十年高考理科数学真题专题一集合与常用逻辑用语二常用逻辑用语及答案
历年高考集合与常用逻辑用语(含答案解析)(理科)
(2013山东, 2,5分) 已知集合A={0,1, 2}, 则集合B={x-y|x∈A, y∈A}中元素的个数是()A. 1B. 3C. 5D. 9(2014课标Ⅰ, 1,5分) 已知集合A={x|x2-2x-3≥0}, B={x|-2≤x< 2}, 则A∩B=()A. [-2, -1]B. [-1,2)C. [-1,1]D. [1,2)(2012江西, 1,5分) 若集合A={-1,1}, B={0,2}, 则集合{z|z=x+y, x∈A, y∈B}中的元素的个数为()A. 5B. 4C. 3D. 2(2014课标Ⅱ, 1,5分) 设集合M={0,1, 2}, N={x|x2-3x+2≤0}, 则M∩N=() A. {1} B. {2} C. {0,1} D. {1,2}(2011广东, 2,5分) 已知集合A={(x, y) |x, y为实数, 且x2+y2=1}, B={(x, y) |x, y 为实数, 且y=x}, 则A∩B的元素个数为()A. 0B. 1C. 2D. 3(2014北京, 1,5分) 已知集合A={x|x2-2x=0}, B={0,1, 2}, 则A∩B=()A. {0}B. {0,1}C. {0,2}D. {0,1, 2}(2011福建, 1,5分) i是虚数单位, 若集合S={-1,0, 1}, 则()A. i∈SB. i2∈SC. i3∈SD. ∈S(2014山东, 2,5分) 设集合A={x||x-1|< 2}, B={y|y=2x, x∈[0,2]}, 则A∩B=()A. [0,2]B. (1,3)C. [1,3)D. (1,4)(2011北京, 1,5分) 已知集合P={x|x2≤1}, M={a}. 若P∪M=P, 则a的取值范围是()A. (-∞, -1]B. [1, +∞)C. [-1,1]D. (-∞, -1]∪[1, +∞)(2014辽宁, 1,5分) 已知全集U=R, A={x|x≤0}, B={x|x≥1}, 则集合∁U(A∪B)=()A. {x|x≥0}B. {x|x≤1}C. {x|0≤x≤1}D. {x|0< x< 1}(2011辽宁, 2,5分) 已知M, N为集合I的非空真子集, 且M, N不相等, 若N∩∁I M=⌀, 则M∪N=()A. MB. NC. ID. ⌀(2014浙江, 1,5分) 设全集U={x∈N|x≥2}, 集合A={x∈N|x2≥5}, 则∁U A=() A. ⌀ B. {2} C. {5} D. {2,5}(2013江苏, 4,5分) 集合{-1,0, 1}共有个子集.(2014广东, 1,5分) 已知集合M={-1,0, 1}, N={0,1, 2}, 则M∪N=()A. {0,1}B. {-1,0, 2}C. {-1,0, 1,2}D. {-1,0, 1}(2014四川, 1,5分) 已知集合A={x|x2-x-2≤0}, 集合B为整数集, 则A∩B=()A. {-1,0, 1,2}B. {-2, -1,0, 1}C. {0,1}D. {-1,0}(2014陕西, 1,5分) 设集合M={x|x≥0, x∈R}, N={x|x2< 1, x∈R}, 则M∩N=() A. [0,1] B. [0,1) C. (0,1] D. (0,1)(2014大纲全国, 2,5分) 设集合M={x|x2-3x-4< 0}, N={x|0≤x≤5}, 则M∩N=()A. (0,4]B. [0,4)C. [-1,0)D. (-1,0](2013广东, 1,5分) 设集合M={x|x2+2x=0, x∈R}, N={x|x2-2x=0, x∈R}, 则M∪N=()A. {0}B. {0,2}C. {-2,0}D. {-2,0, 2}(2013浙江, 2,5分) 设集合S={x|x> -2}, T={x|x2+3x-4≤0}, 则(∁R S) ∪T=() A. (-2,1] B. (-∞, -4] C. (-∞, 1] D. [1, +∞)(2013辽宁, 2,5分) 已知集合A={x|0< log4x< 1}, B={x|x≤2}, 则A∩B=() A. (0,1) B. (0,2] C. (1,2) D. (1,2](2013北京, 1,5分) 已知集合A={-1,0, 1}, B={x|-1≤x< 1}, 则A∩B=() A. {0} B. {-1,0} C. {0,1} D. {-1,0, 1}(2013课标全国Ⅱ, 1,5分) 已知集合M={x|(x-1) 2< 4, x∈R}, N={-1,0, 1,2, 3}, 则M∩N=()A. {0,1, 2}B. {-1,0, 1,2}C. {-1,0, 2,3}D. {0,1, 2,3}(2013重庆, 1,5分) 已知全集U={1,2, 3,4}, 集合A={1,2}, B={2,3}, 则∁U(A∪B) =()A. {1,3, 4}B. {3,4}C. {3}D. {4}(2012山东, 2,5分) 已知全集U={0,1, 2,3, 4}, 集合A={1,2, 3}, B={2,4}, 则(∁U A) ∪B为()A. {1,2, 4}B. {2,3, 4}C. {0,2, 4}D. {0,2, 3,4}(2012浙江, 1,5分) 设集合A={x|1< x< 4}, 集合B={x|x2-2x-3≤0}, 则A∩(∁R B) =()A. (1,4)B. (3,4)C. (1,3)D. (1,2) ∪(3,4)(2012北京, 1,5分) 已知集合A={x∈R|3x+2> 0}, B={x∈R|(x+1) (x-3) > 0}, 则A∩B=()A. (-∞, -1)B.C.D. (3, +∞)(2011山东, 1,5分) 设集合M={x|x2+x-6< 0}, N={x|1≤x≤3}, 则M∩N=() A. [1,2) B. [1,2] C. (2,3] D. [2,3](2014江苏, 1,5分) 已知集合A={-2, -1,3, 4}, B={-1,2, 3}, 则A∩B=. (2014重庆, 11,5分) 设全集U={n∈N|1≤n≤10}, A={1,2, 3,5, 8}, B={1,3, 5,7, 9}, 则(∁U A) ∩B=.(2011天津, 13,5分) 已知集合A={x∈R||x+3|+|x-4|≤9},B=, 则集合A∩B=.答案和解析[答案] C[解析]①当x=0时, y=0,1, 2, 此时x-y的值分别为0, -1, -2;②当x=1时, y=0,1, 2, 此时x-y的值分别为1,0, -1;③当x=2时, y=0,1, 2, 此时x-y的值分别为2,1, 0.综上可知, x-y的可能取值为-2, -1,0, 1,2, 共5个, 故选C.[答案] A[解析]由不等式x2-2x-3≥0解得x≥3或x≤-1, 因此集合A={x|x≤-1或x≥3}, 又集合B={x|-2≤x< 2}, 所以A∩B={x|-2≤x≤-1}, 故选A.[答案] C[解析]集合{z|z=x+y, x∈A, y∈B}={-1,1, 3}, 故选C.[答案] D[解析]由已知得N={x|1≤x≤2}, ∵M={0,1, 2}, ∴M∩N={1,2}, 故选D.[答案] C[解析]解法一: A为圆心在原点的单位圆, B为过原点的直线, 故有2个交点, 故选C.解法二: 由可得或故选C.[答案] C[解析]A={0,2}, B={0,1, 2}, ∴A∩B={0,2}. 故选C.[答案] B[解析]i2=-1, -1∈S, 故选B.精选文档[答案] C[解析]A={x||x-1|< 2}={x|-1< x< 3}, B={y|y=2x, x∈[0,2]}={y|1≤y≤4}, ∴A∩B={x|-1< x<3}∩{y|1≤y≤4}={x|1≤x< 3}.[答案] C[解析]由P∪M=P, 有M⊆P, ∴a2≤1, ∴-1≤a≤1, 故选C.[答案] D[解析]A∪B={x|x≥1或x≤0}, 因此∁U(A∪B) ={x|0< x< 1}. 故选D.[答案] A[解析]∵N∩∁I M=⌀, ∴N⊆M. 又M≠N, ∴N⫋M, ∴M∪N=M. 故选A.[答案] B[解析]∵A={x∈N|x≥}={x∈N|x≥3},∴∁U A={x∈N|2≤x< 3}={2}, 故选B.[答案]8[解析]集合{-1,0, 1}的子集有⌀, {-1}, {0}, {1}, {-1,0}, {-1,1}, {0,1}, {-1,0, 1}, 共8个.[答案] C[解析]由集合的并集运算可得, M∪N={-1,0, 1,2}, 故选C.[答案] A[解析]由x2-x-2≤0得-1≤x≤2, 故集合A中的整数为-1,0, 1,2. 所以A∩B={-1,0, 1,2}.[答案] B[解析]∵N=(-1,1), ∴M∩N=[0,1), 故选B.[答案] B[解析]M={x|x2-3x-4< 0}={x|-1< x< 4}, 则M∩N={x|0≤x< 4}. 故选B.[答案] D[解析]化简两个集合, 得M={-2,0}, N={0,2}, 则M∪N={-2,0, 2}, 故选D.[答案] C[解析]∁R S={x|x≤-2}, 又T={x|-4≤x≤1}, 故(∁R S) ∪T={x|x≤1}, 选C.[答案] D[解析]A={x|0< log4x< 1}={x|log41< log4x< log44}={x|1< x< 4}, A∩B=(1,2], 故选D.[答案] B[解析]∵A={-1,0, 1}, B={x|-1≤x< 1}, ∴A∩B={-1,0}, 故选B.[答案] A[解析]化简得M={x|-1< x< 3}, 所以M∩N={0,1, 2}, 故选A.[答案] D[解析]A∪B={1,2, 3}, ∁U(A∪B) ={4}. 故选D.[答案] C[解析]由题意知∁U A={0,4}, 又B={2,4},∴(∁U A) ∪B={0,2, 4}, 故选C.[答案] B[解析]B={x|-1≤x≤3}, A∩(∁R B) ={x|3< x< 4}, 故选B.[答案] D[解析]∵A=x x> -, B={x|x< -1或x> 3}, ∴A∩B={x|x> 3}, 故选D.[答案] A[解析]∵M={x|-3< x< 2}, N={x|1≤x≤3}, ∴M∩N={x|1≤x< 2}.精选文档[答案]{-1,3}[解析]由集合的交集定义知A∩B={-1,3}.[答案]{7,9}[解析]∵U={n∈N|1≤n≤10}, A={1,2, 3,5, 8}, ∴∁U A={4,6, 7,9, 10}, 又∵B={1,3, 5,7, 9}, ∴(∁U A) ∩B={7,9}. [答案]{x|-2≤x≤5}[解析]由|x+3|+|x-4|≤9得或或∴A={x|-4≤x≤5}. 又当t> 0时, x=4t+-6≥2-6=-2, 当且仅当t=时取等号, ∴B={x|x≥-2}, 故A∩B={x|-2≤x≤5}.。
十年高考真题汇编(北京卷,含解析)集合与逻辑用语
十年高考真题汇编(2011-2020)(北京卷)专题01集合与常用逻辑本专题考查的知识点为:集合的表示方法,集合的运算,历年考题主要以选择填空题型出现,重点考查的知识点为:集合的混合运算,预测明年本考点题目会比较稳定,备考方向以集合的运算为重点较佳.1.【2020年北京卷01】已知集合A={−1,0,1,2},B={x|0<x<3},则A∩B=().A.{−1,0,1}B.{0,1}C.{−1,1,2}D.{1,2}2.【2020年北京卷09】已知α,β∈R,则“存在k∈Z使得α=kπ+(−1)kβ”是“sinα=sinβ”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.【2019年北京理科06】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2﹣m1=52lg E1E2,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10﹣10.14.【2018年北京理科01】已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2}D.{﹣1,0,1,2}5.【2018年北京理科08】设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤32时,(2,1)∉A6.【2017年北京理科01】若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3}7.【2016年北京理科01】已知集合A={x||x|<2},集合B={﹣1,0,1,2,3},则A∩B=()A.{0,1}B.{0,1,2}C.{﹣1,0,1}D.{﹣1,0,1,2}8.【2016年北京理科08】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多9.【2014年北京理科01】已知集合A ={x |x 2﹣2x =0},B ={0,1,2},则A ∩B =( ) A .{0} B .{0,1}C .{0,2}D .{0,1,2} 10.【2014年北京理科08】学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有( ) A .2人 B .3人 C .4人 D .5人11.【2013年北京理科01】已知集合A ={﹣1,0,1},B ={x |﹣1≤x <1},则A ∩B =( ) A .{0} B .{﹣1,0} C .{0,1}D .{﹣1,0,1}12.【2012年北京理科01】已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x ﹣3)>0},则A ∩B =( )A .(﹣∞,﹣1)B .(﹣1,−23) C .(−23,3) D .(3,+∞)13.【2011年北京理科01】已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A .(﹣∞,﹣1] B .[1,+∞)C .[﹣1,1]D .(﹣∞,﹣1]∪[1,+∞)14.【2018年北京理科20】设n 为正整数,集合A ={α|α=(t 1,t 2,…t n ),t k ∈{0,1},k =1,2,…,n },对于集合A 中的任意元素α=(x 1,x 2,…,x n )和β=(y 1,y 2,…y n ),记 M (α,β)=12[(x 1+y 1﹣|x 1﹣y 1|)+(x 2+y 2﹣|x 2﹣y 2|)+…(x n +y n ﹣|x n ﹣y n |)](Ⅰ)当n =3时,若α=(1,1,0),β=(0,1,1),求M (α,α)和M (α,β)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素α,β,当α,β相同时,M (α,β)是奇数;当α,β不同时,M (α,β)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素α,β,M (α,β)=0,写出一个集合B ,使其元素个数最多,并说明理由.15.【2012年北京理科20】设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记r i(A)为A的第i行各数之和(1≤i≤m),∁j(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.(1)如表A,求K(A)的值;11﹣0.80.1﹣0.3﹣1(2)设数表A∈S(2,3)形如11ca b﹣1求K(A)的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.1.【北京五中2020届高三(4月份)高考数学模拟】已知集合A={1,2,3,4,5},且A∩B=A,则集合B可以是()A.{x|2x>1}B.{x|x2〉1}C.{x|log2x〉1}D.{1,2,3}2.【北京市昌平区新学道临川学校2019-2020学年高三上学期期末】设集合M={x|x2−x≥0},N={x|x <2},则M∩N=()A.{x|x≤0}B.{x|1≤x<2}C.{x|x≤0或1≤x<2}D.{x|0≤x≤1}3.【2020届北京市西城区第四中学高三上学期期中】设命题P:∃n∈N,n2>2n,则¬P为()A.∀n∈N,n2>2n B.∃ n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n4.【北京市人大附中2020届高三(6月份)高考数学考前热身】a⃗,b⃗⃗为非零向量,“a⃗⃗|b⃗⃗|=b⃗⃗|a⃗⃗|”为“a⃗,b⃗⃗共线”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.即不充分也不必要条件5.【北京市通州区2020届高考一模】已知集合A={x|0<x≤2},B={x|1<x<3},则A∩B=()A.{x|0<x<3}B.{x|2<x<3}C.{x|0<x≤1}D.{x|1<x≤2}6.【2020届北京市顺义区高三二模】已知集合A={x|−3<x<2},B={−3,−2,0},那么A∩B=()A.{−2}B.{0}C.{−2,0}D.{−2,0,2}7.【北京市丰台区2020届高三下学期综合练习(二)(二模)】集合A={x∈Z|−2<x<2}的子集个数为()A.4B.6C.7D.88.【2019届北京市中国人民大学附属中学高三下学期第三次调研】已知集合A={(x,y)|x+y≤2,x,y∈N },则A中元素的个数为()A.1B.5C.6D.无数个9.【北京市人大附中2018届高三高考数学零模】设全集U={1,3,5,7},集合M={1,a},∁U M={5,7},则实数a的值为()A.1B.3C.5D.710.【2020届北京市东城区高三高考第一次模拟】已知集合A={x|x(x+1)≤0},集合B={x|−1<x< 1},则A∪B=()A.{x|-1≤x≤1}B.{x|-1<x≤0}C.{x|-1≤x<1}D.{x|0<x<1}11.【2020届北京市东城区高三一模】已知集合A={x|x−1>0},B={−1,0,1,2},那么A∩B=() A.{−1,0}B.{0,1}C.{−1,0,1,2}D.{2}12.【北京市第八十中学2019届高三10月月考】已知集合A={x|−1<x<2},B={x|0<x<3},则A∪B=()A.(−1,3)B.(−1,0)C.(0,2)D.(2,3)13.【2020届北京市中国人民大学附属中学高三下学期数学统练】已知集合M={x|−4<x<2},N={x |x2−x−6<0},则M∩N=A.{x|−4<x<3}B.{x|−4<x<−2}C.{x|−2<x<2}D.{x|2<x<3}14.设集合A={0,1,2},B={x|x2−3x+2≤0},则A∩B=()A.{1}B.{2}C.{0,1}D.{1,2}15.【2020届北京市西城区高三诊断性考试(二模)】设集合A={x||x|<3},B={x|x=2k,k∈Z},则A ∩B=()A.{0,2}B.{−2,2}C.{−2,0,2}D.{−2,−1,0,1,2}16.【北京师范大学附属中学2019届高三高考模拟(三)】已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3}D.{4}17.【2020届北京市西城区高三第一次模拟】设集合A={x|x<3},B={x|x〈0或x〉2},则A∩B=()A.(−∞,0)B.(2,3)C.(−∞,0)∪(2,3)D.(−∞,3)18.【北京市房山区2019年高考第一次模拟测试】设a为实数,则a>1a2是a2>1a的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件19.已知m∈R,“函数y=2x+m−1有零点”是“函数y=log m x在(0,+∞)上是减函数”的().A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件20.若全集U={1,2,3,4},集合Μ={1,2},Ν={2,3},则C U(M∪N)=()A.{1,2,3}B.{2}C.{1,3,4}D.{4}21.【北京市第二十二中学2019-2020学年第一学期期中】设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是A.1B.3C.4D.822.【北京市2020届高考数学预测卷】设集合A={−1,0,1,2,3},B={x|x2−2x>0},则A∩(∁R B)=()A.{−1,3}B.{0,1,2}C.{1,2,3}D.{0,1,2,3}23.【北京市东城区2020届高三第二学期二模】已知全集U={0,1,2,3,4,5},集合A={0,1,2},B ={5},那么(∁U A)∪B=()A.{0,1,2}B.{3,4,5}C.{1,4,5}D.{0,1,2,5}24.【北京市北京大学附属中学2019-2020学年高三上学期月考(12月)】已知集合A={x|x<1},B={x|3x<1},则A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅25.【2020届北京市人民大学附属中学高考模拟(4月份)】集合A={x|x>2,x∈R},B={x|x2−2x−3 >0},则A∩B=()A.