第一章概率与统计(第6课)抽样方法(2)
概率论与数理统计教案(48课时)
《概率论与数理统计》课程教案第一章 随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念;(2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算;(4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5) 理解条件概率、全概率公式、Bayes 公式及其意义。
理解事件的独立性。
二.本章的教学内容及学时分配第一节 随机事件及事件之间的关系第二节 频率与概率 2学时第三节 等可能概型(古典概型) 2 学时第四节 条件概率第五节 事件的独立性 2 学时三.本章教学内容的重点和难点1) 随机事件及随机事件之间的关系;2) 古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和Bayes 公式5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1) 使学生能正确地描述随机试验的样本空间和各种随机事件;2) 注意让学生理解事件,,,,,A B A B A B A B AB A ⊂⋃⋂-=Φ…的具体含义,理解事件的互斥关系;3) 让学生掌握事件之间的运算法则和德莫根定律;4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5) 讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算⋃和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章 随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节 随机变量第二节 第二节 离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节 常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节 随机变量的分布函数分布函数的定义和基本性质,公式第五节 连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节 常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解;b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系;c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系;d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任意实数,同时说明了()0P A =不能推导A =Φ。
概率论与数理统计课后习题答案
第一章 事件与概率1.写出下列随机试验的样本空间。
(1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。
(2)同时掷三颗骰子,记录三颗骰子点数之和。
(3)生产产品直到有10件正品为止,记录生产产品的总件数。
(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
(5)在单位正方形内任意取一点,记录它的坐标。
(6)实测某种型号灯泡的寿命。
解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。
(2)}18,,4,3{ =Ω。
(3)},11,10{ =Ω。
(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。
(5)=Ω{(x,y)| 0<x<1,0<y<1}。
(6)=Ω{ t | t ≥ 0}。
2.设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列各事件,。
(1)A 发生,B 与C 不发生。
(2)A 与B 都发生,而C 不发生。
(3)A ,B ,C 中至少有一个发生。
(4)A ,B ,C 都发生。
(5)A ,B ,C 都不发生。
(6)A ,B ,C 中不多于一个发生。
(7)A ,B ,C 至少有一个不发生。
(8)A ,B ,C 中至少有两个发生。
解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A ,(6)C B C A B A ++或C B A C B A C B A C B A +++,(7)C B A ++,(8)BC AC AB ++或ABC BC A C B A C AB ⋃⋃⋃3.指出下列命题中哪些成立,哪些不成立,并作图说明。
(1)B B A B A =(2)AB B A =(3)AB B A B =⊂则若,(4)若A B B A ⊂⊂则,(5)C B A C B A = (6)若Φ=AB 且A C ⊂,则Φ=BC解 : (1) 成立,因为B A B B B A B B A ==))((。
《简单随机抽样》教学设计
《简单随机抽样》教学设计一、教学内容与内容解析1.内容:统计,简单随机抽样,抽签法,随机数表法。
2.内容解析:本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。
本课题为“简单随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量X i与所考察的总体X具有相同的概率分布F(X);(2)独立性,X1,X2,…,X n为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。
贾俊平统计学 第七版 课后思考题
