八年级上期末考试数学试题及答案
人教版八年级上册数学期末考试试题带答案
人教版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。
人教版数学八年级上学期《期末检测试题》含答案解析
∵∠EBD=65°,
∴65∘−∠EBC=60°−∠BAE,
∴65°−(60°−∠ABE)=60°−∠BAE,
∴∠ABE+∠BAE=55°,
∴∠AEB=180°−(∠ABE+∠BAE)=125°.
故选C.
[点睛]本题考查了全等三角形 判定与性质, 等边三角形的性质,根据等边三角形性质得出AC=BC,CE=CD,∠BAC=60°,∠ACB=∠ECD=60°,求出∠ACE=∠BCD,证△ACE≌△BCD,根据全等三角形的性质得出∠CAE=∠CBD,求出∠ABE+∠BAE=55°,根据三角形内角和定理求出即可.
若提速前列车的平均速度为x km/h,行驶1200km的路程,提速后比提速前少用多长时间?
(2)若v=50,行驶1200km的路程,提速后所用时间是提速前的 ,求提速前列车的平均速度?
用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50km,则提速前的平均速度为______km/h.
24.已知:BE⊥CD于E,BE=DE,BC=DA,
(3)如图2,若点P(x,-2x+6)为直线AB在x轴下方 一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.
答案与解析
一、选一选(本大题共10小题,每小题3分,共30分)
1.下列计算正确的是()
A.(2ab3)•(﹣4ab)=2a2b4B. ,
(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()
(3)计算△ABC的面积.
22.如图,△ABC中,∠BAC=∠ADB,BE平分∠ABC交AD于点E,交AC于点F,过点E作EG//BC交AC于点G.
八年级数学上册期末试题及答案解析
期末检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题3分,共36分)1.下列各式中,无论字母取何实数时,分式都有意义的是( )A.225x x+B.211y y -+C.213x x+D.21ba + 2.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10 000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装个鸡蛋,根据题意下列方程正确的是( ) A .10 00010 0001050x x -=+ B .10 00010 0001050x x -=- C .10 00010 0001050x x -=- D .10 00010 0001050x x-=+ 3.方程22(1)101x x ++=-有增根,则增根是( ) A.x =1 B.x =-1 C.x =±1D.04.如图,已知点A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△ABC ∽△PQR ,则点R 应是甲、乙、丙、丁四点中的( ) A.甲B.乙C.丙D.丁5.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .196.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )7.如图所示,四边形ABCD 是平行四边形,E 是边CD 延长线上一点,BE 分别交AC 、AD 于点O 、F ,则图中相似三角形共有( )第6题图第5题图 第4题图A .6对B .5对C .4对D .3对8.举反例说明“一个角的余角大于这个角”是假命题,错误的是( )A.设这个角是45°,它的余角是45°,但45°=45°B.设这个角是30°,它的余角是60°,但30°<60°C.设这个角是60°,它的余角是30°,但30°<60°D.设这个角是50°,它的余角是40°,但40°<50°9.针对甲、乙两组数据:甲组:20,21,23,25,26;乙组:l00,101,103,105,106.下列说法正确的是( )A .乙组比甲组稳定B .甲组比乙组稳定C .甲乙两组的稳定程度相同D .无法比较两组数据的稳定程度10.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.566.5这一小组的频率为( ) A .0.04 B .0.5 C .0.45 D .0.4 11.等式=成立的条件是( )A.1x >B.1x <-C.≥D.≤ 12.24n n 的最小值是( )A.4B.5C.6D.2 二、填空题(每小题3分,共24分)13.若干名游客要乘坐汽车,要求每辆汽车坐的人数相等,如果每辆汽车乘坐30人,那么有一人未能上车;如果少一辆汽车,那么所有游客正好能平均分到各辆汽车上,已知每辆汽车最多容纳40人,则有游客 人. 14.化简262393m m m m +÷+--的结果是 . 15.为了调查不同面额纸币上细菌数量与使用频率之间的关系,某中学研究性学习小组从银行、商店、农贸市场及医院收费处随机采集了5种面额纸币各30张,分别用无菌生理盐水溶液清洗这些纸币,对洗出液进行细菌培养,测得细菌如下表:面额5角1元5元10元100元细菌总数(个/30张) 147 400 381 150 98 800 145 500 12 250(1)计算出所有被采集的纸币平均每张的细菌个数约为 (结果取整数); (2)由表中数据推断出面额为 的纸币的使用频率较高,根据上面的推断和生活常识总结出:纸币上细菌越多,纸币的使用频率 ,看来,接触钱币以后要注意洗手噢!第7题图16.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:从2009~2013年,这两家公司中销售量增长较快的是 公司.17.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是 (填“甲”或“乙”).18.不通过计算,比较图中甲、乙两组数据的标准差:s 甲 s 乙.(填“>”“<”或“=”)19.若△ABC 的三边长为a ,b ,c ,其中a ,b 满足22690a b b -+-+=,则c 的取值范围 为________.20.已知a b 、为有理数,m n 、分别表示57-的整数部分和小数部分, 且21amn bn +=,则2a b += . 三、解答题(共60分)21.(6分)(1)计算:12 01112(3)(1)3-⎛⎫-+--- ⎪⎝⎭-1;(2)化简:9352422a a a a -⎛⎫÷+- ⎪--⎝⎭. 22.(6分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.(6分)如图,D 是△ABC 的边AB 上一点,连接CD ,若AD =2,BD =4,∠ACD =∠B ,求AC 的长.第23题图第16题图第18题图24.(6分)如图,△OAB 是等腰直角三角形,∠A =90°,AO =AB .以斜边OB 为直角边,按顺时针方向画等腰直角三角形OBC ,再以同样的方法画等腰直角三角形OCD .(1)按照此种要求和顺序画等腰直角三角形ODE 和等腰直角三角形OEF ; (2)在完成(1)后,图中有位似图形吗?若有,请算出较小三角形与较大三角形的位似比.25.(6分)判断下列命题是真命题还是假命题,如果是假命题,举一个反例:(1)两条直线被第三条直线所截,同位角相等; (2)如果>b ,那么c >bc ; (3)两个锐角的和是钝角.26.(6分)如图所示,AD 是△ABC 的高,∠EAB =∠DAC ,EB ⊥AB .试证明:AD •AE =AC •AB .27.(8分)某班参加体育测试,其中100 m 游泳项目的男、女生成绩的频数分布表如下: 男生100 m 游泳成绩的频数分布表 组别(min )1.552.552.553.55 3.554.554.555.55频数 2 12 5 1 女生100 m 游泳成绩的频数分布表组别(min )1.552.552.553.553.554.554.555.555.556.55频数168 41(1)在同一坐标系中画出男、女生100 m 游泳成绩的频数分布折线图. (2)男生成绩小于3.55 min 为合格,女生成绩小于4.55 min 为合格.问男、女生该项目 成绩合格的频数、频率分别为多少? (3)根据所画的频数分布折线图,分析比较男、女生该项目成绩的差异(至少说出两项). 28.(8分)为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒): 编号类型 一 二 三 四 五 六 七 八 九 十 甲种电子钟 1 -3 -4 4 2 -2 2 -1 -1 2 乙种电子钟4-3-12-21-22-21(1)计算甲、乙两种电子钟走时误差的平均数. (2)计算甲、乙两种电子钟走时误差的方差. (3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:第27题图第24题图第26题图你会买哪种电子钟?为什么? 29.(8分)阅读下面问题:12)12)(12()12(1211-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.(1)试求:①671+的值;②nn ++11(n 为正整数)的值.(2+⋅⋅⋅+.期末检测题参考答案1.B 解析:A.当x =0时,分母等于0,没有意义,故选项错误;B.不论y 取何值,210y +>一定成立,故无论字母取何实数时,分式都有意义,故选项正确;C.当x =0时,分母等于0,没有意义,故选项错误;D.当1a =-时,分母等于0,没有意义,故选项错误.故选B .2.B 解析:已知每个甲型包装箱可装个鸡蛋,则每个乙型包装箱可装个鸡蛋,根据题意,得10 00010 0001050x x-=-.故选B . 3.B 解析:方程两边都乘21x -,得22110x x ++-=().∵ 原方程有增根,∴ 最简公分母210x -=,解得x =1或-1.当x =1时,4=0,这是不可能的;当x =-1时,0=0,符合题意.故选B . 4.C 解析:根据题意,△ABC 的三边之比为2︰5︰5,要使△ABC ∽△PQR ,则△PQR 的三边之比也应为2︰5︰5,经计算只有丙点合适,故选C .5.B 解析:如图,根据等腰直角三角形的性质知,AC =BC ,BC =CE =CD ,∴ AC=2CD ,623CD ==,∴ EC 2=22+22,即EC =2. ∴S 1的面积为EC 2=2×2=8.根据等腰直角三角形的性质知S 2的边长为3,∴ S 2的面积为3×3=9,∴S1+S 2=8+9=17.故选 B. 6.A 解析:∵ 小正方形的边长均为1, ∴ △ABC 三边长分别为2,, . 同理:A中各边长分别为:,1,;B 中各边长分别为:1、2,;C 中各边长分别为:,3,; D中各边长分别为:2,,.只有A 项中三角形的三边与已知三角形的三边对应成比例,故选A .7.A 解析:∵ ABCD 是平行四边形,∴ AD ∥BC ,AB ∥DC .∴ △ABO ∽△CEO ,△AOF ∽△COB ,△EFD ∽△EBC ,△ABF ∽△DEF ,△ABF ∽△CEB 五对,还有一对特殊的相似即△ABC ≌△CDA ,∴ 共6对.故选A . 8.B 解析:A.所设的角与它的余角相等,和原结论相符,故A 正确; B.所设的角小于它的余角,和原结论相反,故错误; C.所设的角大于它的余角,和原结论相符,故正确;D.所设的角大于它的余角,和原结论相符,故正确.故选B .9.C 解析:甲组:20,21,23,25,26;乙组:l00,101,103,105,106,根据一组数据第5题答图同时减去或加上同一数据其方差不变,∴ 要求这两组数据的方差,即求:0,1,3,5,6的方差, 故两组数据方差相同,即甲乙两组的稳定程度相同,故选C .10.D 解析:根据题意,可知在64.566.5之间的有8个数据, 故64.566.5这一小组的频率为80.420=.故选D . 11.C 解析:由题意知,≥≥,所以≥ 12.C 解析:∵ ,当=6时, =6,∴ 原式=2=12,∴ 的最小值为6.故选C .13.961 解析:设有辆汽车,少一辆汽车后每辆坐人,根据题意列方程得, 30+1=(-1),整理得301313011x y x x +==+--.∵ 为大于30而不大于40的整数, ∴-1能整除31,∴=2或=32,当=2时,=61(不合题意,舍去);当=32时,=31.因此游客人数为30×32+1=961(人). 14.1 解析:()()262633·139333323m m m m m m m m m m m -++÷=+==+--++-+. 15.5 234 1元 越高 解析:(1)(147 400+381 150+98 800+145 500+12 250)÷(30×5)≈5 234个;(2)面额为1元的纸币的使用频率较高,纸币上细菌越多,纸币的使用频率越高.16.甲 解析:从折线统计图中可以看出:甲公司2013年的销售量约为510辆,2009年约为100辆,则从2009~2013年甲公司增长了510-100=410(辆);乙公司2013年的销售量为400辆,2009年的销售量为100辆,则从2009~2013年,乙公司中销售量增长了400-100=300(辆).故甲公司销售量增长较快.17.乙 解析:由于s 2甲>s 2乙,则成绩较稳定的是乙.18.> 解析:由图可知甲的方差大于乙的方差,所以甲的标准差也一定大于乙的标准差.19.1<c <5 解析:∵ 22690a b b --+=,∴22(3)0a b --=.∵20a -,2(3)0b -≥,∴ 20a -=,30b -=,∴ a =2,b =3.∵ △ABC 的三边长为a ,b ,c ,∴ b a c b a -<<+,即3-2<c <3+2, ∴ c 的取值范围为1<c <5.20.2.5 解析:因为所以,,即,所以,,所以,所以.21.分析:(1)分别根据零指数幂、负整数指数幂的运算法则计算,然后根据实数的运算法则求得计算结果. (2)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简. 解:(1)12 01112(3)(1)213113-⎛⎫-+---=+-+= ⎪⎝⎭-1;(2)()()233935452422222a a a a a a a a ----⎛⎫÷+-=÷ ⎪----⎝⎭()()()()()3323223323a a a a a a --=⨯=-+-+.22.分析:设原计划每天铺设管道米,根据题意可列方程求解.解:设原计划每天铺设管道米,则()12030012027120%x x -+=+,解得=10(米), 经检验,=10是原方程的解.答:原计划每天铺设管道10米. 23.分析:可证明△ACD ∽△ABC ,则AC ADAB AC=,即得出AC 2=AD •AB ,从而得出AC 的长. 解:在△ABC 和△ACD 中,∵ ∠ACD =∠B ,∠A =∠A ,∴ △ABC ∽△ACD ,∴AC ADAB AC=, 即AC 2=ADAB =AD (AD +BD )=2×6=12,∴ AC =2.24.解:(1)如图:(2)有,△OAB 与△OEF 是位似图形. 设OA =a ,∵∠A =90°,AO =AB , ∴ OB 22222OA AB a a a ++,同理:OC =222a a =,OD 2222a a =,OE 2224a a =, ∴144OA a OE a ==, ∴ 较小三角形与较大三角形的位似比为1︰4.25.分析:判断是否为真命题,需要分别分析各题设是否能推出结论,如果能推出结论就为真命题,如果不能推出结论就为假命题.解:(1)假命题,两直线不平行时不成立,可通过画图说明; (2)假命题,当c ≤0时不成立,如3>2,但3×0=2×0;(3)假命题,如=20°,=50°,则=70°,不是钝角.26.证明:∵ AD 是△ABC 的高,∴ AD ⊥BC . 又∵ EB ⊥AB ,∴ ∠ADC =∠ABE =90°. 又∵ ∠EAB =∠DAC ,∴ △ABE ∽△ADC ,第24题答图∴AB AEAD AC=,即AD •AE =AC •AB . 27.分析:(1)根据频数分布表正确描点连线; (2)根据频数分布表计算符合条件的频数和,再进一步计算频率; (3)能够根据统计图直观地反映信息. 解:(1)男、女生100 m游泳成绩的频数分布折线图如下:(2)男生该项目成绩合格的频数为14,频率为0.7;女生该项目成绩合格的频数为15,频率为0.75.(3)男生总体成绩好于女生,女生的频数变化较男生平缓等.28.分析:根据平均数与方差的计算公式易得(1)(2)的答案,再根据(2)的计算结果进行判断.解:(1)甲种电子钟走时误差的平均数是:1344222120111--++-+--+=(); 乙种电子钟走时误差的平均数是:43122122101210--+-+-+-+=(). ∴ 两种电子钟走时误差的平均数都是秒. (2)2222[103020110]s =-+--++-=甲()()()110606⨯=; 2222[403010110]s =-+--++-=乙()()()480.1148⨯=.∴ 甲、乙两种电子钟走时误差的方差分别是6和4.8.(3)我会买乙种电子钟,因为平均水平相同,且甲的方差比乙的大,说明乙的稳定性更好,故乙种电子钟的质量更优. 29.解:(1)①671+1(76)(76)(76)⨯-=+-76(1)11(1)(1)n n n n n n n n n n +==++++++-第27题答图数学试卷及试题+⋅⋅⋅+(2=。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
八年级上学期期末考试数学试卷(含答案)
八年级上学期期末考试数学试卷(含答案)(满分:120分考试时长:120分钟)一、选择题(本大题共10小题,共30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0B.a>﹣3C.﹣3<a<0D.a<﹣33.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>24.关于一次函数y=﹣2x+b(b为常数),下列说法正确的是()A.y随x的增大而增大B.当b=4时,直线与坐标轴围成的面积是4C.图象一定过第一、三象限D.与直线y=3﹣2x相交于第四象限内一点5.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=36.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.3<a<6B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>27.在下列条件中:①∠A=∠C﹣∠B,②∠A:∠B:∠C=2:3:5,③∠A=90°﹣∠B,④∠B﹣∠C =90°中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个8.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,则∠BOC的度数为()A.70°B.120°C.125°D.130°9.如图所示的平面直角坐标系中,点A坐标为(4,2),点B坐标为(1,﹣3),在y轴上有一点P使P A+PB 的值最小,则点P坐标为()A.(2,0)B.(﹣2,0)C.(0,2)D.(0,﹣2)10.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE =∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.4二、填空题(本大题共6小题,共24分)11.函数l1:y1=﹣2x+4与l2:y2=﹣x﹣1的图象如图所示,l1交x轴于点A,现将直线l2平移使得其经过点A,则l2经过平移后的直线与y轴的交点坐标为.12.如图,已知,在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,则∠AEB=°.13.如图,△ABC中,DE是AB的垂直平分线,交BC于D,交AB于E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是cm.14.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣2)﹣b>0的解集为.15.如图,已知△ABC的面积为18,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是.16.在学校,每一位同学都对应着一个学籍号.在数学中也有一些对应.现定义一种对应关系f,使得数对(x,y)和数z是对应的,此时把这种关系记作:f(x,y)=z.对于任意的数m,n(m>n),对应关系f由如表给出:(x,y)(n,n)(m,n)(n,m)f(x,y)n m﹣n m+n如:f(1,2)=2+1=3,f(2,1)=2﹣1=1,f(﹣1,﹣1)=﹣1,则使等式f(1+2x,3x)=2成立的x的值是.三、解答题(本大题共7小题,共66分)17.已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.18.△ABC的三个顶点的坐标分别为A(0,﹣2),B(4,﹣3),C(2,1).(1)在所给的平面直角坐标系中画出△ABC.(2)以y轴为对称轴,作△ABC的轴对称图形△A′B′C′,并写出B′的坐标.19.已知:如图,AD是∠BAC的平分线,∠B=∠EAC,ED⊥AD于D.求证:DE平分∠AEB.20.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数.21.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨(x>14),应交水费为y元,请写出y与x之间的函数关系式;22.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.23.快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?参考答案与试题解析1-5.A CCBB 6-10.B CCDC11.(0,1)12.110 13.1414.x<4 15.9 16.﹣117.解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.18.解:(1)如图所示,△ABC即为所求.(2)如图所示,△A′B′C′即为所求,点B′的坐标为(﹣4,﹣3).19.证明:延长AD交BC于F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵∠DFE=∠B+∠BAD,∠DAE=∠EAC+∠CAD,∵∠B=∠EAC,∴∠DFE=∠DAE,∴AE=FE,∵ED⊥AD,∴ED平分∠AEB.20.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CF A=90°,∴∠CAF=45°,∴∠F AE=∠F AC+∠CAE=45°+90°=135°.21.解:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当x>14时,y=14×2+(x﹣14)×3.5=3.5x﹣21,22.解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.23.解:(1)由图可知,A市和B市之间的路程是360km.(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇.(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.。
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
八年级(上)期末数学试卷有答案
八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.点P(﹣3,﹣4)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.二元一次方程x﹣2y=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是354.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=8,AD=4,则图中长为4的线段有()A.4条B.3条C.2条D.1条5.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD6.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,共24分)7.的平方根是.8.某班有学生36人,其中男生比女生的2倍少6人.如果设该班男生有x人,女生有y人,那么可列方程组为.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则BC=.10.已知点A(0,2m)和点B(﹣1,m+1),直线AB∥x轴,则m=.11.某人沿直路行走,设此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图,则此人在这段时间内最快的行走速度是千米/小时.12.如图,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E,则∠BDE=.13.如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的斜边长为.14.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为.三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:.16.解方程组:.17.已知y+1与x﹣1成正比,且当x=3时y=﹣5,请求出y关于x的函数表达式,并求出当y=5时x的值.18.在由6个大小相同的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与B C的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明).四、(本大题共4小题,每小题各8分,共32分)19.如图,△ABC中,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,BD,CE交于点O,F,G分别是AC,BC延长线上一点,且∠EOD+∠OBF=180°,∠DBC=∠G,指出图中所有平行线,并说明理由.20.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?21.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.22.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?五、(本大题共1小题,每小题10分,共10分)23.已知△ABC与△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,E为AB边上一点.(1)试判断AE与BF的大小关系,并说明理由;(2)试说明AE2,BE2,EF2三者之间的关系.六、(本大题共1小题,每小题12分,共12分)24.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.点P(﹣3,﹣4)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第三象限内点的横坐标小于零,纵坐标小于零,可得答案.【解答】解:(﹣3,﹣4)位于第三象限,故选:C.【点评】本题考查了各象限内点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.二元一次方程x﹣2y=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题.【分析】将各项中x与y的值代入方程检验即可得到结果.【解答】解:将x=1,y=0代入方程得:左边=1﹣0=1,右边=1,即左边=右边,则是方程x﹣2y=1的解.故选B【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是35【考点】极差;加权平均数;中位数;众数.【分析】根据极差、众数、平均数和中位数的定义对每一项进行分析即可.【解答】解:A、31出现了3次,出现的次数最多,则众数是31,故本选项错误;B、把这些数从小到大排列为30,31,31,31,33,33,35,最中间的数是31,则中位数是31,故本选项正确;C、这组数据的平均数是(30+31+31+31+33+33+35)÷7=32,故本选项错误;D、极差是:35﹣30=5,故本选项错误;故选B.