航海学知识点
(完整版)航海学基础知识
第三章 航向、方位和距离第一节 航海上常用的度量单位一、长度单位1.海里(nautical mile, n mile)1)定义海里等于地球椭圆子午线上纬度一分所对应的弧长简写为1n mile 或1'。
数学公式:1(1852.259.31cos 2)nmile m ϕ=-赤道最短,1842.9m ,两极最长,1861.6m ;两地最大差值是18.7m 。
2)标准海里英国为1853.18m(6080英尺);我国采用1929年国际水文地理学会议通过的海里标准,1n mile=1852m 。
约在纬度44º14'处1n mile 的长度才等于1852m3)航海实践中产生的误差例:某轮沿着赤道向正东航行,每小时25n mile ,航行一天后航程是2524=600n mile ⨯(按1n mile 等于1852m 计算),如果按赤道1 n mile 的实际长度1842.94m 计算,则船舶一天航行的距离是:1852600603n mile 1842.94⨯≈ 由此可以看出,将1n mile 确定为1852m 后,所产生的误差只有航行距离的0.5%。
若在中纬度海区航行,则所产生的误差将更小。
2.链(cable,cab)1n mile 的十分之一为1链。
链是用来测量较近距离的单位。
1链=185.2m3.米(meter,m)国际上通用的长度度量单位。
航海上用来表示海图里的山高和水深,有时也用来度量距离。
4.拓(fathom)、英尺(foot,ft)和码(yard,yd)旧英版海图上用英尺和拓表示水深;山高以英尺表示。
用海里、码和英尺来度量距离。
1拓=1.829m 或6 ft 、1yd=0.9144m 或3 ft 、1 ft=0.3048m 。
目前英版的拓制海图正被米制海图(metric chart)所代替5.公里(kilometer,km)用于海图上表示两个陆标间较远的距离单位。
1km=1000m。
二、速度单位节(knot,kn):航海上计算航速的单位。
航海基础知识
航海基础知识航海是一门涉及导航、海图、船舶操纵和海上安全等领域的学科,是人类探索海洋、开辟新的贸易路线和发展海上经济的关键。
本文将介绍航海基础知识,包括导航工具、航行规则和海上安全等内容。
一、导航工具1.1 海图海图是指海洋和海岸线的地图,用于船舶航行。
它们提供了广阔海洋的地理信息,包括水深、礁石、航标、航道、测距标志以及船舶相关的地理和天文数据。
航海员使用海图来确定船舶的位置、计算航线以及避免潜在的危险。
1.2 罗盘罗盘是指在船舶上用来测定船首方向的仪器。
航海员通过观测罗盘可以确定船舶的航向,从而进行航线的规划和船舶操纵。
1.3 GPS(全球定位系统)全球定位系统是一种卫星导航系统,通过一组卫星和地面设备共同工作,确定地球上任何一点的准确位置。
船舶上的GPS设备可以提供实时的位置信息,帮助航海员确认船只的位置和航行方向。
1.4 雷达雷达是一种用来探测周围物体位置和距离的仪器。
在航海中,雷达可以帮助船舶识别其他船只、陆地、浮冰以及其他导航障碍物,从而避免碰撞和保持安全的航行。
二、航行规则2.1 国际航行规则(COLREGS)国际航行规则是一套国际公约,规定了船舶在海上的导航和操纵规则,旨在确保船舶之间的安全和避免碰撞。
船舶必须遵守COLREGS 的规定,包括航行速度、航行方向、航行灯光和信号等。
2.2 航道标志航道标志是用来指示航道和警示航行障碍物的标志物。
不同的航道标志具有不同的形状、颜色和标识,船舶根据这些标志来辨别航道和确定安全的航行路径。
2.3 航行通报航行通报是船舶之间交流信息的重要方式,用于通知其他船舶自己的位置、航行意图和特殊情况等。
船舶通过无线电、信号旗和船舶灯光等途径进行通报,以确保航行安全和减少可能的冲突。
三、海上安全3.1 船舶保险船舶保险是一种保护船舶、货物和船员的风险管理方式。
船舶所有人可以购买船舶保险来应对潜在的海上安全风险,包括船只损坏、货物丢失和船员伤亡等。
3.2 应急设备应急设备是指船舶上的安全装备,用于应对紧急情况和保障船舶和船员的安全。
航海研学知识点总结
航海研学知识点总结航海是指利用船舶和导航技术在海洋或其他水域中进行航行的活动。
航海研学是一种集合了航海知识、导航技术、海洋地理以及海洋生态等多种学科的综合性研学活动。
通过航海研学,学生可以深入了解海洋地理与海洋生态,学习导航技术,了解航海历史,培养团队合作和领导能力,同时也可以锻炼自己的观察、分析、解决问题的能力。
下面我们将对航海研学的知识点进行总结。
一、航海基础知识1. 海洋地理:海洋地理是研究海洋地理环境、地理规律及其变化原因的一门综合性学科,包括海洋形成演变、海洋地形地貌、海洋气候、洋流、潮汐等内容。
2. 海洋生态:海洋生态学是研究海洋生物和它们的生态环境之间相互作用关系的一门学科,包括海洋生物的种类、分布、数量、生态位、营养链等内容。
3. 天文导航:天文导航是利用天体观测确定船舶位置的一种导航方法,主要包括纬度观测和经度观测两种方法。
4. 电子导航:电子导航是利用卫星导航系统和电子设备确定船舶位置和航行方向的一种现代化导航方法,主要包括GPS导航系统、雷达导航、自动航行系统等内容。
二、航海历史1. 中国古代航海史:中国古代航海在汉唐时期已经有了一定的发展,唐代郑和下西洋等航海活动对中国海上活动产生了深远影响。
2. 欧洲大航海时代:欧洲大航海时代是指15-17世纪,欧洲国家开展大规模的海外航行和探险活动,开辟了世界海洋贸易路线,推动了地理探险和文化交流。
3. 近现代航海史:近现代航海史包括海洋科学技术的发展,船舶建造技术的进步,导航仪器的改进等内容,同时也包括了一系列重大海上灾难事件,如"泰坦尼克号"沉船事件等。