第一章导论1.什么是统计学?统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2.解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。
4.解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。
5.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6.变量可分为哪几类?变量可分为分类变量、顺序变量和数值型变量。
分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7.举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关、由别人调查和试验而来、已经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始搜集人、搜集目的、搜集途径、搜集时间且使用时要注明数据来源。
2.比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
概率论与数理统计课程教学大纲
概率论与数理统计课程教学大纲编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(概率论与数理统计课程教学大纲)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为概率论与数理统计课程教学大纲的全部内容。
《概率论与数理统计》课程教学大纲(2002年制定 2004年修订)课程编号:英文名:Probability Theory and Mathematical Statistics课程类别:学科基础课前置课:高等数学后置课:计量经济学、抽样调查、试验设计、贝叶斯统计、非参数估计、统计分析软件、时间序列分析、统计预测与决策、多元统计分析、风险理论学分:5学分课时:85课时修读对象:统计学专业学生主讲教师:杨益民等选定教材:盛骤等,概率论与数理统计,北京:高等教育出版社,2001年(第三版)课程概述:本课程是统计学专业的学科基础课,是研究随机现象统计规律性的一门数学课程,其理论及方法与数学其它分支、相互交叉、渗透,已经成为许多自然科学学科、社会与经济科学学科、管理学科重要的理论工具。
由于其具有很强的应用性,特别是随着统计应用软件的普及和完善,使其应用面几乎涵盖了自然科学和社会科学的所有领域。
本课程是统计专业学生打开统计之门的一把金钥匙,也是经济类各专业研究生招生考试的重要专业基础课。
本课程由概率论与数理统计两部分组成。
概率论部分侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。
其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容;数理统计部分则是以概率论作为理论基础,研究如何对试验结果进行统计推断。
抽样方法和抽样方案
抽样方法和抽样方案抽样方法是研究中用来从总体中抽取样本的方式。
常用的抽样方法有以下几种:1.随机抽样:随机抽样是指从总体中以随机的方式选择样本的方法。
这种方法能在一定程度上减小选择样本时的主观性和偏见,增加样本的代表性。
随机抽样又分为简单随机抽样、系统抽样和分层抽样等方式。
2.非随机抽样:非随机抽样是指从总体中以非随机的方式选择样本的方法。
这种方法常用于总体中一些特定群体的研究,如专业人员、地区居民等。
非随机抽样又分为便利抽样、判断抽样和配额抽样等方式。
3.多阶段抽样:多阶段抽样是指将总体分成多个较小的群组或阶段,然后在每个群组或阶段中进行抽样的方法。
这种方法常用于总体中存在明显层次结构的研究对象,例如不同地区的居民或不同学校的学生等。
4.整群抽样:整群抽样是指将总体分成多个群组,然后在每个群组中选择全体样本的方法。
这种方法常用于总体中的群组间差异较小,但群组内差异较大的情况,例如同一学校的不同班级。
抽样方案是研究中具体实施抽样方法的方案。
一个好的抽样方案应当包含以下几个方面的内容:1.抽样目标:明确研究的目标和需要回答的问题,确定所需的样本规模和要求。
2.总体定义:清楚地定义研究对象的总体,明确总体的边界和范围,以及总体中存在的各种特征和差异。
3.抽样框架:确定用于抽样的框架,即总体中包含的样本单位,例如个人、家庭、组织等。
抽样框架应能反映总体的特征和结构。
4.抽样方案:根据研究的目标和总体的特征,选择适当的抽样方法和抽样比例。
同时,要确定具体的实施步骤和时间安排,以确保样本的有效抽取。
5.抽样误差控制:考虑到抽样过程中的误差,必须采取相应的措施来控制误差的大小。
例如,通过增加样本量、优化抽样方法和加强质量管理等方法来降低抽样误差。
6.数据分析计划:在抽样方案中应当明确研究中将使用的数据分析方法和统计工具,以尽量充分地利用样本数据进行研究。
综上所述,抽样方法和抽样方案对研究的质量和可靠性有着重要影响。
概率论第一章课后习题答案
《概率论与数理统计》课后习题解答习题一3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件:(1)A 发生,B 与C 不发生;(2)A 与B 都发生,而C 不发生;(3)A ,B ,C 都发生;(4)A ,B ,C 都不发生;(5)A ,B ,C 中至少有一个发生;(6)A ,B ,C 中恰有一个发生;(7)A ,B ,C 中至少有两个发生;(8)A ,B ,C 中最多有一个发生.解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ;(5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ;(8)BC AC AB 或C B C A B A .5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码.