Enzymatic synthesis of novel antioxidant flavonoids by
加兰他敏治疗阿尔茨海默症的研究进展
由于加兰他敏的溶解性较差 ,故通常将其制成氢溴酸 盐 ,以增加其溶解性 ,已研究的剂型有口服液 、注射液 、普通
药学与临床研究 Pharm aceu tica l and C lin ica l R esearch 第 16卷
片 、缓释片 、分散片 、胶囊剂 、乳膏剂等 。张松林 [18 ]以乳糖 为填充剂 ,交联聚维酮和羧甲基淀粉钠作为崩解剂 , 3%聚 维酮为粘合剂 ,研制了氢溴酸加兰他敏分散片 。钱南萍 [19 ] 建立了氢溴酸加兰他敏分散片溶出度的测定方法 ,发现和 水及 5%乙醇相比 ,它在 011 mo·l L - 1的盐酸溶液中溶出度 较高 , 确 定 转 速 为 75 r·m in - 1 , 溶 出 时 间 为 45 m in。刘 玮 [20 ]用正交设计优选处方 , 以单硬脂酸甘油酯 、Eudragit L100255为主要缓释材料 ,研制其缓释片 ,结果氢溴酸加兰 他敏缓释片在 24 h 内呈现良好的缓释特征 ,释药行为符合 H iguchi方程 。陈昂 、贺芬 [21 ]采用离子交换吸附技术 ,用丙 烯酸树脂 RS100修饰结合有氢溴酸加兰他敏的树脂表面 , 制成缓释混悬液 ,试验表明其体外释药速率明显减慢 ,与溶 液剂相比 ,缓释混悬液的药时曲线较平稳 , Cmax降低 , Tmax延 长 ,有一定的缓释效果 。
20世纪60年代加兰他敏商品名为强肌片尼瓦林片剂主要用于治疗脊髓灰质炎小儿麻痹症后遗症肌肉萎缩术后肠肌麻痹尿潴留及重症肌无力等症也可用于儿童脑型麻痹外伤性感觉运动障碍多发性神经炎及脊神经根炎等的治疗
药学与临床研究 2008年 2月
P ha rm a ce u tica l a nd C lin ica l R e se a rch 2008, 16 (1)
Synthesis and characterization of novel systems fo
专利内容由知识产权出版社提供
专利名称:Synthesis and characterization of novel systems for guidance and vectorization of molecules of therapeutic interest towards target cells
发明人:Pascal Dumy,Marie-Christine Favrot,Didier Boturyn,Jean-Luc Coll
申请号:US10528320 申请日:20030919 公开号:US07531622B2 公开日:20090512
摘要:A method for preparing a grafted homodetic cyclopeptide forming a framework that defines a grafted upper face and grafted lower face, including synthesizing a linear peptide from modified or unmodified amino acids, some of which carry orthogonal protective groups; intramolecular cyclizing the resulting protetuting some or all of orthogonal protective groups with a protected precursor; and grafting at least one molecule of interest onto one and/or the other face of the framework via an oxime bond.
NO供体型马蹄金素衍生物的合成及其初步的抗乙肝病毒活性
974
/
© 2014 Chinese Chemical Society & SIOC, CAS
Chin. J. Org. Chem. 2014, 34, 973~979
Chinese Journal of Organic Chemistry
* E-mail: guangyi_liang@; bixue_xu@ Received December 2, 2013; revised January 3, 2014; published online January 3, 2014. Project supported by the National Natural Science Foundation of China (No. 81360472), and the Graduate Education Innovation Project of Guiyang College of Traditional Chinese Medicine (No. ZYYCX12018). 国家自然科学基金(No. 81360472)、贵阳中医学院研究生教育创新计划(No. ZYYCX12018)资助项目.
Chin. J. Org. Chem. 2014, 34, 973~979
© 2014 Chinese Chemical Society & SIOC, CAS
/
973
有机化学
类和干扰素等药物的化学骨架不同, 是一新化学骨架类 型的抗乙肝病毒化合物. 本研究组[9~11]以马蹄金素为先 导化合物, 设计合成了部分衍生物, 并对其进行抗 HBV 活性测试, 发现了一些具有较好的抗乙肝病毒活性的化 合 物.