三、海洋保护与可持续发展1. 海洋污染:海洋污染是指人类活动导致的海洋环境质量恶化的现象,包括油污染、废弃物污染、化学品污染等内容。
2. 海洋保护区:海洋保护区是为了保护海洋生物多样性和生态系统完整性而设立的一种特殊区域,可以分为海洋自然保护区、海洋公园、水产养殖保护区等。
航海学知识点汇总
航海学知识点汇总航海,是人类探索和征服海洋的历史悠久和辉煌壮丽的篇章,也是人类社会发展史上重要的一页。
航海是指运用船舶等水上交通工具,在海上或者其他水域中进行商业、旅游、科考等活动。
对于航海爱好者来说,了解一些航海学的基本知识是非常重要的。
下面就为大家介绍一些航海学的知识点,让大家更加深入地了解航海学的世界。
一、船舶构造和稳性1、船舶的构造:船身由两部分组成,即上部建筑和船体(即船壳)。
船体包括船头、船底和船侧。
船舶的推进力是由发动机驱动螺旋桨产生的,螺旋桨和推进装置一般安装在船尾。
船舶的掌舵则是通过舵机等机械装置进行的。
2、船舶的稳性:船舶的稳性是指船舶在不同浮动状态下的稳定性能。
稳定性是指船舶在受到外力作用时,能保持稳定的能力。
船舶的稳定性可以通过以下几种参数来衡量:重心高度、艏甲板高度、纵倾周期、横倾周期、稳性保证系数等。
二、导航术中的基本概念1、导航物:导航物是指能够用来导航的信标、灯塔、岛屿、海岸线等。
导航物可以区分无特征和有特征的导航物,无特征的导航物是常见的灯塔或水手以及遥测设备等,而有特征的导航物则是特殊的地貌或者标志,通常用来标记海域的危险区域或边界。
2、航向:航向是指船舶航行时相对于地球表面的方向,以正北方向为基准。
航向可以通过舰桥的船首向标、罗盘读数等方式得到。
3、航迹:航迹是指船舶航行过程中的实际轨迹。
航迹可以通过航线等方式得到。
4、船速:船速是指船舶在航行过程中的速度,可以通过船速表等仪器得到。
三、海洋气象1、气压系统:气压系统是导致气象变化的重要因素,通常由高压系统、低压系统和锋面构成。
高压系统通常代表干燥、晴朗和温暖的气候,而低压系统则代表雨、雪、风暴等天气。
锋面则代表了气压的变化区。
2、风向和风速:风向和风速是指风的方向和力度。
风一般会影响海洋的浪高、波向和潮汐。
风向和风速可以通过气象图、风速仪等形式得到。
3、浪高和周期:浪高和周期是指海浪高度和波动周期,通常由风速、浪向、水深等因素影响。
大学航海知识点总结大全
大学航海知识点总结大全航海是人类通往未知海域的一项重要技能,也是航海员必备的专业知识。
在大学航海专业的学习中,学生需要掌握大量的航海知识,包括航海基础知识、导航技术、海洋气象等方面的内容。
下面将从这些方面对大学航海知识点进行总结。
一、航海基础知识1. 理论知识航海的理论基础主要包括大地测量学、地图学、海图学、天文学等内容。
学生需要了解大地测量学的基本原理,以及如何绘制和解读地图、海图等。
此外,天文学也是航海的重要理论基础,学生需要掌握天文测量的原理和方法。
2. 航海器材航海器材是航海中不可或缺的工具,包括罗盘、气压计、航海钟等。
学生需要了解各种航海器材的使用方法和原理,以及如何进行航海导航和定位。
3. 船舶操纵船舶操纵是航海中的重要技能,学生需要了解船舶的操纵原理和操作方法,掌握舵机、引擎控制等技术,以确保船舶的安全航行。
二、导航技术1. GPS导航GPS导航是现代航海中常用的导航技术,学生需要了解GPS的原理和使用方法,包括GPS 接收机的选择与配置、GPS信号的接收与处理等内容。
2. 惯性导航惯性导航是一种不依赖外部定位系统的导航技术,学生需要了解惯性导航系统的组成和原理,以及如何进行误差校正和定位。
3. 水声导航水声导航是在水下进行导航的技术,学生需要了解水声导航设备的种类和原理,以及如何进行水声信号的发射和接收,以实现水下导航和定位。
4. 辅助导航技术除了GPS、惯性导航和水声导航外,航海中还常用一些辅助导航技术,如雷达导航、无线电导航等。
学生需要了解这些辅助导航技术的原理和使用方法,以提高航海的安全性和准确性。
三、海洋气象1. 海洋气象要素海洋气象包括海洋风、海浪、海况等元素。
学生需要了解这些海洋气象要素的形成原因、变化规律和对航海的影响,以制定航行计划和应对不同海洋气象条件。
2. 海洋气象预报海洋气象预报是航海中重要的信息来源,学生需要了解如何获取海洋气象预报和如何解读预报信息,以做好航海规划和应对突发气象情况。
航海学知识点汇总
航海学知识点汇总一、航海基础知识1、地球形状和地理坐标11 地球的形状和大小12 地理坐标的概念和表示方法13 经纬度的度量和换算2、航向和方位21 航向的定义和表示22 方位的概念和种类(真方位、磁方位、罗方位)23 航向和方位的换算关系3、海图31 海图的种类和用途32 海图比例尺和投影方式33 海图上的符号和注记4、航海仪器41 罗盘(磁罗经和电罗经)42 测深仪43 计程仪44 定位系统(GPS、北斗等)二、航海气象1、气象要素11 气温和气压12 风13 湿度和能见度14 云2、天气系统21 气旋和反气旋22 锋面23 台风(飓风)3、海洋气象预报31 预报的来源和获取途径32 预报内容的解读和应用三、船舶运动性能1、船舶浮性和稳性11 浮性原理12 稳性的分类和影响因素2、船舶阻力和推进21 阻力的种类和计算22 推进装置的工作原理和性能3、船舶操纵性31 操纵性指标32 影响操纵性的因素33 船舶的转向和避让四、航线设计与规划1、航线设计的原则和考虑因素11 安全因素12 经济因素13 气象和海况条件2、航线的拟定方法21 利用海图和航海资料22 参考以往的航行经验3、大圆航线和恒向线航线31 大圆航线的计算和应用32 恒向线航线的特点和使用场景五、船舶定位与导航1、天文定位11 太阳定位12 恒星定位2、陆标定位21 方位定位22 距离定位23 综合定位3、电子导航31 雷达导航32 AIS 系统的应用六、航海安全与法规1、国际海上避碰规则11 各类船舶的避让责任和行动12 号灯、号型和声号的使用2、海上交通安全法规21 船舶的适航要求22 船员的职责和资格3、应急处置31 船舶遇险的信号和报告32 火灾、碰撞等紧急情况的处理措施七、航海通信1、通信设备和方式11 甚高频(VHF)通信12 卫星通信13 莫尔斯电码通信2、通信程序和规范21 遇险通信22 日常通信的礼仪和格式八、海洋环境与保护1、海洋生态系统11 海洋生物多样性12 海洋生态平衡的重要性2、海洋污染防治21 油污、垃圾等污染物的来源和危害22 防止海洋污染的措施和法规以上是航海学的主要知识点汇总,通过对这些知识点的学习和掌握,可以为航海实践提供坚实的理论基础。
