CMG软件培训讲义(二)中文2009
CMG软件培训讲义(二)中文2009
Computer Modelling Group, Inc.2009 操作指南使用建立、运算并分析“STARS 水驱” 油藏模拟模型Builder 2009.10 STARS 2009.10&目录用BUILDER 2009.10创建一个黑油模型 (3)启动CMG主界面 3打开BUILDER 3创建模拟网格 3定义模型的孔隙度和渗透率 6创建PVT 数据7创建相对渗透率数据8创建初始条件9创建井轨迹和导入射孔文件 (9)添加历史生产数据 (12)创建月度生产/注入动态数据12 创建历史拟合文件(*.fhf) 13 井定义和约束条件13往重启动文件中写入重启动信息 (15)运行STARS 数据体 (15)用Results Graph 查看模拟结果 (16)在历史数据的基础上启动预测运算 (17)用BUILDER 2009.10创建一个黑油模型在你硬盘上创建一个工作目录,把与该指南相关的图放在该目录下。
启动CMG 主界面(桌面上的图标或者开始/程序/CMG/Launcher) ∙选择菜单项Projects,然后Add Project∙浏览并选择存储图文件的目录∙工程命名为Tutorial∙点击确定回到主界面∙现在你应该能看到工作目录打开BUILDER 2009.10 (双击图标)∙选择:STARS Simulator, SI Units, Single PorosityStarting date 1991-01-01∙点击2次确定创建模拟网格(构造数据)∙点击File (位于左上角的菜单栏),然后Open Map File∙选择Map Type –Atlas Boundary format,x/y坐标系的单位为m ∙点击Browse按钮选择并导入构造顶部文件To10flt.bna∙点击确定∙点击窗口最大化按钮(窗口右上角的方块)使窗口最大化,以方便观察∙点击Reservoir (位于菜单栏)∙选择Orthogonal Corner Point定义网格为25(I-方向) x 35(J-方向x 4 (K-方向)。
CMG数值模拟入门教程
CMG数模软件STARS模块使用入门教程CMG数模软件培训庞占喜 2007.3.17 中国石油大学(北京)目录* * * * * * *CMG软件简介 STARS模块主要关键字 STARS模块泡沫的模拟 STARS模块所需数据的准备及处理STARS模块油藏热采模型的建立油藏热采模型的运行及结果后处理氮气及氮气泡沫压水锥数值模拟中国石油大学(北京)石油天然气工程学院油藏数值模拟组一、CMG软件简介其数据体文 CMG 可件为 * .dat, 计以产进生行的常文规算黑油模:拟、件包括输出稠油*.out( 热采用模文件拟、组模户查看 ),分SR2 拟进以制及索泡引沫二模拟。
文件 * .irf( 数 STARS 据后处理模 ), 块是三维、 SR2 二进制结四相文、多件组果分、热采、*.mrf( 二进制蒸算汽结添果加存剂计模拟器。
储 )。
MODEL BUILDERGRID BUILDERGEMIMEXSTARS3D2D中国石油大学(北京)石油天然气工程学院油藏数值模拟组一、CMG软件简介油藏模型数据体包含内容INPUT/OUTPUT CONTROL:输入/输入控制,定义控制模拟器输入和输出行为的各个参数,例如,文件名、单位、out文件和SR2文件写入频率,重启文件的定义等。
GRID AND RESERVOIR DEFINITION:网格和油藏定义,这部分包括:模拟网格的定义、天然裂缝油藏选项、离散化井筒定义、基本油层岩石特性、区块选项,其他油藏特性描述(岩石压缩系数、岩石热物性参数、顶底盖层热损失系数、井筒热损失系数、水体)。
FLUID AND COMPONENT DEFINITIONS:流体和组分定义,定义组分名称、个数,相应的K值,各组分的基本参数(摩尔质量、密度、粘度、临界温度、临界压力,化学反应式等)。
STARS 数据体中国石油大学(北京)石油天然气工程学院油藏数值模拟组一、CMG软件简介油藏模型数据体包含内容ROCK-FLUID PROPERTIES:岩石-流体特性,定义相渗曲线,毛管压力、组分的吸附和扩散特性;(*泡沫的定义以及相渗插值的定义)。
CMG软件培训讲义(二)中文
目录用BUILDER 2007.10创建一个黑油模型.... .... .... . (3)启动CMG主界面 3打开BUILDER 3创建模拟网格 3定义模型的孔隙度和渗透率 6创建PVT 数据7创建相对渗透率数据8创建初始条件9创建井轨迹和导入射孔文件 (9)添加历史生产数据 (12)创建月度生产/注入动态数据12 创建历史拟合文件(*.fhf) 13 井定义和约束条件13往重启动文件中写入重启动信息 (15)运行STARS 数据体 (15)用Results Graph 查看模拟结果 (16)在历史数据的基础上启动预测运算 (17)用BUILDER 2007.10创建一个黑油模型在你硬盘上创建一个工作目录,把与该指南相关的图放在该目录下。
启动CMG 主界面(桌面上的图标或者开始/程序/CMG/Launcher) •选择菜单项Projects,然后Add Project•浏览并选择存储图文件的目录•工程命名为Tutorial•点击确定回到主界面•现在你应该能看到工作目录打开BUILDER 2007.10 (双击图标)•选择:STARS Simulator, SI Units, Single PorosityStarting date 1991-01-01•点击2次确定创建模拟网格(构造数据)•点击File (位于左上角的菜单栏),然后Open Map File•选择Map Type –Atlas Boundary format,x/y坐标系的单位为m •点击Browse按钮选择并导入构造顶部文件To10flt.bna•点击确定•点击窗口最大化按钮(窗口右上角的方块)使窗口最大化,以方便观察•点击Reservoir (位于菜单栏)•选择Orthogonal Corner Point定义网格为25(I-方向) x 35(J-方向x 4 (K-方向)。
•在I方向文本框输入25*110 (意思是I-方向的25列长度均为110 m)•在J方向文本框输入35*125 (意思是J-方向的35行宽度均为125 m)•点击确定•按住Shift键并按下鼠标左键可移动网格•按住Ctrl键并按下鼠标左键可旋转网格•排列一下网格和断层,使得断层沿着网格边界分布,并且网格能完全覆盖整个区域。
CMG软件培训讲义(二)中文
Computer Modelling Group, Inc.