(3,+∞)B.(−∞,−1)∪(3,+∞)C.(2,+∞)D.(2,3) 26.【2020届北京市第十一中学高三一模】已知集合M={x|x2−3x−10<0},N={x|y=√9−x2},且M 、N 都是全集R (R 为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为()A .{x|3<x ≤5}B .{x|x <−3或x >5}C .{x|−3≤x ≤−2}D .{x|−3≤x ≤5}27.【北京市人大附中2020届高三(6月份)高考数学考前热身】已知集合A ={x ∈N|x −2≤0},B ={x ∈Z||x|<2},则A ∪B =() A .{1}B .{−1,0,1,2}C .{0,1}D .(−2,2)28.【2020届北京市高考适应性测试】已知集合A ={x||x|<2},B ={−1,0,1,2,3},则A ∩B = A .{0,1} B .{0,1,2} C .{−1,0,1}D .{−1,0,1,2}29.【北京一零一中学2019-2020学年度第二学期高三数学统练(二)】已知全集U =R ,M ={x|x <−1},N ={x|x(x +2)<0},则图中阴影部分表示的集合是()A .{x|−1≤x <0}B .{x|−1<x <0}C .{x|−2<x <−1}D .{x|x <−1}30.【北京五中2020届高三(4月份)高考数学模拟】已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (12)=0,则“不等式f (log 4x )>0的解集”是“{x |0<x <12}”的() A .充分不必要条件 B .充分且必要条件 C .必要不充分条件 D .既不充分也不必要条件1.【2020年北京卷01】已知集合A={−1,0,1,2},B={x|0<x<3},则A∩B=().A.{−1,0,1}B.{0,1}C.{−1,1,2}D.{1,2}【答案】D【解析】A∩B={−1,0,1,2}∩(0,3)={1,2},故选:D.2.【2020年北京卷09】已知α,β∈R,则“存在k∈Z使得α=kπ+(−1)kβ”是“sinα=sinβ”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】(1)当存在k∈Z使得α=kπ+(−1)kβ时,若k为偶数,则sinα=sin(kπ+β)=sinβ;若k为奇数,则sinα=sin(kπ−β)=sin[(k−1)π+π−β]=sin(π−β)=sinβ;(2)当sinα=sinβ时,α=β+2mπ或α+β=π+2mπ,m∈Z,即α=kπ+(−1)kβ(k=2m)或α=kπ+ (−1)kβ(k=2m+1),亦即存在k∈Z使得α=kπ+(−1)kβ.所以,“存在k∈Z使得α=kπ+(−1)kβ”是“sinα=sinβ”的充要条件.故选:C.3.【2019年北京理科06】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2﹣m1=52lg E1E2,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10﹣10.1【答案】解:设太阳的星等是m1=﹣26.7,天狼星的星等是m2=﹣1.45,由题意可得:−1.45−(−26.7)=52lg E1E2,∴lg E1E2=50.55=10.1,则E1E2=1010.1.故选:A.4.【2018年北京理科01】已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1}B.{﹣1,0,1}C.{﹣2,0,1,2}D.{﹣1,0,1,2}【答案】解:A={x||x|<2}={x|﹣2<x<2},B={﹣2,0,1,2},则A∩B={0,1},故选:A.5.【2018年北京理科08】设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤3时,(2,1)∉A2【答案】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y >4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;当a=1,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,x+y>4,x﹣y≤2},显然(2,1)∉A,所以当且仅当a<0错误,所以C不正确;故选:D.6.【2017年北京理科01】若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3}【答案】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},∴A∩B={x|﹣2<x<﹣1}故选:A.7.【2016年北京理科01】已知集合A={x||x|<2},集合B={﹣1,0,1,2,3},则A∩B=()A.{0,1}B.{0,1,2}C.{﹣1,0,1}D.{﹣1,0,1,2}【答案】解:∵集合A={x||x|<2}={x|﹣2<x<2},B={﹣1,0,1,2,3},∴A∩B={﹣1,0,1}.故选:C.8.【2016年北京理科08】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【答案】解:取两个球共有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个.设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,黑球y个,x+y=a.则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球.故选:B.9.【2014年北京理科01】已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【答案】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.10.【2014年北京理科08】学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【答案】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个. 故选:B .11.【2013年北京理科01】已知集合A ={﹣1,0,1},B ={x |﹣1≤x <1},则A ∩B =( ) A .{0} B .{﹣1,0} C .{0,1}D .{﹣1,0,1}【答案】解:∵A ={﹣1,0,1},B ={x |﹣1≤x <1}, ∴A ∩B ={﹣1,0}. 故选:B .12.【2012年北京理科01】已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x ﹣3)>0},则A ∩B =( ) A .(﹣∞,﹣1) B .(﹣1,−23) C .(−23,3) D .(3,+∞) 【答案】解:因为B ={x ∈R |(x +1)(x ﹣3)>0}={x |x <﹣1或x >3}, 又集合A ={x ∈R |3x +2>0}={x |x >−23},所以A ∩B ={x |x >−23}∩{x |x <﹣1或x >3}={x |x >3},故选:D .13.【2011年北京理科01】已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A .(﹣∞,﹣1] B .[1,+∞)C .[﹣1,1]D .(﹣∞,﹣1]∪[1,+∞) 【答案】解:∵P ={x |x 2≤1}, ∴P ={x |﹣1≤x ≤1} ∵P ∪M =P ∴M ⊆P ∴a ∈P ﹣1≤a ≤1 故选:C .14.【2018年北京理科20】设n 为正整数,集合A ={α|α=(t 1,t 2,…t n ),t k ∈{0,1},k =1,2,…,n },对于集合A 中的任意元素α=(x 1,x 2,…,x n )和β=(y 1,y 2,…y n ),记 M (α,β)=12[(x 1+y 1﹣|x 1﹣y 1|)+(x 2+y 2﹣|x 2﹣y 2|)+…(x n +y n ﹣|x n ﹣y n |)](Ⅰ)当n =3时,若α=(1,1,0),β=(0,1,1),求M (α,α)和M (α,β)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素α,β,当α,β相同时,M (α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0,写出一个集合B,使其元素个数最多,并说明理由.【答案】解:(I)M(α,α)=1+1+0=2,M(α,β)=0+1+0=1.(II)考虑数对(x k,y k)只有四种情况:(0,0)、(0,1)、(1,0)、(1,1),相应的x k+y k−|x k−y k|分别为0、20、0、1,所以B中的每个元素应有奇数个1,所以B中的元素只可能为(上下对应的两个元素称之为互补元素):(1,0,0,0)、(0,1,0,0)、(0,0,1,0)、(0,0,0,1),(0,1,1,1)、(1,0,1,1)、(1,1,0,1)、(1,1,1,0),对于任意两个只有1个1的元素α,β都满足M(α,β)是偶数,所以四元集合B={(1,0,0,0)、(0,1,0,0)、(0,0,1,0)、(0,0,0,1)}满足题意,假设B中元素个数大于等于4,就至少有一对互补元素,除了这对互补元素之外还有至少1个含有3个1的元素α,则互补元素中含有1个1的元素β与之满足M(α,β)=1不合题意,故B中元素个数的最大值为4.(Ⅲ)B={(0,0,0,…0),(1,0,0…,0),(0,1,0,…0),(0,0,1…0)…,(0,0,0,…,1)},此时B中有n+1个元素,下证其为最大.对于任意两个不同的元素α,β,满足M(α,β)=0,则α,β中相同位置上的数字不能同时为1,假设存在B有多于n+1个元素,由于α=(0,0,0,…,0)与任意元素β都有M(α,β)=0,所以除(0,0,0,…,0)外至少有n+1个元素含有1,根据元素的互异性,至少存在一对α,β满足x i=y i=l,此时M(α,β)≥1不满足题意,故B中最多有n+1个元素.15.【2012年北京理科20】设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合.对于A∈S(m,n),记r i(A)为A的第i行各数之和(1≤i≤m),∁j(A)为A的第j列各数之和(1≤j≤n);记K(A)为|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.(1)如表A,求K(A)的值;11﹣0.80.1﹣0.3﹣1(2)设数表A∈S(2,3)形如11ca b﹣1求K(A)的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值.【答案】解:(1)由题意可知r1(A)=1.2,r2(A)=﹣1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=﹣1.8∴K(A)=0.7(2)先用反证法证明k(A)≤1:若k(A)>1则|c1(A)|=|a+1|=a+1>1,∴a>0同理可知b>0,∴a+b>0由题目所有数和为0即a+b+c=﹣1∴c=﹣1﹣a﹣b<﹣1与题目条件矛盾∴k(A)≤1.易知当a=b=0时,k(A)=1存在∴k(A)的最大值为1.(3)k(A)的最大值为2t+1t+2首先构造满足k(A)=2t+1的A={a i,j}(i=1,2,j=1,2,…,2t+1):t+2a1,1=a1,2=…=a1,t=1,a1,t+1=a1,t+2=…=a1,2t+1=−t−1,t+2a2,1=a2,2=…=a2,t=t2+t+1,t(t+2)a2,t+1=a2,t+2=…=a2,2t+1=﹣1.经计算知,A中每个元素的绝对值都小于1,所有元素之和为0,且|r 1(A )|=|r 2(A )|=2t+1t+2,|c 1(A )|=|c 2(A )|=…=|c t (A )|=1+t 2+t+1t(t+2)>1+t+1t+2>2t+1t+2,|c t +1(A )|=|c t +2(A )|=…=|c 2t +1(A )|=1+t−1t+2=2t+1t+2.下面证明2t+1t+2是最大值.若不然,则存在一个数表A ∈S (2,2t +1),使得k (A )=x >2t+1t+2.由k (A )的定义知A 的每一列两个数之和的绝对值都不小于x ,而两个绝对值不超过1的数的和,其绝对值不超过2,故A 的每一列两个数之和的绝对值都在区间[x ,2]中.由于x >1,故A 的每一列两个数符号均与列和的符号相同,且绝对值均不小于x ﹣1.设A 中有g 列的列和为正,有h 列的列和为负,由对称性不妨设g <h ,则g ≤t ,h ≥t +1.另外,由对称性不妨设A 的第一行行和为正,第二行行和为负.考虑A 的第一行,由前面结论知A 的第一行有不超过t 个正数和不少于t +1个负数,每个正数的绝对值不超过1(即每个正数均不超过1),每个负数的绝对值不小于x ﹣1(即每个负数均不超过1﹣x ).因此|r 1(A )|=r 1(A )≤t •1+(t +1)(1﹣x )=2t +1﹣(t +1)x =x +(2t +1﹣(t +2)x )<x , 故A 的第一行行和的绝对值小于x ,与假设矛盾.因此k (A )的最大值为2t+1t+2.1.【北京五中2020届高三(4月份)高考数学模拟】已知集合A ={1,2,3,4,5},且A ∩B =A ,则集合B 可以是() A .{x|2x >1} B .{x|x 2〉1}C .{x|log 2x〉1}D .{1,2,3}【答案】A 【解析】由A ∩B =A 可知,A ⊆B ,对于A :{x|2x >1=20}={x|x >0}⊇A ,符合题意.对于B :{x|x 2〉1}={x|x <−1或x >1},没有元素1,所以不包含A ; 对于C :{x|log 2x >1=log 22}={x|x >2},不合题意; D 显然不合题意, 本题选择A 选项.2.【北京市昌平区新学道临川学校2019-2020学年高三上学期期末】设集合M ={x|x 2−x ≥0},N ={x|x<2},则M∩N=()A.{x|x≤0}B.{x|1≤x<2}C.{x|x≤0或1≤x<2}D.{x|0≤x≤1}【答案】C【解析】求解二次不等式x2−x≥0可得M={x|x≥1或x≤0},结合交集的定义可得:M∩N={x|x≤0或1≤x<2}.本题选择C选项.3.【2020届北京市西城区第四中学高三上学期期中】设命题P:∃n∈N,n2>2n,则¬P为()A.∀n∈N,n2>2n B.∃ n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n【答案】C【解析】特称命题的否定为全称命题,所以命题的否命题应该为∀n∈N,n2≤2n,即本题的正确选项为C.4.【北京市人大附中2020届高三(6月份)高考数学考前热身】a⃗,b⃗⃗为非零向量,“a⃗⃗|b⃗⃗|=b⃗⃗|a⃗⃗|”为“a⃗,b⃗⃗共线”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.即不充分也不必要条件【答案】B【解析】a⃗⃗|b⃗⃗|,b⃗⃗|a⃗⃗|分别表示与a⃗,b⃗⃗同方向的单位向量,a⃗⃗|b⃗⃗|=b⃗⃗|a⃗⃗|,则有a⃗,b⃗⃗共线,而a⃗,b⃗⃗共线,则a⃗⃗|b⃗⃗|,b⃗⃗|a⃗⃗|是相等向量或相反向量,“a⃗⃗|b⃗⃗|=b⃗⃗|a⃗⃗|”为“a⃗,b⃗⃗共线”的充分不必要条件.故选:B.5.【北京市通州区2020届高考一模】已知集合A={x|0<x≤2},B={x|1<x<3},则A∩B=()A.{x|0<x<3}B.{x|2<x<3}C.{x|0<x≤1}D.{x|1<x≤2}【答案】D∵集合A={x|0<x≤2},B={x|1<x<3},∴A∩B={x|1<x≤2}.故选:D.6.【2020届北京市顺义区高三二模】已知集合A={x|−3<x<2},B={−3,−2,0},那么A∩B=()A.{−2}B.{0}C.{−2,0}D.{−2,0,2}【答案】C【解析】因为集合A={x|−3<x<2},B={−3,−2,0},所以A∩B={−2,0}.故选:C.7.【北京市丰台区2020届高三下学期综合练习(二)(二模)】集合A={x∈Z|−2<x<2}的子集个数为()A.4B.6C.7D.8【答案】D【解析】∵A={x∈Z|−2<x<2}={−1,0,1},∴集合A的子集个数为23=8个,故选:D.8.【2019届北京市中国人民大学附属中学高三下学期第三次调研】已知集合A={(x,y)|x+y≤2,x,y∈N },则A中元素的个数为()A.1B.5C.6D.无数个【答案】C【解析】由题得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C9.【北京市人大附中2018届高三高考数学零模】设全集U={1,3,5,7},集合M={1,a},∁U M={5,7},则实数a的值为()A.1B.3C.5D.7【答案】B∵U={1,3,5,7},∁U M={5,7},∴M={1,3},∴a=3.故选:B.10.【2020届北京市东城区高三高考第一次模拟】已知集合A={x|x(x+1)≤0},集合B={x|−1<x< 1},则A∪B=()A.{x|-1≤x≤1}B.{x|-1<x≤0}C.{x|-1≤x<1}D.{x|0<x<1}【答案】C【解析】解一元二次不等x(x+1)≤0,可得A={x|−1≤x≤0},则A∪B={x|-1≤x<1},故选C。
理科数学2010-2019高考真题十年分类专题一 集合与常用逻辑用语 第一讲集合(A组)答案部分
专题一 集合与常用逻辑用语第一讲 集合(A 组)答案部分2019年1.解析:依题意可得,2426023{|}{|}{} |M x x N x x x x x =-=--=-<<,<<<, 所以2|}2{M N x x =-<<. 故选C .2.解析:由{}2560(,2)(3,)A x x x =-+>=-∞+∞,{}10(,1)A x x =-<=-∞,则(,1)A B =-∞.故选A.3.解析 因为{}1,0,1,2A =-,2{|1}{|11}B x x x x ==-, 所以{}1,0,1A B =-.故选A .2010-2018年一、选择题1.B 【解析】因为2{20}=-->A x x x ,所以2{|20}=--R ≤A x x x{|12}=-≤≤x x ,故选B .2.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}A B =.故选C .3.A 【解析】通解 由223+≤x y 知,≤x y又∈Z x ,∈Z y ,所以{1,0,1}∈-x ,{1,0,1}∈-y ,所以A 中元素的个数为1133C C 9=,故选A .优解 根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆223+=x y 中有9个整点,即为集合A 的元素个数,故选A .4.A 【解析】∵{|0}B x x =<,∴{|0}AB x x =<,选A . 5.C 【解析】∵1B ∈,∴21410m -⨯+=,即3m =,∴{1,3}B =.选C .6.B 【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以A B 中元素的个数为2.选B . 7.D 【解析】由题意得,{|13}A x x =<<,3{|}2B x x =>,则3(,3)2AB =. 选D . 8.C 【解析】由已知可得()(){}120B x x x x =+-<∈Z ,{}12x x x =-<<∈Z ,,∴{}01B =,,∴{}0123A B =,,,,故选C . 9.D 【解析】(,2][3,)S =-∞+∞,所以(0,2][3,)S T =+∞,故选D .10.A 【解析】由于{|21}B x x ,所以{1,0}A B .11.A 【解析】{}|13A x x x =-≤或≥,故A B ⋂=[-2,-1].12.D 【解析】{}|12N x x =≤≤,∴M N ⋂={1,2}.13.B 【解析】∵{}1,2B =-,∴A B ⋂={}214.B 【解析】A=(-∞,0)∪(2,+∞),∴A ∪B=R ,故选B .15.A 【解析】{}1,4,9,16B =,∴{}1,4A B ⋂=16.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =17.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以MN {2,1,0}=--,选C.18.B 【解析】A =(-1,2),故B ⊂≠A ,故选B.19.B 【解析】{1,3}P M N ==,故P 的子集有4个.。
高考理科数学专题一集合与常用逻辑用语第二讲常用逻辑用语答案.pdf
也可能平行,不能推出 ∥ ,反过来若 ∥ , m ì ,则有 m∥ ,则“ m∥ ”是“ ∥ ”
的必要而不充分条件.