航海学知识点总结
航海学知识点总结————————————————————————————————作者:————————————————————————————————日期:航海学知识点汇总第一章航海学基础知识1.大地球体:大地水准面围成的球体2.大地球体两个近似体:椭圆体(进行精度较高计算如定义地理坐标和制作墨卡托海图);圆球体(简易计算如大圆航线和简易墨卡托海图)3.地理坐标:基准线是格林经线、纬线经度:由格林经线向东或向西到该点经线,范围(0—180);纬度:某点在地球椭圆子午线上的法线与赤道面交角,范围(0—90)4.经差、纬差(范围都为0—180);到达点相对于起航点的方向;Dφ=φ2-φ1 Dλ=λ2-λ1N/E为正号S/W取负号;结果为正为N/E,为负则为S/W;注意如果得出经差大于180,则用360减去其绝对值,然后符号更换。
5.关于赤道、地轴和球心对称问题(关于地心对称纬度等值反向,经度相差180°)6.关于不同坐标系修正问题:同名相加、异名相减,结果如果为负名称与原来相反。
GPS坐标系左边原点在地心。
7.方向的确定:方向是在测者地面真地平平面上确定的。
测者子午圈与测者地面真地平的交线为南北线,测者卯酉圈(东西圈)与测者地面真地平平面交线为东西线。
方向的三种表示法,要会换算。
(圆周、半圆周、罗经点)一个罗经点11.25°。
圆周法是以真北为起点顺时针0-360°,半圆法是以北或南为起点顺时针或逆时针0-180°;换算时最好用作图法比较直观。
8.理解真航向(真北到航向线);真方位(真北到方位线);舷角(航向线到方位线,两种表示法)所以真方位和相对方位(舷角)只是起算点不同,目的点相同,只是相差了真北到航向线的角度,即真航向。
要会换算:TB=TC+Q 或TB=TC+Q(右正左负),具体计算既可以用公式也可以用作图法解决(分别以测者和目标为中心做坐标系,连接测者与目标为方位线,便可一目了然。
航海学总复习
海图分类和使用
• 海图按作用、比例尺和载体的分类方法,海图使 海图按作用、比例尺和载体的分类方法, •
用注意事项 根据海图资料测量时间和资料来源、海图的出版 根据海图资料测量时间和资料来源、 和改版日期、海图小改正、海图比例尺、 和改版日期、海图小改正、海图比例尺、海图上 所标注的水深和地貌资料等鉴别海图资料的可信 赖程度 电子海图显示和信息系统的基本概念和特点 光栅海图的基本概念和特点
识 图
• 海上平台、推荐航路(航道)、深水航路、 海上平台、推荐航路(航道)、深水航路、 )、深水航路
分隔带(线)、禁航区、警戒区、无线电 分隔带( )、禁航区、警戒区、 禁航区 报告点、叠标、导标、灯船、 报告点、叠标、导标、灯船、大型助航浮 标和光弧灯标等中版海图图式 • 海上平台、推荐航路(航道)、深水航路、 海上平台、推荐航路(航道)、深水航路、 )、深水航路 分隔带( )、禁航区 警戒区、 禁航区、 分隔带(线)、禁航区、警戒区、无线电 报告点、叠标、导标、灯船、 报告点、叠标、导标、灯船、大型助航浮 标和光弧灯标等英版海图图式
狭水道航行
• 最小安全水深、富裕水深的确定,过浅滩 最小安全水深、富裕水深的确定,
航行注意事项 • 浮标导航方法及其注意事项、叠标导航方 浮标导航方法及其注意事项、 法和叠标灵敏度( 法和叠标灵敏度(方位叠标和雷达距离叠 )、导标方位导航方法 导标方位导航方法、 标)、导标方位导航方法、平行线导航方 需用雷达) 法(需用雷达) • 物标正横转向法、逐渐转向法、导标方位 物标正横转向法、逐渐转向法、 转向法、平行方位线转向法、 转向法、平行方位线转向法、平行线转向 需用雷达) 法(需用雷达)
潮汐与潮流
• 英版《潮汐表》出版情况、各卷主要内容和《潮 英版《潮汐表》出版情况、各卷主要内容和《 • • •
航海学知识点详细总结
航海学知识点详细总结一、航行的基本概念航行,即船只或飞机在海洋、空中进行的航行活动。
航行的基本概念包括航向、航线、航迹和航速等。
1.航向:航向是船只或飞机相对于地面的方向。
船只或飞机在进行航行时,需要保持一个特定的航向来达到预定的目的地。
2.航线:航线是船只或飞机在航行中规定的具体的航行路线。
航线通常是由航行图上规定的特定航线点构成的。
3.航迹:航迹是船只或飞机实际航行时在海洋或空中留下的实际轨迹。
航迹可以反映船只或飞机的航行情况和航行路线。
4.航速:航速是船只或飞机在航行中单位时间内航行的距离。
航速通常以节(nautical mile per hour)为单位来表示。
二、航海工具航海工具是指用来测定航行方向、航行位置和航行距离等信息的工具和设备。
航海工具包括罗盘、测距仪、星历表、雷达等。
1.罗盘:罗盘是用来测定船只或飞机的航向的仪器。
罗盘可以根据地球的磁场指示出船只或飞机相对于地面的方向。
2.测距仪:测距仪是用来测量船只或飞机与地面或目标的距离。
测距仪可以帮助船只或飞机确定自己的位置和距离目标的距离。
3.星历表:星历表是用来根据星象和时间来确定船只或飞机的位置的表格。
星历表可以根据星象计算出船只或飞机的纬度和经度。
