上海市崇明区2018届九年级数学上学期期末调研测试试题沪科版

合集下载

┃精选3套试卷┃2018届上海市九年级上学期期末学业质量检查模拟数学试题

┃精选3套试卷┃2018届上海市九年级上学期期末学业质量检查模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),AC=1.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,1)B .(1,1)C .(﹣1,1)D .(1,﹣1)【答案】A 【分析】根据旋转变换的性质得到旋转变换后点A 的对应点坐标,根据平移的性质解答即可.【详解】∵点C 的坐标为(﹣1,0),AC=1,∴点A 的坐标为(﹣3,0),如图所示,将Rt △ABC 先绕点C 顺时针旋转90°,则点A′的坐标为(﹣1,1),再向右平移3个单位长度,则变换后点A′的对应点坐标为(1,1),故选A .【点睛】本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键. 2.抛物线23123y x x =-+-的顶点坐标是( )A .(2,9)B .(2,-9)C .(-2,9)D .(-2,-9)【答案】A【分析】把抛物线解析式化为顶点式即可求得答案.【详解】∵223123=3(2)9y x x x =-+---+,∴顶点坐标为(2,9).故选:A .【点睛】本题主要考查了二次函数的性质,掌握二次函数的顶点式是解答此题的关键,即在2()y a x h k =-+中,对称轴为x=h ,顶点坐标为(h ,k ).3.如图,ABCD 是矩形纸片,翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,折痕分别是CE ,AF ,则AE EB等于( )A 3B .2C .1.5D 2【答案】B 【详解】解:∵ABCD 是矩形,∴AD=BC ,∠B=90°,∵翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,∴AO=AD ,CO=BC ,∠AOE=∠COF=90°,∴AO=CO ,AC=AO+CO=AD+BC=2BC ,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=12∠ACB=30°, ∴BE=12CE , ∵AB ∥CD ,∴∠OAE=∠FCO ,在△AOE 和△COF 中,∵∠OAE=∠FCO ,AO=CO ,∠AOE=∠COF ,∴△AOE ≌△COF ,∴OE=OF ,∴EF 与AC 互相垂直平分,∴四边形AECF 为菱形,∴AE=CE ,∴BE=12AE , ∴12AE AE EB AE ==2, 故选B .【点睛】本题考查翻折变换(折叠问题).4.如图,Rt △ABC 中,∠B =90°,AB =3,BC =2,则cosA =( )A .32B .23C .21313D .3133【答案】D【分析】根据勾股定理求出AC ,根据余弦的定义计算得到答案. 【详解】由勾股定理得,AC =22AB BC +=2232+=13,则cosA =AB AC =13=31313, 故选:D .【点睛】本题考查的是锐角三角函数的定义,掌握锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦是解题的关键. 5.二次函数2y ax bx c =++图象如图所示,下列结论:①240b ac ->;②20a b +=;③0abc >;④420a b c ++>;⑤230ax bx c ++-=有两个相等的实数根,其中正确的有( )A .1个B .2个C .3个D .4个【答案】D 【分析】根据图象与x 轴有两个交点可判定①;根据对称轴为12b a-=可判定②;根据开口方向、对称轴和与y 轴的交点可判定③;根据当0x =时0y >以及对称轴为1x =可判定④;利用二次函数与一元二次方程的联系可判定⑤.【详解】解:①根据图象与x 轴有两个交点可得240b ac ->,此结论正确;②对称轴为12b a-=,即2b a =-,整理可得20a b +=,此结论正确; ③抛物线开口向下,故0a <,所以20b a =->,抛物线与y 轴的交点在y 轴的正半轴,所以0c >,故0abc <,此结论错误;④当0x =时0y >,对称轴为1x =,所以当2x =时0y >,即420a b c ++>,此结论正确; ⑤当3y =时,只对应一个x 的值,即230ax bx c ++-=有两个相等的实数根,此结论正确; 综上所述,正确的有4个,故选:D .【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程,掌握二次函数的图象与性质是解题的关键.6.若关于x 的函数y=(3-a )x 2-x 是二次函数,则a 的取值范围( )A .a≠0B .a≠3C .a <3D .a >3 【答案】B【分析】根据二次函数的定义,二次项系数不等于0列式求解即可.【详解】根据二次函数的定义,二次项系数不等于0,3-a ≠0,则a≠3,故选B【点睛】本题考查二次函数的定义,熟记概念是解题的关键.7.已知二次函数()22y x a b =---的图象如图所示,则反比例函数ab y x=与一次函数y ax b =+的图象可能是 ( )A .B .C .D .【答案】B【分析】观察二次函数图象,找出a >0,b >0,再结合反比例函数、一次函数图象与系数的关系,即可得出结论.【详解】观察二次函数图象,发现:抛物线()22y x a b =---的顶点坐标()a b -,在第四象限,即00a b >-<,, ∴0a >,0b >. ∵反比例函数ab y x=中0ab >, ∴反比例函数图象在第一、三象限;∵一次函数0y ax b a =+>,,0b >,∴一次函数y ax b =+的图象过第一、二、三象限.故选:B .【点睛】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,解题的关键是根据二次函数的图象找出0a >,0b >.解决该题型题目时,熟记各函数图象的性质是解题的关键.8.下列事件中,属于必然事件的是( )A .明天的最高气温将达35℃B .任意购买一张动车票,座位刚好挨着窗口C .掷两次质地均匀的骰子,其中有一次正面朝上D .对顶角相等【答案】D【解析】A 、明天最高气温是随机的,故A 选项错误;B 、任意买一张动车票,座位刚好挨着窗口是随机的,故B 选项错误;C 、掷骰子两面有一次正面朝上是随机的,故C 选项错误;D 、对顶角一定相等,所以是真命题,故D 选项正确.【详解】解:“对顶角相等”是真命题,发生的可能性为100%,故选:D .【点睛】本题的考点是随机事件.解决本题需要正确理解必然事件的概念:必然事件指在一定条件下一定发生的事件.9.如果零上2℃记作+2℃,那么零下3℃记作( )A .-3℃B .-2℃C .+3℃D .+2℃【答案】A【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.故选A.10.如图是半径为2的⊙O 的内接正六边形ABCDEF ,则圆心O 到边AB 的距离是( )A.2 B.1 C.3D.3 2【答案】C【分析】过O作OH⊥AB于H,根据正六边形ABCDEF的性质得到∠AOB=3606︒=60°,根据等腰三角形的性质得到∠AOH=30°,AH=12AB=1,于是得到结论.【详解】解:过O作OH⊥AB于H,在正六边形ABCDEF中,∠AOB=3606︒=60°,∵OA=OB,∴∠AOH=30°,AH=12AB=1,∴OH=3AH=3,故选:C.【点睛】本题主要考查了正多边形和圆,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.11.关于x的一元二次方程210x mx--=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定【答案】A【分析】根据根的判别式即可求解判断.【详解】∵△=b2-4ac=m2+4>0,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.12.已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是( )A .4B .﹣4C .1D .﹣1【答案】D【详解】解:根据一元二次方程根的判别式得,△()224a 0=-⋅-=, 解得a=﹣1.故选D .二、填空题(本题包括8个小题)13.如图所示,△ABC 是⊙O 的内接三角形,若∠BAC 与∠BOC 互补,则∠BOC 的度数为_____.【答案】120°【分析】利用圆周角定理得到∠BAC =12∠BOC ,再利用∠BAC+∠BOC =180°可计算出∠BOC 的度数. 【详解】解:∵∠BAC 和∠BOC 所对的弧都是BC ,∴∠BAC =12∠BOC ∵∠BAC+∠BOC =180°, ∴12∠BOC+∠BOC =180°, ∴∠BOC =120°.故答案为:120°.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解决本题的关键.14.如图,矩形纸片ABCD 中,AB =6cm ,AD =10cm ,点E 、F 在矩形ABCD 的边AB 、AD 上运动,将△AEF 沿EF 折叠,使点A′在BC 边上,当折痕EF 移动时,点A′在BC 边上也随之移动.则A′C 的取值范围为_____.【答案】4cm≤A′C≤8cm【分析】根据矩形的性质得到∠C=90°,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时,点A’在BC边上也随之移动,由此得到:点E与B重合时,A′C最小,当F与D重合时,A′C最大,据此画图解答.【详解】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=10cm,CD=AB=6cm,当点E与B重合时,A′C最小,如图1所示:此时BA′=BA=6cm,∴A′C=BC﹣BA′=10cm﹣6cm=4cm;当F与D重合时,A′C最大,如图2所示:此时A′D=AD=10cm,∴A′C=22=8(cm);106综上所述:A′C的取值范围为4cm≤A′C≤8cm.故答案为:4cm≤A′C≤8cm.【点睛】此题考查折叠问题,利用了矩形的性质,解题中确定点E与F的位置是解题的关键.15.如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.【答案】5.【分析】根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分 N在矩形ABCD 内部与 N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.【详解】∵四边形ABCD为矩形,∴∠BAD=90°,∵将△ABM沿BM折叠得到△NBM,∴∠MAB=∠MNB=90°.∵M为射线AD上的一个动点,△NBC是直角三角形,∴∠NBC=90°与∠NCB=90°都不符合题意,∴只有∠BNC=90°.①当∠BNC=90°,N在矩形ABCD内部,如图3.∵∠BNC=∠MNB=90°,∴M、N、C三点共线,∵AB =BN =3,BC =5,∠BNC =90°,∴NC =4.设AM =MN =x ,∵MD =5﹣x ,MC =4+x ,∴在Rt △MDC 中,CD 5+MD 5=MC 5,35+(5﹣x )5=(4+x )5,解得x =3;当∠BNC =90°,N 在矩形ABCD 外部时,如图5.∵∠BNC =∠MNB =90°,∴M 、C 、N 三点共线,∵AB =BN =3,BC =5,∠BNC =90°,∴NC =4,设AM =MN =y ,∵MD =y ﹣5,MC =y ﹣4,∴在Rt △MDC 中,CD 5+MD 5=MC 5,35+(y ﹣5)5=(y ﹣4)5,解得y =9,则所有符合条件的M 点所对应的AM 和为3+9=5.故答案为5.【点睛】本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.16.当x_____时,|x ﹣2|=2﹣x .【答案】≤2【分析】由题意可知x ﹣2为负数或0,进而解出不等式即可得出答案.【详解】解:由|x ﹣2|=2﹣x ,可得20x -≤,解得:2x ≤.故答案为:≤2.【点睛】本题考查绝对值性质和解不等式,熟练掌握绝对值性质和解不等式相关知识是解题的关键.17.在 ABC 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE =________时,以A 、D 、E 为顶点的三角形与 ABC 相似. 【答案】51235或 【解析】当AE AB AD AC =时, ∵∠A=∠A ,∴△AED ∽△ABC ,此时AE=·621255AB AD AC ⨯==; 当AD AB AE AC =时, ∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=·52563AC AD AB ⨯==; 故答案是:12553或. 18.如图,公路互相垂直,公路的中点与点被湖隔开,若测得的长为2.4km ,则两点间的距离为______km.【答案】1.1【解析】根据直角三角形斜边上的中线等于斜边的一半,可得MC= AB=1.1km .【详解】∵在Rt △ABC 中,∠ACB=90°,M 为AB 的中点,∴MC=AB=AM=1.1(km).故答案为:1.1.【点睛】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.三、解答题(本题包括8个小题)19.已知:如图,将△ADE 绕点A 顺时针旋转得到△ABC ,点E 对应点C 恰在D 的延长线上,若BC ∥AE .求证:△ABD 为等边三角形.【答案】证明见解析.【分析】由旋转的性质可得ACB E ∠=∠,AC AE =,可得E ACE ∠=∠,由平行线的性质可得180BCE E ∠+∠=︒,可得60E ∠=︒,则可求60BAD ∠=︒,可得结论.【详解】解:由旋转知:△ADE ≌△ABC ,∴∠ACB =∠E ,AC =AE ,∴∠E =∠ACE ,又BC ∥AE ,∴∠BCE+∠E =180°,即∠ACB+∠ACE+∠E =180°,∴∠E =60°,又AC =AE ,∴△ACE 为等边三角形,∴∠CAE =60°又∠BAC =∠DAE∴∠BAD =∠CAE =60°又AB =AD∴△ABD 为等边三角形.【点睛】本题考查了旋转的性质,等边三角形的性质,平行线的性质等知识,求出60CAE ∠=︒是本题的关键. 20.一个二次函数的图象经过(3,1),(0,-2),(-2,6)三点.求这个二次函数的解析式并写出图象的顶点.【答案】二次函数为222y x x -=-,顶点(1,-3).【分析】先设该二次函数的解析式为y=ax 2+bx+c (a ≠0),利用待定系数法求a ,b ,c 的值,得到二次函数的解析式,然后化为顶点式,即可得到顶点坐标.【详解】解:∵二次函数的图象经过(0,-2),可设所求二次函数为22y ax bx =+-, 由已知,函数的图象不经过(3,1),(-2,6)两点,可得关于a 、b 的二元一次方程组9321,422 6.a b a b +-=⎧⎨--=⎩解这个方程,得1,2.a b =⎧⎨=-⎩∴二次函数为:222y x x -=-;化为顶点式得:2(1)3y x =--∴顶点为:(1,3)-.【点睛】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法以及顶点公式求法等知识,难度不大.21.将一元二次方程232=1x x --化为一般形式,并求出根的判别式的值.【答案】23210x x -+=,-8【分析】先移项,将方程化为一般式,然后算判别式的大小可得.【详解】解:将方程化为一般形式为:23210x x -+=∴a=3,b=-2,c=1∴ 根的判别式的值为224(2)4318b ac -=--⨯⨯=-.【点睛】本题考查一元二次方程的化简和求解判别式,注意此题的判别式为负数,即表示方程无实数根. 22.如图所示的双曲线是函数3(m y m x-=为常数,0x >)图象的一支若该函数的图象与一次函数1y x =+的图象在第一象限的交点为()2,A n ,求点A 的坐标及反比例函数的表达式.【答案】点A 的坐标为()2,3;反比例函数的表达式为6y x=. 【分析】先将x=2代入一次函数1y x =+中可得,点A 的坐标为()2,3,再将点A 的坐标代入3m y x -=可得反比例函数的解析式.【详解】解:点()2,A n 在一次函数1y x =+的图象上,213,n ∴=+=∴点A 的坐标为()2,3.又点A 在反比例函数3(m y m x-=为常数,0x >)的图象上,3236,m ∴-=⨯=∴反比例函数的表达式为6y x=. 【点睛】本题考查反比例函数和一次函数的交点问题和解析式,熟练掌握待定系数法是解题的关键.23.解下列方程:210252(5)x x x -+=-【答案】x 1=5,x 2=1.【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x 2-10x+25=2(x-5),(x-5)2-2(x-5)=0,(x-5)(x-5-2)=0,x-5=0,x-5-2=0,x 1=5,x 2=1.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.24.如图,抛物线y=ax 2 +bx+ 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长;(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK 的面积最大?并求出最大面积.【答案】(1)2142y x x =--+顶点D 的坐标为(-1,92) (2)H (34,158) (2)K (-32,358) 【分析】(1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D 的坐标;(2)根据抛物线的解析式可求出C 点的坐标,由于CD 是定长,若△CDH 的周长最小,那么CH+DH 的值最小,由于EF 垂直平分线段BC ,那么B 、C 关于直线EF 对称,所以BD 与EF 的交点即为所求的H 点;易求得直线BC 的解析式,关键是求出直线EF 的解析式;由于E 是BC 的中点,根据B 、C 的坐标即可求出E 点的坐标;可证△CEG ∽△COB ,根据相似三角形所得的比例线段即可求出CG 、OG 的长,由此可求出G 点坐标,进而可用待定系数法求出直线EF 的解析式,由此得解;(2)过K 作x 轴的垂线,交直线EF 于N ;设出K 点的横坐标,根据抛物线和直线EF 的解析式,即可表示出K 、N 的纵坐标,也就能得到KN 的长,以KN 为底,F 、E 横坐标差的绝对值为高,可求出△KEF 的面积,由此可得到关于△KEF 的面积与K 点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K 点坐标.【详解】(1)由题意,得164404240a b a b -+=⎧⎨++=⎩解得12a =-,b=-1. 所以抛物线的解析式为2142y x x =--+,顶点D 的坐标为(-1,92). (2)设抛物线的对称轴与x 轴交于点M .因为EF 垂直平分BC ,即C 关于直线EG 的对称点为B ,连结BD 交于EF 于一点,则这一点为所求点H ,使DH+CH 最小,即最小为=2CD ==. ∴△CDH 的周长最小值为CD+DR+CH=2. 设直线BD 的解析式为y=k 1x+b ,则11112092k b k b +=⎧⎪⎨-+=⎪⎩解得132k =-,b 1= 2. 所以直线BD 的解析式为y=32-x+ 2. 由于Rt △CEG ∽△COB ,得CE:CO=CG:CB ,所以CG= 2.3,GO= 1.3.G (0,1.3).同理可求得直线EF 的解析式为y=12x+32. 联立直线BD 与EF 的方程,解得使△CDH 的周长最小的点H (34,158). (2)设K (t ,2142t t --+),x F <t <x E .过K 作x 轴的垂线交EF 于N . 则KN=y K -y N =2142t t --+-(12t+32)=2135222t t --+.所以S △EFK =S △KFN +S △KNE =12KN (t+ 2)+12KN (1-t )= 2KN= -t 2-2t+ 3 =-(t+32)2+294. 即当t=-32时,△EFK 的面积最大,最大面积为294,此时K (-32,358). 【点睛】 本题是二次函数的综合类试题,考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和性质、三角形面积的求法、二次函数的应用等知识,难度较大.25.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别是()4,2A -, ()3,1B -,()1,2C -. (1)请画出ABC ∆关于x 轴对称的111A B C ∆;(2)以点O 为位似中心,相似比为1:2,在y 轴右侧,画出111A B C ∆放大后的222A B C ∆;【答案】(1)见解析;(2)见解析.【分析】(1)利用关于x 轴对称点的性质:横坐标相等,纵坐标互为相反数可以求出.(2)利用位似图像的性质得出对应点位置.【详解】如图所示:画出ABC ∆轴对称的111A B C ∆.画出111A B C ∆放大后的位似222A B C ∆.【点睛】本题考查了关于对称轴对称的点的性质以及位似的性质.26.解方程:(1)2x 2+3x ﹣1=0(2)1122 xx x-=+-【答案】(1)x1=3174-+,x2=3174--;(2)x=23【分析】(1)将方程化为一般形式a x2+bx+c=0确定a,b,c的值,然后检验方程是否有解,若有解,代入公式即可求解;(2)最简公分母是(x+2)(x﹣2),去分母,转化为整式方程求解,需检验结果是否为原方程的解;【详解】解:(1)∵a=2,b=3,c=-1,∴∆=b2﹣4ac=32﹣4×2×(﹣1)=17>0,∴x=-b-317=±∆±,∴x1=3174-+,x2=3174--;(2)方程两边都乘以(x+2)(x﹣2)得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=23,检验:当x=23时,(x+2)(x﹣2)≠0,所以x=23是原方程的解;【点睛】本题主要考查了解一元二次方程-公式法,解分式方程,掌握解一元二次方程-公式法,解分式方程是解题的关键.27.公司经销的一种产品,按要求必须在15天内完成销售任务.已知该产品的销售价为62元/件,推销员小李第x天的销售数量为y件,y与x满足如下关系:y=8(05)510(515) x xx x⎧⎨+<⎩(1)小李第几天销售的产品数量为70件?(2)设第x天销售的产品成本为m元/件,m与x的函数图象如图,小李第x天销售的利润为w元,求w与x的函数关系式,并求出第几天时利润最大,最大利润是多少?【答案】(1)小李第1天销售的产品数量为70件;(2)第5天时利润最大,最大利润为880元.【分析】(1)根据y和x的关系式,分别列出方程并求解,去掉不符合情况的解后,即可得到答案;(2)根据m 与x 的函数图象,列出m 与x 的关系式并求解系数;然后结合利润等于售价减去成本后再乘以销售数量的关系,利用一元一次函数和一元二次函数的性质,计算得到答案.【详解】(1)如果8x =70得x =354>5,不符合题意; 如果5x+10=70得x =1.故小李第1天销售的产品数量为70件;(2)由函数图象可知:当0≤x≤5,m =40当5<x≤15时,设m =kx+b将(5,40)(15,60)代入,得5401560k b k b +=⎧⎨+=⎩∴2k =且b=30∴m =2x+30①当0≤x≤5时w =(62﹣40)•8x =176x∵w 随x 的增大而增大∴当x =5时,w 最大为880;②当5<x≤15时w =(62﹣2x ﹣30)(5x+10)=﹣10x 2+140x+320∴当x =7时,w 最大为810∵880>810∴当x =5时,w 取得最大值为880元故第5天时利润最大,最大利润为880元.【点睛】本题考察了从图像获取信息、一元一次函数、一元二次函数的知识;求解本题的关键为熟练掌握一元一次和一元二次函数的性质,并结合图像计算得到答案.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )A .B .C .D .【答案】B【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选B .【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.2.如图, 抛物线2y ax bx c =++与x 轴交于点A (-1,0),顶点坐标(1,n )与y 轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①30a b +<;②213a -≤≤-;③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程21ax bx c n ++=-有两个不相等的实数根.其中结论正确的个数为( )A .1 个B .2 个C .3 个D .4 个【答案】D 【解析】利用抛物线开口方向得到a <0,再由抛物线的对称轴方程得到b=-2a ,则3a+b=a ,于是可对①进行判断;利用2≤c≤3和c=-3a 可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax 2+bx+c 与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a <0,而抛物线的对称轴为直线x=-b2a=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.3.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣12<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为()A.0 B.1 C.1 D.3【答案】B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣12<x <1时,y <0,符合题意; (3)﹣1<x 1<0,3<x 1<4时,x 1离对称轴远,故错误,不符合题意; 故选择:B . 【点睛】本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.4.点P(-6,1)在双曲线ky x=上,则k 的值为( ) A .-6 B .6C .16-D .16【答案】A【分析】根据反比例函数图象上点的坐标特征可直接得到答案. 【详解】解:∵点P (61-,)在双曲线ky x=上, ∴616k =-⨯=-; 故选:A. 【点睛】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 5.下列各组图形中,两个图形不一定是相似形的是( ) A .两个等边三角形 B .有一个角是100︒的两个等腰三角形 C .两个矩形 D .两个正方形【答案】C【分析】根据相似图形的定义,以及等边三角形,等腰三角形,矩形,正方形的性质对各选项分析判断后利用排除法求解.【详解】解:A 、两个等边三角形,对应边的比相等,角都是60°,相等,所以一定相似,故A 正确; B 、有一个角是100°的两个等腰三角形,100°的角只能是顶角,夹顶角的两边成比例,所以一定相似,故B 正确;C 、两个矩形,四个角都是直角,但四条边不一定对应成比例,不一定相似,故C 错误;D 、两个正方形,对应边的比相等,角都是90°,相等,所以一定相似,故D 正确. 故选:C . 【点睛】本题考查了相似图形的判断,严格按照定义,对应边成比例,对应角相等进行判断即可,另外,熟悉等腰三角形,等边三角形,正方形的性质对解题也很关键.6.如图,PA 是⊙O 的切线,OP 交⊙O 于点B ,如果1sin 2P =,OB=1,那么BP 的长是( )A .4B .2C .1D .3【答案】C【分析】根据题意连接OA 由切线定义可知OA 垂直AP 且OA 为半径,以此进行分析求解即可. 【详解】解:连接OA ,已知PA 是⊙O 的切线,OP 交⊙O 于点B ,可知OA 垂直AP 且OA 为半径,所以三角形OAP 为直角三角形,∵1sin 2P =,OB=1, ∴1sin 2OA P OP ==,OA=OB=1, ∴OP=2,BP=OP-OB=2-1=1. 故选C. 【点睛】本题结合圆的切线定义考查解直角三角形,熟练掌握圆的切线定义以及解直角三角形相关概念是解题关键.7.已知函数ky x=的图象经过点(2, 3 ),下列说法正确的是( ) A .y 随x 的增大而增大 B .函数的图象只在第一象限 C .当x<0时,必y<0 D .点(-2, -3)不在此函数的图象上【答案】C【解析】∵图象经过点(2,3),∴k=2×3=6>0,∴图象在第一、三象限.∴只有C 正确.故选C . 8.若角αβ,都是锐角,以下结论:①若αβ<,则sin sin αβ<;②若αβ<,则cos cos αβ<;③若αβ<,则tan tan αβ<;④若90αβ+=,则sin cos αβ=.其中正确的是( ) A .①② B .①②③C .①③④D .①②③④【答案】C【分析】根据锐角范围内sin α 、cos α 、tan α 的增减性以及互余两锐角的正余弦函数间的关系可得. 【详解】①∵sin α随α 的增大而增大,正确; ②∵cos α随α 的增大而减小,错误; ③∵tan α随α 的增大而增大,正确;④若90αβ+=,根据互余两锐角的正余弦函数间的关系可得sin cos αβ=,正确; 综上所述,①③④正确 故答案为:C . 【点睛】本题考查了锐角的正余弦函数,掌握锐角的正余弦函数的增减性以及互余锐角的正余弦函数间的关系是解题的关键.9.某反比例函数的图象经过点(-2,3),则此函数图象也经过( ) A .(2,-3) B .(-3,3)C .(2,3)D .(-4,6)【答案】A【分析】设反比例函数y=kx(k 为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断. 【详解】设反比例函数y=kx(k 为常数,k≠0), ∵反比例函数的图象经过点(-2,3), ∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24, ∴点(2,-3)在反比例函数y=-6x的图象上. 故选A . 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 10.如图,ABC ∆中,//,2,3DE BC AD BD ==,则DE AEBC AC=的值为( )A .2:3B .1:2C .3:5D .2:5【答案】D【解析】根据相似三角形的判定和性质,即可得到答案. 【详解】解:∵//DE BC , ∴ADE ∆∽ABC ∆, ∴22235DE AE AD AD BC AC AB AD DB =====++; 故选:D. 【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.11.如图,已知BD 是⊙O 直径,点A 、C 在⊙O 上,AB BC =,∠AOB=60°,则∠BDC 的度数是( )A .20°B .25°C .30°D .40°【答案】C【详解】∵AB BC =,∠AOB=60°, ∴∠BDC=12∠AOB=30°. 故选C .12.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是( ) A .5 B .6C .7D .8【答案】B【分析】设白球的个数为x ,利用概率公式即可求得. 【详解】设白球的个数为x ,由题意得,从14个红球和x 个白球中,随机摸出一个球是白球的概率为0.3, 则利用概率公式得:0.314xx=+,解得:6x =,经检验,x=6是原方程的根, 故选:B. 【点睛】本题考查了等可能下概率的计算,理解题意利用概率公式列出等式是解题关键.二、填空题(本题包括8个小题)13.用一个圆心角为120︒的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为_____. 【答案】12【解析】根据扇形的弧长等于圆锥底面圆的周长列式进行求解即可. 【详解】设这个圆锥的母线长为l , 依题意,有:12024180lππ⨯⨯=, 解得:12l =, 故答案为:12. 【点睛】本题考查了圆锥的运算,正确把握圆锥侧面展开图的扇形的弧长与底面圆的周长间的关系是解题的关键.14.若12y x =,则y x x +=___________.【答案】32【分析】把所求比例形式进行变形,然后整体代入求值即可. 【详解】=1y x y x x ++,12y x =,13=+1=22y x x +∴;故答案为32. 【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键.15.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____. 【答案】y=x 1+1【解析】分析:先确定二次函数y=x 1﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x 1﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,1),所以平移后的抛物线解析式为y=x 1+1. 故答案为y=x 1+1.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 16.点A ()12,y -,B ()21,y -都在反比例函数3y x=-图象上,则1y _____2y .(填写<,>,=号) 【答案】<.【分析】根据反比例函数的增减性即可得出结论.。

