a在平面α外,是指直线a和平面α 相交 或
平行 .
4.两平面平行的定义: 如果两个平面没有公共点,
那么这两个平面平行
;
5.两平面的位置关系
位置 关系
图示
公共点情况
符号 表示
相交
无数个公共点在同 一条直线上,即交
线
α∩β =a
平行
无公共点
α∥β
二、回答下列问题 1.过平面α外一点P可作________条直线与平面α平行; [答案] 无数条
下列命题中,a、b、l表示直线,α表示平面.
①若a∥α,b∥α,则a∥b;
②若a∥b,b∥α,则a∥α;
③若a⊂α,b⊄α,且a,b不相交,则a∥b;
④若a⊂α,b⊂α,a∩b=A,l⊄α,且l和a,b均不相交,
则l∥α.
其中正确的命题有
()
A.0个
B.1个
C.2个
D.3个
[答案] A [解析] 两直线a,b都平行于平面α时,这两条直线可 能相交,也可能平行或异面,故①错;如图(1)满足a∥b, b∥α,但a在平面α内,故②错;如图(2)满足a⊂α,b⊄α,a 与b不相交,但a与b不平行,故③错;如图(3)满足a⊂α, b⊂α,a∩b=A,l⊄α,且l与a、b均不相交,但l与α相交, 故④错,因此选A.
求证:两条平行线中的一条与一个平面相交,则另一 条也与该平面相交.
[解析] 已知:直线a∥b,a∩平面α=P,如右图, 求证:直线b与平面α相交. 分析:a与b平行,可知a、b确定一个平面,设为β.平 面α和平面β有公共点P,因此必有一条交线l.b与l有公共点, 因此b与平面α也有公共点.
必修2.2.1.3空间中直线与平面、平面与平面之间的位置关系
§必修2.2.1.3 空间中直线与平面、平面与平面之间的位置关系1.了解直线与平面之间的三种位置关系. 2.了解平面与平面之间的两种位置关系.3.会用符号语言和图形语言表示直线和平面、平面和平面的位置关系.1.直线和平面的位置关系位置 关系 直线a 在平面α内 直线a 在平面α外直线a 与平面α相交 直线a 与平面α平行 公共点 有无数个公共点有且只有一个公共点无公共点 符号 表示 a ⊂αa ∩αa ∥α图形 表示2.两个平面的位置关系位置关系图示表示法公共点个数两平面平行α∥β 0个两平面相交α∩β有无数个 (在一条直线上)题型一 直线与平面的位置关系例1 下列命题中,正确的个数是( )①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平例题讲解知识梳理学习内容教学目标行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条与一个平面平行,则另一条一定与这个平面平行.A.0个B.1个C.2个D.3个解析:①正确,②错误.如图甲所示,l1∥m,l1∥β,而l2∥m,l2⊂β.③正确.如图乙所示,在正方体ABCDA1B1C1D1中,直线A1C1与直线BD异面,A1C1⊂平面A1B1C1D1,且BD∥平面A1B1C1D1,故③正确.④错误,直线还可能与平面相交,由此可知,①③正确,故选C.答案:C点评:解决此类问题,首先要正确理解直线与平面的三种位置关系的定义,然后再按照逐一否定的方法,确定直线与平面的位置关系.巩固对于任意的直线l与平面α,在平面α内必有直线m,使m与l()A.平行B.相交C.垂直D.互为异面直线题型二平面与平面的位置关系例2如图,ABCDA1B1C1D1是正方体,在图(1)中,E,F分别是D1C1,B1B的中点,画出图(1),(2)中有阴影的平面与平面ABCD的交线,并给出证明.分析:在图甲中,过点E作EN平行于BB1交CD于点N,连接NB并延长交EF的延长线于点M,连接AM,则AM即为有阴影的平面与平面ABCD的交线.在图乙中,延长DC,过点C1作C1M∥A1B交DC的延长线于点M,连接BM,则BM即为有阴影的平面与平面ABCD的交线.证明:在图甲中,因为直线EN∥BF,所以B,N,E,F四点共面,EF与BN相交,交点为M.因为M∈EF,且M∈NB,而EF⊂平面AEF,NB⊂平面ABCD,所以M是平面ABCD与平面AEF的公共点.又因为点A是平面AEF和平面ABCD 的公共点,故AM所在直线为两平面的交线.在图乙中,C1M在平面CDD1C1内,因此与DC的延长线相交,交点为M,则点M是平面A1C1B与平面ABCD的公共点,又因为B也是两平面的公共点,所以BM所在直线即为两平面的交线.点评:由公理3知两平面交线的存在性与唯一性,要确定两平面的交线只需确定两个平面的两个公共点即可.