培训讲义
使用
建立、运算并分析
“STARS 水驱” 油藏模拟模型
Builder 2007.10 STARS 2007.10
&
大庆油田研究院CMG软件培训讲义(二)
目录
用BUILDER 2007.10创建一个黑油模型.... .... .... . (3)
启动CMG主界面 3
打开BUILDER 3
创建模拟网格 3
定义模型的孔隙度和渗透率 6
创建PVT 数据7
创建相对渗透率数据8
创建初始条件9
创建井轨迹和导入射孔文件 (9)
添加历史生产数据 (12)
创建月度生产/注入动态数据12 创建历史拟合文件(*.fhf) 13 井定义和约束条件13
往重启动文件中写入重启动信息 (15)
运行STARS 数据体 (15)
用Results Graph 查看模拟结果 (16)
在历史数据的基础上启动预测运算 (17)
1。
CMGSTARS软件培训讲义中文
Computer Modelling Group, Inc.培训讲义使用建立、运算并分析“STARS 水驱” 油藏模拟模型Builder 2008.10STARS 2008.10&目录用BUILDER 2008.10创建一个黑油模型.... .... .... . (3)启动CMG主界面 3打开BUILDER 3创建模拟网格 3定义模型的孔隙度和渗透率 6创建PVT 数据7创建相对渗透率数据8创建初始条件9创建井轨迹和导入射孔文件 (9)添加历史生产数据 (12)创建月度生产/注入动态数据12 创建历史拟合文件(*.fhf) 13 井定义和约束条件13往重启动文件中写入重启动信息 (15)运行STARS 数据体 (15)用Results Graph 查看模拟结果 (16)在历史数据的基础上启动预测运算 (17)用BUILDER 2008.10创建一个黑油模型在你硬盘上创建一个工作目录,把与该指南相关的图放在该目录下。
启动CMG 主界面(桌面上的图标或者开始/程序/CMG/Launcher) ∙选择菜单项Projects,然后Add Project∙浏览并选择存储图文件的目录∙工程命名为Tutorial∙点击确定回到主界面∙现在你应该能看到工作目录打开BUILDER 2008.10 (双击图标)∙选择:STARS Simulator, SI Units, Single PorosityStarting date 1991-01-01∙点击2次确定创建模拟网格(构造数据)∙点击File (位于左上角的菜单栏),然后Open Map File∙选择Map Type –Atlas Boundary format,x/y坐标系的单位为m ∙点击Browse按钮选择并导入构造顶部文件To10flt.bna∙点击确定∙点击窗口最大化按钮(窗口右上角的方块)使窗口最大化,以方便观察∙点击Reservoir (位于菜单栏)∙选择Orthogonal Corner Point定义网格为25 (I-方向) x 35 (J-方向x 4 (K-方向)。
CMG数模软件的使用资料
二、STARS模块主要关键字
油藏描述所需资料:
GRID AND RESERVOIR DEFINITION
小层数据表或等值线图
孔隙度数据输入标志 (必需) 渗透率数据输入标志 (必需) 孔隙体积修改因子 (可选) 有效厚度 (可选) 净毛比 (可选) 传导率因子(可选)
中国石油大学(北京)石油天然气工程学院油藏数值模拟组
二、STARS模块主要关键字
GRID AND RESERVOIR DEFINITION
网格类型选项 *GRID, *KDIR I方向网格步长 (必需) *DI J方向网格步长(必需) *DJ K方向网格步长(必需) *DK 网格中心深度选项 (条件) *DEPTH 网格顶部深度数据 (条件) *DTOP 油层中部深度数据(条件) *PAYDEPTH 网格倾角数据 (条件) *DIP 局部网格加密选项 (条件) *REFINE, *RANGE 网格几何特征修正选项 (可选) *VAMOD, *VATYPE(修正部分网格的面积 及体积) 无效网格选项(可选) *NULL 离散井筒选项 (条件) *WELLBORE, *RELROUGH, *LAMINAR, *TRANSIENT, *CIRCWELL, *WELLINFO, *REGIME, *WELLWALL, *TUBINSUL, *ANNULUSWAL, *CASING, *FILM_COND, *RANGE, *WBZ, *WBZADJ
CMG数模软件培训
庞占喜 2007.3.17
目 录
* * * * * * *
CMG软件简介 STARS模块主要关键字 STARS模块泡沫的模拟 STARS模块所需数据的准备及处理
第1天-2:CMG操作(builder)
一、用Builder建立模型
添加井的工作制度
点击Constraints选项卡 选择new,选择Operate,选择BHP Bottom hole pressure,MAX,12000kPa,CONT REPEAT 再添加一次,STW,MAX,250m3/d,CONT REPEAT 注入流体选择Water,在Water项输入1.0,输入温度325℃,蒸汽干度0.8 双击Injector1,选上所有关键字,点击Tools按钮选择Copy events using filter,将会 弹出新窗口: 选择井,选上需要的井,选择日期,点击All,点击Search & Add按钮 点击确定添加相同的约束条件,再点确定。
一、用Builder建立模型
添加井的工作制度
双击Producer1 ,按照前面的步骤设置生产井工作制度 BHP,MIN,200kPa,CONT REPEAT STL,MAX,32m3/d,CONT REPEAT 点击确定
添加井的工作制度 在Wells & Recurrent中,双击Date 点击 按钮添加日期 从2011-01-01到2021-01-01时间步长选 择month 点击确定两次。 把2021-01-01定为停止日期,模型运行到2010-01-01时会自动停 止。
一、用Builder建立模型
在硬盘下建立一个目录,把相关数据存放在该硬盘下。 启动 CMG 主界面 (桌面上的图标或者开始/程序/CMG/Launcher) 选择菜单项 Projects, 然后 Add Project 浏览并选择存储图文件的目录 工程命名为 xx 点击 确定 回到主界面 现在你应该能看到工作目录 打开 BUILDER 2009.10 (双击图标) 选择: STARS Simulator, SI Units, Single Porosity Starting date 2011-01-01 点击2次 确定
CMG软件培训讲义(英文)
Computer Modelling Group, Inc.2006 TutorialBuilding, Running and Analyzing a“STARS Water flood” ReservoirSimulation ModelusingBuilder 2006.10STARS2006.10 &Table of ContentsCreating a “Black oil” model using BUILDER 2006.10 (3)Starting CMG Launcher 3Opening BUILDER 3Creating the Simulation Grid 3Assigning Porosity & Permeability to the Model 6Creating PVT Data 7Creating Relative Permeability Data 8Creating Initial Conditions 9 Creating Trajectory and Loading Perforation file (9)Adding Historical Production Data (12)Creating Monthly Production/Injection recurrent welldata 12 Creating Field Production history (*.fhf) for History Match 13 Well Definition and Constraints 13 Write out Restart information to a Restart File (15)Running the STARS Dataset (15)Reviewing the Simulation results using Results Graph (16)Using the Historical D ata restart File in a Prediction Run (17)Creating a “Black oil” model using BUILDER 2006.10Create a working directory somewhere on your disk and put the map files that accompany this tutorial in this directory.Start the CMG Launcher (icon on desktop or START/PROGRAMS/CMG/Launcher) •Select menu item Projects, then Add Project•Browse for the directory where you stored the map files•Call the project Tutorial•Click OK to exit back to the Launcher•You should now have this directory displayedOpen BUILDER 2006.10 (double click on the icon)•Choose:STARS Simulator, SI Units, Single PorosityStarting date 1991-01-01•Click OK twiceCreate the Simulation Grid (structural data)•Click on File (on the menu bar, top left), then Open Map File•Choose Map Type –Atlas Boundary format and m for Units for x/y coordinates•Select the Top-of-Structure map file called To10flt.bna by clicking on the Browse button and locating the file•Click OK•Maximise the screens for a better view by clicking on the window maximise button (the square in the top right of the windows)•Click Reservoir (on the menu bar)•Select Orthogonal Corner Point and specify a 25(I-direction) x 35 (J-direction) x 4 (K-direction) grid.•Enter 25*110 in the I direction box (meaning all 25 columns in the I-direction will be 110 meters in length)•Enter 35*125 in the J-direction box (meaning all 35 rows in the J-direction will be 125 meters in length)•Click OK•Hold down Shift key and hold down left mouse button to move (pan) grid •Hold down Ctrl key and hold down left mouse button to rotate grid•Align the grid with the fault so that a grid block boundary lies along it, and the grid covers the whole map area.•Change display control to Probe mode by clicking on this toolbar button on left hand side•Click on the Specify Property button (top middle of screen) to open the General Property Specification spreadsheet as shown below•Select the box for layer 1under the property column labelled Grid Top.Right click in this box and select the Geological Map option as the data source.