(1)求最小的号码为5的概率;(2)求最大的号码为5的概率.解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得(1)121)(31025==C C A P ; (2)201)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求:(1)任取3件产品恰有1件是废品的概率;(2)任取3件产品没有废品的概率;(3)任取3件产品中废品不少于2件的概率.解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得(1)0855.0)(32002194161≈=C C C A P ; (2)9122.0)(320031940≈=C C A P ; (3)0023.0)(32003611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率:A 表示“这三个数字中不含0和5”; B 表示“这三个数字中包含0或5”; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得157)(31038==C C A P ;158)(1)(=-=A P B P ;307)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P .解:4.08.05.0)|()()(=⨯==A B P A P AB P)]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-==3.0)4.06.05.0(1=-+-=10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()()()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少?解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为319.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.(1)求他拨号不超过三次而接通的概率;(2)若已知最后一个数字是奇数,那么他拨号不超过三次而接通的概率又是多少?解:设事件A 分别表示“他拨号不超过三次而接通”,事件B 分别表示“最后一个数字是奇数”,则所求的概率为(1)103819810991109101)(=⨯⨯+⨯+=A P (2)53314354415451)|(=⨯⨯+⨯+=B A P 13.一盒里有10个电子元件,其中有7个正品,3个次品.从中每次抽取一个,不放回地连续抽取四次,求第一、第二次取得次品且第三、第四次取得正品的概率. 解:设事件i A 表示“第i 次取得次品”(4,3,2,1=i ),则所求的概率为 )|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =201768792103=⨯⨯⨯= 14.一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别有5箱、3箱、2箱,三厂产品的次品率依次为1.0,2.0,3.0,从这10箱中任取 一箱,再从这箱中任取一件产品,求取得正品的概率.解:设事件321,,A A A 分别表示“产品是甲,乙,丙厂生产的”,事件B 表示“产品是正品”,显然,事件321,,A A A 构成一个完备事件组,且2.0102)(,3.0103)(,5.0105)(321======A P A P A P 7.03.01)|(,8.02.01)|(,9.01.01)|(321=-==-==-=A B P A B P A B P 由全概率公式得83.07.02.08.03.09.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P15.甲、乙、丙三门高炮同时独立地各向敌机发射一枚炮弹,它们命中敌机的概率都是2.0.飞机被击中1弹而坠毁的概率为1.0,被击中2弹而坠毁的概率为5.0,被击中3弹必定坠毁.(1)求飞机坠毁的概率;(2)已知飞机已经坠毁,试求它在坠毁前只被命中1弹的概率.解:设事件i A 表示“飞机被击中i 弹而坠毁”)3,2,1(=i ,事件B 表示“飞机坠毁”,显然,事件321,,A A A 构成一个完备事件组,由二项概率公式计算得008.0)2.0()(,096.0)8.0()2.0()(,384.0)8.0()2.0()(33331223221131======C A P C A P C A P 1)|(,5.0)|(,1.0)|(321===A B P A B P A B P(1)由全概率公式得0944.01008.05.0096.01.0384.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P(2)由贝叶斯公式得407.00944.01.0384.0)|()()|()()|(31111≈⨯==∑=i ii A B P A P A B P A P B A P 16.设甲袋中装有5个红球,4个白球;乙袋中装有4个红球,5个白球.先从甲袋中任取2个球放入乙袋中,然后从乙袋中任取一个球,求取到是白球的概率. 解:设事件i A 表示“从甲袋取出的2个球中有i 个白球”)2,1,0(=i ,事件B 表示“从乙袋中取出的一个球是白球”,显然,事件321,,A A A 构成一个完备事件组,且29254)(C C C A P i i i -=,115)|(i A B P i +=,)2,1,0(=i ,由全概率公式得 5354.09953115)|()()(202925420==+⋅==∑∑=-=i i i i i i i C C C A B P A P B P 17.已知男子有%5是色盲患者,女子有%25.0是色盲患者.