巩固α,β是两个不重合的平面,在下列条件中,可判定α∥β的是()A.α,β都平行于直线l,mB.α内有三个不共线的点到β的距离相等C.l,m是α内的两条直线,且l∥β,m∥βD.l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β题型三 数学语言的相互转换例3 若两条异面直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.解析:用符号语言表示为:若a 与b 异面,a ⊂α,则b ∥α或b ∩α=A .如图所示.点评:判断直线与平面的位置关系要善于找出空间模型,结合图形来考虑,注意考虑问题要全面.巩 固 分别按下列条件画出直观图.(1)a ∩b =P ,a ∥平面α,b ∩平面α=A ;(2)平面α∩平面β=l ,a ∩平面β=A ,a ∥平面α;(3)α∩β=l ,a ⊂α,b ⊂β,按直线a ,b 的不同位置关系来画图.解析:(1)根据题设及平面图形直观图的画法,得直观图(如图甲). (2)根据题设及平面图形直观图的画法,得直观图(如图乙).(3)如图丙,直线a ,b的位置关系是平行、相交或异面.丙A 组综合题库1.填空:(1)正方体ABCDA1B1C1D1的六个面中,与AB相交的面有__________个.(2)直线在平面外,则直线与平面的关系是什么__________.(3)直线与平面有公共点,则直线与平面的关系是__________.(4)直线与平面没有公共点,则直线与平面的关系是__________.(5)当直线与平面相交时,平面上是否存在与该直线平行的直线?__________.2.a∥α,b⊂α,那么a,b的位置关系是()A.平行B.异面C.相交或平行或异面D.平行或异面3.一条直线与两个平行面中的一个平行,那么这条直线与另一个平面的位置关系是() A.平行B.直线在平面内C.相交D.平行或直线在平面内4.若直线a平行于直线b,则过a且与b平行的平面有________个.5.用符号表示语句:“直线l经过平面α内一定点P,但l在平面α外”并画图形.B组1.已知两条相交直线a,b,a∥平面α,b与α的位置关系是()A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交2.直线a在平面γ外,则()A.a∥γB.a与γ至少有一个公共点C.a∩γ=AD.a与γ至多有一个公共点3.若两个平面平行,则分别在这两个平行平面内的直线()A.平行B.异面C.相交D.平行或异面4.直线与平面平行是指()A.直线与平面内的无数条直线都无公共点B.直线上两点到平面的距离相等C.直线与平面无公共点D.直线不在平面内5.若不在同一直线上的三点A,B,C到平面α的距离相等,且A∉α,则() A.α∥平面ABCB.△ABC中至少有一条边平行于αC.△ABC中至少有两条边平行于αD.△ABC中只可能有一条边与α相交6.直线a∥平面α,直线b∥平面α,则a与b的位置关系为()A.相交B.平行C.异面D.平行或异面或相交C组1.已知a,b,c为三条不重合的直线,α,β为两个不重合的平面.①a∥c,b∥c⇒a∥b;②a∥β,b∥β⇒a∥b;③a∥c,c∥α⇒a∥α;④a∥β,a∥α⇒α∥β;⑤a⊄α,b⊂α,a∥b⇒a∥α.其中正确的命题是()A.①⑤B.①②C.②④D.③⑤2.证明:如果一条直线经过平面内的一点,又经过平面外的一点,则此直线和平面相交.证明:原题可化为已知:A∈α,A∈a,B∉α,B∈a.求证:直线a与平面α相交.证明:假设直线a和平面α不相交,即a∥α或a⊂α.假设a∥α,就与A∈a,A∈α矛盾.假设a⊂α,就与B∈a,B∉α矛盾.∴假设不成立.∴直线a和平面α相交.3.如图1是一个正方体(如图2)的表面展开图的示意图,MN和PQ是两个面的对角线,请在正方体中将MN和PQ画出来,并就这个正方体解答下列问题:(1)求MN和PQ所成角的大小;(2)求四面体MNPQ的体积与正方体的体积之比.(1)解析:MN与PQ是异面直线,如图,在正方体中,PQ∥NC,∠MNC为MN与PQ所成角.∵MN=NC=MC,∴∠MNC=60°.(2)解析:设正方体的棱长为a,则正方体的体积V=a3.而三棱锥MNPQ的体积与三棱锥NPQM的体积相等,且NP⊥面MPQ.∴V NPQM=13×12MP·MQ·NP=16a3,即四面体MNPQ的体积与正方体的体积之比为1 : 6.1.直线与直线的位置关系有三种,直线与平面的位置关系有三种,平面与平面的位置关系有两种,在判断其位置关系时,要善于采取逐一判断的方法,以免漏掉一种情形.2.要充分借助长方体、正方体和现实生活中实物模型的辅助作用,研究、解决相关问题.。