【点评】本题考查了极差、众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数;求极差的方法是用一组数据中的最大值减去最小值.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=8,AD=4,则图中长为4的线段有()A.4条B.3条C.2条D.1条【考点】勾股定理;角平分线的性质;含30度角的直角三角形.【分析】利用线段垂直平分线的性质得出BE=EC,再利用全等三角形的判定与性质得出AB=BE,进而得出答案.【解答】解:∵∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足,∴AD=DE=4,BE=EC,∵DC=8,AD=4,∴BE=EC=4,在△ABD和△EBD中,∴△ABD≌△EBD(AAS),∴AB=BE=4,∴图中长为4的线段有3条.故选:B.【点评】此题主要考查了勾股定理以及角平分线的性质以及全等三角形的判定与性质,正确得出BE=AB是解题关键.5.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD【考点】平行线的判定;翻折变换(折叠问题).【分析】根据平行线的判定定理,进行分析,即可解答.【解答】解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、在△AOB和△COD中,,∴△AOB≌△COD,∴∠CAO=∠DBO,∴a∥b(内错角相等,两直线平行),故正确.故选:C.【点评】本题考查了平行线的判定,解决本题的关键是熟记平行线的判定定理.6.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.【考点】一次函数图象与系数的关系;零指数幂;二次根式有意义的条件.【分析】首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.【解答】解:∵式子+(k﹣1)0有意义,∴解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象可能是:.故选:A.【点评】(1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.二、填空题(本大题共8个小题,每小题3分,共24分)7.的平方根是±3.【考点】算术平方根;平方根.【分析】直接根据平方根的定义即可求解.【解答】解:的平方根是±3,故答案为:±3.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.8.某班有学生36人,其中男生比女生的2倍少6人.如果设该班男生有x人,女生有y人,那么可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得两个等量关系:①男生+女生=36,②男生=女生的2倍﹣6.【解答】解:根据题意可得:,故答案为:.【点评】此题主要考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则BC=9.【考点】勾股定理.【分析】在Rt△ABC中,利用勾股定理可求出BC的长度.【解答】解:∵在Rt△ABC中,∠C=90°,AB=15,AC=12,∴BC===9.故答案为:9.【点评】此题考查了勾股定理的知识,属于基础题,掌握勾股定理的形式是关键.10.已知点A(0,2m)和点B(﹣1,m+1),直线AB∥x轴,则m=1.【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.【解答】解:∵A(0,2m)和点B(﹣1,m+1),直线AB∥x轴,∴m+1=2m,解得m=1.故答案为:1.【点评】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.11.某人沿直路行走,设此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图,则此人在这段时间内最快的行走速度是8千米/小时.【考点】函数的图象.【分析】求速度用距离与时间的比即可,注意把分钟化为小时.【解答】解:此人在这段时间内最快的行走速度是=8千米/小时,故答案为:8.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.12.如图,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E,则∠BDE=132°.【考点】三角形的外角性质;角平分线的定义.【分析】根据三角形内角和定理和角平分线的定义求出∠BAD的度数,再根据三角形外角性质和角平分线的定义求出∠CDE,然后根据平角定义即可求出∠BDE的度数.【解答】解:∵∠B=66°,∠C=54°,∴∠BAC=180°﹣66°﹣54°=60°,∵AD是∠BAC的平分线,∴∠BAD=∠B AC=30°,∴∠ADC=∠B+∠BAD=66°+30°=96°,∵DE平分∠ADC交AC于E,∴∠CDE=∠ADC=48°,∴∠BDE=180°﹣48°=132°.【点评】本题主要考查三角形的一个外角等于和它不相邻的两个内角的和的性质和角平分线的定义,熟练掌握性质和定理是解题的关键.13.如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的斜边长为.【考点】等腰直角三角形.【专题】规律型.【分析】本题要先根据已知的条件求出第一个、第二个斜边的值,然后通过这两个斜边的求解过程得出一般化规律,进而可得出第n个等腰直角三角形的斜边长.【解答】解:第一个斜边AB=,第二个斜边A1B1=,所以第n个等腰直角三角形的斜边长为:,故答案为:.【点评】此题考查等腰直角三角形问题,关键是要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.14.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为2或4.【考点】一次函数图象上点的坐标特征;等腰直角三角形.【专题】分类讨论.【分析】分为两种情况,画出图形,根据等腰三角形的性质求出即可.【解答】解:∵由,得,∴C(2,2);如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为:2或4;【点评】本题考查了用待定系数法求出一次函数解析式,等腰直角三角形等知识点的应用,题目是一道比较典型的题目,综合性比较强.三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:.【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用二次根式性质计算,第三项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=1+﹣1﹣=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解方程组:.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2+②×3得:13x=﹣13,即x=﹣1,把x=﹣1代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17.已知y+1与x﹣1成正比,且当x=3时y=﹣5,请求出y关于x的函数表达式,并求出当y=5时x的值.【考点】待定系数法求一次函数解析式.【分析】设y+1=k(x﹣1),将x=3,y=﹣5代入,通过解方程求得k的值;然后把y=5代入函数解析式即可求得相应的x的值.【解答】解:依题意,设y+1=k(x﹣1)(k≠0),将x=3,y=﹣5代入,得到:﹣5+1=k(3﹣1),解得:k=﹣2.所以y+1=﹣2(x﹣1),即y=﹣2x+1.令y=5,解得x=﹣2.【点评】本题考查了待定系数法求得一次函数解析式.求一次函数的解析式时,设y=kx+b,注意k≠0.18.在由6个大小相同的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明).【考点】勾股定理;勾股定理的逆定理.【专题】几何图形问题.【分析】(1)连接AC,再利用勾股定理列式求出AB2、BC2、AC2,然后利用勾股定理逆定理解答;(2)类似于(1)的图形解答.【解答】解:(1)如图,连接AC,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,∴AB⊥BC;(2)∠α+∠β=45°.证明如下:如图,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∵AB=BC,∴△ABC是等腰直角三角形.【点评】本题考查了勾股定理,勾股定理逆定理,等腰直角三角形的判定与性质,熟练掌握网格结构以及勾股定理和逆定理是解题的关键.四、(本大题共4小题,每小题各8分,共32分)19.如图,△ABC中,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,BD,CE交于点O,F,G分别是AC,BC延长线上一点,且∠EOD+∠OBF=180°,∠DBC=∠G,指出图中所有平行线,并说明理由.【考点】平行线的判定.【分析】根据同角的补角相等,和平行线的判定定理即可作出判断.【解答】解:EC∥BF,DG∥BF,DG∥EC.理由:∵∠EOD+∠OBF=180°,又∠EOD+∠BOE=180°,∴∠BOE=∠OBF,∴EC∥BF;∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ECB,又∵EC∥BF,∴∠ECB=∠CBF,∴∠DBC=∠CBF,又∵∠DBC=∠G,∴∠CBF=∠G,∴DG∥BF;∵EC∥BF,DG∥BF,∴DG∥EC.【点评】本题考查了平行线的判定定理,根据同角的补角相等证明∠BOE=∠OBF是关键.20.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为50名;抽样中考生分数的中位数所在等级是良好;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?【考点】扇形统计图;用样本估计总体;条形统计图;中位数.【专题】压轴题.【分析】(1)从条形图中各部分人数加起来就是所求的结果,中位数数据从小到大排列位于中间位置的数.(2)不及格的有8人,8除以总人数就是我们要求的结果.(3)从扇形统计图中根据九年级的人数可求出全校的人数,进而求出全校优良人数.【解答】解:(1)8+14+18+10=50,中位数是18,位于良好里面;故答案为:50,良好.(2)8人,×100%=16%;抽样中不及格的人数是8人.占被调查人数的百分比是16%.(3)500÷=1500,1500×=840(人).全校优良人数有840人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是(200,150);(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.【考点】坐标确定位置.【分析】(1)由于A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校,则可确定A点位置,然后画出直角坐标系;(2)利用第一象限点的坐标特征写出B点坐标;(3)根据坐标的意义描出点C.【解答】解:(1)如图,(2)B同学家的坐标是(200,150);(3)如图.故答案为(200,150).【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.22.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?【考点】一次函数的应用.【分析】(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意列方程组即可得到结论;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意列方程组得到300≤x≤800,总运费W=200×0.012+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),根据一次函数的性质得到W随想的增大而增大,于是得到当x=300时,W最小=2610元,【解答】解:(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意得:,解得:,∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500斤,700斤鸡蛋;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:,解得:300≤x≤800,总运费W=200×0.012x+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),∵W随x的增大而增大,∴当x=300时,W最小=2610元,∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.【点评】本题考查了二元一次方程组与一次函数的实际应用.此题难度适中,解题的关键是理解题意,抓住等量关系.五、(本大题共1小题,每小题10分,共10分)23.已知△ABC与△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,E为AB边上一点.(1)试判断AE与BF的大小关系,并说明理由;(2)试说明AE2,BE2,EF2三者之间的关系.【考点】勾股定理;全等三角形的性质;全等三角形的判定.【分析】(1)可以根据全等三角形的性质,进行判断;(2)在(1)的基础上,得AE=BF,进而根据勾股定理即可证明.【解答】解:(1)AE=BF.理由如下:∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF.又AC=BC,CE=CF,∴△ACE≌△BCF,∴AE=BF.(2)AE2+BE2=EF2.理由如下:由已知,得∠CAE=∠CBF=45°,则∠EBF=90°.则BF2+BE2=EF2,又AE=BF,因此AE2+BE2=EF2.【点评】此题综合运用了等腰直角三角形的性质、全等三角形的性质和判定、以及勾股定理.六、(本大题共1小题,每小题12分,共12分)24.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【考点】一次函数综合题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=x中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.21。
人教版八年级上册数学期末考试试题及答案
人教版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.﹣2的绝对值是()A .2B .12C .12-D .2-3.在下列长度的各组线段中,能组成三角形的是()A .1,2,4B .1,4,9C .3,4,5D .4,5,94.据广东省旅游局统计显示,2018年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为()A .527710⨯B .80.27710⨯C .72.7710⨯D .82.7710⨯5.在211x 13xy 31a x 22πx y m+++,,,,,中,分式的个数是()A .2B .3C .4D .56.下列计算中正确的是()A .()236ab ab =B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-7.为参加“爱我家园”摄影赛,小明同学将参与植树活动的照片放大为长acm ,宽34acm 的形状,又精心在四周加上了宽2cm 的木框,则这幅摄影作品所占的面积是()A .237442a a -+B .237164a a -+C .237442a a ++D .237164a a ++8.等腰三角形的两边长分别为8cm 和4cm ,则它的周长为()A .12cmB .16cmC .20cmD .16cm 或20cm9.下列条件中,不能判定两个直角三角形全等的是()A .两个锐角对应相等B .一条边和一个锐角对应相等C .两条直角边对应相等D .一条直角边和一条斜边对应相等10.如图,DE 是△ABC 中AC 边的垂直平分线,若BC=6cm ,AB=8cm ,则△EBC 的周长是()A .14cmB .18cmC .20cmD .22cm二、填空题11.已知点A(2,a)与点B(b ,4)关于x 轴对称,则a+b =_____.12.若一个多边形的内角和是900º,则这个多边形是_____边形.13.如图,在△ABC 中,已知AD 是角平分线,DE ⊥AC 于E ,AC=4,S △ADC =6,则点D 到AB 的距离是________.14.二元一次方程组128x y x y -=⎧⎨+=⎩的解为_________.15.如图,将三角形纸板ABC 沿直线AB 平移,使点A 移到点B ,若∠CAB =60°,∠ABC =80°,则∠CBE 的度数为_____.16.现在生活人们已经离不开密码,如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式44x y -,因式分解的结果是()22()()x y x y x y -++,若取9x =,9y =时则各个因式的值是:0x y -=,18x y +=,22162x y +=,把这些值从小到大排列得到018162,于是就可以把“018162”作为一个六位数的密码.对于多项式324x xy -,取10x =,10y =时,请你写出用上述方法产生的密码_________.三、解答题17.计算:102|3|(2----+;18.解方程:32122x x x =---19.先化简,再求值:2()()()x y x y x y x ⎡⎤-+-+÷⎣⎦,其中x =1-,12y =.20.计算:221369324a a a a a a a +--+-÷-+-.21.如图所示,在ABC ∆,A ABC CB =∠∠.(1)尺规作图:过顶点A 作ABC ∆的角平分线AD ,交BC 于D ;(不写作法,保留作图痕迹)(2)在AD 上任取一点E (不与点A 、D 重合),连结BE ,CE ,求证:EB EC =.22.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定日期多用5天;③若甲乙两队合作4天,余下的工程由乙队单独也正好如期完成.(1)甲、乙单独完成各需要多少天?(2)在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?23.如图,已知正方形ABCD 的边长为10厘米,点E 在边AB 上,且AE=4厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.设运动时间为t 秒.(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP 全等;此时点Q的运动速度为多少.24.如图,在四边形ABCD中,//AD BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且GDF ADF∠=∠.(1)求证:ADE∆≌BFE∆.(2)连接EG,判断EG与DF的位置关系并说明理由.25.在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).参考答案1.A【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.2.A【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.3.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、1+2=3<4,不能组成三角形,故此选项错误;B、4+1=5<9,不能组成三角形,故此选项错误;C、3+4=7>5,能组成三角形,故此选项正确;D、5+4=9,不能组成三角形,故此选项错误;故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将27700000用科学记数法表示为2.77×107,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:在211133122x xy ax x y mπ+++,,,,,中,分式有131ax x y m++,,∴分式的个数是3个.故选:B.【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以象2xπ-不是分式,是整式.6.D 【分析】根据幂的乘除运算法则运算即可.【详解】A.()2326ab a b =,该选项错误B.34a a a ÷=,该选项错误C.246a a a ⋅=,该选项错误D.()326a a -=-,该选项正确故选D.【点睛】本题考查幂的乘除的运算,关键在于熟悉乘除、乘方的运算规律.7.D 【分析】此题涉及面积公式的运用,解答时直接运用面积的公式求出答案.【详解】根据题意可知,这幅摄影作品占的面积是34a 2+4(a +4)+4(34a +4)−4×4=237164a a ++故选:D .【点睛】列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.8.C 【分析】根据等腰三角形的两腰相等,可知边长为8,8,4或4,4,8,再根据三角形三边关系可知4,4,8不能组成三角形,据此可得出答案.【详解】∵等腰三角形的两边长分别为8cm 和4cm ,∴它的三边长可能为8cm ,8cm ,4cm 或4cm ,4cm ,8cm ,∵4+4=8,不能组成三角形,∴此等腰三角形的三边长只能是8cm,8cm,4cm8+8+4=20cm故选C.【点睛】本题考查等腰三角形的性质与三角形的三边关系,熟练掌握三角形两边之和大于第三边是解题的关键.9.A【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【详解】A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.A【分析】先根据线段垂直平分线的性质得出AE=CE,故CE+BE=AB,再由△EBC的周长=BC+CE+BE=BC+AB,即可得出结论.【详解】中AC边的垂直平分线,DE是ABC∴=,AE CE∴+==,CE BE AB8cm,=BC6cmEBC ∴ 的周长()BC CE BE BC AB 6814cm =++=+=+=,故选A .【点睛】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.11.-2【分析】直接利用关于x 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A (2,a )与点B (b ,4)关于x 轴对称,∴b =2,a =−4,则a +b =−4+2=−2,故答案为:−2.【点睛】此题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.12.七【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -︒=⋅︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.13.3【解析】如图,过点D 作DF ⊥AB 于点F ,∵DE ⊥AC 于点E ,∴S△ADC =12AC⋅DE=6,即:142⨯⨯DE=6,解得DE=3.∵在△ABC中,已知AD是角平分线,DE⊥AC于点E,DF⊥AB于点F,∴DF=DE=3,即点D到AB的距离为3.14.32 xy=⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解128x yx y-=⎧⎨+=⎩①②,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为32 xy=⎧⎨=⎩,故答案为:32 xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.40°【分析】根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE 的度数.【详解】∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=60°,∠ABC=80°,∴∠EBD=60°,∠BDE=80°,则∠CBE的度数为:180°﹣80°﹣60°=40°.故答案为:40°.【点睛】此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.16.101030【分析】把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.【详解】4x3−xy2=x(4x2−y2)=x(2x+y)(2x−y),当x=10,y=10时,x=10;2x+y=30;2x−y=10,把它们从小到大排列得到101030.用上述方法产生的密码是:101030.故答案为:101030.【点睛】本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.17.−1 2【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【详解】102|3|(2----=12−3−1+3=−1 2.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.x =76【解析】【分析】观察可得方程最简公分母为2(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程两边同乘2(x-1),得2x=3-2(2x-2),2x=3-4x+4,6x=7,∴x =76,检验:当x =76时,2(x-1)≠0,∴x =76是原分式方程的解.【点睛】此题考查了解分式方程.解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.19.2(x-y);-3.【分析】括号内先提取公因式(x-y),整理,再根据整式除法法则化简出最简结果,把x 、y 的值代入求值即可.【详解】2()()()x y x y x y x⎡⎤-+-+÷⎣⎦=(x-y)(x-y+x+y)÷x=2x(x-y)÷x=2(x-y).当x =1-,12y =时,原式=2(x-y)=2×(-1-12)=-3.【点睛】本题考查因式分解的应用——化简求值,正确找出公因式(x-y)是解题关键.20.33a -【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】221369324a a a a a a a +--+-÷-+-=()()2221332(3)a a a a a a a +-+--⋅-+-=1233a a a a +----=33a -.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.21.(1)图见解析(2)证明见解析【分析】(1)利用基本作图(作已知角的平分线)作∠BAC 的平分线交BC 于D ,则AD 为所求;(2)先证明△ABC 为等腰三角形,再根据等腰三角形的性质,由AD 平分∠BAC 可判断AD 垂直平分BC ,然后根据线段垂直平分线的性质可得EB =EC .【详解】(1)解:如图,AD 为所作;(2)证明:如图,∵∠ABC =∠ACB ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,BD =CD ,即AD 垂直平分BC ,∴EB =EC .【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和线段垂直平分线的性质.22.(1)甲单独20天,乙单独25天完成.(2)方案③最节省.【分析】(1)设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.(2)根据题意可得方案①、③不耽误工期,符合要求,再求出各自的费用,方案②显然不符合要求.【详解】(1)设规定日期x天完成,则有:415xx x+=+解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.(2)方案①:20×1.5=30(万元),方案②:25×1.1=27.5(万元),但是耽误工期,方案③:4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案③最节省.【点睛】本题考查了分式方程的应用,关键知道完成工作的话工作量为1,根据工作量=工作时间×工作效率可列方程求解,求出做的天数再根据甲乙做每天的钱数求出总钱数.23.(1)△BPE与△CQP全等,理由见解析;(2)t=5 2 ,【分析】(1)根据SAS可判定全等;(2)由于点Q的运动速度与点P的运动速度不相等,而运动时间相同,所以BP≠CQ.又△BPE与△CQP全等,则有BP=PC=12BC=5,CQ=BE=6,由BP=5求出运动时间,再根据速度=路程÷时间,即可得出点Q的速度.【详解】(1)△BPE与△CQP全等.∵点Q的运动速度与点P的运动速度相等,且t=2秒,∴BP=CQ=2×2=4厘米,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∵四边形ABCD是正方形,∴在Rt△BPE和Rt△CQP中,{BP CQ BE CP==,∴Rt△BPE≌Rt△CQP;(2)∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t=BP522=(秒)此时点Q的运动速度为CQ12t5QV==(厘米/秒).【点睛】本题主要考查了正方形的性质以及全等三角形的判定,解决问题的关键是掌握:正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.解题时注意分类思想的运用.24.(1)见解析;(2)EG DF⊥,见解析【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【详解】(1)证明:∵AD ∥BC ,∴∠ADE =∠BFE ,∵E 为AB 的中点,∴AE =BE ,在△ADE 和△BFE 中,ADE BFE AED BEF AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BFE (AAS );(2)EG ⊥DF ,理由如下:连接EG,∵∠GDF =∠ADE ,∠ADE =∠BFE ,∴∠GDF =∠BFE ,∴DG =FG ,由(1)得:△ADE ≌△BFE∴DE =FE ,即GE 为DF 上的中线,又∵DG =FG ,∴EG ⊥DF .【点睛】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.25.(1)40°;(2)①补图见解析;②证明见解析.【详解】试题分析:(1)根据等腰三角形的性质得到∠APQ=∠AQP ,由邻补角的定义得到∠APB=∠AQC,根据三角形外角的性质即可得到结论;(2)①根据要求作出图形,如图2;②根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q 关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.试题解析:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=60°﹣20°﹣20°=20°,∴∠BAQ=∠BAP+∠PAQ=40°;(2)①如图2;②∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.考点:三角形综合题.。