现在从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 解:设事件A 表示“此人是男性”,事件B 表示“此人是色盲患者”,显然,事件A A ,构成一个完备事件组,且5.0)()(==A P A P ,%25.0)|(%,5)|(==A B P A B P由贝叶斯公式得9524.02120%25.05.0%55.0%55.0)|()()|()()|()()|(≈=⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 18.设机器正常时生产合格品的概率为%98,当机器发生故障时生产合格品的概率为%30,而机器正常(即不发生故障)的概率为%95.某天,工人使用该机器生产的第一件产品是合格品,求机器是正常的概率.解:设事件A 表示“该机器正常”,事件B 表示“产品是合格品”,显然,事件A A ,构成一个完备事件组,且%30)|(%,98)|(%,5)(1)(%,95)(===-==A B P A B P A P A P A P由贝叶斯公式得984.0%30%5%98%95%98%95)|()()|()()|()()|(≈⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 19.三人独立地去破译一个密码,他们能够译出的概率分别是51,31,41,问能将密码译出的概率是多少?解:设事件C B A ,,分别表示“第一人,第二人,第三人破译出密码”,显然事件C B A ,,相互独立,且41)(,31)(,51)(===C P B P A P ,则所求的概率为 53)411)(311)(511(1)()()(1)(=----=-=C P B P A P C B A P 20.加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是02.0,03.0,05.0和03.0.假设各道工序是互不影响的,求加工出来的零件的次品率.解:设事件i A 表示“第i 道工序加工出次品”)4,3,2,1(=i ,显然事件4321,,,A A A A 相互独立,且03.0)(,05.0)(,03.0)(,02.0)(4321====A P A P A P A P ,则所求的概率为)()()()(1)(43214321A P A P A P A P A A A A P -=124.0)03.01)(05.01)(03.01)(02.01(1=-----=21.设第一个盒子里装有3个蓝球,2个绿球,2个白球;第二个盒子里装有2个蓝球,3个绿球,4个白球.现在独立地分别从两个盒子里各取一个球.(1)求至少有一个蓝球的概率;(2)求有一个蓝球一个白球的概率;(3)已知至少有一个蓝球,求有一个蓝球一个白球的概率.解:设事件21,A A 表示“从第一个盒子里取出的球是篮球,白球”,事件21,B B 表示“从第二个盒子里取出的球是篮球,白球”,显然事件i A 与j B 相互独立)2,1;2,1(==j i ,且94)(,92)(,72)(,73)(2121====B P B P A P A P ,则所求的概率为 (1)95)921)(731(1)()(1)(1111=---=-=+B P A P B A P ; (2)631692729473)()()()()(12211221=⨯+⨯=+=+B P A P B P A P B A B A P ; (3))()])([()](|)[(11111221111221B A P B A B A B A P B A B A B A P +++=++ 3516956316)()(111221==++=B A P B A B A P 22.设一系统由三个元件联结而成(如图51-),各个元件独立地工作,且每个元件能正常工作的概率均为p (10<<p ).求系统能正常工作的概率.图51- 解:设事件i A 表示“第i 个元件正常工作”)3,2,1(=i ,事件B 表示“该系统正常工作”,显然,事件321,,A A A 相互独立,且p A P i =)(,则所求的概率为 )()()()(])[()(32132313231321A A A P A A P A A P A A A A P A A A P B P -+=== 3232132312)()()()()()()(p p A P A P A P A P A P A P A P -=-+=24.一批产品中有%20的次品,进行放回抽样检查,共取5件样品.计算:(1)这5件样品中恰有2件次品的概率;(2)这5件样品中最多有2件次品的概率.解:设事件A 表示“该样品是次品”,显然,这是一个伯努利概型,其中%80)(%,20)(,5===A P A P n ,由二项概率公式有(1)2048.0%)80(%)20()2(32255==C P(2)942.0%)80(%)20()(2055205==∑∑=-=k k k k k C k P。
概率论与数理统计ppt课件(完整版)
第一章 概率论的基本概念 前言
1. 确定性现象和不确定性现象. 2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性.
3. 概率与数理统计的广泛应用.
2021/3/25
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
必然事件: 样本空间S是自身的子集,在每次试验中总是 发生的,称为必然事件。
不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
2021/3/25
6
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“ 恰好出现一次正面”、事件A3=“至少出现一次正面”.
即A, B中至少有一个发生, 称为A与B的和, 记A B.
可列个事件A1, A2 , 的和事件记为 Ak .
k 1
3.积事件: 事件A B={x|x A 且 x B}称A与B的
积,即事件A与BA同时发生. A B 可简记为AB.