19.A【解析】因为 cos2 cos2 sin 2 0 ,所以 sin cos 或 sin
cos ,因为“ sin cos ”
“ cos2 0”,但“ sin cos ” “ cos2 0 ”,所以“ sin cos ”是“ cos2 0”
d 0 .所以“ d 0 ”是“ S4+S6 2 S5 ” 充分必要条件,选 C.
7. A 【解析】由 |
ππ | ,得 0
12 12
,所以 sin 6
1
,反之令
2
0 ,有 sin
1
成立,不满足
2
|
π|
π
,所以“
|
π|
π
”是“
sin
12 12
12 12
1
”的充分而不必要条件.选 A .
2
8.B【解析】 x 0 ,x 1 1,所以 ln( x 1) 0 ,所以 p 为真命题; 若 a b 0 ,则 a2 b2 ,若 b a 0,
所以 | a b | |a b | ,故由 | a | | b |推不出 |a b | | a b |.由 | a b | | a b |,
得 |a
2
b | |a
2
b | ,整理得
a
b
0 ,所以 a
b ,不一定能得出 | a | |b |,
故由 | a b | |a b | 推不出 | a | | b |,故“ |a | | b | ”是“ |a b | |a b |”的既不充分也不必要条件,
a2 b 2 R ,得 b 0 ,所以 z R , p1 正确;
高考数学专题集合与常用逻辑用语
第一章集合与常用逻辑用语第一节集__合1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)集合中元素与集合的关系:元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉.(3)集合的表示法:列举法、描述法、Venn图.2.集合间的基本关系3.集合的基本运算1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2.要注意区分元素与集合的从属关系;以及集合与集合的包含关系.3.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.4.运用数轴图示法易忽视端点是实心还是空心.5.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[试一试]1.(2013·辽宁高考)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2]C.(1,2) D.(1,2]答案:D2.i是虚数单位,若集合S={-i,0,i},则()A.i2∈S B.i2 010∈SC.i2 012∈S D.i2 013∈S解析:选D i2=-1∉S;i2 010=i2=-1∉S,i2 012=i4=1∉S,i2 013=i∈S,故选D项.3.已知集合A={x|y=x2},B={(x,y)|y=x},则A∩B=________.答案:∅1.判断集合关系的方法有三种(1)一一列举观察;(2)集合元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断集合关系;(3)数形结合法:利用数轴或Venn图.2.解决集合的综合运算的方法解决集合的综合运算时,一般先运算括号内的部分.当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算;当集合是用不等式形式表示时,可运用数轴求解.3.数形结合思想数轴和Venn图是进行交、并、补集运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或Venn图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解题.[练一练]1.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆B B.C⊆BC.D⊆C D.A⊆D答案:B2.(2014·安徽省“江南十校”联考)已知集合A ={x |x 2-x ≤0},函数f (x )=2-x (x ∈A )的值域为B ,则(∁R A )∩B =( )A .(1,2]B .[1,2]C .[0,1]D .(1,+∞)解析:选A 由题意知,集合A ={x |0≤x ≤1},∴B ={y |1≤y ≤2},∁R A ={x |x <0或x >1},∴(∁R A )∩B =(1,2].集合的基本概念1.(2013·山东高考)已知集合A ={0,1,2},则集合B ={x -y |x ∈A, y ∈A }中元素的个数是( )A .1B .3C .5D .9解析:选C 逐个列举可得.x =0,y =0,1,2时,x -y =0,-1,-2;x =1,y =0,1,2时,x -y =1,0,-1;x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知集合B 的元素为-2,-1,0,1,2.共5个.2.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2 013=________. 解析:由M =N 知⎩⎪⎨⎪⎧ n =1,log 2n =m 或⎩⎪⎨⎪⎧n =m ,log 2n =1, ∴⎩⎪⎨⎪⎧m =0,n =1或⎩⎪⎨⎪⎧m =2,n =2.答案:-1或03.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 解析:因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.答案:-32[类题通法]1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.集合间的基本关系[典例] (1)(2013·洛阳统考)已知集合A ={x |x -2x ≤0,x ∈N },B ={x |x ≤2,x ∈Z },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .4D .8(2)已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.[解析] (1)由x -2x ≤0得0<x ≤2,因此A ={1,2};由x ≤2得0≤x ≤4,因此B ={0,1,2,3,4},满足条件A ⊆C ⊆B 的集合C 的个数是23=8.(2)由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B =(-∞,a ), 由于A ⊆B ,如图所示,则a >4,即c =4.[答案] (1)D (2)4 [类题通法]1.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析.2.当题目中有条件B ⊆A 时,不要忽略B =∅的情况. [针对训练]1.(2013·福建高考)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A 因为A ={1,a },B ={1,2,3},若a =3,则A ={1,3},所以A ⊆B ;若A ⊆B ,则a =2或a =3,所以A ⊆B ⇒/ a =3,所以“a =3”是“A ⊆B ”的充分而不必要条件.2.已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .则实数m 的取值范围为________.解析:∵B ⊆A ,(1)当B =∅时,m +1≤2m -1,解得m ≥2. (2)当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2, 综上得m ≥-1. 答案:[-1,+∞)集合的基本运算[典例] 均为全集U ={1,2,3,4}∁U (A ∪B )={4},B ={1,2},则A ∩∁U B =( )A .{3}B .{4}C .{3,4}D .∅(2)(2014·武汉市武昌区联考)已知全集U =R ,集合A ={x |lg(x +1)≤0},B ={x |3x ≤1},则∁U (A ∩B )=( )A .(-∞,0)∪(0,+∞)B .(0,+∞)C .(-∞,-1]∪(0,+∞)D .(-1,+∞)[解析] (1)∵U ={1,2,3,4},∁U (A ∪B )={4},∴A ∪B ={1,2,3}.又∵B ={1,2},∴{3}⊆A ⊆{1,2,3}. 又∁U B ={3,4},∴A ∩∁U B ={3}.(2)lg(x +1)≤0⇒0<x +1≤1⇒-1<x ≤0,3x ≤1⇒x ≤0,则A ∩B =(-1,0],∁U (A ∩B )=(-∞,-1]∪(0,+∞).[答案] (1)A (2)C [类题通法]集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. [针对训练]设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)·x +m =0}.若(∁U A )∩B =∅,则m 的值是________.解析:A ={-2,-1},由(∁U A )∩B =∅,得B ⊆A ,∵方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0,∴B ≠∅. ∴B ={-1}或B ={-2}或B ={-1,-2}. ①若B ={-1},则m =1;②若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)·(-2)=4,这两式不能同时成立,∴B ≠{-2};③若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)·(-2)=2,由这两式得m =2.经检验知m =1和m =2符合条件. ∴m =1或2. 答案:1或2集合中的创新问题角度一 创新集合新定义创新集合新定义问题是通过重新定义相应的集合,对集合的知识加以深入地创新,结合原有集合的相关知识和相应数学知识,来解决新定义的集合创新问题.1.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A .1B .3C .7D .31解析:选B 具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.角度二 创新集合新运算创新集合新运算问题是按照一定的数学规则和要求给出新的集合运算规则,并按照此集合运算规则和要求结合相关知识进行逻辑推理和计算等,从而达到解决问题的目的.2.如图所示的V enn 图中,A ,B 是非空集合,定义集合A B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}解析:选D 因为A ={x |0≤x ≤2},B ={y |y >1},A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2},所以A B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2},故选D.角度三 创新集合新性质创新集合新性质问题是利用创新集合中给定的定义与性质来处理问题,通过创新性质,结合相应的数学知识来解决有关的集合性质的问题.3.对于复数a ,b ,c ,d ,若集合S ={a ,b ,c ,d }具有性质“对任意x ,y ∈S ,必有xy ∈S ”,则当⎩⎪⎨⎪⎧a =1,b 2=1,c 2=b时,b +c +d 等于( )A .1B .-1C .0D .i解析:选B ∵S ={a ,b ,c ,d },由集合中元素的互异性可知当a =1时,b =-1,c 2=-1,∴c =±i ,由“对任意x ,y ∈S ,必有xy ∈S ”知±i ∈S ,∴c =i ,d =-i 或c =-i ,d =i ,∴b +c +d =(-1)+0=-1. [类题通法]解决新定义问题应注意以下几点(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质; (2)按新定义的要求,“照章办事”逐步分析、验证、运算,使问题得以解决; (3)对于选择题,可以结合选项通过验证,排除、对比、特值等方法解决.第二节命题及其关系、充分条件与必要条件1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充要条件.1.易混否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.注意区别A是B的充分不必要条件(A⇒B且B ⇒/A);与A的充分不必要条件是B(B ⇒A且A ⇒/B)两者的不同.[试一试]1.(2013·福建高考)设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A“x=2且y=-1”满足方程x+y-1=0,故“x=2且y=-1”可推出“点P在直线l:x+y-1=0上”;但方程x+y-1=0有无数多个解,故“点P在直线l:x+y-1=0上”不能推出“x=2且y=-1”,故“x=2且y=-1”是“点P在直线l:x+y-1=0上”的充分不必要条件.2.“在△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为:____________________.解析:原命题的条件:在△ABC中,∠C=90°,结论:∠A、∠B都是锐角.否命题是否定条件和结论.即“在△ABC中,若∠C≠90°,则∠A、∠B不都是锐角”.答案:“在△ABC中,若∠C≠90°,则∠A、∠B不都是锐角”1.判断充分条件和必要条件的方法(1)命题判断法:设“若p,则q”为原命题,那么:①原命题为真,逆命题为假时,p是q的充分不必要条件;②原命题为假,逆命题为真时,p是q的必要不充分条件;③原命题与逆命题都为真时,p是q的充要条件;④原命题与逆命题都为假时,p是q的既不充分也不必要条件.(2)集合判断法:从集合的观点看,建立命题p,q相应的集合:p:A={x|p(x)成立},q:B={x|q(x)成立},那么:①若A⊆B,则p是q的充分条件;若A B时,则p是q的充分不必要条件;②若B⊆A,则p是q的必要条件;若B A时,则p是q的必要不充分条件;③若A⊆B且B⊆A,即A=B时,则p是q的充要条件.(3)等价转化法:p是q的什么条件等价于綈q是綈p的什么条件.2.转化与化归思想由于互为逆否命题的两个命题具有相同的真假性,因而当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.[练一练]1.(2014·济南模拟)设x∈R,则“x2-3x>0”是“x>4”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B由x2-3x>0得x>3或x<0,此时得不出x>4,但当x>4时,不等式x2-3x>0恒成立,所以正确选项为B.2.与命题“若a ∈M ,则b ∉M ”等价的命题是________. 解析:原命题与其逆否命题为等价命题. 答案:若b ∈M ,则a ∉M命题及其相互关系1.命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4解析:选C 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.2.以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log 2a >0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数”是真命题; ②命题“若a =0,则ab =0”的否命题是“若a ≠0,则ab ≠0”; ③命题“若x ,y 都是偶数,则x +y 也是偶数”的逆命题为真命题; ④命题“若a ∈M ,则b ∉M ”与命题“若b ∈M ,则a ∉M ”等价.解析:对于①,若log 2a >0=log 21,则a >1,所以函数f (x )=log a x 在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若x +y 是偶数,则x 、y 都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a ∈M ,则b ∉M ”与命题“若b ∈M ,则a ∉M ”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.答案:②④ [类题通法]在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可.对涉及数学概念的命题的判定要从概念本身入手.充分必要条件的判定[典例] p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C.充要条件D.既不充分也不必要条件(2)(2013·北京高考)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[解析](1)由q⇒綈p且綈p⇒/ q可得p⇒綈q且綈q ⇒/p,所以p是綈q的充分而不必要条件.(2)由sin φ=0可得φ=kπ(k∈Z),此为曲线y=sin(2x+φ)过坐标原点的充要条件,故“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.[答案](1)A(2)A[类题通法]充要条件的判断,重在“从定义出发”,利用命题“若p,则q”及其逆命题的真假进行区分,在具体解题中,要注意分清“谁是条件”“谁是结论”,如“A是B的什么条件”中,A是条件,B是结论,而“A的什么条件是B”中,A是结论,B是条件.有时还可以通过其逆否命题的真假加以区分.[针对训练]下列各题中,p是q的什么条件?(1)在△ABC中,p:A=B,q:sin A=sin B;(2)p:|x|=x,q:x2+x≥0.解:(1)若A=B,则sin A=sin B,即p⇒q.又若sin A=sin B,则2R sin A=2R sin B,即a=b.故A=B,即q⇒p.所以p是q的充要条件.(2)p:{x||x|=x}={x|x≥0}=A,q:{x|x2+x≥0}={x|x≥0,或x≤-1}=B,∵A B,∴p是q的充分不必要条件.充分必要条件的应用[典例]x≤1+m}.(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的范围;(2)是否存在实数m,使x∈P是x∈S的必要条件,若存在,求出m的范围.[解](1)由x2-8x-20≤0得-2≤x≤10,∴P={x|-2≤x≤10},∵x ∈P 是x ∈S 的充要条件,∴P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.(2)由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,∴m ≤3. 综上,可知m ≤3时,x ∈P 是x ∈S 的必要条件.解:由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/P . ∴[-2,10] [1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10. ∴m ≥9,即m 的取值范围是[9,+∞).[类题通法]利用充分条件、必要条件可以求解参数的值或取值范围,其依据是充分、必要条件的定义,其思维方式是:(1)若p 是q 的充分不必要条件,则p ⇒q 且q ⇒ / p ; (2)若p 是q 的必要不充分条件,则p ⇒/ q ,且q ⇒p ; (3)若p 是q 的充要条件,则p ⇔q . [针对训练](2013·浙江名校联考)一次函数y =-m n x +1n 的图像同时经过第一、三、四象限的必要不充分条件是( )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0解析:选B 因为y =-m n x +1n 经过第一、三、四象限,故-m n >0,1n <0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.第三节简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词命题中的“且”、“或”、“非”叫做逻辑联结词.2.全称量词和存在量词(1)全称量词“所有的”“任意一个”,用符号“∀”表示.(2)存在量词“存在一个”“至少有一个”,用符号“∃”表示.(3)全称命题含有全称量词的命题,叫做全称命题;“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x).(4)特称命题含有存在量词的命题,叫做特称命题;“存在M中的一个x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0).3.含有一个量词的命题的否定1.对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定.2.p或q的否定易误写成“綈p或綈q”;p且q的否定易误写成“綈p且綈q”.[试一试]1.(2013·四川高考)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x ∈B,则()A .綈p :∃x ∈A,2x ∈B B .綈p :∃x ∉A,2x ∈BC .綈p :∃x ∈A,2x ∉BD .綈p :∀x ∉A,2x ∉B解析:选C 由命题的否定易知选C ,注意要把全称量词改为存在量词. 2.若ab =0,则a =0或b =0,其否定为________. 答案:若ab ≠0,则a ≠0且b ≠01.含逻辑联结词命题真假判断: (1)p ∧q 中一假即假. (2)p ∨q 中一真必真.(3)綈p 真,p 假;綈p 假,p 真.2.