浙教版数学八年级上册期末考试试题含答案
浙教版数学八年级上册期末考试试卷一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12 2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0 7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣39.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:.12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为.13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=cm.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为.(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.参考答案一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:A、1+2.5=3.5,不能够组成三角形;B、4+6=10,不能组成三角形;C、11+8<20,不能组成三角形;D、5+8>12,能组成三角形.故选:D.2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A选项错误;B(2,90°),故B选项错误;D(4,240°),故C选项正确;E(3,300°),故D选项错误.故选:C.4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上【分析】根据线段垂直平分线的判定定理解答.解:∵PA=PB,∴P点在在边AB的垂直平分线上,故选:B.5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 【分析】根据不等式的性质逐一进行判断即可.不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.解:A.因为a>b,所以3a>3b,故本选项不合题意;B.不妨设c=0,则ac2=bc2,故本选项不合题意;C.因为a>b,所以a﹣c>b﹣c,故本选项符合题意;D.不妨设c=0,则﹣ac=﹣bc,故本选项不合题意;故选:C.6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0【分析】根据有理数的大小比较法则、有理数的乘方法则计算,判断即可.解:当a=﹣1,b=﹣2时,a>b,而a2<b2,∴“若a>b,则a2>b2”是假命题,故选:A.7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.【分析】根据函数自变量的取值得到x<1的取值的选项即可.解:A、自变量的取值为x≠1,不符合题意;B、自变量的取值为x≠0,不符合题意;C、自变量的取值为x≤1,不符合题意;D、自变量的取值为x<1,符合题意.故选:D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣3【分析】结合函数图象,写出直线y2=k2x在直线y1=k1x+b上方所对应的自变量的范围即可.解:∵直线y1=k1x+b与直线y2=k2x的交点的横坐标为﹣3,∴当x≤﹣3时,y2≥y1,∴关于x的不等式k1x+b≤k2x的解集为x≤﹣3.故选:C.9.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明【分析】由图象可得a的值;根据小明的路程和时间可得速度;设爸爸从家到商店的速度是x米/分钟,列一元一次方程可求解;根据追及问题中相距路程÷速度差=时间可得答案.解:线段BC是爸爸买水果的时间5分钟,a=10+5=15,故A不符合题意;由图象可得小明的速度是3300÷(20+2)=150(米/分钟),故B不符合题意;设爸爸从家到商店的速度是x米/分钟,则从商店到学校的速度是(x+60)米/分钟,依题意得,10x+(20﹣15)(x+60)=3300,解得x=200,所以爸爸从家到商店的速度是200米/分钟,故C不符合题意;爸爸追上小明得时间是150×2÷(200﹣150)=6(分钟),故D符合题意.故选:D.10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.【分析】根据题意求出点B1,B2,B3的坐标,然后找出B点坐标的变化规律,把B n的坐标用含n的式子表示出来,取n=9,即可求出B9的横坐标.解:∵△OA1B1是等边三角形,OA1=1,∴B1的横坐标为,OA1=OB1,设B1(,y),则,解答y=或y=(舍),∴B1(,),∴OB1所在的直线的解析式为y=x,∵OA1=1,∠OA1C=30°,△OA1B1是等边三角形,∴∠B1A1C=90°,∵∠O1BA1=∠B1B2A2=60°,∴B1A1∥B2A2,∴∠B1A1C=∠B2A2A1=90°,∴∠B1A2A1=30°,∴B1A2=2A1B1=2,∴B2的横坐标为,∴y=x=,∴B2(,),同理:B3(,),B4(,),总结规律:B1的横坐标为,B2的横坐标为+1=,B3的横坐标为+1+2=,B4的横坐标为+1+2+4=,...,∴点B9的横坐标是1+2+4+8+16+32+64=.故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7).【分析】根据平移时,点的坐标变化规律“左减右加”进行计算即可.解:现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7),故答案为:(5,y)(﹣2≤y≤7).13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=5cm.【分析】根据CF∥AB就可以得出∠A=∠DCF,∠AED=∠F,证明△ADE≌△CDF (AAS),由全等三角形的性质得出AE=CF,则可得出答案.解:∵CF∥AB,∴∠AED=∠F,∠FCD=∠A.∵点D为AC的中点,∴AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(AAS).∴AE=CF,∵AB=15cm,CF=10cm,∴BE=AB﹣AE=AB﹣CF=15﹣10=5(cm).故答案为5.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为30≤a≤60.【分析】一次服用剂量a=,故可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式即可.解:由题意,当每日用量90mg,分3次服用时,一次服用的剂量最小为=30mg;当每日用量120mg,分2次服用时,一次服用的剂量最大为=60mg;故一次服用这种药品的剂量范围是30mg~60mg.故答案为:30≤a≤60.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =42°或24°.【分析】由折叠的性质得出AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,由直角三角形斜边上的中线性质得出CD=AB=AD=BD,由等腰三角形的性质得出∠ACD=∠A,∠DCB=∠B,中分三种情况讨论即可.解:由折叠可得,AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,∴D是AB的中点∴CD=AB=AD=BD,∴∠ACD=∠A,∠DCB=∠B,当∠CPD=48°时,∠B=48°,∴∠A=90°﹣∠B=42°;当∠PCD=48°时,∠DCB=∠B=48°,∴∠A=42°;当∠PDC=48°时,∵∠PCD=DCB=48°,∠BDC=∠A+∠ACD,∴∠A=∠BDC=24°;故答案为:42°或24°.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是(﹣,);(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=6时,|OA'﹣OB'|取最大值.【分析】(1)因为点A在点B左边,联立方程y=x+2与y=﹣x﹣1求解.(2)O,A',B'共线时满足题意,用含m代数式分别表示A',B'坐标,然后代入正比例函数解析式求出m即可.解:(1)联立方程,解得,∴A(﹣,),故答案为:(﹣,).(2)联立方程,解得,∴点B坐标为(,),将A,B向右平移m个单位得A'(﹣+m,),B'(+m,),∴OA'=,OB'=,∵三角形中两边之差小于第三边,∴O,A,B三点共线时,|OA'﹣OB'|取最大值,最大值为AB长度,设O,A,B所在直线正比例函数为y=kx,将A',B'坐标代入可得:,解得m=6.故答案为:6.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x﹣2≤x,得:x≤1,解不等式<,得:x>﹣7,∴不等式组的解集为﹣7<x≤1.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.【分析】(1)直接利用轴对称图形的性质得出对应点位置得出答案;(2)直接利用平移的性质得出对应点位置,进而得出答案.解:(1)如图1所示:△CBO即为所求;(2)如图2所示:△A′B′O′即为所求.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.【分析】(1)将两点代入,运用待定系数法求解;(2)两点法即可确定函数的图象.(3)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.解:(1)∵一次函数y=kx+b的图象经过两点A(﹣4,0)、B(2,6),∴,∴函数解析式为:y=x+4;(2)函数图象如图;(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=7.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?【分析】(1)由“当金额是600元时,实际只需支付了570”可得方程300+(600﹣300)×=570,再解即可;与奖品金额x元之间的函数表达式;(2)根据甲商店优惠方案即可求出y甲与奖品金额x元之间的函数表达式,再结合(2)的结论列方程和(3)根据题意求出y乙不等式解答即可.解:(1)由题意,得500+(600﹣500)×=570,解得x=7,故答案为:7;(2)由题意,得y=;甲=0.7x+150(x>500),(3)由题意,得y乙0.8x+60=0.7x+150,解得x=900,0.8x+60>0.7x+150,解得x>900,0.8x+60<0.7x+150,解得x<900,当800<x<900时,到甲商店更合算;当x=900时,两家商店任选一个;当x>900时,到乙商店更合算.22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.【分析】(1)利用勾股定理求出AB,再利用面积法求出CD即可.(2)如图2中,过点A作AH⊥BC于H.利用勾股定理求出AH,再利用面积法求出PM+PN即可.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.利用角平分线的性质定理证明PM =PN,再利用面积法求出PM,可得结论.解:(1)如图1中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵CD⊥AB,=•AC•BC=•AB•CD,∴S△ABC∴CD==.(2)如图2中,过点A作AH⊥BC于H.∵AB=AC=13,BC=10,∴BH=CH=5,∴AH===12,=•BC•AH=•AB•PM+•AC•PN,∵S△ABC∴×13×PM+×13×PN=×10×12,∴PM+PN=.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.∵∠ACD=∠ECD,DM⊥AC,DN⊥CE,∴DM=DN,+s△BCD=S△ACB,∵S△ACD∴×4×DM+×6×DN=×4×6,∴DM=DN=,=•CA′•DN=×4×=.∴S△A′CD23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为(﹣3,1).(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.【分析】(1)x=﹣3时,y的值与k无关,都为1,即得定点A(﹣3,1),(2)由A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),得AB=3,BC=4,BD=3,CD=5,直线l将△BCD的周长分成7:17两部分,则两部分的长分别为:12×=,12×=,①若AB+BN=,得N(0,),将N(0,)代入y=kx+3k+1,即解得k=﹣,②若AC+CM=,可得M(﹣2,),把M(﹣2,)代入y=kx+3k+1,解得:k=;(3)由求得E(﹣3,1),故E与A重合,而点F是EQ的中点,得x F=﹣,根据y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),故PQ=3,可知点P从(0,5)沿y轴正方向运动到(0,10),则Q从(0,2)运动到(0,7),F从(﹣,)运动到(﹣,4),即可得F运动的路程为.解:(1)∵x=﹣3时,y的值与k无关,都为1,∴定点A(﹣3,1),故答案为:(﹣3,1);(2)∵A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),∴AB=3,BC=4,BD=3,∵∠CDB=90°,∴CD===5,∴△BCD的周长为BD+CD+BC=12,∵直线l将△BCD的周长分成7:17两部分,∴两部分的长分别为:12×=,12×=,①若AB+BN=,如图:∴3+BN=,∴BN=,∴N(0,),将N(0,)代入y=kx+3k+1得:=3k+1,解得k=﹣,②若AC+CM=,如图:∴1+CM=,∴CM=,∴CM=CD,∴M为CD中点,∴M(﹣2,),把M(﹣2,)代入y=kx+3k+1得:=﹣2k+3k+1,解得:k=,综上所述,k的值为﹣或;(3)由得,∴E(﹣3,1),∴E与A重合,∵点F是EQ的中点,∴x F=﹣,而由y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),∴PQ=3,∵点P从(0,5)沿y轴正方向运动到(0,10),∴Q从(0,2)运动到(0,7),∴F从(﹣,)运动到(﹣,4),∴F运动的路程为:4﹣=.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.【分析】(1)作CN⊥轴于N,BM⊥轴于M,易证Rt△NCA Rt△MAB,可求得点C的坐标为(,5),再利用待定系数法即可求解;(2)过B作直线EF⊥轴于F,过D作DE⊥EF交直线EF于E,易证Rt△FAB≌Rt△EBD,可求得点D的坐标为(m﹣,m﹣)或(m+,﹣m),再利用三角形面积公式即可求解;(3)题中只给定了AB为直角边,所以分∠ABP=90°或∠BAP=90°两种情况讨论,即可求解.解:(1)作CN⊥轴于N,BM⊥轴于M,∵∠BAC=90°,∴∠NAC+∠NCA=∠NAC+∠MAB=90°,∴∠NCA=∠MAB,∵CA=AB,∴Rt△NCA Rt△MAB,∴NC=MA,NA=MB,∵点B的横坐标为,∴点B的坐标为(9,),∴NC=MA=MO﹣OA=9﹣4=5,NA=MB=,ON=OA﹣NA=,∴点C的坐标为(,5),设直线BC的解析式为y=kx+b,将(9,),(,5)代入,得:,解得:,∴直线BC的解析式为y=﹣x+;(2)过B作直线EF⊥轴于F,过D1作D1E⊥EF交直线EF于E,过D2作D2E⊥EF交直线EF于M,同理可证Rt△FAB≌Rt△EBD1≌Rt△MBD2,∴AF=BE=MB,FB=D1E=D2M,∵点B的横坐标为m,∴AF=BE=MB=m﹣4,FB=D1E=D2M=,点D1的坐标为(m﹣,m﹣4+),即D1的坐标为(m﹣,m﹣),点D2的坐标为(m+,﹣m+4),即D2的坐标为(m+,﹣m),=,∵S△OAD1D点位于直线AB左侧时,当0<m<1.5时,S=×4×(﹣m)=3﹣2m;当m≥1.5时,S=×4×(m﹣)=2m﹣3;D点位于直线AB右侧时,当0<m<6.5时,S=×4×(﹣m)=13﹣2m;当m≥6.5时,S=×4×(m﹣)=2m﹣13;(3)①当∠ABP=90°时,由(2)可知D与P重合,∴点P的坐标为(m﹣,m﹣),当点P落在直线y=上时,m﹣=,解得:m=,②当∠BAP=90°时,同理可证明Rt△HAP≌Rt△GBA,∵点B的坐标为(m,),∴PH=AG=m﹣4,AH=BG=,∴点P的坐标为(4﹣,m﹣4),即(,m﹣4),当点P落在直线y=上时,m﹣4=,解得:m=,综上,m的值为或.。
八年级上册数学期末试卷及答案
八年级(上)期末考试数学试题一、选择题: 1 _ 1•在0,-, n , 9这四个数中,是无理数的是( )31 A . 0 B .—— C. n D. .932•下列乘法中,不能运用平方差公式进行运算的是()A . (x+a)(x-a)B . (a+b)(-a-b)C . (-x-b)(x-b)3.在下列运算中,计算正确的是( )4. 如图, ABC 也DEF ,点A 与D,点B 与E 分别 是对应顶点,BC=5cm BF=7cm 贝y EC 的 长为()A. 1cmB. 2 cmC. 3cmD. 4cm5、点P ( 3, 2)关于x 轴的对称点P '的坐标是()A . (3, -2 )B . (-3 , 2)C . (-3 , -2 )D . (3, 2)6. 某同学网购一种图书,每册定价 20元,另加书价的5%作为快递运费。
若购书 x 册,则需付款y (元)与x 的函数解析式为()A . y=20x+1B . y=21xC . y=19xD . y=20x-1 7. 把多项式m-4m 分解因式的结果是()2 2 2A.m(m-4)B.m(m+2)(m-2)C.m(m-2)D.m (m-4)8如图,在△ ABC 与厶DEF 中,给出以下六个条件:(1) AB = DE , (2) BC = EF , ( 3) AC = DF , ( 4)/ A =Z D , (5)Z B = Z E , (6)Z C =Z F ,以其中三个作为已知条件,不能..判断厶ABC 与厶DEF 全 等的是( ) A . (1) ( 5) (2)B . (1) (2) (3)A. B. C. D.D . (b+m)(m-b)C . (2) (3) ( 4)D . (4) (6) (1)15.如图,/ ABC=Z DCB 请补充一个条件: ,使△ ABC^A DCB.18 •如图,直线h // |2 , AB 丄|1,垂足为O , 20.如图(见下),方格纸中△ ABC 的3个顶点分别在小正方形的顶点 (格点)上,这样的三角形叫格点三角 形,图中与厶ABC 全等的格点三角形共有 ________________ 个(不含△ ABC ).BC 与12相交与点E ,若/ 1=43°,则/ 2= 度.13.若等腰三角形的顶角为 80°,则它腰上的高与底边的夹角为14 .如下图,。
河南省焦作市2023-2024学年八年级上学期期末数学试题(含答案)
2023-2024学年(上)八年级期末试卷数学(人教版)注意事项:1.本试卷共8页,三个大题,满分120分,考试时间90分钟.请用黑色水笔直接答在答题卷上.2.答卷前将答题卷密封线内的项目填写清楚.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案前的代号字母填涂在答题卷上指定位置.1.中国传统建筑的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中不是轴对称图形的是()A .B .C .D .2.下列计算正确的是()A .B .C .D .3.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰是“倍长三角形”,底边长为3,则腰的长为()A .1.5B .3C .6D .1.5或64.如图,中,是的中点,下列结论不正确的是()A .B .C .平分D .5.正六边形的外角和为()A .B .C .D .6.将一副三角板按如图方式重叠,则的度数为()A .B .C .D.()339a a =3412a a a ⋅=235a a a +=623a a a ÷=ABC △BC AB ABC △,AB AC D =BC B C∠=∠AD BC ⊥AD BAC ∠2AB BC =180︒360︒540︒720︒1∠60︒65︒70︒75︒7.下列因式分解正确的是()A .B .C .D .8.如图,将一张长方形纸片按图中所示的方式进行折叠,若,则重叠部分的面积是()A .6B .7.5C .10D .209.如图,都是等边三角形,那么以下结论不一定成立的是()A .B .C .D .10.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运,甲搬运所用的时间与乙搬运所用的时间相等,求甲、乙两人每小时分别搬运多少货物.设甲每小时搬运货物,则可列方程为()A.B .C .D .二、填空题(每小题3分,共15分)11.分解因式:______.12.华为公司今年发布了一款自家的5G 芯片,这款芯片集成了49亿个晶体管,那么10个这样的芯片上共有多少个晶体管,请将这个数用科学记数法表示______.13.如图,点在一条直线上,,要使,只需添加一个条件,则这个条件可以是______.222()a b a b +=+2222()a ab b a b ++=-()21a a a a -=+()()22a b a b a b -=+-ABCD 3,4,5AE AB BE ===ABD AEC △、△DC BE =60DFB ∠=︒ADC ABN ∠=∠ADM ABN△≌△600kg 5000kg 8000kg kg kg x 50008000600x x=-50008000600x x =+50008000600x x =+50008000600x x =-23x y y -=,,,B F C E ,AB ED AC FD ∥∥ABC DEF △≌△14.已知非零实数满足,则的值等于______.15.如图,在中,平分交于点,点是上的动点,是上动点,则的最小值为______.三、解答题(本大题共8题,共75分)16.(10分)(1)计算(2)分解因式:17.(9分)先化简,再选取一个合适的值代入求值.18.(9分)如图,.求证:.19.(9分)如图所示,在平面直角坐标系中,三个顶点的坐标分别为.,x y 1x y x =+3x y xy xy-+Rt ABC △90,30,6,BAC C AC BD ∠=︒∠=︒=ABC ∠AC D E AB F BD AF EF +23333(2)x x x x x ⋅+--÷22363ax axy ay ++x 22111x x x x x+-⎛⎫-÷ ⎪-⎝⎭,,OA OC OB OD AOD COB ==∠=∠AB CD =xOy ABC △()()()1,1,4,2,2,3A B C(1)在图中画出三角形关于轴对称的图形;(2)在图中,若与点关于一条直线成轴对称,则这条对称轴是______,此时点关于这条直线的对称点的坐标为______.(3)在轴上寻找一点,使的面积与面积相等.请直接写出点的坐标:______.20.(9分)“双十一”某网店开展促销活动,其商品一律按6折销售,促销期间用450元在该网店购得某商品的数量较打折前多出2件.该商品打折前每件多少元?21.(9分)(1)请写出仍平分线的性质定理,并给予证明.(2)如图,在中,平分交于点,于点,若,则的面积为______.22.(10分)(1)已知.则______.(2)如图,点是线段上一点,以为边分别向两边作正方形和正方形,设,两正方形的面积和,求图中阴影部分的面积.ABC △y 111A B C △()24,2B -B C 2C x P APB △ABC △P ABC △BD ABC ∠AC D DE BC ⊥E 60,45,3ABC C DE ∠=︒∠=︒=ABD △2()6,3x y xy -==22x y +=C AB AC BC 、ACDE BCFG 8AB =1236S S +=23.(10分)在数学课上,老师给出了如下问题:如图,为的中线.点在上,交于点.求证.经过探索,小航同学得到一种思路:如图1,添加辅助线后,依据可证得,再利用可以进一步证得,从而证明结论.(1)请你写出他的证明过程.(2)请写出另外一种不同的辅助线作法(要求:只写出辅助线的作法,画出图形,不需要写出证明过程).2023-2024学年(上)八年级期末试卷数学参考答案及评分标准(人教版)一、选择题1.B2.A3.C4.D5.B6.D7.D8.C9.D10.B二、填空题11. 12. 13.(任取其一即可) 14.4 15.3三、解答题16.解:(1)原式(2)原式.AD ABC △E AC BE AD ,F AE EF =AC BF =SAS ADC GDB △≌△AE EF =G FAE AFE BFG ∠=∠=∠=∠()()y x y x y +-104.910⨯AB DE AC DF BC EF BF EC ====、、、()333338x x x -=+--305x x =--351x =--()2232a x xy y =++23()a x y =+17.解:由题意可得,当时,原式18.证明:即.在和中.19.解:(1)如图所示,即为所求(2)x 轴(或横轴),.(3)(直接写出坐标即得分,可以不划线)20.解:设该商品打折前每件元,则打折后每件元,22111x x x x x+-⎛⎫-÷ ⎪-⎝⎭()()()1111x x x x xx x x +-+⎛⎫=-÷ ⎪-⎝⎭11x x x =-⋅+11x =-+0,1x ≠±2x =11213=-=-+AOD COB∠=∠ AOD BOD COB BOD∴∠-∠=∠-∠AOB COD ∠=∠AOB △OCD △OA OC AOB CODOB OD =⎧⎪∠=∠⎨⎪=⎩()SAS AOB COD ∴△≌△AB CD ∴=111A B C △()22,3C -()3,0P x 0.6x根据题意得,,解得,检验:经检验,是原方程的解.答:该商品打折前每件150元.21.解:(1)角平分线上的点到角的两边的距离相等.已知:如图,是的平分线.点是上任意一点,.垂足分别为.求证:.证明:,.在和中,.6分.(2)9.22.解:(1)12(2)解:设.阴影部分的面积为7.45045020.6x x+=150x =150x =OC AOB ∠P OC ,PD OA PE OB ⊥⊥D E 、PD PE =,PD OA PE OB ⊥⊥ 90PDO PEO ∴∠=∠=︒PDO △PEO △PDO PEO AOC BOCOP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS PDO PEO ∴△≌△PD PE ∴=,AC x BC y==22128,368,36AB S S x y x y =+=∴+=+= ()()22212xy x y x y ⎡⎤∴=+-+⎣⎦()164362=-14=11472S ∴=⨯=阴影∴23.解:(1)证明:延长至点,使,连接;为的中线.,在和中,.,(2)过点作,交的延长线于.(答案不唯一)AD G DG AD =BG AD ABC △BD CD ∴=ADC △GDB △AD GD ADC GDBCD BD =⎧⎪∠=∠⎨⎪=⎩()SAS ADC GDB ∴△≌△,G CAD BG AC ∴∠=∠=AE EF = CAD EFA∴∠=∠BFG EFA∠=∠ G BFG∴∠=∠BG BF∴=AC BF∴=B BG AC ∥AD G。