类似地,
事件
SA
k 1
K
为可列B 个事件A1,
A2,
...的积事件.
2021/3/25
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包 含S的 k 个样本点,则事件A的概率定义为
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况. E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
贾俊平统计学 第七版 课后思考题
第一章导论1.什么是统计学?统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2.解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。
4.解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。
5.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6.变量可分为哪几类?变量可分为分类变量、顺序变量和数值型变量。
分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7.举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关、由别人调查和试验而来、已经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始搜集人、搜集目的、搜集途径、搜集时间且使用时要注明数据来源。
2.比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
《统计学原理》教材课后习题参考答案
2.给定显著性水平。取显著性水平 ,由于是双侧检验,因此需要确定上下两个临界值 和 。查表得到 ,所以。拒绝区间为小于-1.96或者大于1.96。
3.检验统计量
4.检验判断。
由于z的实际值在-1.96和1.96之间,没有落入拒绝区间,所以接受原假设,认为净重是符合规定
(五)计算题
1.因为2000年计划完成相对数是110%,所以
实际产值=
2000年计划产值比1999年增长8%,
所以1999年的计划产值=
那么2000年实际产值比1999年计划产值增长=
2.(1)
从第四年第四季度到第五年第三季度这一年的时间,实际上这一年的产量达到
则
这一题规定年末产量应达到170,所以提前时间按照水平法来算。
3..根据题意,样本的平均数和标准差为
根据样本信息,计算统计量
4.检验判断。因为 ,所以在显著性水平0.01下,拒绝原假设,也就是说,含量是超过规定界限
第九章相关与回归
(一)判断题
1.×2.√3.√4.√5.×6.×7.×8.×
(二)单项选择题
1.① 2.① 3.③ 4.④ 5.④6.②7.②8.④
2.由题意
=8.89
3.由题意
令这个数为a。则
4.由题意
5.
销售额
售货员人数
组中值
20000-30000
30000-40000
40000-50000
50000-60000
60000-70000
70000-80000
80000以上
8
20
40
100
82
10
5
25000
35000
《概率论与数理统计》笔记
《概率论和数理统计》笔记一、课程导读“概率论和数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●使用例子摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:结果(比数) A(8:0)B(7:1)C(6:2)D(5:3)E(4:4)奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体使用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
概率论与数理统计(经管类)第一章
概率论与数理统计教材:《概率论与数理统计》(经管类)课程代码:4183柳金甫王义东主编武汉大学出版社本课程的重点章是第1、2、3、4、7、8章.(1)试题的难度可分为:易,中等偏易,中等偏难,难。
它们所占分数依次大致为:20分,40分,30分,10分。
(2)试题的题型有:选择题(10*2=20分)、填空题(15*2=30分)、计算题(2*8=16分)、综合题(2*12=24分)、应用题(1*10=10分)。
(3)在试题中,概率论和数理统计内容试题分数的分布大致是75分和25分.序言概率论是研究什么的?概率论——从数量上研究随机现象的统计规律性的科学。
数理统计——从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。