空间中直线与平面之间的位置关系和平面与平面之间的位置关系教案-数学高一上必修2第二章2.1.3,2.1.4人教版
第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系第三课时 2.1.3-2.1.4空间中直线与平面之间的位置关系和平面与平面之间的位置关系1 教学目标1.1 知识与技能:[1]了解空间中直线与平面、平面与平面的位置关系.[2]会用图形语言、符号语言表示直线与平面、平面与平面之间的位置关系.[3]培养空间想象能力.1.2过程与方法:[1]通过实际生活中的例子,理解直线与平面,平面与平面的位置关系.[2]通过观察,自己动手画图,清楚地表达直线,平面的位置关系.1.3 情感态度与价值观:[1]通过细致作图,培养学生的动手能力和识图能力。
[2]培养空间想象能力.2 教学重点/难点/易考点2.1教学重点[1]了解空间中直线与平面、平面与平面的位置关系.[2]会用图形语言、符号语言表示直线与平面、平面与平面之间的位置关系.2.2教学难点[1]培养空间想象能力.3专家建议直线和平面的位置关系,平面和平面的位置关系,本节课内容为立体几何的基本内容,要让学生理解并掌握它们的位置关系,做到能用图形语言和符号语言表示,学习中可以借助手边的笔和本来加深理解。
4教学方法实例探究——归纳总结——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程引入新课【师】同学们好。
上节课我们研究了空间中直线与直线之间的位置关系,这节课我们来学习直线与平面和平面与平面之间的位置关系。
【板书】第二章点、直线、平面之间的位置关系2.1.3-2.1.4 空间中直线与平面之间的位置关系和平面与平面之间的位置关系新知介绍[1]空间中直线与平面之间的位置关系【师】下面请同学们思考:飞机航线所在直线与地面有哪些位置关系呢?飞机双翅所在平面与地面有哪些位置关系呢?【生】平行,平行【师】下面请同学们思考:一支笔所在的直线与一个作业本所在的平面,可能有几种位置关系?【生】三种,直线在平面内,直线与平面相交,直线与平面平行【板书】一、空间中直线与平面之间的位置关系空间中直线与平面的位置关系有哪些?靠什么来划分呢?提示:直线与平面的位置关系有且只有三种:① 线在平面内——有无数个公共点;② 直线与平面相交——有且只有一个公共点;③ 直线与平面平行——没有公共点.直线和平面相交或平行的情况统称为直线在平面外.判断直线与平面的位置关系关键在于——判断直线与平面的交点个数.直线在平面内 直线和平面相交 直线和平面平行a α⊂ a A α⋂= //a α【师】我们一起来看下面的例题【板书】例1:下列命题中正确的个数是( B )①若直线l 上有无数个点不在平面α内,则l ∥α.②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.(A )0 (B )1 (C )2 (D )3【变式练习】已知直线a 在平面α外,则( )(A )a ∥α(B )直线a 与平面α至少有一个公共点(C )a ⋂α=A(D )直线a 与平面α至多有一个公共点[2] 平面与平面之间的位置关系【师】请大家思考围成长方体的六个面,两两之间的位置关系有几种?【生】两种,平行或相交【板书】二、平面与平面之间的位置关系1.两个平面平行——没有公共点2.两个平面相交——有一条公共直线【师】我们来看下面的例题【板书/PPT】【即时练习】若M∈平面α,M∈平面β,则不同平面α与β的位置关系是 ( )A.平行B.相交C.重合D.不确定例2:如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论. 【变式练习】平面α//平面β,且a α,下列四个命题:①a与β内的所有直线都平行;②a与β内的无数条直线平行;③a与β内的任一直线都不垂直;④a与β无公共点.其中错误命题的序号为__________.