沪科版2018-2019学年度第一学期期末教学质量验收九年级数学测试卷(解析版)

沪科版2018-2019学年度第一学期期末教学质量验收九年级数学测试卷(解析版)

2018-2019学年度第一学期期末教学质量验收九年级数学测试卷一、选择题(本大题共10小题,共30.0分)1.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A. y=2x2+3B. y=2x2−3C. y=2(x+3)2D. y=2(x−3)2【答案】C【解析】解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;故选:C.根据“左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.2.若a:b=3:2,且b2=ac,则b:c=()A. 4:3B. 3:2C. 2:3D. 3:4【答案】B【解析】解:∵b2=ac,∴b:a=c:b,∵a:b=3:2,∴b:c=a:b=3:2.故选:B.根据比例的基本性质,a:b=3:2,b2=ac,则b:c可求.利用比例的基本性质,对比例式和等积式进行互相转换即可得出结果.3.若点A(−6,y1),B(−2,y2),C(3,y3)在反比例函数y=2k2+3(k为常数)的图象上,则xy1,y2,y3大小关系为()A. y1>y2>y3B. y2>y3>y1C. y3>y2>y1D. y3>y1>y2【答案】D【解析】解:∵k2≥0,∴2k2+3≥3,∴反比例函数y=2k2+3(k为常数)的图象位于第一三象限,x∵−6<−2,∴0>y1>y2,∵3>0,∴y3>0,故选:D .先判断出反比例函数图象在第一三象限,再根据反比例函数的性质,在每一个象限内,y 随x 的增大而减小判断.本题考查了反比例函数图象上点的坐标特征,熟记反比例函数的增减性是解题的关键.4. 如图,DE//BC ,分别交△ABC 的边AB 、AC 于点D 、E ,AD AB =13,若AE =5,则EC 的长度为( ) A. 10B. 15C. 20D. 25【答案】A【解析】解:∵DE//BC ,∴AD AB =AE AC , ∴5AC =13, ∴AC =15.∴EC =AC −AE =15−5=10.故选:A .根据平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例,由DE//BC 得到AD AB =AEAC ,于是可计算出AC 的长,然后利用EC =AC −AE 进行计算即可. 本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.5. 如图,已知∠α的一边在x 轴上,另一边经过点A(2,4),顶点为(−1,0),则sinα的值是( )A. 25B. √55C. 35D. 45【答案】D【解析】解:作AC ⊥x 轴于点C ,由题意得,BC =3,AC =4,由勾股定理得,AB =5,则sinα=AC AB =45,故选:D .作AC ⊥x 轴于点C ,根据点的坐标特征求出点A 、B 的坐标,得到CA 、CB 的长,根据勾股定理求出AB ,根据正弦的定义解答即可.个角的正弦,邻边比斜边是这个角的余弦,对边比邻边是这个角的正切是解题的关键.6.k为任何实数,则抛物线y=2(x+k)2−k的顶点在()上.A. 直线y=x上B. 直线y=−xC. x轴D. y轴【答案】A【解析】解:∵抛物线y=2(x+k)2−k的顶点坐标为(−k,−k),∴顶点坐标满足直线y=x,故顶点总在直线y=x上,故选:A.已知抛物线解析式为顶点式,可求出顶点坐标,再确定顶点所在的直线解析式.本题考查了抛物线的顶点坐标的求法及其运用,需要熟练掌握.7.如图,放映幻灯片时,通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为()A. 6cmB. 12cmC. 18cmD. 24cm【答案】C【解析】解:∵DE//BC,∴△AED∽△ABC∴AEAC =DEBC,设屏幕上的小树高是x,则2060=6x,解得x=18cm.故选:C.根据题意可画出图形,再根据相似三角形的性质对应边成比例解答.本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.8.如图,二次函数y=x2−4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为()A. 6B. 4C. 3D. 1【答案】C【解析】解:在y=x2−4x+3中,当y=0时,x=1、3;当x=0时,y=3;即A(1,0)、B(3,0)、C(0,3)故△ABC的面积为:12×2×3=3;根据解析式求出A 、B 、C 三点的坐标,即△ABC 的底和高求出,然后根据公式求面积. 本题考查根据解析式确定点的坐标.9. 如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,AD AB =12,△CEF 的面积为S 1,△AEB 的面积为S 2,则S 1S 2的值等于( ) A. 116B. 15C. 14D. 125 【答案】A【解析】解:∵AD AB =12,∴设AD =BC =a ,则AB =CD =2a ,∴AC =√5a ,∵BF ⊥AC ,∴△CBE∽△CAB ,△AEB∽△ABC ,∴BC 2=CE ⋅CA ,AB 2=AE ⋅AC∴a 2=CE ⋅√5a ,2a 2=AE ⋅√5a ,∴CE =√5a 5,AE =4√5a 5, ∴CE AE =14, ∵△CEF∽△AEB ,∴S 1S 2=(CE AE )2=116,故选:A .根据已知条件设AD =BC =a ,则AB =CD =2a ,由勾股定理得到AC =√5a ,根据相似三角形的性质得到BC 2=CE ⋅CA ,AB 2=AE ⋅AC 求得CE =√5a 5,AE =4√5a 5,得到CE AE =14,根据相似三角形的性质即可得到结论.本题考查了矩形的性质及相似三角形的判定,能够牢记射影定理的内容对解决本题起到至关重要的作用,难度不大.10. 如图在Rt △ABC 中,∠ACB =90∘,∠BAC =30∘,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E.设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是( )A. B. C. D.【答案】B【解析】解:解法一、∵∠ACB =90∘,∠BAC =30∘,AB =2,∴BC =1,AC =√3, ∴当x =0时,y 的值是√3,当x =1时,y 的值是2√33, ∵当x =2时CD 的垂线与CA 平行,虽然x 不能取到2,但y 应该是无穷大, ∴y 与x 的函数关系图象大致是B ,过点D 作点DG ⊥AC 于点G ,过点D 作点DF ⊥BC 于点F ,∴CF =DG =x 2,DF =CG =√32(2−x), ∴EG =y −CG ,分别在直角三角形CDF 、直角三角形DGE 、直角三角形CDE 中利用勾股定理,DF 2+CF 2+DG 2+GE 2=CE 2,y =2√3(2−x).解法二、∵∠ACB =90∘,∠BAC =30∘,AB =2,∴BC =1,AC =√3.∴当x =0时,y =√3;当x =1时,y =2√33∵当x =2时,CD 的垂线与CA 平行,虽然x 不能取到2,但y 应该是无穷大, ∴y 与x 的函数关系图象大致是B 选项.故选:B .本题需先根据题意,求出BC ,AC 的长,再分别计算出当x =0和x =2时,y 的值,即可求得y 与x 的函数图象.本题主要考查了动点问题的函数图象.在解题时要能根据题意得出函数关系是解答本题的关键.11.抛物线y=−x2+2x−2的顶点坐标为______.【答案】(1,−1)【解析】解:由y=−x2+2x−2,知y=−(x−1)2−1;∴抛物线y=−x2+2x−2的顶点坐标为:(1,−1).故答案是:(1,−1).利用配方法将抛物线的解析式y=−x2+2x−2转化为顶点式解析式,然后求其顶点坐标.本题考查了二次函数的性质.二次函数的三种形式:一般式:y=ax2+bx+c,顶点式:y=(x−h)2+k;两根式:y=a(x−x1)(x−x2).12.若锐角α满足sinα≥cosα,则α的取值范围是______.【答案】45∘≤α<90∘【解析】解:∵cosα=sin(90∘−α),且sinα随α的增大而增大,∴由sinα≥cosα,即sinα≥sin(90∘−α)知α≥90∘−α,解得:a≥45∘,又α是锐角,∴45∘≤α<90∘,故答案为:45∘≤α<90∘.由cosα=sin(90∘−α)且sinα随α的增大而增大,结合sinα≥cosα知α≥90∘−α,解之可得.本题主要考查同角三角函数的关系,解题的关键是掌握同角三角函数的关系及锐角三角函数的增减性.13.在平面直角坐标系中,一直角三角板如图放置,其中30∘(k≠0)在第一象限内交于A、B角的两边与双曲线y=kx两点,若点A的纵坐标、点B的横坐标都是1,则该双曲线的解析式是______.【答案】y=√3x(k≠0)过点A、B,且点A的纵【解析】解:∵双曲线y=kx坐标、点B的横坐标都是1,∴可设A(k,1),B(1,k).如图,过A作AC⊥x轴于C,过B作BD⊥y轴于D,则AC=BD=1,∠ACO=∠BDO=90∘,OC=OD=k,∴∠AOC=∠BOD=12(∠COD−∠AOB)=12(90∘−30∘)=30∘.在Rt△AOC中,tan∠AOC=ACOC,∴OC=AC tan∠AOC∴点A的坐标为(√3,1).∵点A(√3,1)为双曲线y=kx上的点,∴k=1×√3=√3.∴反比例函数的解析式为y=√3x.故答案为y=√3x.如果过A作AC⊥x轴于C,过B作BD⊥y轴于D,那么首先证明△ACO≌△BDO,得出∠AOC=∠BOD=30∘,然后在Rt△AOC中,由AC=1,∠AOC=30∘,求出OC的值,即得到点A的坐标,由点A在双曲线上,利用待定系数法即可求出双曲线的解析式.本题考查的是反比例函数图象上点的坐标特点,涉及到利用待定系数法求反比例函数的解析式,全等三角形的判定与性质,正切函数的定义等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.14.如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45∘,测得旗杆顶端A的仰角为30∘.若旗杆与教学楼的距离为9m,则旗杆AB的高度是______m(结果保留根号)【答案】3√3+9【解析】解:在Rt△ACD中,∵tan∠ACD=ADCD,∴tan30∘=AD9,∴AD9=√33,∴AD=3√3m,在Rt△BCD中,∵∠BCD=45∘,∴BD=CD=9m,∴AB=AD+BD=3√3+9(m).根据在Rt△ACD中,tan∠ACD=ADCD ,求出AD的值,再根据在Rt△BCD中,tan∠BCD=BDCD,求出BD的值,最后根据AB=AD+BD,即可求出答案.此题考查了解直角三角形的应用−仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.15.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45∘;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF=FG.其中正确的是______.(把所有正确结论的序号都选上)【答案】①③④【解析】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF=√102−62=8,∴DF=AD−AF=10−8=2,设EF=x,则CE=x,DE=CD−CE=6−x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6−x)2+22=x2,解得x=103,∴ED=83,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=12∠ABC=45∘,所以①正确;HF=BF−BH=10−6=4,设AG=y,则GH=y,GF=8−y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8−y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,AB DE=683=94,AGDF=32,∴ABDE ≠AGDF,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=12⋅6⋅3=9,S△FGH=12⋅GH⋅HF=12×3×4=6,∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,所以④正确.故答案为①③④.由折叠性质得∠1=∠2,CE =FE ,BF =BC =10,则在Rt △ABF 中利用勾股定理可计算出AF =8,所以DF =AD −AF =2,设EF =x ,则CE =x ,DE =CD −CE =6−x ,在Rt △DEF 中利用勾股定理得(6−x)2+22=x 2,解得x =103,即ED =83;再利用折叠性质得∠3=∠4,BH =BA =6,AG =HG ,易得∠2+∠3=45∘,于是可对①进行判断;设AG =y ,则GH =y ,GF =8−y ,在Rt △HGF 中利用勾股定理得到y 2+42=(8−y)2,解得y =3,则AG =GH =3,GF =5,由于∠A =∠D 和AB DE ≠AGDF ,可判断△ABG 与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG =3,GF =5,DF =2可对④进行判断.本题考查了相似形综合题:熟练掌握折叠和矩形的性质、相似三角形的判定方法;会运用勾股定理计算线段的长.三、解答题(本大题共7小题,共70.0分)16. 计算:−12009+(−13)−1−|3tan30∘−1|.【答案】解:原式=−1−3−(3×√33−1) =−4−(√3−1)=−3−√3.【解析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17. 如图所示,在边长为1的正方形网格中,建立如下平面直角坐标系中其中△ABO 的顶点A(3,4)、B(8,1)、O(0,0)(1)以O 为位似中心,在第一象限内作出△ABO 的位似图形△A 1B 1O ,其相似比为12.(2)将△ABO 绕点O 逆时针旋转90∘得到△A 2B 2O【答案】解:(1)如图所示,△A 1B 1O 即为所求.(2)如图所示,△A 2B 2O 即为所求.【解析】(1)根据位似变换的定义和性质作出点A 和点B 的对应点,再与点O 首尾顺次连接即可得;(2)分别作出点A 和点B 绕点O 逆时针旋转90∘得到的对应点,再首尾顺次连接即可得. 本题主要考查作图−位似变换、旋转变换,解题的关键是掌握位似变换和旋转变换的定义与性质,并据此得出变换后的对应点.18. 已知二次函数y =ax 2+bx +c 的图象过A(2,0),B(0,−1)和C(4,5)三点(1)求二次函数的解析式;(2)直接写出不等式ax 2+bx +c <x +1的解集.【答案】解:(1)根据题意得{4a +2b +c =0c =−116a +4b +c =5,解得{a =12b =−12c =−1,所以抛物线解析式为y =12x 2−12x −1;(2)解方程12x 2−12x −1=x +1得x 1=−1,x 2=4,即抛物线y =ax 2+bx +c 与直线y =x +1的交点的横坐标分别为−1,4;如图, 所以当−1<x <4时,ax 2+bx +c <x +1,即不等式ax 2+bx +c <x +1的解集为−1<x <4.【解析】(1)利用待定系数法求抛物线解析式;(2)先解方程12x 2−12x −1=x +1得抛物线y =ax 2+bx +c 与直线y =x +1的交点的横坐标分别为−1,4;如图,然后写出直线在抛物线上方所对应的自变量的范围即可.本题考查了二次函数与不等式(组):对于二次函数y =ax 2+bx +c(a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.19.如图,在△ABC中,D、E在边BC上,且△ADE是等边三角形,∠BAC=120∘.试探究线段BD、DE、CE之间的数量关系,并说明理由.【答案】解:结论:DE2=BD⋅CE.理由:∵△ABC是等边三角形,∴AD=AE=DE,∠ADE=∠AED=60∘,∴∠ADB=∠AEC=120∘,∵∠BAC=120∘,∴∠B+∠BAD=∠BAD+∠CAE=60∘,∴∠B=∠CAE,∴△ABD∽△CAE,∴ADCE =BDAE,∴AD⋅AE=CE⋅BD,∴DE2=BD⋅CE.【解析】根据等边三角形的性质得到AD=AE=DE,∠ADE=∠AED=60∘,由邻补角的定义得到∠ADB=∠AEC=120∘,求得∠B=∠CAE,根据相似三角形的性质得到ADCE=BDAE,等量代换即可得到结论.本题考查了相似三角形的判定和性质,等边三角形的性质,熟练掌握相似三角形的判定定理是解题的关键.20.某海域有A,B两个港口,B港口在A港口北偏西30∘方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75∘方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】解:作AD⊥BC于D,∵∠EAB=30∘,AE//BF,∴∠FBA=30∘,又∠FBC=75∘,∴∠ABD=45∘,又AB=60,∴AD=BD=30√2,∵∠BAC=∠BAE+∠CAE=75∘,∠ABC=45∘,∴∠C=60∘,在Rt△ACD中,∠C=60∘,AD=30√2,则tanC=ADCD,∴CD =30√2√3=10√6,∴BC =30√2+10√6.故该船与B 港口之间的距离CB 的长为30√2+10√6海里.【解析】作AD ⊥BC 于D ,根据题意求出∠ABD =45∘,得到AD =BD =30√2,求出∠C =60∘,根据正切的概念求出CD 的长,得到答案.本题考查的是解直角三角形的知识的应用,掌握锐角三角函数的概念、选择正确的三角函数是解题的关键.21. 某水产养殖户进行小龙虾养殖已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为p ={14t +16(1≤t ≤40,t 为整数)−12t +46(41≤t ≤80,t 为整数),日销售量y(千克)与时问第(天)之间的函数关系如图所示.(1)求日销售量y 与时间t 的函数关系式;(2)求利润w 与时间t 的函数关系式;(3)哪一天的日销售利润最大?最大利润是多少?【答案】解:(1)设解析式为y =kt +b ,将(1,198)、(80,40)代入,得:{80k +b =40k+b=198,解得:{b =200k=−2, ∴y =−2t +200(1≤t ≤80,t 为整数);(2)设日销售利润为w ,则w =(p −6)y ,①当1≤t ≤40时,w =(14t +16−6)(−2t +200)=−12(t −30)2+2450.②当41≤t ≤80时,w =(−12t +46−6)(−2t +200)=(t −90)2−100.∴(3)∴①中当t =30时,w 最大=2450;②中当t =41时,w 最大=2301,∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.【解析】(1)利用待定系数法求解可得一次函数解析式;(2)根据“日销售利润=每斤的利润×日销售量”,结合t 的取值范围分情况讨论可得;(3)分别求得两种情况中的最值,然后比较后即可确定答案.本题主要考查二次函数的应用,解题的关键是理解题意找到相等关系并确定函数解析式、分类讨论思想的运用及二次函数的性质.22. (1)如图1,在△ABC 中,点D 、E 、Q 分别在AB 、AC 、BC 上,且DE//BC ,AQ 交DE 于点P ,求证:DP BQ =PE QC ; (2)如图,△ABC 中,∠BAC =90∘,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB =AC =1,直接写出MN 的长;②如图3,求证:MN 2=DM ⋅EN .【答案】(1)证明:在△ABQ 和△ADP 中,∵DP//BQ ,∴△ADP∽△ABQ ,∴DP BQ =AP AQ ,同理在△ACQ 和△APE 中,EP CQ=AP AQ , ∴DP BQ =PE QC .(2)①作AQ ⊥BC 于点Q .∵BC 边上的高AQ =√22, ∵DE =DG =GF =EF =BG =CF∴DE :BC =1:3又∵DE//BC ,∴AD :AB =1:3,∴AD =13,DE =√23, ∵DE 边上的高为√26,MN :GF =√26:√22, ∴MN :√23=√26:√22, ∴MN =√29. 故答案为:√29.②证明:∵∠B +∠C =90∘∠CEF +∠C =90∘,∴∠B =∠CEF ,又∵∠BGD =∠EFC ,∴△BGD∽△EFC ,∴DG CF =BG EF ,∴DG ⋅EF =CF ⋅BG ,又∵DG =GF =EF ,∴GF 2=CF ⋅BG ,由(1)得DM BG =MN GF =EN FC , ∴MN GF ×MN GF =DM BG ⋅EN CF ,∴(MN GF )2=DM BG ⋅EN CF ,∵GF 2=CF ⋅BG ,∴MN 2=DM ⋅EN .【解析】(1)可证明△ADP∽△ABQ ,△ACQ∽△ADP ,从而得出DP BQ =PE QC ;(2)①根据三角形的面积公式求出BC 边上的高√22,根据△ADE∽△ABC ,求出正方形DEFG 的边长√23,根据MN GF 等于高之比即可求出MN ; ②可得出△BGD∽△EFC ,则DG ⋅EF =CF ⋅BG ;又由DG =GF =EF ,得GF 2=CF ⋅BG ,再根据(1)DM BG =MN GF =EN FC ,从而得出答案. 本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大.。