人教版数学八年级上册期末考试试卷附答案
人教版数学八年级上册期末考试试题一、选择题(每小题只有一个正确答案。
每小题2分,共12分)1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y33.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1 4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3 5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为.8.(3分)因式分解:ax2﹣ay2=.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为米.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.13.(3分)计算+的结果是.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为cm2.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.18.(5分)解分式方程:﹣=1.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2②(a﹣b)222.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=,∠AED=;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.答案与解析一、单项选择题1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y3【分析】积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘,据此求解即可.【解答】解:(﹣2x2y)3=(﹣2)3(x2)3y3=﹣8x6y3.故选:B.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.【点评】式子必须同时满足分式有意义和二次根式有意义两个条件.分式有意义的条件为:分母≠0;二次根式有意义的条件为:被开方数≥0.此类题的易错点是忽视了二次根式有意义的条件,导致漏解情况.4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选:D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4【分析】先证AB=AC,再证△ABE≌△ACD(AAS)得AD=AE,BE=CD,∠BAE =∠CAD,即可得出结论.【解答】解:∵∠B=∠C,∴AB=AC,故(1)正确;在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE,BE=CD,∠BAE=∠CAD,故(2)(3)正确,(4)错误,正确的个数有3个,故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是本题的关键.二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为 2.01×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000201=2.01×10﹣6.故答案为:2.01×10﹣6.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为22.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当4为底时,其它两边都为9,即:9、9、4可以构成三角形,周长为22;当4为腰时,其它两边为9和4,因为4+4=8<9,所以不能构成三角形,故舍去.所以答案只有22.故答案为:22.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为6米.【分析】先过点C作CE⊥AB,交AB的延长线于E,易求∠CBE=30°,在Rt△BCE中可知CE=BC,进而可求CE.【解答】解:过点C作CE⊥AB,交AB的延长线于E,如右图,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=BC=6.故答案是6.【点评】本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.13.(3分)计算+的结果是.【分析】利用分式加减法的计算方法进行计算即可.【解答】解:原式=﹣===,故答案为:.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为6cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.【分析】先算零指数幂、负整数指数幂、绝对值、乘方,再算加减法即可求解.【解答】解:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020=1+2﹣2﹣1=0.【点评】考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、乘方等知识点的运算.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.【解答】解:(a+3)(a﹣1)+a(a﹣2)=a2+2a﹣3+a2﹣2a=2a2﹣3;【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.【分析】根据多边形的内角和与外角和之间的关系列出有关边数n的方程求解即可.【解答】解:设该多边形的边数为n则(n﹣2)×180°:360=9:2,解得:n=11.故它的边数为11.【点评】本题考查了多边形的内角与外角,解题的关键是牢记多边形的内角和公式与外角和定理.18.(5分)解分式方程:﹣=1.【分析】先去分母,再解整式方程,一定要验根.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.【点评】本题考查了解分式方程,掌握分式方程一定要验根是解题的关键.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=5;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.【分析】(1)利用关于y轴对称的点的坐标特征写出B1、C1的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)作A点关于x轴的对称点A′,然后连接A′C交x轴于P点.【解答】解:(1)如图,△AB1C1为所作,B1(﹣2,﹣4),C1(﹣4,﹣1);=3×4﹣×2×2﹣×2×3﹣×4×1=5;(2)S△ABC故答案为5;(3)如图,点P为所作.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2;②(a﹣b)2.【分析】①根据(a+b)2=a2+2ab+b2,可得a2+b2=(a+b)2﹣2ab,再把a+b=4,ab=2代入计算即可;②根据(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab,再把a+b=4,ab=2代入计算即可.【解答】解:∵a+b=4,ab=2,∴①a2+b2=(a+b)2﹣2ab=42﹣2×2=16﹣4=12;②(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=42﹣4×2=16﹣8=8.【点评】本题考查完全平方公式的应用,根据题中条件,变换形式即可.22.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【分析】(1)根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数;(2)根据三角形外角平分线的性质可得∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°﹣∠A.【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【点评】本题考查的是三角形内角和定理,涉及到三角形内角与外角的关系,角平分线的性质,三角形内角和定理,结合图形,灵活运用基本知识解决问题.五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?【分析】由题意可知甲的工作效率=1÷规定日期,乙的工作效率=1÷(规定日期+3);根据“结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成”可知甲做两天的工作量+乙做规定日期的工作量=1,由此可列出方程.【解答】解:设规定日期为x天,根据题意,得2(+)+×(x﹣2)=1解这个方程,得x=6经检验,x=6是原方程的解.∴原方程的解是x=6.答:规定日期是6天.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:AE=BF(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.【分析】(1)利用等边三角形的性质得出AC=BC,CE=CF,∠ACB=∠ECF=60°,进而得出∠ACE=∠BCF,进而判断出△ACE≌△BCF,即可得出结论;(2)①由题意补全图形,即可得出结论;②同(1)的方法,即可得出结论.【解答】解:(1)AE=BF,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB﹣∠BCE=∠ECF﹣∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,故答案为:AE=BF;(2)①补全图形如图2所示;②AE=BF仍然成立,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB+∠BCE=∠ECF+∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△ACE≌△BCF是解本题的关键.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.【分析】(1)图①中的阴影部分的面积为两个正方形的面积差,图②中的阴影部分是上底为2b,下底为2a,高为a﹣b的梯形,利用梯形面积公式可得答案;(2)图①、图②面积相等可得等式;(3)①连续两次利用平方差公式可求结果;②将107×93转化为(100+7)(100﹣7),即可利用平方差公式求出结果.【解答】解:(1)S1=a2﹣b2,S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)a2﹣b2=(a+b)(a﹣b);(3)①原式=(x2﹣)(x2+)=x4﹣;②107×93=(100+7)(100﹣7)=1002﹣72=10000﹣49=9951.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=25°,∠AED=65°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.【分析】(1)利用等腰三角形的性质和三角形的外角性质解答即可;(2)先求出∠ADB=∠DEC,再由∠B=∠C,AB=DC=2,即可得出△ABD≌△DCE (AAS);(3)分两种情况讨论即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=∠40°,∵∠BDA=115°,∴∠ADC=180°﹣115°=65°,∴∠CDE=∠ADC﹣∠ADE=65°﹣40°=25°,∴∠AED=∠CDE+∠C=25°+40°=65°,故答案为:25°,65°;(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)△ADE能成为等腰三角形,理由如下:∵∠ADE=∠C=40°,∠AED>∠C,∴△ADE为等腰三角形时,只能是AD=DE或AE=DE,当AD=DE时,∠DAE=∠DEA=(180°﹣40°)=70°,∴∠EDC=∠AED﹣∠C=70°﹣40°=30°,∴∠ADB=180°﹣40°﹣30°=110°;当EA=ED时,∠ADE=∠DAE=40°,∴∠AED=180°﹣40°﹣40°=100°,∴∠EDC=∠AED﹣∠C=100°﹣40°=60°,∴∠ADB=180°﹣40°﹣60°=80°;综上所述,当∠ADB的度数为110°或80°时,△ADE是等腰三角形.【点评】此题考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点,此题涉及到的知识点较多,综合性较强.21。
八年级数学(上)期末测试试卷含答案解析
八年级数学(上)期末测试试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:54.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.557.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.310.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=.13.(﹣2)2的平方根是.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.17.(2分)若直线y=k x+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的值是.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距千米,客车的速度是千米/时;(2)小亮在丙地停留分钟,公交车速度是千米/时;(3)求两人何时相距28千米?25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=是有理数,故A错误;B、是有理数,故B错误;C、3.是有理数,故C错误;D、﹣π是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把x=0,y=﹣代入方程得:左边=﹣1,右边=1,不相等,不合题意;B、把x=1,y=1代入方程得:左边=2﹣1=1,右边=1,相等,符合题意;C、把x=1,y=0代入方程得:左边=﹣1,右边=1,不相等,不合题意;D、把x=﹣1,y=﹣1代入方程得:左边=﹣3,右边=1,不相等,不合题意,故选B.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理得出A是直角三角形,D不是直角三角形,由勾股定理的逆定理得出B、C是直角三角形,从而得到答案.【解答】解:A、三个内角之比为1:1:2,因为根据三角形内角和定理可求出三个角分别为45°,45°,90°,所以是直角三角形,故正确;B、三条边之比为1:2:,因为12+22=()2,其符合勾股定理的逆定理,所以是直角三角形,故正确;C、三条边之比为5:12:13,因为52+122=132,其符合勾股定理的逆定理,所以是直角三角形,故正确;D、三个内角之比为3:4:5,因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选:D.【点评】本题考查了勾股定理的逆定理、三角形内角和定理、直角三角形的判定;熟练掌握勾股定理的逆定理和三角形内角和定理是解决问题的关键.4.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等【考点】命题与定理.【分析】利用数轴上的点与实数一一对应可对A进行判断;根据平行线的判定方法对B进行判断;根据无理数的定义对C进行判断;根据补角的定义对D进行判断.【解答】解:A、所有实数都可以用数轴上的点表示,所以A选项为真命题;B、同位角相等,两直线平行,所以B选项为真命题;C、无理数包括正无理数、负无理数,所以C选项为假命题;D、等角的补角相等,所以D选项为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得3<<4,再根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得<<,即3<<4,都减1,得2<﹣1<3.故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键.6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.55【考点】平行线的性质.【分析】先由垂直的定义,求出∠PEF=90°,然后由∠BEP=50°,进而可求∠BEF=140°,然后根据两直线平行同旁内角互补,求出∠EFD的度数,然后根据角平分线的定义可求∠EFP的度数,然后根据三角形内角和定理即可求出∠EPF的度数.【解答】解:如图所示,∵EP⊥EF,∴∠PEF=90°,∵∠BEP=50°,∴∠BEF=∠BEP+∠PEF=140°,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EFD=40°,∵FP平分∠EFD,∴=20°,∵∠PEF+∠EFP+∠EPF=180°,∴∠EPF=70°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.7.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁【考点】一元一次方程的应用.【分析】可设儿子现在的年龄是x岁,则父亲现在的年龄是3x岁,根据等量关系:7年前父亲的年龄=7年前儿子的年龄×5,依此列出方程求解即可.【解答】解:设儿子现在的年龄是x岁,依题意得:3x﹣7=5(x﹣7).解得x=14.则3x=42.即父亲和儿子现在的年龄分别是42岁,14岁.故选:A.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由年龄的倍数问题找出合适的等量关系列出方程,再求解.8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:m>5时,m﹣5>0,m+2>0,点位于第一象限,故A不符合题意;m=5时点位于y轴;﹣2<m<5时,m﹣5<0,m+2>0,点位于第二象限,故B不符合题意;m=﹣2时,点位于x轴;m<﹣2时,m﹣5<0,m+2<0,点位于第三象限,故C不符合题意;M(m﹣5,m+2)一定不在第四象限,故D符合题意;故选:D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.3【考点】等腰直角三角形.【分析】由等腰直角三角形的性质得出∠A=∠B=45°,证出四边形PECF是矩形,得出PF=CE,证出△APE和△BPF是等腰直角三角形,得出AE=PE,BF=PF,再由三角形的面积得出PE2=14,CE2=PF2=4,由勾股定理求出PC的长即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴∠A=∠B=45°,∵PF⊥BC于点F,PE⊥AC于点E,∴∠PFB=∠PEA=90°,四边形PECF是矩形,∴△APE和△BPF是等腰直角三角形,PF=CE,∠PEC=90°,∴AE=PE,BF=PF,∵S△APE=AE•PE=PE2=7,S△PBF=PF•BF=PF2=2,∴PE2=14,CE2=PF2=4,∴PC===3;故选:B.【点评】本题考查了等腰直角三角形的判定与性质、矩形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,运用勾股定理求出PC是解决问题的关键.10.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据正比例函数与一次函数的图象性质作答.【解答】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限;故选B.【点评】此题考查一次函数的图象问题,正比例函数的性质:正比例函数y=kx的图象是过原点的一条直线.当k>0时,直线经过第一、三象限;当k<0时,直线经过第二、四象限.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是x≤2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=6或﹣3.【考点】极差.【分析】分别当x为最大值和最小值时,根据极差的概念求解.【解答】解:当x为最大值时,x﹣(﹣1)=7,解得:x=6,当x为最小值时,4﹣x=7,解得:x=﹣3.故答案为:6或﹣3.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.13.(﹣2)2的平方根是±2.【考点】平方根.【专题】计算题.【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解易得答案.【解答】解:∵直线y=2x+1与y=﹣x+4的交点是(1,3),∴方程组的解为.故答案为.【点评】本题考查了一次函数与一元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是26.【考点】二元一次方程组的应用.【专题】数字问题.【分析】设这个两位数个位数为x,十位数字为y,根据个位数字比十位数字大4,个位数字与十位数字的和为8,列方程组求解.【解答】解:设这个两位数个位数为x,十位数字为y,由题意得,,解得:,则这个两位数为26.故答案为:26.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【考点】平面展开-最短路径问题.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=6cm,AB=5+10=15cm,在Rt△ADB中,AD==3cm;(2)如图2,AN=5cm,ND=5+6=11cm,Rt△ADN中,AD===cm.综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.17.(2分)若直线y=kx+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为y=﹣2x+19.【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题得到k=﹣2,然后把(5,9)代入y=﹣2x+b,求出b的值即可.【解答】解:根据题意得k=﹣2,把(5,9)代入y=﹣2x+b得﹣10+b=9,所以直线解析式为y=﹣2x+19.故答案为y=﹣2x+19.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是(2,1008).【考点】规律型:点的坐标.【分析】由于2016是4的整数倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2016在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答即可.【解答】解:∵2016是4的整数倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2016÷4=504…0,∴A2016在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A2016的纵坐标为2016×=1008.故答案为:(2,1008).【点评】本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【专题】计算题.【分析】(1)先进行二次根式的乘法运算,然后合并即可;(2)利用加减消元法解二元一次方程组.【解答】解:(1)原式=3﹣6﹣3(2),①+②×5得:13y=13,解得y=1,把y=1代入②中得2x﹣1=1,解得x=1,所以原方程组的解是.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.【考点】作图-轴对称变换;全等三角形的性质;作图-平移变换.【分析】(1)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(2)首先确定A、B、C三点向下平移4个单位长度的对应点的位置,再连接即可;(3)首先确定D点位置,然后再写出坐标即可.【解答】解:(1)(2)如图所示:;(3)(﹣4,﹣1);(﹣2,﹣1);(﹣4,3).【点评】此题主要考查了作图﹣﹣平移变换,以及关于坐标轴对称,全等三角形的判定,关键是正确确定对称点和对应点的位置.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为50人,图①中的值是12.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(1)利用条形统计图得各组的频数,然后把它们相加即可得到抽样调查的学生的总数,再用16除以50即可得到m的值;(2)根据众数和中位数的定义求解;(3根据样本估计总体,用样本中捐款10元所占的百分比表示全校捐款10元的百分比,然后计算1900×32%即可.【解答】解:(1)本次接受随机抽样调查的学生人数为4+16+12+10+8=50(人),m%=×100%=32%;故答案为50;32;(2)本次调查获取的样本数据的众数是10元;中位数是15元;(3)1900×32%=608(人),答:估计该校捐款10元的学生人数有608人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体、中位数和众数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,根据等量关系为“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,根据这两个等量关系可列方程组,再进行求解即可.(2)求小王每月工资额的范围,需要求助于函数,由(1)知生产A、B的单个时间,又每月工作总时间一定为25×8×60,所以可列一个二元一次方程,又工资计算方法已知,则可利用一个未知量,去表示另一个未知量,得到函数,进行解答.【解答】解:(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,依题意得:,解得:,答:生产一件A种产品需要15分钟,生产一件B种产品需要20分钟.(2)设小王每月生产A、B两种产品的件数分别为m、n,月工资额为w,根据题意得:,即,因为m,n为非负整数,所以0≤m≤800,故当m=0时,w有最大值为1240,当m=800时,w有最小值为1000,则小王每月工资额最少1000元,每月工资额最多1240元.