•Click the Values in file1button, then Browse for and select the top-of-structure map file called To10flt.bna (it should already be selected from previous actions)•Click OK to return to the spreadsheet type window•Repeat this action for Grid Thickness in layer1 box but this time select Thickflt.bna in the Values in file1box. Also, enter 0.25in the times box (still on the property specification menu) in order to allocate 25% of the total thickness map to each of the 4 layers in the grid. Finally, copy the layer1,Grid Thickness cell contents and paste it into the layer2, layer3 and layer4 Grid Thickness cells to complete the specification of Grid Thickness source data for each of the 4 layers in the grid you can use Cntrl-C and Cntrl-V keys to copy specifications for the first layer to the other 3 just as in a regular spreadsheet), Click OK•Click the Calculate Property button and click on OK to populate the grid with top-of-structure and grid thickness data (this operation is performed by BUILDER using the specified map data to interpolate grid cell values). •Change the view from IJ-2D Areal to 3-D View (in the upper left corner!!)•Click on the rotate 3D view button (from the toolbar) to rotate the display by holding down the left mouse button and using the cursor to move the model.Hold down the Cntrl key left mouse button and move the mouse toward the top of the screen to zoom in or move the mouse to the bottom of the screen to zoom out.•To remove the contour map from the display, click the right mouse button while the cursor is anyway in the display area. Select Properties from the displayed menu (bottom of list), Maps from the tree view; and (finally) uncheck the Show Map Contours Lines and Fault boxes.Assigning Porosity & Permeability to the Model•R epeat this for Porosity, but select the map porosflt.dig. Use the same map for each layer. Note that the input map values are in % and the simulator usesfractions (need to multiply each map by 0.01)数据图里是数据%,而软件是读入小数,所以要乘以0.01•S elect Permeability I from the list on the panel•E nter the following:Layer 1 50Layer 2 250Layer 3 500Layer 4 100•S elect Permeability J in the Whole Grid and right click•C lick on the box and select EQUALSI then OK•D o the same with Permeability K•C lick on the box and select EQUALSI•I n the first box select * and then Value 0.1 (This applies a Kv/Kh ratio of 0.1) <enter> then OK•L eave the General Property Specification section and then do Calculate Property •If the above is done correctly, the Reservoir Tab should be checked. Assigning Other Reservoir Properties•S elect Other Reservoir Properties, a new window will show up as follows:•Select New Thermal Rock Type by clicking on the button. Select Rock Compressibility tab•Set the rock compressibility to 2E-5 1/kPa at a reference pressure of 20000kPa,Units will be applied automatically.•E xit back to the main panel•This would be a good point to save the data set you are working on. Click File then Save Dataset as. Save file as Tutorial.dat.Creating component propery data•Go to Component Selection, Add/Edit Component, Choose “H2O” from the library and define it as aqueous component and also will exist as gas phase based on K-value partitioned (Steam).•(do not worry about the warning messages about densities!!!)•Add another component and named it as “Dead Oil”, which is defined as Oleic component and no K-value partitioned. (No solution gas within this oil), •Input Molecular weight 0.6 (equivalent to 600 gm/g-mole), Pc, Tc equal zero,•Apply & OK.•Go to Densities tab, change to Mass Densities and enter the following:Water 1000 Kg/m3Dead Oil 980 Kg/m3Leave Liquid compressibilities and thermal expansion coefficients empty (Use default values instead!!!)•Go to Liquid Viscosity Section and choose “Use viscosity table” option, input the following table for oil Viscosity, input zero for water viscosity (this will trigger the program to use default value for Water!!)(Hint: Use Ctrl I to insert rows for data entry!!!!!)Temperature Viscosity25 578040 138065.5 18793.3 47121.1 17.4148.9 8.5176.7 5.2260.0 2.5426.7 2.5•Now click Apply and all the values should turn to Green!!Creating Relative Permeability Data•Click the Rock Fluid section.•Double click the Rock Fluid Type in the tree menu, a menu will show up.Select New Rock Type by clicking on the button. Select New Rock Type •Choose Tools and Generate Table using correlation•Enter the following parameters for the Analytical relative permeability curves generation.Swcon 0.2Swcrit 0.2Soirw 0.4Sorw 0.4Soirg 0.2Sorg 0.2Sgcon 0.05Sgcrit 0.05Krocw 0.8Krwro 0.3Krgcl 0.3Krogcg 0.8 (optional, no input)All Exponents should be 2.0•Then Apply, OK and a table containing the relative permeability curves will appear.•The Rock Fluid section should turn to green check mark. Save the file at this timeCreating Initial Conditions•Click the Initial tab on the tree menu of BUILDER.•Double click on Initial Conditions•Select Water-Oil-Gas as the initial fluid in the reservoir to perform a Gravity-Capillary Equilibrium Calculation•Type:27600 (kpa implied) in the Reference pressure window3050 (m implied) in the Depth of reference pressure window3080 (m implied)in the Water-oil contact window1980 (m implied) in the Gas-oil contact window•Leave the other boxes blank•Click on Apply; then OK•You should now be back in the main menu of BUILDER with all tabs in green check except for the Recurrent Data box.•At this point it is advisable to save the data again by selecting File from the top menu and Save Dataset.Creating Trajectories and PerforationsOnce we have created the static model, we will now incorporate the trajectories and perforations information into the model.