上海市崇明区2018-2019年度第一学期九年级上册数学期末测试题

上海市崇明区2018-2019年度第一学期九年级上册数学期末测试题

2019年上海市崇明区中考数学一模试卷一、选择题(本大题共6小题,共24.0分)1.若,则的值为A. B. C. D.2.在中,如果,那么表示的A. 正弦B. 正切C. 余弦D. 余切3.已知二次函数的图象如图所示,那么a、b的符号为A. ,B. ,C. ,D. ,4.如图,如果,那么添加下列一个条件后,仍不能确定∽ 的是A. B. C. D.5.已知向量和都是单位向量,那么下列等式成立的是A. B. C. D.6.如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径,那么这两个圆的位置关系不可能是A. 内含B. 内切C. 外离D. 相交二、填空题(本大题共12小题,共48.0分)7.化简:______.8.已知线段b是线段a、c的比例中项,且,,那么______.9.在以O为坐标原点的直角坐标平面内有一点,如果AO与y轴正半轴的夹角为,那么______.10.如果一个正六边形的半径为2,那么这个正六边形的周长为______.11.如果两个相似三角形的周长比为4:9,那么它们的面积比是______.12.已知线段AB的长为10cm,点C是线段AB的黄金分割点,且,则______结果保留根号13.已知抛物线,那么这条抛物线的顶点坐标为______.14.已知二次函数,那么它的图象在对称轴的______部分是下降的填“左侧”或“右侧”.15.已知中,,,,G为的重心,那么______.16.如图,正方形DEFG的边EF在的边BC上,顶点D、G分别在边AB、AC上已知,的高,则正方形DEFG的边长为______.17.已知中,,,如果以点C为圆心的圆与斜边AB有唯一的公共点,那么的半径R的取值范围为______.18.如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,,则点M为直角点若点E、F分别为矩形ABCD边AB、CD上的直角点,且,,则线段EF的长为______.三、解答题(本大题共7小题,共78.0分)19.计算:.20.如图,在中,点D、E分别在边AB、AC上,,且.如果,求AE的长;设,,求向量用向量、表示.21.已知:如图,AO是的半径,AC为的弦,点F为的中点,OF交AC于点E,,.求AO的长;过点C作,交AO延长线于点D,求的值.22.安装在屋顶的太阳能热水器的横截面示意图如图所示已知集热管AE与支架BF所在直线相交于水箱横截面的圆心O,的半径为米,AO与屋面AB的夹角为,与铅垂线OD的夹角为,,垂足为B,,垂足为D,米.求支架BF的长;求屋面AB的坡度参考数据:,,23.如图,中,D是BC上一点,E是AC上一点,点G在BE上,连接DG并延长交AE于点F,.求证:;如果,求证:.24.如图,在平面直角坐标系xOy中,二次函数、b都是常数,且的图象与x轴交于点、,顶点为点C.求这个二次函数的解析式及点C的坐标;过点B的直线交抛物线的对称轴于点D,联结BC,求的余切值;点P为抛物线上一个动点,当时,求点P的坐标.25.如图,在中,,,,垂足为D,点P是边AB上的一个动点,过点P作交线段BD于点F,作交AD于点E,交线段CD于点G,设.用含x的代数式表示线段DG的长;设的面积为y,求y与x之间的函数关系式,并写出定义域;能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.2019年上海市崇明区中考数学一模试卷解析一、选择题(本大题共6小题,共24.0分)26.若,则的值为A. B. C. D.【答案】B【解析】解:,,则.故选:B.根据比例的基本性质:两内项的积等于两外项的积即可求解.本题考查了比例的基本性质:两内项的积等于两内项的积.27.在中,如果,那么表示的A. 正弦B. 正切C. 余弦D. 余切【答案】D【解析】解:在中,,,故选:D.根据余切的定义求解可得.本题主要考查锐角三角函数的定义,解题的关键是掌握正弦、余弦、正切、余切的定义.28.已知二次函数的图象如图所示,那么a、b的符号为A. ,B. ,C. ,D. ,【答案】A【解析】解:如图所示,抛物线开口向上,则,又因为对称轴在y轴左侧,故,因为,所以,故选:A.根据函数图象的特点:开口方向、对称轴等即可判断出a、b的符号.本题考查了二次函数的图象与系数的关系,二次函数系数符号由抛物线开口方向、对称轴确定.29.如图,如果,那么添加下列一个条件后,仍不能确定∽ 的是A. B. C. D.【答案】C【解析】解:,,,B,D都可判定 ∽选项C中不是夹这两个角的边,所以不相似,故选:C.根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.此题考查了相似三角形的判定:如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;如果两个三角形的两个对应角相等,那么这两个三角形相似.30.已知向量和都是单位向量,那么下列等式成立的是A. B. C. D.【答案】D【解析】解:A、向量和都是单位向量,但方向不一定相同,则不一定成立,故本选项错误.B、向量和都是单位向量,但方向不一定相同,则不一定成立,故本选项错误.C、向量和都是单位向量,但方向不一定相同,则不一定成立,故本选项错误.D、向量和都是单位向量,则,故本选项正确.故选:D.根据向量和都是单位向量,可知,由此即可判断.本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.31.如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径,那么这两个圆的位置关系不可能是A. 内含B. 内切C. 外离D. 相交【答案】C【解析】解:,,这两个圆的位置关系不可能外离.故选:C.利用两圆之和一定大于两圆的圆心距可判断这两个圆不可能外离.本题考查了圆与圆的位置关系:两圆的圆心距为d、两圆的半径分别为r、R:两圆外离;两圆外切;两圆相交;两圆内切;两圆内含.二、填空题(本大题共12小题,共48.0分)32.化简:______.【答案】【解析】解:原式.故答案是:.平面向量的加减计算法则与实数的加减计算法则相同.考查了平面向量,解答此类题目时,直接去括号,然后计算加减法即可.33.已知线段b是线段a、c的比例中项,且,,那么______.【答案】2【解析】解:是a、c的比例中项,,即,负数舍去.故答案是:2.根据比例中项的定义可得,从而易求b.本题考查了比例线段,解题的关键是理解比例中项的含义.34.在以O为坐标原点的直角坐标平面内有一点,如果AO与y轴正半轴的夹角为,那么______.【答案】【解析】解:过点A作轴于点B,,,,由勾股定理可知:,,故答案为:根据勾股定理以及锐角三角函数的定义即可求出答案.本题考查锐角三角函数,解题的关键是根据勾股定理求出OA的长度,本题属于基础题型.35.如果一个正六边形的半径为2,那么这个正六边形的周长为______.【答案】12【解析】解:正六边形的半径等于边长,正六边形的边长,正六边形的周长,故答案为:12.根据正六边形的半径等于边长进行解答即可.本题考查的是正六边形的性质,解答此题的关键是熟知正六边形的边长等于半径.36.如果两个相似三角形的周长比为4:9,那么它们的面积比是______.【答案】16:81【解析】解:两个相似三角形的周长比为4:9,两个相似三角形的相似比为4:9,两个相似三角形的面积比为16:81,故答案为:16:81.根据相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方解答即可.本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.37.已知线段AB的长为10cm,点C是线段AB的黄金分割点,且,则______结果保留根号【答案】【解析】解:点C是线段AB的黄金分割点,,,故答案为:.根据黄金比值是列式计算即可.本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值叫做黄金比.38.已知抛物线,那么这条抛物线的顶点坐标为______.【答案】【解析】解:抛物线的顶点坐标是故填空答案:.利用二次函数的顶点式是:,且a,h,k是常数,顶点坐标是进行解答.本题主要是对抛物线中顶点式的对称轴,顶点坐标的考查.39.已知二次函数,那么它的图象在对称轴的______部分是下降的填“左侧”或“右侧”.【答案】右侧【解析】解:二次函数中,,抛物线开口向下,抛物线图象在对称轴右侧,y随x的增大而减小下降.故答案为:右侧.根据解析式判断开口方向,结合对称轴回答问题.本题考查了二次函数的性质,根据抛物线的开口方向和对称轴,可判断抛物线的增减性.40.已知中,,,,G为的重心,那么______.【答案】【解析】解:中,,,,,为的重心,是的中线,,为的重心,,故答案为:.根据勾股定理求出AB,根据直角三角形的性质求出CD,根据三角形的重心的性质计算即可.本题考查的是三角形的重心的概念和性质,勾股定理,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.41.如图,正方形DEFG的边EF在的边BC上,顶点D、G分别在边AB、AC上已知,的高,则正方形DEFG的边长为______.【答案】2【解析】解:高AH交DG于M,如图,设正方形DEFG的边长为x,则,,,∽ ,,即,,正方形DEFG的边长为2.答:正方形DEFG的边长和面积分别为2.故答案为:2.高AH交DG于M,如图,设正方形DEFG的边长为x,则,所以,再证明∽ ,则利用相似比得到,然后根据比例的性质求出x即可.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.42.已知中,,,如果以点C为圆心的圆与斜边AB有唯一的公共点,那么的半径R的取值范围为______.【答案】或【解析】解:根据勾股定理求得,当圆和斜边相切时,则半径即是斜边上的高,等于;当圆和斜边相交,且只有一个交点在斜边上时,可以让圆的半径大于短直角边而小于长直角边,则.故半径r的取值范围是或.故答案为:或.因为要使圆与斜边只有一个公共点,所以该圆和斜边相切或和斜边相交,但只有一个交点在斜边上若,则直线与圆相交;若,则直线于圆相切;若,则直线与圆相离.此题考查了直线与圆的位置关系,此题注意考虑两种情况,只需保证圆和斜边只有一个公共点即可.43.如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,,则点M为直角点若点E、F分别为矩形ABCD 边AB、CD上的直角点,且,,则线段EF的长为______.【答案】或【解析】解:作于点H,连接EF.,,,又,∽ ,,即,或3.点F,E分别为矩形ABCD边CD,AB上的直角点,,当时,,,,.当时,此时点E与点H重合,即,综上,或.故答案为:或.作于点H,利用已知得出 ∽ ,进而得出,求得构造的直角三角形的两条直角边即可得出答案.此题考查了相似三角形的判定定理及性质和勾股定理,得出 ∽ 是解题关键.三、解答题(本大题共7小题,共78.0分)44.计算:.【答案】解:原式.【解析】直接利用特殊角的三角函数值把相关数据代入进而得出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.45.如图,在中,点D、E分别在边AB、AC上,,且.如果,求AE的长;设,,求向量用向量、表示.【答案】解:如图,,且,.又,.,,.又,,【解析】由平行线截线段成比例求得AE的长度;利用平面向量的三角形法则解答.考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.46.已知:如图,AO是的半径,AC为的弦,点F为的中点,OF交AC于点E,,.求AO的长;过点C作,交AO延长线于点D,求的值.【答案】解:是圆心,且点F为的中点,,,,设圆的半径为r,即,则,由得,解得:,即;,,,则.【解析】由垂径定理得出,设圆的半径为r,知,根据求解可得;由,知,从而根据可得答案.本题主要考查圆周角定理,解题的关键是掌握圆周角定理、垂径定理及其推论和勾股定理等知识点.47.安装在屋顶的太阳能热水器的横截面示意图如图所示已知集热管AE与支架BF所在直线相交于水箱横截面的圆心O,的半径为米,AO与屋面AB的夹角为,与铅垂线OD的夹角为,,垂足为B,,垂足为D,米.求支架BF的长;求屋面AB的坡度参考数据:,,【答案】解::,,,,,,的半径为,;,,,,的坡度为,【解析】然后在中,根据,求出OB的长度,继而可求得BF;根据,,可得,继而可求得的度数,以及AB的坡度.本题主要考查了解直角三角形的应用,解答本题的关键是求出角的度数,利用三角函数的知识即可求解,难度一般.48.如图,中,D是BC上一点,E是AC上一点,点G在BE上,连接DG并延长交AE于点F,.求证:;如果,求证:.【答案】证明:,,∽ ,,;,,∽ ,,,,B,D,G四点共圆,,.【解析】由 ∽ ,可得,即可推出结论;由 ∽ ,推出,由,推出A,B,D,G四点共圆,推出;本题考查相似三角形的判定和性质,四点共圆等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.49.如图,在平面直角坐标系xOy中,二次函数、b都是常数,且的图象与x轴交于点、,顶点为点C.求这个二次函数的解析式及点C的坐标;过点B的直线交抛物线的对称轴于点D,联结BC,求的余切值;点P为抛物线上一个动点,当时,求点P的坐标.【答案】解:将,代入,得:,解得:,二次函数的解析式为.,点C的坐标为.当时,,点D的坐标为.过点D作,垂足为点E,设抛物线对称轴与x轴的交点为点F,如图1所示.抛物线的顶点坐标为,点F的坐标为.点B的坐标为,,,,,,.,即,,,.设直线PB与y轴交于点M,如图2所示.,,即,,点M的坐标为或设直线BP的解析式为,将,代入,得:,解得:,直线BP的解析式为.同理,当点M的坐标为时,直线BP的解析式为.联立直线BP与抛物线的解析式成方程组,得:或,解得:,或,,点P的坐标为或【解析】由点A,B的坐标,利用待定系数法即可求出二次函数的解析式,再利用配发法即可求出顶点C 的坐标;利用一次函数图象上点的坐标特征可求出点D的坐标,过点D作,垂足为点E,设抛物线对称轴与x轴的交点为点F,由点B,C,D,F的坐标可得出CD,DF,BF的长,利用勾股定理可得出BC的长,利用角的正切值不变可求出DE的长,进而可求出BE的长,再利用余切的定义即可求出的余切值;设直线PB与y轴交于点M,由及的余切值可求出OM的长,进而可得出点M的坐标,由点B,M的坐标,利用待定系数法即可求出直线BP的解析式,联立直线BP及二次函数解析式成方程组,通过解方程组可求出点P的坐标.本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、解直角三角形、余切的定义、待定系数法求一次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:由点的坐标,利用待定系数法求出二次函数解析式;构造直角三角形,利用余切的定义求出的余切值;联立直线BP和抛物线的解析式成方程组,通过解方程组求出点P的坐标.50.如图,在中,,,,垂足为D,点P是边AB上的一个动点,过点P作交线段BD于点F,作交AD于点E,交线段CD于点G,设.用含x的代数式表示线段DG的长;设的面积为y,求y与x之间的函数关系式,并写出定义域;能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.【答案】解:,,,,在中,,,,∽,∽即,,,,∽若时,,,,,,且,∽不合题意舍去,若,,且,,且,∽综上所述:当BP为或时,为直角三角形.【解析】根据等腰三角形的性质可得,通过证明 ∽ ,可得,即可得DG的长度;根据相似三角形的性质可得,,根据三角形面积公式可求y与x之间的函数关系式;分,两种情况讨论,根据相似三角形的性质可求BP的长.本题是三角形综合题,考查了等腰三角形的性质,相似三角形判定和性质,以及分类讨论思想,熟练运用相似三角形的判定和性质是本题的关键.。