含量词的命题的否定方法是“改量词,否结论”,即把全称量词与存在量词互换,然后否定原命题的结论.3.判断命题的真假要注意:全称命题为真需证明,为假举反例即可;特称命题为真需举一个例子,为假则要证明全称命题为真.[练一练]1.(2013·重庆高考)命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<0解析:选D 全称命题的否定为特称命题,所以答案为D.2.已知命题p :∃x 0∈R ,x 20+1x 20≤2,命题q 是命题p 的否定,则命题p 、q 、p ∧q 、p∨q 中是真命题的是________.解析:p 是真命题,则q 是假命题. 答案:p 、p ∨q全称命题与特称命题的真假判断1.(2014·皖南八校联考)下列命题中,真命题是( ) A .存在x 0∈R ,sin 2x 02+cos 2x 02=12B .任意x ∈(0,π),sin x >cos xC .任意x ∈(0,+∞),x 2+1>xD .存在x 0∈R ,x 20+x 0=-1解析:选C 对于A 选项:∀x ∈R ,sin 2x 2+cos 2x2=1,故A 为假命题;对于B 选项:存在x =π6,sin x =12,cos x =32,sin x <cos x ,故B 为假命题;对于C 选项:x 2+1-x =⎝⎛⎭⎫x -122+34>0恒成立,C 为真命题;对于D 选项:x 2+x +1=⎝⎛⎭⎫x +122+34>0恒成立,不存在x 0∈R ,使x 20+x 0=-1成立,故D 为假命题.2.已知函数f (x )=x 2+bx (b ∈R ),则下列结论正确的是( ) A .∀b ∈R ,f (x )在(0,+∞)上是增函数 B .∀b ∈R ,f (x )在(0,+∞)上是减函数 C .∃b ∈R ,f (x )为奇函数 D .∃b ∈R ,f (x )为偶函数解析:选D 注意到b =0时,f (x )=x 2是偶函数. [类题通法]全称命题与特称命题真假的判断方法[典例] 1,x 2∈R ,[f (x 2-f (x 1)](x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 B .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 C .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0 D .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0[解析] 全称命题的否定为存在性命题,即若p 为“∀x ∈M ,q (x )”,则綈p 为“∃x ∈M ,綈q (x )”,故选C.[答案] C[类题通法]全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.[针对训练]写出下列命题的否定并判断其真假:(1)p:不论m取何实数值,方程x2+mx-1=0必有实数根;(2)p:有的三角形的三条边相等;(3)p:菱形的对角线互相垂直;(4)p:∃x0∈N,x20-2x0+1≤0.解:(1)綈p:存在一个实数m0,使方程x2+m0x-1=0没有实数根.因为该方程的判别式Δ=m20+4>0恒成立,故綈p为假命题.(2)綈p:所有的三角形的三条边不全相等.显然綈p为假命题.(3)綈p:有的菱形的对角线不垂直.显然綈p为假命题.(4)綈p:∀x∈N,x2-2x+1>0.显然当x=1时,x2-2x+1>0不成立,故綈p是假命题.含有逻辑联结词的命题[典例]5∀x∈R,都有x2+x+1>0.给出下列结论:①命题“p∧q”是真命题;②命题“p∧綈q”是假命题;③命题“綈p∨q”是真命题;④命题“綈p∨綈q”是假命题,其中正确的是() A.②④B.②③C.③④D.①②③(2)(2014·济宁模拟)已知命题p:关于x的方程x2-ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数.若p或q是真命题,p且q是假命题,则实数a 的取值范围是()A.(-12,-4]∪[4,+∞)B.[-12,-4]∪[4,+∞)C .(-∞,-12)∪(-4,4)D .[-12,+∞)[解析] (1)因为对任意实数x ,|sin x |≤1,而sin x =52>1,所以p 为假;因为x 2+x +1=0的判别式Δ<0,所以q 为真.因而②③正确.(2)命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4;命题q 等价于-a4≤3,即a ≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a <-12;若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4).[答案] (1)B (2)C解析:p ∧q 为真,∴p 和q 均为真. ∴a 的取值范围为[-12,-4]∪[4,+∞). 答案:[-12,-4]∪[4,+∞) [类题通法]1.判断“p ∧q ”、“p ∨q ”、“綈p ”形式命题真假的步骤 (1)准确判断简单命题p 、q 的真假;(2)依据[必会3个方法中的第一个方法]判断“p ∧q ”、“p ∨q ”、“綈p ”命题的真假. 2.根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况); (2)然后再求出每个命题是真命题时参数的取值范围; (3)最后根据每个命题的真假情况,求出参数的取值范围. [针对训练]1.(2013·安徽“江南十校”联考)对于下述两个命题,p :对角线互相垂直的四边形是菱形;q :对角线互相平分的四边形是菱形.则命题“p ∨q ”、“p ∧q ”、“綈p ”中真命题的个数为( )A .0B .1C .2D .3解析:选B 容易判断p 、q 均为假命题.所以“p ∨q ”为假命题,“p ∧q ”为假命题,“綈p ”为真命题,故真命题的个数为1.2.(2014·江西盟校联考)已知命题p:“∀x∈[0,1],a≥e x”,命题q:“∃x0∈R,x2+4x0+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是()A.(4,+∞) B.[1,4]C.[e,4]D.(-∞,1]解析:选C“p∧q”是真命题,则p与q都是真命题.p真则∀x∈[0,1],a≥e x,需a≥e;q真则x2+4x+a=0有解,需Δ=16-4a≥0,所以a≤4.p∧q为真,则e≤a≤4.。
高考数学(理科)二轮复习【专题1】集合与常用逻辑用语(含答案)
第1讲集合与常用逻辑用语考情解读(1)集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年也出现一些集合的新定义问题.(2)高考中考查命题的真假判断或命题的否定或充要条件的判断.1.集合的概念、关系(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.2.集合的基本运算(1)交集:A∩B={x|x∈A,且x∈B}.(2)并集:A∪B={x|x∈A,或x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.重要结论:A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.3.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理.4.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.5.基本逻辑联结词(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真;綈p和p为真假对立的命题.(2)命题p∨q的否定是(綈p)∧(綈q);命题p∧q的否定是(綈p)∨(綈q).6.全称量词与存在量词“∀x∈M,p(x)”的否定为“∃x0∈M,綈p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,綈p(x)”.热点一集合的关系及运算例1(1)(2014·四川改编)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=________.(2)(2013·广东改编)设整数n≥4,集合X={1,2,3,…,n},令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列命题正确的是________.①(y,z,w)∈S,(x,y,w)∉S;②(y,z,w)∈S,(x,y,w)∈S;③(y,z,w)∉S,(x,y,w)∈S;④(y,z,w)∉S,(x,y,w)∉S.思维启迪明确集合的意义,理解集合中元素的性质特征.答案(1){-1,0,1,2}(2)②解析(1)因为A={x|x2-x-2≤0}={x|-1≤x≤2},又因为集合B为整数集,所以集合A∩B ={-1,0,1,2}.(2)因为(x,y,z)和(z,w,x)都在S中,不妨令x=2,y=3,z=4,w=1,则(y,z,w)=(3,4,1)∈S,(x,y,w)=(2,3,1)∈S,故(y,z,w)∉S,(x,y,w)∉S的说法均错误,可以排除①③④,故②正确.思维升华(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.(1)已知集合M={1,2,3},N={x∈Z|1<x<4},则M∩N=________.(2)(2013·山东改编)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是________.答案(1){2,3}(2)5解析(1)集合N是要求在(1,4)范围内取整数,所以N={x∈Z|1<x<4}={2,3},所以M∩N={2,3}.-2,-1,0,1,2.(2)x-y∈{}热点二四种命题与充要条件例2(1)(2014·天津改编)设a,b∈R,则“a>b”是“a|a|>b|b|”的________条件.(2)(2014·江西改编)下列叙述中正确的是________.①若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”;②若a,b,c∈R,则“ab2≥cb2”的充要条件是“a>c”;③命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”;④l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β.思维启迪要明确四种命题的真假关系;充要条件的判断,要准确理解充分条件、必要条件的含义.答案(1)充要(2)④解析(1)当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|.(2)由于“若b2-4ac≤0,则ax2+bx+c≥0”是假命题,所以“ax2+bx+c≥0”的充分条件不是“b2-4ac≤0”,①错;因为ab2>cb2,且b2>0,所以a>c.而a>c时,若b2=0,则ab2>cb2不成立,由此知“ab2>cb2”是“a>c”的充分不必要条件,②错;“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2<0”,③错;由l⊥α,l⊥β,可得α∥β,理由:垂直于同一条直线的两个平面平行,④正确.思维升华(1)四种命题中,原命题与逆否命题等价,逆命题与否命题等价;(2)充要条件的判断常用“以小推大”的技巧,即小范围推得大范围,判断一个命题为假可以借助反例.(1)命题“若a,b都是偶数,则a+b是偶数”的逆否命题是________.(2)“log3M>log3N”是“M>N成立”的________条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写)答案(1)若a+b不是偶数,则a,b不都是偶数(2)充分不必要解析(1)判断词“都是”的否定是“不都是”.(2)由log3M>log3N,又因为对数函数y=log3x在定义域(0,+∞)单调递增,所以M>N;当M>N 时,由于不知道M、N是否为正数,所以log3M、log3N不一定有意义.故不能推出log3M>log3N,所以“log3M>log3N”是“M>N成立”的充分不必要条件.热点三逻辑联结词、量词例3(1)已知命题p:∃x∈R,x-2>lg x,命题q:∀x∈R,sin x<x,则下列命题正确的是________.①命题p∨q是假命题②命题p∧q是真命题③命题p ∧(綈q )是真命题 ④命题p ∨(綈q )是假命题(2)已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是_________________________________________________________________.思维启迪 (1)先判断命题p 、q 的真假,再利用真值表判断含逻辑联结词命题的真假;(2)含量词的命题要理解量词含义,确定参数范围.答案 (1)③ (2)[1,+∞)解析 (1)对于命题p ,取x =10,则有10-2>lg 10,即8>1,故命题p 为真命题;对于命题q ,取x =-π2,则sin x =sin(-π2)=-1,此时sin x >x ,故命题q 为假命题,因此命题p ∨q 是真命题,命题p ∧q 是假命题,命题p ∧(綈q )是真命题,命题p ∨(綈q )是真命题,故③正确.(2)∵p ∨q 为假命题,∴p 和q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假命题,得綈p :∀x ∈R ,mx 2+2>0为真命题,∴m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题,得綈q :∃x ∈R ,x 2-2mx +1≤0为真命题,∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②,得m ≥1.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列命题中正确的是________.①p 真q 假 ②p 假q 真③“p ∧q ”为假 ④“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是________.答案 (1)③ (2)(1,+∞)解析 (1)△ABC 中,C >B ⇔c >b ⇔2R sin C >2R sin B (R 为△ABC 外接圆半径),所以C >B ⇔sin C >sin B .故“C >B ”是“sin C >sin B ”的充要条件,命题p 是假命题.若c =0,当a >b 时,则ac 2=0=bc 2,故a >b ac 2>bc 2,若ac 2>bc 2,则必有c ≠0,则c 2>0,则有a >b ,所以ac 2>bc 2⇒a >b ,故“a >b ”是“ac 2>bc 2”的必要不充分条件,故命题q 也是假命题.(2)命题p为真时a≤1;“∃x0∈R,x20+2ax0+2-a=0”为真,即方程x2+2ax+2-a=0有实根,故Δ=4a2-4(2-a)≥0,解得a≥1或a≤-2.(綈p)∧q为真命题,即綈p真且q真,即a>1.1.解答有关集合问题,首先正确理解集合的意义,准确地化简集合是关键;其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和Venn图加以解决.2.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.3.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.4.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立的、一真一假的.真题感悟1.(2014·浙江改编)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=________.答案{2}解析因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.2.(2014·重庆改编)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是________.①p∧q②綈p∧綈q③綈p∧q④p∧綈q答案④解析因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q、綈p为假命题,綈q为真命题,綈p∧綈q、綈p∧q为假命题,p∧綈q为真命题,故④为真命题.押题精练1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案 [1,+∞)解析 A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ),因为A ⊆B ,画出数轴,如图所示,得c ≥1.2.已知下列命题:①命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1<3x ”;②已知p ,q 为两个命题,若“p ∨q ”为假命题,则“(綈p )∧(綈q )”为真命题;③“a >2”是“a >5”的充分不必要条件;④“若xy =0,则x =0且y =0”的逆否命题为真命题.其中正确的命题是________.答案 ②解析 命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1≤3x ”,故①错;“p ∨q ”为假命题说明p 假q 假,则(綈p )∧(綈q )为真命题,故②正确;a >5⇒a >2,但a >2a >5,故“a >2”是“a >5”的必要不充分条件,故③错;因为“若xy =0,则x =0或y =0”,所以原命题为假命题,故其逆否命题也为假命题,故④错.3.已知p :x +210-x≥0,q :x 2-2x +1-m 2≤0(m <0),且p 是q 的必要不充分条件,求实数m 的取值范围.解 由x +210-x≥0,得-2≤x <10,即p :-2≤x <10; 由x 2-2x +1-m 2≤0(m <0),得[x -(1+m )]·[x -(1-m )]≤0,所以1+m ≤x ≤1-m ,即q :1+m ≤x ≤1-m .又因为p 是q 的必要条件,所以⎩⎪⎨⎪⎧m +1≥-2,1-m <10,解得m ≥-3, 又m <0,所以实数m 的取值范围是-3≤m <0.(推荐时间:40分钟)1.(2014·陕西改编)设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =________. 答案 [0,1)解析 N ={x |-1<x <1},M ∩N =[0,1).2.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为_______________________________________________________________. 答案 13解析 若x =5∈A ,y =1∈A ,则x +y =5+1=6∈B ,即点(5,1)∈C ;同理,(5,2)∈C ,(4,1)∈C ,(4,2)∈C ,(4,3)∈C ,(3,2)∈C ,(3,3)∈C ,(3,4)∈C ,(2,3)∈C ,(2,4)∈C ,(2,5)∈C ,(1,4)∈C ,(1,5)∈C .所以C 中所含元素的个数为13.3.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为________.答案 7解析 因为A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意,知题图中阴影部分表示的集合为A ∩B ={1,2,3},所以其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.4.“(m -1)(a -1)>0”是“log a m >0”的________条件.答案 必要不充分解析 (m -1)(a -1)>0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧ m <1,a <1.log a m >0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,所以前者是后者的必要不充分条件.5.已知命题p :∃x ∈(0,π2),使得cos x ≤x ,则该命题的否定是________. 答案 ∀x ∈(0,π2),使得cos x >x 解析 原命题是一个特称命题,其否定是一个全称命题.而“cos x ≤x ”的否定是“cos x >x ”.6.在△ABC 中,“A =60°”是“cos A =12”的________条件. 答案 充要解析 在A =60°时,有cos A =12,因为角A 是△ABC 的内角,所以,当cos A =12时,也只有A =60°,因此,是充要条件.7.(2013·湖北改编)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩∁R B =________.答案 {x |0≤x <2或x >4}解析 ∵A ={x |x ≥0},B ={x |2≤x ≤4},∴A ∩∁R B ={x |x ≥0}∩{x |x >4或x <2}={x |0≤x <2或x >4}.8.已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|y =x 2+1,x ,y ∈R },则集合A ∩B 的元素个数是_________________________________________________________________.