HN O
6d: R = (CH2)7CH3 6e: R = (CH2)4CH3
药理实验设计类高分文献
药理实验设计类高分文献1. 文献题目,"The role of adenosine receptors in the regulation of sleep"(《腺苷受体在睡眠调节中的作用》)。
这篇文献研究了腺苷受体在睡眠调节中的作用。
研究者通过药理实验设计,使用特定的腺苷受体激动剂和拮抗剂,观察小鼠的睡眠模式和行为表现,并通过分子生物学方法分析相关信号通路的变化。
该文献通过全面的实验设计和详细的数据分析,得出了腺苷受体在睡眠调节中的重要性,并对其潜在的治疗应用进行了讨论。
2. 文献题目,"The effects of a novel antidepressant on hippocampal neurogenesis in a rat model of depression"(《一种新型抗抑郁药对抑郁模型大鼠海马神经发生的影响》)。
这篇文献研究了一种新型抗抑郁药对抑郁模型大鼠海马神经发生的影响。
研究者采用行为学测试和组织学方法,评估了该药物对大鼠行为和海马神经发生的影响。
实验设计包括对照组、治疗组和安慰剂组,以及多个时间点的观察。
结果显示,该药物能够促进抑郁模型大鼠海马神经发生,并改善其行为表现。
该文献通过合理的实验设计和详细的数据分析,为新型抗抑郁药物的研发提供了理论依据。
3. 文献题目,"The role of oxidative stress in the pathogenesis of Alzheimer's disease: evidence from animal models"(《氧化应激在阿尔茨海默病发病机制中的作用,动物模型的证据》)。
这篇文献研究了氧化应激在阿尔茨海默病发病机制中的作用。
研究者使用动物模型,通过给予特定的氧化应激剂和抗氧化剂,观察小鼠的认知功能和神经病理变化,并进行相关的分子生物学和生化分析。
生物碱类植物化学物治疗和预防阿尔茨海默病的研究进展
生物碱类植物化学物治疗和预防阿尔茨海默病的研究进展李宝龙;单毓娟;刘旭;贾博宇;周忠光【摘要】Alzheimer disease (AD) is the most common type of senile dementia, a neurodegenerative disease without effective therapeutic drugs. At present, some phytochemicals with excellent bioactivities in preventing and treating AD have been targeted in the field of new drugs exploitation. This review summarizes the related literatures published recently which mainly show the latest and resegrch progress of a variety of alkaloids such as galanthamine, physostigmine, huperzine, vinca -derived alkaloids, nicotine in the prevention and therapy for AD.%阿尔茨海默病(AD)是最常见的老年痴呆型神经退行性疾病,目前尚无特效药.研究与开发防治阿尔茨海默病的有效植物化学物是当今医药学研究领域的重要课题之一.通过对近年来有代表性的文献进行分析归纳,总结了加兰他敏、毒扁豆碱、石杉碱、长春花属以及烟碱等生物碱类植物化学物治疗和预防阿尔茨海默病的研究进展.【期刊名称】《中医药学报》【年(卷),期】2012(040)003【总页数】3页(P145-147)【关键词】阿尔茨海默病;植物化学物;生物碱【作者】李宝龙;单毓娟;刘旭;贾博宇;周忠光【作者单位】黑龙江中医药大学,黑龙江哈尔滨 150040;哈尔滨工业大学,黑龙江哈尔滨 150090;黑龙江中医药大学,黑龙江哈尔滨 150040;黑龙江中医药大学,黑龙江哈尔滨 150040;黑龙江中医药大学,黑龙江哈尔滨 150040【正文语种】中文【中图分类】R741.05植物化学物(phytochemicals)是植物中存在一类生物活性成分,由种类繁多的化学物质组成。
复合酶法提取槐花多糖的工艺优化及其抗氧化活性