[3]课堂小结复习总结和作业布置[1]课堂练习1、(2015·广东高考)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( A )A.l至少与l1,l2中的一条相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l与l1,l2都不相交⊄则下列结论成立的是(B )2、若直线a不平行于平面α,且aαA.α内所有直线与a异面B.α内不存在与a平行的直线C.α内存在唯一的直线与a平行D.α内的直线与a都相交3、如果直线a∥平面α,那么直线a与平面α内的(D)A.唯一一条直线不相交B.仅两条相交直线不相交C.仅与一组平行直线不相交D.任意一条直线都不相交4、下列命题中正确的个数是( B )①若直线l上有无数个点不在平面α内,则l∥α.②若直线l与平面α平行,则l与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.A. 0B. 1C. 2D. 35、如图所示,A′B与长方体ABCD-A′B′C′D′的六个面所在的平面有什么位置关系?[2]作业布置1、完成配套课后练习题2、预习下一节内容7 板书设计第二章 点、直线、平面之间的位置关系2.1.3-2.1.4 空间中直线与平面之间的位置关系和平面与平面之间的位置关系一、空间中直线与平面之间的位置关系空间中直线与平面的位置关系有哪些?靠什么来划分呢?提示:直线与平面的位置关系有且只有三种:④线在平面内——有无数个公共点; ⑤直线与平面相交——有且只有一个公共点; ⑥ 直线与平面平行——没有公共点.直线和平面相交或平行的情况统称为直线在平面外.判断直线与平面的位置关系关键在于——判断直线与平面的交点个数.直线在平面内 直线和平面相交 直线和平面平行a α⊂ a A α⋂= //a α例1:下列命题中正确的个数是( B )①若直线l 上有无数个点不在平面α内,则l ∥α.②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行. ④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.(A )0 (B )1 (C )2 (D )3【变式练习】已知直线a 在平面α外,则( )(A )a ∥α(B )直线a 与平面α至少有一个公共点(C )a ⋂α=A(D)直线a与平面α至多有一个公共点二、平面与平面之间的位置关系1.两个平面平行——没有公共点2.两个平面相交——有一条公共直线【即时练习】若M∈平面α,M∈平面β,则不同平面α与β的位置关系是 ( )A.平行B.相交C.重合D.不确定例2:如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.【变式练习】平面α//平面β,且a α,下列四个命题:①a与β内的所有直线都平行;②a与β内的无数条直线平行;③a与β内的任一直线都不垂直;④a与β无公共点.其中错误命题的序号为__________.。
高一数学人教A版必修2课件2.1.3《空间中直线平面与与平面之间的位置关系》
2
时的一般情况,而忽略了特殊情况.当 0或 时, 这样的
直线只有一条.
2
正解:(1)
当 (0, )时,这样的直线l有两条;
2
(2)当 0或 时,这样的直线l只有1条.
2
答案:C
基础强化
1.a∥b,且a与平面α相交,那么直线b与平面α的位置关系是( )
A.必相交
B.有可能平行
10.求证:过平面内一点,作平面内一直线的平行线必在此平面 内.
证明:设点A∈平面α,a 平面α,
∵A a,∴过点A存在直线b∥a.
设a,b确定的平面为β,则A∈β,且a∈β.∴平面α、β都是由点A和 直线a确定的平面.
∴α与β重合,∴b
α,故结论成立.
11.(湖北高考)已知a,b,c是直线,α、β是平面,给出下列命题: ①若a⊥b,b⊥c,则a∥c; ②若a∥b,b⊥c,则a⊥c; ③a∥α,b α,则a∥b; ④若a、b异面,且a∥β,则b与β相交; ⑤若a、b异面,则至多有一条直线与a、b都垂直.
3.特别提醒 (1)在解答直线与平面的有关问题时,要想像所有可能情况,思
考要全面.
(2)平行平面具有传递性,即α∥β,β∥γ α∥γ.
(3)本节内容可以以长方体为模型,抽象出直线与平面,平面与 平面的位置关系.
题型一 空间图形的画法
例1:分别按下列条件画出直观图. (1)a∩b=P,a∥平面α,b∩平面α=A; (2)平面α∩平面β=l,a∩平面β=A,a∥平面α. 解:根据题设及平面图形直观图的画法,得直观图如下图所示.