•Click on Wells and Recurrent Tab•Go to the menu Well Trajectories•S elect Create New Trajectories from completions (PERF)…using the button, the following window should pop up;•T his screen will create a vertical trajectory for each well originate from the map;Press OK to create these vertical trajectories;•Now go back to menu Well Trajectories, Select Trajectory perforation Intervals…, the following window should pop up:•C lick on Read File, select the file MODIFIED-PERFS.PeRF, select the file unit as SI, then open•I f this is done correctly, the window will update to the following:•P ress Apply and OK;•T his completes the trajectories and Perforation of the wells in the model. Adding Historical Production Data to the ModelThe last item we want to do is add historical rate data so as we can set up a history match run•G o to the top menu again and select Import Production/Injection data ( this is the wizard to create production/injection data into well & recurrent data for thesimulator and also defines the status of each well!!)•S TEP 1: First step of this wizard is to provide the type and name of the production file. In our case, we will use General and choose a file in the tutorial directorynamed Production-history.prd•S TEP 2: Follow the instructions and highlight the first line containing the production data and well name, goto next [Use the Next/Back buttons on thepanels to move forward/backward between each Step]•S TEP 3: If the limiter looks good and separate the columns accordingly, go to STEP 4•S TEP 4: Go to Column 3 to 5 and in the identifier row, choose Oil Produced, Water Produced and Gas Produced for each column.•S TEP 5: This is the place showing you which well’s production data has been picked up and which well is not. For example, the program could not find anyproduction data from well 5, 7 and 9. Since wells 5, 7 and 9 have no productionhistory, the easiest action is to delete them from the model. We will do this later.Other than that, click Finish.Creating Average Monthly Production / Injection recurrent well dataNext thing we want to do is to generate the well recurrent data for every month.Go to the top menu again and select Average Production/Injection DataNow, move your mouse to the y-axis and right click , a menu will show up to allowyou to change the average interval from this point onto monthly, bi-annually,yearly, etc.Select monthly and OKHighlight these linesCreating Field Production History (*.fhf) for History MatchNext thing we want to do is to create a field history file so that we can make comparison between simulation run and actual field history file.Go to the top menu again and select Create Field History file, then provide a filename (or you can just use the default)Well Definition and Constraints.For those wells that have no production history, we can either delete it or define it as producer or injector and shut-in the wells so that it will not affect the history match.In this tutorial, we will delete well 5, change well 7 & 9 as injectors.To do that, open the tree view and highlight Well 5 and right click, delete and yesGo to well 7, right click, Properties, a new menu will show up as follows:Click on ID & Type, check the Edit box for Type, and select the well as Injector MobweightGo to Constraints tab, (say YES to apply changed if asked!!), check the constraint definition box.Under select new, input OPERATE, BOTTOM HOLE PRESSURE, MAX,25000 KPAGoto Injected Fluid and choose Water as injection fluid.Go to Options, Check Status box, choose Shut-in well at this time.Now, we will copy all the above specification to well 9 also. To do that, make sure you are in the well 7 and hightlight the INJECTOR, constraints, Injected fluid, SHUTIN (all of them!!!), Select Tools at the bottom of the screen, click Copy events using filter at the top of the menu, a new menu will pop up. Then select well 9, goto Date Selection tab, check the data 1991-01-01, then Search and Add, the menu should look like this:Click OK and the same information on constraint created in well 7 will now copy to well 9.If message pop up requesting to change the well status for well 9, say “YES”,If everything is OK, you should have all the tabs turned into green check.Please save the file one more time!!!•W e now have a fully defined reservoir model that we can submit to the simulator. The dataset, tutorial.dat, can now be dragged and dropped onto the STARS icon from the Launcher window to run the dataset. We will analyse the output later.Note: To refresh the file display in the Launcher window you can just click on the directory folder in the left hand folder display window. Otherwise you can set an automatic refreshing interval by selecting Launcher menu option View; Advanced options. You can check the automatic refresh box and set the refresh interval. New files labelled .out containing ASCII text output; .irf; and .mrf containing graphical data, have been created.You can use the file filter in the top right of the Launcher to filter on standard or user defined file endings.Write out Restart information to a Restart File•C lick on the I/O Control tab•S elect the Restart•C lick on Enable Restart Writing•O n the + sign, click and select the first simulation date which is 1991-01-01.•S elect the first option At every time…..•C lick OK back to main panel•C lick File; then Save Dataset as. Name this file tutorial_hm.dat•W e now have a completed dataset so we can exit Builder and drag and drop the tutorial_hm.dat file onto the STARS icon to run it. You will be able to makeprediction runs without having to rerun the historical data portion as a result ofusing the Restart Run feature.Running the STARS Dataset•I f everything is OK, you should be able to run the dataset•F irst locate the file Tutorial-hm.dat in your launcher, then drag and drop it into STARS 2006.10 icon and release the mouse, a new menu will show up and justresponse with RUN IMMEDIATELY.•I f there are no errors, a MS-DOS window will open up and show you the progress of the run. When finished, just type EXIT to go back to the launcher.Reviewing the Simulation results using RESULTS GRAPH and RESULTS -3DWe can now look at the simulation run and compare it with the historical data and see how the reservoir would perform.