代数第1册(下)第7章《整式的乘除》基础测试题
(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(1)
A.﹣4B.±4C.4D.±8
10.若 ,则 的值等于( )
A.37B.27C.25D.44
11.如 , ,则 ( )
A.-11B.11
C.-7D.7
12.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是()
A. B.
C. D.
10.A
解析:A
【分析】
利用完全平方公式进行运算即可得.
【详解】
,
,即 ①,
又 ,
②,
由① ②得: ,
即 ,
故选:A.
【点睛】
本题考查了利用完全平方公式进行运算求值,熟记公式是解题关键.
11.D
解析:D
【分析】
根据 直接代入求值即可.
【详解】
解:当 , ,时,
=9-2=7.
故选:D.
【点睛】
本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键
∵ , ,
∴x+y= ,
∴
=
=
=20,
故选:A.
【点睛】
此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.
7.C
解析:C
【分析】
表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.
【详解】
解:如图,大正方形的边长是a,三角形①的两条直角边长都为a,三角形②的一条直角边为a-b,另一条直角边为b,
解析:6
【分析】
根据平方差公式计算.
【详解】
( +1)( ﹣1)=7-1=6,
北师大版七年级下册数学第一章《整式的乘除》单元测试卷(含答案)
《整式的乘除》单元测试卷一、选择题1. 一个多项式与122+-x x 的和是23-x ,则这个多项式为 ( )A. 352+-x xB. 12-+-x xC. 352-+-x xD. 1352--x x2. 下列计算正确的是( ) A. 42232x x x =+ B. 5233)3(a a a -=-⋅C. 6326)2(x x -=-D. 223)(3ab b a -=-⋅3.下列变形错误的是( )A.-x-y=-(x+y)B.(a-b)(b-c)=-(b-a)(b-c)C.–x-y+z=-(x+y+z)D.(a-b)2=(b-a)24. 一个多项式与122+-x x 的和是23-x ,则这个多项式为()A. 352+-x xB. 12-+-x xC. 352-+-x xD. 1352--x x5. 原产量n 吨,增产30%之后的产量应为( )A. 吨n %)301(-B. 吨(n )%301+C. 吨n +%30D. 吨n %306. 下列计算正确的是( )A. 42232x x x =+B. 5233)3(a a a -=-⋅C. 6326)2(x x -=-D. 223)(3ab b a -=-⋅7.各式中正确的是 ( )A.2-2=4B.(32)2=35C.-23=—8D.x 8x 4=x 28.计算(2a+b )(2a-b )的结果是 ( )A.4a 2-b 2B.b 2-4a 2C.2a 2-b 2D.b 2-2a 29.下列运算正确的是 ( )A.(a+b )2=a 2+b 2B.(a-b )2=a 2-b 2C.(a+m )(b+n )=ab+mnD.(m+n )(-m+n )=-m 2+n 210.若(2a+3b )2=(2a-3b )2+(…)成立,则括号内的式子是 ( )A .6abB .24abC .12abD .-24ab二、填空题11. 计算:=⋅-2323)()(b a a _______________.12. 计算:=÷-b a c b a 435155_______________.13. 多项式362++kx x 是另一个多项式的平方,则=k _______________.14. 代数式y x 23+的值是3-,则y x 692++的值是_______________.15. 如果63)122)(122=-+++y x y x (,则y x +的值为_______________.16. 若1=+b a ,2015=-b a ,则=-22b a _______________. 17. 计算:=+÷+)1()4423x x x (_______________. . 若2.3=x ,8.6=y ,则=++222y xy x _______________. 三、简答题18. 524232)()()(a a a ÷⋅19. )9)(9(-++-y x y x20. )4()]43(3)43[(2y y x x y x -÷+-+21. 因式分解:)1(1x x x +++22. 因式分解:22212z y xy x -+--23. 因式分解:8306251022++-+-y x y xy x四、解答题24. 已知:3-==y x ,求:3)(52)(23)(53)(2122+-+---+-y x y x y x y x 的值.25. 根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为_______________.26. 已知a 、b 、c 是△ABC 的三边,且满足关系式222222b bc ab c a -+=+,试说明△ABC 是等边三角形.参考答案一、选择题1-10 CBCCB BCADB二、填空题11、67b a - 12、c ab 231-13、12± 14、7- 15、4±16、2015 17、x 4三、简答题18、4a 19、811822-+-y y x 20、y x 43-- 21、2)1(x + 22、))((z y x z y x +--- 23、)45)(25(----y x y x 四、解答题24、9- 25、426、Θ原式0)()(22=-+-=c b b a ∴c b a ==,∴ABC 是等边三角形.。
整式的乘除和因式分解单元测试题
整式的乘除与因式分解复习试题(一)姓名得分1219.已知a3,贝V a 2的值是 ___________________ 。
a a10 .如果 2a+3b=1,那么 3-4a-6b= _____________ 。
二、选择题(每题3分,共30分) 11、下列计算错误的个数是()①(x 4-y 4) —(x'-y 2) =x -y 2 ;②(-2a )3=-8a 5;③(ax+by)十(a+b)=x+y; 2mm2④ 6x 十 2x =3xA. 4 B3 C. 2 D. 112. 已知被除式是 x 3+2x 2— 1,商式是 x ,余式是— 1,则除式是()A 、 2 2 x +3x — 1B 、x +2xC 、x 2— 1D 2 、x — 3x+1 13. 若 3x =a , 3y =b ,则 3x y等于( )A 、 aB 、 abC 、 b 2abD 1、a+b14.如(x+m)与(x+3)的乘积中不含 x 的一次项,贝U m 的值为( )A. - 3B. 3C. 0D. 115. 一个正方形的边长增加了2cm ,面积相应增加了32 cm 2,则这个正方形的边长为()A 、6cmB 、5cmC 、8cmD 、7cm20、已知多项式2x 2 bx c 分解因式为2(x-3)(x ,1),则b,c 的值为( )A 、b=3,c~-1B 、b--6,c=2C 、b--6,c--4D 、b~-4,c--6 三、解答题:(共60分) 1.计算题、填空(每题3分,共30分)m n m+n a =4,a =3, a = __ _2 2 (_—m 十n)(—一n _n) =_ 33 — 2 2 3若 A - 5ab =-7ab c ,则 1.3. 5. (2x — 1)( — 3x+2)= 2 3 2.( x y)=3 22 3 6.右(ax ■ b)( x • 2) = x— [[. 2&右 a —2 +bA= ________ ,若 4x yz 十 B=-8x,贝V B=_ -4,则 a b = _2b 1 =0,贝U a =16. 一个多项式分解因式的结果是 A 、b 6-4 B 4-b 17. 下列各式是完全平方式的是(21 2A 、 x —XB 1 x43 3(b 2)(2 —b ),C 、b 6 4) 那么这个多项式是( )c 、2x 2x -118. 19. 把多项式m 2 (a 「2) ■ m (2 —a )分解因式等于(2A 、(a —2)( m ' m )B 、 下列多项式中,含有因式2 2y — 2xy —3x22(y -1) -(y -1)2(a -2)(m -m) C 、m(a-2)(m-1) D 、m(a-2)(m+1)(y - 1)的多项式是( )2 2B 、(y -1) -(y -1)2D (y ■ 1) - 2(y -1)11⑴(-1) 2+ (-2 ) -1 — 5 +( 3.14 - n ) 0(4 分)1⑵ X 2 -(x - 2)(x 「2)—( x )2 (4 分)x⑶[(x+y ) 2 —( x — y ) 2] +(2xy) (4 分)2 2⑷ 简便方法计算①98 X 102 — 99 (4分)②99 198 1 (4分)ab = 2,求—a 3b ■ a 2 b 2 ■ — ab 3 的值。
《整式的乘除与因式分解》培优训练及答案
整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。
(必考题)初中数学七年级数学下册第一单元《整式的乘除》检测题(包含答案解析)
一、选择题1.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的四个结论: ①2(2)6⊗-=; ②a b b a ⊗=⊗;③若0a b ⊗=,则0a =; ④若0a b +=,则()()2a a b b ab ⊗+⊗=. 其中正确结论的个数是( ) A .1B .2C .3D .42.已知4,6m n x x ==,则2-m n x 的值为( ) A .9B .34C .83D .433.若计算关于x 的代数式()2(1)2x x mx -++得2x 的系数为3,则m =( ) A .4-B .2-C .2D .44.下列运算正确的是( )A .3333x x -=B .()4410a a a ÷=≠ C .()222424mn m n -=-D .()232a b abab ÷-=5.如图,长为()cm y ,宽为()cm x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长是5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+; ③若x 为定值,则阴影A 和阴影B 的周长和为定值; ④当15x =时,阴影A 和阴影B 的面积和为定值. A .①③④ B .②④ C .①③ D .①④6.黄种人头发直径约为85微米,已知1纳米=10-3微米,数据“85微米”用科学记数法可以表示为( ) A .38.510-⨯纳米B .38.510⨯纳米C .48.510⨯纳米D .48.510-⨯纳米7.下列计算中,错误的是( ) A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+8.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .129.下列计算正确的是( ) A .(a +b )(a ﹣2b )=a 2﹣2b 2 B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 210.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b += 11.数151025N =⨯是( ) A .10位数 B .11位数C .12位数D .13位数12.计算()233a a ⋅的结果是( ) A .9aB .8aC .11aD .18a二、填空题13.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________. 14.已知,a b 满足1,2a b ab -==,则a b +=____________ 15.若多项式225a ka ++是完全平方式,则k 的值是______. 16.若代数式21x mx ++是完全平方式,则m 的值为______.17.已知8m a =,2n a =.则m n a -=___________,m 与n 的数量关系为__________. 18.观察下列各式: (a ﹣b )(a +b )=a 2﹣b 2 (a ﹣b )(a 2+ab +b 2)=a 3﹣b 3 (a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4 ………这些等式反映出多项式乘法的某种运算规律.当n 为正整数,且n ≥2时,请你猜想: (a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=______________.19.计算20202019133⎛⎫⨯ ⎪⎝⎭的结果是_20.若(x-2)(x+3)=x 2+px+q,则p+q=____________.三、解答题21.计算:(1)()22142xy z x yz--÷-(2)()()()221214x x x x x +----22.图1是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长等于 .(2)观察图2你能写出下列三个代数式(m +n )2,(m ﹣n )2,mn 之间的等量关系 .(3)运用你所得到的公式,计算若mn =﹣2,m ﹣n =4,求: ①(m +n )2的值. ②m 4+n 4的值.(4)用完全平方公式和非负数的性质求代数式x 2+2x +y 2﹣4y +7的最小值. 23.如图1是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边,两个小正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图2).用两种不同的方法列代数式表示图2中的大正方形面积: 方法一:________________;方法二:________________;(直接把答案填写在答题卡的横线上)(2)观察图2,试写出()2a b +,2a ,2ab ,2b 这四个代数式之间的等量关系:________________.(直接把答案填写在答题卡的横线上)(3)请利用(2)中等量关系解决问题:若图1中一个三角形面积是6,图2的大正方形面积是64,求22a b +的值.24.