1.空间中直线与平面位置关系的分类
直线与平面的位置关系有且只有三种:
按公共点个数分类
直线和平面平行,
高中数学必修2知识点总结:第二章-直线与平面的位置关系
高中数学必修2知识点总结第二章 直线与平面的位置关系空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
人教新课标版数学高一必修2讲义 空间中直线与平面之间的位置关系 平面与平面
2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系1.了解直线与平面的三种位置关系,并会用图形语言和符号语言表示.(重点、易错点)2.了解不重合的两个平面之间的两种位置关系,并会用图形语言和符号语言表示.(难点)[基础·初探]教材整理1直线与平面的位置关系阅读教材P48~P49的内容,完成下列问题.位置关系直线a在平面α内直线a与平面α相交直线a与平面α平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a⊂αa∩α=A a∥α图形表示判断(正确的打“√”,错误的打“×”)(1)若直线与平面不相交,则直线与平面平行.()(2)过一点有且只有一条直线与已知直线平行.()(3)过一点有且只有一条直线与已知直线垂直.()(4)过平面外一点有且只有一条直线与该平面平行.()【解析】(1)错误.若直线与平面不相交,则直线在平面内或直线与平面平行,故(1)错.(2)错误.当点在已知直线上时,不存在过该点的直线与已知直线平行,故(2)错.(3)错误.由于垂直包括相交垂直和异面垂直,因而过一点与已知直线垂直的直线有无数条,故(3)错.(4)错误.过棱柱的上底面内的一点任意作一条直线都与棱柱的下底面平行,所以过平面外一点与已知平面平行的直线有无数条,故(4)错.【答案】(1)×(2)×(3)×(4)×教材整理2平面与平面的位置关系阅读教材P50“探究”以上的内容,完成下列问题.位置关系图示表示法公共点个数两平面平行α∥β0个两平面相交α∩β=l 无数个点(共线)三棱锥的四个面中,任两个面的位置关系是()A.相交B.平行C.异面D.不确定【解析】三棱锥的任两个面都相交,选A.【答案】 A[小组合作型]直线与平面的位置关系A.如果a、b是两条直线,a∥b,那么a平行于经过b的任何一个平面B.如果直线a和平面α满足a∥α,那么a平行于平面α内的任何一条直线C.如果直线a、b满足a∥α,b∥α,则a∥bD.如果直线a、b和平面α满足a∥b,a∥α,b⊄α,那么b∥α【精彩点拨】解答本题要牢牢地抓住直线和平面三种位置关系的特征,结合相关图形,依据位置关系的定义作出判断.【自主解答】如图,在长方体ABCD-A′B′C′D′中,AA′∥BB′,AA′却在过BB′的平面AB′内,故选项A不正确;AA′∥平面B′C,BC⊂平面B′C,但AA′不平行于BC,故选项B不正确;AA′∥平面B′C,A′D′∥平面B′C,但AA′与A′D′相交,所以选项C不正确;选项D中,假设b与α相交,因为a∥b,所以a与α相交,这与a∥α矛盾,故b∥α,即选项D正确.故选D.【答案】 D空间中直线与平面只有三种位置关系:直线在平面内、直线与平面相交、直线与平面平行.在判断直线与平面的位置关系时,这三种情形都要考虑到,避免疏忽或遗漏.另外,我们可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,以便于正确作出判断,避免凭空臆断.[再练一题]1.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②经过两条异面直线中的一条直线有一个平面与另一条直线平行;③两条相交直线,其中一条与一个平面平行,则另一条一定与这个平面平行.A.0B.1C.2 D.3【解析】易知①正确,②正确.③中两条相交直线中一条与平面平行,另一条可能平行于平面,也可能与平面相交,故③错误.选C.【答案】 C[探究共研型]平面与平面的位置关系探究1【提示】如果两个平面有一个公共点,那么由公理3可知:这两个平面相交于过这个点的一条直线;如果两个平面没有公共点,那么就说这两个平面相互平行.探究2若一个平面内的任意一条直线都与另一个平面平行,那么这两个平面之间有什么位置关系?【提示】因为一个平面内任意一条直线都与另一个平面平行,所以该平面与另一平面没有公共点,根据两平面平行的定义知,这两个平面平行.探究3平面α内有无数条直线与平面β平行,那么α∥β是否正确?【提示】不正确.如图,设α∩β=l,则在平面α内与l平行的直线可以有无数条a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β都平行,但此时α不平行于β,而α∩β=l.已知下列说法:①两平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的序号是________(将你认为正确的序号都填上).