4.雷达:雷达是利用无线电波来探测目标和测定目标位置的仪器。
雷达可以在船只或飞机上实时监测周围环境和判断目标位置。
三、航海技术航海技术是指用来确定船只或飞机的位置和航向的技术和方法。
航海技术包括天文导航、无线电导航、卫星导航等。
1.天文导航:天文导航是利用天体的位置来确定船只或飞机的位置和航向的技术。
天文导航需要根据星象和时间来计算出船只或飞机的位置和航向。
2.无线电导航:无线电导航是利用无线电信号来确定船只或飞机的位置和航向的技术。
无线电导航需要使用无线电设备和信标来确定位置和航向。
3.卫星导航:卫星导航是利用卫星信号来确定船只或飞机的位置和航向的技术。
卫星导航需要使用卫星导航系统和接收设备来确定位置和航向。
航海学-第一篇基础知识
第一篇 基础知识第一章 坐标、方向与距离第一节 地理坐标一、地球形体船舶在海上航行时,需要确定船舶的位置、航向和航程,这就要求在地球表面建立坐标系和确定方向的基准线,因此要对地球的形状有一定的了解。
地球的自然表面是不平坦的,是一个非常复杂而又不规则的曲面。
陆地上有高山、深谷和平地;海洋里有岛屿和海沟。
因此,地球的自然表面不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系。
航海上所研究的地球形状,是指由假想的大地水准面所包围的闭合几何体——大地球体。
所谓大地水准面,是指与各地铅垂线相垂直且与完全均衡状态的海平面相一致的水准面,详细地说大地水准面是与平均海面相重合且延伸至大陆底部的一个连续的、无叠痕的、无棱角的闭合曲面。
大地球体仍是一个不规则的球体,不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系,怎么办呢?一般在航海上,以大地球体的近似体代替大地球体来建立坐标系进行航海计算,以地球园球体作为它的第一近似体,而以地球椭园体作为它的第二近似体。
1. 第一近似体——地球圆球体在解决一般航海问题时,为了计算上的简便,通常是将大地球体当做地球园球体,其半径R =6,371,110M 。
2. 第二近似体——地球椭圆体 在较为准确的航海计算中,需要将为大地球体当做地球椭园体,如图1-1-1所示,地球椭园体是由椭圆P N QP S Q ′绕其短轴P N P S 旋转一周而形成的几何体。
地球椭园体的参数有:长半轴a 、短半轴b 、扁率c 和偏心率e ,它们之间的相互关系是:a b a c -=; a b a e 22-=; c e 22≈ 在不同的历史时期,依据的测量结果不同,因而所推算出的地球椭圆体的参数也不相同。
我国从1954年开始采用前苏联克拉索夫斯基椭圆体参数,现在准备逐步采用IUGGl975年推荐的地球椭圆体参数,参见表1-1-1。
二、地球上的基本点、线、圈把地球看做第二近似体即椭圆体,如图1-1-2所示,O 为地球中心:地轴(axis of the earth)—地球自转的轴(S N P P ),即通过地球中心连结南极和北极的一条假想的线。
航海学基础知识.doc
第三章航向、方位和距离第一节航海上常用的度量单位一、长度单位1.海里 (nautical mile, n mile)1)定义海里等于地球椭圆子午线上纬度一分所对应的弧长简写为 1n mile或1'。
数学公式: 1nmile (1852.25 9.31cos 2 )m赤道最短, 1842. 9m,两极最长,1861. 6m;两地最大差值是18. 7m。
2)标准海里英国为 1853. 18m(6080 英尺 ) ;我国采用1929 年国际水文地理学会议通过的海里标准,1n mile=1852m 。
约在纬度44o14'处 1n mile的长度才等于1852m 3)航海实践中产生的误差例:某轮沿着赤道向正东航行,每小时25n mile ,航行一天后航程是2 5 24 = 6 0 0 n m(i按l 1n mile等于1852m计算),如果按赤道1 n mile的实际长度 1842. 94m计算,则船舶一天航行的距离是:1852600603n mile1842.94由此可以看出,将 1n mile 确定为 1852m后,所产生的误差只有航行距离的0. 5%。
若在中纬度海区航行,则所产生的误差将更小。
2.链 (cable,cab)1n mile的十分之一为 1 链。
链是用来测量较近距离的单位。
1 链 =185. 2m3.米 (meter,m)国际上通用的长度度量单位。
航海上用来表示海图里的山高和水深,有时也用来度量距离。
4.拓 (fathom) 、英尺 (foot,ft)和码(yard,yd)旧英版海图上用英尺和拓表示水深;山高以英尺表示。
用海里、码和英尺来度量距离。
1 拓 =1. 829m或 6 ft、1yd=0. 9144m或3 ft、1 ft=0. 3048m。
目前英版的拓制海图正被米制海图(metric chart)所代替5.公里 (kilometer,km)用于海图上表示两个陆标间较远的距离单位。
航海学
④ 十六个偏点:N/E、NE/N、NE/E、E/N、E/S、SE/E、SE/S、S/E
S/W、SW/S、SW/W、W/S、W/N、NW/W、NW/N、N/W。
这样,将360o圆周等分成32个罗经点,每个罗经点为11o.25.
3.三种方向划分系统之间的换算
(1)半圆→圆周法
NE半圆,圆周度数 = 半圆度数;
航海学教案
第一篇 基础知识 第一章 坐标、方向和距离
§1—2 航向与方位 ⒉ 磁罗经差
是船上磁罗经的磁针在受到地磁和船磁合力的影响下指示的罗北(NC)偏开 真北 (NT)的角度。 (如图1-1-10所示) NC偏在NT的东面时为正(+);
NC偏在NT的西面时为负(-); △C = Var. + Dev. ⑴ 磁差(Variation, Var.)