•D rag and drop tutorial_hm.irf onto the Results Graph2006.10 icon•S elect menu item File; then Open Field History•S elect the production-history.fhf file we created in Step 8 of the Production data wizard•C lick on the add a curve icon•S elect the file to display data from as tutorial_hm.irf ; Select curve parameter Oil Rate SC; Choose Well 3, then Click OK•N ow repeat the same but this time select the file as production-history.fhf, as we want to compare the simulated data with the historical input data.•Y ou should now see a plot similar to:•R epeat the same procedure as above except this time plot the Water Production Rate & Gas Production Rate•I n order to view this plot for all the production wells you can use the Repeat origins button•S elect the All Producers option and OK to generate the plots•Y ou should now have a series of plots showing the historical match and prediction for each of your production wells.•Y ou can now continue to investigate the results from these datasets in Results Graph and Results 3D, and interactively discover the large range of features thatare available to you to analyse your data.Using the Historical Data Restart File in a Prediction RunWe want to predict the reservoir performance until 1/1/1993 if the producers are fixed to a minimum BHP of 15000 Kpa.•L oad the dataset tutorial_hm.dat back into Builder•C lick on the I/O Control in the main panel•S elect the Restart tab•C heck the box for Restart from previous simulation run (RESTART)•B rowse to select tutorial_hm.irf•C lick Record to Restart from:•N ote that a series of restart dates are now available•G oto Dates and select the date 1991/09/01, then OK to exit back to the main menu of BUILDER•C lick on the Well and Recurrent Data section•S elect the date to 1991-09-01, double click•(If the Set stop box is checked on this date, uncheck it), then click add a range of dates•T he range of dates will be from 1991-09-01 to 1993-01-01. OK•G o back to WELLS, expand the tree, double click Well 1•C hange the date to 1991-09-01, click on Constraint tab;•C heck constraint definition box, then change operate minimum bottom hole pressure to 15000kpa•T he panel that is displayed should look similar to:•C lick Apply, a new constraint will be created in the date 1991-09-01 for Well 1•N ext task will be to copy the same constrain to all the other wells to do the forecast.•H ighlight Well 1 constraint (ensure it is for 1991-09-01), Click and make sure the constraint is referred to OPERATE BHP BOTTOM HOLE PRESSUE (*),Click Tools and Copy events using filter at the bottom of the screen •C heck all the wells except wells 7 & 9, click Date Selection tab, select only the date 1991-09-01. Do Search and Add, then OK.•A ll the wells except wells 7 & 9 will have a new constraint starting 1991-09-01.•C lick OK and return to the main menu.•S ave the new file as tutorial_pred.dat•W e can now exit Builder and drag and drop the tutorial_pred dat file onto the STARS icon to run it.We can now look at the simulation run and compare it with the historical data and see how the reservoir would continue to perform.•D rag and drop tutorial_pred.irf onto the Results Graph icon•S elect menu item File; then Open Field History•S elect the production-history.fhf file we created in Step 8 of the Production data wizard•C lick on the add a curve icon•S elect the file to display data from as tutorial_pred.irf ; Select curve parameter Oil Rate SC; then Click OK•N ow repeat the same but this time select the file as tutorial_hm.irf, as we want to compare the prediction run and the history match run.•T o increase the size of the historical data markers select menu item View;Properties•S elect the Curve tab and increase the marker size to 8 from 4 and OKAdding an AquiferThe next thing we want to do is add an aquifer, and compare the simulation runs with and without an aquifer to see the difference it makes.•D rag and drop tutorial_ pred.dat onto the Builder icon•O nce in Builder go to the Reservoir and select Create/Edit Aquifers….•(Alternatively, you can just click on the Create/Edit Aquifers button (second from bottom on the left hand tool bar)•S elect the first listed type –Bottom aquifer, and OK the panel•S elect Modelling Method – Carter-Tracey (infinite). Leave all other items blank.•O K to exit and Close the panel to return to the model display area•G o to File; Save dataset as… and change the file name to be save totutorial_pred_aq.dat•O K to save the new file and exit BuilderYou can now drag and drop tutorial_pred_aq.dat onto the STARS icon.Analysing the Data•The file tutorial_hm_aq.irf file can be dragged and dropped onto the Results Graph icon•Select File; Open CMG Results from the menu bar and select tutorial_pred.irf •We now have both simulation results loaded so that we can compare them•Click on the + icon to add a curve•Select Origin Type –Sector (Region)•Parameter –Ave Pres HC POVO SCTR•Click on OK to display the line•Repeat the above except select the filename as tutorial_pred _aq.irf•We now have a comparison plot that should look similar to:•You can also enter the 3D display area from here and both types of display are linked together. When you exit the .ses (line plot) or .3tp (3D image) file referred to is just a template that you can use to re-create the images that you have created using the same or other input files.•Results is very intuitive an most things can be accessed by the menus or right mouse clicking on the display areas.Further AnalysisWhen you view the ternary plot for tutorial_pred in Results 3D you will note that there seems to be quite a bit of oil left in the southern anticline at the end of this simulation. As part of our reservoir plan we would like to put in a horizontal well on 1/1/1992 to access this ‘remaining’ oil.