【点评】此题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.【考点】平行线的判定.【专题】证明题.【分析】先由∠AGD=90°,根据三角形内角和定理得出∠A+∠D=90°,再由∠1=∠D,∠ABF=∠1+∠D,得出∠ABF=2∠D,同理得出∠DCE=2∠A,那么∠DCE+∠ABF=2(∠A+∠D)=180°,根据邻补角定义得出∠ABF+∠DBF=180°,由同角的补角相等得到∠DCE=∠DBF,根据同位角相等,两直线平行得出FB∥EC.【解答】证明:∵∠AGD=90°,∴∠A+∠D=90°,∵∠1=∠D,∠ABF=∠1+∠D,∴∠ABF=2∠D,同理:∠DCE=2∠A,∴∠DCE+∠ABF=2(∠A+∠D)=180°,又∵∠ABF+∠DBF=180°,∴∠DCE=∠DBF,∴FB∥EC.【点评】本题考查了平行线的判定,三角形内角和定理,三角形外角的性质,邻补角定义,补角的性质,根据条件得出∠DCE=∠DBF是解题的关键.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距80千米,客车的速度是80千米/时;(2)小亮在丙地停留48分钟,公交车速度是40千米/时;(3)求两人何时相距28千米?【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】数形结合;分类讨论;函数思想;待定系数法;一次函数及其应用.【分析】(1)结合图象知,小明乘客车从丙地到乙地用时30分钟,行驶40千米可得客车速度,小明从甲到乙行驶1小时,可得甲乙间距离;(2)小亮在x=30到达丙地,x=78离开丙地,可得停留时间,根据小亮从丙地返回到甲地用时可得公交车速度;(3)两人相距28千米,即y=28,求出AB、DE函数解析式,令y=28可求得.【解答】解:(1)根据题意可知,当x=30时小明、小亮同时到达丙地,小亮停留在丙地;当x=60时y=40,即小明到达乙地,此时两人间的距离为40千米,∴小明乘客车从丙地到乙地用时30分钟,行驶40千米,∴客车的速度为:40÷0.5=80(千米/小时),∵小明乘客车从甲地到乙地用时60分钟,速度为80千米/小时,∴甲、乙两地相距80千米.(2)当x=78时小亮从丙地出发返回甲地,当x=138时小亮乘公交车从丙地出发返回到甲地,∴小亮在丙地停留78﹣30=48(分钟),公交车的速度为:40÷1=40(千米/小时).(3)①设AB关系式为:y1=k1x+b1由图象可得A(30,0)、B(60,40),代入得:则,解得,所以AB关系式为:(30≤x≤60),令y1=28,有,∴x=51.②设DE关系式为:y2=k2x+b2,∵(千米),∴D(90,48),由图象可得E(138,0),所以,解得:,所以DE关系式为:y2=﹣x+138 (90≤x≤138),令y2=28,有﹣x+138=28,∴x=110.所以两人在9:51和10:50相距28千米.故答案为:(1)80,80;(2)48,40.【点评】本题主要考查一次函数图象及待定系数法求一次函数解析式的能力,读懂函数图象各分段实际意义是关键,属中档题.25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD 的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)根据平行线的性质和角平分线的定义求得∠EHF=∠EFH,证得EF=EH,根据∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,得出∠EFG=∠EGF,根据等角对等边求得EG=EF,即可证得EH=EG,即E为HG的中点;(2)连接PH,根据垂直平分线的性质得出PG=PH,在Rt△PFH中,根据勾股定理得:PH2=PF2+HF2,即可得到GP2=PF2+HF2;(3)延长PE,使PE=EM,连接MH,MF,易证得△GPE≌△HME,从而得出GP=MH,∠1=∠2,进而证得EF垂直平分PM,根据垂直平分线的性质得出PF=MF,在RT△MHF中,MF2=MH2+FH2,即可得到PF2=GP2+FH2.【解答】(1)证明:∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∴EF=EH,∵∠GFH=90°,∴∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,∴∠EFG=∠EGF,∴EG=EF,∴EH=EG,∴E为HG的中点;(2)连接PH,如图②:∵EP⊥AB,又∵E是GH中点,∴PE垂直平分GH,∴PG=PH,在Rt△PFH中,∠PFH=90°,由勾股定理得:PH2=PF2+HF2,∴GP2=PF2+HF2;(3)如图③,延长PE,使PE=EM,连接MH,MF,在△GPE和△HME中,,∴△GPE≌△HME(SAS),∴GP=MH,∠1=∠2,∵GF⊥FH,∴∠1+∠3=90°,∴∠2+∠3=90°,∵EF⊥PM,PE=EM,∴PF=MF,在RT△MHF中,MF2=MH2+FH2,∴PF2=GP2+FH2.【点评】本题考查了全等三角形的判定和性质,线段的垂直平分线的性质,等腰三角形的判定和性质,勾股定理的应用等,找出辅助线,构建等腰三角形是解题的关键.。
湘教版数学八年级上册期末考试试卷及答案
湘教版数学八年级上册期末考试试题一、选择题(每小题3分,共30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+43.在,,,,中,分式的个数是()A.2B.3C.4D.54.下列各式中,能与合并的二次根式是()A.B.C.D.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC 6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是.12.式子有意义时a的取值范围是.13.比较大小:﹣﹣2.(填“>”或“<”号)14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是cm.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是cm.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.17.(5分)解不等式,并将解集在数轴上表示出来.18.(7分)解分式方程:=.19.(7分)计算:÷﹣×+.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.答案与解析一、选择题(每小题3分,满分30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.【分析】根据算术平方根的定义解答.【解答】解:∵()2=,∴的算术平方根为.故选:A.【点评】本题考查了算术平方根的定义,注意分数的平方要加括号.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+4【分析】根据不等式的性质逐一进行判断即可.【解答】解:A.因为a<b,所以﹣5a>﹣5b,故本选项不合题意;B.因为a<b,所以,故本选项不合题意;C.因为a<b,所以,故本选项不合题意;D.因为a<b,所以a+4<b+4,故本选项符合题意;故选:D.【点评】本题考查了不等式的性质,解决本题的关键是掌握不等式的性质.3.在,,,,中,分式的个数是()A.2B.3C.4D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,这三个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.4.下列各式中,能与合并的二次根式是()A.B.C.D.【分析】先将各选项二次根式化简,再利用同类二次根式的概念判断即可.【解答】解:A.=2与不是同类二次根式,此选项不符合题意;B.=2与不是同类二次根式,此选项不符合题意;C.=2与不是同类二次根式,此选项不符合题意;D.=3与是同类二次根式,此选项符合题意;故选:D.【点评】本题主要考查同类二次根式,解题的关键是掌握同类二次根式的定义:把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC【分析】根据等腰三角形“三线合一”的性质解答.【解答】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点评】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°【分析】利用三角形的外角性质可求出∠AFD的度数,再利用邻补角互补可求出∠DFB 的度数.【解答】解:∵∠CDF=∠A+∠AFD,∴∠AFD=∠CDF﹣∠A=45°﹣30°=15°.又∵∠DFB+∠AFD=180°,∴∠DFB=180°﹣∠AFD=180°﹣15°=165°.故选:C.【点评】本题考查了三角形的外角性质以及邻补角,利用三角形外角的性质,求出∠AFD 的度数是解题的关键.7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等【分析】对各个命题逐一判断后找到正确的即可确定真命题.【解答】解:A、如果ab=0,那么a=0或b=0,原命题是假命题;B、,不是最简分式,原命题是假命题;C、直角三角形的两个锐角互余,是真命题;D、不是对顶角的两个角也可能相等,原命题是假命题;故选:C.【点评】此题主要考查了命题与定理,熟练利用相关定理以及性质进而判定举出反例即可判定出命题正确性.8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.【分析】根据三角形中线的定义判断即可.【解答】解:根据作图可知,选项B中,点D是AB的中点,故线段CD是△ABC的中线,故选:B.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的中线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF【分析】根据全等三角形的判定方法进行判断即可.【解答】解:A、无法判定两个三角形全等;B、根据SSS能判定两个三角形全等;C、可用ASA判定两个三角形全等;D、可用SAS判定两个三角形全等.故选:A.【点评】本题考查全等三角形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4【分析】不等式组整理后,根据不等式组无解确定出a的范围即可.【解答】解:不等式组整理得:,由不等式组无解,得到a≥4.故选:D.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0,5是整数,属于有理数;是分数,属于有理数;无理数π.故答案为:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.式子有意义时a的取值范围是a≥4.【分析】利用二次根式有意义的条件可得a﹣4≥0,再解不等式即可.【解答】解:由题意得:a﹣4≥0,解得:a≥4,故答案为:a≥4.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.13.比较大小:﹣>﹣2.(填“>”或“<”号)【分析】先求出2=,再根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵2==>,∴﹣>﹣2,故答案为:>.【点评】本题考查了算术平方根和实数的大小比较,能熟记实数的大小比较法则是解此题的关键.14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是4(答案不唯一)cm.【分析】根据三角形三边关系,在三角形中任意两边之和大于第三边,任意两边之差小于第三边解答即可.【解答】解:根据三角形三边关系,∴三角形的第三边x满足:7﹣4<x<4+7,即3<x<11,∴x可以取4,5,6,7,8,9,10等无数个,故答案为:4(答案不唯一).【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是16cm.【分析】根据线段垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案.【解答】解:∵DE垂直平分AC,∴DA=DC,∵△ABD的周长为12cm,∴AB+BD+DA=AB+BD+DC=AB+BC=12(cm),∵AC=4cm,∴△ABC的周长=AB+BC+AC=16(cm),故答案为:16.【点评】本题考查的是线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.【分析】直接利用二次根式的性质、立方根的定义、负整数指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2﹣+1=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(5分)解不等式,并将解集在数轴上表示出来.【分析】两边同乘以6,去分母,去括号,移项,合并,系数化为1即可求解.【解答】解:2(x+4)﹣3(3x﹣1)>62x+8﹣9x+3>6﹣7x+11>6﹣7x>﹣5.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.18.(7分)解分式方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(x+2)=7x,去括号得:3x+6=7x,解得:x=,检验:当x=时,x(x+2)≠0,∴分式方程的解为x=.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)计算:÷﹣×+.【分析】先计算乘法和除法,再合并即可得.【解答】解:原式=﹣+2=4+【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和运算法则.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式===,∵a=0,a=2时,原式没有意义,∴当a=3时,原式==1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.【分析】根据全等三角形的判定和性质定理即可得到结论.【解答】解:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS);∴AB=CD.【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?【分析】(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,根据数量=总价÷单价,结合用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,根据总价=单价×数量,结合总价不超过7200元,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,依题意得:=,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴x+1.5=4.答:A型口罩的单价是4元,B型口罩的单价是2.5元.(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,依题意得:4y+2.5×2y≤7200,解得:y≤800.答:增加购买A型口罩的数量最多是800个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)∠A=60°时,△DEF是等边三角形,首先根据△DBE≌△ECF,再证明∠DEF=60°,可以证出结论.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF 中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)当∠A=60°时,△DEF是等边三角形,理由:∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B要△DEF是等边三角形,只要∠DEF=60°.所以,当∠A=60°时,∠B=∠DEF=60°,则△DEF是等边三角形.【点评】此题主要考查了等腰三角形的判定,等边三角形的判定,关键是证明△DBE≌△ECF.11。
人教版八年级上册数学期末考试试卷及答案
人教版八年级上册数学期末考试试题一、单选题1.下列计算正确的是()A .a 2•a 3=a 6B .2ab+3ab =5a 2b 2C .a 8÷a 4=a 2D .(a 3)2=a 62.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A .140°B .160°C .170°D .150°4.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .45.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +-=+-6.202020214(0.25)-⨯的值为()A .4B .4-C .0.25D .0.25-7.若2x y +=,1xy =-,则()()1212x y --的值是()A .7-B .3-C .1D .98.如图,在△ABC 中,BC=10,CD 是∠ACB 的平分线.若P ,Q 分别是CD 和AC 上的动点,且△ABC 的面积为24,则PA+PQ 的最小值是()A .125B .4C .245D .59.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为()A .1B .-5C .-6D .-710.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:①AS=AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS ,其中正确结论的序号是()A .①②B .①②③C .①②④D .①②③④二、填空题11.因式分解:225x y y -=______.12.am =6,an =3,则am﹣2n =__.13.如图,△ABC ≌△DBC ,∠A =45°,∠DCB =43°,则∠ABC =______.14.如图,ABC 的三边AB BC CA 、、的长分别为405060、、,其三条角平分线交于点O ,则::ABOBCO CAOS S S =______.15.一位工人师傅加工1500个零件后,把工作效率提高到原来的2.5倍,因此再加工1500个零件时,较前提早了18个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工x 个零件,则根据题意可列方程为________.16.若x 4y 1+=,则xy 的最大值为_____.17.如图,已知△ABC 的面积为1,分别倍长(延长一倍)边AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长边A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2…按此规律,倍长2021次后得到的△A 2021B 2021C 2021的面积为_________.18.如图,△ABC ≌△ADE ,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC 的度数为______.19.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题20.解分式方程:21133x x+=--21.化简求值:2(2)(1)(1)a a a +-+-,其中3=2a 22.先化简,再求值:22241---÷+a a a a a请从-2,-1,0,1,2中选择一个合适的数,求此分式的值.23.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a 天完成,乙做另一部分用了y 天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?26.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD ≌△ACE ;②直接判断结论BC=DC+CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.28.如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.易得:AD=BD.(1)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD;(2)如图3,在四边形ABDE中,AB=10,DE=2,BD=6,C为BD边中点.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.参考答案1.D【分析】利用合并同类项的法则,幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故该选项不符合题意;B、2ab+3ab=5ab,故该选项不符合题意;C、a8÷a4=a4,故该选项不符合题意;D、(a3)2=a6,故该选项符合题意;故选:D.【点睛】本题主要考查了合并同类项,幂的乘方,同底数幂的乘法,同底数幂的除法,解答的关键对相应的运算法则的掌握.2.A【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A.3.B【详解】解:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.故选B.4.C【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=12S△ABC=6,同理得到S△EBD=S△EDC=12S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=12S△BEC=3.【详解】解:∵点D为BC的中点,∴S△ABD=S△ADC=12S△ABC=6,∵点E为AD的中点,∴S△EBD =S△EDC=12S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF =12S△BEC=3,即阴影部分的面积为3cm2.故选:C.【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.5.A【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.6.D【分析】直接利用积的乘方把式子变形计算即可.【详解】202020214(0.25)-⨯=202020204(0.25)(0.25)⨯⨯--=20202020[4(0.25)2)](0.5--⨯⨯=2020[4(0.25)(0.25)]⨯⨯--=2020(1)(0.25)⨯--=1(0.25)-⨯=0.25-故选:D 7.A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.C【分析】过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,当A 、P 、G 三点共线时,AP+PQ 的值最小,求出AG 的长即为所求.【详解】解:过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,∵CD 是∠ACB 的平分线,∴PG=PQ ,∴PA+PQ=AP+PG≥AG ,∴当A 、P 、G 三点共线时,AP+PQ 的值最小,∵BC=10,△ABC 的面积为24,∴AG=245,∴AP+PQ 的最小值为245,故选:C .9.A【详解】解:∵22227,-21,617a b b c c a +==--=-,∴(a 2+2b )+(b 2-2c )+(c 2-6a )=7+(-1)+(-17),∴a 2+2b+b 2-2c+c 2-6a=-11∴(a 2-6a+9)+(b 2+2b+1)+(c 2-2c+1)=0,∴(a-3)2+(b+1)2+(c-1)2=0∴a-3=0,b+1=0,c-1=0,∴a+b-c=3-1-1=1.故选:A .10.C【分析】连接AP ,RS ,证明Rt APR ≌Rt APS ,即可判断①,根据等边对等角可得QAP QPA ∠=∠,根据角平分线的性质可得BAP CAP ∠=∠,等量代换可得QPA BAP ∠=∠,进而即可判定QP ∥AR ,即可判断②,假设③成立,可得到BC AC =,与已知矛盾,进而可判断③,根据垂直平分线的判定定理即可判断④.【详解】连接AP ,RS ,如图,PR ⊥AB ,PS ⊥AC ,PR=PS ,AP ∴是BAC ∠的角平分线,BAP CAP∴∠=∠在Rt APR 与Rt APSPS PR PA PA=⎧⎨=⎩∴Rt APR ≌Rt APSAS AR∴=故①正确;AQ PQ= QAP QPA ∴∠=∠QPA BAP ∴∠=∠AR QP∴∥故②正确;假设△BRP ≌△QSP ;则SQ RB =,PBR PQS∠=∠ AR QP∥PQS BAC∠∠∴=BC AC∴=而题中没有说明BC AC =,故③不正确;,AR AS PR PS== ∴AP 是RS 是垂直平分线,故④正确故正确的有①②④故选C11.()()55y x x -+【详解】先提取公因式y ,再利用平方差公式,可得()()22555x y y y x x -=-+.故答案是()()55y x x -+.12.23【分析】直接利用同底数幂的除法运算法则结合幂的乘方运算法则进而将原式变形得出答案.【详解】∵am =6,an =3,∴am﹣2n=am÷(an)2=6÷32=23.故答案为:2 3.13.92°【分析】根据全等三角形的性质和三角形的内角和定理即可得到结论.【详解】解:∵△ABC≌△DBC,∴∠ACB=∠DCB=43°,∵∠A=45°,∴∠ABC=180°﹣∠A﹣∠ACB=92°,故答案为:92°.14.4:5:6【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC 的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO :S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.15.1500x−18=15002.5x【分析】关键描述语为:“较前提早了18个小时完工”;本题的等量关系为:原来加工1500个零件所用时间-18=现在加工1500个零件所用时间,把相应数值代入即可求解.【详解】解:原来加工1500个零件所用时间为:1500x,现在加工1500个零件所用时间为:15002.5x ,∴根据题意可列方程为1500x −18=15002.5x 故答案为:1500x −18=15002.5x .16.116【分析】利用完全平方公式列出关于xy 的不等式.求不等式的解,根据不等式的解,即可求得xy 的最大值.【详解】解:22(4)(4)160x y x y xy -=+-≥.41x y += ,1160xy ∴-≥,116xy ∴≤.故答案为:116.17.20217【分析】根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此规律可得结论.【详解】解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,1117A B C ABC S S = ,同理222111277A B C A B C ABC S S S == ,依此类推,△A 2021B 2021C 2021的面积为=72021S △ABC ,∵△ABC 的面积为1,∴△A 2021B 2021C 2021的面积=72021.故答案为:72021.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.18.60°【分析】根据三角形内角和定理求出∠BAC ,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.19.7【分析】由AB 的垂直平分线交AB 于E ,交BC 于D ,根据线段垂直平分线的性质,可得AD=BD ,又由△ADC 的周长为11cm ,即可求得AC +BC=11cm ,然后由AC=4cm ,即可求得BC 的长.【详解】解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD=BD ,∵△ADC 的周长为11cm ,∴AC +CD +AD=AC +CD +BD=AC +BC=11cm ,∵AC=4cm ,∴BC=7cm .故答案为:7.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.45a +,11【分析】先利用完全平方公式和平方差公式进行化简,再代值运算即可.