(新课标)高中数学1.1.1变化率与导数教案 新人教A版选修2-2
【免费下载】 新人教A版高中数学教材目录(必修+选修)
选修 1-1 第一章 常用逻辑用语 1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词 小结 复习参考题 第二章 圆锥曲线与方程 2.1 椭圆 探究与发现 为什么截口曲线是椭圆 信息技术应用 用《几何画板》探究点的轨迹:椭圆 2.2 双曲线 2.3 抛物线
新人教 A 版高中数学教材目录(必修+选修)
必修 1 第一章 集合与函数概念 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 第二章 基本初等函数(Ⅰ) 2.1 指数函数 2.2 对数函数 2.3 幂函数 第三章 函数的应用 3.1 函数与方程 3.2 函数模型及其应用 必修 2 第一章 空间几何体 1.1 空间几何体的结构 1.2 空间几何体的三视图和直观图
选修 1-2 第一章 统计案例
1.1 回归分析的基本思想及其初步应用 1.2 独立性检验的基本思想及其初步应用 实习作业 小结 复习参考题 第二章 推理与证明 2.1 合情推理与演绎证明 阅读与思考 科学发现中的推理 2.2 直接证明与间接证明 小结 复习参考题
选修 2-3 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 探究与发现 子集的个数有多少 1.2 排列与组合
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配,料置不试技仅卷术可要是以求指解,机决对组吊电在顶气进层设行配备继置进电不行保规空护范载高与中带资负料荷试下卷高总问中体题资配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,.卷编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试5写交卷、重底保电要。护气设管装设备线置备4高敷动调、中设作试电资技,高气料术并中课3试中且资件、卷包拒料中管试含绝试调路验线动卷试敷方槽作技设案、,术技以管来术及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2020年人教版A版数学选修2-2全册完整讲义学案(教师用书)
第一章导数及其应用§1.1变化率与导数§1.1.1变化率问题§1.1.2导数的概念§1.1.3导数的几何意义§1.2导数的计算§1.2.1几个常用函数的导数§1.2.2基本初等函数的导数公式及导数的运算法则(一) §1.2.2基本初等函数的导数公式及导数的运算法则(二) §1.3导数在研究函数中的应用§1.3.1函数的单调性与导数§1.3.2函数的极值与导数§1.3.3函数的最大(小)值与导数§1.4生活中的优化问题举例§1.5定积分的概念§1.5.1曲边梯形的面积§1.5.2汽车行驶的路程§1.5.3定积分的概念§1.6微积分基本定理§1.7定积分的简单应用§1.7.1定积分在几何中的应用§1.7.2定积分在物理中的应用章末整合提升章末达标测试第二章推理与证明§2.1合情推理与演绎推理§2.1.1合情推理§2.1.2演绎推理§2.2直接证明与间接证明§2.2.1综合法和分析法§2.2.2反证法§2.3数学归纳法章末整合提升章末达标测试第三章数系的扩充与复数的引入§3.1数系的扩充和复数的概念§3.1.1数系的扩充和复数的概念§3.1.2复数的几何意义§3.2复数代数形式的四则运算§3.2.1复数代数形式的加、减运算及其几何意义§3.2.2复数代数形式的乘除运算章末整合提升章末达标测试模块综合检测§1.1 变化率与导数§1.1.1 变化率问题 §1.1.2 导数的概念[课标要求]1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景.(难点) 2.会求函数在某一点附近的平均变化率.(重点)3.会利用导数的定义求函数在某点处的导数.(重点、难点)一、函数平均变化率如果函数关系用y =f (x )表示,那么变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率.习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1的一个“增量”,可用x 1+Δx 代替x 2;类似地,Δy =f (x 2)-f (x 1).于是平均变化率可以表示为Δy Δx. 二、导数的有关概念 1.瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是f (x 0+Δx )-f (x 0)Δx =ΔyΔx. 2.函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作,即f ′(x 0)=ΔyΔx=f (x 0+Δx )-f (x 0)Δx.知识点一 平均变化率 【问题1】 气球的膨胀率 阅读教材,思考下面的问题.吹一只气球,观察一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?答案 气球的半径r (单位:dm)与体积V (单位:L)之间的函数关系是r (V )=33V4π, (1)当空气容量V 从0增加到1 L 时,气球半径增加了r (1)-r (0)≈0.62(dm), 气球的平均膨胀率为r (1)-r (0)1-0≈0.62(dm/L).(2)当空气容量V 从1 L 增加到2 L 时,气球半径增加了r (2)-r (1)≈0.16(dm), 气球的平均膨胀率为r (2)-r (1)2-1≈0.16(dm/L).可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了. 【问题2】 高台跳水人们发现,在高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在时间段①0≤t ≤0.5,②1≤t ≤2内的平均速度v ,并思考平均速度有什么作用? 答案 (1)在0≤t ≤0.5这段时间里,v =h (0.5)-h (0)0.5-0=4.05(m/s);(2)在1≤t ≤2这段时间里,v =h (2)-h (1)2-1=-8.2(m/s).由以上计算体会到平均速度可以描述运动员在某段时间内运动的快慢. 【问题3】 结合问题1和问题2说出你对平均变化率的理解.答案 (1)如果上述两个问题中的函数关系用y =f (x )表示,那么问题1中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.问题1中的平均变化率表示在空气容量从V 1增加到V 2时,气球半径的平均增长率.问题2中的平均变化率表示在时间从t 1增加到t 2时,高度h 的平均增长率.(2)平均变化率的几何意义就是函数y =f (x )图象上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2))所在直线的斜率. (3)平均变化率的取值①平均变化率可以表现函数的变化趋势,平均变化率为0,并不一定说明函数f (x )没有发生变化.②自变量的改变量Δx 取值越小,越能准确体现函数的变化规律. (4)平均变化率的物理意义平均变化率的物理意义是把位移s 看成时间t 的函数s =s (t ),在时间段[t 1,t 2]上的平均速度,即v =s (t 2)-s (t 1)t 2-t 1.知识点二 函数在某点处的导数【问题1】 (1)物体的平均速度能否精确反映它的运动状态? (2)什么叫做瞬时速度? (3)它与平均速度有什么关系?答案 (1)物体的平均速度不能精确地反映物体的运动状态,如高台跳水运动员相对于水面的高度h 与起跳时间t 的函数关系h (t )=-4.9t 2+6.5t +10,易知h (6549)=h (0),v =h (6549)-h (0)6546-0=0,而运动员依然是运动状态.(2)设物体运动的路程与时间的关系是s =f (t ),当Δt 趋近于0时,函数f (t )在t 0到t 0+Δt 之间的平均变化率f (t 0+Δt )-f (t 0)Δt趋近于常数,我们把这个常数称为t 0时刻的瞬时速度.(3)平均速度只能粗略地描述物体的运动状态,并不能反映物体在某一时刻的瞬时速度.当时间间隔|Δt |趋近于0时,平均速度v 就无限趋近于t 0时的瞬时速度.【问题2】 平均变化率与瞬时变化率有什么关系?答案 (1)区别:平均变化率不是瞬时变化率.平均变化率刻画函数值在区间[x 1,x 2]上变化的快慢,瞬时变化率刻画函数值在x 0点处变化的快慢.(2)联系:当Δx 趋近于0时,平均变化率ΔyΔx 趋近于一个常数,这个常数即为函数在x 0处的瞬时变化率,它是一个固定值.【问题3】 导数与瞬时变化率有什么关系? 答案 导数与瞬时变化率的关系导数是函数在x 0及其附近函数的改变量Δy 与自变量的改变量Δx 之比在Δx 趋近于0时所趋近的数,它是一个局部性的概念,若ΔyΔx存在,则函数y =f (x )在x 0处有导数,否则不存在导数.可以说导数就是函数在某点处的导数,例如,位移s 关于时间t 的导数就是运动物体在某时刻的瞬时速度.题型一 求函数的平均变化率求函数f (x )=x 2在x 0到x 0+Δx 之间的平均变化率. 【解析】 函数f (x )=x 2在x 0到x 0+Δx 的平均变化率为 f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=x 20+2x 0Δx +(Δx )2-x 2Δx=2x 0·Δx +(Δx )2Δx =2x 0+Δx .●规律方法求函数y =f (x )平均变化率的步骤(1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.[特别提醒](1)求函数平均变化率时注意Δx ,Δy ,两者都可正、可负,但Δx 的值不能为零,Δy 的值可以为零. (2)求点x 0附近的平均变化率,可用f (x 0+Δx )-f (x 0)Δx的形式.1.若本例中,Δx =13,x 0=1,2,3,比较函数f (x )=x 2在哪一点附近的平均变化率最大?解析 x 0=1到x =1+13=43的平均变化率k 1=f ⎝⎛⎭⎫43-f (1)13=⎝⎛⎭⎫432-1213=73, x 0=2到x =73的平均变化率k 2=f ⎝⎛⎭⎫73-f (2)13=⎝⎛⎭⎫732-2213=133,x 0=3到x =103的平均变化率k 3=f ⎝⎛⎭⎫103-f (3)13=⎝⎛⎭⎫1032-3213=193,由于k 1<k 2<k 3,∴函数f (x )=x 2在x 0=3附近的平均变化率最大. 