目录第一章随机事件与概率(重点)第二章随机变量及其概率分布(重点)第三章多维随机变量及其概率分布(重点) 第四章随机变量的数字特征(重点)第五章大数定律及中心极限定理第六章统计量及其抽样分布第七章参数估计(重点)第八章假设检验(重点)第九章回归分析一、两个基本原理1、乘法原理(分段)如果某事件需经K步才能完成,做第一步有m1种方法,做第二部有m2种方法。
第K步需要m k中方法,那么完成这件事共有m1×m2×m k种方法。
2、加法原理(分类)如果某事件可以由K类不同途径之一去完成,第一类有m1种完成方法,第二类有m2种完成方法,第k类有m k种完成方法,那么事件共有m1+m2+m k种方法。
二、排列1、排列从n个不同元素中任取r(r≤n)个元素排成一列(考虑元素次序)称此为一个排列,此种排列的总数记为。
按乘法原理,取出第一个元素有n种取法,取出第二个元素有n-1种取法……取出第r个元素有n – r +1种取法,则有=n×(n-1)×…×(n-r+1)=当r = n时,则称为全排列,排列总数为= n!2、可重复排列从n个不同元素中每次取出一个,放回后再取下一个,如此连续r次所得的排列称为可重复排列,此种排列总数共有n r个。
概率论与数理统计ppt课件
称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}
①
②
①
1 2 N
①
②
1 2 N
……
概率统计中的抽样方法
在概率统计中,抽样是指从总体中选择若干个个体进行调查和研究的一种方法。
通过对样本的调查和分析,可以推断出总体的特征和规律。
抽样方法是概率统计的重要基础,也是从总体中获取有效信息的有效手段。
抽样方法有很多种,其中常用的包括简单随机抽样、分层抽样、整群抽样、系统抽样等。
以下将对这些抽样方法进行详细介绍。
首先是简单随机抽样。
简单随机抽样是指从总体中随机选择若干个个体组成样本的方法。
这种抽样方法确保了每个个体被选中的概率相等,有效减小了抽样误差。
简单随机抽样适用于总体规模较小、分布较均匀的情况。
其次是分层抽样。
分层抽样是指将总体按一定的特征进行分层,然后从每个层中随机选择若干个个体组成样本的方法。
这种抽样方法可以确保样本中各个层的代表性,提高了统计结果的准确性。
例如,对某个城市的人口进行调查,可以将总体分为不同的年龄段、职业、收入等层,然后再从每个层中随机抽取个体。
再次是整群抽样。
整群抽样是指将总体划分为若干个互不重叠的群组(如城市、学校、企业等),然后从部分群组中选择全部个体进行调查的方法。
这种抽样方法减少了调查的工作量和成本,同时保证了样本的代表性。
例如,对某个市的幼儿园进行调查,可以先选取几所典型的幼儿园,再对这些幼儿园进行全面调查。
最后是系统抽样。
系统抽样是指按照一定的规则从总体中选择个体组成样本的方法。
例如,某个调查需要对1000个人进行问卷调查,可以先按照某种规则(如每隔10个人选一个)选取一个初始个体,然后再按照相同的规则选取其他个体。
这种抽样方法比较简单,适用于样本容量较大的情况。
在进行抽样时,还需要确定抽样容量和抽样比例。
抽样容量是指样本中个体的数量,一般应根据总体的大小、分布和调查的目的来确定。
抽样比例是样本容量与总体容量之间的比值,一般应根据总体的特点和抽样方法来确定。
综上所述,概率统计中的抽样方法是从总体中选择个体进行调查和研究的重要手段。
不同的抽样方法适用于不同的情况,选择合适的抽样方法可以提高统计结果的可靠性和可行性。
概率论第一章 概率论的基本概念 PPT
试验者
n
nA
fn (A)
德.摩根
2048
1061
0.5181
蒲丰
4040
2048
0.5069
费勒
10000
4979
0.4979
K.皮尔逊
12000
6019
0.5016
K.皮尔逊
24000
12012
0.5005
一口袋中有6个乒乓球,其中4个白的,2个红的.有
放回地进行重复抽球,观察抽出红色球的次数。
基本事件:随机事件仅包含一个样本点ω,单点子集{ω}。 复合事件:包含两个或两个以上样本点的事件。
事件发生:例如,在试验E2中,无论掷得1点、3点还是5点, 都称这一次试验中事件A发生了。
如,在试验E1中{H}表示“正面朝上”,就是个基本事件。
两个特殊的事件
必然事件:Ω; 不可能事件:φ.
既然事件是一个集合,因此有关事件间的关系、 运算及运算规则也就按集合间的关系、运算及运算规 则来处理。
如何研究随机现象呢?
1.1.2 随机试验
例1-1: E1: 抛一枚硬币,观察正面H、反面T出现的情况; E2: 掷一颗骰子,观察出现的点数; E3: 记录110报警台一天接到的报警次数; E4: 在一批灯泡中任意抽取一个,测试它的寿命; E5: 记录某物理量的测量误差;
E6: 在区间0,1上任取一点,记录它的坐标。
1.1.3 随机事件与样本空间
v样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. v样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
例1-2:
分别写出例1-1各试验 Ek 所对应的样本空间
概率统计第1章
条件: m n ,
7/28/2017
即 m = 0, 1, 2, ……, n.