陀螺罗经刻度盘0o所指的方向称为陀罗北(compass north, NG)。 (2)罗经差:罗经差分为:陀螺罗经差(gyro-compass error, △G);简称 陀罗差。 磁罗经差(compass error, △C)。简称罗经差。
航海学教案
第一篇 基础知识 第一章 坐标、方向和距离
§1—2 航向与方位 ⒈ 陀罗差
第二近似体 两极略扁的旋转椭圆体(航海上为了更准确地计算)。
(earth ellipsoid) 二、地理坐标(geographic coordinate) 地理坐标是建立在地球椭圆体表面上,用来表示地面上
的位置。 地球上的基本点、线、圈。
航海学教案
第一篇 基础知识
第一章 坐标、方向和距离§1—1 地球形状、地理坐标与大地坐 标系
经差与纬差(difference of longitude & latitude)分别用符号“Dλ”和“Dφ”表示。
航海学知识点
航海学知识点航海学是研究航海技术和导航方法的学科,它包含了各种涉及海上航行的知识点。
以下是航海学的一些基本知识点,供参考:1.航海历史:航海学的发展可以追溯到古代文明时期,人们通过天体观察和地理测量等方法进行航行。
从欧洲的大航海时代到现代的卫星导航系统,航海历史上有许多里程碑事件和重要发现。
2.导航仪器:导航仪器是航行必备的工具,其中包括罗盘、航海钟、望远镜、声纳和雷达等。
这些仪器用于确定船只的位置、判断航向和监测海洋环境条件等。
3.天体导航:天体导航是一种利用天体的位置来确定位置的方法。
例如,通过观察太阳、月亮、恒星和行星的角度,可以计算出船只的纬度和经度。
4.海图和航海图:海图和航海图是航行必备的地图。
海图显示了海洋地理信息,如海底地形、测深、浮标和航行隐患等。
航海图则提供了船只在海上航行时所需的详细信息,包括航线、航标、水域边界和危险物等。
5.水文学和气象学:水文学和气象学是航海学中重要的分支学科。
水文学研究海洋流动、潮汐和海浪等水文现象。
气象学研究天气系统、风向和风速等气象现象。
这些知识对于船只航行的安全和有效性至关重要。
6.定位系统:定位系统是现代航海中常用的导航工具。
全球定位系统(GPS)是最为广泛应用的定位系统,通过卫星接收和地面接收站来确定位置。
其他定位系统包括伽利略系统(欧洲)、北斗导航系统(中国)和GLONASS(俄罗斯)。
7.航行规则和安全:航行规则和安全是航海学中的重要组成部分。
国际海上事故遗址协会(IMO)制定了国际航行规则(COLREG)以确保船只之间的安全和避免碰撞。
此外,船只必须遵守各国海洋法律和规定,包括航行许可和环境保护。
8.航海术语:航海学中使用许多特定的术语来描述船只和航行。
例如,船只的各个部分有着专门的名称,如船首、船首灯和甲板等。
此外,航行中有诸多术语,如偏航、航向、港口和执勤等。
9.航海文化:航海学与航海文化紧密相关。
航海文化包括诸多方面,如航海家的传奇故事、航海艺术和音乐、船只建造和修复等。
航海冷知识
航海冷知识
- 航海中的航线通常是通过计算经度和纬度来确定的。
经度是
东西方向上的度量,而纬度是南北方向上的度量。
船舶可以使用GPS(全球定位系统)来确定自己的位置。
- 在航海过程中,船舶会用到航海图,航海图上标有各种水深、航标、岛屿和地标等信息,以帮助船舶安全导航。
- 航海中的速度通常以节(knot)为单位,1节等于每小时一
海里(1852米)的速度。
- 在大洋航行时,船舶必须考虑到洋流和风向,以便选择最佳
的航线。
- 航海中存在着很多危险或困扰船舶的现象,比如暴风雪、大浪、冰山等。
船舶需要时刻关注气象和海况的变化,并采取相应的措施。
- 航海中的导航设备包括罗盘、测距仪、测向仪等,这些设备
可以帮助船舶确定方向和位置。
- 航海中的时间通常使用世界标准时间(UTC),这是全球统
一的时间标准,以便于统一协调航行和通信。
- 航海中的灯光和信号是船舶之间进行沟通和警示的重要手段,比如船舶可以通过航标上的灯光和信号了解对方的位置和意图。
- 航海中的紧急情况通常通过无线电进行报告和求助,船舶要
保持无线电通信设备的良好运行状态,并熟悉相应的通信规程。
- 航海中的航道是人为确定的一条安全航线,船舶必须在航道
内航行,以减少碰撞风险。
航道通常会由相关机构进行维护和标志。
航海学知识点汇总
航海学知识点汇总第一章航海学基础知识1.大地球体:大地水准面围成的球体2.大地球体两个近似体:椭圆体(进行精度较高计算如定义地理坐标和制作墨卡托海图);圆球体(简易计算如大圆航线和简易墨卡托海图)3.地理坐标:基准线是格林经线、纬线经度:由格林经线向东或向西到该点经线,范围(0—180);纬度:某点在地球椭圆子午线上的法线与赤道面交角,范围(0—90)4.经差、纬差(范围都为0—180);到达点相对于起航点的方向;Dφ=φ2-φ1 Dλ=λ2-λ1N/E为正号S/W取负号;结果为正为N/E,为负则为S/W;注意如果得出经差大于180,则用360减去其绝对值,然后符号更换。
5.关于赤道、地轴和球心对称问题(关于地心对称纬度等值反向,经度相差180°)6.关于不同坐标系修正问题:同名相加、异名相减,结果如果为负名称与原来相反。
GPS坐标系左边原点在地心。
7.方向的确定:方向是在测者地面真地平平面上确定的。
测者子午圈与测者地面真地平的交线为南北线,测者卯酉圈(东西圈)与测者地面真地平平面交线为东西线。
方向的三种表示法,要会换算。
(圆周、半圆周、罗经点)一个罗经点11.25°。
圆周法是以真北为起点顺时针0-360°,半圆法是以北或南为起点顺时针或逆时针0-180°;换算时最好用作图法比较直观。
8.理解真航向(真北到航向线);真方位(真北到方位线);舷角(航向线到方位线,两种表示法)所以真方位和相对方位(舷角)只是起算点不同,目的点相同,只是相差了真北到航向线的角度,即真航向。
要会换算:TB=TC+Q 或TB=TC+Q(右正左负),具体计算既可以用公式也可以用作图法解决(分别以测者和目标为中心做坐标系,连接测者与目标为方位线,便可一目了然。