【详解】解:2(2)(1)(1)a a a +-+-22441a a a =++-+45a =+把3=2a 代入得:345112⨯+=【点睛】本题主要考查了整式的化简求值,熟悉掌握完全平方公式和平方差公式是解题的关键.22.12a +,13【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a 的值代入计算可得.【详解】解:22241---÷+a a a a a2(1)1(2)(2)a a a a a a -+=-⨯+-112a a +=-+12a =+,∵a≠0且a≠±2,a≠-1,∴a=1,则原式=11123=+.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)证明见解析;(2)3.【分析】(1)利用ASA ,可证△ABD ≌△CFD ;(2)由△ABD ≌△CFD ,得BD=DF ,所以BD=BC ﹣CD=2,所以AF=AD ﹣DF=5﹣2.【详解】(1)证明:∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠ECD ,在△ABD 和CFD 中,ADB CDF BAD DCF AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CFD (AAS ),(2)∵△ABD ≌△CFD ,∴BD=DF ,∵BC=7,AD=DC=5,∴BD=BC ﹣CD=2,∴AF=AD ﹣DF=5﹣2=3.24.(1)(1+2x-3y )2;(2)(a+b-2)2.【分析】(1)将(2x-3y )看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b ,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y )2.(2)令A=a+b ,则原式变为A (A-4)+4=A 2-4A+4=(A-2)2,故:(a+b )(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y )2;(2)(a+b-2)2.25.(1)乙工程队单独做需要80天完成(2)甲工程队至少应做42天.【分析】(1)设乙工程队单独完成这项工作需要x 天,由题意列出分式方程,求出x 的值即可;(2)首先根据题意列出a 和y 的关系式,进而求出a 的取值范围,结合a 和y 都是正整数,即可求出a 的值.【详解】(1)设乙工程队单独完成这项工作需要x 天,由题意得:3011361120120x ⎛⎫++⨯= ⎪⎝⎭解得:x=80,经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.(2)因为甲工程队做其中一部分用了a 天,乙工程队做另一部分用了y 天,依题意得:112080a y +=,∴2803y a =-.∵52y ≤,∴280523a -≤,解得:42a ≥.答:甲工程队至少应做42天.26.∠B =77°,∠C =38.5︒【分析】根据等腰三角形的性质及三角形内角和定理可求出∠B 和∠ADB 的度数,利用三角形外角性质即可求出∠C 的度数.【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.27.(1)①见解析;②成立;(2)BC+CD=CE【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ;②由△ABD ≌△ACE 就可以得出BC=DC+CE ;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,就可以得出BC+CD=CE .【详解】解:(1)①证明:∵△ABC 是等边三角形∴AB=AC ∠BAC=60°∵△ADE 是等边三角形∴AD=AE ∠DAE=60°∴∠BAC -∠DAC=∠DAE -∠DAC ∴∠BAD=∠CAE ∴△ABD ≌△ACE②成立∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC是等边三角形∴AB=AC∠BAC=60°∵△ADE是等边三角形∴AD=AE∠DAE=60°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE∵BC=BD-CD∴BC=CE-CD.28.(1)见解析;(2)15.【分析】(1)证△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证△CGE≌△CDE (SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再证△CFG是等边三角形,得FG=CG=3,即可求解.【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:∵C是BD边的中点,BD=6,∴CB=CD=12BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证:△CGE≌△CDE(SAS),∴CG=CD=3,GE=DE=2,∠DCE=∠GCE,∵CB=CD,∴CG=CF,∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=180°-60°-60°=60°,∴△FGC是等边三角形,∴FG=FC=3,∴AE=AF+GE+FG=10+2+3=15.。
人教版八年级上册数学期末考试试卷及答案
人教版八年级上册数学期末考试试题一、单选题1.当分式22x -有意义时,x 的取值范围是()A .2x >B .2x <C .2x ≠D .2x =2.在211133122x xy a x x y m π+++,,,,,中,分式的个数是()A .2B .3C .4D .53.下列图形中,不是..轴对称图形的是()A .B .C .D .4.已知三角形的三边长分别为2、x 、10,若x 为正整数,则这样的三角形个数为()A .1B .2C .3D .45.下列计算正确的是()A .2323a a a +=B .326a a a ⋅=C .()236a a =D .()2224a a -=-6.下列各式由左边到右边的变形中,是分解因式的为()A .()a x y ax ay+=+B .()24444x x x x -+=-+C .()2105521x x x x -=-D .()()2163443x x x x x -+=-++7.如果把分式xy x y +中的x 和y 都扩大2倍,则分式的值()A .扩大4倍B .扩大2倍C .不变D .缩小2倍8.若关于x 的方程2222x m x x ++=--有增根,则m 的取值是()A .0B .2C .-2D .19.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中αβ∠+∠的度数是A .180°B .220°C .240°D .260°10.张老师和李老师同时从学校出发,步行15千米去书店购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,根据题意,所列的方程是()A .1515112x x -=+B .1515112x x -=+C .1515112x x -=-D .1515112x x -=-二、填空题11.分解因式:x 2-9=______.12.将0.000000823用科学记数法表示为___________13.四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.14.比较大小:4442333315.如图,Rt △ABC 中,∠BCA=90°,∠A=30°,BC=2cm ,DE 是AC 边的垂直平分线,连接CD ,则△BCD 的周长是__________________.16.已知12a b =,则分式252a b a b+-的值为______.17.对于实数a ,b ,c ,d ,规定一种运算a b c d =ad-bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x=_____.18.如图,在ABC 中,AB AC =,40A ∠=︒,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,则∠D 的度数为______.三、解答题19.计算:(1)()201201742π-⎛⎫-+--- ⎪⎝⎭;(2)()()2323x y x y +--+.20.分解因式:(1)316m m -;(2)()228a b ab -+.21.解分式方程:(1)233x x =-;(2)28124x x x -=--.22.先化简,再求值:21211x x x x x x x --⎛⎫-÷ ⎪-+⎝⎭,其中3x =.23.如图:△ABC 和△ADE 是等边三角形,证明:BD=CE .24.在争创文明城市的活动中,某市一“少年突击队”决定清运一堆重达100吨的垃圾,开工后附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,“少年突击队”原计划每小时清运垃圾多少吨?25.已知,如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE .求证:(1)△ABC ≌△DEF ;(2)GF =GC .26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯.解答下面的问题:(1)猜想并写()11n n =+.(2)求111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯的值.(3)探究并解方程:()()()()()211133366918x x x x x x x ++=++++++.27.已知:如图,点E ,A ,C 在同一条直线上,AB ∥CD ,AB=CE ,AC=CD .求证:BC=ED .28.如图,在ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,交AB 于点E ,连接EG 、EF .(1)求证:BG CF =.(2)请你判断:BE CF +与EF 的大小关系,并加以证明.参考答案1.C2.B3.C4.C5.C6.C7.B8.A9.C10.B11.(x +3)(x -3)12.8.23×10-713.144°14.<15.6cm.16.417.2218.20°【分析】根据角平分线的性质得到1,122DBC ABC DCE ACE ∠=∠∠=∠,再利用三角形外角的性质计算.【详解】解:∵ABC ∠与ACE ∠的平分线相交于点D ,∴1,122DBC ABC DCE ACE ∠=∠∠=∠,∵∠ACE=∠A+∠ABC ,∠DCE=∠D+∠DBC ,∴∠D=∠DCE-∠DBC=11()2022ACE ABC A ∠-∠=∠=︒,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.19.(1)1;(2)224129x y y -+-【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.【详解】解:(1)()201201742π-⎛⎫-+--- ⎪⎝⎭,=414+-,=1;(2)()()2323x y x y +--+,=()()2323x y x y +---⎡⎤⎡⎤⎣⎦⎣⎦,=()2223x y --,=()224129x y y --+,=224129x y y -+-.20.(1)()()44m m m +-;(2)()22a b +【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可.【详解】解:(1)原式=()()()21644m m m m m -=+-;(2)原式=()22222448442a ab b ab a ab b a b -++=++=+.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.21.(1)9x =;(2)无解【分析】先将分式方程化为整式方程,解出整式方程,再将所求的解代入最简公分母中检验,即可求解.【详解】解:(1)233x x =-方程两边同时乘以()3x x -,得:()233x x =-,解得:9x =,检验:当9x =时,()()39930x x -=⨯-≠,所以原方程的解为9x =;(2)28124x x x -=--方程两边同时乘以()24x -,得:()()2248x x x +--=,解得:2x =,检验:当2x =时,224240x -=-=,所以2x =是增根,原方程无解.【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的一般步骤,并记住要检验是解题的关键.22.11x x +-,2【分析】根据分式的运算法则进行化简,再代入求值即可.解:原式()()()()()()()2221121212121111111211x x x x x x x x x x x x x x x x x x x x x x x ⎡⎤-+----+=-÷=÷=⨯=⎢⎥--+-+---⎢⎥⎣⎦.当x=3时,原式1312131x x ++===--.【点睛】本题考查分式化简求值,熟练掌握该知识点是解题关键.23.见解析【分析】根据等边三角形的性质可得到两组边对应相等,一组角相等,从而利用SAS 判定两三角形全等,根据全等三角形的对应边相等即可得到BD=CE .【详解】证明:∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°.∴∠BAD=∠CAE .在△BAD 与△CAE 中,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE (SAS ).∴BD=CE【点睛】此题考查了等边三角形的性质及全等三角形的判定与性质;证明线段相等常常通过三角形全等进行解决,全等的证明是正确解答本题的关键.24.12.5吨【分析】设原计划每小时清运x 吨,根据“使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,”列出方程,即可求解.【详解】解:设原计划每小时清运x 吨,根据题意得:10010042x x-=,解得:12.5x=,经检验,12.5x=是原方程的解,且符合题意,答:“少年突击队”原计划每小时清运垃圾12.5吨.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.25.(1)证明见解析,(2)证明见解析.【分析】(1)先根据BF=CE证明BC=EF,然后利用“边角边”即可证明△ABC和△DEF 全等;(2)根据全等三角形对应角相等可得∠ACB=∠DFE,再根据等角对等边证明即可.【详解】证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°,在△ABC和△DEF中,∵AB DEB E BC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF∴∠ACB=∠DFE∴GF=GC.【点睛】本题考查了全等三角形的判定与性质和等腰三角形的判定,比较简单,证明出BC =EF是解题的关键.26.(1)111n n⎛⎫-⎪+⎝⎭;(2)20202021;(3)2x=【分析】(1)根据材料可直接得出答案;(2)根据(1)的规律,将算式写出差的形式,计算即可;(3)先按照(1)的结论进行化简,再解分式方程,即可得到答案.【详解】解:(1)根据题意,可知:()111n n 1n n 1=-++;故答案为:111n n ⎛⎫- ⎪+⎝⎭;(2)由(1)可知,111112233420202021+++⋅⋅⋅⋅⋅⋅+⨯⨯⨯⨯=1111111(1()()(2233420202021-+-+-+⋅⋅⋅⋅⋅⋅+-=111111112233420202021-+-+-+⋅⋅⋅⋅⋅⋅+-=112021-=20202021;(3)由(1)可知,()()()()()211133366918x x x x x x x ++=++++++,∴211111113()33366918x x x x x x x -+-+-=++++++,∴21113()3918x x x -=++,∴2119918x x x -=++,∴299(9)18x x x =++,∴22918x x x +=+,∴2x =;经检验,2x =是原分式方程的解.∴2x =.【点睛】本题考查了解分式方程以及有理数的混合运算,掌握分式方程的解法是解题的关键.27.见解析【分析】首先由AB ∥CD ,根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED .【详解】证明:∵AB ∥CD ,∴∠BAC=∠ECD ,∵在△BAC 和△ECD 中,AB=EC ,∠BAC=∠ECD ,AC=CD ,∴△BAC ≌△ECD (SAS ).∴CB=ED .【点睛】本题考查了平行线的性质,全等三角形的判定和性质.28.(1)见解析;(2)BE CF EF +>,见解析【分析】(1)证BDG CDF ≌可得BG CF =;(2)根据全等得到DG DF =,再根据三角形三边关系即可得到结果.【详解】(1)∵BG ∥AC ,∴C GBD ∠=∠,∵D 是BC 的中点,∴BD=DC ,在△BDG 和△CDF 中,C GBDBD CD BDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴BDG CDF ≌,∴BG CF =;(2)BE CF EF +>,由BDG CDF ≌得DG DF =,∵ED GF ⊥,∴EG EF =,∵CF BG =,∴+>BG BE EG ,∴BE CF EF +>.。
四川省成都市武侯区2023-2024学年八年级上学期期末数学试题(解析版)
2023-2024学年四川省成都市武侯区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分)1. 若正比例函数的图象经过点,则k 的值为( )A. B. C. 2 D. 3【答案】A【解析】【分析】本题主要考查了正比例函数图象上的点,将点的坐标代入函数关系式,即可求出答案.【详解】因为正比例函数的图象经过点,所以,解得.故选:A .2. 下列四个数中,最小的数是( )A. ﹣πB. ﹣2C.D. 【答案】D【解析】【分析】本题主要考查了实数的大小比较,先确定各数的值,再比较得出答案.,,可知,所以故选:D .3. 在某校八年级举办的数学“讲题比赛”中,有9名选手进入决赛,他们的成绩各不相同,其中一名选手想知道自己能否进入前5名,除了知道自己的成绩外,他还需要了解这9名选手成绩的( )A. 平均数B. 中位数C. 方差D. 极差【答案】B【解析】【分析】本题考查了统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟知这些概念的解题的关键.9名选手的中位数是第5名的成绩,想要知道自己的成绩是否能进入前5名,只需知道自己的成绩和全部成绩的中位数即可解答.【详解】解:由于总共有9个人,且他们的决赛成绩各不相同,第5名的成绩是中位数,要判断是否进入y kx =(3,2)2332y kx =(3,2)32k =23k =3=-4=-234π-<-<-<-前5名,故应知道9名学生成绩的中位数.故选:B .4. 在平面直角坐标系中,画出一次函数的图象,其中正确的是( )A. B.C. D.【答案】C【解析】【分析】本题主要考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质,一次函数,当直线经过一、三象限,当直线经过二、四象限,当直线与y 轴正半轴有交点,直线与y 轴负半轴有交点.根据一次函数的性质进行判断即可.【详解】解:∵中,,∴函数图象经过一、三、四象限,且与x 轴的交点坐标为,与y 轴的交点为.故选:C .5. 若点P 在第二象限内,且到x 轴的距离为6,到y 轴的距离为2,那么点P 的坐标是( )A. B. C. D. 【答案】B【解析】【分析】此题考查了坐标系中点坐标特点,点到对坐标轴的距离,正确掌握点到x 轴的距离是点纵坐标的绝对值,到y 轴的距离是点横坐标的绝对值是解题的关键.【详解】∵点P 在第二象限内,∴点P 的横坐标为负数,纵坐标为正数,∵点P 到x 轴的距离为6,到y 轴的距离为2,xOy 1y x =-()0y kx b k =+≠0k >0k <0b >0b <1y x =-10k =>10b =-<()1,0()0,1-()2,6()2,6-()6,2--()6,2-∴点P 纵坐标为6,横坐标为,∴点P 的坐标是,故选:B .6. 下列说法是真命题的是( )A. 若,则点一定在第一象限内B. 作线段C. 三角形的一个外角等于和它不相邻的两个内角的和D. 立方根等于本身的数是0和1【答案】C【解析】【分析】此题考查真命题:正确的命题是真命题,正确掌握象限内坐标特点,命题的定义,三角形外角性质,立方根的性质是解题的关键,据此依次判断即可.【详解】A.若,则或,故点在第一象限或第三象限,故不符合题意;B.作线段是作图,没有做出判断,不是命题,故不符合题意;C.三角形的一个外角等于和它不相邻的两个内角的和,正确,是真命题,故符合题意;D.立方根等于本身的数是0和,不是真命题,故不符合题意;故选:C .7. 如图,在数轴上,点O 是原点,点A 表示的数是2,在数轴上方以为边作长方形,以点C 为圆心,的长为半径画弧,在原点右侧交该数轴于点P ,则点P 表示的数是( )A. 1B. C. D. 【答案】D【解析】【分析】此题考查勾股定理,根据长方形的性质得到,由此,利用勾股定理求出长度即可.【详解】连接,2-()2,6-0mn >(),H m n AB CD=0mn >0,0m n >>0,0m n <<(),H m n AB CD =1±OA 1OABC AB =,CB 321,2OC AB BC OA ====2CP =OP CP∵长方形,,∴,∴,∴,∴点P故选:D .8. 我国明代《算法统宗》书中有这样一题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托(一托按照5尺计算).”大意是:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺?设竿长x 尺,绳索长y 尺,根据题意可列方程组为( )A. B. C. D. 【答案】A【解析】【分析】设竿长x 尺,绳索长y 尺,根据第一次用绳索去量竿,绳索比竿长5尺,第二次将绳索对折去量竿,就比竿短5尺,则可得方程组.【详解】解:由题意可得:,故选:A .【点睛】本题考查了二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意前后两次绳和杆的数量关系.二、填空题(本大题共5个小题,每小题4分,共20分)9. 比较大小:.(选填“>”、“=”、“<”)【答案】>【解析】OABC 1,2AB OA ==1,2OC AB BC OA ====2CP =OP ===552x y y x +=⎧⎪⎨-=⎪⎩525x y x y +=⎧⎨-=⎩552x y y x =+⎧⎪⎨-=⎪⎩552x y x y+=⎧⎨-=⎩552x y y x +=⎧⎪⎨-=⎪⎩【分析】将两数分别平方进行比较即可【详解】解:,,∵12>11,∴.故答案为:>.【点睛】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.两个正无理数比较,被开方数大的比被开方数小的大;一个有理数与一个开方开不尽的数比较,常通过比较它们的平方(或立方)的大小来比较或都化成带根号的数比较被开方数的大小.10. 点关于原点的对称点的坐标是 _____.【答案】【解析】【分析】此题考查关于原点对称的点的坐标特征:横纵坐标都互为相反数,熟记此特点是解题的关键.【详解】点关于原点的对称点的坐标是,故答案为:11. 如图,已知,,则的度数为 _____.【答案】【解析】【分析】由,可得,再由两直线平行,同旁内角互补,即可求出的度数,本题考查了平行线的性质和判定,解题的关键是:熟练掌握相关定理.【详解】,(内错角相等,两直线平行),(两直线平行,同旁内角互补),,,故答案为:.(212=211=()53A -,()53-,()5,3A -()53-,()53-,12∠=∠72A ∠=︒ADC ∠108︒12∠=∠AB CD ∥ADC ∠12∠=∠ AB CD ∴∥180A ADC ∴∠+∠=︒72A ∠=︒ 180********ADC A ∴∠=︒-∠=︒-︒=︒108︒12. 若直线与的交点的坐标为,则方程的解为 _____.【答案】【解析】【分析】本题考查的知识点是一次函数与一元一次方程,一次函数的图象和性质,解题的关键是熟练的掌握一次函数与一元一次方程,一次函数的图象和性质,由交点坐标就是该方程的解可得答案.【详解】关于x 的方程的解,即直线与的交点横坐标,所以方程的解为,故答案为.13. 如图,一架秋千静止时,踏板离地的垂直高度DE =0.5m ,将它往前推送1.5m (水平距离BC =1.5m )时,秋千的踏板离地的垂直高度BF =1m ,秋千的绳索始终拉直,则绳索AD 的长是 _____m .【答案】2.5【解析】【分析】设绳索AD 的长为x m ,则AB =AD =x m ,AC =AD -CD =(x -0.5)m ,再由勾股定理得出方程,解方程即可.【详解】解:∵BF ⊥EF ,AE ⊥EF ,BC ⊥AE ,由平行线间距离处处相等可得:CE =BF =1m ,∴CD =CE -DE =1-0.5=0.5(m ),而设绳索AD 的长为x m , 则AB =AD =x m ,AC =AD -CD =(x -0.5)m ,在Rt △ABC 中,由勾股定理得:AC 2+BC 2=AB 2,即(x -0.5)2+1.52=x 2, 解得:x =2.5(m ),即绳索AD 的长是2.5m ,故答案为:2.5.5y ax =+2y x b =+()2,352ax x b +=+2x =52ax x b +=+5y ax =+2y x b =+2x =2x =90,CEF EFB FBC BCE ACB ∴∠=∠=∠=∠=∠=︒,,BC EF CE BF ∴ 1.5,BC =【点睛】本题主要考查了勾股定理的应用,正确理解题意,由勾股定理得出方程是解题的关键.三、解答题(本大题共5个小题,共48分)14. (1)计算:(2)解方程组:.【答案】(1)10;(2)【解析】【分析】本题主要考查了二次根式混合运算,解二元一次方程组,解题的关键是熟练掌握运算法则,准确计算.(1)根据二次根式混合运算法则进行计算即可;(2)用加减消元法解二元一次方程组即可.【详解】解:(1);(2)把①代入②得:,整理得:,得:,解得:,得:,解得:,6723x yx y x y-=⎧⎪⎨+-+=⎪⎩①②82xy=⎧⎨=⎩==122=-10=6723x yx y x y-=⎧⎪⎨+-+=⎪⎩①②272x y++=10x y+=③①+③216x=8x=③-①24y=2y=∴方程组的解为:.15. 如图,在平面直角坐标系中,已知点P 的坐标为,点P 关于y 轴的对称点为,现将先向右平移1个单位长度,再向下平移3个单位长度,得到点.(1)请在图中画出点,,连接,,,则点的坐标为 ,点的坐标为 ;(2)试判断的形状,并说明理由.【答案】(1)图见解析;;(2)是等腰直角三角形;理由见解析【解析】【分析】本题主要考查了轴对称作图,平移作图,勾股定理及其逆定理,解题的关键是数形结合,熟练掌握平移和轴对称的性质.(1)根据轴对称的性质和平移特点作出点,,然后再连接,,,写出点,的坐标即可;(2)根据勾股定理和逆定理进行解答即可.【小问1详解】解:如图,点,即为所求作的点,,.82x y =⎧⎨=⎩xOy ()12-,1P 1P 2P 1P 2P 12PP 1OP2OP 1P 2P 12POP △()1,2()2,1-12POP △1P 2P 12PP 1OP2OP 1P 2P 1P 2P ()11,2P ()22,1P -故答案为:;.【小问2详解】解:是等腰直角三角形,理由如下:∵,,又∵,∴是等腰直角三角形.16. 在杭州第十九届亚运会射击比赛中,中国射击队以16金9银4铜排在射击金牌榜和奖牌榜首位,并刷新三项世界纪录.某射击队要从甲、乙两名射击运动员中挑选一人参加一项比赛,在最近的10次射击选拔赛中,他们的成绩(单位:环)如下.甲运动员10次射击成绩如图:乙运动员10次射击成绩如表:成绩/环678910出现次数12223分析上述数据,得到下表:平均数众数方差甲运动员10次射击成绩a ()1,2()2,1-12POP△12OP OP ===12PP ==2221212OP OP PP +=12POP △8.40.84乙运动员10次射击成绩b c 根据以上信息,回答下列问题:(1)填空: , , ;(2)若从甲、乙两名运动员中选取一名参加比赛,你认为选择谁更合适?请说明理由.【答案】(1)9;;10(2)选择甲更合适;理由见解析【解析】【分析】本题主要考查了平均数、众数的定义,解题的关键是熟练掌握定义.(1)根据平均数、众数的定义进行求解即可;(2)根据平均数、众数和方差进行解答即可.