•L oad the dataset tutorial_pred dat into Builder•M ake sure you have the IJ-2D areal view showing so that we can easily locate the well we are about to add•S elect menu item File; Open well trajectory file•S elect File Type as Table format•B rowse to find Table file well-11.wdb•G oto Next, make sure we are importing W-11 trajectory and also clearing all existing trajectories•N ext, select the button “Go to Perfs”•W hen the new menu shows up, click on “Read File” and select “Well-11.perf” , ensure the unit is set as “SI”, th en Open and OK•W ell W11 should have appeared on your display. You can also view it in IK cross section around plane 26 and 27. Note, the exact gridblock position may vary slightly from that displayed below:•N ote that the perforation will appear and disappear depending on the date you have displayed in GridBuilder, but the trajectory will always be present.•W ell W11 will have now appeared in the well folder list•L eft click on well W11 to see that there is one date associated with it 1991-12-01. If there is also the simulation start date 1991-01-01 then select this date on the righthand panel and select top menu item Wells; Delete dates for well; and OK thefiltered list of 1991-01-01 for well W11. This will remove this unwanted date.•M ake sure the date displayed, at the top of the panel, is 1991-12-01 as this is when we want to specify the data associated with this new well:•R ight click on well W11 and select Properties•S elect the Type tab and check the Type box so that PRODUCER is highlighted•O K to exit back•R ight click on well W11 and select Constraints•S elect the Constraint tab and check the Define the well constraints box•C lick on Add and enter OPERATE; Bottom Hole Pressure; Min; 10,000•O K twice to exit back to main panel•W ell W11 is now fully defined and so we save the dataset as tutorial4.dat, and exit Now run the dataset and compare it with tutorial_pred.dat. Look at the oil saturation at the end of the simulation in Results 3D and the Field oil production rate in Results Graph. Note the increased production when the horizontal well opens.。
CMG02中文资料
TOSHIBA Rectifier Silicon Diffused TypeCMG02General Purpose Rectifier Applications•Average forward current: I F (AV) = 2.0 A•Repetitive peak reverse voltage: V RRM = 400 V•Suitable for compact assembly due to small surface-mount package“M−FLAT TM” (Toshiba package name)Absolute Maximum Ratings (Ta = 25°C)Characteristics SymbolRatingUnitRepetitive peak reverse voltage V RRM400 VAverage forward current I F (AV) 2.0 ANon-repetitive peak surge current I FSM80 (50 Hz) AJunction temperature T j−40 to 150 °CStorage temperature T stg−40 to 150 °CNote: Using continuously under heavy loads (e.g. the application of hightemperature/current/voltage and the significant change intemperature, etc.) may cause this product to decrease in thereliability significantly even if the operating conditions (i.e.operating temperature/current/voltage, etc.) are within theabsolute maximum ratings.Please design the appropriate reliability upon reviewing theToshiba Semiconductor Reliability Handbook (“Handling Precautions”/Derating Concept and Methods) andindividual reliability data (i.e. reliability test report and estimated failure rate, etc).Electrical Characteristics (Ta = 25°C)Characteristics Symbol TestConditionMinTyp.Max UnitV FM(1)I FM =1.0 A ― 0.86 ― V Peak forward voltageV FM(2)I FM = 2.0 A ― 0.9 1.1 V Peak repetitive reverse current I RRM V RRM = 400 V ―― 10 μADevice mounted on a ceramic board(board size: 50 mm × 50 mm)(soldering land: 2 mm × 2 mm)(board thickness: 0.64 t)― ―60Device mounted on a glass-epoxyboard(board size: 50 mm × 50 mm) (soldering land: 6 mm × 6 mm) (board thickness: 1.6 t)― ― 110Thermal resistance(junction to ambient)R th (j-a)Device mounted on a glass-epoxyboard(board size: 50 mm × 50 mm) (soldering land: 2.1 mm × 1.4 mm) (board thickness: 1.6 t)― ― 180°C/WThermal resistance (junction to lead)R th (j-ℓ)― ― ― 16 °C/WUnit: mmJEDEC―JEITA ―TOSHIBA 3-4E1AWeight: 0.023 g (typ.)MarkingAbbreviation CodePart No.G2 CMG02Standard Soldering PadHandling PrecautionThe absolute maximum ratings denote the absolute maximum ratings, which are rated values and must not be exceeded during operation, even for an instant. The following are the general derating methods that we recommend when you design a circuit with a device.VRRM: We recommend that the worst case voltage, including surge voltage, be no greater than 80% of the absolutemaximum rating of VRRM for a DC circuit and be no greater than 50% of that of VRRM for an AC circuit.VRRM has a temperature coefficient of 0.1%/℃. Take this temperature coefficient into account designing a device at low temperature.IF(AV): We recommend that the worst case current be no greater than 80% of the absolute maximum rating of IF(AV).Carry out adequate heat design. If you can’t design a circuit with excellent heat radiation, set the margin by using an allowable Tamax-IF (AV) curve.This rating specifies the non-repetitive peak current in one cycle of a 50-Hz sine wave, condition angle 180. Therefore, this is only applied for an abnormal operation, which seldom occurs during the lifespan of the device.We recommend that a device be used at a Tj of below 120℃ under the worst load and heat radiation conditions.Thermal resistance between junction and ambient fluctuates depending on the device’s mounting condition. When using a device, design a circuit board and a soldering land size to match the appropriate thermal resistance value.Please refer to the Rectifiers databook for further information.単位: mmInstantaneous forward voltage v F (V) i F – v FI n s t a n t a n e o u s f o r w a r dc u r r e n t iF (A )Average forward current I F (AV) (A)P F (AV) – I F (AV)A v e r a g e f o r w a r d p o w e r d i s s i p a t i o n P F (A V ) (W )Average forward current I F (AV) (A)T ℓ max – I F (AV)M a x i m u m a l l o w a b l e l e a d t e m p e r a t u r eT ℓ m a x (°C )M a x i m u m a l l o w a b l e t e m p e r a t u r eT a m a x (°C )Average forward current I F (AV) (A)Ta max – IF (AV)60Number of cyclesSurge forward current(non-repetitive)P e a k s u r g e f o r w a r d c u r r e n t I F S M (A )T r a n s i e n t t h e r m a l i m p e d a n c e r t h (j -a ) (°C /W )Time t (s)r th (j-a) – t1.0 1.6 1.82.0 2.2 2.41.0 1.2 1.4 1.6 1.82.0 2.21.6 1.82.05060 70 80 90RESTRICTIONS ON PRODUCT USE20070701-EN •The information contained herein is subject to change without notice.•TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer’s own risk.•The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.• The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.• Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.。