9.罗经向位换算:罗经差:罗航向与真北夹角;陀螺差:陀螺北与真北夹角;磁差:磁北与真北夹角,与时间、地区及地磁异常有关;自差:罗北与磁北夹角,与航向、船磁及磁暴有关;TC/GC/MC/CC之间换算要掌握TC=GC+ΔG=CC+ΔC=MC+VAR;MC=CC+DEV 10.关于磁差:航用海图、小比例尺海图、港泊图分别在罗经花、磁差曲线、和海图标题栏给出。
(完整版)航海学知识点
(完整版)航海学知识点第⼀篇航海学(地⽂航海)第⼀章坐标、⽅向和距离第⼀节地球形状和地理坐标⼀、地球形状1. 第⼀近似体――地球圆球体航海上为了计算上的简便,在精度要求不⾼的情况下,通常将⼤地球体当作地球圆球体。
2. 第⼆近似体――地球椭圆体在⼤地测量学、海图学和需要较为准确的航海计算中,常将⼤地球体当作两极略扁的地球椭圆体。
地球椭圆体即旋转椭圆体,它是由椭圆P N QP S Q′绕其短轴P N P S旋转⽽成的⼏何体(图1-1)。
表⽰地球椭圆体的参数有:长半轴a、短半轴b、扁率c和偏⼼率e。
⼆、地理坐标1. 地球上的基本点、线、圈地理坐标是建⽴在地球椭圆体表⾯上的。
要建⽴地理坐标,⾸先应在地球椭圆体表⾯上确定坐标的起算点和坐标线图⽹。
如图所⽰:椭圆短轴即地球的⾃转轴――地轴(P N P S);地轴与地表⾯的两个交点是地极,在北半球的称为北极(P N),在南半球的称为南极(P S);通过地球球⼼且与地轴垂直的平⾯称为⾚道平⾯,⾚道平⾯与地表⾯相交的截痕称为⾚道(QQ′),它将地球分为南、北两个半球;任何⼀个与⾚道⾯平⾏的平⾯称为纬度圈平⾯,它与地表⾯相交的截痕是个⼩圆,称为纬度圈(AA′);通过地轴的任何⼀个平⾯是⼦午圈平⾯,它与地表⾯相交的截痕是个椭圆,称为⼦午圈(P N QP S Q′);由北半球到南半球的半个⼦午圈,叫作⼦午线,⼜称经线(P N QP S,P N Q′P S);通过英国伦敦格林尼治天⽂台⼦午仪的⼦午线,叫作格林⼦午线或格林经线(P N GP S)。
2. 地理坐标地球表⾯任何⼀点的位置,可以⽤地理坐标,即地理经度和地理纬度来表⽰。
地理经度简称经度,地⾯上某点的地理经度为格林经线与该点⼦午线在⾚道上所夹的劣弧长,⽤λ或Long表⽰。
某Array点地理经度的度量⽅法为:⾃格林⼦午线起算,向东或向西度量到该点⼦午线,由0°到180°计量。
向东度量的称为东经,⽤E标⽰;向西度量的称为西经,⽤W标⽰。
航海元素解析知识点总结
航海元素解析知识点总结一、航海历史航海历史是研究人类从古代到现代航海发展的演变过程。
从早期的航海技术到现代的卫星导航系统,航海历史一直是人类探索和利用海洋资源的重要基础。
航海历史的重要节点包括古代航海、大航海时代和现代航海。
在古代,人们主要依靠天文观测、风向和海流等自然现象进行航海。
大航海时代是指欧洲国家在15-17世纪进行的大规模航海活动,包括葡萄牙的开拓南美、西非和印度的航线、荷兰的北美殖民和中国的海上丝绸之路等。
现代航海则是利用现代科学技术和工具进行航海,如卫星导航、雷达、测深仪等。
二、航海工具航海工具是航海中使用的各种仪器和工具,用于导航、定位、测量和观测。
常见的航海工具包括罗盘、望远镜、船用钟表、无线电设备、测深仪、雷达和GPS等。
罗盘是指利用地球磁场指向北极方向的仪器,用于船舶的定向和导航。
望远镜是用于远程观测和识别目标的光学仪器,常用于海洋测量和导航。
船用钟表是船舶上用于计时和导航的特制钟表,用于确定船舶的位置和航速。
无线电设备是船舶通信和导航的重要工具,用于与岸上和其他船舶进行通讯和定位。
测深仪是用于测量海洋深度的仪器,用于确定水深和水文地形。
雷达是一种利用电磁波进行目标探测和跟踪的设备,用于船舶的安全导航和目标监测。
GPS (全球定位系统)是一种利用卫星信号进行导航和定位的技术,已成为现代航海中最重要的导航工具之一。
三、导航技术导航技术是指利用各种手段确定船舶位置和航向的技术,包括天文导航、雷达导航、GPS 导航等。
天文导航是利用天体(如太阳、月亮、星星)的位置和角度进行导航的技术,是古代航海和现代航海中最重要的导航方法之一。
雷达导航是利用雷达设备对周围环境进行探测和识别,用于确定船舶位置和避免障碍。
GPS导航是利用卫星信号进行导航和定位的技术,已成为现代航海中最重要的导航方法之一。
此外,航海中还使用了一些数学和物理的知识,如三角测量、地理坐标、航向角和航速等,用于确定船舶的位置和航向。
航海学-第一篇基础知识
第一篇 基础知识第一章 坐标、方向与距离第一节 地理坐标一、地球形体船舶在海上航行时,需要确定船舶的位置、航向和航程,这就要求在地球表面建立坐标系和确定方向的基准线,因此要对地球的形状有一定的了解。
地球的自然表面是不平坦的,是一个非常复杂而又不规则的曲面。
陆地上有高山、深谷和平地;海洋里有岛屿和海沟。
因此,地球的自然表面不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系。
航海上所研究的地球形状,是指由假想的大地水准面所包围的闭合几何体——大地球体。
所谓大地水准面,是指与各地铅垂线相垂直且与完全均衡状态的海平面相一致的水准面,详细地说大地水准面是与平均海面相重合且延伸至大陆底部的一个连续的、无叠痕的、无棱角的闭合曲面。
大地球体仍是一个不规则的球体,不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系,怎么办呢?一般在航海上,以大地球体的近似体代替大地球体来建立坐标系进行航海计算,以地球园球体作为它的第一近似体,而以地球椭园体作为它的第二近似体。
1. 第一近似体——地球圆球体在解决一般航海问题时,为了计算上的简便,通常是将大地球体当做地球园球体,其半径R =6,371,110M 。
2. 第二近似体——地球椭圆体 在较为准确的航海计算中,需要将为大地球体当做地球椭园体,如图1-1-1所示,地球椭园体是由椭圆P N QP S Q ′绕其短轴P N P S 旋转一周而形成的几何体。
地球椭园体的参数有:长半轴a 、短半轴b 、扁率c 和偏心率e ,它们之间的相互关系是:a b a c -=; a b a e 22-=; c e 22≈ 在不同的历史时期,依据的测量结果不同,因而所推算出的地球椭圆体的参数也不相同。
我国从1954年开始采用前苏联克拉索夫斯基椭圆体参数,现在准备逐步采用IUGGl975年推荐的地球椭圆体参数,参见表1-1-1。