【小问1详解】解:平均数为:,甲运动员10次射击成绩出现次数最多的是9环,乙运动员10次射击成绩出现次数最多的是10环,∴甲运动员的射击成绩的众数是,乙运动员的射击成绩的众数是.故答案为:9;;10.【小问2详解】解:从甲、乙两名运动员中选取一名参加比赛,选择甲更合适;因为甲、乙运动员射击成绩的平均数相同,但甲成绩的方差比乙成绩的方差较小,甲的成绩比较稳定,所以选择甲更合适.17. 如图,直线l :交x 轴于点,将直线l 向下平移4个单位长度,得到的直线分别交x 轴,y 轴于点B ,C .(1)求a 的值及B ,C 两点的坐标;(2)点M 为线段上一点,连接并延长,交直线l 于点N ,若是等腰三角形,求点M 的坐标. 1.84=a b =c =8.467282921038.410b +⨯+⨯+⨯+⨯==9a =10c =8.43y ax =+()6,0A AB CM AMN【答案】(1), (2)点M 的坐标为或或【解析】【分析】(1)将点代入,求出a 的值得到直线l 的解析式,及平移后的直线解析式,再求出与坐标轴交点即可;(2)分三种情况讨论:若时,时,时,分别求出点M 的坐标.【小问1详解】将点代入,得,∴,∴直线l 的解析式为,将直线l 向下平移4个单位长度,得到的直线为,当时,;当时,,∴;【小问2详解】当时,则,∵∴,∴,∴,∵,∴,12a =-()()2,0,0,1B C --()2,0)2,03,04⎛⎫- ⎪⎝⎭()6,0A 3y ax =+MN AN =AM AN =AM MN =()6,0A 3y ax =+630a +=12a =-132y x =-+1134122y x x =-+-=--0x =1y =-0y =2x =-()()2,0,0,1B C --MN AN =AMN MAN ∠=∠AN BC∥MAN MBC ∠=∠MBC BM С∠=∠BC СМ=CO BM ⊥2ОМОВ==∴;当时,则,∵,∴,∵,∴,∴,∵,∴∴,∴;当时,则,∵,∴,,∴,∴,∴,即,∴,∴综上,点M 的坐标为或或.【点睛】本题考查了待定系数法求一次函数的解析式,直线与坐标轴的交点,等腰三角形的性质,平行线()2,0M AM AN =AMN ANM ∠=∠AN BC ∥ANM ВCM ∠=∠AMN BMC ∠=∠ВCM BM С∠=∠BC BM =()()2,0,0,1B C --BC ==2OM =-)2,0M -AM MN =MAN ANM ∠=∠AN BC ∥MAN МВС∠=∠MC ВMNA ∠=∠MBC MC В∠=∠CM BM =222CM OM OC =+()22221OM OM -=+34OM =3,04M ⎛⎫- ⎪⎝⎭()2,0)2,03,04⎛⎫- ⎪⎝⎭的性质,勾股定理的应用等,分类讨论是解题的关键.18. 在四边形中,,,点E 是边上一点,连接,将沿直线翻折得到,射线交边于点G .(1)如图1,求证:;(2)当时.(i )如图2,若四边形面积为24,且当点G 与D 重合时,,求的长;(ⅱ)在边上取一点H ,连接,使得,若的面积是的面积的2倍,求的长.【答案】(1)见解析(2)(i );(ⅱ)【解析】【分析】(1)根据折叠得出,根据平行线性质得出,证明,根据等腰三角形的判定得出;(2)(i )根据四边形的面积为24得出,求出,设,则,,根据勾股定理得出,即,求出即可得出答案.(ⅱ)证明,得出,根据面积是的面积的2倍,,,得出,设,则,分两种情况:当点H 在点E 的左侧时,当点H 在点E 的右侧时,画出图形,求出结果即可.【小问1详解】证明:根据折叠可知,,∵,∴,∴,的的的ABCD AD BC ∥90B Ð=°BC AE ABE AE AFE △EF AD AG EG =4AB =ABCD BC FG =AD BC AH AH AG =AFG AEH △BE 203AD =BE =AEG AEB ∠=∠GAE AEB ∠=∠GAE AEG ∠=∠AG EG =ABCD 2ABCD AD BC S AB +=⨯四边形12AD BC +=AD x =12BC x =-12FG BC x ==-222AD AF FG =+()222412x x =+-203x =()Rt Rt HL ABH AFG ≌BH FG =AFG AEH △12AFG S FG AF =⋅ 12AHE S HE AB =⋅ 2FG HE =HE a =2FG a =AEG AEB ∠=∠AD BC ∥GAE AEB ∠=∠GAE AEG ∠=∠∴;【小问2详解】解:(i )∵,∴,∵,∴,即,∴,设,则,∴,根据折叠可知,,,∴,在中,根据勾股定理得:,即,解得:,∴.(ⅱ)根据题意得:,,,由(1)得:,∵,∴,在和中,∴,∴,∵的面积是的面积的2倍,,,∴,设,则,AG EG =90B Ð=°AB BC ⊥AD BC ∥2ABCD AD BC S AB +=⨯四边形4242AD BC +⨯=12AD BC +=AD x =12BC x =-12FG BC x ==-4AF AB ==90AFE B ∠=∠=︒1809090AFD =︒-︒=︒∠Rt AGF △222AD AF FG =+()222412x x =+-203x =203AD =AF AB =AB BC ⊥AF EG ⊥AG EG =AH AG =AH EG =Rt ABH △Rt AFG △AB AF AH AG =⎧⎨=⎩()Rt Rt HL ABH AFG ≌BH FG =AFG AEH △12AFG S FG AF =⋅ 12AHE S HE AB =⋅ 2FG HE =HE a =2FG a =当点H 在点E 的左侧时,如图所示:∴,∴,根据折叠可知,,∴,∵,∴,解得:∴当点H 在点E 的右侧时,如图所示:∴,∴,根据折叠可知,,∴,∵,∴,2BH FG a ==3BE BH HE a =+=3BE EF a ==5AG EG EF FG a ==+=222AG AF FG =+()()222542a a =+a =3BE a ==2BH FG a ==BE BH EH a =-=BE EF a ==3AG EG EF FG a ==+=222AG AF FG =+()()222342a a =+解得:,负值舍去,∴综上分析可知,当的面积是的面积的2倍时,【点睛】本题主要考查了等腰三角形的判定和性质,勾股定理,三角形全等的判定和性质,平行线的性质,折叠的性质,解题的关键是熟练掌握相关的判定和性质,注意分类讨论.一、填空题(本大题共5个小题,每小题4分,共20分)19. 若,则代数式的值的平方根为 _____.【答案】【解析】【分析】利用完全平方公式分解,代入x 的值计算得到的值,再根据平方根定义求出答案.【详解】∵∴,∴代数式的值的平方根为,故答案为.20. 如图,在平面直角坐标系中,点M ,N 在直线上,过点M ,N 分别向x 轴,y 轴作垂线,交两坐标轴于点A ,B ,C ,D ,若,,则k 的值为 _____.【答案】【解析】【分析】本题主要考查了求一次函数解析,解题的关键是熟练掌握一次函数性质,设点M 的坐标为,a =BE a ==AFG AEH△BE =3x =269x x -+()22693x x x -+=-269x x -+3x =+()22693x x x -+=-()2233=+=269x x -+xOy y kx b =+1AB = 1.5CD =1.5-(),M M x y则点N 的坐标为,把M ,N 的坐标代替直线,求出k 的值即可.【详解】解:设点M 的坐标为,则点N 的坐标为,∵点M ,N 在直线上,∴,得:,故答案为:.21. 已知关于x ,y 的方程组的解中的x ,y 的值分别为等腰直角三角形的一条直角边和斜边的长,则_____.【答案】【解析】【分析】本题考查勾股定理、解二元一次方程组等知识,解题关键是理解题意,灵活运用所学知识解决问题.求出方程组的解,利用勾股定理构建方程即可解决问题.【详解】解:由,解得 ,∵,∴n 为直角边长,为斜边长,由题意:,解得:(舍去)故答案为:.22. 如图,在中,,平分交边于点D ,.在边上取一点E ,连接,将线段平移后得到线段,连接,则线段的长的最小值是 _____.()1, 1.5M M x y +-y kx b =+(),M M x y ()1, 1.5M M x y +-y kx b =+()1 1.5M M M M kx b y k x b y +=⎧⎪⎨++=-⎪⎩①②②-① 1.5k =-1.5-2321x y n y x +=+⎧⎨-=⎩n =11+2321x y n y x +=+⎧⎨-=⎩1x n y n =⎧⎨=+⎩1n n <+1n +()2221n n n +=+1n =+1-1+ABC AB =60ABC BD ∠=︒,ABC ∠AC 23AD CD =BC DE DE BF AF AF【答案】【解析】【分析】如图,过点D 作于点M ,于点N ,过点A 作于点G ,过点F 作于点T ,连接,求出的值,可得结论.【详解】如图,过点D 作于点M ,于点N ,过点A 作于点G ,过点F 作于点T ,连接,∵平分,,,∴,∴,∵,∴,∵∴,∵,,∴,485DM BC ⊥DN AB ⊥AG BC ⊥FT BC ⊥,FG EF AG FT ,DM BC ⊥DN AB ⊥AG BC ⊥FT BC ⊥,FG EF BD ABC ∠DM BC ⊥DN AB ⊥DM DN =1212ABD BCD AB DN S AD S CD BC DM ⋅⋅==⋅⋅ 23AD CD =23=AB BC AB =BC =AG BC ⊥60ABG ∠=︒30BAG ∠=︒∴,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵∴的最小值为,故答案为【点睛】本题考查平移性质,角平分线的性质定理,勾股定理,直角三角形30度角的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,利用垂线段最短解决最值问题.23. 在平面直角坐标系中,给出如下定义:对于以为底边的等腰及外一点C ,若,直线中,其中一条经过点O ,另一条与的腰垂直,则称点C 是的“关联点”.如图,已知点,,,则点就是的“关联点”.若点是的“关联点”,则线段的长是 _____.12BG AB ==6AG ==111222ABC S BC AG AB DN BC DM =⋅=⋅+⋅ 185DM DN ===,DE BF DE BF =∥DEB EBF ∠=∠BE EB =()SAS BED EBF ≌,DM BE FT BE ⊥⊥185FT DM ==1848655AF AG GF AG FT ≤+≤+=+=AF 485485xOy AB AOB AOB 1OA =CA CB ,AOB AOB ()10A '-,B '()11C '-,C 'A OB ''△()03E ,POQ △PQ【解析】【分析】此题考查了勾股定理,过点Q 作轴于点A ,利用勾股定理求出,利用面积法求出的长,勾股定理求出,得到,再根据勾股定理求出线段的长.【详解】如图,过点Q 作轴于点A ,∵是的“关联点”, ,,∴,∴∵,∴,∴,∴,∴..二、解答题(本大题共3个小题,共30分)24. 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y (元)是行李质量x (千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华QA y ⊥QE AQ AO AP PQ QA y ⊥()03E ,POQ △1OP OQ ==EQ OQ ⊥90OQE ∠=︒QE ===1122OQE S QE OQ OE AQ =⋅=⋅ QE OQ AQ OE ⋅===13OA ===14133AP AO OP =+=+=PQ ===带了90千克的行李,交了行李费10元.(1)写出y 与x 之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?【答案】(1)行李费y (元)关于行李质量x (千克)的一次函数关系式为;y=x -5;(2)旅客最多可免费携带30千克的行李.【解析】【分析】(1)首先设行李费y (元)关于行李质量x (千克)的一次函数关系式为y =kx +b .根据李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元,代入联立成方程组,解得k 、b 的值.(2)根据(1)中的函数表达式,要想让旅客免费携带行李,即满足y ≤0,求得x 的最大值.【详解】(1)设行李费y (元)关于行李质量x (千克)的一次函数关系式为y =kx +b由题意得,解得k =,b =-5∴该一次函数关系式为y =x -5(2)∵x -5≤0,解得:x ≤30∴旅客最多可免费携带30千克的行李.【点睛】考点:一次函数的应用.25. 如图,在平面直角坐标系中,直线l :与x 轴交于点A ,点B 在x 轴的负半轴上,且.(1)求直线l 的函数表达式;(2)点P 是直线l 上一点,连接,将线段绕点B 顺时针旋转得到.16560{1090k b k b =+=+161616xOy y x m =-+122OB OA ==BP BP 90︒BQ(ⅰ)当点Q 落在y 轴上时,连接,求点P 的坐标及四边形的面积;(ⅱ)作直线,,两条直线在第一象限内相交于点C ,记四边形的面积为,的面积为,若,求点Q 的坐标.【答案】(1) (2)(i )点P 的坐标为,四边形的面积是18;(ii )【解析】【分析】(1)根据,得到点A 的坐标,代入直线解析式即可得到直线l 的函数表达式;(2)(i )设,过P 作轴于点D ,证明,根据全等三角形的性质可得P 、Q 的坐标,即可求解;(ii )设,过C 作轴于点F ,过P 作轴于点D ,过点Q 作轴于点E ,证明,根据全等三角形的性质可得Q 的坐标,可得,则,可得,利用待定系数法求出直线的解析式,则,再利用待定系数法求出直线的解析式,联立解析式得出,由此得到点Q 的坐标.【小问1详解】解:∵,∴,∴,将点代入,得,∴,∴直线l 函数表达式;【小问2详解】(ⅰ)设,过P 作轴于点D ,的AQ APBQ BP AQ APBQ 1S ABC 2S 2113S S =4y x =-+()2,2APBQ 424,55⎛⎫-- ⎪⎝⎭122OB OA ==(),4P p p -+PD x ⊥()AAS PDB BOQ ≌(),4P n n -+CF x ⊥PD x ⊥QE x ⊥()AAS PDB BEQ ≌118S =26S =2CF =AQ ()6,2C BC 145n =122OB OA ==4OA =()()2,04,0B A -,()4,0A y x m =-+40m -+=4m =4y x =-+(),4P p p -+PD x ⊥∵,∴B 点的坐标为,∴,∵,∴,,∴,∵,∴,∴,,∴,∴点P 的坐标为,点Q 的坐标为,∴;(ⅱ)设,过C 作轴于点F ,过P 作轴于点D ,过点Q 作轴于点E ,同理得,∴,,122OB OA ==()2,0-2,6OB AB ==90BOQ PDB QBP ∠=∠=∠=︒90BQO QBO ∠+∠=︒90PBD QBO ∠+∠=︒BQO PBD ∠=∠PB BQ =()AAS PDB BOQ ≌24PD BO p ===-+2OQ DB p ==+2p =()2,2()0,4-ЅАРВAQB APBQ S S =+ 四边形1162+641822=⨯⨯⨯⨯=(),4P n n -+CF x ⊥PD x ⊥QE x ⊥()AAS PDB BEQ ≌4PD BE n ==-+2EQ DB n ==+∴,∴,∴,∴,∴,设直线的解析式为,∴,解得,∴直线的解析式为,∴,设直线的解析式为,∴,解得,∴直线的解析式为,联立,得,∴,∴,∴点Q 的坐标为242OE OB BE n n =-=+-=-()2,2Q n n -+--()()111·4222S AB n AB n =-++⋅+()()1164621822n n =⨯-++⨯+=21116632S S CF ==⨯⋅=2CF =AQ y kx a =+()4022k a n k a n +=⎧⎨-++=--⎩14k a =⎧⎨=-⎩AQ 4y x =-()6,2C BC y sx t =+6220s t s t +=⎧⎨-+=⎩1412s t ⎧=⎪⎪⎨⎪=⎪⎩BC 1142y x =+41142y x y x =-+⎧⎪⎨=+⎪⎩14565x y ⎧=⎪⎪⎨⎪=⎪⎩146,55P ⎛⎫ ⎪⎝⎭145n =424,55⎛⎫-- ⎪⎝⎭【点睛】本题属于一次函数综合题,考查了全等三角形的判定和性质,待定系数法求函数的解析式等知识,解题的关键是正确作辅助线构造全等三角形解决问题.26. 【阅读理解】定义:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.该定理可以通过以下方法进行证明.已知:如图1,在中,点,分别是边,的中点,连接.求证:,.证明:建立如图2所示的平面直角坐标系,其中点与原点重合,点在轴正半轴上,则点.设,,点,分别是,的中点,点的坐标为①,点的坐标为②.点和点的③坐标相同,轴.即.又由点和的坐标可得的长为④..请完善以上证明过程,并按照番号顺序将相应内容填写在下列横线上:① ;② ;③ ;④ .【联系拓展】如图3,在中,,是线段上的动点(点不与,重合),将射线绕点顺时针旋转得到射线,过作于点,点是线段的中点,连接.(1)若,,的长;(2)请探究线段与之间满足的数量关系.111A B C △1D 1E 11A B 11A C 11D E 1111D E B C ∥111112D E B C =xOy 1B O 1C x 1()0,0B 1(,)A m n 1(,0)C c 1D 1E 11A B 11A C ∴1D 1E 1D 1E 11D E x ∴∥1111D E B C ∥1D 1E 11D E ∴111111122D E OC B C ==ABC B C α∠=∠=D BC D B C DA D αDE A AE DE ⊥E F CD EF DE AB ∥BD CF =AC =DE EF BD【答案】[阅读理解] ①;②;③纵;④;[联系拓展](1)见解析;(2)【解析】【分析】本题考查了几何图形的变换,三角形全等的判定和性质,三角形的中位线,中点坐标公式,关键是构造三角形的中位线.[阅读理解]点,分别是,的中点,根据中点坐标公式可求中点坐标,完成填空.[联系拓展](1)连结,是等边三角形,证明,,三点共线,是的中位线,可求的长是的一半.(2)在射线上截取,连结,.是的中位线,,再证,,可得与的关系.【详解】解:[阅读理解]①是的中点,,,.②,,是中点,.③点和点的纵坐标相同.④.的(,22m n (,)22+m c n 2c 12EF BD =1D 1E 11A B 11A C AF ADF △A E F DE ABF △DEAC DE EM DE =CM AM EF CDM V 12EF CM =ABD ACM ≌BD CM =EF BD 1D 11A B 1(,)A m n 1()0,0B 1(,)22m n D 1(,)A m n 1(,0)C c 1E 11A C 1(,)22m c n E +1D 1E 11222m c m c D E +=-=故答案为:①;②;③纵;④.[联系拓展](1)是的中点,,,,,.,,,,,,,是等边三角形,,,,,,三点在同一直线上,为的中点.为的中点,是的中位线,.,,(2)在射线上截取,连结,.(,)22m n (,)22+m c n 2c F CD BD CF =BD DF CF ∴==B C ∠=∠ AB AC ∴=(SAS)ABD ACF ∴ ≌AD AF∴=DE AB ∴∥B EDF ∴∠=∠BAD ADE ∠=∠B ADE α∠=∠= B EDF BAD ADE ∴∠=∠=∠=∠BD AD ∴=BD AD AF DF CF ∴====ADF ∴ EDF ADE ∠=∠ DE AF ∴⊥DE AE ⊥ A ∴E F E AF D BF DE ∴ABF △12DE AB ∴=12DE AC ∴=AC = DE ∴=DE EM DE =CM AM,分别是,的中点,是的中位线,,,,,.,,,,,,.,.E F DM DC EF ∴CDM V 12EF CM ∴=AE DE ⊥ DE EM =AD AM ∴=ADM AMD α∴∠=∠=1802DAM α∴∠=︒-1802BAC α∠=︒- DAM BAC ∠=∠BAD CAM ∴∠=∠AB AC = AD AM =(SAS)ABD ACM ∴△≌△BD CM ∴=12EF BD ∴=。
北师大版八年级上册数学期末考试试卷及答案
北师大版八年级上册数学期末考试试题一、单选题1.下列各组数,是勾股数的是()A .13,14,15B .0.3,0.4,0.5C .6,7,8D .5,12,132.下列说法:①-27的立方根是3;②36的算数平方根是6±;③18的立方根是12平方根是3±.其中正确说法的个数是()A .1B .2C .3D .43.点(),A x y 在第四象限,则点(),2B x y --在第几象限()A .第一象限B .第二象限C .第三象限D .第四象限4最接近的数是()A .2B .3C .4D .55.在 1.414-,π,12,2,3.212212221…(相邻两个1之间的2的个数逐次加1),3.14这些数中,无理数的个数为()个.A .5B .2C .3D .46.下列命题中,是真命题的是()A .同位角相等B .同旁内角相等,两直线平行C .平行于同一直线的两直线平行D .相等的角是对顶角7.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是()A .乙同学的成绩更稳定B .甲同学的成绩更稳定C .甲、乙两位同学的成绩一样稳定D .不能确定哪位同学的成绩更稳定8.正比例函数()0y kx k =-≠的函数值y 随x 的增大而减小,则一次函数y kx k =-的图象大致是()A .B .C .D .9.《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为x 人,牛价为y 钱,根据题意,可列方程组为()A .64084y x y x =+⎧⎨=+⎩B .64084y x y x =+⎧⎨=-⎩C .64084y x y x =-⎧⎨=-⎩D .64084y x y x =-⎧⎨=+⎩10.甲、乙两车从A 城出发前往B 城,在整个行驶过程中,汽车离开A 城的距离()km y 与行驶时间()h t 的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ;②乙车用了5h 到达B 城;③甲车出发4h 时,乙车追上甲车A .0个B .1个C .2个D .3个二、填空题11.已知点()1,3P m m ++在x 轴上,则m =________;点P 的坐标为________.12有意义,则x 的取值范围是___.13.若函数()231m y m x-=+是正比例函数,且图像在一、三象限,则m =_________.14.若一组数据1x ,2x ,…n x 的平均数是2,方差是1.则132x +,232x +,…32n x +的平均数是_______,方差是_______.15.已知一次函数y x b =-+的图象经过点()12,A y -和()23,B y ,则1y _______2y (填“>”“<”或“=”)16.如图,已知函数y ax b =+和y kx =的图象交于点P ,关于,x y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是____.17.如图,ABC 中,90A ∠=︒,点D 在AC 边上,∥DE BC ,若1145∠=︒,则B ∠的度数为_______.18.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_________dm .三、解答题19.计算(1)2(23)(33)(33)+-+(2)20223125272---20.用适当的方法解下列方程组(1)231951x y x y +=-⎧⎨+=⎩(2)237324x y x y +=⎧⎨-=⎩21.中考体育测试前,我区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)扇形统计图中a =%,并补全条形统计图.(2)在这次抽测中,测试成绩的众数和中位数分别是个、个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?22.如图所示,折叠长方形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知6AB =,8BF =,求CE 的长.23.已知一次函数y kx b =+的图象经过点()1,5--,且与正比例函数2y x =的图象相交于点()2,A m .求:(1)m 的值;(2)k ,b 的值;(3)这两个函数图象与y 轴所围成的三角形的面积.24.如图,Rt △ABC 中,∠BAC =90°,AC =9,AB =12.按如图所示方式折叠,使点B 、C 重合,折痕为DE ,连接AE .求AE 与CD 的长.25.某商场去年的利润为10万元,今年的总收入比去年增加10%,总支出比去年减少了5%,今年的利润为30万元.求去年的总收入和总支出?26.已知一次函数y =kx ﹣3的图象与正比例函数y=12x 的图象相交于点(2,a ).(1)求a 的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.27.如图1,在平面直角坐标系中,(),0A m,(),4C n ,且满足()240m +=,过C 作CB x ⊥轴于B .(1)求m ,n 的值;(2)在x 轴上是否存在点P ,使得ABC 和OCP △的面积相等,若存在,求出点P 坐标,若不存在,试说明理由.(3)若过B 作BD AC ∥交y 轴于D ,且AE ,DE 分别平分CAB ∠,ODB ∠,如图2,图3,①求:CAB ODB ∠+∠的度数;②求:AED ∠的度数.参考答案1.D【分析】根据能够成为直角三角形三条边长的三个正整数,称为勾股数,即可求解【详解】解:A、不是正整数,则不是勾股数,故本选项不符合题意;B、不是正整数,则不是勾股数,故本选项不符合题意;C、222678+≠,则不是勾股数,故本选项不符合题意;D、2225+12=13,是勾股数,故本选项符合题意;故选:D【点睛】本题主要考查了勾股数的定义,熟练掌握能够成为直角三角形三条边长的三个正整数,称为勾股数是解题的关键.2.A【分析】分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.【详解】解:①-27的立方根是-3,错误;②36的算数平方根是6,错误;③18的立方根是12,正确;∴正确的说法有1个,故选:A.【点睛】本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.3.C【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B10,距离10最近的完全平方数是9和16,通过比较可知10距离9比较近,由此即可求解.解答:解:∵32=9,42=16,又∵11-9=2<16-9=5∴与最接近的数是3.故选B.5.D【分析】有理数是整数与分数的统称,无理数就是无限不循环小数,据此逐一判断即可得答案.-是有限小数,是有理数,【详解】 1.414π是无理数,1是分数,是有理数,22是无理数,3.212212221…(相邻两个1之间的2的个数逐次加1),是无限不循环小数,是无理数,3.14是有限小数,是有理数,∴无理数有π2和3.212212221…(相邻两个1之间的2的个数逐次加1),共4个,故选:D.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.熟练掌握定义是解题关键.6.C【分析】根据平行线的性质和判定,对顶角的性质,逐项判断即可求解.【详解】解:A、两直线平行,同位角相等,则原命题是假命题,故本选项错误,不符合题意;B 、同旁内角互补,两直线平行,则原命题是假命题,故本选项错误,不符合题意;C 、平行于同一直线的两直线平行,则原命题是真命题,故本选项正确,符合题意;D 、相等的角不一定是对顶角,则原命题是假命题,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了真假命题的判断,平行线的性质和判定,对顶角的性质,熟练掌握平行线的性质和判定,对顶角的性质是解题的关键.7.A【分析】根据方差的定义逐项排查即可.【详解】解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样∴乙同学的成绩更稳定.故选A .【点睛】本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.8.C【分析】因为正比例函数(0)y kx k =-≠的函数值y 随x 的增大而减小,可以判断0k >;再根据0k >判断出y kx k =-的图象的大致位置.【详解】解: 正比例函数(0)y kx k =-≠的函数值y 随x 的增大而减小,0k ∴>,∴一次函数y kx k =-的图象经过一、三、四象限.故选C .