2018-2019学年沪科版九年级数学上学期期末测试卷及答案

2018-2019学年沪科版九年级数学上学期期末测试卷及答案

2018-2019学年九年级数学上学期期末测试题(完成时间:100分钟 满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的 相应位置上.】 1.如果一次函数 y 二kx b 的图像经过一、二、三象限,那么k 、b 应满足的条件是(▲)(A ) k 0 ,且 b 0 ; (B ) k :: 0 ,且 b :: 0 ; (C ) k 0,且 b :: 0 ; (D ) k :: 0 ,且 b 0.3 22. 计算(-X )的结果是(▲)(A ) X 5 ;( B ) -X 5 ;( C ) X 6 ;( D ) -X 6 .3. 下列各式中,• x _2的有理化因式是(▲)(A ) X 2 ;(B ) ^2 ;(C ) .. X 2 ;(D ) . x _2 .4. 如图1,在厶ABC 中,/ ACB= 90°, CD 是 AB 边上的高.如果 是(▲)(A ) 3: 2 ;( B ) 2:3 ;(C ) 3: 13 ;( D ) 2: ,13 .如图2,在口ABC 呼,点E 在边AD 上,射线CE BA 交于点F ,下列等式成立的是(▲)(A ) £ABC /DCB ; (B ) /DBC £ACB ; (C ) /DAC £DBC ; (D )匚ACD ZDAC .二、填空题:(本大题共12题,每题4分,满分48分)7. 因式分解:3a 2 a = ▲ .8. 函数y =丄的定义域是 ▲.x+19.如果关于X 的一元二次方程 x 2+2x-a=0没有实数根,那么 a 的取值范围是▲.10. 抛物线y =x 24的对称轴是 ▲.11. 将抛物线y=-x 2平移,使它的顶点移到点 P (-2 , 3),平移后新抛物线的表达式为 —▲ 12. 如果两个相似三角形周长的比是 2:3,那么它们面积的比是▲.13.如图3,传送带和地面所成斜坡 AB 的坡度为1: .3,把物体从地面 A 处送到坡顶B 处时,物体BD =45.A CEACD(A )(B )ED EFE D AFAE FAA EFE (C ) ; (• E D ABE D FC 在梯形ABCDK AG / BC 下列条件中,不能判断梯形6. ABCD1等腰梯形的是(▲)图2所经过的路程是12米,此时物体离地面的高度是▲米.14. 如图4,在厶ABC中,点D是边AB的中点.如果CA =a , CD =b,那么CB = 匚(结果用含a、b的式子表示)15.已知点D E分别在△ ABC的边BA CA的延长线上,且DE BC如果BC=3DE AC=6,那么AE=▲_.16.在厶ABC中, / C- 90°, AC=,点ABC的重心.如果GC=,那么sin^GCB的值是▲17•将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距” •如果两个等边三角形是“等距三角形”么它们周长的差是▲三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:后-(-2]° + 1-J3+2COS30120. (本题满分10分)1 4 x 2解方程:—21.x+2 x -4 x—221. (本题满分10分,第(1)小题5分,第(2)小题5分)和点B( -3 , n),直线AB与y轴交于点C.(1)求直线AB的表达式;,它们的“等距”是1,那18. 如图5,在厶AB(中, AB=7, AC®.A =45,点D E分别在边AB B(上,将△ BDE&着DE所在线翻折,点B落在点P处,PD PE分别交边ACF点M N,如果AD=2, PDL AB垂足为点D,那么MN 的长是▲如图6,在平面直角坐标系xOy中,直线y 二kx • b(k = 0)与双曲线y = —相交于点A( m , 6)图4(2)求AC : CB的值.22. (本题满分10 分)如图7,小明的家在某住宅楼 AB 的最顶层(ABL BC ,他家的后面有一建筑物 CD (CD // AB ), 他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物 CD 的底部C 的俯角是43,顶部D 的仰角是25,他又测得两建筑物之间的距离 BC 是28米,请你帮助小明求出建筑物 CD 的高度(精 确到1米).(参考数据:sin25 °~ 0.42 , cos25 °~ 0.91 , tan25sin43 °~ 0.68 , cos43 °~ 0.73 , tan43 °~ 0.93 .)23. (本题满分12分,第(1)小题4分,第(2)小题8 分)如图8,已知点D E 分别在△ ABC 勺边AC BC 上,线段BD 与 AE 交于点F ,且CD CA CE CB(1)求点C 的坐标(用含a 的代数式表示);(2)联结AC BC 若厶ABC 的面积为6,求此抛物线的表达式;(3) 在第(2)小题的条件下,点 Q 为x 轴正半轴上一点,点 G 与点C,点F 与点A 关于点Q 成中心对称,当△ CGF 为直角三角形时,求点 Q 的坐标.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)(1)求证:/ CAE=Z CBD⑵若,求证:AB AD=AF AE .24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(2图8xOy 中,抛物线y = ax bx c a 0与、x 轴相交于点A (-1 , 0)和点B,与y 轴交于点C,对称轴为直线 X =1 .如图9,在平面直角坐标系0.47 ;C图7 BDADC如图10,在边长为2的正方形ABCD^,点P是边AD上的动点(点P不与点A、点D重合),点Q是边CD上一点,联结PB PQ且/ PBC=Z BPQ(1)当QD= QC时,求/ ABP的正切值;(2)设AF=x, CQy,求y关于x的函数解析式;(3) 联结BQ在厶PBC中是否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明理由.、选择题:(本大题共6题,每题4分,满分24分) 1. A 2 . C ; 3 . C ; 4 . B ; 5 . C ; 6 . D .填空题:(本大题共12题,满分48分) .a ::: 一1;.x = _1 ; 9 7 . a 3a 1 ; 8 10 .直线x = 0或y 车由; 11 12 . 19 . 20 . 2 3 ; 17 . 6.3 ; 18 . 18 7 第19~22题每题10分,第23、24题每题12分,第25题14分, 解:原式=372_1+応_1+2>(丫 . = 5”.2 -2. ”””,””,””,”, 4:9 ; 13. 6; (本大题7题, 14 . 2b -a ; 15 . 2; 16 满分 78分) 8 分)2分) 2解:方程两边同乘 x 2 xd 得 X _2,4x_2 x ・2i=x-4 . 整理,得 x 2 -3x • 2 =0 . 解这个方程得x 1 =1, x 2 =2. 经检验,*2=2是增根,舍去. (2分)( 2分) (1分)4分) (1分)所以,原方程的根是 x=1. 21.解: (1)T 点A ( m , 6)和点B (-3 , n )在双曲线 •••m=1,n =_2.•••点将点 A (1 , 6),点 B (-3 , -2 ).,,,,,,,,,,,,,,,,,,,,,,, k b=6; A B 代入直线y =kx • b ,得 卜3k+b = -2. 解得 •直线 AB 的表达式为:y =2x • 4.,,,,,,,,,,,,,,,,,,, (k=2; b= 4.(2分)2分) 1分) (2)分别过点 A B 作AM L y 轴,BN ^y 轴,垂足分别为点 M N. 则/ AM ©Z BN©= 90°, AM 1, BN =3, • AM / BN 1分) 1分)1分) AC AM 1CB BN 3.,,,,,,,,,,,,,,,,,,,,,,,,,,,,(22 •解:过点 A 作 AE1 CD 垂足为点 E .,,,,,,,,,,,,,,,,,,,, (由题意得,AE = BC =28,Z EAD= 25°,/ EAC= 43° .,,,,,,,,,,,, (2分)在 Rt △ ADE 中,•• / DE• tan. EAD, •AE •- DE =tan25 28=0.47 28 :13.2 .,,,(3 分)在 Rt △ ACE 中,•• •• tan. EAC -CEAE ' • CE =tan4328 =0.93 28 : 26 .,,,(3 分)• DC =DE CE =13.2 26 : 39 (米). ,,,,,,,,,,,,,,,,,,(2分)1分) 1分)答:建筑物CD 的高度约为39米.23 . (1)证明:CDCA^CECB ,CE 二 CACD CB ,1分)•// ECA =/ DCB"厶—L —~% -厶—LaXZ55555555555555555555555555( 1分) • △ CAE^A CBD ,,,,,,,,,,,,,,,,,,,,,,,,,,( 1分) .^/ // ,,,,,,,,,,,,,,,,,,,,,,,,,,(1分)(2)证明:过点 C 作CG / AB 交AE 的延长线于点G.BE AB…EC CG ,(1分)BE ABAB AB• •'EC AC ,…CG AC ,( 1分)1分) * o/ / ^^^^G,,,,,,,,,,,,,,,,,,,,,,,,,,,(1分) T / G=/ BAG ••/ CAG=/ BAG ,”,”,”,””,”,(1分)•••/ CA =/ CBD / AFD=/ BFE • / AD =/ BEF ”,”,””(1分) • △ ADF^A AEB(1分)AD AFAB AD=AF AE .AE AB',,,,,,,,,,,,,,,,,,,(1分)224.解:(1 )•••抛物线 y = ax bx c a -0的对称轴为直线 X =1 ,( x — = 1,得 b - -2a . 2ac— 3a .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(* * ^C (0, —3 a ).,,,,,,,,,,,,,,,,,,,,,,,,,, ,, ((2)T 点A B 关于直线x-1对称,•••点B 的坐标为(3, 0) A^^=4, a .,,,,,,,,,,,,,,,,,,,,,,,,,, ,, (1分) 1分) 1分) 1分)S.ABC -1 . AB OC , (2)1 4 3a =62 ,a =1,•b =-2 ,c =-3 ,5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 52y 二x - 2x -3 .,,,,, 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5( 1 分) ( 1 分)把点A (-1 , 0)代入y =ax2bx c,得a-b ■ c=0 ,(3)设点Q的坐标为(m 0).过点G作GHL x轴,垂足为点H.•••点G与点C,点F与点A关于点Q成中心对称,.• Q(=QG Q/=QI= m+1, QOQl= m, O(=Gb=3,•• QF= m+1, QOQ片m, OCG143,.'. OF= 2 m+1, HF= 1. I .当/ CG& 90° 时,可得/ FGH=Z GQI4Z OQC •m=9•Q的坐标为(9, 0).1分)• tan ._FGH =tan 一OQC ,HF OC GH OQ11n .当/ CFG= 90° 时,可得,tan/FGH =tan/OFC , HF OCGH ~OF1 _ 33 2m 1••• m=4 , Q 的坐标为(4, 0).( 川.当/ GCF= 90° 时, •••/ GCF /FCO<0°,「.此种情况不存在.,,,,,,,,,,,,,,,,, (综上所述,点Q 的坐标为(4, 0)或(9, 0). 25.解:(1)延长PC 交 BC 延长线于点E.设PD =x . •••/ PB &/ BPQ EB=EP ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (•••四边形ABC [是正方形, • AD / BC • PD : CE= QD QC= PQ QE TQD= Q C •- PD=C E PQ= QE ,,,,,,,,,,,,,,,,,,,,(1 • BE= EP= x +2,「. QP= — (x +2)(2 1分)1分)在 Rt △ PDQ 中 , 2 2 1 孑的/曰PD 2 QD 2 二 PQ 2, • •• x 2 12 x 1,解得x =12丿( 2 1 1—A —=— • AP 二 AD - PD = 2 , ••• tan. ABP =竺 3AB32 3°(2)过点B 作BHL PQ 垂足为点H,联结BQ ,,,,,,,, ••• AD / BC ,CBP=Z APBPB(=Z BPQAPB=Z HPB ,,,,,(•••/ A =Z PHB= 90°, • BH = AB =2 , •/ PB = PB , • Rt △ PA 比 Rt △ PHB■ ■ AP = PH =x.,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (•/ BC = BH=2 , BQ = BQ Z C =Z BHQ= 90° ,• Rt △ BHQ Rt △ BCQ • QH = QC= y ,,,,,,,,,,,,,,,,, (1分)1分)1分)(1分)1分) 1分)1分)1分) 1分)2 2 2在 Rt △ PDQ 中 , •/ PD 2 QD 2 二 PQ 2,・.2-X 2-y x y ,4 -2x(3)存在,Z PB = 451分)1分)由(2)可得, 1 1■ PBHABH ■ HBQ HBC2 , 2 ,( 2 分)1 PBQ 二2 AB^.HBC /90 =45 1分)12。

(汇总3份试卷)2018年上海市九年级上学期期末学业质量检查模拟数学试题

(汇总3份试卷)2018年上海市九年级上学期期末学业质量检查模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知抛物线y=x2+px+q的对称轴为直线x=﹣2,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(﹣1,﹣1).若要在y轴上找一点P,使得PM+PN最小,则点P的坐标为().A.(0,﹣2)B.(0,﹣4 3)C.(0,﹣53)D.(0,﹣54)【答案】B【解析】根据线段垂直平分线的性质,可得N,′根据待定系数法,可得函数解析式,根据配方法,可得M 点坐标,根据两点之间线段最短,可得MN′,根据自变量与函数值的对应关系,可得P点坐标.【详解】如图,作N点关于y轴的对称点N′,连接MN′交y轴于P点,将N点坐标代入抛物线,并联立对称轴,得2{211pp p-=--+-=,解得4{2pq==,y=x2+4x+2=(x+2)2-2,M(-2,-2),N点关于y轴的对称点N′(1,-1),设MN′的解析式为y=kx+b,将M 、N′代入函数解析式,得22{1k b k b -+-+-==, 解得13{43k b -==, MN′的解析式为y=13x-43, 当x=0时,y=-43,即P (0,-43), 故选:B .【点睛】本题考查了二次函数的性质,利用了线段垂直平分线的性质,两点之间线段最短得出P 点的坐标是解题关键.2.若2|3|0a b -+-=,则a b 的值为( )A .9B .3C .3D .23 【答案】B【分析】根据算术平方根、绝对值的非负性分别解得a b 、的值,再计算a b 即可.【详解】2|3|0a b -+-=2=3a b ∴=,2=(3)3a b ∴=故选:B .【点睛】本题考查二次根式、绝对值的非负性、幂的运算等知识,是重要考点,难度较易,掌握相关知识是解题关键.3.如图,正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点.现随机向正方形ABCD 内投掷一枚小针,则针尖落在阴影区域的概率为( )A .18B .14C .13D .12【答案】B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,∵AB为直径,∴∠AEB=90°,而AC为正方形的对角线,∴AE=BE=CE,∴弓形AE的面积=弓形BE的面积,∴阴影部分的面积=△BCE的面积,∴镖落在阴影部分的概率=14.故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.4.小亮同学在教学活动课中,用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.线段B.三角形C.平行四边形D.正方形【答案】B【解析】根据长方形放置的不同角度,得到的不同影子,发挥想象能力逐个实验即可.【详解】解:将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选:B.【点睛】本题主要考查几何图形的投影,关键在于根据不同的位置,识别不同的投影图形.5.一次会议上,每两个参加会议的人都握了一次手,有人统(总)计一共握了45次手,这次参加会议到会的人数是x 人,可列方程为:( )A .(1)45x x +=B .1(1)452x x -=C .1(1)452x x +=D .(1)45x x -=【答案】B【分析】设这次会议到会人数为x ,根据每两个参加会议的人都相互握了一次手且整场会议一共握了45次手,即可得出关于x 的一元二次方程,此题得解.【详解】解:设这次会议到会人数为x ,依题意,得:1(1)452x x -=. 故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.若函数 k y x=-与2y ax bx c =++的图象如图所示,则函数y kx b =-的大致图象为( )A .B .C .D .【答案】A【分析】首先根据二次函数及反比例函数的图象确定k 、b 的符号,然后根据一次函数的性质确定答案即可.【详解】∵二次函数的图象开口向上,对称轴2b x a=->0 ∴a>0,b<0, 又∵反比例函数k y x=-的图形位于二、四象限, ∴-k <0,∴k >0 ∴函数y=kx-b 的大致图象经过一、二、三象限.故选: A【点睛】本题考查的是利用反比例函数和二次函数的图象确定一次函数的系数,然后根据一次函数的性质确定其大致图象,确定一次函数的系数是解决本题的关键.7.如图,是二次函数2y ax bx c =++图象的一部分,在下列结论中:①0abc >;②0a b c -+>;③210ax bx c +++=有两个相等的实数根;④42a b a -<<-;其中正确的结论有( )A .1个B .2 个C .3 个D .4个【答案】C 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对各个结论进行判断.【详解】解:由抛物线的开口方向向上可推出a >0,与y 轴的交点为在y 轴的负半轴上可推出c=-1<0, 对称轴为210b ax >=->,a >0,得b <0, 故abc >0,故①正确; 由对称轴为直线12b x a =->,抛物线与x 轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(-1,0)之间,所以当x=-1时,y >0,所以a-b+c >0,故②正确;抛物线与y 轴的交点为(0,-1),由图象知二次函数y=ax 2+bx+c 图象与直线y=-1有两个交点, 故ax 2+bx+c+1=0有两个不相等的实数根,故③错误; 由对称轴为直线2b x a =-,由图象可知122b a<-<, 所以-4a <b <-2a ,故④正确.所以正确的有3个,故选:C .【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,解题时要注意数形结合思想的运用.8.设计一个摸球游戏,先在一个不透明的盒子中放入2个白球,如果希望从中任意摸出1个球是白球的概率为13,那么应该向盒子中再放入多少个其他颜色的球.(游戏用球除颜色外均相同)( ) A .4B .5C .6D .7【答案】A【分析】利用概率公式,根据白球个数和摸出1个球是白球的概率可求得盒子中应有的球的个数,再减去白球的个数即可求得结果.【详解】解:∵盒子中放入了2个白球,从盒子中任意摸出1个球是白球的概率为13,∴盒子中球的总数=1263÷=,∴其他颜色的球的个数为6−2=4,故选:A.【点睛】本题考查了概率公式的应用,灵活运用概率=所求情况数与总情况数之比是解题的关键.9.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【答案】B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不中心对称图形,故本选项不合题意;D、不中心对称图形,故本选项不合题意.故选:B.【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.10.在一幅长60 cm、宽40 cm的长方形风景画的四周镶一条金色纸边,制成一幅长方形挂图,如图.如果要使整个挂图的面积是2816 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A .(60+2x)(40+2x)=2816B .(60+x)(40+x)=2816C .(60+2x)(40+x)=2816D .(60+x)(40+2x)=2816【答案】A【解析】根据题意可知,挂画的长和宽分别为(60+2x )cm 和(40+2x)cm ,据此可列出方程(60+2x)(40+2x)=2816【详解】若设金色纸边的宽为x cm ,则挂画的长和宽分别为(60+2x )cm 和(40+2x)cm ,可列方程(60+2x)(40+2x)=2816故答案为A.【点睛】本题考查一元二次方程的应用,找出题中的等量关系是解题关键.11.给出下列一组数:227,0.3•38-•010010001, 3.14π-,其中无理数的个数为( ) A .0B .1C .2D .3 【答案】C【分析】直接利用无理数的定义分析得出答案.【详解】解:227,•0.3,38-•010010001, 3.14π-,其中无理数为•010010001, 3.14π-,共2个数.故选C .【点睛】此题考查无理数,正确把握无理数的定义是解题关键.12.对于题目“抛物线l 1:2(1)4y x =--+(﹣1<x≤2)与直线l 2:y =m (m 为整数)只有一个交点,确定m 的值”;甲的结果是m =1或m =2;乙的结果是m =4,则( )A .只有甲的结果正确B .只有乙的结果正确C .甲、乙的结果合起来才正确D .甲、乙的结果合起来也不正确【答案】C【分析】画出抛物线l 1:y =﹣(x ﹣1)2+4(﹣1<x≤2)的图象,根据图象即可判断.【详解】解:由抛物线l 1:y =﹣(x ﹣1)2+4(﹣1<x≤2)可知抛物线开口向下,对称轴为直线x =1,顶点为(1,4),如图所示:∵m 为整数,由图象可知,当m =1或m =2或m =4时,抛物线l 1:y =﹣(x ﹣1)2+4(﹣1<x≤2)与直线l 2:y =m (m 为整数)只有一个交点,∴甲、乙的结果合在一起正确,故选:C .【点睛】本题考查了二次函数图象与一次函数图象的交点问题,作出函数的图象是解题的关键.二、填空题(本题包括8个小题)13.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A 、B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为 ▲ .【答案】1.【分析】利用垂径定理和中位线的性质即可求解.【详解】∵OC ⊥AP ,OD ⊥PB ,∴由垂径定理得:AC=PC ,PD=BD , ∴CD 是△APB 的中位线,∴CD=12AB=12×8=1. 故答案为114.一个反比例函数的图像过点()2,3A -,则这个反比例函数的表达式为__________.【答案】6y x=-【分析】设反比例函数的解析式为y=k x (k≠0),把A 点坐标代入可求出k 值,即可得答案. 【详解】设反比例函数的解析式为y=k x (k≠0), ∵反比例函数的图像过点()2,3A -,∴3=2k -, 解得:k=-6,∴这个反比例函数的表达式为6y x =-, 故答案为:6y x=-【点睛】本题考查待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键. 15.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有________ 条鱼.【答案】1000【解析】试题考查知识点:统计初步知识抽样调查思路分析:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的十分之一.具体解答过程:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的比例为:∵先从鱼塘中捞出后作完记号又放回水中的鱼有100条∴该鱼塘里总条数约为:(条)试题点评:16.如图,某景区想在一个长40m ,宽32m 的矩形湖面上种植荷花,为了便于游客观赏,准备沿平行于湖面两边的纵、横方向各修建一座小桥(桥下不种植荷花).已知修建的纵向小桥的宽度是横向小桥宽度的2倍,荷花的种植面积为21140m ,如果横向小桥的宽为xm ,那么可列出关于x 的方程为__________.(方程不用整理)【答案】()()402321140x x --=【分析】横向小桥的宽为xm ,则纵向小桥的宽为2xm ,根据荷花的种植面积列出一元二次方程.【详解】解:设横向小桥的宽为xm ,则纵向小桥的宽为2xm根据题意,()()402321140x x --=【点睛】本题关键是在图中,将小桥平移到长方形最边侧,将荷花池整合在一起计算.17.如图,在矩形ABCD 中,点E 为AB 的中点,EF EC ⊥交AD 于点F ,连接()CF AD AE >,下列结论:①AEF BCE ∠=∠;②AF BC CF +>;③CEF EAF CBE S S S =+; ④若32BC CD =,则CEF CDF ≅. 其中正确的结论是______________.(填写所有正确结论的序号)【答案】①③④【分析】根据矩形的性质和余角的性质可判断①;延长CB ,FE 交于点G ,根据ASA 可证明△AEF ≌△BEG ,可得AF=BG ,EF=EG ,进一步即可求得AF 、BC 与CF 的关系,S △CEF 与S △EAF +S △CBE 的关系,进而可判断②与③;由32BC CD =,结合已知和锐角三角函数的知识可得30BCE ∠=︒,进一步即可根据AAS 证明结论④;问题即得解决.【详解】解:∵EF EC ⊥,90AEF BEC ∴∠+∠=︒,∵四边形ABCD 是矩形,∴∠B=90°,∴90BEC BCE ∠+∠=︒,AEF BCE ∴∠=∠,所以①正确;延长CB ,FE 交于点G ,如图,在△AEF 和△BEG 中,∵∠FAE=∠GBE=90°,AE=BE ,∠AEF=∠BEG ,∴△AEF ≌△BEG (ASA ),∴AF=BG ,EF=EG ,∴S △CEG =S △CEF ,∵CE ⊥EG ,∴CG=CF ,∴AF+BC=BG+BC=CG=CF ,所以②错误;∴S△CEF=S△CEG=S△BEG+S△CBE=S△EAF+S△CBE,所以③正确;若32 BCCD=,则132311tan222BC BC BCBCE BE AB CD====⨯=∠,30BCE∴∠=︒,30DCF ECF∴∠=∠=︒,在CEF∆和CDF∆中,∵∠CEF=∠D=90°,ECF DCF∠=∠,CF=CF,CEF∴≌()CDF AAS,所以④正确.综上所述,正确的结论是①③④.故答案为:①③④.【点睛】本题考查了矩形的性质、余角的性质、全等三角形的判定和性质以及锐角三角函数等知识,综合性较强,属于常考题型,正确添加辅助线、熟练掌握上述基本知识是解题的关键.18.已知x1、x2是关于x 的方程x2+4x-5=0的两个根,则x1+ x2=_____.【答案】-1【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于x 的方程x2+1x-5=0的两个根,∴x1+ x2=-41=-1,故答案为:-1.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1+ x2=-ba.三、解答题(本题包括8个小题)19.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的1C处,点D落在点1D处,11C D交线段AE于点G.(1)求证:11BC F AGC ∆∆;(2)若1C 是AB 的中点,6AB =,9BC =,求AG 的长.【答案】(1)证明见解析;(2)94AG =.【分析】(1)利用有两组对应角相等的两个三角形相似证明即可;(2)先利用勾股定理求出BF 的长,再利用(1)中相似,列比例式即可.【详解】(1)证明:由题意可知190A B GC F ∠=∠=∠=︒,∴1190BFC BC F ∠+∠=︒,1190AC G BC F ∠+∠=︒,∴11BFC AC G ∠=∠.∴11BC F AGC ∆∆.(2)∵1C 是AB 的中点,6AB =,∴113AC BC ==.在1Rt BC F 中由勾股定理得()22239BF BF +=-,解得:4BF =.由(1)得11BC F AGC ∆∆,∴11AC AG BC BF =,即334AG =, ∴94AG =. 【点睛】此题考查的是相似三角形的判定和勾股定理,掌握用两组对应角相等证两个三角形相似、及折叠问题中相等的边和勾股定理求边是解决此题的关键.20.如图,已知在△ABC 中,AD 是∠BAC 平分线,点E 在AC 边上,且∠AED=∠ADB .求证:(1)△ABD ∽△ADE ; (2)AD 2=AB·AE.【答案】 (1)、证明过程见解析;(2)、证明过程见解析【分析】试题分析:(1)、根据角平分线得出∠BAD=∠DAE ,结合∠AED=∠ADB 得出相似;(2)、根据相似得出答案.【详解】试题解析:(1)、∵AD是∠BAC平分线∴∠BAD=∠DAE 又∵∠AED=∠ADB ∴△ABD∽△ADE(2)、∵△ABD∽△ADE ,∴AB ADAD AE=∴AD2=AB·AE.考点:相似三角形的判定与性质21.文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:(1)请直接写出a=_______,m=_______,第3组人数在扇形统计图中所对应的圆心角是_______度.(2)请补全上面的频数分布直方图.(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?【答案】(1)25,20,126;(2)见解析;(2)60万人.【分析】(1)用抽样人数-第1组人数-第3组人数-第4组人数-第5组人数,可得a的值,用第4组的人数÷抽样人数×100%可以求得m的值,用360°×第3组人数在抽样中所占的比例可得第3组在扇形统计图中所对应的圆心角的度数;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)用市民人数×第4组(40~50岁年龄段)的人数在抽样中所占的比例可以计算出40~50岁年龄段的关注本次大会的人数约有多少.【详解】(1)a=100﹣5﹣35﹣20﹣15=25,m%=(20÷100)×100%=20%,第3组人数在扇形统计图中所对应的圆心角是:360°35100⨯=126°.故答案为:25,20,126;(2)由(1)知,20≤x<30有25人,补全的频数分布直方图如图所示;(3)30020100⨯=60(万人). 答:40~50岁年龄段的关注本次大会的人数约有60万人.【点睛】本题考查了频数分布直方图、频数分布表、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,在平面直角坐标系xOy 中,直线y =12x+2与x 轴交于点A ,与y 轴交于点C ,抛物线y =ax 2+bx+c 的对称轴是x =32-且经过A ,C 两点,与x 轴的另一交点为点B . (1)求抛物线解析式.(2)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为213222y x x =--+;(2)抛物线存在点M ,点M 的坐标(32)-,或(0)2,或(2,3)-或(5,18)- 【分析】(1)根据自变量与函数值的对应关系,可得A 、C 点坐标,根据函数值相等的两点关于对称轴对称,可得B 点坐标,根据待定系数法,可得函数解析式;(2)分两种情形分别求解即可解决问题;【详解】解:(1)当x =0时,y =2,即C (0,2),当y =0时,12x+2=0,解得x =﹣4,即A (﹣4,0). 由A 、B 关于对称轴对称,得B (1,0).将A 、B 、C 点坐标代入函数解析式,得164002a b c a b c c ⎧-+=⎪++=⎨⎪=⎩, 解得12322a b c ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 抛物线的解析式为y =﹣12x 2﹣32x+2; (2)①当点M 在x 轴上方时,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似,如图,设M (m ,﹣12x 2﹣32x+2),N (m ,0). AN =m+4,MN =﹣12m 2﹣32m+2, 由勾股定理,得AC 2225AO OC +=,BC 225OB OC +=∵AC 2+BC 2=AB 2,∴∠ACB =90°,当△ANM ∽△ACB 时,∠CAB =∠MAN ,此时点M 与点C 重合,M (0,2).当△ANM ∽△BCA 时,∠MAN =∠ABC ,此时M 与C 关于抛物线的对称轴对称,M (﹣3,2). ②当点M 在x 轴下方时,当△ANM ∽△ACB 时,∠CAB =∠MAN ,此时直线AM 的解析式为y =﹣12x ﹣2, 由212213222y x y x x ⎧=--⎪⎪⎨⎪=--+⎪⎩,解得40x y ⎧=-⎨=⎩或23x y ⎧=⎨=-⎩, ∴M (2,﹣3),当△ANM ′∽△BCA 时,∠MAN =∠ABC ,此时AM ′∥BC ,∴直线AM ′的解析式为y =﹣2x ﹣8, 由22813222y x y x x ⎧=--⎪⎨=--+⎪⎩,解得40x y ⎧=-⎨=⎩或518x y ⎧=⎨=-⎩, ∴M (5,﹣18)综上所述:抛物线存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似,点M 的坐标(﹣3,2)或(0,2)或(2,﹣3)或(5,﹣18).【点睛】本题主要考查了二次函数的综合,准确计算是解题的关键.23.数学兴趣小组对矩形面积为9,其周长m 的范围进行了探究.兴趣小组的同学们已经能用“代数”的方法解决,以下是他们从“图形”的角度进行探究的部分过程,请把过程补充完整.(1)建立函数模型.设矩形相邻两边的长分别为x ,y ,由矩形的面积为9,得xy =9,即y =9x ;由周长为m ,得2(x+y )=m ,即y =﹣x+2m .满足要求的(x ,y )应是两个函数图象在第 象限内交点的坐标. (2)画出函数图象.函数y=9x(x>0)的图象如图所示,而函数y=﹣x+2m的图象可由直线y=﹣x平移得到,请在同一直角坐标系中画出直线y=﹣x.(3)平移直线y=﹣x,观察函数图象.①当直线平移到与函数y=9x(x>0)的图象有唯一交点(3,3)时,周长m的值为;②在直线平移过程中,直线与函数y=9x(x>0)的图象交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论面积为9的矩形,它的周长m的取值范围为.【答案】(1)一;(2)见解析;(3)①1;②0个交点时,m<1;1个交点时,m=1;2个交点时,m>1;(4)m≥1.【分析】(1)x,y都是边长,因此,都是正数,即可求解;(2)直接画出图象即可;(3)在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=9x和y=﹣x+2m整理得:2x﹣12mx+9=0,即可求解;(4)由(3)可得.【详解】解:(1)x,y都是边长,因此,都是正数,故点(x,y)在第一象限,故答案为:一;(2)图象如下所示:(3)①当直线平移到与函数y =9x (x >0)的图象有唯一交点(3,3)时, 由y =﹣x+2m 得:3=﹣3+12m ,解得:m =1, 故答案为1;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y =9x 和y =﹣x+2m 并整理得:x ²﹣12mx+9=0, ∵△=14m ²﹣4×9, ∴0个交点时,m <1;1个交点时,m =1; 2个交点时,m >1;(4)由(3)得:m≥1,故答案为:m≥1.【点睛】本题是反比例函数综合运用题,涉及到一次函数、一元二次方程、函数平移等知识点,此类探究题,通常按照题设条件逐次求解即可.24.如图所示,在正方形ABCD 中,E ,F 分别是边AD ,CD 上的点,AE =ED ,DF=14DC ,连结EF 并延长交BC 的延长线于点G ,连结BE .(1)求证:△ABE∽△DEF.(2)若正方形的边长为4,求BG 的长.【答案】(1)见解析;(2)BG=BC+CG=1.【分析】(1)利用正方形的性质,可得∠A=∠D ,根据已知可得AE :AB=DF :DE ,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90 °.∵AE=ED,∴AE:AB=1:2.∵DF=14 DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=14DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.25.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【答案】(1)详见解析;(2)14.【详解】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.试题解析:解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B 、C ,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:41164=. 考点:列表法与树状图法.26.在面积都相等的一组三角形中,当其中一个三角形的一边长x 为1时,这条边上的高y 为1. (1)①求y 关于x 的函数解析式;②当3x ≥时,求y 的取值范围;(2)小明说其中有一个三角形的一边与这边上的高之和为4,你认为小明的说法正确吗?为什么?【答案】(1)①6y x=;②02y <≤;(2)小明的说法不正确. 【分析】(1)①直接利用三角形面积求法进而得出y 与x 之间的关系;②直接利用3x ≥得出y 的取值范围;(2)直接利用x y +的值结合根的判别式得出答案.【详解】(1)①11632S =⨯⨯=, ∵x 为底,y 为高, ∴132xy =, ∴6y x =; ②当3x =时,2y =,∴当3x ≥时,y 的取值范围为:02y ≤<;(2)小明的说法不正确,理由:根据小明的说法得:64x x +=, 整理得:2460x x -+=,∵1a =,4b =-,6c =,∴()224441680b ac =-=--⨯⨯=-<⊿,方程无解,∴一个三角形的一边与这边上的高之和不可能是4,∴小明的说法不正确.【点睛】本题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.27.如图,⊙O是△ABC的外接圆,AB=AC,P是⊙O上一点,请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线.【答案】见解析.【分析】如图①中连接PA,根据等弧所对得圆周角相等,易知∠APB=∠APC,所以PA就是∠BPC的平分线;如图②中,连接AO延长交⊙O于E,连接PE,由垂径定理和圆周角定理易知∠EPB=∠EPC.【详解】如图①中,连接PA,PA就是∠BPC的平分线.理由:∵AB=AC,∴AB=AC,∴∠APB=∠APC.如图②中,连接AO延长交⊙O于E,连接PE,PE就是∠BPC的平分线.理由:∵AB=AC,∴AB=AC,∴BE=EC,∴∠EPB=∠EPC.【点睛】本题主要考查圆周角定理和垂径定理,根据等弧所对的圆周角相等得到角平分线是关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x 的一元二次方程()2340a x x --+=,则a 的条件是( ) A .1a ≠B .2a ≠C .3a ≠D .4a ≠【答案】C 【解析】根据一元二次方程的定义即可得.【详解】由一元二次方程的定义得30a -≠解得3a ≠故选:C .【点睛】本题考查了一元二次方程的定义,熟记定义是解题关键.2.若52x y =,则x y y -的值为( ) A .52 B .25 C .32 D .﹣35【答案】C【分析】将x y y-变形为x y ﹣1,再代入计算即可求解. 【详解】解:∵52x y =, ∴x y y -=x y ﹣1=52﹣1=32. 故选:C .【点睛】考查了比例的性质,解题的关键是将x y y-变形为1x y -. 3.如图,ABCD 是矩形纸片,翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,折痕分别是CE ,AF ,则AE EB等于( )A 3B .2C .1.5D 2【答案】B【详解】解:∵ABCD是矩形,∴AD=BC,∠B=90°,∵翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,∴AO=AD,CO=BC,∠AOE=∠COF=90°,∴AO=CO,AC=AO+CO=AD+BC=2BC,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=12∠ACB=30°,∴BE=12CE ,∵AB ∥CD,∴∠OAE=∠FCO,在△AOE和△COF中,∵∠OAE=∠FCO,AO=CO,∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF,∴EF与AC互相垂直平分,∴四边形AECF为菱形,∴AE=CE,∴BE=12AE,∴12AE AEEB AE=2,故选B.【点睛】本题考查翻折变换(折叠问题).4.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图1.则旋转的牌是()A.B.C.D.【答案】A【解析】解:观察发现,只有是中心对称图形,∴旋转的牌是.故选A.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax﹣2b(a≠0)与反比例函数y=cx(c≠0)在同一平面直角坐标系中的图象大致是()A.B.C.D.【答案】D【分析】先根据二次函数的图象开口向上可知a>0,对称轴在y轴的左侧可知b>0,再由函数图象交y 轴的负半轴可知c<0,然后根据一次函数的性质和反比例函数的性质即可得出正确答案.【详解】∵二次函数的图象开口向上,对称轴在y轴的左侧,函数图象交于y轴的负半轴∴a>0,b>0,c<0,∴反比例函数y=cx的图象必在二、四象限;一次函数y=ax﹣2b一定经过一三四象限,故选:D.【点睛】此题主要考查二次函数与反比例函数的图像与性质,解题的关键是熟知二次函数各系数与图像的关系.6.已知反比例函数1y x=-,下列结论;①图象必经过点(1,1)-;②图象分布在第二,四象限;③在每一个象限内,y 随x 的增大而增大.其中正确的结论有( )个. A .3B .2C .1D .0 【答案】A【分析】根据反比例函数的图像与性质解答即可.【详解】①∵-1×1=-1,∴图象必经过点(1,1)-,故①正确;②∵-1<0,图象分布在第二,四象限,故②正确;③∵-1<0,∴在每一个象限内,y 随x 的增大而增大,故③正确.故选A.【点睛】本题考查了反比例函数的图像与性质,反比例函数k y x=(k 是常数,k≠0)的图像是双曲线,当k >0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y 随x 的增大而减小;当 k <0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y 随x 的增大而增大.7.若关于x 的一元二次方程220x x m --= 有实数根,则m 的值不可能是( )A .2-B .1-C .0D .2018【答案】A【分析】由题意直接根据一元二次方程根的判别式,进行分析计算即可求出答案.【详解】解:由题意可知:△=24b ac -=4+4m ≥0,∴m ≥-1, m 的值不可能是-2.故选:A .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式进行分析求解.8.如图,网格中小正方形的边长为1个单位长度,△ABC 的顶点均在小正方形的顶点上,若将△ABC 绕着点A 逆时针旋转得到△AB′C′,点C 在AB′上,则'BB 的长为( )A .πB .2πC .7πD .6π【答案】A 【分析】根据图示知∠BAB′=45°,所以根据弧长公式l =180n r π求得BB '的长. 【详解】根据图示知,∠BAB′=45°,。