题型二 物体运动的瞬时速度物体自由落体的运动方程是s =12gt 2(g =9.8 m/s 2),求物体在t =3 s 这一时刻的速度.【解析】 平均速度Δs Δt =12g (3+Δt )2-12g ×32Δt=12g (6+Δt ). 当Δt 趋于0时,Δs Δt =12g (6+Δt )趋于3g ,所以v =3g =29.4(m/s),即物体在t =3 s 时的速度为29.4 m/s.●规律方法求运动物体瞬时速度的步骤(1)求时间改变量Δt 和位置改变量Δs =s (t 0+Δt )-s (t 0). (2)求平均速度v =ΔsΔt.(3)求瞬时速度:当Δt 无限趋近于0,ΔsΔt 无限趋近于的常数v 即为瞬时速度.提示 求ΔyΔx (当Δx 无限趋近于0时)的极限的方法(1)在极限表达式中,可把Δx 作为一个变量来参与运算.(2)求出ΔyΔx的表达式后,Δx 无限趋近于0就是令Δx =0,求出结果即可.2.一辆汽车按规律s =2t 2+3做直线运动,求这辆车在t =2时的瞬时速度(时间单位:s ,位移单位:m). 解析 设这辆车在t =2附近的时间变化量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt)2,ΔsΔt=8+2Δt,ΔsΔt=(8+2Δt)=8.所以,这辆车在t=2时的瞬时速度为8 m/s.题型三求函数在某点处的导数(6分)求函数y=x-1x在x=1处的导数.【规范解答】因为Δy=(1+Δx)-11+Δx-(1-11)=Δx+Δx1+Δx,(2分)所以ΔyΔx=Δx+Δx1+ΔxΔx=1+11+Δx.(4分)当Δx→0时,f′(1)=ΔyΔx=(1+11+Δx)=2,即函数y=x-1x在x=1处的导数为2.(6分)●规律方法求函数y=f(x)在x=x0处的导数的步骤(1)求函数值的变化量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=f(x0+Δx)-f(x0)Δx;(3)取极限,得导数f′(x0)=ΔyΔx.3.利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.解析由导数的定义知,函数在x=2处的导数f′(2)=f(2+Δx)-f(2)Δx,而f(2+Δx)-f(2)=-(2+Δx)2+3(2+Δx)-(-22+3×2)=-(Δx)2-Δx,于是f′(2)=-(Δx)2-ΔxΔx=(-Δx-1)=-1.易错误区(一) 对导数的概念理解不清致误若函数f (x )在x =a 的导数为m ,那么 f (a +2Δx )-f (a -2Δx )Δx 的值为________.【解析】f (a +2Δx )-f (a -2Δx )Δx=f (a +2Δx )-f (a )+f (a )-f (a -2Δx )Δx=f (a +2Δx )-f (a )Δx +f (a )-f (a -2Δx )Δx ①=2f (a +2Δx )-f (a )2Δx+2f (a -2Δx )-f (a )-2Δx=2m +2m =4m . 【答案】 4m [易错防范]1.误认为①处两极限值均为m ,即运算结果为2m .2.对平均变化率中自变量的增加量“Δx ”理解不当.在平均变化率f (x 0+Δx )-f (x 0)Δx 中,分子中的“Δx ”与分母中的“Δx ”应取相同值,且可正可负.3.熟记瞬时变化率(即导数)的几种变形形式f (x 0+Δx )-f (x 0)Δx=f (x 0-Δx )-f (x 0)-Δx=f (x 0+n Δx )-f (x 0)n Δx=f (x 0+Δx )-f (x 0-Δx )2Δx=f ′(x 0).若f ′(1)=2 016,则f (1+Δx )-f (1)-2Δx=________.解析f (1+Δx )-f (1)-2Δx=-12f (1+Δx )-f (1)Δx=-12f ′(1)=-12×2 016=-1 008.答案 -1 008[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.质点运动规律s =2t 2+5,则在时间(2,2+Δt )中,相应的平均速度等于 A .8+2Δt B .8+2Δt +4ΔtC .4+ΔtD .8+Δt解析 Δs =s (2+Δt )-s (2)=2(2+Δt )2+5-(2×22+5)=2(Δt )2+8Δt . ∴Δs Δt =2(Δt )2+8Δt Δt =8+2Δt . 答案 A2.函数y =x 2-2x 在x =2附近的平均变化率是 A .2B .ΔxC .Δx +2D .1解析 Δy =f (2+Δx )-f (2) =(2+Δx )2-2(2+Δx )-(4-4) =(Δx )2+2Δx ,∴Δy Δx =(Δx )2+2Δx Δx=Δx +2.答案 C3.设函数y =f (x )可导,则f (1+3Δx )-f (1)Δx 等于 A .f ′(1)B .3f ′(1) C.13f ′(1) D .以上都不对 解析 f (1+3Δx )-f (1)Δx=3f (1+3Δx )-f (1)3Δx =3f ′(1). 答案 B4.一个物体的运动方程为s =(2t +1)2,其中s 的单位是米,t 的单位是秒,那么该物体在1秒末的瞬时速度是A .10米/秒B .8米/秒C .12米/秒D .6米/秒解析 ∵s =4t 2+4t +1,Δs =[4(1+Δt )2+4(1+Δt )+1]-(4×12+4×1+1)=4(Δt )2+12Δt ,Δs Δt =4(Δt )2+12Δt Δt=4Δt +12, ∴v =Δs Δt =(4Δt +12)=12(米/秒). 答案 C5.如果函数y =f (x )=x 在点x =x 0处的瞬时变化率是33,那么x 0的值是 A.34B.12 C .1D .3解析 函数f (x )=x 在x =x 0处的瞬时变化率,f ′(x 0)=x 0+Δx -x 0Δx =Δx Δx (x 0+Δx +x 0)=12x 0=33,答案 A 6.某物体做直线运动,其运动规律是s =t 2+16t(t 的单位是秒,s 的单位是米),则它的瞬时速度为0米/秒的时刻为A .8秒末B .6秒末C .4秒末D .2秒末解析 设当t =t 0时该物体瞬时速度为0米/秒,∵Δs Δt =(t 0+Δt )2+16t 0+Δt -⎝⎛⎭⎫t 20+16t 0Δt =2t 0+Δt -16(t 0+Δt )t 0, ∴Δs Δt=2t 0-16t 20, 由2t 0-16t 20=0得t 0=2. 答案 D二、填空题(每小题5分,共15分)7.函数y =-3x 2+6在区间[1,1+Δx ]内的平均变化率是________.解析 Δy Δx =[-3(1+Δx )2+6]-(-3×12+6)Δx=-6Δx -3(Δx )2Δx=-6-3Δx . 答案 -6-3Δx8.一质点的运动方程为s =1t,则t =3时的瞬时速度为________. 解析 由导数定义及导数的物理意义知s ′=1t +Δt -1t Δt=-Δt (t +Δt )·t ·Δt =-1t 2+t ·Δt =-1t 2, ∴s ′ |t =3=-19,即t =3时的瞬时速度为-19.9.已知曲线y =1x -1上两点A ⎝⎛⎭⎫2,-12、B ⎝⎛⎭⎫2+Δx ,-12+Δy ,当Δx =1时,割线AB 的斜率为________. 解析 Δy =⎝ ⎛⎭⎪⎫12+Δx -1-⎝⎛⎭⎫12-1 =12+Δx -12=2-(2+Δx )2(2+Δx )=-Δx 2(2+Δx ). ∴Δy Δx =-Δx2(2+Δx )Δx =-12(2+Δx ), 即k =Δy Δx =-12(2+Δx ). ∴当Δx =1时,k =-12×(2+1)=-16. 答案 -16三、解答题(本大题共3小题,共35分)10.(10分)一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2.(1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度;(3)求t =0到t =2的平均速度.解析 (1)v 0=s (Δt )-s (0)Δt=3Δt -(Δt )2Δt=(3-Δt )=3. (2)v 2=s (2+Δt )-s (2)Δt =(-Δt -1)=-1.(3)v -=s (2)-s (0)2=6-4-02=1. 11.(12分)已知f (x )=x 2,g (x )=x 3,求适合f ′(x 0)+2=g ′(x 0)的x 0值.解析 由导数的定义知,f ′(x 0)=Δf Δx =(x 0+Δx )2-x 20Δx =2x 0,g ′(x 0)=Δg Δx =(x 0+Δx )3-x 30Δx=3x 20. 因为f ′(x 0)+2=g ′(x 0),所以2x 0+2=3x 20,即3x 20-2x 0-2=0,解得x 0=1-73或x 0=1+73.12.(13分)节日期间燃放烟花是中国的传统习惯之一,制造时通常希望它在达到最高点时爆裂.如果烟花距地面的高度h (m)与时间t (s)之间的关系式为h (t )=-4.9t 2+14.7t +18,求烟花在t =2 s 时的瞬时速度,并解释烟花升空后的运动状况.解析 因为Δh Δt =h (t +Δt )-h (t )Δt=-9.8t -4.9Δt +14.7, 所以h ′(t )=Δh Δt =(-9.8t -4.9Δt +14.7)=-9.8t +14.7,所以h ′(2)=-4.9,即在t =2 s 时烟花正以4.9 m/s 的速度下降.由h ′(t )=0得t =1.5,所以在t =1.5 s 附近,烟花运动的瞬时速度几乎为0,此时达到最高点并爆裂,在1.5 s 之前,导数大于0且递减,所以烟花以越来越小的速度上升,在1.5 s 之后,导数小于0且绝对值越来越大,所以烟花以越来越大的速度下降,直至落地.§1.1.3 导数的几何意义[课标要求]1.了解导函数的概念;理解导数的几何意义.(难点)2.会求导函数.(重点)3.根据导数的几何意义,会求曲线上某点处的切线方程.(重点、易错点)一、导数的几何意义1.切线:如图,当点P n (x n ,f (x n ))(n =1,2,3,4…)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线.显然割线PP n 的斜率是k n =f (x n )-f (x 0)x n -x 0,当点P n 无限趋近于点P 时,k n 无限趋近于切线PT 的斜率.2.