常见模型(3) ——彩票问题幸运35选7:P21
购买:从01,……,35 中选7个号码. 开奖:7个基本号码,1个特殊号码.
并: A B 交: A B = AB 差: A B 对立: A A 与 B 至少有一发生 A 与 B 同时发生 A发生但 B不发生 A 不发生
ቤተ መጻሕፍቲ ባይዱ
注意:对立→互不相容,反之不然 应用举例:P7
事件运算的图示
AB
AB
AB
事件的运算性质
德莫根公式
A B A B;
1.2.1 概率的公理化定义
定义1.2.1:设Ω为一个样本空间,F为Ω的某些 子集组成的一个事件域,如果对任意一个事件A F,定义在F上的一个实质函数P(A)满足
非负性公理:若 AF,则P(A)0;
正则性公理: P(Ω)=1;
可列可加性公理:若A1, A2, ……, An ……
例1.1.1
口袋中有a 个白球、b 个黑球,从中一个一个不返 回地取球。A = “取到最后一个是白球”, B = “取到最后一段是白球”。问 A 与 B 的关系? 解:1) 显然,B 发生必然导致A发生,所以 BA;.
2) 又因为A发生必然导致B发生,所以 AB, 由此得 A = B.
1.1.6 事件的运算
P(A)=0.4,P(B)=0.3,P(AB)=0.6, 求 P(AB).
解:因为 P(AB) = P(A)P(AB) ,所以先求 P(AB) 由加法公式得 P(AB) = P(A)+P(B)P(AB) = 0.4+0.30.6=0.1 所以 P(AB) = P(A)P(AB) = 0.3
概率论与数理统计浙大第四版习题答案全
概率论与数理统计习题答案 完全版 浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
抽样与测量
抽样与测量抽样与测量第一部分:抽样一、抽样的基本概念抽样,就是从总体中抽取样本的过程。
抽样的目的和作用在于科学地挑选总体的部分作为总体的代表,以便通过对这局部的研究,取得能说明总体的足够可靠的资料,准确地推断总体的情况,从而认识总体的特征或规律性。
为了使统计推断正确可靠,抽取的样本对于总体来说必须具有代表性。
⒈概率抽样与非概率抽样抽样方法基本分两大类:概率抽样与非概率抽样。
遵循随机化原则的抽样称为概率抽样。
不是按照随机化原则进行的抽样称为非概率抽样。
概率论研究证明,要使样本在性质上对总体最有代表性,抽样时就需遵循随机化原则,即抽样完全按随机的方式进行,总体中每一个研究对象被抽取到的机会必须是均等的,即有同等被抽取到的可能性。
这样总体中原来多的部分被抽取到的机会就多,原来少的部分被抽取到的机会就少,抽取的样本就能很好地代表总体。
总体中每一个对象被抽取的概率是已知的,概率抽样的最大优点,是能用概率计算的方法,客观地评价研究结果的精确度,并且可以按照课题所要求的精确程度,去考虑样本容量和具体的抽样方法。
因此,在准备着手抽样研究时,应该理解概率抽样的意义,尽可能采用。
⒉抽样误差与抽样偏差因为在抽样研究中,只取总体中的一部分作为直接研究的对象,然后根据样本结果去推算总体的一般情况,而这样的推算与总体的实际有着偏差,这种偏差称为抽样误差。
例如,抽样调查学生利用网上资源进行学习的能力时,如果主要是抽取了在家庭里有电脑,平常上网时间较多的学生组成样本,则样本的平均能力就会高于总体的平均能力;如果主要是抽取了较少机会接触电脑和不具备上网条件的学生组成样本,则样本的平均能力就会低于总体的平均能力。
这样的误差是不能完全避免的,但是所抽样本对总体的代表性越好,抽样误差就越小。
抽样偏差则完全不同。
当一个样本未能代表它所要代表的总体时,偏差就进入了。
偏差可能是由多种原因造成的。
只要使用了非随机抽样,或者随机抽样使用的总体源有偏差时,抽样偏差就会发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 题: 1.3抽样方法(二)
教学目的: 1 理解什么是系统抽样
2.会用系统抽样从总体中抽取样
教学重点:系统抽样的概念及如何用系统抽样获取样本
教学难点:与简单随机抽样一样,系统抽样也属于等概率抽样,这是本节课的一个难点;当总体中的个体数不能被样本容量整除时,可先用简单随机抽样从总体中剔除几个个体,使剩下的个体数能被样本容量整除,然后再按系统抽样进行,这时在整个抽样过程中每个个体被抽取的概率仍然是相等的.这是本节课的又一难点
授课类型:新授课
课时安排:1课时
教学方法:讲练结合法
教学过程:
一、复习引入:
1. 在统计学里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量.总体中所有个体的平均数叫做总体平均数,样本中所有个体的平均数叫做样本平均数.