已知正方形ABCD 的边长为b ,正方形EFGH 的边长为()a b a >.(1)如图1,点H 与A 重合,点E 在边AB 上,点G 在边AD 上,请用两种不同的方法求出阴影部分1S 的面积(结果用a ,b 表示).(2)如图2,在图1的正方形位置摆放的基础上,在正方形ABCD 的右下角又放了一个和正方形EFGH 一样的正方形,使一个顶点和点C 重合,两条边分别落在BC 和DC 上.若题(1)中14S =,图2中21S =,求阴影部分3S 的面积.(3)如图3,若正方形EFGH 的边GF 和正方形ABCD 的边CD 在同一直线上,且两个正方形均在直线CD 的同侧,若点D 在线段GF 上,满足14DF GF =,连结AH ,HF ,AF ,当三角形AHF 的面积为3时,求三角形EFC 的面积,写出求解过程. 25.先化简,再求值.(1)()221(2)23xy xy x y x xy y ⎛⎫⎡⎤-⋅-+- ⎪⎣⎦⎝⎭,其中 1.5x =-,2y =.(2)已知2830a a --=,求(1)(3)(5)(7)a a a a --+--的值. 26.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如图1可以得到()2222a b a ab b +=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:_________.(2)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++=__________.(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为()()33++a b a b 长方形,则x y z ++=_________.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:_________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】直接利用新定义求解即可判断选项的正误. 【详解】解:运算a ⊗b=a (1-b ), 所以2⊗(-2)=2(1+2)=6,所以①正确; a ⊗b=a (1-b ),b ⊗a=b (1-a ),∴②不正确;若a ⊗b=0,a ⊗b=a (1-b )=0,可得a=0,或b=1.所以③不正确; 若a+b=0,则(a ⊗a )+(b ⊗b )=a (1-a )+b (1-b )=a+b-(a 2+b 2)=-(a+b )2+2ab=2ab ,所以④正确,正确的两个, 故选B . 【点睛】本题考查了命题的真假的判断与应用,新定义的理解与应用,基本知识的考查.2.C解析:C 【分析】根据幂的乘方,可得要求形式,根据同底数幂的除法,可得答案. 【详解】解:∵4,6m nx x ==,2-m n x =2m n x x ÷=2()m nx x ÷,∴原式=246=83;故选:C . 【点睛】本题考查了幂的乘方,同底数幂的除法,熟练掌握公式,灵活逆向使用公式是解题的关键.3.B解析:B 【分析】利用多项式乘以多项式法则将原式化简,根据2x 的系数为3即可求出m 的值; 【详解】原式=()()2322322=122x mx x mx x m x m x x ++----+-+- ,∵ 2x 的系数为3, ∴ 1-m=3, 解得m=-2, 故选:B . 【点睛】本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.4.B解析:B 【分析】根据幂的乘方、同底数幂乘法,合并同类项的运算法则逐一判断即可. 【详解】33332x x x -=,故A 选项错误;()4410a a a ÷=≠,故B 选项正确;()222424mn m n -=,故C 选项错误; ()232a b ab ab ÷-=-,故D 选项错误;故选B . 【点睛】本题考查了整式的运算,幂的乘方、同底数幂乘法,合并同类项,关键是掌握各部分的运算法则.5.C解析:C 【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y-15)cm ,说法①正确;②由大长方形的宽及小长方形的长、宽,可得出阴影A ,B 的较短边长,将其相加可得出阴影A 的较短边和阴影B 的较短边之和为(2x+5-y )cm ,说法②错误;③由阴影A ,B 的相邻两边的长度,利用长方形的周长计算公式可得出阴影A 和阴影B 的周长之和为2(2x+15),结合x 为定值可得出说法③正确;④由阴影A ,B 的相邻两边的长度,利用长方形的面积计算公式可得出阴影A 和阴影B 的面积之和为(xy-25y+375)cm 2,代入x=15可得出说法④错误. 【详解】解:①∵大长方形的长为ycm ,小长方形的宽为5cm , ∴小长方形的长为y-3×5=(y-15)cm ,说法①正确;②∵大长方形的宽为xcm ,小长方形的长为(y-15)cm ,小长方形的宽为5cm , ∴阴影A 的较短边为x-2×5=(x-10)cm ,阴影B 的较短边为x-(y-15)=(x-y+15)cm , ∴阴影A 的较短边和阴影B 的较短边之和为x-10+x-y+15=(2x+5-y )cm ,说法②错误; ③∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的周长为2(y-15+x-10)=2(x+y-25),阴影B 的周长为2(15+x-y+15)=2(x-y+30),∴阴影A 和阴影B 的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5), ∴若x 为定值,则阴影A 和阴影B 的周长之和为定值,说法③正确; ④∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的面积为(y-15)(x-10)=(xy-15x-10y+150)cm 2,阴影B 的面积为15(x-y+15)=(15x-15y+225)cm 2,∴阴影A 和阴影B 的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm 2, 当x=15时,xy-25y+375=(375-10y )cm 2,说法④错误. 综上所述,正确的说法有①③. 故选:C .【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键.6.C解析:C 【分析】把微米转化为纳米,再写成科学记数法即可. 【详解】解:85微米=38510-÷纳米=85×103纳米=8.5×104纳米. 故选:C . 【点睛】本题考查了单位转换和科学记数法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D解析:D 【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可. 【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意;B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意; C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意; D. ()m x y mx my -+=--,计算错误,符合题意; 故选D . 【点睛】本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键.8.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.9.D解析:D 【分析】根据整式的乘法逐项判断即可求解. 【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意; D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意. 故选:D 【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.10.D解析:D 【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可. 【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意. 故选:D . 【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.11.C解析:C 【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论. 【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数, 故选:C . 【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.12.A解析:A【分析】根据幂的乘方运算、同底数幂的乘法法则即可得. 【详解】 原式63a a =⋅,9a =,故选:A . 【点睛】本题考查了幂的乘方、同底数幂的乘法,熟练掌握各运算法则是解题关键.二、填空题13.【分析】多项式的首项和末项分别是x 和2的平方那么中间一项是加上或减去x 与2积的2倍由此得到答案【详解】∵∴b=故答案为:【点睛】此题考查完全平方式掌握完全平方式的构成特点是解题的关键 解析:4±【分析】多项式的首项和末项分别是x 和2的平方,那么中间一项是加上或减去x 与2积的2倍,由此得到答案. 【详解】 ∵222(2)444x x x x bx ±±=+=++,∴b=4±, 故答案为:4±. 【点睛】此题考查完全平方式,掌握完全平方式的构成特点是解题的关键.14.【分析】利用完全平方公式的两个关系式得到即可得到答案【详解】∵∴∴故答案为:【点睛】此题考查完全平方公式熟记完全平方公式及两个完全平方公式的关系是解题的关键 解析:3±【分析】利用完全平方公式的两个关系式得到22()()41429a b a b ab +=-+=+⨯=,即可得到答案. 【详解】∵1,2a b ab -==,∴22()()41429a b a b ab +=-+=+⨯=, ∴3a b +=±, 故答案为:3±. 【点睛】此题考查完全平方公式,熟记完全平方公式及两个完全平方公式的关系是解题的关键. 15.【分析】利用完全平方公式的结构特征判断即可得到结果【详解】∵是完全平方式∴∴故答案为:【点睛】本题考查了完全平方式熟练掌握完全平方公式的结构特征是解本题的关键解析:10±【分析】利用完全平方公式的结构特征判断即可得到结果.【详解】∵225a ka ++是完全平方式,∴2?•510ka a a =±=±,∴10k =±,故答案为:10±.【点睛】本题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.16.【分析】利用完全平方式的结构特征判断即可确定出m 的值【详解】解:∵代数式x2+mx+1是一个完全平方式∴m=±2故答案为:±2【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:2±【分析】利用完全平方式的结构特征判断即可确定出m 的值.【详解】解:∵代数式x 2+mx+1是一个完全平方式,∴m=±2,故答案为:±2【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.17.【分析】由同底数的除法可得:从而可得:的值由可得可得从而可得答案【详解】解:故答案为:【点睛】本题考查的是幂的乘方运算同底数幂的除法运算掌握以上知识是解题的关键解析:3m n =【分析】由同底数的除法可得:m n m n a a a -=÷,从而可得:m n a -的值,由2n a =,可得38,n a =可得3,m n a a =从而可得答案.【详解】 解:8m a =,2n a =∴ 824,m n m n a a a -=÷=÷=2n a =,()3328,n a ∴== 38,n a ∴=3,m n a a ∴=3.m n ∴=故答案为:43m n =,.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键. 18.an ﹣bn 【分析】根据所给信息可知各个等式的左边两因式中一项为(a-b )另一项每一项的次数均为n-1而且按照字母a 的降幂排列故可得答案【详解】解:由题意当n=1时有(a ﹣b )(a+b )=a2﹣b2;解析:a n ﹣b n【分析】根据所给信息,可知各个等式的左边两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列,故可得答案.【详解】解:由题意,当n=1时,有(a ﹣b )(a +b )=a 2﹣b 2;当n=2时,有(a ﹣b )(a 2+ab +b 2)=a 3﹣b 3;当n=3时,有(a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;所以得到(a ﹣b )(a n ﹣1+a n ﹣2b +a n ﹣3b 2+……+a 2b n ﹣3+ab n ﹣2+b n ﹣1)=a n ﹣b n .故答案为:a n ﹣b n .【点睛】本题的考点是归纳推理,主要考查信息的处理,关键是根据所给信息,可知两因式中,一项为(a-b ),另一项每一项的次数均为n-1,而且按照字母a 的降幂排列.19.【分析】逆用同底数幂乘法公式把化为再根据积的乘方运算即可【详解】解:故答案为:【点睛】本题考查了同底数幂的乘法积的乘方等知识能逆用同底数幂的乘法公式是解题关键 解析:13【分析】 逆用同底数幂乘法公式把202013⎛⎫ ⎪⎝⎭化为20191133⎛⎫⨯ ⎪⎝⎭,再根据积的乘方运算即可. 【详解】 解:20202019201920192019201911111113=3=3=1=3333333⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:13【点睛】本题考查了同底数幂的乘法,积的乘方等知识,能逆用同底数幂的乘法公式是解题关键. 20.-5【分析】利用多项式乘以多项式法则直接去括号再得出p 和q 的值进而得出答案【详解】解:∵(x-2)(x+3)=x2+x-6=x2+px+q ∴p=1q=-6∴p+q 的值为-5故答案为-5【点睛】此题主解析:-5【分析】利用多项式乘以多项式法则直接去括号,再得出p 和q 的值,进而得出答案.【详解】解:∵(x-2)(x+3)=x 2+x-6=x 2+px+q ,∴p=1,q=-6,∴p+q 的值为-5.