几何意义:函数y =f (x )在x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,即曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率k =f (x 0+Δx )-f (x 0)Δx=f ′(x 0).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二、函数y =f (x )的导函数从求函数f (x )在x =x 0处导数的过程可以看到,当x =x 0时,f ′(x 0)是一个确定的数.这样,当x 变化时, f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=f (x +Δx )-f (x )Δx.知识点一 导数的几何意义【问题1】 曲线的切线是不是一定和曲线只有一个公共点?答案 不一定.曲线的切线和曲线不一定只有一个公共点,和曲线只有一个公共点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.【问题2】 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同?答案 曲线f (x )在点(x 0,f (x 0))处的切线,点(x 0,f (x 0))一定是切点,只要求出k =f ′(x 0),利用点斜式写出切线即可;而曲线f (x )过某点(x 0,y 0)的切线,给出的点(x 0,y 0)不一定在曲线上,即使在曲线上也不一定是切点.知识点二 导数与函数的单调性【问题1】 观察下面两个图形,在曲线的切点附近(Δx →0时)曲线与那一小段线段有何关系?答案 能在曲线的切点附近,曲线与切线贴合在一起,可用切线近似代替曲线.【问题2】 按照切线近似代替曲线的思想,切线的单调性能否表示曲线的变化趋势?如上左图,若在某一区间上曲线上各点的切线斜率均为负,则可判定在该区间上曲线的单调性如何?答案 在连续区间上切线斜率的正负,对应了曲线的单调性.【问题3】 如问题1中右图,当t 在(t 0,t 2)上变化时,其对应各点的导数值变化吗?会怎样变化? 答案 会.当t 变化时h ′(t )便是t 的一个函数,我们称它为h (t )的导函数.知识点三 函数y =f (x )的导函数【问题】 函数在某点处的导数与导函数有什么关系?答案 区别:(1)f ′(x )是函数f (x )的导函数,简称导数,是对一个区间而言的,它是一个确定的函数,依赖于函数本身,而与x 0,Δx 无关;(2)f ′(x 0)表示的是函数f (x )在x =x 0处的导数,是对一个点而言的,它是一个确定的值,与给定的函数及x 0的位置有关,而与Δx 无关.联系:在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这点的函数值.题型一 求曲线的切线方程已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,如图,求:(1)点P 处的切线的斜率;(2)点P 处的切线方程.【解析】 (1)∵y =13x 3, ∴y ′=Δy Δx =13(x +Δx )3-13x 3Δx =133x 2Δx +3x (Δx )2+(Δx )3Δx =13[3x 2+3x Δx +(Δx )2]=x 2, y ′|x =2=22=4.∴点P 处的切线的斜率等于4.(2)在点P 处的切线方程是y -83=4(x -2), 即12x -3y -16=0.●规律方法求曲线上某点处的切线方程的步骤(1)求出该点的坐标.(2)求出函数在该点处的导数,即曲线在该点处的切线的斜率.(3)利用点斜式写出切线方程.1.例1中的P 点换为坐标原点(0,0),其他不变,如何解答?解析 由例1知y =13x 3的导函数为y ′=x 2. (1)点P 处的切线斜率k =0.(2)在点P 处的切线方程是y -0=0×(x -0)即y =0.(注意:原点处的切线即x 轴,结合图象理解切线的定义)题型二 求切点坐标过曲线y =x 2上哪一点的切线满足下列条件?(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)倾斜角为135°.【解析】 f ′(x )=f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,x 0=2,y 0=4,即P (2,4)是满足条件的点.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,得x 0=-32,y 0=94, 即P ⎝⎛⎭⎫-32,94是满足条件的点. (3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,得x 0=-12,y 0=14, 即P ⎝⎛⎭⎫-12,14是满足条件的点. ●规律方法求切点坐标的一般步骤(1)先设切点坐标(x 0,y 0).(2)求导函数f ′(x ).(3)求切线的斜率f ′(x 0).(4)由已知条件求出切线的斜率k .由此得到方程f ′(x 0)=k ,解此方程求出x 0.(5)由于点(x 0,y 0)在曲线y =f (x )上,故将x 0代入曲线方程可得y 0,即可写出切点坐标.2.(1)曲线y =x 2-3x 在点P 处的切线平行于x 轴,则点P 的坐标为________.(2)已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________. 解析 (1)根据题意可设切点为P (x 0,y 0),因为Δy =(x +Δx )2-3(x +Δx )-(x 2-3x )=2x Δx +(Δx )2-3Δx , Δy Δx =2x +Δx -3, 所以f ′(x )=Δy Δx =(2x +Δx -3)=2x -3.由f ′(x 0)=0,即2x 0-3=0,得x 0=32, 代入曲线方程得y 0=-94, 所以P ⎝⎛⎭⎫32,-94. (2)由导数的几何意义得f ′(1)=12, 由切线方程得f (1)=12×1+2=52, 所以f (1)+f ′(1)=3.答案 (1)⎝⎛⎭⎫32,-94 (2)3 题型三 导数几何意义的综合应用已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 1,l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积.【解析】 (1)f ′(1)=Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+(1+Δx )-2]-(1+1-2)Δx=(Δx +3)=3, 所以直线l 1的方程为y =3x -3.设直线l 2与曲线y =x 2+x -2相切于点B (b ,b 2+b -2),则可求得切线l 2的斜率为2b +1.因为l 1⊥l 2,则有2b +1=-13,b =-23. 所以直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1、l 2与x 轴交点的坐标分别为(1,0)、⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×⎪⎪⎪⎪-52=12512. ●规律方法与导数几何意义相关题目的解题策略(1)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.(2)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线间的位置关系等,因此要综合应用所学知识解题.3.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值. 解析 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3, ∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2.当Δx 无限趋近于零时,Δy Δx 无限趋近于3x 20+2ax 0-9,即f ′(x 0)=3x 20+2ax 0-9. ∴f ′(x 0)=3⎝⎛⎭⎫x 0+a 32-9-a23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12. ∴-9-a 23=-12.解得a =±3.又a <0,∴a =-3.规范解答(一) 求曲线过点P (x 1,y 1)的切线方程(12分)已知函数y =f (x )=x 3-3x 及y =f (x )上一点P (1,-2),求过点P 与曲线y =f (x )相切的直线l的方程.[审题指导]【规范解答】 (1)y ′=(x +Δx )3-3(x +Δx )-x 3+3xΔx=3x 2-3.(2分)设切点坐标为(x 0,x 30-3x 0), 则直线l 的斜率k =f ′(x 0)=3x 20-3,所以直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又因为直线l 过点P (1,-2),所以-2-(x 30-3x 0)=(3x 20-3)(1-x 0), 所以2x 30-3x 20+1=0,即(x 0-1)2(2x 0+1)=0,解得x 0=1或x 0=-12.(6分)故所求直线斜率为k =3x 20-3=0或k =3x 20-3=-94, 于是y -(-2)=0·(x -1)或y -(-2)=-94(x -1),即y =-2或y =-94x +14.(10分)故过点P (1,-2)的切线方程为 y =-2或y =-94x +14.(12分)[题后悟道]1.求过点P (x 1,y 1)的切线方程的步骤: (1)设切点(x 0,f (x 0)).(2)利用所设切点求斜率k =Δy Δx. (3)用(x 0,f (x 0)),P (x 1,y 1)表示斜率(或利用切点和斜率写出切线方程).(4)根据斜率相等求得x 0,然后求得斜率k (或利用已写出的切线过点P (x ,y ),求出x 0,然后求得斜率k ). (5)根据点斜式写出切线方程. 2.注意事项:(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异.过点P 的切线,点P 不一定是切点,也不一定在曲线上;在点P 处的切线,点P 必为切点,且在曲线上.