cmg技术手册
cmg技术手册开发者手册:了解CMG技术的核心概念和功能概述CMG(Confidentiality, Integrity, and Availability Management Guide)是一种企业级的安全技术体系,它通过提供保密性、完整性和可用性管理,帮助企业实现信息安全和风险管理的目标。
本手册将介绍CMG技术的核心概念和功能,帮助开发人员更好地应用和配置CMG技术。
一、CMG的核心概念1.保密性(Confidentiality)保密性是CMG技术的首要目标之一,它确保只有授权的用户才能访问敏感信息。
开发人员可以通过使用加密算法和访问控制机制,在数据传输和存储过程中保护数据的机密性。
2.完整性(Integrity)完整性是指确保数据在传输和存储过程中不会被篡改或损坏。
CMG 技术提供了数据完整性检查的机制,开发人员可以使用hash算法和数字签名等技术,确保数据没有被篡改,并且能够追溯到数据的源头。
3.可用性(Availability)可用性是指确保系统和服务的对外提供程度,以确保用户可以按需使用系统和服务。
CMG技术通过实施冗余和负载均衡等策略,提高系统的可用性,减少服务中断的风险。
二、CMG的功能1.访问控制(Access Control)CMG技术提供了灵活的访问控制机制,开发人员可以根据用户角色和权限来定义访问控制策略,以实现对敏感信息和系统资源的细粒度控制。
2.数据加密(Data Encryption)CMG技术提供了各种加密算法和密钥管理机制,开发人员可以使用这些工具来加密数据的传输和存储过程,以确保数据的机密性。
3.安全审计(Security Auditing)CMG技术记录和分析系统操作和访问日志,开发人员可以使用这些日志来识别潜在的安全风险和追踪安全事件。
4.流量监测和入侵检测(Traffic Monitoring and Intrusion Detection)CMG技术可以对网络流量进行监测和分析,依靠事前设定的入侵检测规则,及时发现潜在的安全威胁。
CMG简介资料
孔隙度
油层孔隙度变化范围不大。因此孔隙度视为 确定参数,不做修改,或允许改动范围在±3 %。
有效厚度
油层测井解释的有效厚度与取芯资料对比, 一般偏高30%左右,主要是钙质层和泥质夹层 没有完全扣除,因此可调范围为-30%-0%。
岩石和流体的压缩系数
流体压缩系数是实验测定的,变化 范围较小,认为是确定的。而岩石压缩 系数虽然也是实验测定的,但受岩石内 饱和流体和应力状态等的影响,有一定 的变化范围,而且与有效厚度相连的非 有效部分也有一定弹性作用,考虑这部 分的影响,允许岩石的压缩系数可以扩 大一倍。
1
聚液粘度依赖
2
吸附依赖
3
剪切降粘
4 渗透率减小依赖
5 聚合物组分扩散
6
复合驱
7
阳离子交换
总体评价
VIP
聚合物浓度、盐 浓度剪切速度
聚合物浓度、盐 浓度、渗透率 可逆
聚合物浓度、盐 浓度、渗透率
有 优
CMG
ECL
聚合物浓度
聚合物浓度,盐 浓度
聚合物浓度 渗透率
聚合物浓度
可逆
渗透率
聚合物浓度
有
有
聚合物、表活剂
2.可调参数及调参范围
参数调整原则
不同参数的不同组合会得到相同的计算结 果。为了避免参数修改的任意性,在历史拟合 开始前必须确定各参数的可调范围,判断参数 来源是否可靠,确定的参数一般不修改,或只 在较小范围内修改;不确定的参数允许修改, 可在较大范围内修改。
具体应用时应根据实际情况而定
渗透率
它在任何油田都是不定参数。这不仅是由于 测井解释的渗透率值与岩心分析值误差较大,而 且井间的渗透率分布也是不确定的,因此渗透率 的修改允许范围较大,可以放大或缩小2-3倍或 更多。
CMG—STARS培训教程
(必需) (必需) (必需) (必需) (条件) (条件) (条件) (条件) (条件) (可选) (可选)
*GRID, *KDIR *DI *DJ *DK *DEPTH *DTOP *PAYDEPTH *DIP *REFINE, *RANGE *VAMOD, *VATYPE *NULL
中国石油大学(北京)油藏数值模拟组
*FILENAMES *CHECKONLY *TITLE1, *TITLE2, *TITLE3, *CASEID *INUNIT, *OUTUNIT *MASSBASIS *MAXERROR *RESTART, *MAXSTEPS *WRST, *REWIND *WPRN *OUTPRN, *PARTCLSIZE *WSRF *OUTSRF, *SR2PREC, *SRFASCII *PRNTORIEN, *PRINT_REF *OUTSOLVR *INTERRUPT
中国石油大学(北京)油藏数值模拟组
CMG数模软件STARS模块的应用
通过Stars 计算的完 整的数据 文件包括 七个文件
.dat 为数据体文件,包括所有写入的数据内容; .irf ,index result file 为指示结果文件,调入二维和三维文件处理结果; .mrf, main result file 为主要结果文件; .out 输出结果文件,从中可以看到每一个时间点的结算结果,错误提示可以 从中得到,可以用文本打开; .fhf, field history file 为历史拟合文件,对油田生产动态进行拟合,可文本打 开 中国石油大学(北京)油藏数值模拟组
中国石油大学(北京)油藏数值模拟组
CMG数模软件STARS模块的应用
油藏模型数据体的主要关键字
FLUID AND COMPONENT DEFINITIONS 组分类型及名称 (必需) K值相关系数 (可选) 摩尔质量 (必需) 临界特性 (必需) 参考条件 (可选) 流体焓系数 (可选) 固相特性 (必需) 液相标识 (可选) 液相密度 (必需) 气相粘度 (可选) 液相粘度 (必需) 指定网格的粘度类型 (可选)
第2天 CMG操作(builder)动态数据生成
使用builder导入历史生产数据
第三步: 按照提示在第一栏中选中 (Highlight)包含实际动 态数据的第一行,在第二 栏中选择包含第一口井井 名的行,然后点击“Next”。
使用builder导入历史生产数据
第四步: 检查数据格式,注意检查 是否有的数据窜列,然后 点击“Next”。
使用builder导入历史生产数据
用BUILDER导入射孔文件
首先需要准备射孔文件,采用 CMG识别的文件格式(*.perf), 射孔数据包括射孔层段,日期, 完井方式等内容 射孔文件格式
用BUILDER导入射孔文件
第一步:文件的读取 点击Well&Recurrent→Well Trajectories→Well Trajectory Perforation Intervals.。出现如下界 面:
用BUILDER导入井眼轨迹文件
第一步(STEP 1):用Builder 往地质模型中导入井眼轨迹数 据。在Builder主菜单中选择菜 单项 Well→Well Trajectories→Open File 来打开 井轨迹输入向导程序
选择合适的文件类型以及单位, 打开数据文件。
用BUILDER导入井眼轨迹文件
使用builder导入历史生产数据
第七步: 生产数据导入之后。用户 还需要生成历史拟合数据 (*.FHF),以便进行历史 拟合。点击Well&Recurrent –Create Field History File, 指定文件保存路径及类型 即可生成历史数据。这样 就可以在Results Graph – File – Open Field History中 打开,并用于历史拟合了。
用BUILDER导入轨迹射孔数 据
CMG软件培训讲义中文
STARS-BUILDER课程介绍版本用MODELBUILDER 建立一个2组分STARS模型启动CMG 主界面•选择菜单项Projects和Add Project•命名项目为Tutorial•确定回到主界面•你现在应该已经到了该目录下打开Builder 双击图标•选择:-STARS Simulator, SI units, Single Porosity-Simulation Start date 1991-01-01, 确定2次•现在看到一个数据输入面板•点击I/O Control选项卡按钮并选择Title & Case ID•输入一个标题,比如“STARS BUILDER DATASET” 并确定;油藏描述数据段•选择Reservoir 选项卡•选择Cartesian建立网格21 x 11 x 4 I,J,K.•输入:I 方向: 2130, J方向: 1130•你能在屏幕上看到一个网格骨架,现在可以定义模型的属性.•切换到Probe 模式屏幕左边顶端的按钮,上面有一个箭头•点击Specify Property按钮屏幕顶部中央•在这个新面板顶部的列表中选择属性Grid Top. 该面板有一个表格,可以滚动查看可以定义的不同属性.•回到Grid Top ,在layer 1处键入800,表示该油藏顶部是平的,距离地面800m;•选择下一个属性Grid Thickness,给Layer 1 到Layer 4以等值,分别为2, 2, 4 和4.•对孔隙度、渗透率输入下面的等值:Porosity – , , ,Perm I - 1000,1500, 1000, 2000 mdPerm J - 1000, 1500, 1000, 2000 mdPerm K - 500, 750, 500, 1000 md•完成后点击确定•然后点击Calculate Property按钮•选择定义过的6个属性,然后确定•确定所有的对话框;•组分性质数据段•切换到Component选项, Add/Edit Component, 从组分库中选择“H2O”,定义为水相组分,同时还可以根据相平衡常数存在于气相中;Steam.•不要担心关于的密度的警告信息•添加另一个组分,命名“Dead Oil”, 定义为油相组分,没有相平衡常数劈分该油中没有溶解气•输入分子量相当于600 gm/g-mole, Pc, Tc 等于0,•点击应用并确定.•选择Densities 选项卡, 选择Mass Densities,输入以下值:Water 1000 Kg/m3Dead Oil 980 Kg/m3液体压缩系数和热膨胀系数先空着不填使用缺省值•切换到Liquid Viscosity 数据段,选择“Use viscosity table” 选项,输入下表中油的粘度, 水粘度输入0值这将激发程序对水使用缺省值, 注意:Temperature Viscosity25 578040 138018747•点击确定,岩石流体数据段•对相对渗透率曲线,点击岩石流体数据段,选择Create/Edit rock Types,选择•点初始化数据段•切换到Initial 数据段,选择初始化设置•设置第一个网格1 1 1处的参考压力为517 Kpa•切换到Gravity Equilibrium,去掉“Do not perform gravity equilibrium calculation’, 选上Perform Depth-Average Capillary Gravity EquilibriumCalculation.井定义和动态数据段在该数据段部分,我们定义5口井,反五点井网,一注四采,注入井将作为注汽井;将计算2个方案,一个是衰竭式开发没有注入井,另一个是注蒸汽开发;我们将定义井的状态、射孔和约束条件;•点击Wells and Recurrent 选项, 选择“Well New”•首先创建新井,井名为“Producer1”, 类型为“PRODUCER”. 于“1991-01-01”投产;•点击Constraint选项卡, 勾选“constraint definition”. 添加约束条件:Operate-Bottom hole pressure- min- 200 Kpa;max- liquid rate SC - 32m3/d. 对其它三口井进行同样的约束条件定义,只是井名不同,Producer2, Producer3 and Producer4;我们将在后面定义注汽井;•完成后点击well1,选择选项卡“Options” ,状态定为“Open”;•井定义完成后,你就有了4口生产井,下一步就要定义井位和射孔;•点击顶部菜单中的“Well”,选择“Well Completion PERFS”•选择“Completion –Add New”,•改变Well Index Calculation 为“WI, user input by layer”•点击Perforations 选项卡:•选择add perfs with mouse , 将鼠标移到I=4, J=3, K=1 处并点击,并在2-4层中射孔;•对Producer2, Producer3 和Producer4井重复以上过程,位置为Producer 2 4 9 1:4Producer 3 18 3 1:4Producer 4 18 9 1:4•为每口井每个射孔层的井指数输入5000;•然后,我们要创建一些日期;在Date下,点击右键选择new,创建一系列时间点,从0天到3650天,间隔为一年;确保最后的日期点选上了STOP;•完成后退出,回到Wells and Recurrent Data 的主菜单中;为了计算平稳,让我们指定开始计算时的时间步长,切换到Numerical数据段,设置DTWELL为;保存文件;运行数据体•将数据文件拖放到主界面中的STARS version 上,立即运行;结果分析由于油的粘度太高,油藏不能产出;油藏温度没有输入,缺省为25摄氏度,对应的原油粘度大于5700 cp;现在改变油藏温度到32摄氏度实际的油藏温度,重新运行看看是否发生了变化练习 1添加一口注蒸汽井分析结果时很容易发现衰竭式开采时油藏不能产出,分析后决定在模型中央打一口注入井注蒸汽;该井有以下特点:(1)井位为I=11, J=6, K=1 仅在顶部射孔,井名为Injector(2)Injection rate – 128 m3/day,Temperature – 332 deg C,Well Index – 10,000Max. Injection Pressure – 5,500 KpaSteam Quality –开始就注入蒸汽,同时开始产油;保存文件名为tutorial-deadoil2练习2如果时间允许设计一个源汇型SAGD;底部两个层改成5m厚;上面的注入井在Layer 3完井– I blocks 3 to 20下面的生产井在Layer 4完井– I blocks 3 to 20注入井和生产井的井指数都改成100,000;Injection rate: 900 m3/d, 1,200 Kpa, temp 275 deg C, 85% quality steam Production rate: 950 m3/d, 555 Kpa。