故答案为-5.【点睛】此题主要考查了多项式乘以多项式,熟练掌握运算法则是解题关键.三、解答题21.(1)322x yz -;(2)3294x x -+-【分析】(1)根据单项式与单项式的除法法则计算即可;(2)先算乘法,再去括号合并同类项;【详解】解:(1)()22142xy z x yz--÷- =1221112x y z +-+-=322x yz -;(2)()()()221214x x x x x +---- =x 3+x 2-x-(2x 3-8x 2-x+4)=x 3+x 2-x-2x 3+8x 2+x-4=3294x x -+-.【点睛】本题考查了整式的混合运算,熟练掌握单项式与单项式的除法法则、单项式与多项式的乘法法则、多项式与多项式的乘法法则是解答本题的关键.22.(1)m ﹣n ;(2)(m ﹣n )2=(m +n )2﹣4mn ;(3)①8;②136(4)2【分析】(1)根据阴影部分正方形的边长等于小长方形的长减去宽解答即可;(2)根据大正方形的面积减去四个长方形的面积等于阴影部分小正方形的面积解答即可; (3)把数据代入(3)的数量关系计算即可得解;(4)根据完全平方公式配方,再根据非负数的性质即可得解.【详解】解:(1)由图可知,阴影部分小正方形的边长为:m ﹣n ;故答案为:m ﹣n ;(2)根据正方形的面积公式,阴影部分的面积为(m ﹣n )2,还可以表示为(m +n )2﹣4mn ,∴(m ﹣n )2=(m +n )2﹣4mn ,故答案为:(m ﹣n )2=(m +n )2﹣4mn ;(3)①∵mn =﹣2,m ﹣n =4,∴(m +n )2=(m ﹣n )2+4mn =42+4×(﹣2)=16﹣8=8,②m 2+n 2=(m ﹣n)2+2mn=42+2×(﹣2)=16﹣4=12,∴m 4+n 4=(m 2+n 2)2﹣2 m 2·n 2=122﹣2×(﹣2)2=136;(4)x 2+2x +y 2﹣4y +7,=x 2+2x +1+y 2﹣4y +4+2,=(x +1)2+(y ﹣2)2+2,∵(x +1)2≥0,(y ﹣2)2≥0,∴(x +1)2+(y ﹣2)2≥0,∴当x =﹣1,y =2时,代数式x 2+2x +y 2﹣4y +7的最小值是2.【点睛】本题考查了完全平方公式的几何意义、平方数的非负性,准确识图,能用两种不同的方式表示阴影的面积,灵活运用完全平方公式解决问题是解答的关键.23.(1)()2a b +;222a b ab ++;(2)()2222a b a b ab +=++;(3)40【分析】(1)利用两种方法表示出大正方形面积即可;(2)写出四个代数式之间的等量关系即可;(3)由直角三角形的面积是6,得到ab =12,大正方形②的面积是(a +b )2=64,把(2)变形后,整体代入可直接求值;【详解】解:(1)方法一:()2a b +;方法二:222a b ab ++;故答案为:(a +b )2;a 2+2ab +b 2;(2)()2222a b a b ab +=++;(3)∵162ab =,()264a b +=, ∴224ab =, ∴()222240a b a b ab +=+-=.【点睛】此题考查了完全平方公式的几何背景,代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.24.(1)221S b a =-,两种方法见解析;(2)314S =;(3)△EFC 的面积为3. 【分析】(1)根据面积等于大正方形面积-小正方形面积或等于两个长方形面积之和即可得出结论;(2)用a ,b 表示1S 和2S ,根据14S =,21S =求得3252a b ⎧=⎪⎪⎨⎪=⎪⎩,再根据图象可知23(2)a S b =-,将值代入计算即可; (3)记AD 与HF 的交点为M ,用a ,b 表示△AHF 的面积,根据它的面积为3可得21328a ab -=,再表示△EFC 的面积,根据所求的代数式即可求得. 【详解】解:(1)由题得:221ABCD HGFE S S S b a =-=-正正,或1()()S b b a b a a =⨯-+-22b ab ab a =-+-22b a =-;(2)由题得:221()()4S b a b a b a =-=+-=,22()1S b a =-=,1a b ∴-=,4a b ∴+=,由41b a b a +=⎧⎨-=⎩, 3252a b ⎧=⎪⎪⎨⎪=⎪⎩, 22351(2)(3)24a b S =-=-=∴; (3)如图,记AD 与HF 的交点为M ,∵GFEH 为正方形,HF 为对角线,90,45MDF DFM ∴∠=∠=︒︒,∴△DMF 为等腰直角三角形,1,4EF a DF G H F GF G ====, 3,,.444a a DG a DF DM DF =∴=== 又∵,DC BC AD ABb ==== ∴4a AM AD DM b =-=-, ∴211333()2244832AHM a S AM DG b a ab a ∆=⋅=-⨯=-, 211()2244832AMF a a ab a S AM DF b ∆=⋅=-⨯=-, ∵3AHF AHM AMF S S S ∆∆∆=+=, ∴22333832832ab a ab a -+-=, ∴21328a ab -=, 又∵12EFC S FC EF ∆=⨯, ∵,4a FC DC DF b EF a =-=-=, ∴21()32428EFC a ab a S b a ∆=-⋅=-=. 故△EFC 的面积为3.【点睛】本题考查多项式乘多项式与图形面积.掌握割补法求图形面积的方法是解决(1)的关键;(2)(3)中解题的关键是正确理解图象面积公式和会表示对应线段的长度. 25.(1)43344193x y x y -,36;(2)()22838a a -+,44 【分析】(1)先算积的乘方同时计算中括号内的单项式乘以多项式,合并同类项,再算单项式乘以多项式,赋值,计算即可;(2)先利用多项式乘以多项式法则展开,合并同类项,再整理,将条件整体代入求值即可.【详解】解:(1)()221(2)23xy xy x y x xy y ⎛⎫⎡⎤-⋅-+- ⎪⎣⎦⎝⎭,2222221=2229x y x y xy x y xy ⎡⎤⋅-+-⎣⎦, 22221=439x y x y xy ⎡⎤⋅-⎣⎦, 43344193x y x y =-, 把 1.5x =-,2y =, 原式()()433441-1.52-1.5293=⨯-⨯⨯⨯, 43344313-2-29232⎛⎫⎛⎫=⨯-⨯ ⎪ ⎪⎝⎭⎝⎭⨯⨯, 4811278+1691638=⨯⨯⨯⨯, 36=;(2)(1)(3)(5)(7)a a a a --+--,22431235a a a a =-++-+,221638a a =-+,()22838a a =-+,∵2830a a --=,∴283a a -=,原式233844=⨯+=.【点睛】本题考查整式乘除乘方混合运算化简求值问题,掌握整式幂指数运算法则,整式乘法与加减混合运算的顺序是解题关键.26.(1)()2222222a b c a b c ab ac bc ++=+++++;(2)30;(3)16;(4)()()311x x x x x -=+-.【分析】(1)依据正方形的面积=(a+b+c )2;正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc ,可得等式; (2)依据a 2+b 2+c 2=(a+b+c )2-2ab-2ac-2bc ,进行计算即可;(3)依据所拼图形的面积为:xa 2+yb 2+zab ,而(3a+b )(a+3b )=3a 2+9ab+ab+3b 2=3a 2+3b 2+10ab ,即可得到x ,y ,z 的值;(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c )2;正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc , ∴(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ,故答案为:(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ;(2)∵(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100-70=30,故答案为:30;(3)由题意得:(3a+b)(a+3b)=xa2+yb2+zab,∴3a2+10ab+3b2=xa2+yb2+zab,∴x=3,y=3,z=10,∴x+y+z=16,故答案为:16;(4)∵原几何体的体积=x3-1×1•x=x3-x,新几何体的体积= x(x+1)(x-1),∴x3-x= x(x+1)(x-1).故答案为:x3-x=x(x+1)(x-1).【点睛】本题主要考查了整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.。
整式的乘除(单元测试卷及答案)
精心整理整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是( )A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D. ()743a a =-⎝⎛.2 3. 4. 5. 6. .①③你认为其中正确的有A 、①② B 、③④ C 、①②③ D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -1,则a2+b 2的值等于( )A 、84B 、78C 、12D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( )A11.12.13.14.15.16.17(1()22x (318、(本题9分)(1)先化简,再求值:()()()()221112++++-+--a b a b a b a ,其中21=a ,2-=b 。
19、(本题8分)如图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB=2a ,BC=3b ,且E 为AB 边的中点,CF=BC ,现打算在阴影部分种植一片草坪,求这片草D坪的面积。
20、(本题8分)若(x2+mx-8) (x2-3x+n)的展开式中不含x2和x3项,求m和n的值a+22无关23方形的面24每吨2m元计算.•现有一居民本月用水x吨,则应交水费多少元?参考答案一、选择题11. 44± 12. 23 13. 1411-=x 14. -3 15. a+b=c 16. 2 三、解答题17((3。
整式的乘除整章练习题(完整)
5.已知 ,则 ____________.
6.计算:(1) ______________.(2) ____________.
7.下列计算正确的是( )
A. B.
C. D.
8.下列计算正确的个数为( )
(1) (2) (3) (4)
A.0个B.1个C.2个D.3个
10.计算.
(1)(2x 一3 +4x-1)(一3x);
(2) .
11.计算.
(1)2 - (2 -5b)-b(5 -b);
(2) .
12.先化简,再求值.
(1)m (m+3)+2m(m —3)一3m(m +m-1),其中m ;
(2)4 b( b- b + 6)一2 b (2 —3 b+2 ),其中 =3,b=2.
第1章整式的乘除
第1课时幂的运算(一)
1.计算:(1) _________;(2) _____________.
2.计算:(1) ___________;(2) ______________.
3.计算:(1) ________;(2) ____________.
4.计算: ____________.5.计算:(1) __________;(2) __________.
7.下列运算中,正确的是( )
A.( 一2b)( -2b)= -4b B.(- +2b)( 一2b)=- 一2b
C.( +2b)( 一2b)=- -2b D.(一 一2b)(一 +2b)= -4b
8.在下列各式中,运算结果为36y +49x 的是( )
北师大版七年级下册数学整式的乘除测试试题以及答案
七年级下册整式的乘除测试试卷一、单选题。
1、﹣20220的相反数是()。
A、﹣2022B、2022C、1D、﹣12、一个数是0.000 0003,这个数用科学记数法表示为()。
A、3×10﹣5B、3×10﹣6C、3×10﹣7D、3×10﹣83、下列各式中,负数是()。
A、|﹣5|B、(﹣1)2021C、﹣(﹣5)D、(﹣1)04、下列计算正确的是()A、m0=0B、b2▪b2▪b=b6C、(6a3b2)÷(3a)=2a2b2D、(﹣3a)2=6a25、下列能用平方差公式计算的是()A、(a-b)(a-b)B、(a-b)(﹣a-b)C、(a+b)(﹣a-b)D、(﹣a+b)(a-b)6、如果多项式x2+mx+4是完全平方式的展开式,则m等于()。
A、2B、﹣2C、±2D、±47、对于数30、3﹣1、﹣|﹣3|、(13)﹣1大小比较中,下列正确的是()。
A、30<3﹣1<﹣|﹣3|<(13)﹣1B、﹣|﹣3|<3﹣1<30<(13)﹣1C、3﹣1<﹣|﹣3|<30<(13)﹣1D、(13)﹣1<30<3﹣1<﹣|﹣3|8、对于等式(2x+ □)2=4x2+12xy+ △中,△代表是()。
A、3yB、9yC、9y2D、36y29、若(x-1)(x-m)=x2-4x+m,则m的值为()。
A、﹣3B、3C、﹣5D、510、若x+y=3,xy=1,则(1-2x)(1-2y)的值是()。
A、1B、﹣1C、2D、﹣211、若a=2022,b=12022,则代数式a2022▪b2022的值是()A、1B、2022C、12022D、202312、利用图①所示的长为a,宽为b的长方形卡片4张,拼成如图②所示的图形,则根据图②的面积关系能验证的等式为()。
A、(a-b)2+4ab=(a+b)2B、(a+b)(a-b)=a2-b2C、(a+b)2=a2+2ab+b2D、(a-b)2=a2-2ab+b2二、填空题。
整式的乘除测试题练习四套(含答案)
整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x 2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--=C 、y x x 2x 31)y x 2x 31(x n 1n n 2n n --=--+D 、当n 为正整数时,n 4n 22a )a (=-4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