(2)若曲线y =f (x )在点x 0处的导数f ′(x 0)不存在,则切线与y 轴平行或不存在;若f ′(x 0)=0,则切线与x 轴平行.已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程. 解析 y ′=Δy Δx=[2(x +Δx )2-7]-(2x 2-7)Δx=(4x +2Δx )=4x .由于2×32-7=11≠9,故点P (3,9)不在曲线上.设切点为A (x 0,y 0),则切线的斜率k =4x 0, 故所求切线方程为y -y 0=4x 0(x -x 0). 将P (3,9)及y 0=2x 20-7代入上式,得 9-(2x 20-7)=4x 0(3-x 0).解得x 0=2或x 0=4,所以切点为(2,1)或(4,25). 从而所求切线方程为8x -y -15=0或16x -y -39=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小, 结合导数的几何意义知f ′(x A )<f ′(x B ),选B. 答案 B2.曲线y =12x 2-2在点⎝⎛⎭⎫1,-32处的切线的倾斜角为 A .1 B.π4 C.5π4D .-π4解析 f ′(1)=12(1+Δx )2-2+32Δx=12+Δx +12(Δx )2-2+32Δx=(1+12Δx )=1,即切线的斜率为1,故切线的倾斜角为π4.答案 B3.若曲线y =2x 2-4x +a 与直线y =1相切,则a 等于 A .1 B .2 C .3D .4解析 设切点坐标为(x 0,1), 则f ′(x 0)=[2(x 0+Δx )2-4(x 0+Δx )+a ]-(2x 20-4x 0+a )Δx=(4x 0+2Δx -4)=4x 0-4=0,∴x 0=1,即切点坐标为(1,1). ∴2-4+a =1,即a =3. 答案 C4.设曲线y =x 2+x -2在点M 处的切线斜率为3,则点M 的坐标为 A .(0,-2) B .(1,0) C .(0,0)D .(1,1)解析 设点M (x 0,y 0), ∴k =(x 0+Δx )2+(x 0+Δx )-2-(x 20+x 0-2)Δx=2x 0+1, 令2x 0+1=3,∴x 0=1,则y 0=0.故选B. 答案 B5.曲线y =x 2在点(1,1)处的切线与坐标轴所围三角形的面积为 A.14B.12 C .1D .2 解析 f ′(1)=Δy Δx=(1+Δx )2-1Δx=(2+Δx )=2.则曲线在点(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.则三角形的面积为S =12×1×12=14.答案 A6.已知点P 在曲线F :y =x 3-x 上,且曲线F 在点P 处的切线与直线x +2y =0垂直,则点P 的坐标为 A .(1,1)B .(-1,0)C .(-1,0)或(1,0)D .(1,0)或(1,1)解析 设点P (x 0,y 0),则f ′(x 0)=ΔyΔx=[(x 0+Δx )3-(x 0+Δx )]-(x 30-x 0)Δx=3x 20-1=2⇒x 0=±1. 答案 C二、填空题(每小题5分,共15分)7.如果函数f (x )在x =x 0处的切线的倾斜角是钝角,那么函数f (x )在x =x 0附近的变化情况是________(填“逐渐上升”或“逐渐下降”).解析 由题意知f ′(x 0)<0,根据导数的几何意义知,f (x )在x =x 0附近的变化情况是“逐渐下降”. 答案 逐渐下降8.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ab =________.解析a (1+Δx )2+b -(a +b )Δx=(a Δx +2a )=2a =2,∴a =1,又3=a ×12+b ,∴b =2, 即a b =12. 答案 129.已知曲线y =x 24的一条切线的斜率为12,则切点的坐标为________.解析 设切点的坐标为(x 0,y 0), 因为Δy Δx =(x 0+Δx )24-x 204Δx =12x 0+14Δx ,当Δx →0时,Δy Δx →12x 0,而切线的斜率为12,所以12x 0=12,所以x 0=1,y 0=14.故切点坐标为⎝⎛⎭⎫1,14. 答案 ⎝⎛⎭⎫1,14 三、解答题(本大题共3小题,共35分) 10.(10分)已知曲线C :y =x 3.求:(1)曲线C 上横坐标为1的点处的切线的方程;(2)第(1)小题中的切线与曲线C 是否还有其他的公共点? 解析 (1)将x =1代入曲线C 的方程得y =1, ∴切点为P (1,1). ∵y ′=ΔyΔx=(x +Δx )3-x 3Δx=3x 2Δx +3x (Δx )2+(Δx )3Δx=[3x 2+3x Δx +(Δx )2]=3x 2,∴y ′|x =1=3.∴点P 处的切线方程为y -1=3(x -1), 即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)(x 2+x -2)=0,解得x 1=1,x 2=-2.从而求得公共点为P (1,1)或P (-2,-8). 故第(1)小题中的切线与曲线C 还有其他的公共点.11.(12分)已知一物体的运动方程是s =⎩⎪⎨⎪⎧3t 2+2,0≤t <3,29+3(t -3)2,t ≥3.求此物体在t =1和t =4时的瞬时速度. 解析 当t =1时,Δs Δt =3(1+Δt )2+2-(3×12+2)Δt =6+3Δt , 所以s ′(1)=ΔsΔt=(6+3Δt )=6.故当t =1时的瞬时速度为6. 当t =4时,Δs Δt =29+3(4+Δt -3)2-[29+3×(4-3)2]Δt =6+3Δt , 所以s ′(4)=ΔsΔt=(6+3Δt )=6,故当t =4时的瞬时速度为6.12.(13分)已知曲线f (x )=x 2的一条在点P (x 0,y 0)处的切线,求: (1)切线平行于直线y =-x +2时切点P 的坐标及切线方程; (2)切线垂直于直线12x -4y +5=0时切点P 的坐标及切线方程;(3)切线的倾斜角为60°时切点P 的坐标及切线方程. 解析 f ′(x 0)=(x 0+Δx )2-x 20Δx=2x 0.(1)因为切线与直线y =-x +2平行, 所以2x 0=-1,x 0=-12,即P ⎝⎛⎭⎫-12,14, 所以切线方程为y -14=-⎝⎛⎭⎫x +12, 即4x +4y +1=0.(2)因为切线与直线12x -4y +5=0垂直,所以2x 0·18=-1,x 0=-4,即P (-4,16).所以切线方程为y -16=-8(x +4), 即8x +y +16=0.(3)因为切线的倾斜角为60°,所以切线的斜率为3,即2x 0=3,x 0=32, 所以P ⎝⎛⎭⎫32,34,所以切线方程为y -34=3⎝⎛⎭⎫x -32, 即43x -4y -3=0.§1.2 导数的计算§1.2.1 几个常用函数的导数§1.2.2 基本初等函数的导数公式及导数的运算法则(一)[课标要求]1.能根据导数的定义求函数y =c ,y =x ,y =x 2,y =x ,y =1x 的导数.(难点)2.掌握基本初等函数的导数公式并能进行简单的应用.(重点、难点)一、常用函数的导数原函数导函数f (x )=c f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=1xf ′(x )=-1x 2f (x )=xf ′(x )=12x二、基本初等函数的导数公式原函数导函数①f (x )=c f ′(x )=0 ②f (x )=x n (n ∈Q *) f ′(x )=nx n -1 ③f (x )=sin x f ′(x )=cos_x ④f (x )=cos x f ′(x )=-sin_x ⑤f (x )=a x (a >0) f ′(x )=a x ln_a ⑥f (x )=e xf ′(x )=e x ⑦f (x )=log a x (a >0且a ≠1) f ′(x )=1x ln a⑧f (x )=ln xf ′(x )=1x知识点一 几个常用函数的导数【问题1】 用定义求下列常用函数的导数: ①y =c ;②y =x ;③y =x 2;④y =1x ;⑤y =x .答案 ①y ′=0;②y ′=1;③y ′=2x ;④y ′=Δy Δx=1x +Δx -1xΔx=-1x (x +Δx )=-1x 2(其他类似);⑤y ′=12x.【问题2】 导数的几何意义是曲线在某点处的切线的斜率.物理意义是运动物体在某一时刻的瞬时速度. (1)函数y =f (x )=c (常数)的导数的物理意义是什么? (2)函数y =f (x )=x 的导数的物理意义呢?答案 (1)若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.(2)若y =x 表示路程关于时间的函数,则y ′=1可以解释为某物体做瞬时速度为1的匀速运动. 【问题3】 由正比例函数y =kx (k ≠0)的图象及导数可知;|k |越大函数增加(k >0)或减少(k <0)的速度越 快.画出函数y =x 2的图象,结合图象及导数说明函数y =x 2的变化情况.答案 图象如图从导数作为函数在一点的瞬时变化率来看,y ′=2x 表明:当x <0时,随着x 的增加,y =x 2减少得越来越慢;当x >0时,随着x 的增加,y =x 2增加得越来越快.若y =x 2表示路程关于时间的函数,则y ′=2x 可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .知识点二 基本初等函数的导数公式【问题】 你能说出基本初等函数的导数公式的特点吗? 答案 (1)常数函数的导数为零.(2)有理数幂函数f (x )=x α的导数依然为幂函数,且系数为原函数的次数,幂指数是原函数的幂指数减去1. (3)正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数. (4)指数函数的导数依然为指数函数,且系数为原函数底数的自然对数. (5)公式⑥是公式⑤的特例,公式⑧是公式⑦的特例.题型一 利用公式求导数求下列函数的导数:(1)y =x 7;(2)y =1x 2;(3)y =3x ;(4)y =2sin x 2cos x2;(5)y =log 12x 2-log 12x .【解析】 (1)y ′=7x 7-1=7x 6. (2)∵y =x -2,∴y ′=-2x -2-1=-2x -3. (3)∵y =x 13,∴y ′=13x -23.