【精彩点拨】由平面间的位置关系逐一判断.【自主解答】①错.a与b也可能异面.②错.a与b也可能平行.③对.∵α∥β,∴α与β无公共点.又∵a⊂α,b⊂β,∴a与b无公共点.④对.由已知及③知:a与b无公共点,那么a∥b或a与b异面.⑤错.a与β也可能平行.【答案】③④1.仔细分析题目条件,将符号语言或自然语言转化为图形语言,通过图形借助定义确定两平面的位置关系.2.线、面之间的位置关系在长方体(或正方体)中都能体现,所以对于位置关系的判断要注意利用这一熟悉的图形找到反例或对应的关系.[再练一题]2.如果两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系是()A.平行B.相交C.平行或相交D.既不平行也不相交【解析】如果两平面的直线互相平行,可以有以下两种情况:【答案】 C1.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交【解析】直线a∥平面α,则a与α无公共点,与α内的直线当然均无公共点.【答案】 D2.如图2-1-23所示,用符号语言可表示为()图2-1-23A.α∩β=lB.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂αD[显然题干图中α∥β,且l⊂α.]3.如图2-1-24,在正方体ABCD-A1B1C1D1中判断下列位置关系:图2-1-24(1)AD1所在的直线与平面B1BCC1的位置关系是________.(2)平面A1BC1与平面ABCD的位置关系是________.【解析】(1)AD1所在的直线与平面B1BCC1没有公共点,所以平行.(2)平面A1BC1与平面ABCD有公共点B,故相交.【答案】(1)平行(2)相交4.a,b,c是三条直线,α,β是两个平面,如果a∥b∥c,a⊂α,b⊂β,c⊂β那么平面α与平面β的位置关系是__________.平行或相交[由正方体模型易知α∥β或α与β相交.]5.作出下列各题的图形.(1)画直线a,b,使a∩α=A,b∥α.(2)画平面α,β,γ,使α∥β,γ∩α=m,γ∩β=n.【解】如图所示:。
空间中直线与平面之间的位置关系和平面与平面之间的位置关系-数学高一上必修2第二章2.1.3-2.1.4人教版
第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系第三课时 2.1.3-2.1.4空间中直线与平面之间的位置关系和平面与平面之间的位置关系测试题知识点:空间中直线与平面之间的位置关系1、(2014·成都高一检测)已知直线l和平面α,若l∥α,P∈α,则过点P且平行于l的直线 ( )A.只有一条,不在平面α内B.有无数条,一定在平面α内C.只有一条,且在平面α内D.有无数条,不一定在平面α内2、已知m,n为异面直线,m∥平面α,n∥平面β,α∩β=l,则l ( )A.与m,n都相交B.与m,n中至少一条相交C.与m,n都不相交D.与m,n中只有一条相交3、(2014·聊城高一检测)如图,已知正方体ABCD-A1B1C1D1,则直线EF是平面ACD1与( )A.平面BDB1的交线B.平面BDC1的交线C.平面ACB1的交线D.平面ACC1的交线4、对于任意的直线l和平面α,在平面α内必有直线m,使m和l ( )A.平行B.相交C.垂直D.异面5、a,b两直线都平行于平面β,那么a,b的位置关系是________.6、A,B是不在直线l上的两点,则过点A,B且与直线l平行的平面个数是________.7、证明:如果一条直线经过平面内的一点,又经过平面外的一点,则此直线和平面相交.8、若平面α∥平面β,l⊂α,则l与β的位置关系是 ( )A.l与β相交B.l与β平行C.l在β内D.无法判定9、(2014·济宁高一检测)下列说法中正确的个数为( )①若直线l上有无数个点不在平面α内,则l∥α;②若直线l与平面α平行,则l与平面α内的任意一条直线都平行;③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.A.0B.1C.2D.310、如图,正方体ABCD -A′B′C′D′中,P是A′D的中点,Q是B′D′的中点,判断直线PQ与平面AA′B′B的位置关系,并利用定义证明.知识点:平面与平面之间的位置关系11、平面α与平面β平行,且a⊂α,有下列四种说法:①a与β内的所有直线都平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直;④a与β无公共点.其中正确的个数是 ( )A.1B.2C.3D.412、棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是 ( )A.平行B.相交C.平行或相交D.