2.简单随机抽样:设一个总体的个体数为N .如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样
3.⑴用简单随机抽样从含有N 个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为N
1;在整个抽样过程中各个个体被抽到的概率为N n ; ⑵简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
⑶简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.
4.抽签法:先将总体中的所有个体(共有N 个)编号(号码可从1到N ),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n 次,就得到一个容量为n 的样本
适用范围:总体的个体数不多时
优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.
5.随机数表法: 随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码
6.简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样简单随机抽样适用于总体中的个体数不多的情况,那么当总体中的个体数比较多时,应采用什么样的抽样方法呢?
这就是我们本节课所要学习的内容——系统抽样.
二、讲解新课:
1.系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样.
2.系统抽样的步骤: ①采用随机的方式将总体中的个体编号为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等
②为将整个的编号分段(即分成几个部分),要确定分段的间隔k 当N n
(N 为总体中的个体的个数,n
为样本容量)是整数时,k=
N n ;当N n 不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数N '能被n 整除,这时k=N n
'. ③在第一段用简单随机抽样确定起始的个体编号
④按照事先确定的规则抽取样本(通常是将l 加上间隔k ,得到第2个编号l +k,第3个编号l +2k ,这样继续下去,直到获取整个样本)
说明:
①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;
②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的.
③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除在进行系统抽样
三、讲解范例:
例1.为了了解参加某种知识竞赛的1000名学生的成绩,应采用什么抽样方法恰当?简述抽样过程. 解:适宜选用系统抽样,抽样过程如下:
⑴随机地将这1000名学生编号为1,2,3, (1000)
⑵将总体按编号顺序均分成50部分,每部分包括20个个体.
⑶在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是18.
⑷以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998
例2.为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本. 解:⑴随机地将这1003个个体编号为1,2,3, (1003)
⑵利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数1000能被样本容量50整除,然后再按系统抽样的方法进行.
说明:总体中的每个个体被剔除的概率相等(10033),也就是每个个体不被剔除的概率相等⎪⎭⎫ ⎝⎛10031000采用系统抽样时每个个体被抽取的概率都是
100050,所以在整个抽样过程中每个个体被抽取的概率仍然相等,都是1003
5010005010031000=⨯ 四、课堂练习:
1 . 一条流水线生产某种产品,每天都可生产128件这种产品,我们要对一周内生产的这种产品作抽样检验,方法是抽取这一周内每天下午2点到2点半之间下线的8件产品作检验.这里采用了哪种抽取样本的方法?
2. 在534名学生中抽取一个容量为31的样本作身体素质测试,用系统抽样法进行抽取,并写出过程 答案:1. 系统抽样.2.(略)
五、小结 :(1)系统抽样适用于总体中的个数较多的情况,因为这时采用简单随机抽样显得不方便(2)系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段进行抽样时,采用的是简单随机抽样(3)与简单随机抽样一样,系统抽样也属于等概率抽样
六、课后作业:
七、板书设计(略)
八、课后记:。