沪科版2018-2019年九年级数学上册 九年级(上)期末数学综合检测题含答案

沪科版2018-2019年九年级数学上册 九年级(上)期末数学综合检测题含答案

九年级(上)数学期末综合测试(2)九年级(上)期末数学综合检测题一、选择题(40分)A、(1,2)B、(1,-2)C、(-1,2)D、(-1,-2)8.如图4所示,二次函数的图象经过点,且与轴交点的横坐标分别为,其中,,下列结论:①;②;③;④.其中正确的有()A、1个 B、2个 C、3个 D、4个9. 如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,胡娇同学观察得出了下面四条信息:(1)(a≠0)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的信息有………………………………………………………………【】A. 4个B.3个C. 2个D.1个10. 在桐城市第七届中学生田径运动会上,小翰在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示的方向经过B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翰的跑步过程.设小翰跑步的时间为t(单位:秒),他与教练距离为y(单位:米),表示y与t的函数关系的图象大致如图2,则这个固定位置可能是图1的………【】A.点M B.点N C.点P D.Q二、填空题(20分)21.(12分)拉杆旅行箱为人们的出行带来了极大的方便,右图是一种拉杆旅行箱的侧面示意图,箱体ABCD可视为矩形,其中AB为50cm,BC为30cm,点A到地面的距离AE为4cm,旅行箱与水平面AF成600角,求箱体的最高点C到地面的距离。

22.(12分)某商店购进一批冬季保暖内衣,每套进价为100元,售价为130元,每星期可卖出80套,现因临近春节,商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20套。

(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,售价应定为多少元?最大销售利润是多少?参考答案1.A2.A3.C5.C6.D11. 112.(0,3)13.-3<y<214.15. 1.4419. 22.522.解:(1)y=x2+2x+1=(x2+4x+4-4)+1=(x+2)2-1∵a>0,∴抛物线的开口方向向上,对称轴x=-2,顶点坐标(-2,-1).X…-5-4-3-2-11…y…3.51-0.5-1-0.513.5…(2)图象略.23.解:(1)当△ABC∽△ADE时,,AE=2 (2)当△ABC∽△AED时,24.解:过点C作CE∥AD交AB于点E,∵AE∥CD,EC∥AD,∴四边形AECD是平行四边形,∴AE=CD=1.2米,又在平行投影中,同一时刻物长与影长成比例,∴即BE=3.5×=4.∴AB=AE+EB=1.2+4=5.2米答:旗杆AB的高度为5.2米.25.(1)既然结论正确,就可由,得,所以得即,因为图象不经过原点,所以,因此根据现有信息要唯一确定这个二次函数解析式是不行的.(2)可以补充条件:①抛物线与轴的交点坐标为B(1,0)和C(5,0)②抛物线经过点(4,2)并且有最小值1.(答案不唯一)26.解:(1)若选择,把与分别代入得,解得,而把代入得,所以选择不恰当;若选择,由对应值表看出随的增大而增大,而在第一象限随的增大而减小,所以不恰当;若选择,把与分别代入得,解得,而把代入得成立,所以选择恰当,解析式为.(2)把代入得,即,解得或(舍去),27.解:(1)点横坐标为,当时,.点的坐标为.点是直线与双曲线的交点,.(2)解法一:如图12-1,点在双曲线上,当时,点的坐标为.过点分别做轴,轴的垂线,垂足为,得矩形.,,,..解法二:如图12-2,过点分别做轴的垂线,垂足为,点在双曲线上,当时,.点的坐标为.点,都在双曲线上,..,.(3)反比例函数图象是关于原点的中心对称图形,,.四边形是平行四边形..设点横坐标为,得.过点分别做轴的垂线,垂足为,点在双曲线上,.若,如图12-3,,..解得,(舍去)..若,如图12-4,,.,解得,(舍去)..点的坐标是或.。

上海市崇明区2018届九年级上学期期末调研测试数学试题(解析版)

上海市崇明区2018届九年级上学期期末调研测试数学试题(解析版)

上海市崇明区2018届九年级上学期期末调研测试数学试题一、选择题:(本大题共6题,每题4分,满分24分)1. 在中,,,,那么的值是()A. B. C. D.【答案】A【解析】试题解析:在Rt△ABC中,∵∠C=90°,AB=5,BC=3,∴AC=4,∴tanA=.故选A.2. 抛物线的顶点坐标是()A. B. C. D.【答案】D【解析】试题解析:∵抛物线的解析式为:y=2(x+3)2-4,∴其顶点坐标为:(-3,-4).故选D.3. 如图,在中,点D,E分别在边AB,AC上,.已知,,那么EC的长是()A. 4.5B. 8C. 10.5D. 14【答案】B【解析】试题解析:∵DE∥BC.∴,而AE=6,,∴,∴EC=8,故选B.4. 如图,在平行四边形ABCD中,点E在边DC上,,联结AE交BD于点F,那么的面积与的面积之比为()A. B. C. D.【答案】B【解析】试题解析:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选B.5. 如果两圆的半径分别为2和5,圆心距为3,那么这两个圆的位置关系是()A. 外离B. 外切C. 相交D. 内切【答案】D【解析】分析:根据数量关系来判断两圆的位置关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R-r<d<R+r;内切,则d=R-r;内含,则d<R-r.解答:解:∵两圆半径之差=8-5=3=圆心距8,∴两个圆的位置关系是内切,故选D.点评:本题考查了由两圆位置关系的知识点,利用了两圆内切时,圆心距等于两圆半径的差求解.6. 如图,在中,,,,和的平分线相交于点E,过点E作交于点F,那么EF的长为()A. B. C. D.【答案】C【解析】试题解析:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6-x、CG=CH=8-x,∵AC==10,∴6-x+8-x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴,即,解得:DF=,则EF=DF-DE=-2=,故选C.二、填空题:(本大题共12题,每题4分,满分48分)7. 已知,那么__________.【答案】【解析】试题解析:∵2x=3y,∴,∴.故答案为:.8. 计算:_________.【答案】【解析】试题解析:==.故答案为:.9. 如果一幅地图的比例尺为,那么实际距离是km的两地在地图上的图距是_________cm.【答案】6【解析】试题解析:根据题意得,∴图上距离=6cm.故答案是6.10. 如果抛物线有最高点,那么a的取值范围是________.【答案】【解析】试题解析:∵抛物线有最高点,∴a+1<0,即a<-1.故答案为a<-1.11. 抛物线向左平移2个单位长度,得到新抛物线的表达式为_________.【答案】【解析】试题解析:∵二次函数解析式为y=2x2+4,∴顶点坐标(0,4)向左平移2个单位得到的点是(-2,4),可设新函数的解析式为y=2(x-h)2+k,代入顶点坐标得y=2(x+2)2+4,故答案为:y=2(x+2)2+4.点睛:函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.............. ..........................【答案】>【解析】试题解析:由抛物线得,a=2>0,∴a=2>0,有最小值为5,∴抛物线开口向上,∵抛物线y=2(x-3)2+5对称轴为直线x=3,∵,∴y1>y2.故填>.13. 在中,,,垂足为点D,如果,,那么AD的长度为________.【答案】4.8【解析】试题解析:∵∠BAC=90°,AB=8,AC=6,∴BC==10,∵AD⊥BC,∴6×8=AD×10,解得:AD=4.8.故答案为:4.8.14. 已知是等边三角形,边长为3,G是三角形的重心,那么G A的长度为___________.【答案】【解析】试题解析:∵△ABC是等边三角形,AB=,∴AD=,∵点G是△ABC的重心,∴AG=AD=.故答案为.15. 正八边形的中心角的度数为__________度.【答案】45【解析】试题解析:正八边形的中心角等于360°÷8=45°;故答案为:45°.16. 如图,一个斜坡长m,坡顶离水平地面的距离为m,那么这个斜坡的坡度为_________.【答案】1:2.4【解析】试题解析:如图,在Rt△ABC中,∵∠ACB=90°,AB=130m,BC=50m,∴AC==120m,∴tan∠BAC=.17. 如图,在正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是,点C的坐标是,那么这条圆弧所在圆的圆心坐标是___________.【答案】【解析】试题解析:如图线段AB的垂直平分线和线段CD的垂直平分线的交点M,即圆心的坐标是(-1,1),18. 如图,在中,,点D, E分别在上,且,将沿DE折叠,点C 恰好落在AB边上的点F处,如果,,那么CD的长为__________.【答案】【解析】试题解析:由折叠可得,∠DCE=∠DFE=90°,∴D,C,E,F四点共圆,∴∠CDE=∠CFE=∠B,又∵CE=FE,∴∠CFE=∠FCE,∴∠B=∠FCE,∴CF=BF,同理可得,CF=AF,∴AF=BF,即F是AB的中点,∴Rt△ABC中,CF=AB=5,由D,C,E,F四点共圆,可得∠DFC=∠DEC,由∠CDE=∠B,可得∠DEC=∠A,∴∠DFC=∠A,又∵∠DCF=∠FCA,∴△CDF∽△CFA,∴CF2=CD×CA,即52=CD×8,∴CD=.故答案为:.三、解答题:(本大题共7题,满分78分)19. 计算:【答案】【解析】试题分析:把各特殊角的三角函数值代入原式进行计算即可.试题解析:原式=20. 如图,在中,BE平分交AC于点E,过点E作交AB于点D,已知,.(1)求BC的长度;(2)如果,,那么请用、表示向量.【答案】(1);(2)【解析】试题分析:(1)由BE平分∠ABC交AC于点E,ED∥BC,可证得BD=DE,,从而可求出结论;(2)由,得.故又与同向,所以,由,得,因此试题解析:(1)∵平分,∴.∵,∴.∴.∴.∵,∴.又∵,,∴,∴,∴.(2)∵,∴.∴又∵与同向∴∵,∴∴21. 如图,CD为⊙O的直径,,垂足为点F,,垂足为点E,.(1)求AB的长;(2)求⊙O的半径.【答案】(1)4;(2)【解析】试题分析:(1)由,得,,结合可证.从而AF=CE,故可求得AB的长;(2)由垂径定理得BE=CE,故BE=AB,从而∠A=30°,在直角三角形AFO中即可求出AO的值.试题解析:(1)∵,∴在中∴∴∵,∴∵是的直径,∴∴.(2)∵是的半径,,∴,∵,∴.∵,∴.又∵∴∴即的半径是.22. 如图,港口B位于港口A的南偏东方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行km,到达E处,测得灯塔C在北偏东方向上.这时,E处距离港口A有多远?(参考数据:)【答案】【解析】试题分析:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH 中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题.试题解析:如图,作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH=,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E处距离港口A有35km.23. 如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作,垂足为F,BF交边DC于点G.(1)求证:;(2)连接CF,求证:.【答案】见解析【解析】试题分析:(1)结合条件易证,得,由BC=AB可得结论;(2)连接,由(1)得又,故,所以,由=45°可得结论.试题解析:(1)∵四边形是正方形∴,∵∴∴∵∴∴∴∵∴(2)连接∵∴∴又∵∴∴∵四边形是正方形,BD是对角线∴∴24. 如图,抛物线过点,.为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与相似,求点M的坐标.【答案】(1);(2);(3)【解析】试题分析:(1)运用待定系数法求解即可;(2)设,得,再由点坐标公式得出方程,求解即可;(3)分两种情况进行讨论即可得解.(1)解:设直线的解析式为()∵,∴解得∴直线的解析式为∵抛物线经过点,∴解得∴(2)∵轴,∴设,∴,∵点是的中点∴∴解得,(不合题意,舍去)∴(3)∵,,∴,∴∵∴当与相似时,存在以下两种情况:1°∴解得∴2°∴,解得∴25. 如图,已知中,,,,D是AB边的中点,E是AC边上一点,联结DE,过点D作交BC边于点F,联结EF.(1)如图1,当时,求EF的长;(2)如图2,当点E在AC边上移动时,的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出的正切值;(3)如图3,联结CD交EF于点Q,当是等腰三角形时,请直接写出....BF的长.【答案】(1);(2)不变;(3)或3或.【解析】试题分析:(1)由已知条件易求DE=3,DF=4,再由勾股定理EF=5;(2)过点作,,垂足分别为点、,由(1)可得DH=3,DG=4;再证,即可得出结论;(3)分三种情况讨论即可.(1)∵,∴∵∴∵是边的中点∴∵∴∴∴∴∵在中,∴∵∴又∵∴四边形是矩形∴∵在中,∴(2)不变过点作,,垂足分别为点、由(1)可得,∵,∴又∵,∴四边形是矩形∴∵∴即又∵∴∴∵∴(3)1°当时,易证,即又∵,D是AB的中点∴∴2°当时,易证∵在中,∴设,则,当时,易证,∴∵∴∴∴∵∴∴解得∴∴3°在BC边上截取BK=BD=5,由勾股定理得出当时,易证∴设,则,∴∵∴∴∴∵∴∴解得∴∴。