第一章整式的乘除单元检测试题(含答案)
第一章 整式的乘除单元检测试题班级:__________姓名:__________ 一、单选题(共10题;共30分)1.下列计算错误的是( )A. =4 B. 32×3﹣1=3 C. 20÷2﹣2= D. (﹣(﹣3×3×10102)3=﹣2.7×2.7×101072.已知则 ( ) A. B. 50 C. 500 D. 无法计算无法计算3.若(x ﹣2)(x +3)=x 2+ax +b ,则a 、b 的值分别为(的值分别为( ) A.a =5,b =6 B.a =1,b =﹣6 C.a =1,b =6 D.a =5,b =﹣6 4.已知4y 2+my +9是完全平方式,则m 为( )A. 6 B. ±6 C. ±12 D. 12 5.如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为(a +1)cm 的正方形(a >0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ) A. (2a 2+5a )cm 2 B. (3a +15)cm 2 C. (6a +9)cm 2 D. (6a +15)cm 26.下列计算正确的一项是( )A. a 5+a 5=2a 10 B. (a +2)(a ﹣2)=a 2﹣4 ;C. (a ﹣b )2=a 2﹣b 2 ;D. 4a ﹣2a =2 7.若x n =2,则x 3n 的值为(的值为( )A. 6 B. 8 C. 9 D. 12 8.如果(a -1)0=1成立,则(成立,则( )A. a ≠1≠1 B. a =0 C. a =2 D. a =0或a =2 9.若 , ,且满足,且满足 ,则,则 的值为( ). ). A. 1 B. 2 C. C. D. 10.请你观察图形,依据图形面积之间的关系,不需要添加辅助线,便可以得到一个你熟悉的公式,这个公式是( )A. (x +y )(x ﹣y )=x 2﹣y 2=________。
北师大七年级下《整式的乘除》单元测试(一)含答案
单元测试(一) 整式的乘除(BJ)(时间:120分钟 满分:150分) 一、选择题(本大题共15小题每小题3分,共45分) 题1.计算 A .a 4 B .-a 4 C .a -3 D .-a 32.计算(xy 2)3结果正确的是(B )A .xy 5B .x 3y 6C .xy 6D .x 3y 53.计算(-2)0+9÷(-3)的结果是(B )A .-1B .-2C .-3D .-44.下列运算正确的是(C )A .x 4·x 3=x 12B .(x 3)4=x 81C .x 4÷x 3=x (x ≠0)D .x 3+x 4=x 75.人体中成熟的红细胞的平均直径为0.000 007 7 m ,用科学记数法表示为(D )A .7.7×10-5 mB .77×10-6 mC .77×10-5 mD .7.7×10-6 m6.若□×3xy =3x 2y ,则□内应填的单项式是(C )A .XyB .3xyC .xD .3x7.计算a 5·(-a )3-a 8的结果是(B )A .0B .-2a 8C .-a 16D .-2a 168.2-3可以表示为(A )A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2)9.下列运算正确的是(C )A .2x (x 2+3x -5)=2x 3+3x -5B .a 6÷a 2=a 3C .(-2)-3=-18D .(a +b )(a -b )=(a -b )2 10.已知x +y -3=0,则2y ·2x 的值是(D )A .6B .-6 C.18D .8 11.如果x 2+ax +9=(x +3)2,那么a 的值为(C )A .3B .±3C .6D .±612.如果(2x +m)(x -5)展开后的结果中不含x 的一次项,那么m 等于(D )A .5B .-10C .-5D .1013.已知a =2 0162,b =2 015×2 017,则(B )A .a =bB .a >bC .a <bD .a ≤b14.如果3a =5,3b =10,那么9a -b 的值为(B )A.12B.14C.18D .不能确定 15.已知(x -2 015)2+(x -2 017)2=34,则(x -2 016)2的值是(D )A .4B .8C .12D .16提示:把(x -2 015)2+(x -2 017)2=34变形为(x -2 016+1)2+(x -2 016-1)2=34.二、填空题(本大题共5小题,每小题5分,共25分)16.若(2x +1)0=1,则x 的取值范围是x ≠-12. 17.化简:6a 6÷3a 3=2a 3.18.某班墙上的“学习园地”是一个长方形,它的面积为6a 2-9ab +3a ,已知这个长方形“学习园地”的长为3a ,则宽为2a -3b +1.19.当x =-2时,代数式ax 3+bx +1的值是2 017,那么当x =2时,代数式ax 3+bx +1的值是-2__015.20.已知a 是-2的相反数,且|b +1|=0,则[-3a 2(ab 2+2a)+4a(-ab)2=÷(-4a)的值为5.三、解答题(本大题共7小题,共80分)21.(8分)计算:(1)2x 3·(-x)2-(-x 2)2·(-3x); (2)(2x -y)2·(2x +y)2.解:原式=2x 3·x 2-x 4·(-3x)=2x 5+3x 5=5x 5. 解:原式=[(2x -y)·(2x +y)]2=(4x 2-y 2)2=16x 4-8x 2y 2+y 4.22.(8分)计算:(1)(-3)0+(-12)-2÷|-2|; (2)2017×1967.(用简便方法计算) 解:原式=1+2 解:原式=(20+17)(20-17) =3. =202-(17)2 =3994849.23.(10分)若a(x m y 4)3+(3x 2y n )2=4x 2y 2,求a 、m 、n 的值.解:因为a(x m y 4)3÷(3x 2y n )2=4x 2y 2,所以ax 3m y 12÷9x 4y 2n =4x 2y 2.所以a÷9=4,3m -4=2,12-2n =2.解得a =36,m =2,n =5.24.(12分)化简求值:[(2x -y)(2x +y)+y(y -6x)+x(6y -2)]÷2x ,其中x =1 009.解:原式=(4x 2-y 2+y 2-6xy +6xy -2x)÷2x=(4x 2-2x)÷2x=2x -1.当x =1 009时,原式=2×1 009-1=2 017.25.(12分)黄老师在黑板上布置了一道题,小亮和小新展开了下面的讨论:根据上述情景,你认为谁说得对?为什么?解:原式=4x 2-y 2+2xy -8x 2-y 2+4xy +2y 2-6xy =-4x 2,因为这个式子的化简结果与y值无关,所以只要知道了x的值就可以求解,故小新说得对.26.(14分)图1是一个长为2x,宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于x-y;(2)试用两种不同的方法求图2中阴影部分的面积.方法1:(x-y)2;方法2:(x+y)2-4xy.(3)根据图2你能写出下列三个代数式之间的等量关系吗?(x+y)2,(x-y)2,4xy:(x-y)2=(x+y)2-4xy.(4)根据(3)题中的等量关系,解决如下问题:若x+y=4,xy=3,求(x-y)2.解:(x-y)2=(x+y)2-4xy=42-12=4.27.(16分)如下数表是由从1开始的连续自然数组成的,观察规律并完成各题的解答.(1)表中第8行的最后一个数是64,它是自然数8的平方,第8行共有15个数;(2)用含n的代数式表示:第n行的第一个数是(n-1)2+1,最后一个数是n2,第n行共有(2n-1)个数;(3)求第n行各数之和.解:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n行各数之和等于(2n-1)(n2-n+1)=2n3-3n2+3n-1.。
七年级数学下册《整式的乘除》单元测试卷(附答案)
七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。
整式的乘除 精选习题 解答题
整式的乘除精选习题解答题一.解答题(共30小题)1.(2013春•苏州期末)若2x+5y﹣3=0,求4x•32y的值.2.(2014春•泗洪县校级月考)若2•8n•16n=222,求n的值.3.(2014春•句容市校级期中)一个长方形的长是4.2×104cm,宽是2×104cm,求此长方形的面积及周长.4.(2014春•宝应县月考)已知2m=5,2n=7,求24m+2n的值.5.(2014春•寿县期中)已知a m=2,a n=3,求a3m+2n的值.6.(2014春•灌云县校级月考)小明是一位刻苦学习,勤于思考的同学,一天,他在解方程时突然产生了这样的想法,x2=﹣1,这个方程在实数范围内无解,如果存在一个数i2=﹣1,那么方程x2=﹣1可以变成x2=i2,则x=±i,从而x=±i是方程x2=﹣1的两个解,小明还发现i具有以下性质:i1=i,i2=﹣1,i3=i2•i=﹣i;i4=(i2)2=(﹣1)2=1,i5=i4•i=i,i6=(i2)3=(﹣1)3=﹣1,i7=i6•i=﹣i,i8=(i4)2=1,…请你观察上述等式,根据你发现的规律填空:i4n+1=,i4n+2=,i4n+3=,i4n+4=(n为自然数).7.(2008春•昆山市期末)已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.8.(2012春•化州市校级期末)已知3×9m×27m=316,求m的值.9.(2013秋•万州区校级月考)已知:162×43×26=22x﹣1,[(10)2]y=1012,求2x+y的值.10.(2014春•桓台县校级月考)已知x3=m,x5=n用含有m、n的代数式表示x14.11.(2014春•石景山区期末)2x6y2•x3y+(﹣25x8y2)(﹣xy).12.(2011秋•长春期中)计算:(﹣2x3y)•(3xy2﹣4xy+1).13.(2a2)•(3ab2﹣5ab3)14.已知ab2=﹣1,求(﹣ab)(a2b5﹣ab3﹣b)的值.15.化简:2a3×(﹣a﹚2.16.(2015春•宝应县月考)我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6.按照这种运算规定,当x等于多少时,=0.17.(2013秋•东莞期末)计算:(a﹣1)(a2+a+1)18.(2014春•招远市期末)计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4).19.(2014春•金牛区期末)若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.20.(2014春•江山市校级期中)若(x﹣3)(x+m)=x2+nx﹣15,求的值.21.(2014秋•太和县期末)计算:(8a3b﹣5a2b2)÷4ab.22.(2014秋•宜宾校级期中)已知5x=36,5y=2,求5x﹣2y的值.23.(2010秋•南安市期末)计算:(3a3b﹣9a2b2﹣21a2b3)÷3a2b.24.(2014春•上街区校级期中)(2a+b)4÷(2a+b)2.25.(2014春•南海区校级月考)已知:x m=3,x n=2,求:(1)x m+n的值;(2)x2m﹣3n的值.26.(2010•西宁)计算:()﹣1﹣(3.14﹣π)0+0.254×44.27.(2010•漳州)计算:(﹣2)0+(﹣1)2010﹣28.(2010•晋江市)计算:|﹣4|﹣(﹣3)2÷﹣2010029.(2009•长沙)计算:(﹣2)2+2×(﹣3)+()﹣130.(2008•湘潭)计算:|﹣1|+(3﹣π)0﹣()﹣1.整式的乘除精选习题解答题参考答案与试题解析一.解答题(共30小题)1.(2013春•苏州期末)若2x+5y﹣3=0,求4x•32y的值.【考点】同底数幂的乘法;幂的乘方与积的乘方.【分析】由方程可得2x+5y=3,再把所求的代数式化为同为2的底数的代数式,运用同底数幂的乘法的性质计算,最后运用整体代入法求解即可.【解答】解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=8.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.2.(2014春•泗洪县校级月考)若2•8n•16n=222,求n的值.【考点】同底数幂的乘法.【分析】把等号左边的数都能整理成以2为底数的幂相乘,再根据同底数幂相乘,底数不变指数相加计算,然后根据指数相等列式求解即可.【解答】解:2•8n•16n,=2×23n×24n,=27n+1,∵2•8n•16n=222,∴7n+1=22,解得n=3.【点评】本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.3.(2014春•句容市校级期中)一个长方形的长是4.2×104cm,宽是2×104cm,求此长方形的面积及周长.【考点】同底数幂的乘法.【专题】计算题.【分析】根据长方形的面积=长×宽,周长等于四边之和,代入长和宽的值即可得出答案.【解答】解:面积=长×宽=4.2×104×2×104=8.4×108cm2.周长=2(长+宽)=2(4.2×104+2×104)=1.24×105cm.综上可得长方形的面积为8.4×108cm2.周长为1.24×105cm.【点评】此题考查了同底数幂的乘法及加法运算,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,难度一般.4.(2014春•宝应县月考)已知2m=5,2n=7,求24m+2n的值.【考点】同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘计算即可.【解答】解:∵2m=5,2n=7,又∵24m=625,∴22n=49,∴24m+2n=625×49=30625故答案为30625.【点评】本题考查同底数幂的除法,同底数幂的乘法,幂的乘方,解题时记准法则是关键.5.(2014春•寿县期中)已知a m=2,a n=3,求a3m+2n的值.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】由a3m+2n根据同底数幂的乘法化成a3m•a2n,再根据幂的乘方化成(a m)3•(a n)2,代入求出即可.