任晓莉,杨璐,乔鹏,等. 复合酶法提取槐花多糖的工艺优化及其抗氧化活性[J]. 食品工业科技,2024,45(7):8−14. doi:10.13386/j.issn1002-0306.2023070216REN Xiaoli, YANG Lu, QIAO Peng, et al. Optimization of Extraction Process of Polysaccharide from Sophora japonica by Compound Enzyme Method and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2024, 45(7): 8−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070216· 特邀主编专栏—食品中天然产物提取分离、结构表征和生物活性(客座主编:杨栩、彭鑫) ·复合酶法提取槐花多糖的工艺优化及其抗氧化活性任晓莉*,杨 璐,乔 鹏,缪奕锴,杨懿昂,代秋红,张贤德(太原工业学院环境与安全工程系,山西太原 030008)摘 要:目的:采用复合酶法提取槐花多糖,对提取工艺进行优化,并评价其体外抗氧化活性。
方法:通过单因素实验考察复合酶添加量、pH 、复合酶比例和酶解时间对得率的影响,在单因素实验基础上,采用响应面法确定槐花多糖的最佳提取参数,并以V C 为对照,通过测定槐花多糖对DPPH·和ABTS +·的清除率及总还原力,考察所提取的槐花多糖的抗氧化活性。
结果:复合酶法提取槐花多糖的最佳提取参数为:复合酶添加量23.8 mg/g ,pH4.8,果胶酶与纤维素酶比例0.912:1,该工艺下槐花多糖得率为10.71%,所提取的槐花多糖对DPPH·和ABTS +·均表现出较好的清除能力,当槐花多糖溶液浓度为2.8 mg/mL 时,对DPPH·和ABTS +·的清除率分别达到同浓度下V C 的94.19%和99.79%,总还原力达到V C 的75.99%。
【doc】吲哚里西啶和喹诺里西啶生物碱的来源及药理作用
吲哚里西啶和喹诺里西啶生物碱的来源及药理作用】52药学进展2001年第25卷第3期2~yanobiphenylcompound[P],EP0854i35,1998叭一28L7KageyamaH.Me~odforproductingallasymmetricbiary]derivative[p].EP571770.】99312一O1_[8]AsaiJ.KumaiSPreparationofbipheny[compounds[P:,.7P08109i43】996—04—30L9一HerrmannwA,BrossmerC,Oefe]eK,eta1.PaHadacycles RsStrumrallyDefinedCatalystsfortheHeckOlefinationof Chloro—andBromoarents[J].Clamd尉,1995,34134—1848[10]Toh~anCA.StericEffetsofPhosphorousLigandsin OvganometallicChemistryandHomogeneousCatays~[J].Clam脚,1997,77:313348.[1i]NormanDP,FllppinLA.StablerSR,etalNucleoph_¨c AromaticSubstitutionReactionsofNovel5(2一Methoxyphenyl/tetrazoleDerivativeswithOrgano]ltl1mReagents[J].JOr9,1999,64:93019306.吲哚里西啶和喹诺里西啶生物碱的来源及药理作用杨艳,郑志国,吉民,华维一(1_中国药科大学新药研究中心,江苏南京,210009;2海翔医药化工有限公司,浙江台州,318000)摘要:吲哚里西啶和喹诺里西啶类生物碱是从陆地和海洋动植物中提取得到的,具多种重要生物活性的化学成分.有些已进入临床试验阶段本文对这两类生物碱的来源,生物活性及药理作用进行了综述.关键词:目5l哚里西啶喹诺里西啶;生物碱;生物活性来源中图分类号:0692.3;R96文献标识码:A文章编号:10Ol一5094(2001)03--0152--04 SourcesandBioactivitiesofIndolizidineandQuinolizidlneAlkaloidsY ANGYan,ZHENGZhi—guo,JIMin.HUAWei—yi(1.Cev~rNewDrugRest,oh,Plwxmaceutu~lL;niver~dy,‰抑210009,China;2.p1wo,m&CheraCo.LTD,TaLdv~u318000,China.)Al~tract:IndolizidineandQuinolizidinealkaloidswerefoundintheprogationofearthandoc