∥3套精选试卷∥2018年上海市崇明县九年级上学期数学期末检测试题

∥3套精选试卷∥2018年上海市崇明县九年级上学期数学期末检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,根据题意列方程组正确的是( )A . 4.5,12x y y x +=⎧⎪⎨+=⎪⎩B . 4.5,12x y y x =+⎧⎪⎨+=⎪⎩C . 4.5,12x y x y =+⎧⎪⎨=+⎪⎩D . 4.5,12x y y x +=⎧⎪⎨=-⎪⎩【答案】A 【解析】本题的等量关系是:木长 4.5+=绳长,12⨯绳长1+=木长,据此可列方程组即可. 【详解】设木条长为x 尺,绳子长为y 尺,根据题意可得:4.5112x y y x +=⎧⎪⎨+=⎪⎩. 故选:A .【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组. 2.在下列图案中,是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据中心对称图形的定义进行分析即可.【详解】A 、不是中心对称图形.故A 选项错误;B 、不是中心对称图形.故B 选项错误;C 、是中心对称图形.故C 选项正确;D 、不是中心对称图形.故D 选项错误.故选C .【点睛】考点:中心对称图形.3.一元二次方程2210x x -+=的一次项系数和常数项依次是( )A .-1和1B .1和1C .2和1D .0和1【答案】A【分析】找出2x 2-x+1的一次项-x 、和常数项+1,再确定一次项的系数即可.【详解】2x 2-x+1的一次项是-x ,系数是-1,常数项是1.故选A.【点睛】本题考查一元二次方程的一般形式.4.已知二次函数()20y ax bx c a =++≠的图象如图所示,下列结论:①0abc >,②20a b +<,③420a b c -+<,④20a b c ++>,其中正确结论的个数为( )A .4个B .3个C .2个D .1个【答案】B 【分析】由抛物线的开口方向、对称轴、与y 轴的交点位置,可判断a 、b 、c 的符号,可判断①,利用对称轴可判断②,由当x=-2时的函数值可判断③,当x=1时的函数值可判断④,从而得出答案.【详解】解:∵抛物线开口向下,与y 轴的交点在x 轴上方,∴a <0,c >0,∵0<-2b a<1,∴b >0,且b <-2a ,∴abc <0,2a+b <0,故①不正确,②正确; ∵当x=-2时,y <0,∴4a-2b+c <0,故③正确;∵当x=1时,y >0,∴a+b+c >0,又c >0,∴a+b+2c >0,故④正确;综上可知正确的有②③④,故选:B .【点睛】本题主要考查二次函数图象与系数之间的关系,解题关键是注意掌握数形结合思想的应用.5.用min{a ,b}表示a ,b 两数中的最小数,若函数{}22min 1,1y x x =+-,则y 的图象为( ) A . B . C .D.【答案】C【分析】根据题意,把问题转化为二次函数问题.【详解】根据题意,min{x2+1,1-x2}表示x2+1与1-x2中的最小数,不论x取何值,都有x2+1≥1-x2,所以y=1-x2;可知,当x=0时,y=1;当y=0时,x=±1;则函数图象与x轴的交点坐标为(1,0),(-1,0);与y轴的交点坐标为(0,1).故选C.【点睛】考核知识点:二次函数的性质.6.小华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为()A.3.2米B.4.8米C.5.2米D.5.6米【答案】B【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】据相同时刻的物高与影长成比例,设这棵树的高度为xm,则可列比例为1.6= 26x解得,x=4.1.故选:B【点睛】本题主要考查同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力.7.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为()A .14B .13C .12D .23 【答案】C【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12; 故选:C .【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,8.若函数y =(a ﹣1)x 2﹣4x+2a 的图象与x 轴有且只有一个交点,则a 的值为( ).A .-1B .2C .-1或2D .-1或2或1 【答案】D【分析】当a -1=0,即a =1时,函数为一次函数,与x 轴有一个交点;当a ﹣1≠0时,利用判别式的意义得到=0∆,再求解关于a 的方程即可得到答案.【详解】当a ﹣1=0,即a =1,函数为一次函数y =-4x+2,它与x 轴有一个交点;当a ﹣1≠0时,根据题意得()22=44(1)216880a a a a ∆---⨯=-+=解得a =-1或a =2综上所述,a 的值为-1或2或1.故选:D .【点睛】本题考察了一次函数、二次函数图像、一元二次方程的知识;求解的关键是熟练掌握一次函数、二次函数的性质,从而完成求解.9.函数(0)k y k x=≠的图象如图所示,那么函数y kx k =-的图象大致是( )A .B .C .D .【答案】D 【解析】首先由反比例函数k y x=的图象位于第二、四象限,得出k <0,则-k >0,所以一次函数图象经过第二四象限且与y 轴正半轴相交. 【详解】解:反比例函数k y x=的图象在第二、四象限, 0,k ∴< 0.k ->函数y kx k =-的图象应经过第一、二、四象限.故选D.【点睛】本题考查的知识点:(1)反比例函数k y x=的图象是双曲线,当k <0时,它的两个分支分别位于第二、四象限. (2)一次函数y=kx+b 的图象当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限.10.已知点(﹣3,a),(3,b),(5,c)均在反比例函数y =21k x+的图象上,则有( ) A .a >b >cB .c >b >aC .c >a >bD .b >c >a【答案】D【分析】根据反比例函数系数k 2+1大于0,得出函数的图象位于第一、三象限内,在各个象限内y 随x 的增大而减小,据此进行解答.【详解】解:∵反比例函数系数k 2+1大于0,∴函数的图象位于第一、三象限内,在各个象限内y 随x 的增大而减小,∵﹣3<0,0<3<5,∴点(﹣3,a )位于第三象限内,点(3,b ),(5,c )位于第一象限内,∴b >c >a .故选:D .【点睛】本题主要考查反比例函数的图象和性质,解答本题的关键是确定反比例函数的系数大于0,并熟练掌握反比例函数的性质,此题难度一般.11.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( ) A .()1119802x x += B .()1119802x x -= C .()11980x x +=D .()11980x x -=【答案】D 【分析】根据题意得:每人要赠送(x-1)张贺卡,有x 个人,然后根据题意可列出方程:(x-1)x=1.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x 个人,∴全班共送:(x-1)x=1,故选:D .【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x 个人是解决问题的关键.12.一个几何体的三视图如图所示,则该几何体的表面积为( )A .4πB .3πC .2π+4D .3π+4【答案】D 【解析】试题解析:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,表面积有四个面组成:两个半圆,一个侧面,还有一个正方形.故其表面积为: 212π1π12223π42⨯⨯⨯+⨯⨯+⨯=+, 故选D.二、填空题(本题包括8个小题)13.如图,在边长为1的正方形ABCD 中,将射线AC 绕点A 按顺时针方向旋转α度(0360)α︒<≤︒,得到射线AE ,点M 是点D 关于射线AE 的对称点,则线段CM 长度的最小值为________.【答案】21【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C 在一条直线上时,CM有最小值.【详解】如图所示:连接AM.∵四边形ABCD为正方形,∴22112AD CD∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC-2-1,2-1.【点睛】本题主要考查的是旋转的性质,正方形的性质,依据旋转的性质确定出点M运动的轨迹是解题的关键.14.用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,首先应假设P在__________.【答案】⊙O上或⊙O内【分析】直接利用反证法的基本步骤得出答案.【详解】解:用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,首先应假设:若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O上或⊙O内.故答案为:在⊙O 上或⊙O 内.【点睛】此题主要考查了反证法,正确掌握反证法的解题方法是解题关键.15.小亮和他弟弟在阳光下散步,小亮的身高为1.75米,他的影子长2米.若此时他的弟弟的影子长为1.6米,则弟弟的身高为________米.【答案】1.4【解析】∵同一时刻物高与影长成正比例,∴1.75:2=弟弟的身高:1.6,∴弟弟的身高为1.4米.故答案是:1.4.16.如图,在平面直角坐标系中,直线l:28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =OB .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.【答案】455【分析】在OA 上取'C 使'OC OC =,得'OPC OQC ≅,则CQ=C'P ,根据点到直线的距离垂线段最短可知当'PC ⊥AB 时,CP 最小,由相似求出C'P 的最小值即可.【详解】解:如图,在OA 上取'C 使'OC OC =,∵90AOC POQ ∠=∠=︒,∴'POC QOC ∠=∠,在△'POC 和△QOC 中,''OP OQ POC QOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△'POC ≌△QOC (SAS ),∴'PC QC =∴当'PC 最小时,QC 最小,过'C 点作''C P ⊥AB ,∵直线l:28y x =+与坐标轴分别交于A ,B 两点,∴A 坐标为:(0,8);B 点(-4,0),∵'4OC OC OB ===, ∴22228445AB OAOB =+=+=,''4AC OA OC =-=.∵'''OB C P sin BAO AB AC ∠==, ∴''445C P =, ∴4''55C P =, ∴线段CQ 的最小值为455. 故答案为:455. 【点睛】 本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题. 17.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.【答案】1【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B 2020在第一象限,∵OA =53,OB =4,∠AOB =90°, ∴AB 2222513433OB OA ⎛⎫=+=+= ⎪⎝⎭, ∴OA+AB 1+B 1C 2=53+133+4=10, ∴B 2的横坐标为:10,同理:B 4的横坐标为:2×10=20,B 6的横坐标为:3×10=30,∴点B 2020横坐标为:2020102⨯=1. 故答案为:1.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B 点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.18.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.【答案】小林【详解】观察图形可知,小林的成绩波动比较大,故小林是新手.故答案是:小林.三、解答题(本题包括8个小题)19.如图,点A 在y 轴正半轴上,点()4,2B 是反比例函数图象上的一点,且tan 1OAB ∠=.过点A 作AC y ⊥轴交反比例函数图象于点C .(1)求反比例函数的表达式;(2)求点C 的坐标.【答案】(1)8y x =;(2)4,63⎛⎫ ⎪⎝⎭【分析】(1)设反比例函数的表达式为k y x=,将点B 的坐标代入即可; (2)过点B 作BD AO ⊥于点D ,根据点B 的坐标即可得出4BD =,2DO =,然后根据tan 1OAB ∠=,即可求出AD ,从而求出AO 的长即点C 的纵坐标,代入解析式,即可求出点C 的坐标.【详解】解:(1)设反比例函数的表达式为k y x =, ∵点()4,2B 在反比例函数图象上,∴24k =. 解得8k .∴反比例函数的表达式为8y x =. (2)过点B 作BD AO ⊥于点D .∵点B 的坐标为()4,2,∴4BD =,2DO =.在Rt ABD △中,tan 1BD OAB AD ∠==, ∴4AD BD ==.∴6AO AD DO =+=.∵AC y ⊥轴,∴点C 的纵坐标为6.将6y =代入8y x =,得43x =. ∴点C 的纵坐标为4,63⎛⎫ ⎪⎝⎭.【点睛】此题考查的是反比例函数与图形的综合题,掌握用待定系数法求反比例函数的解析式和利用锐角三角函数解直角三角形是解决此题的关键.20.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB的高度.【答案】1m【分析】首先根据DO=OE=1m,可得∠DEB=15°,然后证明AB=BE,再证明△ABF∽△COF,可得AB CO BF OF=,然后代入数值可得方程,解出方程即可得到答案.【详解】解:延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=15°,∵AB⊥BF,∴∠BAE=15°,∴AB=BE,设AB=EB=x m,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴AB COBF OF=,1.51(51)5xx+∴=+-,解得:x=1.经检验:x=1是原方程的解.答:围墙AB 的高度是1m .【点睛】此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE ,根据相似三角形的判定方法证明△ABF ∽△COF .21.如图已知一次函数y 1=2x +5与反比例函数y 2=3x-(x <0)相交于点A ,B . (1)求点A ,B 的坐标;(2)根据图象,直接写出当y ₁≤y ₂时x 的取值范围.【答案】(1)A 点的坐标为(﹣32,2),B 点的坐标为(﹣1,3);(2)x ≤﹣32或﹣1≤x <1. 【分析】(1)联立两函数解析式,解方程组即可得到交点坐标;(2)写出一次函数图象在反比例函数图象下方的x 的取值范围即可.【详解】解:(1)联立两函数解析式得,253y x y x =+⎧⎪⎨=-⎪⎩, 解得13x y =-⎧⎨=⎩或322x y ⎧=-⎪⎨⎪=⎩, 所以A 点的坐标为(﹣32,2),B 点的坐标为(﹣1,3); (2)根据图象可得,当y₁≤y₂时x 的取值范围是x≤﹣32或﹣1≤x <1. 【点睛】本题考查了反比例函数与一次函数图象的交点问题,根据解析式列出方程组求出交点坐标是解题的关键.22.如图,ABC ∆的三个顶点坐标分别是()0,3A ,()10B ,,()3,1C . (1)将ABC ∆先向左平移4个单位长度,再向上平移2个单位长度,得到111A B C ∆,画出111A B C ∆;(2)222A B C ∆与ABC ∆关于原点O 成中心对称,画出222A B C ∆.【答案】答案见解析.【分析】(1)将ABC ∆的三个顶点进行平移得到对应点,再顺次连接即可求解;(2)找到△ABC 的三个得到关于原点的对称点,再顺次连接即可求解.【详解】(1)111A B C ∆为所求;(2)222A B C ∆为所求.【点睛】此题主要考查坐标与图形,解题的关键是根据题意找到各顶点的对应点.23.汛期到来,山洪暴发.下表记录了某水库20h 内水位的变化情况,其中x 表示时间(单位:h ),y 表示水位高度(单位:m ),当()8x h =时,达到警戒水位,开始开闸放水. /x h 0 24 6 8 10 12 14 16 18 20 /y m 1415 16 17 18 14.4 12 10.3 9 8 7.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m .【答案】 (1)见解析;(2)()114082y x x =+<<和()1448y x x=>;(3)预计24h 水位达到6m . 【分析】根据描点的趋势,猜测函数类型,发现当08x <<时,y 与x 可能是一次函数关系:当8x >时,y 与x 就不是一次函数关系:通过观察数据发现y 与x 的关系最符合反比例函数.【详解】(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当08x <<时,y 与x 可能是一次函数关系:设y kx b =+,把()0,14,()8,18代入得14818b k b =⎧⎨+=⎩,解得:12k =,14b =,y 与x 的关系式为:1142y x =+,经验证()2,15,()4,16,()6,17都满足1142y x =+,因此放水前y 与x 的关系式为:()114082y x x =+<<,观察图象当8x >时,y 与x 就不是一次函数关系:通过观察数据发现:8181010.41212169188144⨯=⨯=⨯=⨯=⨯=.因此放水后y 与x 的关系最符合反比例函数,关系式为:()1448y x x=>,所以开闸放水前和放水后最符合表中数据的函数解析式为:()114082y x x =+<<和()1448y x x=>. (3)当6y =时,1446x =,解得:24x =,因此预计24h 水位达到6m .【点睛】此题考查二元一次函数的应用,统计图,解题关键在于根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值.24.甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)【答案】13. 【解析】先画树状图得到所有等可能的情况,然后找出符合条件的情况数,利用概率公式求解即可.【详解】画树状图为:由树状图知,共有6种等可能的结果数,其中甲、丙两人成为比赛选手的结果有2种, 所以甲、丙两人成为比赛选手的概率为26=13. 【点睛】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.在平面直角坐标系xOy 中,抛物线y =ax 2+bx+c 经过A (0,﹣4)和B (2,0)两点.(1)求c 的值及a ,b 满足的关系式;(2)若抛物线在A 和B 两点间,从左到右上升,求a 的取值范围;(3)抛物线同时经过两个不同的点M (p ,m ),N (﹣2﹣p ,n ).①若m =n ,求a 的值;②若m =﹣2p ﹣3,n =2p+1,求a 的值.【答案】(1)c =﹣4,2a+b =2;(2)﹣1≤a <0或0<a≤1;(3)①a =12;②a =1 【分析】(1)直接将AB 两点代入解析式可求c ,以及a ,b 之间的关系式.(2)根据抛物线的性质可知,当a >0时,抛物线对称轴右边的y 随x 增大而增大,结合抛物线对称轴x=222aa --和A 、B 两点位置列出不等式即可求解; (3)①根据抛物线的对称性得出22222p a a p -=---,解得a=12; ②根据M 、N 的坐标,易证得两点都在直线y=-2x-3上,即M 、N 是直线y=-2x-3与抛物线y=ax 2+(2-2a )x-4的交点,然后根据根与系数的关系得出p+(-2-p )=42a a--,解得a=1. 【详解】解:(1)∵抛物线y =ax 2+bx+c (a >0)经过点A (0,﹣4)和B (2,0).∴4420c a b c =-⎧⎨++=⎩, ∴c =﹣4,2a+b =2.(2)由(1)可得:y =ax 2+(2﹣2a )x ﹣4,对称轴为:x =222aa --=1a a -,∵抛物线在A 、B 两点间从左到右上升,即y 随x 的增大而增大;①当a >0时,开口向上,对称轴在A 点左侧或经过A 点, 即:1a a-≤0, 解得:a≤1∴0<a≤1;②当a <0时,开口向下,对称轴在B 点右侧或经过B 点, 即1a a-≥2, 解得:a≥﹣1;∴﹣1≤a <0,综上,若抛物线在A 和B 两点间,从左到右上升,a 的取值范围为﹣1≤a <0或0<a≤1;(3)①若m =n ,则点M (p ,m ),N (﹣2﹣p ,n )关于直线x =222aa --对称, ∴22222p a ap -=---, ∴a =12; ②∵m =﹣2p ﹣3,∴M (p ,m )在直线y =﹣2x ﹣3上,∵n =2p+1=﹣2(﹣2﹣p+2)+1=﹣2(﹣p ﹣2)﹣3,∴N (﹣2﹣p ,n )在直线y =﹣2x ﹣3上,即M 、N 是直线y =﹣2x ﹣3与抛物线y =ax 2+(2﹣2a )x ﹣4的交点,∴p 和﹣2﹣p 是方程ax 2+(2﹣2a )x ﹣4=﹣2x ﹣3的两个根,整理得ax 2+(4﹣2a )x ﹣1=0,∴p+(﹣2﹣p )=42a a--, ∴a =1.【点睛】本题考查了二次函数的图象和系数的关系,二函数图象上点的坐标特征,灵活利用抛物线对称轴的公式是解题的关键.26.如图所示,要在底边BC =160cm ,高AD =120cm 的△ABC 铁皮余料上,截取一个矩形EFGH ,使点H 在AB 上,点G 在AC 上,点E ,F 在BC 上,AD 交HG 于点M .(1)设矩形EFGH 的长HG=ycm ,宽HE=xcm.求y 与x 的函数关系式;(2)当x 为何值时,矩形EFGH 的面积S 最大?最大值是多少?【答案】(1)41603y x =-+;(2)当x =60时,S 最大,最大为4800cm ². 【解析】(1)根据矩形的性质可得△AHG ∽△ABC ,根据相似三角形的性质即可得答案;(2)利用S=xy ,把4y x 1603=-+代入得S 关于x 的二次函数解析式,根据二次函数的性质求出最大值即可. 【详解】解:(1)∵四辺形EFGH 是矩形,∴HG ∥BC∴ΔAHG ∽ΔABC∴HG AM BC AD =,即y 120x 160120-= ∴4y x 1603=-+ (2)把4y x 1603=-+带入S=xy , 得24S x 160x 3=-+ =()24x 6048003--+ 当x=60时,S 最大,最大为4800cm².【点睛】此题考查了相似三角形的判定与性质以及二次函数的性质.此题难度适中,注意掌握方程思想与数形结合思想的应用.27.如图,在8×8的正方形网格中,△AOB 的顶点都在格点上.请在网格中画出△OAB 的一个位似图形,使两个图形以点O 为位似中心,且所画图形与△OAB 的位似为2:1.【答案】答案见解析.【分析】延长AO ,BO ,根据相似比,在延长线上分别截取AO ,BO 的2倍,确定所作的位似图形的关键点A',B',再顺次连接所作各点,即可得到放大2倍的位似图形△A'B'C'.【详解】解:如图【点睛】本题考查作图-位似变换,数形结合思想解题是关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形B.一组对边平行,一组对角相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形【答案】D【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.【详解】A、对角线互相垂直平分的四边形是菱形,命题正确,不符合题意;B、一组对边平行,一组对角相等的四边形是平行四边形,命题正确,不符合题意;C、矩形的对角线相等,命题正确,不符合题意;D、对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项符合题意.故选:D.【点睛】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.2.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是A.B.C.D.【答案】A【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置,从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体.故选A.3.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣14,y1)、C(﹣12,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A .1B .3C .4D .5【答案】D 【解析】根据二次函数的图象与性质即可求出答案. 【详解】解:①由抛物线的对称轴可知:02b a -<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.4.如图,AG :GD=4:1,BD :DC=2:3,则 AE :EC 的值是( )A.3:2 B.4:3 C.6:5 D.8:5【答案】D【解析】过点D 作DF∥CA 交BE 于F,如图,利用平行线分线段成比例定理,由DF∥CE 得到DF CE =BDDC=25,则CE=52DF,由DF∥AE 得到DFAE=DGAG=14,则AE=4DF,然后计算AECE的值.【详解】如图,过点D作DF∥CA 交BE于F,∵DF∥CE,∴DFCE=BDBC,而BD:DC=2:3,BC=BD +CD,∴DFCE=25,则CE=52DF,∵DF∥AE,∴DFAE=DGAG,∵AG:GD=4:1,∴DFAE=14,则AE=4DF,∴AECE=48552DFDF,故选D.【点睛】本题考查了平行线分线段成比例、平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例,熟练掌握相关知识是解题的关键.5.关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是()A.m>34B.m>34且m≠2C.-12≤m≤2D.34<m<2【答案】D【解析】试题分析:根据题意得20m -≠且△=2(21)4(2)(2)0m m m +--->,解得34m >且2m ≠, 设方程的两根为a 、b ,则+a b =2102m m +->-,2102m ab m -==>-,而210m +>,∴20m -<,即2m <,∴m 的取值范围为324m <<.故选D . 考点:1.根的判别式;2.一元二次方程的定义.6.一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )A .0种B .1种C .2种D .3种【答案】B【解析】先判断出两根铝材哪根为边,需截哪根,再根据相似三角形的对应边成比例求出另外两边的长,由另外两边的长的和与另一根铝材相比较即可.【详解】∵两根铝材的长分别为27cm 、45cm ,若45cm 为一边时,则另两边的和为27cm ,27<45,不能构成三角形,∴必须以27cm 为一边,45cm 的铝材为另外两边,设另外两边长分别为x 、y ,则(1)若27cm 与24cm 相对应时, 27x y 243036==, 解得:x=33.75cm ,y=40.5cm ,x+y=33.75+40.5=74.25cm>45cm ,故不成立;(2)若27cm 与36cm 相对应时,27x y 363024==, 解得:x=22.5cm ,y=18cm ,x+y=22.5+18=40.5cm<45cm ,成立;(3)若27cm 与30cm 相对应时,27x y 303624==, 解得:x=32.4cm ,y=21.6cm ,x+y=32.4+21.6=54cm>45cm ,故不成立;故只有一种截法.故选B.7.如图,AB 是半圆O 的直径,且AB =4cm ,动点P 从点O 出发,沿OA→AB →BO 的路径以每秒1cm 的速度运动一周.设运动时间为t ,s =OP 2,则下列图象能大致刻画s 与t 的关系的是( )A.B.C.D.【答案】C【解析】在半径AO上运动时,s=OP1=t1;在弧BA上运动时,s=OP1=4;在BO上运动时,s=OP1=(4π+4-t)1,s也是t是二次函数;即可得出答案.【详解】解:利用图象可得出:当点P在半径AO上运动时,s=OP1=t1;在弧AB上运动时,s=OP1=4;在OB上运动时,s=OP1=(1π+4-t)1.结合图像可知C选项正确故选:C.【点睛】此题考查了动点问题的函数图象,能够结合图形正确得出s与时间t之间的函数关系是解决问题的关键.8.如图,在矩形AOBC中,点A的坐标为(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是()A.(32,3),(23-,4)B.(74,72),(23-,4)C.(32,3),(12-,4)D.(74,72),(12-,4)【答案】C【分析】如过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、根据△AOF∽△CAE,△AOF≌△BCN,△ACE≌△BOM解决问题.【详解】解:如图过点A、B作x轴的垂线垂足分别为F、M.过点C作y轴的垂线交FA、∵点A坐标(-2,1),点C纵坐标为4,∴AF=1,FO=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF,∵∠E=∠AFO=90°,∴△AEC∽△OFA,EC AEAF OF∴=,3EC,2∴=∴点C坐标1,42⎛⎫- ⎪⎝⎭,∵△AOF≌△BCN,△AEC≌△BMO,∴CN=2,BN=1,BM=MN-BN=3,BM=AE=3,3 OM EC2==,∴点B坐标3,32⎛⎫ ⎪⎝⎭,故选C.【点睛】本题考查矩形的性质、坐标与图形的性质,添加辅助线构造全等三角形或相似三角形是解题的关键,属于中考常考题型.9.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.125【答案】B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,5=,故tanB=512AD BD =. 故选B .【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.10.若2y -7x =0,则x ∶y 等于( )A .2∶7B .4∶7C .7∶2D .7∶4 【答案】A【分析】由2y -7x =0可得2y =7x ,再根据等式的基本性质求解即可.【详解】解:∵2y -7x =0∴2y =7x∴x ∶y =2∶7故选A.【点睛】比例的性质,根据等式的基本性质2进行计算即可,是基础题,比较简单.11.关于抛物线216212y x x =-+的说法中,正确的是( ) A .开口向下B .与y 轴的交点在x 轴的下方C .与x 轴没有交点D .y 随x 的增大而减小 【答案】C【分析】根据题意利用二次函数的性质,对选项逐一判断后即可得到答案.【详解】解:A. 102> ,开口向上,此选项错误; B. 与y 轴的交点为(0,21),在x 轴的上方,此选项错误;C. 与x 轴没有交点,此选项正确;D. 开口向上,对称轴为x=6,6x <时y 随x 的增大而减小,此选项错误.故选:C.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,熟练掌握并利用二次函数的性质解答. 12.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150【答案】B。