【点睛】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当0k >,0b >时,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <时,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;④当0k<,0b <时,函数y kx b =+的图象经过第二、三、四象限.9.B【分析】设合伙人数为x 人,牛价为y 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.【详解】解:设合伙人数为x 人,牛价为y 钱,根据题意得:64084y x y x =+⎧⎨=-⎩.故选:B【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.10.C【分析】求出正比函数的解析式,k 值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx ,∴6k=300,解得k=50,∴y 甲=50x ,∴甲车的速度为50km/h ,∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h )到达B 城,∴②错误;设y =mx b +乙,∴2m =05m 300b b +⎧⎨+=⎩,∴m 100200b =⎧⎨=-⎩,∴y =100x-200乙,∵=50100200y x y x ⎧⎨=-⎩,∴x 4200y =⎧⎨=⎩,即甲行驶4小时,乙追上甲,∴③正确;故选C .11.3-()2,0-【分析】根据x 轴上的点,纵坐标为0,求出m 值即可.【详解】解:∵点()1,3P m m ++在x 轴上,∴30m +=,解得,3m =-,则1312m +=-+=-;点P 的坐标为(-2,0);故答案为:-3,(-2,0).【点睛】本题考查了坐标轴上点的坐标特征,解题关键是明确x 轴上的点,纵坐标为0.12.2x ≥有意义,即x ﹣2≥0,解得:x≥2.故答案为:x≥2.13.2【分析】根据自变量的次数等于1,系数大于0列式求解即可.【详解】解:由题意得m+1>0,m 2-3=1,解得m=2.故答案为:2.14.89【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x 1,x 2,…xn 的平均数是2,∴数据3x 1+2,3x 2+2,…+3xn+2的平均数是3×2+2=8;∵数据x 1,x 2,…xn 的方差为1,∴数据3x 1,3x 2,3x 3,……,3xn 的方差是1×32=9,∴数据3x 1+2,3x 2+2,…+3xn+2的方差是9.故答案为:8、9.15.>【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小,判断即可.【详解】∵一次函数y x b =-+的图象经过点()12,A y -和()23,B y ,且k <0,∴k <0,∵-2<3,∴1y >2y ,故答案为:>.16.4,2x y =-⎧⎨=-⎩【分析】根据函数与方程组的关系结合交点坐标即可求得方程组的解.【详解】解:∵一次函数y=ax+b (a≠0)和y=kx (k≠0)的图象交于点P (-4,-2),∴二元一次方程组0y ax b kx y -=⎧⎨-=⎩的解是42x y =-⎧⎨=-⎩,故答案为:42x y =-⎧⎨=-⎩.17.55︒【分析】先求出∠EDC=35°,然后根据平行线的性质得到∠C=∠EDC=35°,再由直角三角形两锐角互余即可求解.【详解】解:∵∠1=145°,∴∠EDC=35°,∵DE ∥BC ,∴∠C=∠EDC=35°,又∵∠A=90°,∴∠B=90°-∠C=55°,故答案为:55°.18.25【分析】把立体几何图展开得到平面几何图,如图,然后利用勾股定理计算AB ,则根据两点之间线段最短得到蚂蚁所走的最短路线长度.【详解】解:展开图为:则AC=20dm,BC=3×3+2×3=15(dm ),在Rt △ABC 中,25AB ===(dm ).所以蚂蚁所走的最短路线长度为25dm.故答案为:25.19.(1)1+;(2)9-【分析】(1)利用完全平方公式,平方差公式展开,合并同类项即可;(2)根据幂的意义,算术平方根,立方根的定义计算.【详解】(1)2(2(3-=43(93)+--=1+(2)20221--+-=153---=9-20.(1)143x y =-⎧⎨=⎩;(2)21x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1)231951x y x y +=-⎧⎨+=⎩①②②×2-①得:7y=21,解得:y=3,把y=3代入②中,解得:x=−14,∴方程组的解为:143x y =-⎧⎨=⎩;(2)237324x y x y +=⎧⎨-=⎩①②①×2-②×3得:13x=26,解得:x=2,把x=2代入①中,解得:y=1,∴方程组的解为:21x y =⎧⎨=⎩.21.(1)25,图见解析(2)5,5(3)810名【分析】(1)用1减去其他天数所占的百分比即可得到a 的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)根据众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.(1)解:扇形统计图中a=1-30%-15%-10%-20%=25%,设引体向上6个的学生有x 人,由题意得20,25%10%x =,解得x=50.条形统计图补充如下:故答案为:5;(2)解:由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5.故答案为:5,5.(3)解:50401800810200+⨯=(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.22.83【分析】由翻折的性质可得:AD AF BC ==,DE EF =,在Rt ABF 中,由勾股定理,可得10AF ==,从而得到2FC =,然后设CE x =,6EF DE x ==-,在Rt ECF △中,由勾股定理,即可求解.【详解】解:由翻折的性质可得:AD AF BC ==,DE EF =,在Rt ABF 中,10AF ==,∴2FC BC BF =-=,设CE x =,6EF DE x ==-,在Rt ECF △中,222EF EC CF =+,即()2246x x +=-,解得83x =,∴CE 的长为83.23.(1)4m =;(2)3k =,2b =-;(3)2【分析】(1)把(2,m )代入正比例函数解析式即可得到m 的值;(2)把(-1,-5)、(2,4)代入y=kx+b 中可得关于k 、b 的方程组,然后解方程组求出k 、b 即可;(3)先利用描点法画出图象,再求出两直线与y 轴的交点坐标,然后根据三角形面积公式求解.【详解】解:(1)将()2,m 代入2y x =得,4m =.(2)由(1)得,交点坐标为()2,4,将()1,5--,()2,4代入y kx b =+中,得524k b k b -+=-⎧⎨+=⎩,解得32k b =⎧⎨=-⎩,∴3k =,2b =-.(3)由(2)得,直线的表达式为32y x =-,令0x =,则2y =-,所以直线32y x =-与y 轴的交点坐标问为()0,2-,又∵两直线的交点坐标为()2,4,∴12222s =⨯⨯=.【点睛】本题考查了一次函数的综合题:用待定系数法求一次函数的解析式,一次函数与坐标轴的交点问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.24.AE =7.5,CD =758【分析】在Rt △ABC 中由于∠BAC =90°,AC =9,AB =12,所以根据勾股定理可求出BC 的长,由折叠可知,ED 垂直平分BC ,E 为BC 中点,BD =CD ,根据直角三角形斜边上的中线等于斜边的一半可求出AE 的长,设BD =CD =x ,则AD =12﹣x .在Rt △ADC 中由AD 2+AC 2=CD 2即可求出x 的值,故可得出结论.【详解】解:在Rt △ABC 中,∠BAC =90°,AC =9,AB =12,由勾股定理得:AB 2+AC 2=BC 2.∴BC 2=92+122=81+144=225=152,∴BC =15∵由折叠可知,ED 垂直平分BC ,∴E 为BC 中点,BD =CD∴AE =12BC =7.5(直角三角形斜边上的中线等于斜边的一半).设BD =CD =x ,则AD =12﹣x .在Rt △ADC 中,∴AD 2+AC 2=CD 2(勾股定理).即92+(12﹣x )2=x 2,解得x =758,∴CD =758.【点睛】本题考查的是图形折叠的性质,熟知图形折叠不变性的性质及勾股定理是解答此题的关键.25.去年的总收入为4103元,总支出为3803元【分析】设去年的总收入为x 万元,总支出为y 万元,根据利润=总收入-总支出,列出方程,构成方程组求解.【详解】解:设去年的总收入为x 万元,总支出为y 万元,依题意得:x-1000(1+10)(1-5)=3000y x y =⎧⎪⎨-⎪⎩,解得410x=3380=3y ⎧⎪⎪⎨⎪⎪⎩,答:去年的总收入为4103元,总支出为3803元.【点睛】本题考查了二元一次方程组的应用题,根据利润=总收入-总支出,列出符合题意的方程是解题的关键.26.(1)a =1;(2)y =2x ﹣3;(3)详见解析.【分析】(1)直接把点(2,a )代入正比例函数的解析式y =12x 可求出a ;(2)将求得的交点坐标代入到直线y =kx ﹣3中即可求得其表达式;(3)利用与坐标轴的交点及两图像交点即可确定两条直线的解析式.【详解】(1)∵正比例函数y =12x 的图象过点(2,a ),∴a =1;(2)∵一次函数y =kx ﹣3的图象经过点(2,1)∴1=2k ﹣3,∴k =2,∴y =2x ﹣3;(3)函数图象如下图:【点睛】本题考查了两条直线相交或平行问题:若直线y =k 1x+b 1与直线y =k 2x+b 2相交,则交点坐标同时满足两个解析式.也考查了待定系数法求函数解析式.27.(1)4m =-,4n =;(2)存在,()8,0N 或()8,0-;(3)①90︒;②45︒【分析】(1)根据非负数的和为零,则每一个数为零,列等式计算即可;(2)设点P 的坐标为(n ,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;(3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;②作EM AC ∥,利用平行线的性质,角的平分线的定义,计算即可.【详解】解:(1)∵()240m +=,∴m+4=0,n-4=0,∴4m =-,4n =.(2)存在,设点P 的坐标为(n ,0),则OP=|n|,∵A (-4,0),C (4,4),∴B (4,0),AB=4-(-4)=8,∵12ABCS AB CB = ,12OCP CB OP = △S ,且ABC 和OCP △的面积相等,∴12AB CB 12CB OP = ,∴OP=AB=8,∴|n|=8,∴n=8或n=-8,∴()8,0P 或()8,0P -;(3)①∵AC BD ∥,∴CAB OBD ∠=∠,又∵90OBD ODB ∠+∠=︒,∴90CAB ODB ∠+∠=︒.②作EM AC ∥,如图,∵AC BD ∥,∴AC EM BD ∥∥,∴CAE AEM ∠=∠,BDE DEM ∠=∠,∴AED CAE BDE ∠=∠+∠,∵AE ,DE 分别平分CAB ∠,ODB ∠,∴12CAE CAB ∠=∠,12BDE ODB ∠=∠,∴11()904522AED AEM DEM CAB ODB ∠=∠+∠=∠+∠=⨯︒=︒,即45AED ∠=︒.。
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.下面的图形是轴对称图形的是()A .B .C .D .2.数据0.00000164用科学记数法可表示为()A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯3.下列多项式中,能运用平方差公式分解因式的是()A .22a b +B .22a b-C .22a b -+D .22a b --4.计算:3223x y ⎛⎫-= ⎪⎝⎭()A .632x y-B .63827x y C .53827x y -D .63827x y -5.将分式222x x y+中的x ,y 同时扩大4倍,则分式的值()A .扩大4倍B .扩大2倍C .缩小到原来的一半D .保持不变6.已知2x =是分式方程113k x x x -+=-的解,那么k 的值为()A .0B .1C .2D .47.在ABC 中,AB AC =,AD BC ⊥于点D ,若8AB =,5CD =,则ABC 的周长为()A .13B .18C .21D .268.如图,点E 在AC 上,则A B C D DEB ∠+∠+∠+∠+∠的度数是()A .90°B .180°C .270°D .360°9.如图,两个正方形的边长分别为a 、b ,若7a b +=,3ab =,则阴影部分的面积是()A .40B .492C .20D .2310.如图,已知直角三角形ABC 中,90ACB ∠=︒,60CAB ∠=︒,在直线BC 或AC 上取一点P ,使得ABP △为等腰三角形,则符合条件的点有()A .4个B .5个C .6个D .7个二、填空题11.正五边形的外角和等于_______◦.12.已知221x x -=-,则代数式()52x x +-的值为______.13.已知30x yx -=,则y x=______.14.分式方程:2211x x x+=--的解是___________.15.在ABC 中,AB AC =,AB 的垂直平分线与AC 所在直线相交所得的锐角为42°,则B ∠=______.16.如图,B C ∠=∠,译添加一个条件______使得ABE ACD △△≌.17.如图,5AB AC ==,110BAC ∠=︒,AD 是∠BAC 内的一条射线,且25BAD ∠=︒,P 为AD 上一动点,则PB PC -的最大值是______.18.如图,在平面直角坐标系中,已知()2,0A ,()0,3B ,若在第一象限中找一点C ,使得AOC OAB ≅△△,则C 点的坐标为_______.三、解答题19.计算:()()()323235a a a a a -+-+÷.20.已知23m n=,求224421n mn n m m m ⎛⎫--+÷ ⎪⎝⎭的值.21.在()()223x x a x b -++的运算结果中,2x 的系数为4-,x 的系数为7-,求a ,b 的值并对式子224ax b +进行因式分解.22.如图,AB ,CD 相交于点E 且互相平分,F 是BD 延长线上一点,若2FAC BAC ∠=∠,求证:AC DF AF +=.23.某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.该商场实际购进彩灯的单价是多少元?24.如图1,射线BD 交△ABC 的外角平分线CE 于点P ,已知∠A=78°,∠BPC=39°,BC=7,AB=4.(1)求证:BD平分∠ABC;(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM⊥BC于点M,求MC的长度.25.如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N.求证:(1)AD=BE;(2)∠BMC=∠ANC;(3)△CMN是等边三角形.26.如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B 作BF//AE交ED于F,且EM=FM.(1)若AE=5,求BF的长;(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.参考答案1.C 2.B 3.C 4.D 5.A 6.D 7.D 8.B 9.C 10.C 11.36012.413.1314.0x =15.66°或24°16.AB AC =(答案不唯一)【详解】解: B C ∠=∠,,A A ∠=∠添加:,AB AC =∴(),ABE ACD ASA ≌△△故答案为:,AB AC =(答案不唯一)17.5【分析】作点B 关于射线AD 的对称点B ',连接AB '、CB '、B'P .则AB AB '=,PB PB '=,AB C 'V 是等边三角形,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.所以PB PC '-的最大值是5.【详解】解:如图,作点B 关于射线AD 的对称点B ',连接AB '、CB ',B'P .则AB AB '=,PB PB '=,25B AD BAD ∠=∠='︒,110252560B AC BAC BAB ∠=∠-∠=︒-︒-︒=''︒.∵5AB AC ==,∴5AB AC '==,∴AB C 'V 是等边三角形,∴5B C '=,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.∴PB PC '-的最大值是5.故答案为:5.18.()2,3【详解】根据题意C 点在第一象限内,且AOC OAB ≅△△,如图,又已知OAB 和AOC △有已知公共边AO ,∴(23)C ,.故答案为(2)3,.【点睛】本题考查全等三角形的性质,由已知公共边结合三角形全等的性质找到点C 的位置是解答本题的关键.19.210a --【分析】先利用平方差公式进行整式的乘法运算,同步计算多项式除以单项式,再合并同类项即可.【详解】解:原式222495110a a a =---=--.【点睛】本题考查的是平方差公式的运用,多项式除以单项式,掌握“整式的混合运算”是解本题的关键.20.2【分析】先计算括号内分式的加法,再把除法转化为乘法,约分后可得结果,再把23m n =化为23,n m =再整体代入即可.【详解】解:原式222442n mn m mm n m-+=⋅-()22222n m m n mm n m m--=⋅=-∵23m n=∴23n m =,代入上式,得:原式322m m mm m-===.【点睛】本题考查的是分式的化简求值,掌握“整体代入法求解分式的值”是解本题的关键.21.1a =-,2b =,()()411x x +-【分析】先计算多项式乘以多项式,再结合题意可得64b -=-,327a b -=-,解方程组求解,a b 的值,再利用平方差公式分解因式即可.【详解】解:∵()()223x x a x b -++3223623x bx x bx ax ab =+--++()()323623x b x b a x ab=+-+-++∴64b -=-,327a b -=-解得:1a =-,2b =∴()()222444411ax b x x x +=-+=+-.22.【详解】证明:∵AB ,CD 互相平分∴AE BE =,CE DE =又∵AEC BED ∠=∠∴AEC BED△△≌∴CAE DBE =∠∠,AC BD =∵2FAC BAC ∠=∠∴CAE FAE ∠=∠∴DBE FAE ∠=∠∴AF BF =∵BF BD DF =+∴AC DF AF +=.23.商场实际购进彩灯的单价是60元【分析】设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,由题意:某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.列出分式方程,解方程即可.【详解】解:设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,根据题意得:3000030000100(120%)x x-=+,解得:50x =,经检验,50x =是原分式方程的解,且符合题意,则(120%)60x +=(元),答:商场实际购进彩灯的单价为60元.24.(1)见解析(2)MC=1.5【分析】(1)由∠ACF=∠A+∠ABF ,∠ECF=∠BPC+∠DBF ,得∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,再根据CE 平分∠ACF ,得∠ACF=2∠ECF ,则∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF ,从而证明结论;(2)连接AQ ,CQ ,过点Q 作BA 的垂线交BA 的延长线于N ,利用HL 证明Rt△QNA≌Rt△QMC,得NA=MC,再证明Rt△QNB≌Rt△QMB(HL),得NB=MB,则BC=BM+MC=BN+MC=AB+AN+MC,从而得出答案.(1)证明:∵∠ACF=∠A+∠ABF,∠ECF=∠BPC+∠DBF,∴∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,∵CE平分∠ACF,∴∠ACF=2∠ECF,∴∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF,∴BD平分∠ABC;(2)解:连接AQ,CQ,过点Q作BA的垂线交BA的延长线于N,∵QG垂直平分AC,∴AQ=CQ,∵BD平分∠ABC,QM⊥BC,QN⊥BA,∴QM=QN,∴Rt△QNA≌Rt△QMC(HL),∴NA=MC,∵QM=QN,BQ=BQ,∴Rt△QNB≌Rt△QMB(HL),∴NB=MB,∴BC=BM+MC=BN+MC=AB+AN+MC,∴7=4+2MC,∴MC=1.5.25.(1)见解析;(2)见解析;(3)见解析【分析】(1)根据等边三角形的性质和题意,可以得到△ACD ≌△BCE 的条件,从而可以证明结论成立;(2)由△ACD ≌△BCE 得∠CBE=∠CAD ,由△ABC 和△DEC 都是等边三角形得60ACB ECD ∠=∠=︒,由平角定义得60ACN ∠=︒,再由三角形内角和定理可得结论;(3)根据(1)中的结论和等边三角形的判定可以证明△CMN 是等边三角形.【详解】(1)证明:∵△ABC 和△CDE 都是等边三角形,∴BC=AC ,CE=CD ,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE ,∠ACE=60°,∴∠BCE=∠ACD ,在△ACD 和△BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS );∴AD =BE ;(2)由(1)得△ACD ≌△BCE ∴∠CBE=∠CAD ,∵△ABC 和△DEC 都是等边三角形∴60ACB ECD ∠=∠=︒∴60ACN ∠=︒∵180,180CBM BCM BMC CAN ACN ANC ∠+∠+∠=︒∠+∠+∠=︒∴∠BMC =∠ANC ;(3)由(1)知,△ACD ≌△BCE ,则∠ADC=∠BEC ,即∠CDN=∠CEM ,∵∠ACE=60°,∠ECD=60°,∴∠MCE=∠NCD ,在△MCE 和△NCD 中,MCE NCD MEC NDC CE CD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△MCE≌△NCD(AAS),∴CM=CN,∵∠MCN=60°,∴△MCN是等边三角形.26.(1)BF=5;(2)见解析.【分析】(1)证明△AEM≌△BFM即可;(2)证明△AEC≌△BFD,得到EC=FD,利用等式性质,得到CD=FE.【详解】(1)∵BF//AE,∴∠MFB=∠MEA,∠MBF=∠MAE,∵EM=FM,∴△AEM≌△BFM,∴AE=BF,∵AE=5,∴BF=5;(2)∵BF//AE,∴∠MFB=∠MEA,∵∠AEC=90°,∴∠MFB=90°,∴∠BFD=90°,∴∠BFD=∠AEC,∵∠DBF=∠CAE,AE=BF,∴△AEC≌△BFD,∴EC=FD,∴EF+FC=FC+CD,∴CD=FE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秋学期八年级数学学业质量抽测试题
一、选择题(本大题共10小题,每小题3分,共30分) 1.9的平方根是
( ) A .±3 B .3 C .-3 D
.2.下列图形中,不一定是轴对称图形的是
( ) A .线段 B .等腰三角形 C .等腰梯形 D .平行四边形 3.1.0149精确到百分位的近似值是
( ) A .1.0149 B .1.015 C .1.01 D .1.0 4.下列各组数据分别是三角形的三边长,其中不能构成直角三角形的是
( )
A .2cm .4cm
.
B .1cm .1 cm .
C .1cm .2 cm
D
.2cm
5.下列各点中在第二象限的是
( ) A .(3,2) B .(-3,-2) C .(-3,2) D .(3,-2) 6.已知正比例函数y =kx (k ≠0)的图象经过点(1,-2),则此正比例函数的关系式为
( )
A .y =2x
B .y =-2x
C .12y x =
D .12
y x =- 7.已知一次函数中,(2)1y m x =+-的值随着x 的增大而增大,则的取值范围是 ( )
A .m >0
B .m <0
C .m >-2
D .m <-2 8.下列各组条件中,能判断两个直角三角形全等的是 ( )
A .两组直角边对应相等
B .一组边对应相等
C .两组锐角对应相等
D .一组锐角对应相等 9.给出下列说法:①0的算术平方根是0;②如果一个直角三角形的两边长分别为6cm .8cm ,那么它的周长为24c m ;③
在数轴上,表示
( )
A .①②
B .①③
C .②③
D . ①②③
10.在平面直角坐标系中,已知(1,1)A 、(3,5)B ,要在坐标轴上找一点P ,使得PAB ∆的周长最小,则
点P 的坐标为
( )
A .(0,1)
B .(0,2)
C .4(,0)3
D .(0,2)或4(,0)3
二.填空题(本大题共8小题,每小题3分,共24分) 11
=___________.
12.点(2,3)-关于x 轴的对称点的坐标是___________.
13
|2|0b -=,则以,a b 为边长的等腰三角形的周长为___________. 14.在ABC ∆中,若50A ∠=,65B ∠=,AD BC ⊥于D ,BC =8cm ,则BD 的长为___________c m 15.如图,已知,AC FE BC DE ==,点A .D .B .F 在一条直线上,要使得ABC ∆≌FDE ∆,还要添加一个条件,这个条件可以是___________(只需填写一个即可) .
16.如果在ABC ∆中,D 为BC 上的一点,且AB AD DC ==,40C ∠=,
则BAD ∠=___________. 17.如图,在Rt ABC ∆中,90C ∠=,5,12AC cm BC cm ==,CAB ∠的平分线 交BC 于D ,过点D 作DE AB ⊥于E ,则BDE ∆的周长为___________cm . 18.如图,函数2y x =-和y kx b =+的图像相交于点(,3)A m ,
则关于x 的不等式20kx b x -+>的解集为___________.
(第10题) (第15题) (第16题) (第17题) (第18题)
三.解答题(本大题共8小题,共66分) 19.(本题满分8分)
(110
1
()20142
-+;
(2)求2
41000x -=中x 的值.
20.(本题满分6分)如图,已知△ABC ,用直尺(没有刻度)和圆规在平面上求作一个点P ,使P 到∠A 两
边的距离相等,且P A =PB .(不要求写作法,但要保留作图痕迹) 21.(本题满分8分)如图,在四边形ABCD 中,AD //BC ,BD ⊥AD ,点E .F 分别是边AB .CD 的中点,
且DE =BF .求证:∠A =∠C .
22.(本题满分8分)已知一次函数y =mx +m -2与y =2x -3的图象的交点A 在y 轴上,它们与x 轴的交点
分别为点B .点C . (1)求m 的值及△ABC 的面积;
(2)求一次函数y =mx +m -2的图像上到x 轴的距离等于2的点的坐标.
23.(本题满分9分)已知,如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm.动点D从点A出发,以每秒1cm的速度沿射线AC运动,求出点D运动所有的时间t,使得△ABD为等腰三角形.
24.(本题满分8分)如图,在平面直角坐标系中,直线AB交x轴于点A(-4,0),交y轴于点B(0,2),P为线段OA上一个动点,Q为第二象限的一个动点,且满足PQ=P A,OQ=OB.(1)求直线AB的函数关系式;
(2)若△OPQ为直角三角形,试求点P的坐标,并判断点Q是否在直线AB上.
25.(本题满分9分)如图,在△ABC中,AB=AC,D为三角形内一点,且△DBC为等边三角形.
(1)求证:直线AD垂直平分BC;
(2)以AB为一边,在AB的右侧画等边△ABE,连接DE,试判断以DA.DB.DE三条线段是否能构成直角三角形?请说明理由.
26.(本题满分10分)如图1,某物流公司恰好位于连接A.B两地的一条公路旁的C处.某一天,该公司同时派出甲.乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲.乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图像.
(1)由图像可知,甲车速度为________km/h;乙车速度为_________km/h.
(2)已知最终乙车比甲车早到B地0.5h,求甲车出发1.5h后直至到达B地的过程中,S与x的函数关系式及x的取值范围,并在图2中补全函数图像.。