(4)∵y =2sin x 2cos x2=sin x ,∴y ′=cos x .(5)∵y =log 12x 2-log 12x =log 12x ,∴y ′=(log 12x )′=1x ln 12.●规律方法用公式求函数导数的方法(1)若所求函数符合导数公式,则直接利用公式求解.(2)对于不能直接利用公式的类型,关键是将其合理转化为可以直接应用公式的基本函数的模式,如y =1x 2可以写成y =x -2,y = 3x =x 13等,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.1.求下列函数的导数:(1)y =lg 4;(2)y =2x;(3)y =x 2x ;(4)y =2cos 2x 2-1. 解析 (1)y ′=(lg 4)′=0;(2)y ′=(2x )′=2x ln 2;(3)∵y =x 2x=x 2-12=x 32,∴y ′=(x 32)′=32x 12; (4)∵y =2cos 2x 2-1=cos x , ∴y ′=(cos x )′=-sin x .题型二 导数公式在解决切线问题中的应用(6分)已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.【规范解答】 y ′=(x 2)′=2x ,设切点为M (x 0,y 0),则y ′0|x x ==2x 0.(2分)∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ , ∴k =2x 0=1,即x 0=12,所以切点为M ⎝⎛⎭⎫12,14.(4分) ∴所求的切线方程为y -14=x -12,(5分) 即4x -4y -1=0.(6分)●规律方法利用导数解决求曲线的切线方程问题的策略求曲线的切线方程主要有两种类型.(1)已知切点型,其步骤为: 求导函数―→求切点处导数,即切线斜率―→写出切线方程 (2)未知切点型,其步骤为:设切点―→求导函数―→求切线斜率k =f ′(x 0) 写出切线的点斜式方程―→列出关于x 0的方程(组)―→求切点―→写出切线方程2.求曲线y =x 过点(3,2)的切线方程.解析 ∵点(3,2)不在曲线y =x 上,∴设过(3,2)与曲线y =x 相切的直线在曲线的切点为(x 0,y 0),则y 0=x 0. ∵y =x ,∴y ′=(x 12)′=12x 12-1=12x. ∴根据导数的几何意义,曲线在点(x 0,y 0)处的切线斜率k =12x 0. ∵切线过点(3,2),∴2-y 03-x 0=12x 0,2-x 03-x 0=12x 0, 整理得(x 0)2-4x 0+3=0,解得x 0=1,x 0=9,∴切点坐标为(1,1)或(9,3).(1)当切点坐标为(1,1)时,切线斜率k =12, ∴切线方程为y -2=12(x -3),即x -2y +1=0. (2)当切点坐标为(9,3)时,切线斜率k =16,∴切线方程为y -2=16(x -3),即x -6y +9=0. 综上可知:曲线y =x 过点(3,2)的切线方程为:x -2y +1=0或x -6y +9=0.易错误区(二) 正确使用求导公式已知直线y =kx 是曲线f (x )=e x 的切线,则k 的值等于________.【解析】 设切点的坐标为(x 0,y 0),由f (x )=e x ,可得y ′=f ′(x )=e x ,又k =y 0x 0,f ′(x 0)=0e x , 所以0e x =y 0x 0且y 0=0e x ①. 解得x 0=1,y 0=e.k =y 0x 0=e. 【答案】 e[易错防范]1.①处一要注意导数0e x ,即切线斜率y 0x 0,二要注意切点在曲线上,即y 0=0e x . 2.导数几何意义的应用本例实质是求过点(0,0)且与曲线y =e x 相切的直线方程的斜率.要把切线的斜率与导数联系起来,要注意切点的坐标既满足切线方程又满足曲线方程.3.牢记导数公式导数公式是函数导数计算的关键,解题时要注意使用.例如,在本例中,要正确应用公式(e x )′=e x .已知曲线y =1x3在点P (-1,-1)处的切线与直线m 平行且距离等于10,求直线m 的方程.解析 因为y ′=-3x 4, 所以曲线在点P (-1,-1)处的切线斜率为k =-3,则切线方程为y +1=-3(x +1),即3x +y +4=0.由题意设直线m 的方程为3x +y +b =0(b ≠4),所以|b -4|32+12=10,所以|b -4|=10, 所以b =14或b =-6,所以直线m 的方程为3x +y +14=0或3x +y -6=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.下列结论不正确的是A .若y =3,则y ′=0B .若y =1x ,则y ′=-x 2C .若y =x ,则y ′=12x D .若y =x ,则y ′=1解析 对于A ,常数的导数为零,故A 正确;对于B ,y ′=(x -12)′=-12x -32=-12x 3,故B 错误; 对于C ,y ′=(x 12)′=12x -12=12x,故C 正确; 对于D ,y ′=x ′=1,故D 正确.答案 B2.已知曲线f (x )=x 3的切线的斜率等于3,则切线有A .1条B .2条C .3条D .不确定 解析 ∵f ′(x )=3x 2=3,解得x =±1,切点有两个,即可得切线有两条.。
人教版高中选修2-2数学1.1变化率与导数教案(4)
§1.1.2 导数的概念教学目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数.教学重点:瞬时速度、瞬时变化率的概念、导数的概念.教学难点:导数的概念.教学过程:一、创设情景(一)平均变化率(二)探究探究: 计算运动员在49650≤≤t 这段时间里的平均速度,(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程: 如图是函数105.69.4)(2++-=t t t h 的图像,结合图形可知,)0(4965(h h =, 所以)/(004965)0()4965(m s h h v =--= 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s , 但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.二、新课讲授1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度.运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:思考: 当t ∆趋近于0时,平均速度v 有什么样的变化趋势?结论: 当t ∆趋近于0时,即无论t 从小于2的一边,还是从大于2的一边趋近于2时,平均速度v 都趋近于一个确定的值13.1-.从物理的角度看,时间t ∆间隔无限变小时,平均速度v 就无限趋近于史的瞬时速度.因此,运动员在2t =时的瞬时速度是13.1/m s -为了表述方便,我们用0(2)(2)lim13.1t h t h t∆→+∆-=-∆ 表示“当2t =,t ∆趋近于0时,平均速度v 趋近于定值13.1-” 小结: 局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值.2.导数的概念从函数)(x f y =在0x x =处的瞬时变化率是:0000()()limlim x x f x x f x f xx ∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y = 即0000()()()lim x f x x f x f x x∆→+∆-'=∆ 说明: (1)导数即为函数)(x f y =在0x x =处的瞬时变化率;(2)0x x x ∆=-,当0x ∆→时,0x x →,所以0000()()()limx f x f x f x x x ∆→-'=-. 三、典例分析例1 (1)求函数23x y =在1=x 处的导数. (2)求函数x x x f +-=2)(在1x =-附近的平均变化率,并求出该点处的导数.分析: 先求)()(00x f x x f y f -∆+=∆=∆,再求x y ∆∆,最后求xy x ∆∆→∆0lim . 解: (1)法一 定义法(略)法二 222211113313(1)|lim lim lim3(1)611x x x x x x y x x x =→→→-⋅-'===+=-- (2)x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 200(1)(1)2(1)lim lim(3)3x x y x x f x x x∆→∆→∆--+∆+-+∆-'-===-∆=∆∆ 例2 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.解: 在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f 根据导数定义0(2)()f x f x f x x+∆-∆=∆∆ 22(2)7(2)15(27215)3x x x x+∆-+∆+--⨯+==∆-∆ 所以00(2)lim lim (3)3x x f f x x ∆→∆→∆'==∆-=-∆ 同理可得:(6)5f '= 在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,说明在第2h 附近,原油温度大约以3/C h 的速率下降在第6h 附近,原油温度大约以5/C h 的速率上升.注: 一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.四、课堂练习1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为.2.求曲线3)(x x f y ==在1x =时的导数.3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.五、回顾总结1.瞬时速度、瞬时变化率的概念.2.导数的概念.六、布置作业 p10。
人教新课标A版高二数学《选修2-2》1.1.2 导数的概念
=
Δt
65 ht0+Δt-ht0 -4.9 +Δt+6.5=0 ∴Δ lim =Δ lim → t→0 t 0 Δt 49
65 即运动员在 t0=98 s 时的瞬时速度为 0 m/s. 说明运动员处于跳水运动中离水面最高点处.