【解答】解:∵a m=2,a n=3,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=23×32=8×9=72.【点评】本题考查了同底数幂的乘法,幂的乘方,有理数的混合运算,关键是把原式化成(a m)3×(a n)2,用了整体代入.6.(2014春•灌云县校级月考)小明是一位刻苦学习,勤于思考的同学,一天,他在解方程时突然产生了这样的想法,x2=﹣1,这个方程在实数范围内无解,如果存在一个数i2=﹣1,那么方程x2=﹣1可以变成x2=i2,则x=±i,从而x=±i是方程x2=﹣1的两个解,小明还发现i具有以下性质:i1=i,i2=﹣1,i3=i2•i=﹣i;i4=(i2)2=(﹣1)2=1,i5=i4•i=i,i6=(i2)3=(﹣1)3=﹣1,i7=i6•i=﹣i,i8=(i4)2=1,…请你观察上述等式,根据你发现的规律填空:i4n+1=i,i4n+2=﹣1,i4n+3=﹣i,i4n+4=1(n为自然数).【考点】幂的乘方与积的乘方.【专题】阅读型.【分析】根据所给例子找出规律,再把所求式子与已知相联系即可得出答案.【解答】解:∵i1=i,i2=﹣1,i3=i2•i=﹣i;i4=(i2)2=(﹣1)2=1,从n=1开始,4个一次循环.∴i4n+1=i,i4n+2=﹣1,i4n+3=﹣i(n为自然数),i4n+4=1.故答案为:i,﹣1,﹣i.1.【点评】本题是信息给予题,主要考查了幂的乘方的性质,读懂题目信息并正确利用性质是解答本题的关键.7.(2008春•昆山市期末)已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.【考点】幂的乘方与积的乘方.【分析】先都转化为同底数的幂,根据指数相等列出方程,解方程求出x、y的值,然后代入x﹣y计算即可.【解答】解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=3.【点评】本题主要考查幂的乘方的性质的逆用:a mn=(a m)n(a≠0,m,n为正整数),根据指数相等列出方程是解题的关键.8.(2012春•化州市校级期末)已知3×9m×27m=316,求m的值.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加计算,再根据指数相等列式求解即可.【解答】解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=3.【点评】本题主要考查了幂的有关运算.幂的乘方法则:底数不变指数相乘;幂的乘法法则:底数不变指数相加.9.(2013秋•万州区校级月考)已知:162×43×26=22x﹣1,[(10)2]y=1012,求2x+y的值.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】运用同底数幂的乘法和幂的乘方的性质,求x,y的值,再代入求2x+y的值.【解答】解:∵162×43×26=22x﹣1,[(10)2]y=1012,∴28×26×26=22x﹣1,102y=1012,∴2x﹣1=20,2y=12解得x=,y=6.∴2x+y=2×+6=21+6=27.故答案为27.【点评】本题主要考查幂的乘方和同底数幂的乘法,熟练掌握运算性质是解题的关键.10.(2014春•桓台县校级月考)已知x3=m,x5=n用含有m、n的代数式表示x14.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和同底数幂的乘法的性质可得出m、n的代数式.【解答】解:根据题意可把14次方分为9次方加5次方,∵x3=m,x5=n,∴x14=x9•x5=(x3)3•x5=m3n.【点评】本题考查幂的乘方和同底数幂的乘法,属于基础题,关键在于掌握幂的乘方的运用.11.(2014春•石景山区期末)2x6y2•x3y+(﹣25x8y2)(﹣xy).【考点】单项式乘单项式.【分析】利用单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式求解即可.【解答】解:2x6y2•x3y+(﹣25x8y2)(﹣xy)=2x9y3•+25x9y2,=27x9y2.【点评】本题主要考查了单项式乘单项式,解题的关键是熟记单项式乘单项式的法则.12.(2011秋•长春期中)计算:(﹣2x3y)•(3xy2﹣4xy+1).【考点】单项式乘多项式.【专题】计算题.【分析】利用单项式乘以多项式中的每一项后把所得的积相加即可得到结果.【解答】解:(﹣2x3y)•(3xy2﹣4xy+1)=﹣2x3y•3xy2+(﹣2x3y)•4xy+(﹣2x3y)=﹣6x4y3+8x4y2﹣2x3y.【点评】本题考查了单项式乘以多项式的知识,属于基础题,比较简单.13.(2a2)•(3ab2﹣5ab3)【考点】单项式乘多项式.【分析】单项式乘以多项式时用单项式和多项式中的每一项相乘,然后再相加即可.【解答】解:(2a2)•(3ab2﹣5ab3)=(2a2)•3ab2﹣(2a2)•5ab3=6a3b2﹣10a3b3.【点评】本题考查了单项式乘以多项式的知识,解题的关键是牢记法则并熟记有关幂的性质.14.已知ab2=﹣1,求(﹣ab)(a2b5﹣ab3﹣b)的值.【考点】单项式乘多项式.【分析】原式利用单项式乘以多项式法则计算,变形后将已知等式代入计算即可求出值.【解答】解:∵ab2=﹣1,∴原式=﹣a3b6+a2b4+ab2=﹣(ab2)3+(ab2)2+ab2=1+1﹣1=1.【点评】此题考查了因式分解的应用,利用了整体代入的思想,是一道基本题型.15.化简:2a3×(﹣a﹚2.【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】先计算幂的乘方,再根据单项式的乘法法则计算即可.【解答】解:2a3×(﹣a﹚2=2a3×a2=2a5.【点评】本题考查了幂的乘方以及单项式与单项式相乘,熟练掌握运算法则是解题的关键.16.(2015春•宝应县月考)我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6.按照这种运算规定,当x等于多少时,=0.【考点】多项式乘多项式;解一元一次方程.【专题】新定义.【分析】根据新定义运算可得方程(x+1)(x﹣1)﹣(x﹣2)(x+3)=0,根据多项式乘多项式的法则将方程展开,再移项、合并同类项,系数化为1即可求解.【解答】解:∵=ad﹣bc,=0,∴(x+1)(x﹣1)﹣(x﹣2)(x+3)=0,x2﹣1﹣(x2+x﹣6)=0,x2﹣1﹣x2﹣x+6=0,﹣x=﹣5,x=5.故当x等于5时,=0.【点评】考查了多项式乘多项式,解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.17.(2013秋•东莞期末)计算:(a﹣1)(a2+a+1)【考点】多项式乘多项式.【分析】根据多项式乘多项式用第一个多项式的每一项乘第二个多项式的每一项,把所得的积相加,可得答案.【解答】解:原式=a•a2+a•a+a×1﹣a2﹣a﹣1=a3﹣1.【点评】本题考查了多项式乘多项式,根据法则计算是解题关键.18.(2014春•招远市期末)计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4).【考点】多项式乘多项式.【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.【解答】解:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4)=6a2﹣9a+2a﹣3﹣6a2+24a+5a﹣20=22a﹣23.【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.19.(2014春•金牛区期末)若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.【考点】多项式乘多项式.【分析】(1)形开式子,找出x项与x3令其系数等于0求解.(2)把p,q的值入求解.【解答】解:(1)(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(q﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴P﹣3=0,qp+1=0∴p=3,q=﹣,(2)(﹣2p2q)2+(3pq)﹣1+p2012q2014=[﹣2×32×(﹣)]2++×(﹣)2=36﹣+=35.【点评】本题主要考查了多项式乘多项式,解题的关键是正确求出p,q的值20.(2014春•江山市校级期中)若(x﹣3)(x+m)=x2+nx﹣15,求的值.【考点】多项式乘多项式.【专题】计算题.【分析】首先把)(x﹣3)(x+m)利用多项式的乘法公式展开,然后根据多项式相等的条件:对应项的系数相同即可得到m、n的值,从而求解.【解答】解:(x﹣3)(x+m)=x2+(m﹣3)x﹣3m=x2+nx﹣15,则解得:.=.【点评】本题考查了多项式的乘法法则以及多项式相等的条件,理解多项式的乘法法则是关键.21.(2014秋•太和县期末)计算:(8a3b﹣5a2b2)÷4ab.【考点】整式的除法.【分析】利用多项式除以单项式的运算法则进行运算即可.【解答】解:原式=8a3b÷4ab﹣5a2b2÷4ab=.【点评】本题考查了整式的除法,牢记运算法则及运算律是解答此类题目的关键.22.(2014秋•宜宾校级期中)已知5x=36,5y=2,求5x﹣2y的值.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:(5y)2=52y=4,5x﹣2y=5x÷52y=36÷4=9.【点评】本题考查了同底数幂的除法,底数不变指数相减.23.(2010秋•南安市期末)计算:(3a3b﹣9a2b2﹣21a2b3)÷3a2b.【考点】整式的除法.【分析】本题是整式的除法,多项式除以单项式可以是将多项式3a3b﹣9a2b2﹣21a2b3中的每一个项分别除以单项式3a2b即可.【解答】解:原式=3a3b÷3a2b﹣9a2b2÷3a2b﹣21a2b3÷3a2b=a﹣3b﹣7b2.【点评】本题考查了整式的除法.整式的除法法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.24.(2014春•上街区校级期中)(2a+b)4÷(2a+b)2.【考点】同底数幂的除法.【分析】运用同底数幂的除法法则:底数不变,指数相减运算,再运用完全平方公式展开.【解答】解:(2a+b)4÷(2a+b)2=(2a+b)2=4a2+4ab+b2【点评】本题主要考查了同底数幂的除法和完全平方公式,解题的关键是熟记法则.25.(2014春•南海区校级月考)已知:x m=3,x n=2,求:(1)x m+n的值;(2)x2m﹣3n的值.【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】运用同底数幂的乘法与除法以及幂的乘方运算即可.【解答】解:(1)∵x m=3,x n=2,∴x m+n=x m•x n=3×2=6,(2)∵x m=3,x n=2,∴x2m﹣3n=(x m)2÷(x n)3=9÷8=,【点评】此题考查了同底数幂的乘法与除法以及幂的乘方等知识,解题的关键是熟记法则.26.(2010•西宁)计算:()﹣1﹣(3.14﹣π)0+0.254×44.【考点】负整数指数幂;有理数的乘方;零指数幂.【专题】计算题.【分析】此题涉及到负整数指数幂、零指数幂、乘方三个知识点,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得结果.【解答】解:原式=2﹣1+=2﹣1+1=2.【点评】本题考查实数的综合运算能力,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方等考点的运算.27.(2010•漳州)计算:(﹣2)0+(﹣1)2010﹣【考点】负整数指数幂;有理数的乘方;零指数幂.【专题】计算题.【分析】本题涉及零指数幂、乘方、负整数指数幂三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+1﹣2=0.故答案为0.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方等考点的运算.28.(2010•晋江市)计算:|﹣4|﹣(﹣3)2÷﹣20100【考点】零指数幂;绝对值;有理数的乘方.【专题】计算题.【分析】本题涉及零指数幂、有理数的乘方、绝对值的化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=4﹣9÷﹣1=4﹣9×3﹣1=﹣24.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、绝对值等考点的运算.29.(2009•长沙)计算:(﹣2)2+2×(﹣3)+()﹣1【考点】负整数指数幂.【专题】计算题.【分析】按照实数的运算法则依次计算:先算乘方,后算乘除,然后算加减.【解答】解:∵(﹣2)2=4,()﹣1=3;∴(﹣2)2+2×(﹣3)+()﹣1=4﹣6+3=1.故答案为1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.30.(2008•湘潭)计算:|﹣1|+(3﹣π)0﹣()﹣1.【考点】负整数指数幂;绝对值;零指数幂.【专题】计算题.【分析】按照实数的运算法则依次计算,(3﹣π)0=1,()﹣1=2、|﹣1|=1.【解答】解:原式=1+1﹣2=0.故答案为0.【点评】涉及知识:负指数为正指数的倒数,任何非0数的0次幂等于1,绝对值的化简.。
初二数学《整式的乘除与因式分解》习题(含答案)
整式的乘除与因式分解一、选择题1.下列计算中,运算正确的有几个()(1) a5+a5=a10(2) (a+b)3=a3+b3 (3) (-a+b)(-a-b)=a2-b2 (4) (a-b)3= -(b-a)3A、0个B、1个C、2个D、3个2.计算(-2a3)5÷(-2a5)3的结果是()A、— 2B、2 C、4 D、—4 3.若,则的值为()A. B.5 C. D.2 4.若x2+mx+1是完全平方式,则m=()。