ean.Theycxhibitedvariousbiologicalactivities.SomeofthemwereinthephaseIclinicaltrails.Thisarticl ereviewedtheresearchprogressesofthetwokindsofalkaloids,includingtheirbiologidalactivities,phar macologicaleffectsandSources.KeyWord:Indolizidine;QuinolizidineAlkaloids;Biologicalactivity;Sources植物产生生物碱是为了抵御食草性动物,微生物和竞争性植物的侵袭这些生物碱的生物作用主要包括细胞毒性,诱变性,致癌性,抗癌性,抗菌抗病毒活性以及对动植物靶细胞生化过程的影响等[.吲哚里西啶生物碱则不仅存在于植物也存在于动物,例如从植物中分离得到的Slaframine,Swainsonine,Castanospermine及其它含菲环,甾环吲哚里西啶;从蚂蚁及两栖动物中分离得到的Polycyclic,收稿B期:200103一】2;修回日期:2001—04一10Pu—miliotoxin等;从真菌代谢物中分离得到的StreptomycesMetabodites等.喹诺里西啶生物碱则存在于海洋生和植物中.l吲哚里西啶生物碱1.1Slaframine(SL)该化合物主要存在于丝菌豆果1.它可促进动物唾液分泌,加快胃液流速,因而可作为饲料添加吲哚里西啶和喹诺里西啶生物碱的来担及药理作用剂,特别是牛的饲料添加剂.它还可改变动物胰液的分泌而不影响其胰酶的分泌.如对动物定期给SL,可提高其激素水平和血液循环代谢速度.1.2羟基取代的吲哚里西啶羟基取代的吲哚里西啶包括单取代和多取代衍生物.它们具有多种生物活性,如Swainsonine和Cas—tancspermine为糖苷酶和糖蛋白酶抑制剂,在抗肿瘤和抗病毒研究中作为工具药使用,并有抑制昆虫体内消化酶的作用.一些吲哚里西啶氨基糖苷衍生物也具有糖苷酶抑制作用.1.2.1一羟基吲哚里西啶和1,2-二羟基吲哚里西啶生物碱一一取代和二取代的吲哚里西啶可作为Swainso-nine及Slaframine的合成中间体.Harrisis研究小组已经从疯草和紫云英中分离得到一取代和1,2-二取代及Swainsonine的乙酸酯,在真菌发酵培养中也提取到了二羟基化合物,结构亦经光谱鉴定.从紫云英叶中分离出新的生物碱被命名为Lentiginosine,其异构体被命名为2一异构一Lentiginosine,这两个二醇及其二乙酸酯的绝对构型已经氢谱和碳谱确证. Lentiginosine是一种良好的淀粉葡糖苷酶抑制剂,是迄今为止发现的第一个只含两个羟基的糖苷酶抑制剂,且只对葡糖淀粉酶起作用,对其它酶不起作用.其作用机制是结构中反式排列的羟基组与葡糖淀粉酶Arg54和Asp55残基之间的强氢键相互作用. 1.2.2Swainsonine(苦马豆素)及相关化合物_6该类物质从澳大利亚苦马豆属植物果实和根中提取得到北美疯草(黄芪属植物和棘豆属植物)及澳大利亚昆士兰南部番薯属植物中也含有苦马豆素.苦马豆素为水溶性吲哚类生物碱,长期来一直是研究糖蛋白Ⅳ一连接寡糖合成的工具药.其主要药理作用有(1)抗癌作用0]:苦马豆素能抑制恶性肿瘤细胞一连接的寡糖的合成,增加肿瘤细胞对天然免疫的敏感性.肿瘤细胞通常单个细胞或宿主循环细胞的凝集形式吸附于内皮而进入继发组织,然后外渗并侵入细胞外介质.体外体内试验表明苦马豆索能减步肿瘤细胞与内皮细胞的粘附.苦马豆素能阻止人肿瘤细胞浸润细胞外基质并阻止肿瘤细胞在体内的浸润转移,降低肿瘤细胞的侵袭能力.其作用机制可能是影响细胞外间质蛋白水解酶的基因编码蛋白表达,有效地减少了细胞外间质水解酶.(2)免疫作用0]:实验表明,苦马豆素具有免疫刺激作用,在抗肿瘤作用中具有重要意义肿瘤病人常表现为免疫功能低下,包括迟发性过敏反应,NK细胞活性低下,巨噬细胞移动及吞噬作用降低.苦马豆素能使环磷酰胺等药物造成的免疫抑制荷瘤鼠体内B细胞反应保持在正常水平.还可通过增加干细胞对内源性淋巴因子的反应来增强骨髓细胞的增殖作用, 并可能在肿瘤细胞和宿主免疫系统水平介导其抗肿瘤作用.苦马豆素能刺激淋巴细胞增殖,增强抗原刺激的T细胞的作用,激活自身抗肿瘤免疫.研究还表明,由于苦马豆素抑制了连接的寡糖的合成,导致肿瘤细胞内高甘露糖糖苷的积累,故能增强肿瘤细胞对NK和LAK细胞的敏感性苦马豆素作为一种新的抗癌药物已进入I期临床研.已发现的主要不良反应有水肿,轻度的肝功能障,血清淀粉酶增高,血清VitA降低.1.2.3Castanospermine(cA)和相关化合物CA类化合物最初从南美豆荚标本中得到CA对一些鳞翅类的昆虫具有很强的抑制其食性作用.