点评:运动物体瞬时速度问题实际上是函数平均变化率在物理知识上 的一个深入的应用.事实上,瞬时速度就是位移函数相对于时间的瞬 Δs 时 变 化 率 . 这 里 需 强 调 的 是 : 依 题 意 在 求 完 平 均 变 化 率 Δt = st0+Δt-st0 Δs Δs 后需对 求极限,只有当 Δ lim 为一个常数时,此常数 → t 0 Δt Δt Δt 才称为物体在 t=t0 时的瞬时速度.
Δy 点评: 的最终结果要先化简约分,再令 Δx=0 代入求出导数值. Δx
变式探究 2
若函数 y=x +ax 在 x=2 处的导数为 8,求 a 的值.
2
f2+Δx-f2 解:f′(2)=Δ lim x→0 Δx 2+Δx +a2+Δx-2 +2a =Δ lim x→0 Δx =Δ lim (Δx+4+a) x→0 =4+a. 由题意知 f′(2)=8, ∴4+a=8. 解得 a=4.
【答案】C
知识讲解: 1.了解导数的概念需注意 (1)Δx 是自变量 x 在 x0 处的改变量, 所以 Δx 可正、 可负, 但不能为零. 当 Δx>0(或 Δx<0)时, Δx→0 表示 x0+Δx 从右边(或从左边)趋近于 x0, Δy 是相应函数的改变量,Δy 可正、可负,也可以为零. (2)导数是一个局部概念,它只与函数 y=f(x)在 x=x0 处及其附近的函 数值有关,与 Δx 无关. fx0+Δx-fx0 (3)f′(x0)是一个常数,即当 Δx→0 时,存在一个常数与 Δx Δy 无限接近.如果当 Δx→0 时,Δ lim 不存在,则称函数 f ( x ) 在 x = x 处 0 → x 0Δx 不可导.
高中数学 第一章 导数及其应用 1.1 变化率与导数 1.1.2 导数的概念同步课件 新人教A版选
(3)求极限,得导数 f′(x0)=
Δy Δx.
[变式训练] (1)设 f(x)=ax3+2,若 f′(-1)=3,则 a =( )
A.-1 B.12 C.1 D.13 (2)求函数 y=x42在 x=2 处的导数. (1)解析: 因为 f′(-1)= f(-1+ΔxΔ)x-f(-1)=
a(ΔxΔ-x1)3+a=3a,所以 3a=3,解得 a=1. 答案:C
两个自变量的差,即(x0+Δx)-x0.在求解此类问题时要
严格按照定义,注意分子与分母相应的符号的一致性.
[正确解答] 因为
f(x0-3ΔΔx)x -f(x0)=
[f(x0-3-Δx3) Δ- x f(x0)·(-3)]=-3f′(x0)=1,
所以 f′(x0)=-13.
归纳升华 根据已知条件,利用导数定义求函数 y=f(x)在某一 点 x0 处的导数,关键是牢记导数定义利用已知条件拼凑 出导数定义的形式,从而得到 f′(x0).
所以
ΔΔst=
12Δt+2=2.
答案:A
类型 2 利用导数的定义求导数
[典例 2] (1)求函数 y=3x2 在 x=1 处的导数; (2)求函数 f(x)=x-1x在 x=1 处的导数. 解:(1)因为Δy=f(1+Δx)-f(1)=3(1+Δx)2-3=6 Δx+3(Δx)2, 所以ΔΔxy=6+3Δx,
1.瞬时速度 物体在某一时刻的速度称为瞬时速度.若物体运动的 路程与时间的关系式是 s=f(t),当Δt 趋近于 0 时,函数 f(t)在 t0 到 t0+Δt 之间的平均变化率f(t0+ΔtΔ)t-f(t0) 趋近于常数,
我们就把这个常数叫做 t0 时刻的瞬时速度.即 v=
.故瞬时速度就是位移函数对时 间的瞬时变化率.
人教版高中数学选修2-2全套课件
(2)根据导数的定义
f′(x0)=Δlixm→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
= lim Δx→0
2x0+Δx2+4x0+Δx-2x20+4x0 Δx
= lim Δx→0
4x0·Δx+2Δx2+4Δx Δx
= lim Δx→0
(4x0+2Δx+4)
=4x0+4,
∴f′(x0)=4x0+4=12,解得 x0=2.
(1)函数f(x)在x1处有定义. (2)Δx是变量x2在x1处的改变量,且x2是x1附近的任意一点, 即Δx=x2-x1≠0,但Δx可以为正,也可以为负. (3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1, 则Δy=f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
解析: (1)由已知∵Δy=f(x0+Δx)-f(x0) =2(x0+Δx)2+1-2x20-1=2Δx(2x0+Δx), ∴ΔΔyx=2Δx2Δx0x+Δx=4x0+2Δx. (2)由(1)可知:ΔΔxy=4x0+2Δx,当 x0=2,Δx=0.01 时, ΔΔyx=4×2+2×0.01=8.02.
(3)在 x=2 处取自变量的增量 Δx,得一区间[2,2+Δx]. ∴Δy=f(2+Δx)-f(2)=2(2+Δx)2+1-(2·22+1)=2(Δx)2+ 8Δx. ∴ΔΔyx=2Δx+8,当 Δx→0 时,ΔΔxy→8.
1.求瞬时变化率时要首先明确求哪个点处的瞬时
变化率,然后,以此点为一端点取一区间计算平均变化率,并逐步
已知f(x)=x2+3.
(1)求f(x)在x=1处的导数;
(2)求f(x)在x=a处的导数.
[思路点拨]
确定函数 的增量
高中数学新课标人教A版选修2-2《1.1.1变化率与导数》课件
误区警示 忽略导数定义中 Δx 与 Δy 的对应关系
【示例】 设函数 y=f(x)在 x=x0 处可导,
且
lim
Δx→0
fx0-3ΔΔxx-fx0=1,
则 f′(x0)等于(
).
A.1
B.-1
C.-13
1 D.3
[错解]
lim
Δx→0
fx0-3ΔΔxx-fx0=
lim
Δx→0
fx0-33ΔΔxx-fx0·3
课前探究学习
课堂讲练互动第九页,编辑于星活期页一:规点范十七训分练。
(3)在公式ΔΔyx=fxx22--fx1x1=fx1+ΔΔxx-fx1中,当 x1 取定值,Δx 取不同的数值时,函数的平均变化率是不同的;当 Δx 取定值,x1 取不同的数值时,函数的平均变化率也是不同的.特别地,当函 数 f(x)为常数函数时,Δy=0,则ΔΔyx=0.
即ΔΔyx=fxx22--fx1x1=fx1+ΔΔxx-fx1称为函数在区间[x1,x2]上的
平均变化率.