上海市崇明区2018届九年级上期末调研测试数学试题含答案

上海市崇明区2018届九年级上期末调研测试数学试题含答案

崇明区2017-2018学年第一学期教学质量调研测试卷九年级数学(完卷时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在Rt ABC △中,90C ∠=︒,5AB =,3BC =,那么tan A 的值是………………………( ▲ )(A)34; (B)43; (C)35; (D)45.2.抛物线22(3)4y x =+-的顶点坐标是 ……………………………………………………( ▲ )(A)(3,4);(B)(3,4)-;(C)(3,4)-;(D)(3,4)--.3.如图,在ABC △中,点D ,E 分别在边AB ,AC 上,DE BC ∥.已知6AE =,34AD DB =, 那么EC 的长是 ………………………………………………………………………………( ▲ ) (A) 4.5;(B) 8;(C) 10.5;(D) 14.4.如图,在平行四边形ABCD 中,点E 在边DC 上,:3:1DE EC =,联结AE 交BD 于点F ,那么DEF △的面积与BAF △的面积之比为………………………………………………( ▲ ) (A)3:4;(B)9:16;(C)9:1;(D)3:1.5.如果两圆的半径分别为2和5,圆心距为3,那么这两个圆的位置关系是……………( ▲ ) (A) 外离;(B) 外切;(C) 相交;(D) 内切.6.如图,在Rt ABC △中,90ABC ∠=︒,6AB =,10AC =,BAC ∠和ACB ∠的平分线相交于点E ,过点E 作EF BC ∥交AC 于点F ,那么EF 的长为………………………………( ▲ )(A)52; (B)83; (C)103; (D)154.二、填空题:(本大题共12题,每题4分,满分48分)7.已知23x y =(0)y ≠,那么x yy+= ▲ . 8.计算:13222a b a b ⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭r r rr ▲ .9.如果一幅地图的比例尺为1:50000,那么实际距离是3km 的两地在地图上的图距是▲ cm .10.如果抛物线2(1)4y a x =+-有最高点,那么a 的取值范围是 ▲ .11.抛物线224y x =+向左平移2个单位长度,得到新抛物线的表达式为 ▲ . 12.已知点11(,)A x y 和22(,)B x y 是抛物线22(3)5y x =-+上的两点,如果124x x >>,那么1y 2y .(填“>”、“=”或“<”)13.在Rt ABC △中,90BAC ∠=︒,AD BC ⊥,垂足为点D ,如果6AC =,8AB =,那么AD 的长度为 ▲ .14.已知ABC △是等边三角形,边长为3,G 是三角形的重心,那么G A 的长度为 ▲ . 15.正八边形的中心角的度数为 ▲ 度.16.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡的坡度为 ▲ . 17.如图,在55⨯正方形网格中,一条圆弧经过A ,B ,C 三点,已知点A 的坐标是(2,3)-,点C 的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是 ▲ .18.如图,在ABC △中,90ACB ∠=︒,点D , E 分别在,AC BC 上,且CDE B ∠=∠,将C D E △沿DE折叠,点C 恰好落在AB 边上的点F 处,如果8AC =,10AB =,那么CD 的长为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒20.(本题满分10分,每小题各5分)如图,在ABC △中,BE 平分ABC ∠交AC 于点E ,过点E 作ED BC ∥交AB 于点D , 已知5AD =,4BD =. (1)求BC 的长度;(2)如果AD a =,AE b =,那么请用a 、b 表示向量CB .21.(本题满分10分,每小题各5分)如图,CD 为⊙O 的直径,CD AB ⊥,垂足为点F ,AO BC ⊥,垂足为点E ,2CE =. (1)求AB 的长; (2)求⊙O 的半径.ABCDE (第20题图)(第21题图)ABCO F ED22.(本题满分10分)如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远?(参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)23.(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .(1)求证:GD AB DF BG ⋅=⋅; (2)联结CF ,求证:45CFB ∠=︒.(第22题图) ADBCE 37°45°北东(第23题图)ABDECGF24.(本题满分12分,每小题各4分)如图,抛物线243y x bx c =-++过点(3,0)A ,(0,2)B .(,0)M m 为线段OA 上一个动点(点M与点A 不重合),过点M 作垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N . (1)求直线AB 的解析式和抛物线的解析式;(2)如果点P 是MN 的中点,那么求此时点N 的坐标;(3)如果以B ,P ,N 为顶点的三角形与APM △相似,求点M 的坐标.(第24题图) AMPNBOxyBOxy(备用图)A25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF .(1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.崇明区2017学年第一学期教学质量调研测试卷(第25题图1) ABCD FE BD FECA(第25题图2)BDFECA(第25题图3)九年级数学参考答案(201801)一、选择题(本大题共6题,每题4分,满分24分)1、A2、D3、B4、B5、D6、C二、填空题(本大题共12题,每题4分,满分48分)7、528、 a b -+ 9、 6 10、 1a <- 11、 22(2)4y x =++ 12、> 13、4.8 14、 315、45 16、 1:2.4 17、 (1,1)-- 18、258三、解答题:(本大题共7题,满分78分)19、解:原式=132322232-⨯+⨯- …………………………………………5分 332322=+-+ ………………………………………………3分 12232=-………………………………………………………2分 20、(1)∵BE 平分ABC ∠ ∴ABE CBE =∠∠ ∵ED BC ∥ ∴DEB CBE =∠∠∴ABE DEB =∠∠ ………………………………………………………2分 ∴4BD DE == ∵ED BC ∥ ∴DE ADBC AB=……………………………………1分 又∵5AD =,4BD = ∴9AB =∴459BC = ∴365BC =………………………………………2分 (2)∵ED BC ∥ ∴5=9DE AD BC AB =∴95BC DE = …………………………………………………………1分又∵ED 与CB 同向 ∴95CB ED = ………………………………1分∵AD a =,AE b = ∴ED a b =- ……………………………1分 ∴9955CB a b =- …………………………………………………………2分 21、(1)∵CD AB ⊥,AO BC ⊥∴90AFO CEO ==︒∠∠ ………………………………………1分 在AOF COE △和△中AFO CEO AOF COE AO CO =⎧⎪=⎨⎪=⎩∠∠∠∠∴AOF COE △≌△ ……………………………………………1分 ∴CE AF = ………………………………………………………1分 ∵2CE = ∴2AF =∵CD 是O 的直径,CD AB ⊥∴12AF BF AB ==……………………………………………1分 ∴4AB = …………………………………………………………1分(2) ∵AO 是O 的半径,AO BC ⊥∴2CE BE == ………………………………………………1分 ∵4AB = ∴12BE AB =∵90AEB =︒∠ ∴30A =︒∠ ……………………2分 又∵90AFO =︒∠ ∴232AF CosA AO AO === …………1分 ∴433AO =即O 的半径是433 ………………………1分 22、解:由题意可得37A =︒∠,45AEC =︒∠,90D =︒∠,5DE km = 过点C 作CH AD ⊥,垂足为点H 则90AHC EHC ==︒∠∠ ∴34CH tanA AH == ………………………………………………………1分 1CHtan HEC EH==∠ ………………………………………………………1分 设CH x =则43AH x =,EH x = …………………………………………2分 ∴5DH x =+ ………………………………………………………1分∵90AHC D ==︒∠∠ ∴CH BD ∥ ∴AH ACDH BC= …………2分 ∵C 点是AB 边的中点 ∴AC BC = ∴AH DH = …………1分 ∴453x x =+ 解得15x = ………………………………………………1分 ∴42015353AE x x km =+=+= ………………………………………1分 23、(1)∵四边形ABCD 是正方形∴90BCD ADC ==︒∠∠,AB BC = …………………………1分 ∵BF DE ⊥ ∴90GFD =︒∠ ∴BCD GFD =∠∠∵BGC FGD =∠∠∴BGC DGF △∽△ ………………………………………………2分 ∴BG BCDG DF= ………………………………………………………1分 ∴DG BC DF BG ⋅=⋅ ……………………………………………1分∵AB BC =∴DG AB DF BG ⋅=⋅ ……………………………………………1分 (2)联结BD ∵BGC DGF △∽△ ∴BG CGDG FG = ………………………………………………………1分 ∴BG DGCG FG= 又∵BGD CGF =∠∠∴BGD CGF △∽△ ………………………………………………2分 ∴BDG CFG =∠∠ ………………………………………………1分 ∵四边形ABCD 是正方形,BD 是对角线∴1452BDG ADC ==︒∠∠ ……………………………………1分 ∴45CFG =︒∠ ……………………………………………………1分24、(1)解:设直线AB 的解析式为y kx b =+(0k ≠) ∵(3,0)A ,(0,2)B∴302k b b +=⎧⎨=⎩ 解得232k b ⎧=-⎪⎨⎪=⎩ ……………………………………1分∴直线AB 的解析式为223y x =-+ ………………………………1分 ∵抛物线243y x bx c =-++经过点(3,0)A ,(0,2)B ∴493032b c c ⎧-⨯++=⎪⎨⎪=⎩ 解得1032b c ⎧=⎪⎨⎪=⎩ …………………………1分∴2410233y x x =-++ ……………………………………………1分 (2)∵MN x ⊥轴, (,0)M m ∴设2410(,2)33N m m m -++,2(,2)3P m m -+ ∴2443NP m m =-+, 223P M m =-+ ……………………1分 ∵P 点是MN 的中点 ∴NP PM = ∴2424233m m m -+=-+ ………………………………………1分 解得112m =,23m =(不合题意,舍去) ………………………1分 ∴110(,)23N ……………………………………………………1分 (3)∵(3,0)A ,(0,2)B , 2(,2)3P m m -+ ∴13AB =,133BP m =∴13133AP m =- ∵BPN APM =∠∠∴当BPN △与APM △相似时,存在以下两种情况:1° BP PM PN PA= ∴213223341341333m m m m m -+=-+- 解得118m = ……………………1分 ∴11(,0)8M …………………………………………………………1分 2°BP PA PN PM= ∴213131333424233m m m m m -=-+-+ 解得52m = ……………………1分 ∴5(,0)2M ……………………………………………………………1分 25、(1)∵90ACB =︒∠,45cosA =∴45AC AB = ∵8AC = ∴10AB = ……………………………1分 ∵D 是AB 边的中点 ∴152AD AB == ∵DE AC ⊥ ∴90DEA DEC ==︒∠∠ ∴45AE cosA AD == ∴4AE = ∴844CE =-= ∵在Rt AED △中,222AE DE AD += ∴3DE = ……………………1分∵DF DE ⊥ ∴90FDE =︒∠又∵90ACB =︒∠ ∴四边形DECF 是矩形∴4DF EC == ………………………………………………………………1分 ∵在Rt EDF △中,222DF DE EF += ∴5EF = …………………1分(2)不变 ……………………………………………………………………………1分过点D 作DH AC ⊥,DG BC ⊥,垂足分别为点H 、G由(1)可得3DH =,4DG =∵DH AC ⊥,DG BC ⊥∴90DHC DGC ==︒∠∠又∵90ACB =︒∠ ∴四边形DHCG 是矩形∴90HDG =︒∠∵90FDE =︒∠∴HDG HDF EDF HDF -=-∠∠∠∠ 即EDH FDG =∠∠ ……1分 又∵90DHE DGF ==︒∠∠∴EDH FDG △∽△ ……………………………………………………1分 ∴34DE DH DF DG == …………………………………………………………1分 ∵90FDE =︒∠ ∴34DE tan DFE DF ==∠ ……………………1分 (3)1° 当QF QC =时,易证90DFE QFC +=︒∠∠,即90DFC =︒∠ 又∵90ACB =︒∠,D 是AB 的中点∴152CD BD AB === ∴132BF CF BC === …………………………………………………1分 2° 当FQ FC =时,易证FQC DEQ DCB △∽△∽△∵在Rt EDF △中,34DE tan DFE DF ==∠ ∴设=3DE k ,则4DF k =,5EF k =当FQ FC =时,易证3DE DQ k ==,∴53CQ k =-∵DEQ DCB △∽△ ∴56DE DC EQ BC == ∴185EQ k = ∴75FQ FC k == ∵FQC DCB △∽△ ∴56FQ DC CQ BC ==∴755536k k =- 解得125117k = ∴71251755117117FC =⨯= ∴1755276117117BF =-= ……………………………………………………2分 3° 在BC 边上截取BK=BD=5,由勾股定理得出25DK =当CF CQ =时,易证CFQ EDQ BDK △∽△∽△∴设=3DE k ,则3EQ k =,5EF k = ∴2FQ k =∵EDQ BDK △∽△ ∴525DE BD DQ DK == ∴655DQ k = ∴6555CQ FC k ==- ∵CQF BDK △∽△ ∴525CQ BD FQ DK == ∴65555225k k -= 解得5511k = ∴2511FC = ∴254161111BF =-= ………………………………………………………2分Q。