这种作用可能与其能阻断昆虫味觉器官中的吡哺糖受体有关.CA具有双糖酶抑制作用Eta_",在大鼠小肠中能拮抗蔗糖酶,麦芽糖酶,茧密糖酶的活性,因而可作为潜在的抗糖尿病药物.并因其对人类生殖器中a一糖苷酶有抑制作用而可用来探测附睾的机能.CA具有极强的抗逆转录酶病毒作用,可用于抗病毒药物对抗Ranseher鼠白血病病毒的酶联免疫吸附测定(ELISA).并且由于可以抑制H1V病毒糖蛋白的形成,进而阻断HIV引导的多合体的形成,因而可作为抗AIDS药物,在体内可同拮抗HIV 的药物AZT协同作用.CA的6-0一丁酯衍生物的抗HIV和抗白血病病毒的作用更强.但这两种化合物毒性较大且无法穿过细胞膜屏障,因而限制了它们的临床应用.CA还具有抗肿瘤作用,能抑制黑色素瘤细胞中血小板的凝聚及其酪氨酸酶的活性其还能抑制人类肝细胞瘤细胞链HepG2抗胰蛋白酶的生物合成及转运.CA为有效的免疫抑制剂,能提高心脏及十二指肠移植的成活率.其免疫抑制作用具有剂量依赖性却无相关毒性,因而可与他克林(一种高教高毒副作用的免疫抑制剂)合用,降低他可林使用的剂量,具有良好的临床应用前景.1.3从蚂蚁和两栖动物["中分离得到的生物碱从埃及,莫纳岛,非洲等地的蚂蚁和加利佛尼亚的不确定工蚊,蚁后中都分离得到具有吲哚里西啶母核的生物碱从澳大利亚,哥伦比亚西北,巴拿马,巴拿马西部高原等地的毒蛙,螗赊和青蛙的皮肤提取物中也得到了此生物碱.这些生物碱是不定型的高效非竞争性钠离子阻断剂,主要作用于烟碱受体药学进展2001年第25卷第3期它们可同时作用于钠离子通道和钙离子通道从而增强并延长大鼠横膈膜组织的电生理活性,因而有潜在的抗心率失常作用.它们还有一定的神经毒性. 1.4其它吲哚里西啶类生物碱从灌木叶中提取得到的Ju~prosinene,海洋生物被膜中提取得到的Piclavines及药薯叶中得到的|pal bidine等具有杀菌,溶血作用并对心脑血管有影响. 对许多动物有毒并呈剂量依赖性,从肉汤培养的链霉菌中得到的代谢产物具有抑制血管紧张肽转化酶的作用,从我国和东南亚植物鳞茎中提取得的含吲哚里西啶母核的甾族生物碱则具镇咳作用.菲并吲哚里西啶生物碱主要从野生和培植的萝磨科植物及其地面部分提取得到.但从新苏格兰月桂科属,萝磨科属植物的根和茎的树皮中及相关属的地面部分以及从新几内亚巴布亚岛沿海省份的小榕树叶和日本的萝磨科植物中也提取得到了这类生物碱.该生物碱具有抗菌,抗阿米巴作用,可抑制哺乳动物细胞生长",并可通过与一些核苷的DNA键台或与细胞DNA的相互作用,抑制激素依赖性胸腺癌细胞MDA—MB231的生长,具有抗肿瘤活性2哇诺里西啶生物碱2.1白羽豆碱一金雀花碱一鹰爪豆碱一红豆碱组(Lupi nine—Cyffsine—sparteine—Matrine—OrmosiaGroup)喹诺里西啶类生物碱南非植物calpurniaaurea和Readeamem—branacea的地上部分有机提取物中的主要成分为喹诺里西啶类生物碱0.从南美洲的红豆属植物的根和茎,白羽豆属植物的根,美洲及亚洲豆科的地上部分可分离得到此类生物碱,从一些寄生植物中也能获得0.喹诺里西啶类生物碱会导致牲畜慢性中毒并产生成瘾性,除导致死亡外还引起母畜不孕,流产,眙儿畸形.该生物碱可改善安非他明诱发的神经运动障碍,减少氢化泼尼松引起的鼠爪水肿感染.金雀花碱能提高离体子宫平滑肌的收缩力,使几内亚猪的气管收缩加快.2.2其它由陆地生物中得到的喹诺里西啶类生物碱:Is,J93这类喹诺里西啶类生物碱主要有Myrtine, Epimyrffne,Furylqujn0lizidjne,Furylindolizidine, Nuphar,Lythraceae,和9b-Maphenalene.其中黄睡莲生物碱Nuphar是从水生黄睡莲的根茎中提取得到的.从加拿大海狸的味腺中也分离得到了类似物.在日本和我国,黄睡莲生物碱被用来治疗许多疾病,它具有很强的免疫抑制作用和对乙酰胆碱酯酶的抑制作用.对鼠脾细胞亦有很强的细胞毒性.黄睡莲生物碱强烈抑制莴苣根和种子胚轴的成长,并且可作为杀虫剂使用.Lythraceae从澳大利亚灌木花中得到,其具有明显的镇静,抗感染,抗痉挛和利尿作用,并可能有抗精神病作用.9bAzaphenalene生物碱从欧洲瓢虫分泌物中得到0.2.3从海洋生物中得到的喹诺里西啶类生物碱Saraines[22~2{]从地中海海绵体,印度尼西亚海绵体,日本海绵体,Okinawan海洋海绵体,海洋双壳类,百慕大群岛和委内瑞拉Clavelinapicta被膜中可分离得到Saraine.其为细胞毒素,具抗菌及杀微生物作用.还可作为灭虫剂和杀螨剂,对土豆蚜虫,蚊子和两点微蜘蛛幼虫有杀灭作用.3结语新的吲哚里西啶和喹诺里西啶类生物碱不断被发现,一些具有良好的生物活性的化台物也越来越得到重视,甚至被用作抗肿瘤,抗病毒药物研究的先导化台物.