答案 2解析 集合A 表示直线l :x +y -1=0上的点的集合,集合B 表示抛物线C :y =x 2+1上的点的集合.由⎩⎪⎨⎪⎧x +y -1=0,y =x 2+1消去y 得x 2+x =0, 由于Δ>0,所以直线l 与抛物线C 有两个交点.即A ∩B 有2个元素.9.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是________.①p 为真;②綈q 为假;③p ∧q 为假;④p ∨q 为真.答案 ③解析 p 是假命题,q 是假命题,因此只有③正确.10.已知集合A ={(x ,y )|y =a },B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个真子集,则实数a 的取值范围是________.答案 (1,+∞)解析 由于集合B 中的元素是指数函数y =b x 的图象向上平移一个单位长度后得到的函数图象上的所有点,要使集合A ∩B 只有一个真子集,那么y =b x +1(b >0,b ≠1)与y =a 的图象只能有一个交点,所以实数a 的取值范围是(1,+∞).11.已知集合P ={x |x (x -1)≥0},Q ={x |y =ln(x -1)},则P ∩Q =__________.答案 (1,+∞)解析 由x (x -1)≥0可得x ≤0或x ≥1,则P =(-∞,0]∪[1,+∞);又由x -1>0可得x >1,则Q =(1,+∞),所以P ∩Q =(1,+∞).12.已知集合A ={x |x >2或x <-1},B ={x |a ≤x ≤b },若A ∪B =R ,A ∩B ={x |2<x ≤4},则b a=________.答案 -4解析 由A ={x |x >2或x <-1},A ∪B =R ,A ∩B ={x |2<x ≤4},可得B ={x |-1≤x ≤4},则a=-1,b =4,故b a=-4. 13.由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a =________.答案 1解析 根据题意可得:∀x ∈R ,x 2+2x +m >0是真命题,则Δ<0,即22-4m <0,m >1,故a =1.14.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题.其中真命题的序号是________.(填写所有真命题的序号)答案 ①④解析 对①,因命题“若α=β,则cos α=cos β”为真命题,所以其逆否命题亦为真命题,①正确;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②错;对③,因由“x 2=4”得x =±2,所以“x 2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确.15.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.答案 ②④解析 对于①:取k =12,点(1,1)∈{(x ,y )|x 2≥y },但(12,12)∉{(x ,y )|x 2≥y },故①是不具有性质P 的点集.对于②:∀(x ,y )∈{(x ,y )|2x 2+y 2<1},则点(x ,y )在椭圆2x 2+y 2=1内部,所以对0<k <1,点(kx ,ky )也在椭圆2x 2+y 2=1的内部,即(kx ,ky )∈{(x ,y )|2x 2+y 2<1},故②是具有性质P 的点集.对于③:(x +12)2+(y +1)2=54,点(12,-12)在此圆上,但点(14,-14)不在此圆上,故③是不具有性质P 的点集.对于④:∀(x,y)∈{(x,y)|x3+y3-x2y=0},对于k∈(0,1),因为(kx)3+(ky)3-(kx)2·(ky)=0⇒x3+y3-x2y=0,所以(kx,ky)∈{(x,y)|x3+y3-x2y=0},故④是具有性质P的点集.综上,具有性质P的点集是②④.。
专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)
专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
理科数学真题分类汇编专题1 集合与常用逻辑用语答案部分
专题一集合与常用逻辑用语第一讲集合 答案部分 2019年1.解析:解析:依题意可得,2426023{|}{|}{} |M x x N x x x x x =−=−−=−<<,<<<, 所以 2|}2{M N x x =−I <<. 故选C .2.解析解析:由{}2560(,2)(3,)A x x x =−+>= −∞+∞, {}10(,1)A x x =−<= −∞,则 (,1)A B = −∞.故选A.3.解析 因为 {}1,0,1,2A =−,2 {|1}{|11}B x x x x ==−剟?, 所以 {}1,0,1AB =−.故选A .4.解析 因为 {}1,0,1,6A =−, {} |0,B x x x =>∈R , 所以{}{}{} 1,0,1,6|0,1,6A B x x x = −>∈=R . 5.解析:{1,3}U A =−ð, {1}U A B =−ð .A 故选.6. 解析设集合 {}1,1,2,3,5A =−, {}13C x x =∈<R …,则 {}1,2A C =.又 {}2,3,4B =, 所以 {}{}{}{} 1,22,3,41,2,3,4A C B ==. 故选D.2010-2018年1.A 【解析】{|||2}(2,2)A x x =<= −, {2,0,1,2}B =−,∴{0,1}A B =,故选A .2.B 【解析】因为2{20}=−−>A x x x ,所以2{|20}=−−R ≤A x x x ð={x |−1≤x ≤2},故选B .3.C 【解析】由题意知,A ={x |x −1≥0},则A B ={1,2}.故选C .4B .【解析】因为{1}B x x =≥,所以 {|1}R B x x =<ð,因为 {02}A x x =<<, 所以()=R I A B ð{|01}x x << ,故选B . 5C .【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A ð {2,,45}.故选.C6A .【解析】通解由 223+≤x y 知, 33−≤≤x , 33−≤≤y .又∈Z x ,∈Z y ,所以 {1,0,1}∈−x , {1,0,1}∈−y , 所以A 中元素的个数为1133 C C 9=,故选.A 优解根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图, O yx-1-111易知在圆223+=x y中有个整点,即为集合9A 的元素个数,故选.A 7A .【解析】∵ {|0}B xx =<,∴ {|0}A B x x =< ,选.A8C .【解析】∵ 1B ∈,∴21410m −⨯+=,即3m =,∴{1,3}B = .选.C 9B .【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以AB中元素的个数为.选.2B 10.D 【解析】由2 40x −≥得 22x − ≤≤,由10x −>得1x <,故A B={|22} {|1}{|21}x x x x x x −<=−<≤≤≤ ,选D.11.【解析】B (){1246} [15]{124}A B C =−=,,,,,, , 选B.12.A 【解析】由题意可知 {|12}P Q x x =−<< ,选.A13.A 【解析】{} 21A B x x =−<<−,故选A. 14.C 【解析】因为{|||2}{|22}A x x x x =<=−<<,所以 {1,0,1}A B =−.15.C 【解析】集合A 表示函数2x y =的值域,故 (0,)A =+∞.由210x −<,得 11x −<<,故 (1,1)B =−,所以 (1,)A B = −+∞.故选C .16D .【解析】由题意{1,4,7,10}B =,所以{1,4}AB =.17D .【解析】由题意得, {|13}A x x =<<,3{|}2B x x =>,则3( ,3)2AB =.选.D18C .【解析】由已知可得 ()() {}120B x x x x =+−<∈Z ,{} 12x x x =− <<∈Z ,, ∴ {} 01B =,,∴ {}0 1 23A B =,,, ,故选.C 19D .【解析】 (,2][3,)S = −∞+∞,所以 (0,2][3,)S T =+∞ ,故选.D20.A 【解析】由于{|21}B x x =-<<,所以 {1,0}A B =-.21.C 【解析】 {|02}R P x x =<<ð,故(){|1<<2}R P Q=x x ð. 22.A 【解析】{|12}A x x =-<<, {|13}B x x =<<,∴ {|13}A B x x =-<<.23.C 【解析】由已知得 {} ,1,,1A i i =−−,故A B = {} 1,1−,故选C . 24.D 【解析】由于 2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉ ,故A 、B 、C 均错,D 是正确的,选D. 25.C 【解析】∵A B A =,得A B Í,反之,若A B Í,则A B A =;故“A B A =”是“A B ⊆”的充要条件.26.D 【解析】由(4)(1)0x x ++=得4x =-或1x =-,得 {1,4}M =--. 由 (4)(1)0x x --= 得4x =或1x =,得{1,4}N =.显然=∅MN .27A .【解析】 {}{}2 0,1x x x M ===, {}{}lg 001x x x x N =≤=<≤, 所以 []0,1M N = ,故选A . 28A .【解析】{2,5,8}U B =ð,所以{2,5}U A B =ð ,故选A. 29.C 【解析】因为集合22 {(,)1,,}A x y x y x y =+≤∈Z ,所以集合A中有个元素(即个99点),即图中圆中的整点,集合 {(,)||2,||2, ,}B x y x y x y =≤≤∈Z 中有个元素(即2525个点):即图中正方形ABCD 中的整点,集合12121122 {(,)( ,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即 45477=−⨯个.30.A 【解析】 {} |13A x x x =−≤或≥,故A B ⋂=[--2,1].31.D 【解析】 {}|12N x x =≤≤,∴M N ⋂ =1{,2 }.32.B 【解析】∵ {}1,2B =−,∴A B ⋂={}2 33.C 【解析】|1|213x x −<⇒−<<,∴ (1,3)A =−,[1,4]B =.∴[1,3)A B ⋂=. 34.C 【解析】∵(0,2)A =,[1,4]B =,所以AB =[1,2).35.C 【解析】 {}{}{} 1,0,10,1,21,0,1,2M N ⋃= −⋃= −,选.C 36A .【解析】P Q ⋂=}{34x x ≤<37B .【解析】由题意知 {|2}U x N x =∈≥, {|5}A x N x =∈≥,所以=A C U {|25}x N x ∈<≤,选.B 38C .【解析】∵ {}{}2|200,2A x x x =−==.∴AB =={}0,2. 39C .【解析】A B ={|23}x x << 40.B 【解析】∵21x <,∴ 11x − <<,∴MN = {} |01x x <≤,故选.B 41.C 【解析】 {} |3,3A x x =−<, {} C |15R B x x x =−>≤或, ∴()R A C B = {} |31x x −−≤≤42.D 【解析】由已知得,{=0A B x x ≤或}1x ≥,故()UC A B = {|01}x x <<.43.A 【解析】 {|12}A x x =−≤≤,B Z =,故A B ⋂= {1,0,1,2}− 44.C 【解析】 {}2,4,7U A =ð. 45.C 【解析】“存在集合C 使得,U A C B C ⊆⊆ð”⇔“∅=B A ”,选.C 46B .【解析】A=(-∞,0)∪(2,+∞ )A B=R ,∴∪,故选B . 47A .【解析】 {}1,4,9,16B =,∴ {}1,4A B ⋂= 48A .【解析】∵ (1,3)M =−,∴ {}0,1,2MN =49.C 【解析】因为 {31}M x x =−<<, {3,2,1,0,1}N = −−−,所以M N{2,1,0}=−−, 选C.50.A 【解析】由题意 {}1,2,3AB =,且{1,2}B =,所以A中必有,没有,34 {}3,4U C B =,故U A B =ð {}3.51.C 【解析】0,0,1,2,0,1,2x y x y ==−=−−; 1,0,1,2,1,0,1x y x y ==−=−; 2,0,1,2,2,1,0x y x y ==−=.∴B 中的元素为 2,1,0,1,2−− 共个.552.A 【解析】:A 1−>x , }1|{−≤=x x A C R , }2,1{)(−−=B A C R ,所以答案选A53.D 【解析】由集合,A 14x <<;所以(1,2]A B ⋂= 54.B 【解析】集合B 中含,-10,故 {}1,0AB =−55.A 【解析】∵ {}2,0S =−, {}0,2T =,∴ST = {}0. 56.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则 ()() ,,3,4,1y z w S =∈, ()() ,,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈, (),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立配对后只有四种情况:第一种:①⑤成立,此时. w x y z <<<,于是 (),,y z w S ∈, (),,x y w S ∈;第二种:①⑥成立,此时 x y z w <<<,于是 (),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时 y z w x <<<,于是 (),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时 z w x y <<<,于是(),,y z w S ∈, (),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈, (),,x y w S ∈. 57D .【解析】()f x 的定义域为M =[−1,1],故R M ð=(,1)(1,)−∞−⋃+∞ ,D 选. 58A .【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =.59C .【解析】[) 0,A =+∞,[]2,4B =,[ )()0,24,R A C B ∴=+∞. 60.A 【解析】U C M = {,,}246 61.D 【解析】{}3,4,5Q =,∴U Q ð= {}1,2,6,∴ U P Q ⋂ð= {}1,2.62.D 【解析】由,M ={12,3,4},N ={−2,2},可知−2∈,但是N −2∉ M N ,则⊄M ,故错误.∵A M N ={1,,,,234− 2}≠M ,故B 错误.M∩N ={2}≠N C ,故错误,.故选D 正确 D63.B 【解析】(A =− 1,2),故B ⊂≠A ,故选B. 64.D 【解析】 {3213} [1,2]A x x =−≤−≤=−, (1,)(1,2]B A B =+∞⇒=65.C 【解析】根据题意,容易看出x y +只能取− 1,1,33.等个数值故共有个元素3.66D .【解析】 {|1}P x x =< ∴{|1}R C P x x =≥,又∵ {|1}Q x x =>,∴R Q C P ⊆, 故选.D 67B .【解析】{1,3}P M N ==,故P 的子集有个.468D .【解析】因为集合[1,1]P =−,所以 (,1)(1,)U C P =−∞−+∞. 69D .【解析】因为{1,2,3,4}MN =,所以 ()()n n C M C N ⋂=()UC M N ={5,6}.70.B 【解析】因为U C M N ⊂,所以 ()()()U U U UN N C M C C N C M == = [()]U U N M 痧={1,3,5}. 71.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x −=,解得0x =或1x =, 这时1y = 或0y =,即{(0,1),(1,0)}A B ⋂=,有个元素.2 72.A 【解析】集合 {1,0,1} {0,1,2}={0,1}M N =−.73.C 【解析】因为P M P =,所以M P ⊆,即a P ∈,得21a ≤,解得 11a − ≤≤,所以a 的取值范围是[1,1]−. 74.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复数模的计算方法得不等式212x +<,即21x <,所以 (1,1)N =−,则[0,1]MN =.75.A 【解析】根据题意可知,N 是M 的真子集,所以M N M =.76C .【解析】{}{}{} 1,2,32,3,42,3MN == 故选C. 77D .【解析】 {}{} |1,|12R RB x x A B x x =≥⋂=≤≤痧 78B .【解析】 {}22<<x x Q −=,可知正确,B 79A .【解析】不等式121log 2x …,得12112201 log log ()2x >⎧⎪⎨⎪⎩…,得22x …, 所以R A ð=2 (,0],2⎛⎫−∞+∞ ⎪ ⎪⎝⎭.80.D 【解析】因为{3}AB = ,所以∈3A ,又因为{9}U BA =ð ,所以∈,所以选9A D .本题也可以用V enn 图的方法帮助理解. 818}.{1,【解析】由集合的交运算可得AB ={1,8}.82.1【解析】由题意 1B ∈,显然1a =,此时234a +=,满足题意,故1a =. 83.5【解析】 {1,2,3}{2,4,5} {1,2,3,4,5}AB == ,个元素.584. {}1,3−【解析】=B A {}1,3−85. {}7,9【解析】 {}1,2,3,4,5,6,7,8,9,10U =, {}4,6,7,9,10U A =ð,{} ()7,9U A B ⋂=ð.86.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是.6 87. {}6,8【解析】()U A B ð={6,8} {2,6,8}{6,8}=. 88.【解析】(1 5 )根据k 的定义,可知1131225k −−=+=; ()2 12578 {,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又89 2,2 均大于211,故所求子集不含910,a a ,然后根据2j (j =1,2,⋅⋅⋅7)的值易推导出所求子集为12578 {,,,,}a a a a a . 891.【解析】考查集合的运算推理.3∈B ,23a +=,1a =. 90.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(, )[(11|11|)(11|11|)(00)|00|)]22M αα =+−−++−−++−−=, 1 (,)[(1 0|1 0|)(11|11|)(0 1|01|)]12M αβ =+−−++−−++−−=. (2)设 1234 ( ,,,)x x x x B α=∈,则 1234 (,)M x x x x αα =+++. 由题意知1x ,2x ,3x ,4x ∈,{01},且 (, )M αα为奇数,所以1x ,2x ,3x ,4x中的个数为或.113 所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,01(1,,1),,101),,,(1,,,110)} . 将上述集合中的元素分成如下四组:(,100,,0),(1,,11,0);,(01,0,0),(1,,10,1);(0,0,1,0),(1,0,1(0,1);,00(0,,1),,11,,1).经验证,对于每组中两个元素α,β,均有 (,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素. 所以集合B中元素的个数不超过.4 又集合,,{(1000)(010,,,,,,,0)(0010),,,,(00,,满足条件,01)} 所以集合B中元素个数的最大值为.4 (3)设1212121 {( ,,,)|( ,,,),1,0}k n n k k S x x x x x x A x x x x − =⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅== (1,2,,)k n =⋅⋅⋅,11212 {( ,,,)|0}n n n S x x x x x x + =⋅⋅⋅==⋅⋅⋅==, 则 121n A S S S + =⋅⋅⋅.对于k S (1,2,,1k n =⋅⋅⋅−)中的不同元素α,β,经验证, (, )1M αβ≥. 所以k S (1,2,,1k n =⋅⋅⋅−)中的两个元素不可能同时是集合B 的元素. 所以B 中元素的个数不超过1n +.取12 ( ,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x + =⋅⋅⋅==( 1,2,,1k n =⋅⋅⋅−). 令 1211 (,,,)n n n B e e e S S −+ =⋅⋅⋅,则集合B 的元素个数为1n +,且满足条件.故B 是一个满足条件且元素个数最多的集合.。
高考数学 集合与常用逻辑用语考点及知识点总结解析(理科)
②若B≠∅,则2mm+-11≥≥-m2+,1, 2m-1≤5.