不相交13、若不在同一条直线上的三点A,B,C到平面α的距离相等,且A,B,C∉α,则平面ABC与平面α的位置关系为________.14、如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系并证明你的结论.15、和两个相交平面的交线平行的直线和这两个平面的位置关系是 ( )A.都平行B.都相交C.在两个平面内D.至少和其中一个平行C不正确,这条直线如果在两个平面内则必为这两个平面的交线,即与两个平面的交线重合,这与已知不符.D正确,这条直线与两个平面的交线平行,有两种情形,其一是分别与这两个平面平行,其二是在一个面内平行于另一个平面,所以至少与一个平面平行.所以应选D.16、α,β是两个不重合的平面,下面说法中,正确的是( )A.平面α内有两条直线a,b都与平面β平行,那么α∥βB.平面α内有无数条直线平行于平面β,那么α∥βC.若直线a与平面α和平面β都平行,那么α∥βD.平面α内所有的直线都与平面β平行,那么α∥β17、平面α∩β=c,直线a∥α,a与β相交,则a与c的位置关系是________.18、(2013·菏泽高一检测)梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的任一直线m的位置关系是________.19、在正方体ABCD-A1B1C1D1中,E是AA1的中点,画出过D1,C,E的平面与平面ABB1A1的交线,并说明理由.P且与l平行答案:相交、平行或异面∥平面DCC′D′,无公共点,l与连接AD′,AB′,在△AB′D′中,PQ是△AB′D′的中位线,即PQ与AB′平行,且平面AB′D′∩平面ABB′A′=AB′,又PQ在平面ABB′A′外,即PQ与平面ABB′A′没有公共点,所以PQ与平面ABB′A′平行.。
高一数学必修2第二单元知识点:空间点、直线、平面之间的位置关系知识点总结
高一数学必修2第二单元知识点:空间点、直线、平面之间
的位置关系知识点总结
数学是研究现实世界空间形式和数量关系的一门科学。
为大家推荐了高一数学必修2第二单元知识点,请大家仔细阅读,希望你喜欢。
知识点1、平面的表示与画法
知识点2、平面划分空间问题
平面像初中所学的直线一样具有无限延展性,它无大小,无厚薄,不可度量
知识点3、平面的基本性质的作用
公理1反映了平面的本质属性,通过直线的直和无限延伸的特性,揭示了平面的平和无限延展的特征.其作用是:①检验平面是否经过直线;②判定直线是否在平面内.
公理2的作用:确定平面的依据,即证明两平面重合的依据,它提供了把空间问题转化为平面问题的条件.公理2中的有且只有一个包含两层含义:①有说明平面的存在性;②只有一个说明平面的惟一性.有且只有一个和只有一个不是同义词,和确定是同义词.因此,公理2又可叙述为不共线的三点确定一个平面.
公理3进一步反映了平面的无限延展性,其作用:①判定两个平面相交;②作两平面的交线;③证明点在直线(交线)上或多点共线.已知两个平面有一个公共点时,我们就可确定这两个平面相交,而且这个点在这两个平面的交线上;当已知两个平面有两个公共点时,我们可确定这两个平面相交,又能确定这两点的连线就是这两个平面的交线;很明显,两个相交平面将空间分成4部分.。
高一数学直线与平面的位置关系必修2第2章知识点
直线与平面的位置关系知识点总结2.1空间点、直线、平面之间的位置关系 12 三个公理:(1符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内.(2使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
(3公理作用:判定两个平面是否相交的依据. 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 符号表示为:设a 、b 、c 是三条直线a ∥bc ∥bLA ·α 共面直线=>a ∥c强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
34 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 ——有且只有一个公共点 (3)直线在平面平行 —— 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a ∩α=A a ∥α2.2.直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定1简记为:线线平行,则线面平行。
符号表示:a αb β => a ∥α a ∥b22.2.2 平面与平面平行的判定1符号表示:a βb βa∩b = P β∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(32.2.3 —2.2.4直线与平面、平面与平面平行的性质1简记为:线面平行则线线平行。
【高中数学】高一数学必修二知识点:直线和平面的位置关系