课前探究学习
课堂讲练互动第四页,编辑于星活期页一:规点范十七训分练。
(2)瞬时变化率:函数 y=f(x)在 x=x0 处的瞬时变化率是函数 f(x)
从 x0 到 x0+Δx 的平均变化率在 Δx→0 时的极限,
课前探究学习
课堂讲练互动第十一页,编辑于活星页期一规:范点 十训七练分。
3.对导数概念的理解
导数是在点 x=x0 处及其附近ΔΔyx的极限,是一个局部概念,y
=f(x)在 x=x0 处的导数 f′(x0)是一个确定的数. 注意:(1)某点导数的概念包含两层含义:
①
lim
Δx→0
ΔΔyx存在(惟一确定的值),则称函数 y=f(x)在 x=x0 处可
《导数的概念》说课稿(人教A版选修2-2)
说课稿一、教材分析导数的概念是高中新教材人教A 版选修2-2第一章1.1.2的内容, 是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。
新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。
问题1 气球平均膨胀率--→瞬时膨胀率 问题2 高台跳水的平均速度--→瞬时速度--难点二、 教学目标1、知识与技能:通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。
2、过程与方法:① 通过动手计算培养学生观察、分析、比较和归纳能力② 通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法3、情感、态度与价值观:通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣. 三、 重点、难点重点:导数概念的形成,导数内涵的理解难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵 通过逼近的方法,引导学生观察来突破难点 四、 教学设想(具体如下表)五、学法与教法学法与教学用具学法:(1)合作学习:引导学生分组讨论,合作交流,共同探讨问题。
(如问题2的处理)(2)自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动。
(如问题3的处理)(3)探究学习:引导学生发挥主观能动性,主动探索新知。
(如例题的处理)教学用具:电脑、多媒体、计算器教法:整堂课围绕“一切为了学生发展”的教学原则,突出①动——师生互动、共同探索。
②导——教师指导、循序渐进(1)新课引入——提出问题, 激发学生的求知欲(2)理解导数的内涵——数形结合,动手计算,组织学生自主探索,获得导数的定义(3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识(4)变式练习——深化对导数内涵的理解,巩固新知六、评价分析这堂课由平均速度到瞬时速度再到导数,展示了一个完整的数学探究过程。
高中数学人教(A版)选修2-2导数及其应用1.1 变化率与导数
f ( x0 x ) f ( x0 ) y lim lim f ( x0 ) x 0 x x 0 x
称它为函数y f ( x )在x x0处的导数. ' ' 记作f ( x ( x0 ) y lim lim f ( x0 ) x 0 x x 0 x
2 1
0.62>0.16
所以气球半径增加得越来越慢
P3 思考?
• 当空气容量从V1增加到V2时,气球的平均膨胀
率是多少?
r (V2 ) r (V1 ) V2 V1
气球的平均膨胀率即气球半径的平均变化率 气球半径的平均变化率可以刻画气球半径 变化快慢
• 问题2 高台跳水 • 运动员相对于水面的高度h(单位:米)
瞬时速度
当t 2,t 0时,平均速度v就趋近 于t 2时刻的瞬时速度.表示为:
为方便表示,我们用:
h(2 t ) h(2) lim 13.1, t t 0 表示t 2时刻的瞬时速度.
在t0时刻的瞬时速度呢?
当t t 0时,t趋近于0时,平均速度 v就趋近 于t 0时刻的瞬时速度 .表示为:
函数
微积分(牛顿,莱布尼兹)
• 一、已知物体运动的路程作为时间的函
数,求物体在任意时刻的速度与加速度等; • 二、求曲线的切线; • 三、求已知函数的最大值与最小值; • 四、求长度、面积、体积和重心等。
•
导数是微积分的核心概念之一它是研究 函数增减、变化快慢、最大(小)值等 问题最一般、最有效的工具。
h(t0 t ) h(t0 ) lim t t 0
气球体积为V0时的瞬时膨胀率如何表示?
r (V0 V ) r (V0 ) r lim lim V 0 V V 0 V
人教课标版高中数学选修2-2《变化率与导数(第1课时)》教案-新版
第一章 导数及其应用 1.1 变化率与导数第1课时教学目标 1. 核心素养通过变化率与导数的学习,体验数学发现和创造的过程,提高抽象概括能力. 2. 学习目标(1)1.1.1通过实例,经历平均变化率过渡到瞬时变化率的过程,(2)1.1.2了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵. 3. 学习重点平均变化率与导数的概念;体会导数思想及内涵. 4. 学习难点理解导数的概念,掌握导数的记号. (一) 课前设计 1.预习任务 任务1阅读教材P 2-P 6,思考:平均变化率和瞬时变化率是什么?平均变化率和瞬时变化率的区别是什么?你能否举出一个实例,求平均变化率和瞬时变化率. 任务2导数是什么?导数的记号是什么?2.预习自测1.一球沿一斜面自由滚下,其运动方程是2()s s t t == (位移单位:m ,时间单位:s ),则小球在2到3秒间的平均速度为_____________. 答案:5/m s2.一做直线运动的物体,从1t =到1t t =+∆这段时间里,物体的位移为s ∆,那么0lim t st∆→∆∆为( )A .从1到1t +∆这段时间内物体的平均速度B .从0到1这段时间内物体的平均速度C .物体在1t =这一时刻的瞬时速度D .物体在1t +∆这个时刻的瞬时速度 答案:C3.下列各式正确的是( ) A .f ′(x 0)=lim Δx →0f (x 0-Δx )-f (x 0)x B .f ′(x 0)=lim Δx →0f (x 0-Δx )+f (x 0)Δx C .f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)x D .f ′(x 0)=lim Δx →0f (x 0+Δx )+f (x 0)x答案:C (二) 课堂设计 1.知识回顾(1)物理中平均速度xv t=,其中x 是位移,t 是时间. (2)物理中平均速率sv t=,其中s 是路程,t 是时间.(3)指数函数(1)x y a a =>的增长速度如何变化?指数增长越来越快. (4)对数函数log (1)a y x a =>的增长速度又如何变化?对数增长越来越慢. 2.问题探究问题探究一●活动一 阅读思考,体验平均变化率请大家阅读教材问题1:气球的膨胀率,然后思考:若气球的体积由1V 增长到2V 时,气球的平均膨胀率是多少?设气球的半径为r ,所以气球的平均膨胀率为()()1212r V r V r V V -=-. ●活动二 类比巧思,解决同类问题对比气球的膨胀率与平均速度如何证明指数函数(1)x y a a =>的增长速度越来越快?当x 从1增加到2时,函数值的平均增长率为2(1)a a a a -=-; 当x 从2增加到3时,函数值的平均增长率为322(1)a a a a -=-; 当x 从3增加到4时,函数值的平均增长率为433(1)a a a a -=-; 当a >1时,所以指数函数(1)x y a a =>的增长速度越来越快. ●活动三 归纳总结,收获新的认识请大家结合气球膨胀率、平均速度、函数增长速度等实例归纳什么是平均变化率?设函数()y f x =,12,x x 是其定义域内的两点,称式子2121()()f x f x x x --称为函数()y f x =从1x 到2x 的平均变化率.习惯上用x ∆表示21x x -,即21x x x ∆=-,可把x ∆看作是相对于1x 的一个“增量”.可用1x x +∆代替2x ;类似地,21()()y f x f x ∆=-.于是平均变化率也可表示为yx∆∆.且易知11()()f x x f x y x x +∆-∆=∆∆. 注意:x ∆是一个整体符号,不是∆与x 相乘,它可正、可负、不可为零.例 1 已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 【知识点:平均变化率】解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2点拨:理解函数的平均变化率.例2 求2x y =在0x x =附近的平均变化率。
新人教A版高中数学(选修2-2)1.2《导数的计算》word教案4篇
§1.2.2基本初等函数的导数公式及导数的运算法则教学目标:1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景四种常见函数y c =、y x =、2y x =、1y x=的导数公式及应用二.新课讲授(一)基本初等函数的导数公式表)(2)推论:[]''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数)三.典例分析例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)tp t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有'() 1.05ln1.05tp t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+ (2)y =xx --+1111;(3)y =x · sin x · ln x ;(4)y =xx 4; (5)y =xxln 1ln 1+-.(6)y =(2 x 2-5 x +1)e x(7) y =xx x xx x sin cos cos sin +-【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心. 例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数.''''252845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==--20(100)5284(1)(100)x x ⨯--⨯-=-25284(100)x =-(1)因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.(2)因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.四.课堂练习 1.课本P 92练习2.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;(y =-12 x +8)五.回顾总结(1)基本初等函数的导数公式表 (2)导数的运算法则六.布置作业§1.1.2 导数的概念学习目标1.掌握用极限给瞬时速度下的精确的定义;2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 一、预习与反馈(预习教材P 4~ P 6,找出疑惑之处)探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x fxx ∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或 即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)。
2019-2020年高中数学《1.1.1变化率与导数》教案 新人教A版选修2-2
2019-2020年高中数学《1.1.1变化率与导数》教案 新人教A 版选修2-2教学目标:1. 理解平均变化率的概念; 2.2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是 ⏹ 如果将半径r 表示为体积V 的函数,那么 分析: ,⑴ 当V 从0增加到1时,气球半径增加了气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 问题2 高台跳水 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 思考计算:和的平均速度 在这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,,所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念:1.上述问题中的变化率可用式子 表示, 称为函数f (x )从x 1到x 2的平均变化率 2.若设, (这里看作是对于x 1的一个“增量”可用x 1+代替x 2,同样) 3. 则平均变化率为xx f x x f x x x f x f ∆-∆+=--)()()()(111212思考:观察函数f (x )的图象平均变化率表示什么?直线AB三.典例分析例1.已知函数f (x )=的图象上的一点及临近一点,则 .解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求在附近的平均变化率。
高中数学 第一章 导数及其应用 1.1.2 导数的概念教案 新人教A版选修2-2(2021年整理)
江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2的全部内容。
导数的概念本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.教学内容分析1.导数的地位、作用导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具。
2.本课内容剖析教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的.进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.教学目的1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;4.通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验;5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程.教学重点通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念.教学难点使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.教学准备1.查找实际测速中测量瞬时速度的方法;2.为学生每人准备一台Ti-nspire CAS图形计算器,并对学生进行技术培训;3.制作《数学实验记录单》及上课课件.教学流程框图教学流程设计充分尊重学生认知事物的基本规律,使学生在操作感知的基础上形成导数概念的表象,再通过表象抽象出导数概念,并通过运用导数概念解决实际问题使学生进一步体会导数的本质.教学的主要过程设计如下:复习准备理解平均速度与瞬时速度的区别与联系.体会模型感受当△t→0时,平均速度逼近于某个常数.提炼模型从形式上完成从平均速度向瞬时速度的过渡.形成概念由物体运动的瞬时速度推广到函数瞬时变化率,并由此得出导数的定义.应用概念理解导数概念,熟悉求导的步骤,应用计算结果解释瞬时变化率的意义.小结作业通过师生共同小结,使学生进一步感受极限思想对人类思维的重大影响.教学过程设计5分钟1.复习准备设计意图:让学生理解平均速度与瞬时速度的区别与联系,感受到平均速度在时间间隔很小时可以近似地表示瞬时速度.(1)提问:请说出函数从x1到x2的平均变化率公式.(2)提问:如果用x1与增量△x表示平均变化率的公式是怎样的?(3)高台跳水的例子中,在时间段]4965,0[里的平均速度是零,而实际上运动员并不是静止的.这说明平均速度不能准确反映他在这段时间里运动状态。
2018-2019学年人教A版选修2-2 1.1变化率与导数3 教案
第一章导数及其应用 1.1变化率与导数3
一、教学目标: 知识与技能:
1.使学生掌握函数()f x 在0x x =处的导数()/
0f
x 的几何意义就是函数的图像在0x x =处的切线的斜率.