CMG培训多媒体学习教案
年产油量 ncsl ncql ljcyl ljcsl ljcql
0.5 0.0001 0.0411 0.5021 0.0001 0.0411 0.00005
0.14
0 0.0448 0.1436
0 0.0448 0.00001
0.17
0 0.0133 0.1659
0 0.0133 0.00002
0.55 0.0034 0.06 0.5452 0.0034 0.06 0.00005
CMG培训多媒体
会计学
1
第一页,编辑于星期六:二点 十二分。
➢ 前言(Background and objectives)
➢ 前处理(3D Modeling& Data Select)
➢ 数据文件的建立(File Operating)
➢ 历史拟合(History Matching)
第二页,编辑于星期六:二点 十二分。
第十五页,编辑于星期六:二点 十二分。
4岩石—流体性质数据段
这部分内容主要是相对渗透率的定义。
1
Krw
0.8
Kro
0.6
0.4
0.2
0
0.2
0.4
0.6
0.8
1.0
第十六页,编辑于星期六:二点 十二分。
5初始条件数据段
主要是压力和饱和度的定义,方法有两 种: 一、确定每个网格的压力和饱和度,这 种方法 适合无 边、底 水气藏 。 二、确定油水、油 气界面深度,参考深度的参考压力 ,饱和 压力
生产天数 套压 动液面 月产油量 水
15.35 0.13 804
1
15.29 0.65 899
0
11.25
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Computer Modelling Group, Inc.2009 操作指南使用建立、运算并分析“STARS 水驱” 油藏模拟模型Builder 2009.10 STARS 2009.10&目录用BUILDER 2009.10创建一个黑油模型 (3)启动CMG主界面 3打开BUILDER 3创建模拟网格 3定义模型的孔隙度和渗透率 6创建PVT 数据7创建相对渗透率数据8创建初始条件9创建井轨迹和导入射孔文件 (9)添加历史生产数据 (12)创建月度生产/注入动态数据12 创建历史拟合文件(*.fhf) 13 井定义和约束条件13往重启动文件中写入重启动信息 (15)运行STARS 数据体 (15)用Results Graph 查看模拟结果 (16)在历史数据的基础上启动预测运算 (17)用BUILDER 2009.10创建一个黑油模型在你硬盘上创建一个工作目录,把与该指南相关的图放在该目录下。
启动CMG 主界面(桌面上的图标或者开始/程序/CMG/Launcher) ∙选择菜单项Projects,然后Add Project∙浏览并选择存储图文件的目录∙工程命名为Tutorial∙点击确定回到主界面∙现在你应该能看到工作目录打开BUILDER 2009.10 (双击图标)∙选择:STARS Simulator, SI Units, Single PorosityStarting date 1991-01-01∙点击2次确定创建模拟网格(构造数据)∙点击File (位于左上角的菜单栏),然后Open Map File∙选择Map Type –Atlas Boundary format,x/y坐标系的单位为m ∙点击Browse按钮选择并导入构造顶部文件To10flt.bna∙点击确定∙点击窗口最大化按钮(窗口右上角的方块)使窗口最大化,以方便观察∙点击Reservoir (位于菜单栏)∙选择Orthogonal Corner Point定义网格为25(I-方向) x 35(J-方向x 4 (K-方向)。
∙在I方向文本框输入25*110 (意思是I-方向的25列长度均为110 m)∙在J方向文本框输入35*125 (意思是J-方向的35行宽度均为125 m)∙点击确定∙按住Shift键并按下鼠标左键可移动网格∙按住Ctrl键并按下鼠标左键可旋转网格∙排列一下网格和断层,使得断层沿着网格边界分布,并且网格能完全覆盖整个区域。
∙点击左上角的工具栏按钮将显示模式切换到Probe mode∙点击Specify Property按钮(屏幕中间顶部) 打开下图的GeneralProperty Specification∙选择属性Grid Top下layer 1对应的文本框,右键选择Geological Map 作为数据源。
∙点击Values in file1按钮,然后浏览并选择构造顶深文件To10flt.bna (在之前的操作中应该已经被选择)∙点击确定回到表格窗口∙对Grid Thickness 的layer1 重复以上操作,不过这次在Values in file1中选择Thickflt.bna。
并且要在times框中输入0.25 (也在属性定义菜单中),目的是要使网格中4个层的厚度均为总厚度的25% 。
最后,拷贝layer1,Grid Thickness表格内容粘贴到layer2, layer3 和layer4 对应的表格中完成所有4个层网格厚度的定义。
你可以用Cntrl-C 和Cntrl-V从第一个层拷贝到其它3个层,点击确定∙点击Calculate Property按钮并确定将顶深和厚度值赋给网格(该操作是BUILDER通过插值将等值线数据赋给网格)。
∙将视图从IJ-2D Areal 改到3-D View (位于左上角!!)∙点击rotate 3D view按钮(位于工具栏) ,按下鼠标左键旋转视图,使用指针移动模型。
同时按下Ctrl 键和鼠标左键,向上移动鼠标可缩小视图,向下移动鼠标放大视图。
∙要将等值线从视图中去掉,可以在指针位于视图任何位置时点击鼠标右键,从弹出菜单中选择Properties (位于菜单底部),从目录树中选择Maps ,最后使Show Map Contours Lines and Fault前面的复选框为未选。
定义模型的孔隙度和渗透率对Porosity重复该操作,但是选择等值图文件porosflt.dig。
对每个层使用相同的等值图。
注意输入等值图文件的值单位是%,而模拟器需要的是小数( 需要对每个文件乘以0.01)∙从面板列表中选择Permeability I∙输入以下数值:Layer 1 50Layer 2 250Layer 3 500Layer 4 100∙在Whole Grid行选择Permeability J并点击右键∙点击表格选择EQUALSI然后确定∙对Permeability K进行同样操作∙点击表格选择EQUALSI∙在第一个框中选择*,然后Value 为0.1 (即Kv/Kh =0.1) ,然后确定∙退出General Property Specification,点击Calculate Property∙如果上面操作正确,Reservoir选项卡应该通过检查。
定义其它油藏属性∙选择Other Reservoir Properties,弹出如下窗口:∙设置岩石压缩系数为2E-5 1/kPa,参考压力为20000kPa,单位将自动给出∙退出回到主面板中∙此时正应该保存你的数据文件。
点击File 然后Save Dataset as. ,将文件保存为Tutorial.dat.创建组分性质数据∙切换到Component选项, Add/Edit Component, 从组分库中选择“H2O”,定义为水相组分,同时还可以根据相平衡常数存在于气相中(Steam) 。
∙(不要担心关于的密度的警告信息!!!)∙添加另一个组分,命名“Dead Oil”, 定义为油相组分,没有相平衡常数劈分(该油中没有溶解气)∙输入分子量0.6 (相当于600 gm/g-mole), Pc, Tc 等于0,∙点击应用并确定.∙选择Densities 选项卡, 选择Mass Densities,输入以下值:Water 1000 Kg/m3Dead Oil 980 Kg/m3液体压缩系数和热膨胀系数先空着不填(使用缺省值!!!)∙切换到Liquid Phase Viscosity 数据段,选择“Use viscosity table” 选项,输入下表中油的粘度, 水粘度输入0值(这将激发程序对水使用缺省值!!),(注意: 输入数据时使用Ctrl I 来插入行!!!!!)∙点击确定,所有值都应该ok!!创建相对渗透率数据∙点击Rock Fluid数据段∙双击树状菜单中的Rock Fluid Type,将弹出一个菜单。
通过点击按钮选择New Rock Type来选择岩石类型∙选择Tools 和Generate Table using correlation∙输入以下参数用于生成相对渗透率曲线Swcon 0.2Swcrit 0.2Soirw 0.4Sorw 0.4Soirg 0.2Sorg 0.2Sgcon 0.05Sgcrit 0.05Krocw 0.8Krwro 0.3Krgcl 0.3Krogcg 0.8 (可选,不输入)所有指数均为2.0∙然后应用,确定,会出现一个包含相对渗透率数据的表。
∙Rock Fluid数据段应该ok,保存文件。
创建初始条件∙点击BUILDER树形菜单中的Initial 选项卡∙双击Initial Conditions∙选择Water-Oil-Gas作为油藏流体的初始化分布,进行重力-毛管力平衡计算∙输入:27600 (kpa) -Reference pressure窗口3050 (m)- Depth of reference pressure窗口3080 (m)- Water-oil contact窗口1980 (m) - Gas-oil contact窗口∙其它表格留作空白∙点击应用;然后确定∙你现在应该回到BUILDER的主菜单,除了动态数据部分,其它选项卡都已经ok。
∙建议此时再次保存文件,从顶部菜单中选择File,Save Dataset.创建井轨迹和射孔数据创建完静态模型后,我们现在就要将井轨迹和射孔数据加进模型中。
∙点击Wells and Recurrent 选项卡∙打开菜单Well Trajectories∙点击按钮,选择Create New Trajectories from completions (PERF)…将弹出下面的窗口:∙该窗口可根据等值线图为每口井创建一个垂向井轨迹,点击确定来创建这些垂向井轨迹;∙现在回到菜单Well Trajectories,选择Trajectory perforation Intervals…,弹出下面的窗口:∙点击Read File, 选择文件MODIFIED-PERFS.PeRF, 选择SI单位制,然后open∙若操作正确,该窗口将更新到如下:∙点击应用和确定;∙完成了模型中井的轨迹和射孔定义添加历史生产数据我们要做的最后一项工作就是要将历史生产数据添加到模型中,这样就能进行历史拟合运算∙再回到顶部菜单选择Import Production/Injection data (该向导用来为模拟器创建生产动态数据并定义每口井的状态!!)∙STEP 1:该向导的第一步是指定生产文件的类型和名字。
在我们的算例中,我们将使用General类型,从指南目录中选择文件Production-history.prd ∙STEP 2: 按照指导,选中包含生产数据和井名的第一行,然后下一步[使用面板上的Next/Back 按钮在上一步和下一步之间进行切换]∙STEP 3: 如果数据分列没有问题,就进入第4步∙STEP 4: 进入第3至5列,在标志行中对每一列选择Oil Produced, Water Produced和Gas Produced。
∙STEP 5:这里告诉你哪些井的生产数据已经被导入,哪些还没有被导入。
比如,程序没有找到well 5, 7 和9的生产数据,因为这些井没有生产历史,最简单的处理方法就是删除这些井,我们后面再做。
除此之外,点击完成。
Highlight these lines创建月平均生产/注入数据我们下一步就是要生成每个月的动态数据。
再回到顶部菜单选择Average Production/Injection Data现在将鼠标移到y轴上点击右键,将弹出一个菜单允许你将平均时间段改成月度平均、半年度平均或年度平均(monthly, bi-annually, yearly)等。