九年级数学上学期期末质量调研试题沪科版

九年级数学上学期期末质量调研试题沪科版

B ACD 第2题 y x O A 第6题2018年上海市宝山区九年级第一学期期末考试数学试题考试时刻100分钟,总分值150分一、选择题(本大题共6题,每题4分,总分值24分)1.符号tan A 表示().(A)∠A 的正弦; (B)∠A 的余弦; (C)∠A 的正切; (D)∠A 的余切. 2.如图△ABC 中∠C =90°,若是CD ⊥AB 于D ,那么().(A)CD =12AB ; (B) BD =12AD ; (C) CD 2=AD ·BD ; (D) AD 2=BD ·AB .3.已知a 、b 为非零向量,以下判定错误的选项是(). (A) 若是a =2b ,那么a ∥b ;(B)若是a =b ,那么a =b 或a =-b ;(C) 0的方向不确定,大小为0; (D) 若是e 为单位向量且a =2e ,那么a =2.4.二次函数y =x 2+2x +3的图像的开口方向为().(A) 向上; (B) 向下; (C) 向左; (D) 向右.5.若是从某一高处甲看低处乙的俯角为30°,那么从乙处看甲处,甲在乙的().(A)俯角30°方向; (B)俯角60°方向;(C)仰角30°方向; (D)仰角60°方向.6.如图,若是把抛物线y =x 2沿直线y =x 向上方平移22个单位后,其极点在直线y =x 上的A 处,那么平移后的抛物线解析式是().(A) y =(x +22)2+22; (B) y =(x +2)2+2;(C) y =(x -22)2+22; (D)y =(x -2)2+2.二、填空题(每题4分,共48分)7.已知2a =3b ,那么a ∶b =_________.8.若是两个相似三角形的周长之比1∶4,那么它们的某一对对应角的角平分线之比为_________.9.如图,D 、E 为△ABC 的边AC 、AB 上的点,当_________时,△ADE ∽△ABC 其中D 、E 别离对应B 、C .(填一个条件)10.计算:()134522a b b -+=_________. 11.如图,在锐角△ABC 中,BC =10,BC 上的高AD =6,正方形EFGH 的极点E 、F 在BC 边上,G 、H 别离在AC 、AB 边上,那么此正方形的边长为_________.12.若是一个滚筒沿斜坡向正下直线转动13米后,其水平高度下降了5米,那么该斜坡的坡度i =_________.13.如图,四边形ABCD 、CDEF 、EFGH 都是正方形,那么tan ∠CAF =_________.14.抛物线y =5 (x -4)2+3的极点坐标是_________.15.二次函数y =-2(x -1)2+3的图像与y 轴的交点坐标是_________. 16.若是点A (0,2)和点B (4,2)都在二次函数y =x 2+bx +c 的图像上,那么此抛物线在直线_________的部份是上升的.(填具体某直线的某侧)17.如图,点D 、E 、F 别离为△ABC 三边的中点,若是△ABC 的面积为S ,那么以AD 、BE 、CF 为边的三角形的面积是__________.18.如图,点M 是正方形ABCD 的边BC 的中点,联结AM ,将BM 沿某一过M 的直线翻折,使B 落在AM 上的E 处,将线段AE 绕A 顺时针旋转必然角度,使E 落在F 处,如果E 在旋转进程中曾经交AB 于G ,当EF =BG 时,旋转角∠EAF 的度数是______________.三、(本大题共7题,第19-22题每题10分;第23、24题每题12分;第25题14分;总分值78分)19.(此题总分值10分)计算:01sin60tan60cos45sin30π︒︒︒︒-+(+)-20.(此题总分值10分,每题各5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度别离为五、3、2.(1)求AC:CE的值;(2)若是AE记作a,BF记作b,求CD(用a、b表示).21.(此题总分值10分)已知在口岸A的南偏东75°方向有一礁石B,轮船从口岸动身,沿正东北方向(北偏东45°方向)前行10里抵达C后测得礁石B在其南偏西15°处,求轮船行驶进程中离礁石B的最近距离.22.(此题总分值10分,每题各5分)如图,在直角坐标系中,已知直线y=12x+4与y轴交于A点,与x轴交于B点,C点坐标为(-2,0).(1)求通过A ,B ,C 三点的抛物线的解析式;(2)若是M 为抛物线的极点,联结AM 、BM ,求四边形AOBM 的面积.23.(此题总分值12分,每题各6分)如图,△ABC 中,AB =AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G .(1)求证:G AE AC EG C =; (2)假设AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.24.(此题共12分,每题各4分)设a,b是任意两个不等实数,咱们规定:知足不等式a≤x≤b的实数x的所有取值的全部叫做闭区间,表示为[a,b].关于一个函数,若是它的自变量x与函数值y知足:当m≤x≤n时,有m≤y≤n,咱们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=-x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,因此说函数y=-x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.(1)反比例函数2018yx是闭区间[1,2018]上的“闭函数”吗?请判定并说明理由;(2)若是已知二次函数y=x2-4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;(3)若是(2)所述的二次函数的图像交y轴于C点,A为此二次函数图像的极点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.25.(此题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD中,AD//BC,AD=7,AB=CD=15,BC=25,E为腰AB上一点且AE:BE=1:2,F为BC一动点,∠FEG=∠B,EG交射线BC于G,直线EG交射线CA于H.(1)求sin∠ABC;(2)求∠BAC的度数;(3)设BF=x,CH=y,求y与x的函数关系式及其概念域.。

上海市崇明区2018年九年级数学上学期教学质量调研测试(答案不全)

上海市崇明区2018年九年级数学上学期教学质量调研测试(答案不全)

上海市崇明区2018年九年级数学上学期教学质量调研测试(考试时间:100分钟 满分:150分)考生注意:1. 本试卷含三个大题,共25题2. 务必按答题要求在答题纸规定位置上作答,在草稿纸、本试卷上答题一律无效3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂的答题纸的相应位置上】 1. 如果23x y =,那么xy的值为( )A.23B.32C.53D.25 2. 在Rt △ABC 中,如果090C ∠=,那么ACBC表示A ∠的()A.正弦B.正切C.余弦D.余切3. 已知二次函数2y ax bx =+的图像如图所示,那么的a 、b 符号为( )A.0,0;a b >>B.0,0;a b <>C.0,0;a b ><D.0,0;a b <<4. 如图,如果BAD CAE ∠=∠,那么添加下列一个条件后,仍不能确定△ABC ∽△ADE 的是( )A.B D ∠=∠B.C AED ∠=∠C.AB DEAD BC=D.AB ACAD AE =(第3题图) (第4题图) 5. 已知向量a 和b 都是单位向量,那么下列等式成立的是( )A.a b =B.2a b +=C.0a b -=D.a b =6. 如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径1r >,那么这两个圆CBEDA的位置关系不可能是( )A. 内含B. 内切C. 外离D. 相交二、填空题(本大题共12 题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】 7. 化简:3322a a b ⎛⎫--= ⎪⎝⎭___________.8. 已知线段b 是线段a 、c 的比例中项,且1a cm =,4c cm =,那么b =___________cm . 9. 在以O 为坐标原点的直角坐标平面内有一点()4,3A ,如果AO 与y 轴正半轴的夹角为α,那么cos α=___________.10. 如果一个正六边形的半径为2,那么这个正六边形的周长为___________. 11. 如果两个相似三角形的周长比为4:9,那么它们的面积比为___________.12. 已知线段AB 的长为10厘米,点C 是线段AB 的黄金分割点,且AC BC >,那么线段AC 的长为___________厘米.13. 已知抛物线()214y x =--,那么这条抛物线的顶点坐标为___________.14. 已知二次函数22y x =--,那么它的图像在对称轴的___________部分是下降的(填“左侧”或“右侧”).15. 已知△ABC 中,090ACB ∠=,6AC =,8BC =,G 为△ABC 的重心,那么CG =___________.16. 如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知6BC =,△ABC 的高3AH =,则正方形的DEFG 边长为___________.(第16题图) (第18题图)17. 已知Rt △ABC 中,090ACB ∠=,10AB =,8AC =,如果以点C 为圆心的圆与斜边AB 有唯一的公共点,那么C 的半径R 的取值范围为___________.18. 如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如CBMADHGFEDCBA图的四边形ABCD 中,点M 在边CD 上,连结AM 、BM ,090AMB ∠=,则点M 为直角点.若点E 、F 分别为矩形ABCD 边AB 、CD 上的直角点,且5AB =,BC =,则线段EF 的长为___________.三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 计算:2tan30cos 45cot 30sin 602cos30-+.20.(本题满分10分,每小题各5分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,且23DE BC =.(1)如果AC=6,求AE 的长;(2)设AB a =,AC b =,求向量DE (用向量a 、b 表示).21.(本题满分10分,每小题各5分)已知:如图,AO 是O 的半径,AC 为O 的弦,点F 为AC 的中点,OF 交AC 于点E ,AC=8,EF=2.(1)求AO 的长;(2)过点C 作CD ⊥AO ,交AO 延长线于点D ,求sin ∠ACD 的值.22.(本题满分10分,每小题各5分)(第20题图)(第21题图)E DCBAF安装在屋顶的太阳能热水器的横截面示意图如图所示,已知集热管AE与支架BF所在直线相交于水箱横截面O的圆心O,O的半径为0.2米,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB,垂足为B,OD⊥AD,垂足为D,AB=2米.(1)求支架BF的长;(2)求屋面AB的坡度.(参考数据:tan18°≈13,tan32°≈3150,tan40°≈2125)23. (本题满分12分,每小题各6分)如图,△ABC中,D是BC上一点,E是AC上一点,点G在BE上,联结DG并延长交AE 于点F,∠BGD=∠BAD=∠C.(1)求证:BD BC BG BE;(2)如果∠BAC=90°,求证:AG⊥BE.24. (本题满分12分,每小题各4分)(第23题图)(第22题图)FEBDAOGFDEC AB如图,在平面直角坐标系xOy中,二次函数26y ax bx=++(a、b都是常数,且a<0)的图像与x轴交于点(2,0)A-、(6,0)B,顶点为点C.(1)求这个二次函数的解析式及点C的坐标;(2)过点B的直线132y x=-+交抛物线的对称轴于点D,联结BC,求∠CBD的余切值;(3)点P为抛物线上一个动点,当∠PBA=∠CBD时,求点P的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC,垂足为D,点P是边AB上的一个动点,过点P作PF∥AC交线段BD于点F,作PG⊥AB交AD于点E,交线段CD于点G,设BP=x. (1)用含x的代数式表示线段DG的长;(2)设△DEF的面积为y,求y与x之间的函数关系式,并写出定义域;(3)△PEF能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.参考答案CGDFEBPA一、选择题 1、B2、D3、A4、C5、D6、C二、填空题7、1322a b + 8、2 9、3510、12 11、16:8112、5 13、()1,4- 14、右侧 15、10316、2 17、68R <≤或245R = 18三、解答题19、5320、(1)4;(2)2233a b -+21、(1)5;(2)4522、(1)1.04米;(2)1:3 23、(1)证明略;(2)证明略24、(1)21262y x x =-++,()2,8C ;(2)43;(3)757,28⎛⎫-- ⎪⎝⎭或139,28⎛⎫- ⎪⎝⎭25、(1)533DG x =-;(2)23129274408y x x =-+-(9552x <<);(3)能,12557或9043。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市崇明区2018届九年级数学上学期期末调研测试试题(完卷时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在Rt ABC △中,90C ∠=︒,5AB =,3BC =,那么tan A 的值是………………………( ▲ )(A)34; (B)43; (C)35; (D)45.2.抛物线22(3)4y x =+-的顶点坐标是 ……………………………………………………( ▲ )(A)(3,4);(B)(3,4)-;(C)(3,4)-;(D)(3,4)--.3.如图,在ABC △中,点D ,E 分别在边AB ,AC 上,DE BC ∥.已知6AE =,34AD DB =, 那么EC 的长是 ………………………………………………………………………………( ▲ ) (A) 4.5;(B) 8;(C) 10.5;(D) 14.4.如图,在平行四边形ABCD 中,点E 在边DC 上,:3:1DE EC =,联结AE 交BD 于点F ,那么DEF △的面积与BAF △的面积之比为………………………………………………( ▲ ) (A)3:4;(B)9:16;(C)9:1;(D)3:1.5.如果两圆的半径分别为2和5,圆心距为3,那么这两个圆的位置关系是……………( ▲ ) (A) 外离;(B) 外切;(C) 相交;(D) 内切.6.如图,在Rt ABC △中,90ABC ∠=︒,6AB =,10AC =,BAC ∠和ACB ∠的平分线相交于点E ,过点E 作EF BC ∥交AC 于点F ,那么EF 的长为………………………………( ▲ )(A)52; (B)83; (C)103; (D)154.二、填空题:(本大题共12题,每题4分,满分48分) 7.已知23x y =(0)y ≠,那么x yy+= ▲ . 8.计算:13222a b a b ⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭r r rr ▲ .9.如果一幅地图的比例尺为1:50000,那么实际距离是3km 的两地在地图上的图距是▲ cm .10.如果抛物线2(1)4y a x =+-有最高点,那么a 的取值范围是 ▲ . 11.抛物线224y x =+向左平移2个单位长度,得到新抛物线的表达式为 ▲ . 12.已知点11(,)A x y 和22(,)B x y 是抛物线22(3)5y x =-+上的两点,如果124x x >>,那么1y 2y .(填“>”、“=”或“<”)13.在Rt ABC △中,90BAC ∠=︒,AD BC ⊥,垂足为点D ,如果6AC =,8AB =,那么AD 的长度为 ▲ .14.已知ABC △是等边三角形,边长为3,G 是三角形的重心,那么G A 的长度为 ▲ . 15.正八边形的中心角的度数为 ▲ 度.16.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡的坡度为 ▲ . 17.如图,在55⨯正方形网格中,一条圆弧经过A ,B ,C 三点,已知点A 的坐标是(2,3)-,点C 的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是 ▲ .18.如图,在ABC △中,90ACB ∠=︒,点D , E 分别在,AC BC 上,且CDE B ∠=∠,将CDE △沿DE折叠,点C 恰好落在AB 边上的点F 处,如果8AC =,10AB =,那么CD 的长为 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒20.(本题满分10分,每小题各5分)如图,在ABC △中,BE 平分ABC ∠交AC 于点E ,过点E 作ED BC ∥交AB 于点D , 已知5AD =,4BD =. (1)求BC 的长度;(2)如果AD a =,AE b =,那么请用a 、b 表示向量CB .21.(本题满分10分,每小题各5分)如图,CD 为⊙O 的直径,CD AB ⊥,垂足为点F ,AO BC ⊥,垂足为点E ,2CE =. (1)求AB 的长; (2)求⊙O 的半径.ABCDE (第20题图)(第21题图)D22.(本题满分10分)如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远?(参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)23.(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .(1)求证:GD AB DF BG ⋅=⋅; (2)联结CF ,求证:45CFB ∠=︒.(第22题图)(第23题图)A BDECGF24.(本题满分12分,每小题各4分)如图,抛物线24y x bx c=-++过点(3,0)A,(0,2)B.(,0)M m为线段OA上一个动点(点M 与点A((((第24题图)(备用图)25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF .(1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.崇明区2017学年第一学期教学质量调研测试卷(第25题图1) ABCD FE BD FE CA(第25题图2) BD FE CA(第25题图3)九年级数学参考答案(201801)一、选择题(本大题共6题,每题4分,满分24分)1、A2、D3、B4、B5、D6、C 二、填空题(本大题共12题,每题4分,满分48分)7、528、 a b -+ 9、 6 10、 1a <-11、 22(2)4y x =++ 12、> 13、4.8 14、15、45 16、 1:2.4 17、 (1,1)-- 18、258三、解答题:(本大题共7题,满分78分)19、解:原式3222⨯+⨯…………………………………………5分=………………………………………………3分= ………………………………………………………2分 20、(1)∵BE 平分ABC ∠ ∴ABE CBE =∠∠ ∵ED BC ∥ ∴DEB CBE =∠∠∴ABE DEB =∠∠ ………………………………………………………2分 ∴4BD DE == ∵ED BC ∥ ∴DE ADBC AB=……………………………………1分 又∵5AD =,4BD = ∴9AB =∴459BC = ∴365BC =………………………………………2分 (2)∵ED BC ∥ ∴5=9DE AD BC AB =∴95BC DE = …………………………………………………………1分又∵ED 与CB 同向 ∴95CB ED = ………………………………1分∵AD a =,AE b = ∴ED a b =- ……………………………1分 ∴9955CB a b =- …………………………………………………………2分 21、(1)∵CD AB ⊥,AO BC ⊥∴90AFO CEO ==︒∠∠ ………………………………………1分 在AOF COE △和△中AFO CEO AOF COE AO CO =⎧⎪=⎨⎪=⎩∠∠∠∠∴AOF COE △≌△ ……………………………………………1分 ∴CE AF = ………………………………………………………1分 ∵2CE = ∴2AF =∵CD 是O 的直径,CD AB ⊥∴12AF BF AB ==……………………………………………1分 ∴4AB = …………………………………………………………1分(2) ∵AO 是O 的半径,AO BC ⊥∴2CE BE == ………………………………………………1分 ∵4AB = ∴12BE AB =∵90AEB =︒∠ ∴30A =︒∠ ……………………2分 又∵90AFO =︒∠∴2AF CosA AO AO === …………1分∴AO =即O………………………1分 22、解:由题意可得37A =︒∠,45AEC =︒∠,90D =︒∠,5DE km = 过点C 作CH AD ⊥,垂足为点H 则90AHC EHC ==︒∠∠ ∴34CH tanA AH == ………………………………………………………1分 1CHtan HEC EH==∠ ………………………………………………………1分 设CH x =则43AH x =,EH x = …………………………………………2分 ∴5DH x =+ ………………………………………………………1分∵90AHC D ==︒∠∠ ∴CH BD ∥ ∴AH ACDH BC= …………2分 ∵C 点是AB 边的中点 ∴AC BC = ∴AH DH = …………1分∴453x x =+ 解得15x = ………………………………………………1分 ∴42015353AE x x km =+=+= ………………………………………1分 23、(1)∵四边形ABCD 是正方形∴90BCD ADC ==︒∠∠,AB BC = …………………………1分 ∵BF DE ⊥ ∴90GFD =︒∠ ∴BCD GFD =∠∠∵BGC FGD =∠∠∴BGC DGF △∽△ ………………………………………………2分 ∴BG BCDG DF= ………………………………………………………1分 ∴DG BC DF BG ⋅=⋅ ……………………………………………1分∵AB BC =∴DG AB DF BG ⋅=⋅ ……………………………………………1分 (2)联结BD ∵BGC DGF △∽△ ∴BG CGDG FG = ………………………………………………………1分 ∴BG DGCG FG= 又∵BGD CGF =∠∠∴BGD CGF △∽△ ………………………………………………2分 ∴BDG CFG =∠∠ ………………………………………………1分 ∵四边形ABCD 是正方形,BD 是对角线∴1452BDG ADC ==︒∠∠ ……………………………………1分∴45CFG =︒∠ ……………………………………………………1分24、(1)解:设直线AB 的解析式为y kx b =+(0k ≠) ∵(3,0)A ,(0,2)B∴302k b b +=⎧⎨=⎩ 解得232k b ⎧=-⎪⎨⎪=⎩ ……………………………………1分∴直线AB 的解析式为223y x =-+ ………………………………1分 ∵抛物线243y x bx c =-++经过点(3,0)A ,(0,2)B ∴493032b c c ⎧-⨯++=⎪⎨⎪=⎩ 解得1032b c ⎧=⎪⎨⎪=⎩ …………………………1分∴2410233y x x =-++ ……………………………………………1分 (2)∵MN x ⊥轴, (,0)M m∴设2410(,2)33N m m m -++,2(,2)3P m m -+ ∴2443NP m m =-+, 223PM m =-+ ……………………1分 ∵P 点是MN 的中点 ∴NP PM = ∴2424233m m m -+=-+ ………………………………………1分 解得112m =,23m =(不合题意,舍去) ………………………1分 ∴110(,)23N ……………………………………………………1分 (3)∵(3,0)A ,(0,2)B , 2(,2)3P m m -+∴AB =3BP m =∴3AP m = ∵BPN APM =∠∠∴当BPN △与APM △相似时,存在以下两种情况:1° BP PM PN PA=∴2223443m m m -+=-+解得118m = ……………………1分 ∴11(,0)8M …………………………………………………………1分 2°BP PA PN PM=∴233424233m m m m -=-+-+ 解得52m = ……………………1分 ∴5(,0)2M ……………………………………………………………1分 25、(1)∵90ACB =︒∠,45cosA = ∴45AC AB = ∵8AC = ∴10AB = ……………………………1分 ∵D 是AB 边的中点 ∴152AD AB == ∵DE AC ⊥ ∴90DEA DEC ==︒∠∠ ∴45AE cosA AD == ∴4AE = ∴844CE =-= ∵在Rt AED △中,222AE DE AD += ∴3DE = ……………………1分∵DF DE ⊥ ∴90FDE =︒∠又∵90ACB =︒∠ ∴四边形DECF 是矩形∴4DF EC == ………………………………………………………………1分 ∵在Rt EDF △中,222DF DE EF += ∴5EF = …………………1分(2)不变 ……………………………………………………………………………1分过点D 作DH AC ⊥,DG BC ⊥,垂足分别为点H 、G由(1)可得3DH =,4DG =∵DH AC ⊥,DG BC ⊥∴90DHC DGC ==︒∠∠又∵90ACB =︒∠ ∴四边形DHCG 是矩形∴90HDG =︒∠∵90FDE =︒∠∴HDG HDF EDF HDF -=-∠∠∠∠ 即EDH FDG =∠∠ ……1分 又∵90DHE DGF ==︒∠∠∴EDH FDG △∽△ ……………………………………………………1分 ∴34DE DH DF DG == …………………………………………………………1分 ∵90FDE =︒∠ ∴34DE tan DFE DF ==∠ ……………………1分 (3)1° 当QF QC =时,易证90DFE QFC +=︒∠∠,即90DFC =︒∠ 又∵90ACB =︒∠,D 是AB 的中点∴152CD BD AB === ∴132BF CF BC === …………………………………………………1分 2° 当FQ FC =时,易证FQC DEQ DCB △∽△∽△∵在Rt EDF △中,34DE tan DFE DF ==∠ ∴设=3DE k ,则4DF k =,5EF k =当FQ FC =时,易证3DE DQ k ==,∴53CQ k =-∵DEQ DCB △∽△ ∴56DE DC EQ BC == ∴185EQ k = ∴75FQ FC k == ∵FQC DCB △∽△ ∴56FQ DC CQ BC == ∴755536k k =- 解得125117k = ∴71251755117117FC =⨯= ∴1755276117117BF =-= ……………………………………………………2分 3° 在BC 边上截取BK=BD=5,由勾股定理得出DK =当CF CQ =时,易证CFQ EDQ BDK △∽△∽△∴设=3DE k ,则3EQ k =,5EF k = ∴2FQ k =∵EDQ BDK △∽△∴DE BD DQ DK ==∴DQ =∴5CQ FC ==- ∵CQF BDK △∽△∴CQ BD FQ DK ==∴552k -=解得k =∴2511FC = ∴254161111BF =-= ………………………………………………………2分Q。

相关文档
最新文档