二、地球上的基本点、线、圈把地球看做第二近似体即椭圆体,如图1-1-2所示,O 为地球中心:地轴(axis of the earth)—地球自转的轴(S N P P ),即通过地球中心连结南极和北极的一条假想的线。
航海学-第一篇基础知识
第一篇 基础知识第一章 坐标、方向与距离第一节 地理坐标一、地球形体船舶在海上航行时,需要确定船舶的位置、航向和航程,这就要求在地球表面建立坐标系和确定方向的基准线,因此要对地球的形状有一定的了解。
地球的自然表面是不平坦的,是一个非常复杂而又不规则的曲面。
陆地上有高山、深谷和平地;海洋里有岛屿和海沟。
因此,地球的自然表面不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系。
航海上所研究的地球形状,是指由假想的大地水准面所包围的闭合几何体——大地球体。
所谓大地水准面,是指与各地铅垂线相垂直且与完全均衡状态的海平面相一致的水准面,详细地说大地水准面是与平均海面相重合且延伸至大陆底部的一个连续的、无叠痕的、无棱角的闭合曲面。
大地球体仍是一个不规则的球体,不是数学曲面,不能直接在其上进行运算,也不能直接在其上建立坐标系,怎么办呢?一般在航海上,以大地球体的近似体代替大地球体来建立坐标系进行航海计算,以地球园球体作为它的第一近似体,而以地球椭园体作为它的第二近似体。
1. 第一近似体——地球圆球体在解决一般航海问题时,为了计算上的简便,通常是将大地球体当做地球园球体,其半径R =6,371,110M 。
2. 第二近似体——地球椭圆体 园体,如图1-1-1所示,地球椭园体是由椭圆P N QP S Q ′P N P S 旋转一周而形成的几何体。
地球椭园体的参数有:长半轴a 短半轴b 、扁率c 和偏心率e ,它们之间的相互关系是:a b a c -=; a b a e 22-=; c e 22≈ 在不同的历史时期,依据的测量结果不同,因而所推算出的地球椭圆体的参数也不相同。
我国从1954年开始采用前苏联克拉索夫斯基椭圆体参数,现在准备逐步采用IUGGl975年推荐的地球椭圆体参数,参见表1-1-1。
二、地球上的基本点、线、圈把地球看做第二近似体即椭圆体,如图1-1-2所示,O 为地球中心:地轴(axis of the earth)—地球自转的轴(S N P P ),即通过地球中心连结南极和北极的一条假想的线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇航海学(地文航海)第一章坐标、方向和距离第一节地球形状和地理坐标一、地球形状航海上船舶和物标的坐标、方向和距离等,都是建立在一定形状的地球表面的,要研究坐标、方向和距离等航海基本问题,必须首先对地球的形状和大小作一定的了解。
航海上,不同场合,根据不同的精度要求,往往将大地球体看作不同的近似体:1. 第一近似体――地球圆球体航海上为了计算上的简便,在精度要求不高的情况下,通常将大地球体当作地球圆球体。
2. 第二近似体――地球椭圆体在大地测量学、海图学和需要较为准确的航海计算中,常将大地球体当作两极略扁的地球椭圆体。
地球椭圆体即旋转椭圆体,它是由椭圆P N QP S Q′绕其短轴P N P S旋转而成的几何体(图1-1)。
表示地球椭圆体的参数有:长半轴a、短半轴b、扁率c和偏心率e。
二、地理坐标1. 地球上的基本点、线、圈地理坐标是建立在地球椭圆体表面上的。
要建立地理坐标,首先应在地球椭圆体表面上确定坐标的起算点和坐标线图网。
如图所示:椭圆短轴即地球的自转轴――地轴(P N P S);地轴与地表面的两个交点是地极,在北半球的称为北极(P N),在南半球的称为南极(P S);通过地球球心且与地轴垂直的平面称为赤道平面,赤道平面与地表面相交的截痕称为赤道(QQ′),它将地球分为南、北两个半球;任何一个与赤道面平行的平面称为纬度圈平面,它与地表面相交的截痕是个小圆,称为纬度圈(AA′);通过地轴的任何一个平面是子午圈平面,它与地表面相交的截痕是个椭圆,称为子午圈(P N QP S Q′);由北半球到南半球的半个子午圈,叫作子午线,又称经线(P N QP S ,P N Q ′P S );通过英国伦敦格林尼治天文台子午仪的子午线,叫作格林子午线或格林经线(P N GP S )。
2. 地理坐标地球表面任何一点的位置,可以用地理坐标,即地理经度和地理纬度来表示。
地理经度简称经度,地面上某点的地理经度为格林经线与该点子午线在赤道上所夹的劣弧长,用λ或Long 表示。
某点地理经度的度量方法为:自格林子午线起算,向东或向西度量到该点子午线,由0°到180°计量。
向东度量的称为东经,用E 标示;向西度量的称为西经,用W 标示。
例如北京的经度为116°22.8'E 。
地理纬度简称纬度,地球椭圆子午线上某点的法线与赤道面的夹角称为该点的地点地理纬度的理纬度,用ϕ或Lat 表示。
某度量方法为:自赤道起算,向北或向南度量到该点所在纬度圈,由0°到90°计量。
向北度量的称为北纬,用N 标示;向南度量的为南纬,用S 标示。
例如北京的纬度为39°54.4'N 。
纬度圈上各点的纬度相等,经线上各点的经度也都相等,经线与纬度圈所构成的图网为坐标线图网。
第二节 航向与方位一、方向的确定、划分与换算1. 航海上方向的划分航海上常用的划分方向的方法有下列三种:(1)圆周法以正北为方向基准000°,按顺时针方向计量到正东为090°,正南为180°,正西为270°,再计量到正北方向为360°或000°。
圆周法始终用三位数表示,是航海上最常用的表示方向的方法。
(2)半圆法以正北或正南为方向基准,分别向东或向西计量到正南或正东,计量范围0°到180°。
用半圆法表示某方向时,除度数外,还应标明起算点和计量方向。
如:30°NE ,150°SE ,30°SW ,150°NW 。
(3)罗经点法如图所示:罗经点法以北、东、南、西四个基本方向为基点;将平分相邻基点之间的地面真地平平面方向称为隅点,即东北(NE)、东南(SE)、西南(SW)和西北(NW)四个方向;将平分相邻基点与隅点之间的地面真地平平面方向称为三字点,其名称有基点名称之后加上隅点名称组成,即北北东(NNE)、东北东(ENE)、东南东(ESE)、南南东(SSE)等八个方向;再将平分相邻基点或隅点与三字点之间的十六个地面真地平平面方向称为偏点,偏点的名称由基点名称或隅点名称之后加上偏向的方向来组成,例如:北偏东(N/E)、东北偏北(NE/N)、东偏北(E/N)等。