解得2≤m≤3.由①②可得,符合题意的实数m的取值范围为 (-∞,3].
[答案] (-∞,3]
[易错提醒] 将两个集合之间的关系准确转化为参数所满足的条 件时,应注意子集与真子集的区别,此类问题多与不等 式(组)的解集相关.确定参数所满足的条件时,一定要把 端点值代入进行验证,否则易产生增解或漏解.
考点贯通 抓高考命题的“形”与“神” 集合子集个数的判定
含有n真子集的个数为2n-2(除空集 和集合本身,此时n≥1).
[例1] 已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x
<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为
()
A.1
B.2
C.3
D.4
[解析] 由x2-3x+2=0得x=1或x=2,所以A={1,2}.由
题意知B={1,2,3,4},所以满足条件的集合C为{1,2},{1,2,3},
{1,2,4},{1,2,3,4},共4个.
[答案] D
[易错提醒] (1)注意空集的特殊性:空集是任何集合的子集,是 任何非空集合的真子集. (2)任何集合的本身是该集合的子集,在列举时千万 不要忘记.
∵
2x
-
3>0
,
∴
x>
3 2
,
∴
B
=
3 xx>2
.
∴
A∩B
=
{x|1<x<3}∩xx>32 =32,3. [答案] D
专题一 集合、常用逻辑用语、不等式、
3.设全集U=R,A={x|x2-2x≤0},B={y|y=cos x,x∈R},则图中阴影部分表示的区间是 ( )
A.[0,1] B.[-1,2] C.(-∞,-1]∪[2,+∞) D.(-∞,-1)∪(2,+∞) 答案 D 因为A={x|x2-2x≤0}={x|0≤x≤2}=[0,2],B={y|-1≤y≤1}=[-1,1],所以 A∪B=[-1,2],所以∁R(A∪B)=(-∞,-1)∪(2,+∞).
跟踪集训
1.(2016河北石家庄模拟)已知集合A={-2,-1,2,3},B={x|-1<x<3},则A∩B=( A.(-2,3) B.(-1,3) C.{2} D.{-1,2,3} 答案 C 由交集定义可得A∩B={2},选项C正确. )
答案 C 由题意知A=[0,1],B=(-∞,1),所以A∩B=[0,1).
答案 A
若a<0,b<0,则一定有a+b<0,故选A.
答案 ①② 解析 易知①②正确.对于③,若x=-1,则x2=1,充分性不成立,故③错误.
若A=B,则A是B的充要条件.
(3)等价法:将命题等价转化为另一个便于判断真假的命题. 2.判断充分、必要条件时应关注三点 (1)要弄清先后顺序:“A的充分不必要条件是B”是指B能推出A,且A不能推出
B;“A是B的充分不必要条件”是指A能推出B,且B不能推出A.
(2)要善于举出反例:当从正面判断或证明一个命题的正确或错误不易进行时, 可以通过举出恰当的反例来说明. (3)要注意转化:¬ p是¬ q的必要不充分条件⇔p是q的充分不必要条件;¬ p是¬ q 的充要条件⇔p是q的充要条件.
跟踪集训
3.命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是 . 答案 ∀x∈(0,+∞),ln x≠x-1 解析 “∃”改为“∀”,“x0”改为“x”,否定结论,即ln x≠x-1,故该命题的否定为 ∀x∈(0,+∞),ln x≠x-1.
十年(2015-2024)高考真题分项汇编数学专题01集合与常用逻辑用语
专题01集合与常用逻辑用语考点十年考情(2015-2024)命题趋势考点1集合间的基本关系(10年2考)2023·全国新Ⅱ卷、2020全国新Ⅰ卷一般给两个集合,要求通过解不等式求出集合,然后通过集合的运算得出答案。
考点2交集(10年10考)2024·全国新Ⅰ卷、2024年全国甲卷、2023·北京卷、2023全国新Ⅰ卷、2022·全国新Ⅱ卷、2022年全国乙卷、2022年全国甲卷、2022全国新Ⅰ卷、2021年全国乙卷、2021年全国甲卷、2021年全国甲卷、2021全国新Ⅰ卷考点3并集(10年8考)2024·北京卷、2022·浙江卷、2021·北京卷、2020·山东卷、2019·北京卷、2017·浙江卷、2017·全国卷、2016·山东卷、2016·全国卷、2015·全国卷考点4补集(10年8考)2024年全国甲卷、2023年全国乙卷、2023年全国乙卷、2022·全国乙卷、2022·北京卷、2021全国新Ⅱ卷、2020全国新Ⅰ卷、2018·浙江卷、2018·全国卷、2017·北京卷考点5充分条件与必要条件(10年10考)2024·全国甲卷、2024·天津卷、2024·北京卷、2023·北京卷、2023·全国甲卷、2023·天津卷、2023·全国新Ⅰ卷、2022·浙江卷、2022·北京卷、2021·全国甲卷常以关联的知识点作为命题背景,考查充分条件与必要条件,难度随载体而定。
考点6全称量词与存在量词(10年4考)2024·全国新Ⅱ卷、2020·全国新Ⅰ卷、2016·浙江卷、2015·浙江卷、2015·全国卷、2015·湖北卷全称量词命题和存在量词命题的否定及参数求解是高考复习和考查的重点。
高考数学 专题一 集合与常用逻辑用语
专题一集合与常用逻辑用语一、单项选择题1.(2023届江西“红色十校”联考,2)已知集合A={-2,-1,0,2,3},B={y|y=x+1,x∈A},则A∩B = ()A.{-1,1,3}B.{-1,0,2}C.{-1,1,2}D.{-1,0,3}答案 D 由A={-2,-1,0,2,3}可得B={y|y=x+1,x∈A}={-1,0,1,3,4},所以A∩B={-1,0,3}.故选D.2.(2017课标Ⅱ,2,5分)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}答案 C ∵A∩B={1},∴1∈B,∴1-4+m=0,∴m=3.由x2-4x+3=0,解得x=1或x=3.∴B={1,3}.经检验符合题意.故选C.3.(2023届江苏常熟中学月考一,2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3 C.5 D.7答案 C 当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.由集合中元素的互异性知B={-2,-1,0,1,2},共5个元素.故选C.4.(2023届山西临汾期中,2)设集合A={4,5,6},B={4,7},则满足S⊆A且S∩B≠⌀的集合S的个数是() A.3 B.4 C.5 D.6答案 B 满足S⊆A且S∩B≠⌀的集合S有{4}、{4,5}、{4,6}、{4,5,6},共4个.故选B.5.(2023届西南“三省三校”联考一,1)已知集合A={x|-1≤x<2},集合B={y|y=x2+12},则A∩B=() A.[-1,2] B.[-1,+∞)C.[12,2] D.[12,2)答案 D 因为B={y|y=x2+12}={y|y≥12},所以A∩B={x|12≤x<2},故选D.6.(2023届贵州黔西南州义龙蓝天学校月考,1)已知集合A={√2 021,π},B=Z,则下列结论正确的是() A.A∩(∁R B)=⌀ B.A⊆BC.B⊆∁R AD.A∪B=R答案 C 因为B=Z,√2 021,π是无理数,所以∁R B中含有√2 021,π,故A∩(∁R B)≠⌀,A选项错误;√2 021∉B,π∉B,故A⊈B,B选项错误;∁R A中包括所有整数,故B⊆∁R A,C选项正确;A∪B不可能为R,故D选项错误.故选C.7.(2023届河南安阳月考,3)若“|x+1|=2”是“log2x+2x=a”的必要不充分条件,则实数a=() A.3 B.2 C.1 D.0答案 B 由|x+1|=2得x=1或x=-3.设集合A={1,-3},方程log2x+2x=a的解为集合B.由“|x+1|=2”是“log2x+2x=a”的必要不充分条件,得B⫋A且B≠⌀,所以B={1}或B={-3}.当B={1}时,log21+21=a,所以a=2.当B={-3}时,log2x+2x=a不成立.故选B.8.(2022福建三模,9)若a>0,b>0,则“a+b<2”的一个必要不充分条件是()A.1a +1b<1 B.ab<1C.a2+b2<2D.√a<√2−b 答案 B 已知a>0,b>0.对于A,当a+b<2时,取a=b=12,明显可见,1a+1b<1不成立,故必要性不成立,A不符合题意.对于B,当a+b<2时,0<b<2-a,得ab<a(2-a)=-(a-1)2+1≤1,必要性成立;当ab<1时,取a=2,b=14,明显可见,a+b>2,则a+b<2不成立,充分性不成立,故B符合题意.对于C,当a+b<2时,取a=32,b=14,明显可见,a2+b2=94+116>2,则a2+b2<2不成立,故必要性不成立,则C不符合题意.对于D,当a+b<2时,0<a<2-b,明显可见,√a<√2−b成立,必要性成立;当√a<√2−b时,两边平方,同样有a+b<2,充分性也成立,D不符合题意.故选B.二、多项选择题9.(2022武汉二模,9)已知集合A={1,4,a},B={1,2,3},若A∪B={1,2,3,4},则a的取值可以是() A.2 B.3 C.4 D.5答案AB 因为A∪B={1,2,3,4},所以{1,4,a}⫋{1,2,3,4},所以a=2或a=3,故选AB.10.(2022新高考信息检测原创卷(四),12)已知函数f(x)=(ax2-2x+1)e2x,则()A. f(x)有零点的充要条件是a<1B.当且仅当a∈(0,1]时,f(x)有最小值C.存在实数a,使得f(x)在R上单调递增D.a≠2是f(x)有极值点的充要条件答案BCD 对于A,函数f(x)=(ax2-2x+1)e2x有零点⇔方程ax2-2x+1=0有解,当a=0时,方程有一解x=12;当a≠0时,方程ax2-2x+1=0有解⇔{a≠0,Δ=4−4a≥0⇒a≤1,a≠0.综上,知f(x)有零点的充要条件是a≤1,故A错误;对于B,由f(x)=(ax2-2x+1)e2x得f'(x)=2x·(ax+a-2)e2x,当a=0时,f'(x)=-4x e2x,则f(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减,此时f(x)有最大值f(0),无最小值;当0<a<1时,方程ax2-2x+1=0有两个不等实根x1,x2(x1<x2),当x∈[x1,x2]时, f(x)有最小值f(x0)<0,当x∈(-∞,x1)∪(x2,+∞)时,f(x)>0;当a=1时,f(x)=(x-1)2e2x有最小值0;当a>1时,f(x)>0且当x→-∞时,f(x)→0,f(x)无最小值;当a<0时,x→+∞时,f(x)→-∞,f(x)无最小值.综上,当且仅当a∈(0,1]时,f(x)有最小值,故B正确;对于C,因为当a=2时,f(x)=(2x2-2x+1)·e2x,f'(x)=4x2e2x≥0在R上恒成立,此时f(x)在R上单调递增,故C正确;对于D,由f'(x)=2x(ax+a-2)e2x知,当a=0时,x=0是f(x)的极值点,当a≠0,a≠2时,x=0和x=2−aa都是f(x)的极值点,当a=2时,f(x)在R上单调递增,无极值点,所以a≠2是f(x)有极值点的充要条件,故D正确,故选BCD.11.(2022湖南怀化一诊,9)下列命题为真命题的是()A.“a>b”是“ac2>bc2”的必要不充分条件B.“a>b”是“1a <1b”的充要条件C.“a ∈P ∩Q ”是“a ∈P ”的充分不必要条件D.“x 或y 为有理数”是“xy 为有理数”的既不充分又不必要条件答案 ACD 对于A,由a >b ⇒/ ac 2>bc 2,由ac 2>bc 2⇒a >b ,则“a >b ”是“ac 2>bc 2”的必要不充分条件,A 是真命题;对于B,若a >0,b <0,则由a >b 得不到1a <1b ,B 是假命题;易知C 、D 是真命题,故选ACD . 三、填空题12.(2015山东,12,5分)若“∀x ∈[0,π4],tan x ≤m ”是真命题,则实数m 的最小值为 . 答案 1解析 ∵0≤x ≤π4,∴0≤tan x ≤1,∵“∀x ∈[0,π4],tan x ≤m ”是真命题,∴m ≥1. ∴实数m 的最小值为1.13.(2023届甘肃武威凉州诊断二,16)已知命题p :(x -m )2<9,命题q :log 4(x +3)<1,若p 是q 的必要不充分条件,则实数m 的取值范围是 . 答案 [-2,0]解析 当命题p 为真命题时,由(x -m )2<9,得m -3<x <m +3.当命题q 为真命题时,由log 4(x +3)<1=log 44,得0<x +3<4,即-3<x <1.因为p 是q 的必要不充分条件,所以(-3,1)⫋(m -3,m +3),即{m −3≤−3,m +3≥1,解得-2≤m ≤0.所以实数m 的取值范围是[-2,0].14.(2022河北衡水第一中学调研一,16)若集合A ={x |x >2},B ={x |bx >1},其中b 为实数. (1)若A 是B 的充要条件,则b = ;(2)若A 是B 的充分不必要条件,则b 的取值范围是 .(答案不唯一,写出一个即可)答案 (1)12 (2)(12,+∞)(答案不唯一)解析 (1)由已知可得A =B ,则x =2是方程bx =1的解,且b >0,∴b =12.(2)若不等式bx >1对任意的x >2恒成立,则b >1x 对任意的x >2恒成立,因为1x ∈(0,12),则b ≥12.满足A 是B 的充分不必要条件,则b 的取值范围可以是(12,+∞)(答案不唯一).15.(2023届河南部分重点中学测试,14)已知p:∃x∈R,ax2+2x+1<0,q:a∈(1,+∞),则¬p是q的条件.(在充分不必要、必要不充分、充要、既不充分也不必要中选一个正确的填入)答案必要不充分解析由题意可知¬p:∀x∈R,ax2+2x+1≥0,若¬p是真命题,则{a>0,Δ=4−4a≤0,解得a≥1,所以¬p⇒/q,而q⇒¬p,所以¬p是q的必要不充分条件.。
高考数学10年真题专题解析—常用逻辑用语
常用逻辑用语年份题号考点考查内容2011课标卷理10命题及其关系平面向量模与夹角、命题真假判断2012新课标理2命题及其关系复数的概念与运算、命题真假的判定2014卷1理9全称量词与特称量词二元一次不等式表示的平面区域、全称命题与特称命题真假的判定卷2文3充分条件与必要条件导数与极值的关系、充要条件的判定2015卷1理3全称量词与特称量词特称命题的否定2017卷1理2命题及其关系复数的有关概念与运算2019卷2理7充分条件与必要条件面面平行的判定与性质、充要条件判定卷3文111.全称量词与特称量词2.简单逻辑联结词二元一次不等式表示的平面区域、全称命题与特称命题真假判断、含逻辑联结词命题的判定2020卷2文理16简单逻辑联结词含逻辑联结词命题真假的判断卷3理16命题及其关系命题真假的判断,三角函数图象及其性质考点出现频率2021年预测考点5命题及其关系4/102021年仍将与其他知识结合,考查命题及其关系、含简单逻辑连接词的敏体真假判断、特称命题与全称命题真假判断及其否定的书写、充要条件的判定,其中充要条件判定为重点.考点6简单逻辑联结词2/10考点7全称量词与特称量词3/10考点8充分条件与必要条件2/10考点5命题及其关系1.(2020新课标III 理16)关于函数()1sin sin f x x x=+.①()f x 的图像关于y 轴对称;②()f x 的图像关于原点对称;③()f x 的图像关于2x π=对称;④()f x 的最小值为2.其中所有真命题的序号是.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,∴函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误,故答案为:②③.2.(2017新课标Ⅰ)设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数1z ,2z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .1p ,3p B .1p ,4p C .2p ,3p D .2p ,4p 【答案】B 【解析】设i z a b =+(,a b ∈R ),则2211i (i)a b z a b a b-==∈++R ,得0b =,所以z ∈R ,1p 正确;2222(i)2i z a b a b ab =+=-+∈R ,则0ab =,即0a =或0b =,不能确定z ∈R ,2p 不正确;若z ∈R ,则0b =,此时i z a b a =-=∈R ,4p 正确.选B .3.(2011新课标)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,3p πθ+>⇔∈a b 2:p ||1+>a b ⇔2(,]3πθπ∈3:||1[0,3p πθ->⇔∈a b 4:p ||1->a b ⇔(,]3πθπ∈其中真命题是A .14,p p B .13,p p C .23,p p D .24,p p【答案】A 【解析】由1a b +==>得,1cos 2θ>-,20,3πθ⎡⎫⇒∈⎪⎢⎣⎭。
专题一 集合与常用逻辑用语 理科数学
理科数学专题一 集合与常用逻辑用语一、选择题1.(重庆理2)“x <-1”是“x 2-1>0”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要【答案】A2.(天津理2)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件 【答案】A3.(浙江理7)若,a b 为实数,则“01m ab <<”是11a b b a <或>的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A4.(四川理5)函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的 A .充分而不必要的条件 B .必要而不充分的条件 C .充要条件 D .既不充分也不必要的条件 【答案】B【解析】连续必定有定义,有定义不一定连续。