A、2B、-2C、±2D、±4 5.如图,在长为a的正方形中挖掉一个边长为b的小正方形(a>b)把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b) B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.(a+2b)(a-b)=a2+ab-2b26.已知()b-2a3,则与的值分别=+2ba7, ()=是()A. 4,1B. 2,32C.5,1D. 10, 32二、填空题1.若2,3=-=+ab b a ,则=+22b a ,()=-2b a2.已知a -1a =3,则a 2+21a的值等于 · 3.如果x 2-kx +9y 2是一个完全平方式,则常数k =________________;4.若⎩⎨⎧-=-=+31b a b a ,则a 2-b 2= ;5.已知2m =x ,43m =y ,用含有字母x 的代数式表示y ,则y =________________;6、如果一个单项式与的积为-34a 2bc,则这个单项式为________________; 7、(-2a 2b 3)3 (3ab+2a 2)=________________;8、()()()()=++++12121212242n ________________;9、如图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如下图所示,则打包带的长至少要____________(单位:mm )。
整式的乘除》单元考试题及答案
整式的乘除》单元考试题及答案第五章:整式的乘除单元测验数学试卷班级:______ 姓名:______ 得分:______一、填空题:(每小题3分,共30分)1.(-a)×(-a)×a = ________;-x²⁵³ ÷ (-x)³²² = ________2.-2x²y³3.2c³ × 3(-8x²) × (-x) × (-y)² = ________;abc² × (-2ac) =________4.(2²)² ÷ 2x = ________;5.-x²y × (x²-2xy+1/5) = ________;6.(-1/2) × (-4xy) = 12xy;-2 + (π-3.14) - (-2) = ________7.(a-10a+7) = ________;若x-3x+1=2,则x+(2/2)¹ =________8.若x²n=2,则2x³n = ________;若642 × 83 = 2ⁿ,则n = ________9.(-8)²⁰⁰⁴ = ________10.已知ab=-3,则-abab-ab-b = ________二、选择题:(每小题3分,共30分)11.下列各式计算正确的是()A、a² = a×a;B、3×5x² = 10x⁶;C、(-c)÷(-c) = -1;D、ab³ = a³b³12.下列各式计算正确的是()A、(x+2y)² = x²+4y²;B、(x+5)(x-2) = x²+3x-10;C、(-x+y)² = x²+y²;D、(x+2y)(x-2y) = x²-4y²13.用科学记数法表示的各数正确的是()A、 = 3.45×10⁴;B、0. = 4.3×10⁻⁵;C、-0. = -4.8×10⁻⁴;D、- = 3.4×10⁵14.当a=1/3时,代数式(a-4)(a-3)-(a-1)(a-3)的值为()A、3/4;B、-6;C、0;D、815.已知a+b=2,ab=-3,则a²-ab+b²的值为()A、11;B、12;C、13;D、1416.已知28a²bm÷4anb²=7b²,那么m、n的值为()A、m=4,n=2;B、m=4,n=1;17、设正方形边长为x,则面积为x^2,根据题意可得(x+3)^2-x^2=39,化简得x=6,答案为C。
北师大七年级下《整式的乘除》单元综合练习含答案
整式的乘除一、单选题(每小题3分,共30分)1. 下列计算正确的是()A. a4÷a3=1B. a4+a3=a7C. (2a3)4=8a12D. a4⋅a3=a7【答案】D2. 计算20122﹣2011×2021的结果是()A. 1B. ﹣1C. 2D. ﹣2【答案】A3. 若x2+mxy+4y2是完全平方式,则常数m的值为()A. 4B. ﹣4C. ±4D. 以上结果都不对【答案】C4.若25a2+(k﹣3)a+9是一个完全平方式,则k的值是()A. ±30B. 31或﹣29C. 32或﹣28D. 33或﹣27【答案】D5. 已知3a=1,3b=2,则3a+b的值为()A. 1B. 2C. 3D. 27【答案】C6.计算2x(9x2-3ax+a2)+a(6x2-2ax+a2)等于( )A. 18x3-a3B. 18x3+a3C. 18x3+4ax2D. 18x3+3a3【答案】B7. 计算3n·(-9)·3n+2的结果是( )A. -33n-2B. -3n+4C. -32n+4D. -3n+6【答案】C8. 计算的结果是().A. B. C. D. 以上答案都不对【答案】A9. 无论a、b为何值,代数式a2+b2-2a+4b+5的值总是( )A. 负数B. 0C. 正数D. 非负数【答案】D10. 若,则的值可以是()A. B. C. 15 D. 20【答案】A二、填空题(每小题3分;共30分)11. =________.【答案】(x-y)912. 已知,则的值为______________________.【答案】2013. 已知10a=5,10b=25,则103a-b=____________.【答案】514. 27×9×3= 3x,则x = .【答案】615.若(7x-a)2=49x2-bx+9,则|a+b|=_________.【答案】4516.已知,,m,n是正整数,则用a,b的式子表示=_________.【答案】17. 定义为二阶行列式,规定它的运算法则为=ad-bc.则二阶行列式的值为___.【答案】118. 若,,则的值是__________.【答案】19. 若满足,则__________.【答案】20. 已知a+b=8,a2b2=4,则-ab=___________________________.三、解答题(共60分)21. (7分)已知.求代数式的值.【答案】722. (7分)先化简,再求值:x(x﹣2)+(x+1)2,其中x=1.【答案】323. (7分)当a=3,b=﹣1时,求下列代数式的值.(1)(a+b)(a﹣b);(2)a2+2ab+b2.【答案】(1)8;(2)424. (7分)已知(1)化简;(2)若,求的值.【答案】(1)2x2-4x;(2)-225. (10分)已知a m=2,a n=4,a k=32(a≠0).(1)求a3m+2n-k的值;(2)求k-3m-n的值.【答案】(1)4(2)026. (10分)“已知,,求的值.”这个问题,我们可以这样思考:逆向运用同底数幂的乘法公式,可得:,所以,所以.请利用这样的思考方法解决下列问题:已知,,求下列代数的值:(1);(2).【答案】(1)45;(2).27. (12分).如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【答案】(1)28和2012都是神秘数(2)这两个连续偶数构造的神秘数是4的倍数(3)两个连续奇数的平方差不是神秘数.。
(必考题)初中数学七年级数学下册第一单元《整式的乘除》检测题(含答案解析)(3)
一、选择题1.式子()()()()()24810102121212121++++⋅⋅⋅+化简的结果为( )A .101021-B .101021+C .202021-D .202021+ 2.若计算关于x 的代数式()2(1)2x x mx -++得2x 的系数为3,则m =( )A .4-B .2-C .2D .4 3.下列运算:①236a a a ⋅=;②()236a a =;③55a a a ÷=;④333()ab a b =.其中结果正确的有( )A .1个B .2个C .3个D .4个4.如图,长为()cm y ,宽为()cm x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长是5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+;③若x 为定值,则阴影A 和阴影B 的周长和为定值;④当15x =时,阴影A 和阴影B 的面积和为定值.A .①③④B .②④C .①③D .①④ 5.下列运算正确的是( ) A .3a •3a =23aB .23()ab -=﹣3a 6bC .12a ÷3a =4aD .53()a =8a6.如果249x mx -+是一个完全平方式,则m 的值是( )A .12±B .9C .9±D .127.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5D .-5 8.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断:①**a b b a =;②()222**a b a b =;③()()**a b a b -=-;④()**a b c a b a c +=+*.其中所有正确推断的序号是( )A .①②③④B .①③④C .①②D .①③ 9.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .3210.如图,两个正方形边长分别为a ,b ,如果a+b =10,ab =18,则阴影部分的面积为( )A .21B .22C .23D .2411.若53x =,52y =,则235-=x y ( )A .34B .1C .23D .9812.下面运算正确的是( )A .22752a b a -=B .842x x x ÷=C .()222a b a b -=-D .()3226628x y x y =二、填空题13.在代数式求值时,可以利用交换律,将各项交换位置后,把一个多项式化成“()222a ab b ±++其他项”的形式,然后利用完全平方公式得到“()2a b ±+其他项”,最后整体代入求值.例如对于问题“已知2a b +=,1c =,求2222a c b ab +++的值”,可按以下方式求解:2222a c b ab +++2222a ab b c =+++22()a b c =++=22215+=.请仿照以上过程,解决问题:若3m n t +=-,7n k t -=-,则22244241m n k mn mk nk +++--+=______.14.计算:248(21)(21)(21)(21)1+++++=___________.15.若3x y -=,2xy =,则22x y +=__________.16.已知4222112x x +-⋅=,则x =________17.计算:20162015(8)0.125-⨯=______.18.29999981002-⨯=__________.19.若20206m =,20204n =,则22020m n -=_____.20.如果5a b +=,1ab =,则22a b +=______.三、解答题21.先化简,再求值:()322484(2)(2)ab a b ab a b a b -÷++-,其中a ,b 满足2(2)|1|0a b -+-=.22.用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式?试用乘法公式说明这个等式成立;(2)利用(1)中的结论计算:已知2a b +=,34ab =,求22 a b ab -; (3)根据(1)中的结论:若2310x x -+=,分别求出1x x -上和441x x +的值.23.计算题(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭24.化简:2(3)3(2)m n m m n +-+.25.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-; 请根据这一规律计算:(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.26.(1)填空:①32(2)(5)x xy ⋅-=____________;②3252()(2)a b a b -÷-=_________.(2) 先化简,再求值:2(1)(1)(1)(31)(21)x x x x x x --+----,其中2x =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C【分析】利用添项法,构造平方差公式计算即可.【详解】设S=()()()()()24810102121212121++++⋅⋅⋅+,∴(2—1)S=(2—1)()()()()()24810102121212121++++⋅⋅⋅+ ∴S=()()()()10120248(21)21212121-+++⋅⋅⋅+ =()()()4481010(21)212121-++⋅⋅⋅+ =()10101010(21)21-+ =202021-,故选C .【点睛】本题考查了平方差公式的应用,善于观察题目的特点,通过添项构造连续的平方差公式使用条件是解题的关键.2.B解析:B【分析】利用多项式乘以多项式法则将原式化简,根据2x 的系数为3即可求出m 的值;【详解】原式=()()2322322=122x mx x mx x m x m x x ++----+-+- , ∵ 2x 的系数为3,∴ 1-m=3,解得m=-2,故选:B .【点睛】本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.3.B解析:B【分析】按照幂的运算法则直接判断即可.【详解】解:①235a a a ⋅=,原式错误;②()236a a =,原式正确;③551a a ÷=,原式错误;④333()ab a b =,原式正确;【点睛】本题考查了幂的运算,熟记幂的运算法则,注意它们之间的区别是解题关键.4.C解析:C【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y-15)cm,说法①正确;②由大长方形的宽及小长方形的长、宽,可得出阴影A,B的较短边长,将其相加可得出阴影A的较短边和阴影B的较短边之和为(2x+5-y)cm,说法②错误;③由阴影A,B的相邻两边的长度,利用长方形的周长计算公式可得出阴影A和阴影B的周长之和为2(2x+15),结合x为定值可得出说法③正确;④由阴影A,B的相邻两边的长度,利用长方形的面积计算公式可得出阴影A和阴影B的面积之和为(xy-25y+375)cm2,代入x=15可得出说法④错误.