这样,四个基点、四个隅点、八个三字点和16个偏点,共计32个方向点,叫做32个罗经点。
2. 三种方向划分之间的换算根据航海实际的需要,三种方向之间的换算,通常是指将半圆法和罗经点法所表示的方向换算为相应的圆周法方向,其换算方法如下:(1)半圆法换算成圆周法的法则是:在北东(NE )半圆: 圆周度数 = 半圆度数在南东(SE )半圆: 圆周度数 = 180° - 半圆度数在南西(SW )半圆: 圆周度数 = 180° + 半圆度数在北西(NW )半圆: 圆周度数 = 360° - 半圆度数(2)罗经点法换算成圆周法的法则是:由于相邻两罗经点之间的角度为11°.25,因此,某个罗经点方向所对应的圆周方向,可根据该罗经点在罗经点法中的点数乘以11°.25的法则确定。
在掌握了所有罗经点的意义、命名方法以及四个基点与四个隅点所对应的圆周法方向的基础上,还可依据下列原则来换算:八个三字点的圆周方向等于相应的基点方向与隅点方向的平均值;16个偏点的圆周方向等于相应基点或隅点方向加上±11°.25。
其中,±应根据该偏点偏向相应基点或隅点的方向而定:顺时针方向取+,逆时针方向取-。
二、航向、方位和舷角航海上经常涉及到的方向有两种:船舶航行的方向(航向)和物标的方向(方位)。
船舶首尾线向船首方向的延伸线,称作航向线,代号CL 。
船舶航行过程中,在测者地面真地平平面上,自真北线顺时针方向计量到航向线的角度,称为船舶的真航向,计量范围000°至360°,代号:TC 。
船舶和物标的连线称为物标的方位线,代号BL 。
自正北方向线顺时针方向计量到物标方位线的角度,称为船舶的真方位,计量范围000°至360°,代号:TB 。
从航向线到物标方位线之间的夹角,称为物标的舷角或相对方位。
舷角以航向线为基准,按顺时针方向计量到物标方位线,计量范围000°到360°,始终用三位数表示,代号Q;或以船首向为基准,分别向左或向右计量到物标方位线,计量范围0°到180°,向左计量为左舷角Q左,向右计量为右舷角Q右。
当舷角Q = 090°或Q右 = 90°时,叫做物标的右正横;当Q = 270°或Q左 = 90°时,叫做物标的左正横。
航向、方位和舷角之间的关系如下:QTCTB+=或()()⎪⎩⎪⎨⎧+=-为+为左右QQQTCTB如计算所得的真方位值大于360°或小于0°,则应分别减去或加上360°。
第三节向位的测定与换算一、陀螺罗经/电罗经测定向位航海上测定向位(航向和方位)的仪器是罗经。
目前,海船上配备的罗经有陀螺罗经(俗称电罗经)和磁罗经两大类。
陀螺罗经是根据高速旋转的陀螺仪,在受到适当的阻尼力作用后,能迫使其旋转轴保持在其子午圈平面内的原理而制成的。
陀螺罗经是一种不受地磁场和电磁场影响的、具有较大指北力的电动机械仪器,它能带动若干个分罗经,分别安装在驾驶台、驾驶台两翼、海图室和船长房间等,还能为雷达、自动舵和航向记录仪等提供指北信息。
陀螺罗经刻度盘0°所指示的方向称为陀螺罗经北,简称陀罗北,用N G表示。
陀罗北线和船舶航向线之间的夹角,称为陀罗航向,代号GC。
陀罗北线和物标方位线之间的夹角,叫做陀罗方位,代号GB。
陀罗航向和陀罗方位均以陀罗北线为基准,按顺时针方向计量至航向线或物标方位线,计量范围000°到360°。
陀罗北偏开真北角度称为陀螺罗经差(简称陀罗差),用G∆表示。
陀罗北偏在真北的东面,陀罗向位小于真向位,G∆为偏东或偏低,用E或(+)表示;陀罗北偏在真北的西面,陀罗向位大于真向位,G∆为偏西或偏高,用W或(-)表示。
真向位、陀罗向位和陀罗差之间的关系如下:TC = GC+G∆TB = GB+G∆()()⎩⎨⎧∆∆-偏西为+偏东为GG二、磁罗经测定向位1. 磁罗经基本原理磁罗经是我国古代四大发明之一――指南针演变发展而来的。
它是根据在水平面内自由旋转的磁针,受到地磁磁力的作用后,能稳定指示地磁磁北方向的特性而制成的。
如图所示,地球周围存在一个天然磁场――地磁,它好像是由地球内部的一个大磁铁所形成的磁场。
磁力线方向垂直于地面的点,叫做地磁磁极,靠近地理北极的是磁北极;靠近地理南极的是磁南极。
2. 磁罗经基本概念将磁罗经放置在地球上某一点,当它仅受到地磁磁场的作用时,其N 极所指的方向(即磁罗经刻度盘0°的方向)即为磁北N M 。
因为地磁北极与地理北极并不在同一地点,地磁磁场本身又很不规则,所以地面上某点的磁北线与真北线往往不重合。
磁北(N M )偏离真北(N T )的角度称为磁差,代号Var.。
如磁北偏在真北的东面,称磁差偏东,用E 或+表示;磁差偏在真北西面,则称磁差偏西,用W 或-表示。
如图所示:磁北线与航向线之间的夹角称为磁航向,代号MC ;磁北线与方位线之间的夹角称为磁方位,代号MB 。
磁航向与磁方位均以磁北为基准,分别按顺时针方向计量到航向线或物标方位线,计量范围000°至360°。
显然,磁向位、磁差和真向位之间的关系如下: TC = MC + Var.TB = MB + Var.安装在钢铁制成的船上的磁罗经,除了受到地磁的作用外,还将受到船上钢铁在地磁磁场中磁化后形成的磁场――船磁场的影响,以及磁罗经附近电气设备形成的电磁场的影响。
这样,致使磁罗经的指北端不再指示磁北方向,而指向上述各磁场的合力方向上。
此时磁罗经刻度盘0°所指示的北,称为罗北,代号N C 。
罗北偏离磁北的角度称为自差,用缩写Dev 或符号δ表示。
如罗北偏在磁北之东,称为东自差,用E 或+标示;若罗北偏在磁北之西,则为西自差,用W 或-标示。
船上磁罗经的磁针在地磁和船磁的合力影响下,其罗经刻度盘0°所指示的罗北N C 偏离真北N T 的角度称为磁罗经差,简称罗经差,用C ∆表示。
当罗北偏在真北东面时,罗经差偏东,用E 或+标示;罗北偏在真北西面,罗经差偏西,用W 或-标示。
显然,罗经差C ∆是磁差Var 和自差Dev 的代数和,即: C ∆ = Var + Dev以罗北为基准的航向和方位统称为罗向位。
如图所示:罗北线和航向线之间的夹角叫做罗航向,代号CC ;罗北线和物标方位线之间的夹角叫做罗方位,代号CB 。