【高中数学】高一数学必修二知识点:直线和平面的位置关系高一数学必修二知识点:直线和平面的位置关系”,供大家参考,希望对大家有所帮助!直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
以上就是为大家提供的“高一数学必修二知识点:直线和平面的位置关系”希望能对考生产生帮助,更多资料请咨询中考频道。
感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章点、直线、平面之间的位置关系
2.1 空间点、直线、平面之间的位置关系
第三课时 2.1.3-2.1.4
空间中直线与平面之间的位置关系和平面与平面之间的位置关系
测试题
知识点:空间中直线与平面之间的位置关系
1、(2014·成都高一检测)已知直线l和平面α,若l∥α,P∈α,则过点P且平行于l的直线( )
A.只有一条,不在平面α内
B.有无数条,一定在平面α内
C.只有一条,且在平面α内
D.有无数条,不一定在平面α内
2、已知m,n为异面直线,m∥平面α,n∥平面β,α∩β=l,则l( )
A.与m,n都相交
B.与m,n中至少一条相交
C.与m,n都不相交
D.与m,n中只有一条相交
3、(2014·聊城高一检测)如图,已知正方体ABCD-A
1B
1
C
1
D
1
,则直线EF是平
面ACD
1
与( )
A.平面BDB
1
的交线
B.平面BDC
1
的交线
C.平面ACB
1
的交线
D.平面ACC
的交线
1
4、对于任意的直线l和平面α,在平面α内必有直线m,使m和l( )
A.平行
B.相交
C.垂直
D.异面
5、a,b两直线都平行于平面β,那么a,b的位置关系是________.
6、A,B是不在直线l上的两点,则过点A,B且与直线l平行的平面个数是________.
7、证明:如果一条直线经过平面内的一点,又经过平面外的一点,则此直线和平面相交.
8、若平面α∥平面β,l⊂α,则l与β的位置关系是( )
A.l与β相交
B.l与β平行
C.l在β内
D.无法判定
9、(2014·济宁高一检测)下列说法中正确的个数为( )
①若直线l上有无数个点不在平面α内,则l∥α;
②若直线l与平面α平行,则l与平面α内的任意一条直线都平行;
③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;
④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.
A.0
B.1
C.2
D.3
10、如图,正方体ABCD -A′B′C′D′中,P是A′D的中点,Q是B′D′
的中点,判断直线PQ与平面AA′B′B的位置关系,并利用定义证明.
知识点:平面与平面之间的位置关系
11、平面α与平面β平行,且a⊂α,有下列四种说法:
①a与β内的所有直线都平行;
②a与β内无数条直线平行;
③a与β内的任意一条直线都不垂直;
④a与β无公共点.
其中正确的个数是( )
A.1
B.2
C.3
D.4
12、棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是
( ) A.平行 B.相交
C.平行或相交
D.不相交
13、若不在同一条直线上的三点A,B,C到平面α的距离相等,且A,B,C∉α,则平面ABC与平面α的位置关系为________.
14、如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系并证明你的结论.
15、和两个相交平面的交线平行的直线和这两个平面的位置关系是( )
A.都平行
B.都相交
C.在两个平面内
D.至少和其中一个平行
C不正确,这条直线如果在两个平面内则必为这两个平面的交线,即与两个平面的交线重合,这与已知不符.
D正确,这条直线与两个平面的交线平行,有两种情形,其一是分别与这两个平面平行,其二是在一个面内平行于另一个平面,所以至少与一个平面平行.所以应选D.
16、α,β是两个不重合的平面,下面说法中,正确的是( )
A.平面α内有两条直线a,b都与平面β平行,那么α∥β
B.平面α内有无数条直线平行于平面β,那么α∥β
C.若直线a与平面α和平面β都平行,那么α∥β
D.平面α内所有的直线都与平面β平行,那么α∥β
17、平面α∩β=c,直线a∥α,a与β相交,则a与c的位置关系是________.
18、(2013·菏泽高一检测)梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的任一直线m的位置关系是________.
19、在正方体ABCD-A
1B
1
C
1
D
1
中,E是AA
1
的中点,画出过D
1
,C,E的平面与平面ABB
1
A
1
的交线,并说
明理由.
【参考答案】相交、平行或异面
与平面α内所有
′中,PQ是△AB′D′的中位线,又PQ在平面ABB′A′外
′平行.
,c⊂α,
无公共点,不相交.
∥β或a⊂β.。