2.会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法. 过程与方法:
通过让学生在动手实践中探索、观察、反思、讨论、总结,体会“以直代曲”的数学思想方法. 情感、态度与价值:
让学生探索、发现数学知识和掌握数学知识的内在规律的过程中不,不断获得成功积累愉快的体验,不断增进学习数学的兴趣,同时还通过探索这一活动培养学生善于和他人合作的精神. 二、教学重点、难点
重点:导数的几何意义及“数形结合,以直代曲”的思想方法 难点:发现、理解及应用导数的几何意义 三、教学模式与教法、学法
教学模式:本课采用“探究——发现”教学模式.
教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.
“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线. “抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点. 学法:突出探究、发现与交流.
四、教学过程
根据图像,请描述、比较曲线()h t 在t 2t 附近的变化情况.
例2.(课本例3)如图它表示人体血管中药物浓度()c f t = (单位:/mg mL 间t (单位:min )变化的图象.根据图
五、小结 1.曲线的切线定义
2. 导数的几何意义:函数在0x x =处的导数就是切线PT 的斜率k ,
3.利用导数的几何意义解释实际生活问题,体会“数形结合”,“以直代曲”的数学思想方法.
4.导函数(导数) 六、作业 1.课时检测。
高中数学人教A版选修(2-2)1.1 教学课件 《导数的概念》(人教A版)
分析:
s
s(t0
t )
s(t0 )
2 g t
1 2
g (t)2
__
v
s
s(t0
t) s(t0 )
2g
1
g (t )
t
t
2
解:
__
v
s
2g
1
g(t )
t
2
(1)将 Δt=0.1代入上式,得:
__
v 2.05g 20.5m / s.
(2)将 Δt=0.01代入上式,得:
v 4.9t 13.1
当△t = 0.01时, 当△t =0.001时, 当△t =0.0001时,
v 13.149 v 13.1049 v 13.10049
△t = 0.00001,
v 13.100049
△t =0.000001,
v 13.1000049 ……
判断极限 lim f (x0 x) f (x0 ) 是否存在。
x0
x
人民教育出版社 高二年级 | 选修2-2
【探讨2】导数是什么?
描述角度 文字语言 符号语言
本质 瞬时变化率
lim y
x0 x
图形语言 (切线斜 率)
(三)剖析概念加深理解
人民教育出版社 高二年级 | 选修2-2
f (x0 Δx) x
f (x0 )
.
1. f (x0 )与x0的值有关,不同的x0其导数值一般也不相同。
2. f (x0 )与x的具体取值无关。 3.瞬时变化率与导数是同一概念的两个名称。
高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案
导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).
.
.
.
高考不提分,赔付1万元,关注快乐学了解详情。
解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为
.
A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。
人教a版数学【选修2-2】1.1.3《导数的概念》ppt课件
重点:导数的几何意义及曲线的切线方程. 难点:对导数几何意义的理解.
导数的几何意义
新知导学 1.曲线的切线:过曲线y=f(x)上一点P作曲线的割线PQ,当
Q点沿着曲线无限趋近于P时,若割线PQ趋近于某一确定的 直线PT,则这一确定的直线PT称为曲线y=f(x)在点P的 __________.
[解析] (1)将x=2代入曲线C的方程得y=4,
∴切点P(2,4).
y′|x=2=Δlixm→0
ΔΔyx=Δlixm→0
132+Δx3+43-13×23-43 Δx
=Δlixm→0[4+2·Δx+13(Δx)2]=4. ∴k=y′|x=2=4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y
)
A.1
B.π4
C.54π
D.-π4
[答案] B
[解析] ∵y=12x2-2,
∴y′= lim Δx→0
12x+Δx2-2-12x2-2 Δx
= lim Δx→0
12ΔxΔ2+x x·Δx=Δlixm→0
x+12Δx=x.
∴y′|x=1=1.
∴点P1,-32处切线的斜率为1,则切线的倾斜角为45°.
数f(x)的导函数__________.
(3)函数y=f(x)在点x0处的导数f ′(x0)就是导函数f ′(x)在点x=x0 处的函数值,f即′(xf)′(x0)=__________.
f′(x)|x=x0
牛刀小试
1.(2014·三峡名校联盟联考)曲线y=x2在点P(1,1)处的切线 方程为( )
A.y=2x
B.y=2x-1
C.y=2x+1 D.y=-2x
[答案] B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 导数及其应§1.1.1变化率问题
教学目标:
1. 理解平均变化率的概念; 2.
2.了解平均变化率的几何意义;
3.会求函数在某点处附近的平均变化率
教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景
为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:
一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;
三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率
我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?
⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33
4)(r r V π=
⏹ 如果将半径r 表示为体积V 的函数,那么3
43)(π
V V r = 分析: 3
43)(π
V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为
)/(62.00
1)
0()1(L dm r r ≈--
⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为
)/(16.01
2)
1()2(L dm r r ≈--
可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.
思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少
?
1
212)
()(V V V r V r --
问题2 高台跳水
在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2
+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述
其运动状态?
思考计算:5.00≤≤t 和21≤≤t 的平均速度v
在5.00≤≤t 这段时间里,)/(05.405.0)
0()5.0(s m h h v =--=
;
在21≤≤t 这段时间里,)/(2.812)
1()2(s m h h v -=--=
探究:计算运动员在49
65
0≤≤t 这段时间里的平均速度,并思考以下问题:
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h (t )= -4.9t 2
+6.5t +10的图像,结合图形可知,)0()49
65
(
h h =, 所以)/(0049
65)0()4965
(
m s h h v =--=, 虽然运动员在49
65
0≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,
并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念: 1.上述问题中的变化率可用式子 1
212)
()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化
率
2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用
x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)
3. 则平均变化率为
=∆∆=∆∆x f
x y x
x f x x f x x x f x f ∆-∆+=--)()()()(111212 思考:观察函数f (x )的图象 平均变化率=∆∆x f 1
212)()(x x x f x f --表示什么?
y
y =f (x )
f (x 2)
直线AB
三.典例分析
例1.已知函数f (x )=x x +-2
的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则
=∆∆x
y
. 解:)1()1(22x x y ∆+-+∆+--=∆+-,
∴x x
x x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。
解:2
02
0)(x x x y -∆+=∆,所以x
x x x x y ∆-∆+=∆∆2
20)( x x x
x x x x x ∆+=∆-∆+∆+=02
0202022
所以2x y =在0x x =附近的平均变化率为x x ∆+02 四.课堂练习
1.质点运动规律为32
+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 .
2.物体按照s (t )=3t 2
+t +4的规律作直线运动,求在4s 附近的平均变化率. 3.过曲线y =f (x )=x 3
上两点P (1,1)和Q (1+Δx ,1+Δy )作曲线的割线,求出当Δx =0.1时割线的斜率. 五.回顾总结
1.平均变化率的概念
2.函数在某点处附近的平均变化率 六.布置作业
x 1
x 2
O
f (x 1) △x = x 2-x 1 x
253t
∆+。