【详解】解:①∵大长方形的长为ycm,小长方形的宽为5cm,∴小长方形的长为y-3×5=(y-15)cm,说法①正确;②∵大长方形的宽为xcm,小长方形的长为(y-15)cm,小长方形的宽为5cm,∴阴影A的较短边为x-2×5=(x-10)cm,阴影B的较短边为x-(y-15)=(x-y+15)cm,∴阴影A的较短边和阴影B的较短边之和为x-10+x-y+15=(2x+5-y)cm,说法②错误;③∵阴影A的较长边为(y-15)cm,较短边为(x-10)cm,阴影B的较长边为3×5=15cm,较短边为(x-y+15)cm,∴阴影A的周长为2(y-15+x-10)=2(x+y-25),阴影B的周长为2(15+x-y+15)=2(x-y+30),∴阴影A和阴影B的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5),∴若x为定值,则阴影A和阴影B的周长之和为定值,说法③正确;④∵阴影A的较长边为(y-15)cm,较短边为(x-10)cm,阴影B的较长边为3×5=15cm,较短边为(x-y+15)cm,∴阴影A的面积为(y-15)(x-10)=(xy-15x-10y+150)cm2,阴影B的面积为15(x-y+15)=(15x-15y+225)cm2,∴阴影A和阴影B的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm2,当x=15时,xy-25y+375=(375-10y)cm2,说法④错误.综上所述,正确的说法有①③.故选:C.本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键. 5.B解析:B【分析】按照同底数幂的运算法则计算即可.【详解】∵3a •3a =336a a +=,∴选项A 错误;∵23()ab -=﹣3a 6b ,∴选项B 正确;∵12a ÷3a =1239a a -=,∴选项C 错误;∵53()a =3515a a ⨯=,∴选项D 错误;故选B.【点睛】本题考查了同底数幂的运算,熟记运算形式和运算法则是解题的关键.6.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵()22249=23x mx x mx -+-+,∴223mx x -=±⨯⨯ ,解得m=±12.故选:A .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 7.B解析:B【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52. 故选B .【点睛】 本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.8.D解析:D【分析】根据a*b 的定义,将每个等式的左右两边分别计算,再进行判断即可.【详解】①∵a*b=()2a b -,b*a=()()22b a a b -=-,∴a*b=b*a 成立;②(a*b)2=()()()224a b a b -=-,a 2*b 2=()()()22222a b a b a b -=-+, ∵()()()422a b a b a b -≠-+ ∴(a*b )2=a 2*b 2不成立; ③∵(−a)*b=()()22a b a b --=+,a*(−b)= ()()22a b a b --=+⎡⎤⎣⎦,∴−a*b=a*(−b)成立;④∵a*(b+c)= ()()22a b c a b c -+=--⎡⎤⎣⎦,a*b+a ∗c=()()()222a b a c a b c -+-≠--, ∴a*(b+c) =a*b+a ∗c 不成立;故选:D .【点睛】本题考查了新定义下实数的运算,正确理解题意是解题的关键. 9.D解析:D【分析】利用积的乘方的逆运算解答.【详解】()()202020213232 -⨯ =20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D . 【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.10.C解析:C【分析】表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.【详解】解:如图,大正方形的边长是a,三角形①的两条直角边长都为a ,三角形②的一条直角边为a -b ,另一条直角边为b ,因此S 大正方形=a 2,S △②=12(a ﹣b )b =12ab ﹣12b 2,S △①=12a 2, ∴S 阴影部分=S 大正方形﹣S △①﹣S △②,=12a 2﹣12ab+12b 2, =12 [(a+b )2﹣3ab], =12(100﹣54) =23,故选:C .【点睛】考查完全平方公式的意义,适当的变形是解决问题的关键.11.D解析:D【分析】根据幂的乘方的逆运算,同底数幂的除法的逆运算进行计算.【详解】解:()()23232323955555328x y x y x y -=÷=÷=÷=. 故选:D .【点睛】本题考查幂的运算,解题的关键是掌握幂的乘方的逆运算,同底数幂的除法的逆运算. 12.D解析:D【分析】利用合并同类项、同底数幂的除法、完全平方公式以及积的乘方的知识,即可求得答案.【详解】A 、27a b 和25a 不是同类项,不能合并,该选项错误;B 、844x x x ÷=,该选项错误;C 、()2222a b a ab b -=-+,该选项错误;D 、()3226628x y x y =,该选项正确;故选:D .【点睛】本题考查了合并同类项、同底数幂的除法、完全平方公式以及积的乘方等知识.熟练掌握运算法则是解题的关键. 二、填空题13.17【分析】由m+n=3-t 与n-k=t-7可得m+2n-k=-4再两边平方展开最后整体代入即可【详解】解:∵m+n=3-tn-k=t-7∴(m+n )+(n-k )=3-t+t-7即m+2n-k=-4解析:17【分析】由m+n=3-t 与n-k=t-7可得m+2n-k=-4,再两边平方展开,最后整体代入即可.【详解】解:∵m+n=3-t ,n-k=t-7,∴(m+n )+(n-k )=3-t+t-7,即m+2n-k=-4,∴(m+2n-k )2=(-4)2,∴m 2+4n 2+k 2+4mn-2mk-4nk=16,∴m 2+4n 2+k 2+4mn-2mk-4nk+1=16+1=17,故答案为:17.【点睛】本题考查代数式求值,将原代数式进行适当的变形是得出正确答案的关键.14.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.15.【分析】根据完全平方公式变形计算即可得解【详解】∵∴=9+4=13故答案为:13【点睛】此题考查完全平方公式变形计算熟记完全平方公式并正确理解所求与公式的关系是解题的关键解析:13【分析】根据完全平方公式变形计算即可得解.【详解】∵3x y -=,2xy =,∴22x y +=2()2x y xy -+=9+4=13,故答案为:13.【点睛】此题考查完全平方公式变形计算,熟记完全平方公式并正确理解所求与公式的关系是解题的关键.16.3【分析】利用同底数幂乘法的逆运算求解即可【详解】∵∴即:∴∴故答案为:3【点睛】本题主要考查同底数幂乘法的逆运算灵活运用同底数幂乘法法则是解题关键解析:3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点睛】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键. 17.8【分析】原式变形后利用积的乘方运算法则计算即可求出值【详解】【点睛】本题考查了幂的乘方与积的乘方熟练掌握运算法则是解本题的关键 解析:8【分析】原式变形后,利用积的乘方运算法则计算即可求出值.【详解】20162015(8)0.125-⨯20152015880.125=⨯⨯20158(80.125)=⨯⨯81=⨯8=.【点睛】本题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.18.【分析】将化为进行计算【详解】解:原式====【点睛】本题考查了平方差公式和完全平方公式能灵活运用公式进行计算是解此题的关键解析:1995-【分析】将29999981002-⨯化为2(10001)(10002)(10002)---+进行计算.【详解】解:原式=2(10001)(10002)(10002)---+ =22(100020001)(10004)-+--=2210002000110004-+-+=1995-.【点睛】本题考查了平方差公式和完全平方公式,能灵活运用公式进行计算是解此题的关键. 19.9【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可【详解】∵∴故答案为:9【点睛】本题主要考查了同底数幂的除法以及幂的乘方熟记幂的运算法则是解答本题的关键解析:9【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可.【详解】∵20206m =,20204n =,∴222(2020)20200922406m n m n -=÷=÷=.故答案为:9.【点睛】本题主要考查了同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键. 20.23【分析】将a+b=5两边平方利用完全平方公式化简将ab 的值代入计算即可求出a2+b2的值【详解】解:将a+b=5两边平方得:(a+b )2=a2+2ab+b2=25将ab=1代入得:a2+2+b2解析:23【分析】将a+b=5两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出a 2+b 2的值.【详解】解:将a+b=5两边平方得:(a+b )2=a 2+2ab+b 2=25,将ab=1代入得:a 2+2+b 2=25,则a 2+b 2=23.故答案为:23.【点睛】本题考查完全平方公式,熟练掌握完全平方公式是解题关键.三、解答题21.242a ab -,当21a b ==,时,12.【分析】先计算整式混合运算,利用非负数求出a b ,的值,在代入求值即可.【详解】解:322(48)4(2)(2)ab a b ab a b a b -÷++-,22224b ab a b =-+-,242a ab =-,∵2(2)|1|0a b -+-=,2(2),100||a b --≥≥,∴20,10a b -=-=,当21a b ==,时,原式24222116412=⨯-⨯⨯=-=.【点睛】本题考查了整式的混合运算及化简求值,非负数性质,准确进行整式混合运算是解题关键.22.(1)224()()ab a b a b =+--,说明见解析;(2)34±;(3)1x x -=44147x x+= 【分析】(1)根据阴影部分的面积4=个小长方形的面积=大正方形的面积-小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式先求出-a b 的值,再进一步解答;(3)先求出13x x+=,根据完全平方公式解答. 【详解】解:(1)阴影部分的面积为:4ab 或22(a b)(a b)+--, 得到等式:224()()ab a b a b =+--,说明:2222222222()()2(2)224a b a b a ab b a ab b a ab b a ab b ab +--=++--+=++-+-=. (2)当2a b +=,34ab =时, 2223()()4244314a b a b ab -=+-=-⨯=-=, 1a b ∴-=±.2233()144a b ab ab a b -=-=±⨯=±; (3)当0x =时,23110x x -+=≠,2310x x ∴-+=中0x ≠,则两边都除以x ,得:130x x -+=,即13x x+=, 2211()()4945x x x x∴-=+-=-=,则1x x-= 4224211()2x x x x +=+- 221[()2]2x x=+-- 22(32)2=--492=-47=.【点睛】本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.23.(1)16;(2)235b c b -+. 【分析】(1)根据乘方,绝对值,零指数幂的知识换件,然后在计算即可;(2)运用整式的除法,直接计算即可.【详解】解:(1)()031321()223⎛⎫-+---⨯- ⎪⎝⎭ ()1211()23=-+-⨯- 1223=-+ 16= (2) 22222222353a b c a bc a c ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ 22222223532a b c a bc a c ⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 22222222352332a b c a bc a c a c ⎛⎫⎛⎫=⨯--⨯- ⎪ ⎪⎝⎭⎝⎭ 235b c b =-+ 【点睛】本题考查了有理数运算和整式的混合运算,熟悉相关运算法则是解题的关键.24.226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.25.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.26.(1)①4240-x y ;②12a -;(2)253x x -+;-14 【分析】(1)①先计算积的乘方,然后计算单项式乘单项式;②先计算积的乘方,然后计算单项式除以单项式;(2)整式的混合运算,先算乘法,然后再算加减合并同类项化简,最后代入求值.【详解】解:(1)①32(2)(5)x xy ⋅- =328(5)x xy ⋅-4240x y =-;②3252()(2)a b a b -÷-=6252(2)a b a b ÷- =12a -; (2)2(1)(1)(1)(31)(21)x x x x x x --+---- 22222(1)(651)x x x x x =-----+222221651x x x x x =--+-+-253x x =-+当2x =时,原式2523220614=-⨯+⨯=-+=-.【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。
北师大版七年级下册期中备考基础检测--《整式乘除》(包含答案)