5.(陕西理1)设,a b 是向量,命题“若a b =-,则∣a ∣= ∣b ∣”的逆命题是A .若a b ≠-,则∣a ∣≠∣b ∣B .若a b =-,则∣a ∣≠∣b ∣C .若∣a ∣≠∣b ∣,则a b ≠-D .若∣a ∣=∣b ∣,则a = -b【答案】D6.(陕西理7)设集合M={y|y=2cos x —2sin x|,x ∈R},N={x||x —1i为虚数单位,x ∈R},则M ∩N 为 A .(0,1) B .(0,1]C .[0,1)D .[0,1]【答案】C7.(山东理1)设集合 M ={x|260x x +-<},N ={x|1≤x ≤3},则M ∩N =A .[1,2)B .[1,2]C .( 2,3]D .[2,3] 【答案】A8.(山东理5)对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要 【答案】B9.(全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b πθπ->⇔∈其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p【答案】A10.(辽宁理2)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M (A )M (B )N(C )I(D )∅【答案】A11.(江西理8)已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12PP=23P P ”是“12d d =”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C12.(湖南理2)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】A13.(湖北理9)若实数a,b 满足0,0,a b ≥≥且0ab =,则称a 与b互补,记(,),a b a b ϕ=-,那么(),0a b ϕ=是a 与b 互补的A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .即不充分也不必要的条件【答案】C14.(湖北理2)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =A .1[,)2+∞B .10,2⎛⎫ ⎪⎝⎭C .()0,+∞D .1(,0][,)2-∞+∞【答案】A15.(广东理2)已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x=,则A B ⋂的元素个数为 A .0 B .1 C .2 D .3【答案】C16.(福建理1)i 是虚数单位,若集合S=}{1.0.1-,则A .i S ∈B .2i S ∈C . 3i S ∈ D .2S i ∈【答案】B 17.(福建理2)若a ∈R ,则a=2是(a-1)(a-2)=0的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 C .既不充分又不必要条件 【答案】A 18.(北京理1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P ,则a 的取值范围是 A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞) 【答案】C 19.(安徽理7)命题“所有能被2整聊的整数都是偶数”的否定是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的整数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个能被2整除的数都不是偶数 【答案】D20.(广东理8)设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的 【答案】A 二、填空题21.(陕西理12)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = 【答案】3或422.(安徽理8)设集合{}1,2,3,4,5,6,A =}8,7,6,5,4{=B 则满足S A ⊆且S B φ≠ 的集合S 为 (A )57 (B )56(C )49(D )8【答案】B23.(上海理2)若全集U R =,集合{|1}{|0}A x x x x =≥≤ ,则U C A = 。
理科数学2010-2019高考真题十年分类专题一 集合与常用逻辑用语 第二讲常用逻辑用语(A组)答案
专题一 集合与常用逻辑用语第二讲 常用逻辑用语(A 组)答案部分2019年1.解析:对于A ,α内有无数条直线与β平行,则α与β相交或βα∥,排除; 对于B ,α内有两条相交直线与β平行,则βα∥;对于C ,α,β平行于同一条直线,则α与β相交或βα∥,排除;对于D ,α,β垂直于同一平面,则α与β相交或βα∥,排除.故选B .2010-2018年一、选择题1.B 【解析】设i z a b =+(,a b ∈R ),则2211i (i)a b z a b a b-==∈++R ,得0b =,所以z ∈R ,1p 正确;2222(i)2i z a b a b ab =+=-+∈R ,则0ab =,即0a =或0b =,不能确定z ∈R ,2p 不正确;若z ∈R ,则0b =,此时i z a b a =-=∈R ,4p 正确.选B .2.C 【解析】命题p 是一个特称命题,其否定是全称命题.3.C 【解析】设3()f x x =,(0)0f '=,但是()f x 是单调增函数,在0x =处不存在极值,故若p 则q 是一个假命题,由极值的定义可得若q 则p 是一个真命题,故选C .4.A 【解析】由1a b +==>得, 1cos 2θ>-, 20,3πθ⎡⎫⇒∈⎪⎢⎣⎭。
由1a b -==>得1cos 2θ< ,3πθπ⎛⎤⇒∈ ⎥⎝⎦.选A . 5.C 【解析】∵1p 是真命题,则1p ⌝为假命题;2p 是假命题,则2p ⌝为真命题,∴1q :12p p ∨ 是真命题,2q :12p p ∧是假命题,3q :()12p p ⌝∨为假命题,4q :()12p p ∧⌝为真命题,故选C .二、填空题 无。
十年高考理科数学真题 专题一 集合与常用逻辑用语 二常用逻辑用语及答案(强烈推荐)
专题一 集合与常用逻辑用语第二讲 常用逻辑用语2019年1.(2019全国Ⅱ理7)设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面 2.(2019北京理7)设点A ,B ,C 不共线,则“与的夹角是锐角”是“AB AC BC +>uu u r uuu r uu u r ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件3.(2019天津理3)设x ∈R ,则“250x x -<”是“|1|1x -<”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 2010-2018年一、选择题1.(2018北京)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(2018天津)设x ∈R ,则“11||22x -<”是“31x <”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(2018上海)已知a R ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件4.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.(2017新课标Ⅰ)设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数1z ,2z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p6.(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D .既不充分也不必要条件7.(2017天津)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件8.(2017山东)已知命题p :0x ∀>,ln(1)0x +>;命题q :若a b >,则22a b >,下列命题为真命题的是A .p q ∧B .p q ⌝∧C .p q ⌝∧D .p q ⌝⌝∧9.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(2016年北京)设,a b 是向量,则“||=||a b ”是“||||+=-a b a b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.(2016年山东)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.(2016年天津)设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件13.(2015新课标)设命题p :n N ∃∈,22n n >,则p ⌝为 A .2,2nn N n ∀∈> B .2,2n n N n ∃∈≤ C .2,2nn N n ∀∈≤ D .2,2n n N n ∃∈= 14.(2015安徽)设p :12x <<,q :21x>,则p 是q 成立的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件15.(2015重庆)“1x >”是“12log (2)0x +<”的A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件16.(2015天津)设x R ∈ ,则“21x -< ”是“220x x +-> ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件17.(2015浙江)命题“**N ,()N n f n ∀∈∈ 且()f n n ≤的否定形式是A .**N ,()N n f n ∀∈∉且()f n n >B .**N ,()N n f n ∀∈∉或()f n n >C .**00N ,()N n f n ∃∈∉且00()f n n >D .**00N ,()N n f n ∃∈∉或00()f n n >18.(2015北京)设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件19.(2015陕西)“sin cos αα=”是“cos20α=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要20.(2014新课标2)函数()f x 在0=x x 处导数存在,若()00p f x '=:,0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件21.(2014广东)在ABC ∆中,角A ,B ,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件22.(2014福建)命题“[)30,.0x x x ∀∈+∞+≥”的否定是 A .()30,.0x x x ∀∈+∞+< B .()3,0.0x x x ∀∈-∞+≥ C .[)30000,.0x x x ∃∈+∞+< D .[)30000,.0x x x ∃∈+∞+≥ 23.(2014浙江)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件24.(2014湖南)已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >.在命题①p q ∧ ②p q ∨ ③()p q ∧⌝ ④()p q ⌝∨中,真命题是A .①③B .①④C .②③D .②④25.(2014陕西)原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是A .真,真,真B .假,假,真C .真,真,假D .假,假,假26.(2014江西)下列叙述中正确的是A .若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤B .若,,a b c R ∈,则22""ab cb >的充要条件是""a c >C .命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”D .l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ27.(2013安徽)“0a ≤”是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件28.(2013北京)“ϕπ=”是“曲线()sin 2y x ϕ=+过坐标原点的”A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 29.设z 是复数, 则下列命题中的假命题是A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <30.(2013浙江)已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件31.(2013重庆)命题“对任意x R ∈,都有20x ≥”的否定为A .对任意x R ∈,都有20x <B .不存在x R ∈,都有20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x < 32.(2013四川)设x Z ∈,集合A 是奇数集,集合B 是偶数集,若命题p :,2x A x B ∀∈∈,则A .p ⌝:,2x A xB ∀∈∉ B .p ⌝:2x A x B ∀∉∉,C .p ⌝:2x A x B ∀∉∈,D .p ⌝:2x A x B ∀∈∉,33.(2013湖北)在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A .()()p q ⌝∨⌝B . ()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨ 34.(2012湖北)命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q 35.(2012湖南)命题“若4πα=,则tan 1α=”的逆否命题是 A .若4πα≠,则tan 1α≠ B .若4πα=,则tan 1α≠C .若tan 1α≠,则4πα≠ D .若tan 1α≠,则4πα=36.(2012安徽)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D . 即不充分不必要条件37.(2012福建)下列命题中,真命题是A .00,0xx R e ∃∈… B .2,2x x R x ∀∈> C .0a b +=的充要条件是1a b=- D .1a >,1b >是1ab >的充分条件 38.(2012北京)设,a b ∈R ,“0a =”是“复数i a b +是纯虚数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件39.(2012湖北)命题“存在一个无理数,它的平方是有理数”的否定是A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数40.(2012山东)设0>a 且1≠a ,则“函数()x a x f =在R 上是减函数”是“()()32xa x g -=在R 上是增函数”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件41.(2012山东)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是A .p 为真B .q ⌝为假C .p q ∧为假D .p q ∨为真42.(2011山东)已知,,a b c R ∈,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是A .若3a b c ++≠,则222a b c ++<3B .若3a b c ++=,则222a b c ++<3C .若3a b c ++≠,则222a b c ++≥3D .若222a b c ++≥3,则3a b c ++=43.(2011新课标)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p πθ+>⇔∈a b 2:p ||1+>a b ⇔2(,]3πθπ∈ 13:||1[0,)3p πθ->⇔∈a b 4:p ||1->a b ⇔(,]3πθπ∈ 其中真命题是A .14,p pB .13,p pC .23,p pD .24,p p44.(2011陕西)设,a b 是向量,命题“若=-a b ,则=a b ”的逆命题是A .若≠a b ,则≠a bB .若=-a b ,则≠a bC .若≠a b ,则≠a bD .若=a b ,则=-a b45.(2011湖南)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件46.(2011安徽)命题“所有能被2整聊的整数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的数都是偶数D .存在一个能被2整除的数都不是偶数47.(2010新课标)已知命题1p :函数22x x y -=-在R 为增函数,2p :函数22x x y -=+ 在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是A .1q ,3qB .2q ,3qC .1q ,4qD .2q ,4q48.(2010辽宁)已知a >0,则0x 满足关于x 的方程ax b =的充要条件是A .220011,22x R ax bx ax bx ∃∈-≥- B .220011,22x R ax bx ax bx ∃∈-≤- C .220011,22x R ax bx ax bx ∀∈-≥- D .220011,22x R ax bx ax bx ∀∈-≤- 二、填空题49.(2018北京)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________.50.(2015山东)若“x ∀[0,]4π∈,tan x m ≤”是真命题,则实数m 的最小值为 .51.(2013四川)设n P P P ,,,⋯⋯21为平面a 内的n 个点,在平面a 内的所有点中,若点P 到点n P P P ,,,⋯⋯21的距离之和最小,则称点P 为点12n P P P ⋅⋅⋅,,,的一个“中位点”,例如,线段AB 上的任意点都是端点A ,B 的中位点,现有下列命题:①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点;其中的真命题是________________(写出所有的真命题的序号).52.(2011陕西)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = .53.(2010安徽)命题“存在x R ∈,使得2250x x ++=”的否定是 . 专题一 集合与常用逻辑用语第二讲 常用逻辑用语答案部分2019年1.解析:对于A ,α内有无数条直线与β平行,则α与β相交或βα∥,排除; 对于B ,α内有两条相交直线与β平行,则βα∥;对于C ,α,β平行于同一条直线,则α与β相交或βα∥,排除;对于D ,α,β垂直于同一平面,则α与β相交或βα∥,排除.故选B .AC BC AB AC AB AC +>⇔+>-u r uuu r uu u r uu u r uuu r uu u r uuu r220AB AC AB AC AB AC ⇔+>-⇔⋅>⇔uu u r “AB uu u r 与AC uuu r 的夹角为锐角”.所以“AB uu u r 与AC uuu r AC BC +>u r uuu r uu u r 的充要条件.故选C .11-<,得02x <<,因为05x <<不能推出02x <<, 但02x <<可以推出05x <<,所以05x <<是02x <<的必要不充分条件, 即0x <<11-<的必要不充分条件. 