北师大版七年级下册期中备考章节基础检测整式的乘除(满分100分,考试时间60分钟)学校 班级 姓名一、选择题(每小题 3 分,共 30 分)1. 计算()23a -- 的结果正确的是( )A .26a -B .29a -C .26aD .29a 2. 下列各式,计算正确的是( ) A .(-2a -3)(2a -3) = 4a 2 -9 B . (-x + 2)2 = (x + 2)2C .(-x + 2)(x - 2) = -x 2 + 4x - 4 D. (3x -1)2 = 3x 2 - 6x +13. 计算 的结果是( )A .22321b a b a +-B .ab b a b a 2121223---C .ab b a b a 2121222++-D .ab b a b a 2121223++-4. 已知2x ⋅8x +1 = 22 x +5,则 x 的值为( ) A .-1 B .1 C .0 D .2 5. 从边长为 a 的正方形内去掉一个边长为 b 的小正方形(如图 1),然后将剩余部分剪拼成一个长方形(如图 2),上述操作所能验证的等式是( )A . (a - b )2 = a 2 - 2ab + b 2C . (a + b )2 = a 2 + 2ab + b 2 B . a 2 - b 2= (a - b )(a + b ) D . a 2 + ab = a (a + b )6.若(-2x + a )(x -1) 的展开式中不含 x 的一次项,则 a 的值是() A .-2B .2C .-1D .任意数7. 若 x + 2 = y + 6 = z + 4 ,则( y - x )3 + (z - y )3 + (z - x )3 的值为()A .-64B .-24C .24D .648. 将一个正方形一组对边减少 3cm ,另一组对边增加 3cm ,所得的长方形面积与将原正方形边长减少 1cm 后的正方形面积相等,则原正方形的边长为 ( )cm . A .8 B .4 C .5 D .29. 若3x+4y=5,则8x ⨯16y 的值是()A.10 B.16 C.32 D.6410. 若(3x -ky)2 = 9x2 +12xy + 4 y 2 ,则k 的值为()A.4 B.-4 C.±2D.-2二、填空题(每小题 3 分,共15 分)11. 用科学记数法表示0.000 002 88 为.12. 我们约定a ⊕b = 2a⋅ 2b,例如2 ⊕ 3 = 22⋅ 23= 25= 32 ,则3 ⊕ 5 的值为.13. 计算2 0152 - 2 014 ⨯2 016 的值为.14. 计算(a +b -3)(a -b + 3) 的结果为.15. 下图是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了(a +b)n (n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如(a +b)2 =a2 + 2ab +b2 展开式中的系数1,2,1 恰好对应图中第三行的数字;再如,(a +b)3 =a3 + 3a2b + 3ab2 +b3 展开式中的系数1,3,3,1 恰好对应图中第四行的数字.请认真观察此图,写出(a +b)4 的展开式(a +b)4 = .三、解答题(本大题共8 小题,满分55 分)16. (8 分)计算:217. (8 分)化简求值:(1)当 a =2 时,求代数式(-2a -1)2 - (2a +1)(-1+ 2a ) 的值.(2)已知 a + (b - 3)2 = 0 ,求代数式⎡⎣(2a + b )2 + (2a + b )(b - 2a ) - 6b ⎤⎦ ÷ (2b )的值.18. (5 分)已知M = (x +1)(x 2 + x -1),N = (x -1)(x 2 + x +1) ,比较 M 与 N 的大小关系,并说明理由.19. (5 分)若 x + y = 3,xy = -4 ,求(x - y )2 的值.320. (8 分)若(x 2 - px + 2)(x - q ) 的展开式中不含x 的二次项,请回答下列问题:(1)p 与q 有什么样的关系? (2)计算( p + q )3 - (- p - q +1)2 的值.21.(6 分)小明在做一个多项式除以a 21的题时,由于粗心误以为是乘以a 21, 结果是234248a a b a +-,你能知道原题的正确结果是多少吗?422. (7 分)小明在做一道计算题目(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) 的时候是这样分析的:这个算式里面每个括号内都是两数和的形式,跟最近学的两大公式作对比,发现跟平方差公式很类似,但是需要添加两数的差,于是添了(2 -1) ,并做了如下的计算:(2 +1)(22 + 1)(24 + 1)(28 +1)(216 +1)= (2 -1)(2 +1)(22 +1)(24 +1)(28 + 1)(216 + 1)= (22 -1)(22 + 1)(24 + 1)(28 +1)(216 +1)= 232 -1请按照小明的方法,计算(3 +1)(32 +1)(34 +1)(38 +1)(316 +1) .23. (8 分)请用直观的方法说明(a + 2b)(2a +b) = 2a 2 + 5ab + 2b 2 .5参考答案:1-5BCDBB 6-10AACCD。
代数第1册(下)第7章《整式的乘除》基础测试题
代数第1册(下)第7章《整式的乘除》基础测试题基础测试(一)填空(每题2分,共20分)1.x10=(-x3)2_________=x12÷x()[答:]X4;2.2.4(m-n)3÷(n-m)2=___________.【答案】4(m-n).3.-x2(-x)3(-x)2=________;。
[回答]X74.(2a-b)()=b2-4a2.【答案】-2a-b.5.(a-b)2=a+b)2+u_____________________6.(13)-2+? 0=_________;4101×0.2599=__________.【答案】10;16.7.2023×1913=()()=___________.【答案】20+23,20-253,3999.8.用科学符号表示-0.0000308=_______【答案】-3.08×10-5.9.(x-2y+1)(x-2y-1)2=()2-()2=_______________.【答案】x-2y,1x2-4xy+4y.10.如果(x+5)(x-7)=x2+MX+N,那么M=______________________(二)选择题(每小题2分,共计16分)11.以下计算中的正确值为。
(a)二,=a2n(b)(a3)2=a5(c)x4x3x=x7(d)a2n-3÷a3-n=a3n-6【答案】d.12.x2m+1可写。
(a)(x2)m+1(b)(XM)2+1(c)xx2m(d)(XM)m+1【答案】c.13.以下计算是正确的。
(a)(-2Ab)(-3AB)3=-54a4b4(b)5x2(3x3)2=15x12(c)(-0.16)(-10b2)3=-B7(d)(2)×10n)(1n2×10)=102n【答案】d.14.简化,结果正确的是………………………………………………………((a)a2nb锰(b)an2bmn(c)an2bmn(d)a2nbmn[答:]C华人教育有限公司版权所有))))15.若a≠b,下列各式中不能成立的是………………………………………………()(a)(a+b)2=(-a-b)2(b)(a+b)(a-b)=(b+a)(b-a)nn(c)(a-b)2=(b-a)2(d)(a-b)3=(b-a)3[答:]B16.下列各组数中,互为相反数的是……………………………………………………()(a)(-2)-3和23(b)-2和2-2(c) -33和(-1)3(d)(-3)-3和(13)33[答]D17.下列各式中正确的是………………………………………………………………((a)(a+4)(a-4)=a2-4(b)(5x-1)(1-5x)=25x2-1(c)(-3x+2)2=4-12x+9x2(d)(x-3)(x-9)=x2-27[答:]C18.如果x2-kx-ab=(x-a)(x+b),则k应为…………………………………((a)a+b(b)a-b(c)b-a(d)-a-b[答:]B(三)计算(每题4分,共24分)19.(1)(-3xy2)3(16x3y)2;【答案】-34x9y8.(2)4a2x2(-215a4x3y3)÷(-2a5xy2)【答案】165ax4y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础测试
(一)填空题(每小题2分,共计20分)
1.x 10=(-x 3)2·_________=x 12÷x ( )
【答案】x 4;2.
2.4(m -n )3÷(n -m )2=___________. 【答案】4(m -n ).
3.-x 2·(-x )3·(-x )2=__________. 【答案】x 7.
4.(2a -b )()=b 2-4a 2. 【答案】-2a -b .
5.(a -b )2=(a +b )2+_____________. 【答案】-4ab .
6.(
3
1)-2+ 0
=_________;4101×0.2599=__________. 【答案】10;16.
7.20
32×193
1=( )·( )=___________. 【答案】20+32,20-32,3999
5
.
8.用科学记数法表示-0.0000308=___________.
【答案】-3.08×10-
5.
9.(x -2y +1)(x -2y -1)2=( )2-( )2=_______________. 【答案】x -2y ,1x 2-4xy +4y .
10.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________. 【答案】-2,35.
(二)选择题(每小题2分,共计16分)
11.下列计算中正确的是…………………………………………………………………( )
(A )a n ·a 2
=a 2n (B )(a 3)2=a 5 (C )x 4·x 3·x =x 7 (D )a 2n -3÷a 3-n =a 3n -6 【答案】D .
12.x 2m +1可写作…………………………………………………………………………( )
(A )(x 2)m +1 (B )(x m )2+1 (C )x ·x 2m (D )(x m )m +
1 【答案】C .
13.下列运算正确的是………………………………………………………………( )
(A )(-2ab )·(-3ab )3=-54a 4b 4 (B )5x 2·(3x 3)2=15x 12 (C )(-0.16)·(-10b 2)3=-b 7 (D )(2×10n
)(
2
1×10n )=102n
【答案】D .
14.化简(a n b m )n
,结果正确的是………………………………………………………( )
(A )a 2n b
mn
(B )n
m n b
a 2 (C )mn
n b
a 2 (D )n
m n
b
a 2
【答案】C .
15.若a ≠b ,下列各式中不能成立的是………………………………………………( ) (A )(a +b )2=(-a -b )2 (B )(a +b )(a -b )=(b +a )(b -a )
(C )(a -b )2n =(b -a )2n
(D )(a -b )3=(b -a )3
【答案】B .
16.下列各组数中,互为相反数的是……………………………………………………( )
(A )(-2)-3与23 (B )(-2)-2与2-
2
(C )-33与(-
31)3 (D )(-3)-
3与(3
1)3 【答案】D .
17.下列各式中正确的是………………………………………………………………( ) (A )(a +4)(a -4)=a 2-4 (B )(5x -1)(1-5x )=25x 2-1 (C )(-3x +2)2=4-12x +9x 2 (D )(x -3)(x -9)=x 2-27
【答案】C .
18.如果x 2-kx -ab =(x -a )(x +b ),则k 应为…………………………………( )
(A )a +b (B )a -b (C )b -a (D )-a -b
【答案】B .
(三)计算(每题4分,共24分)
19.(1)(-3xy 2)3·(6
1x 3y )2
; 【答案】-
4
3x 9y 8. (2)4a 2x 2·(-52a 4x 3y 3)÷(-2
1
a 5xy 2);
【答案】5
16ax 4
y .
(3)(2a -3b )2(2a +3b )2; 【答案】16a 4-72a 2b 2+81b 4.
(4)(2x +5y )(2x -5y )(-4x 2-25y 2); 【答案】625y 4-16x 4.
(5)(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -
3b );
【答案】-10ab n -1+7a 2b n -4a n +
3.
(6)(x -3)(2x +1)-3(2x -1)2.
【答案】-10x 2+7x -6.
20.用简便方法计算:(每小题3分,共9分)
(1)982;
【答案】(100-2)2=9604.
(2)899×901+1;
【答案】(900-1)(900+1)+1=9002=810000.
(3)(
7
10)2002
·(0.49)1000. 【答案】(710)2·(710)2000·(0.7)2000=49
100
.
(四)解答题(每题6分,共24分)
21.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.
【提示】配方:(a +3)2+(b -5)2=0,a =-3,b =5, 【答案】-41.
22.已知a +b =5,ab =7,求22
2b a +,a 2-ab +b 2的值.
【答案】2
22b a +=21
[(a +b )2-2ab ]=21(a +b )2-ab =211.
a 2-a
b +b 2=(a +b )2-3ab =4.
23.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.
【答案】a 2+b 2=21
[(a +b )2+(a -b )2]=6,
ab =4
1
[(a +b )2+(a -b )2]=2.
24.已知a 2+b 2+c 2=ab +bc +ac ,求证a =b =c .
【答案】用配方法,a 2+b 2+c 2-ab -bc -ac =0,∴ 2(a 2+b 2+c 2-ab -ac -bc )=0,
即(a -b )2+(b -c )2+(c -a )2=0.∴ a =b =c .
(五)解方程组与不等式(25题3分,26题4分,共7分)
25.⎩⎨
⎧+=-+=+-++.
3)3)(4(0
)2()5)(1(xy y x y x y x
【答案】⎪⎩⎪⎨⎧=-
=.
237y x
26.(x +1)(x 2-x +1)-x (x -1)2<(2x -1)(x -3).
【答案】x >-3
1
.。