故选B .2010-2018年1.C 【解析】∵33-=+a b a b ,∴22(3)(3)-=+a b a b ,∴2269-⋅+=a a b b 2296+⋅+a a b b ,又||||1==a b ,∴0⋅=a b ,∴⊥a b ;反之也成立,故选C .2.A 【解析】通解 由11||22x -<,得01x <<,所以301x <<;由31x <, 得1x <,不能推出01x <<.所以“11||22x -<”是“31x <”的充分而不必要条件,故选A .优解 由11||22x -<,得01x <<,所以301x <<,所以充分性成立; 取14x =-,则1131||4242--=>,311()1464-=-<,所以必要性不成立.故选A . 3.A 【解析】由1>a 可得11<a 成立;当11<a ,即1110--=<a a a , 解得0<a 或1>a ,推不出1>a 一定成立;所以“1a >”是“11a<”的充分非必要条件.故选A .5.B 【解析】设i z a b =+(,a b ∈R ),则2211i (i)a b z a b a b -==∈++R ,得0b =,所以z ∈R ,1p 正确;2222(i)2i z a b a b ab =+=-+∈R ,则0ab =,即0a =或0b =,不能确定z ∈R ,2p 不正确;若z ∈R ,则0b =,此时i z a b a =-=∈R ,4p 正确.选B .6.C 【解析】∵655465()()S S S S a a d ---=-=,当0d >,可得465+2S S S >;当465+2S S S >,可得0d >.所以“0d >”是“465+2S S S >” 充分必要条件,选C .7.A 【解析】由ππ||1212θ-<,得06πθ<<,所以1sin 2θ<,反之令0θ=,有1sin 2θ< 成立,不满足ππ||1212θ-<,所以“ππ||1212θ-<”是“1sin 2θ<”的充分而不必要条件.选A .8.B 【解析】0x ∀>,11+>x ,所以ln(1)0x +>,所以p 为真命题;若0a b >>,则22a b >,若0b a <<,则0a b <-<-,所以22a b <,所以q 为假命题.所以p q ⌝∧为真命题.选B .9.A 【解析】因为,m n 为非零向量,所以||||cos ,0⋅=<><m n m n m n 的充要条件是cos ,0<><m n .因为0λ<,则由λ=m n 可知,m n 的方向相反,,180<>=o m n ,所以cos ,0<><m n ,所以“存在负数λ,使得λ=m n ”可推出“0⋅<m n ”;而0⋅<m n 可推出cos ,0<><m n ,但不一定推出,m n 的方向相反,从而不一定推得“存在负数λ,使得λ=m n ”,所以“存在负数λ,使得λ=m n ”是“0⋅<m n ”的充分而不必要条件.10.D 【解析】取0-≠a =b ,则||||0=≠a b ,|||0|0+==a b ,|||2|0-=≠a b a ,所以||||+≠-a b a b ,故由||||=a b 推不出||||+=-a b a b .由||||+=-a b a b , 得22||||+=-a b a b ,整理得0⋅=a b ,所以⊥a b ,不一定能得出||||=a b ,故由||||+=-a b a b 推不出||||=a b ,故“||||=a b ”是“||||+=-a b a b ”的既不充分也不必要条件,故选D .11.A 【解析】若直线,a b 相交,设交点为P ,则,P a P b ∈∈,又,a b αβ⊂⊂,所以 ,P P αβ∈∈,故,αβ相交.反之,若,αβ相交,则,a b 可能相交,也可能异面或平行.故“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A .12.C 【解析】由题意得,111(0)n n a a q a -=>,222121211n n n n a a a qa q ---+=+= 221(1)n a q q -+,若0q <,因为1q +得符号不定,所以无法判断212n n a a -+的符号; 反之,若2120n n a a -+<,即2(1)1(1)0n a q q -+<,可得10q <-<,故“0q <”是“对任意的正整数n ,2120n n a a -+<”的必要不充分条件,故选C.13.C 【解析】命题p 是一个特称命题,其否定是全称命题.14.A 【解析】由0:22x q >,解得0x >,易知,p 能推出q ,但q 不能推出p ,故p 是q成立的充分不必要条件,选A .15.B 【解析】12log (2)0211x x x +<⇔+>⇔>-,因此选B .16.A 【解析】解不等式|2|1x -<可得,13x <<,解不等式220x x +->可得,2x <-或1x >,所以“21x -< ”是“220x x +-> ”的充分而不必要条件.17.D 【解析】 根据全称命题的否定是特称命题,因此命题“**N ,()N n f n ∀∈∈且 ()f n n ≤”的否定为“**00N ,()N n f n ∃∈∉或00()f n n >”可知选D .18.B 【解析】因为α,β是两个不同的平面,m 是直线且m α⊂.若“m βP ”,则平面、αβ 可能相交也可能平行,不能推出αβ∥,反过来若αβ∥,m Ìα,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.19.A 【解析】因为22cos 2cos sin 0ααα=-=,所以sin cos αα=或sin cos αα=-,因为“sin cos αα=”⇒“cos20α=”,但“sin cos αα=”⇐/“cos20α=”,所以“sin cos αα=”是“cos20α=”的充分不必要条件,故选A .20.C 【解析】设3()f x x =,(0)0f '=,但是()f x 是单调增函数,在0x =处不存在极值,故若p 则q 是一个假命题,由极值的定义可得若q 则p 是一个真命题,故选C .21.A 【解析】由正弦定理sin sin a b A B=,故“b a ≤”⇔“B A sin sin ≤”. 22.C 【解析】 把量词“∀”改为“∃”,把结论否定,故选C .23.A 【解析】 当1a b ==时,22()(1)2a bi i i +=+=,反之,若i bi a 2)(2=+,则有1a b ==- 或1a b ==,因此选A .24.C 【解析】由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p q ∧为假命题,②p q ∨为真命题,③q ⌝为真命题,则()p q ∧⌝为真命题,④p ⌝为假命题,则()p q ⌝∨为假命题,所以选C .25.A 【解析】 从原命题的真假人手,由于12n n n a a a ++<{}1n n n a a a +⇔<⇔为递减数列,即原命题和否命题均为真命题,又原命题与逆否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A .26.D 【解析】 2"40"b ac -≤推不出2"0"ax bx c ++≥,因为与a 的符号不确定,所以A不正确;当20b =时,由""a c >推不出22""ab cb >,所以B 不正确;“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有0x <”,所以C 不正确.选D .27.C 【解析】当a =0 时,()f x x =,∴()f x 在区间()0,+∞内单调递增;当0a <时,()1f x a x x a ⎛⎫=- ⎪⎝⎭中一个根10a <,另一个根为0,由图象可知()f x 在区间 ()0,+∞内单调递增;∴"0"a ≤是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的充分条件,相反,当()1f x a x x a ⎛⎫=- ⎪⎝⎭在区间(0,+)∞内单调递增,∴0a =或 10a<,即0a ≤;"0"a ≤是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的必要条件,故前者是后者的充分必要条件.所以选C .28.A 【解析】当ϕπ=时,sin 2y x =-过原点;()sin 2y x ϕ=+过原点,则,,0,,ϕππ=⋅⋅⋅-⋅⋅⋅等无数个值.选A .29.C 【解析】abi b a z R b a bi a z 2,,222+-=⇒∈+=设.对选项A: 为实数则若z b z ⇒=≥0,02,所以为实数z 为真.对选项B: 为纯虚数且则若z b a z ⇒≠=<0,0,02,所以为纯虚数z 为真.对选项C: 00,0,2<⇒≠=z b a z 且则为纯虚数若,所以02≥z 为假. 对选项D: 00,0,2<⇒≠=z b a z 且则为纯虚数若,所以02<z 为真. 所以选C .30.B 【解析】由f (x )是奇函数可知f (0)=0,即cos φ=0,解出φ=π2+k π,k ∈Z ,所以选项B 正确.31.D 【解析】否定为:存在0x R ∈,使得200x <,故选D .32.C 【解析】由命题的否定易知选C .33.A 【解析】“至少有一位学员没有降落在指定范围”即:“甲或乙没有降落在指定范围内”.34.D 【解析】存在性命题的否定为“∃”改为“∀”,后面结论加以否定,故为300,R x C Q x Q ∀∈∉.35.C 【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若4πα=,则tan 1α=”的逆否命题是 “若tan 1α≠,则4πα≠”.36.A 【解析】①,,,b m m b αβαββ⊥⊥⋂=⊂,b a b a αα⇒⊥⊂⇒⊥②如果//a m ;∵b m ⊥,一定有a b ⊥但不能保证b α⊥,既不能推出αβ⊥37.D 【解析】∵,0xx R e ∀∈>,故排除A ;取x =2,则2222=,故排除B ;0a b +=,取0a b ==,则不能推出1a b=-,故排除C ;应选D . 38.B 【解析】0a =时i a b +不一定是纯虚数,但i a b +是纯虚数0a =一定成立,故“0a =”是“复数i a b +是纯虚数”的必要而不充分条件.39.B 【解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”,故选B .40.A 【解析】p :“函数()x a x f =在R 上是减函数 ”等价于10<<a ;q :“函数()()32x a x g -=在R 上是增函数”等价于02>-a ,即,20<<a 且a ≠1,故p 是q 成立的充分不必要条件.选A .41.C 【解析】命题p 为假,命题q 也为假,故选.42.A 【解析】3a b c ++=的否定是3a b c ++≠,222a b c ++≥3的否定是222a b c ++<3,故选A .43.A 【解析】由1a b +==>得, 1cos 2θ>-, 20,3πθ⎡⎫⇒∈⎪⎢⎣⎭。
【十年高考(理数)2010-2019】一 集合与常用逻辑用语 第一讲集合(附答案)
A.[0,1] B. (0,1]
C.[0,1)
D. (−∞,1]
4
千里之行始于足下
实用文档 用心整理
28.(2015 天津)已知全集U = {1, 2, 3, 4,5, 6, 7,8} ,集合 A = {2,3, 5, 6} ,集合
B = {1,3, 4, 6, 7} ,则集合 A I ðU B =
2.(2019 全国Ⅱ理)设集合 A={x|x2-5x+6>0},B={ x|x-1<0},则 A∩B=
A.(-∞,1)
B.(-2,1)
C.(-3,-1)
D.(3,+∞)
3.(2019 全国Ⅲ理)已知集合 A = {−1, 0,1, 2},B = {x x2 ≤ 1},则 A I B =
A. {−1, 0,1}
D.{1, 2,3, 4}
2010-2018 年
一、选择题
1.(2018 北京)已知集合 A = {x || x |< 2}, B = {−2, 0,1, 2},则 A I B =
A.{0,1} B.{–1,0,1} C.{–2,0,1,2} D.{–1,0,1,2}
1 千里之行始于足下
实用文档 用心整理
A.{−1}
B.{0,1}?
C.{−1, 2,3} D.{−1, 0,1,3}
6.(2019 天 津 理 1) 设 集 合 A = {−1,1, 2, 3,5}, B = {2,3, 4}, C = {x ∈ R |1„ x < 3} , 则
(AI C)UB =
A.{2}
B. {2, 3}
C.{−1, 2,3}
3 千里之行始于足下
实用文档 用心整理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A .充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D .既不充分也不必要条件
11.(2016 年山东)已知直线 a, b 分别在两个不同的平面 α,β内,则 “直线 a 和直线 b 相
交 ”是 “平面 α和平面 β相交 ”的
A .充分不必要条件 C.充要条件
B.必要不充分条件 D .既不充分也不必要条件
D .既不充分也不必要条件
17.( 2015 浙江)命题“ n N * , f (n) N * 且 f (n) ≤ n 的否定形式是
A . n N * , f (n) N * 且 f ( n) n
B. n N * , f (n) N * 或 f (n) n
*
*
C. n0 N , f (n0) N 且 f (n0) n0
列命题为真命题的是
A. p q
B. p q
C. p q
D. p q
9.( 2017 北京)设 m , n 为非零向量,则 “存在负数 ,使得 m n ”是 “m n 0 ”的
A .充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D .既不充分也不必要条件
10.( 2016 年北京)设 a, b 是向量,则“ |a|=|b| ”是“ | a b | | a b | ”的
12.( 2016 年天津)设 { an} 是首项为正数的等比数列,公比为 q ,则 “q 0 ”是 “对任意的正
整数 n , a2n 1 a2n 0 ”的(
)
A .充要条件
B.充分而不必要条件
C.必要而不充分Biblioteka 件D .既不充分也不必要条件
13.( 2015 新课标)设命题
p: n
N
,
2
n
n
2 ,则
是“ S4 +S6 2S5 ”的
A . 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D .既不充分也不必要条件
7.( 2017 天津)设
R ,则“ |
π|
π
”是“
sin
12 12
1
”的
2
A .充分而不必要条件
B.必要而不充分条件
C.充要条件
D .既不充分也不必要条件
8.( 2017 山东)已知命题 p : x 0 , ln( x 1) 0 ;命题 q :若 a b ,则 a2 b2 ,下
A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件
一、选择题
2010-2018 年
1. (2018 北京 ) 设 a , b 均为单位向量,则 “a 3b 3a b ”是 “a ⊥ b ”的
A .充分而不必要条件 C.充分必要条件
B.必要而不充分条件 D .既不充分也不必要条件
15.( 2015 重庆)“ x 1 ”是“ log 1 (x 2) 0 ”的
2
A .充要条件
B.充分而不必要条件
C.必要而不充分条件
D .既不充分也不必要条件
16.( 2015 天津)设 x R ,则“ x 2 1 ”是“ x2 x 2 0 ”的
A .充分而不必要条件
B.必要而不充分条件
C.充要条件
p3 :若复数 z1 , z2 满足 z1z2 R ,则 z1 z2 ;
p4 :若复数 z R ,则 z R .
其中的真命题为
A . p1 , p3
B . p1 , p4
C. p2 , p3
D. p2 , p4
6.( 2017 浙江)已知等差数列 an 的公差为 d ,前 n 项和为 Sn ,则“ d 0 ”
D . α, β垂直于同一平面
uuur uuru 的夹角是锐角 ”是 “AB AC
uuur BC ”
的 ( A )充分而不必要条件 ( C)充分必要条件
( B)必要而不充分条件 ( D)既不充分也不必要条件
3.( 2019 天津理 3)设 x R ,则“ x2 5x 0 ”是“ | x 1| 1 ”的
D. n0 N * , f (n0) N * 或 f (n0 ) n0
18.( 2015 北京)设 , 是两个不同的平面, m 是直线且 m? .“ m ∥ ”是“ ∥ ”
的
A .充分而不必要条件
B .必要而不充分条件
C.充分必要条件
D .既不充分也不必要条件
19.( 2015 陕西)“ sin
A .充分不必要条件
专题一 集合与常用逻辑用语
第二讲 常用逻辑用语
2019 年
1.( 2019 全国Ⅱ理 7)设 α, β为两个平面,则 α∥ β的充要条件是
A .α内有无数条直线与 β平行
B . α内有两条相交直线与 β平行
C. α, β平行于同一条直线
2.( 2019 北京理 7)设点 A, B, C不共线,则 “ 与
D. p 既不是 q 的充分条件,也不是 q 的必要条件
21.( 2014 广东)在 ABC 中,角 A , B , C 所对应的边分别为 a,b, c, 则“ a b ”是
2. (2018 天津 ) 设 x
R ,则“ | x
1|
1
”是“
x3
1”的
22
A .充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
3. (2018 上海 ) 已知 a R ,则“ a 1”是“ 1 1”的( ) a
A .充分非必要条件
B .必要非充分条件
C.充要条件
D .既非充分又非必要条件
4.(2018 浙江 ) 已知平面 ,直线 m , n 满足 m
,n
,则“ m ∥ n ”是“ m ∥ ”
的
A .充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
5.( 2017 新课标Ⅰ)设有下面四个命题
1 p1 :若复数 z 满足 z R ,则 z R ; p2 :若复数 z 满足 z2 R ,则 z R ;
p为
A . n N , n 2 2n
B. n N , n2 ≤ 2n
C. n N , n2 ≤ 2n
D . n N , n2 = 2n
14.( 2015 安徽)设 p : 1 x 2 , q : 2x 1 ,则 p 是 q 成立的
A .充分不必要条件
B.必要不充分条件
C.充分必要条件
D .既不充分也不必要条件
cos ”是“ cos2 0 ”的
B .必要不充分条件
C.充分必要条件
D .既不充分也不必要
20.( 2014 新课标 2)函数 f ( x) 在 x=x0 处导数存在, 若 p:f x0 0 , q : x x0 是 f (x)
的极值点,则
A . p 是 q 的充分必要条件 B. p 是 q 的充分条件,但不是 q 的必要条件 C. p 是 q 的必要条件,但不是 q 的充分条件