因而研究和开发这两类生物碱具有重要前景.参考文献[1]GrundonMF.IndolizidineandQuinotizidineAlkaloids[J]. Prod脚,l985,2235-238[23MichaelJP.IndolizidineandQuinollaldlneAlkaloids[J. ProdPep,l995,12535-552Ea3Kni~tDW,SibleyAW.T.眦synthesisof(一),slaframinefrom(2r,3s)一3-hydroxyproline.Jc8oo脑Trar~s1.1997:2l79—2l87.]Nove~iF,SIX~atoreA.Qulnolizidlnylderivativesof5,ll dihydro-6H—pyrido[2.3-hiE1,]benzndazepin一6一oFteaslig andsformuseariniereceptors[J].0w删(Ⅻ,l999.18.303l一3034.[5]ManabeS,ShJffloManab~.Enantieselective[2.3]Sigmatrop-icRearrangementofd—PropargyloxyaceOeAcidsMediatedby BuLl一(一)一S~teineCompMx[J].6确m乩,1998,6-335—336[6]JamesLTrat0】.g1calresearchattheUSDA—ARSpoi一$onollsplantr~earehlat~ratory[J].JT,l999,8】63—80.[7]WiekwireBM.WagnerC,BroquistHP,eta1.Pepecolic AcidBic~ythcsisinRNzoetonialeguminicolaEJ].J,l990,265:l748—14753.ES]刘炳亚,林言麓.尹浩然.苦马豆索抑制胃癌生长及转纤维素类脑溶包衣材料的应用15移的实验研究[J]中华肿瘤杂志,199920:198一l7O.]WongvithoonyapornP,BuckeCSvastiJ,eta1.Separation CharacterizationandSpecificityo£—Manesida~efromvigna umbeHata[J]BB/ocA~n,1998,62:613621[10]MetkleRK.ZhangY,RuestPJ,eta1.Cloning,express- ing,purificationandcharacterizationoftheroutinelysoso—malacidⅡmanosidase[J]Bu~Mm坷,1997,1336:132.[11]CarretroJC,GomezRA.StereoselecllveSythesisofPoly hydroxylatedIndolizidinesfromY_Hydroxy",口一Unsaturat edSulfones[J-.JmCLom1998,63:29933005[12]YuKL,RuedigerE,LuoG,et.a1.NovelquinoLizidlnesal—icylarrlideinfluenzafusioninhibitors[J].Bk~rgMe/Ckem厶,1999,9:2177—2180.[133DalyJw,MartinHThomasG,eta1.Alkaloidsfrom frogskin:thediscoveryofepibatidineandthepotentialfor developingnovelnon—opioidanMgasis[Jj.No/Prod脚, 2000.17:13I135.[143SlainJ,SeoY,ChoKW.StellettamB,Anc:windolizidine AIkaloidfromAspongeofthegenusstelletta[J]JNo/Prod.1997,50:611—613[】5]MmximoP,LourencoA.NewquintdizidineMkMoidsfrom CHexjussaei[J].JProd,2000,63:201—204.[16]孟协中,胡向群,张如明,等.黄花棘豆碱性生物碱的分离与鉴定[J].中草药,1994,25(1):5l[173BarbieriF,SparatoreF,CagnolJM.Antiproliferativeactiv—ityandinteractionswithcellcyderelatedproteinsofthe organotincompoundtriethylfin(IV)Lupinylsulfidehy—drochloride[J].C/~era丑缸2001,134£2739.[18]1wagawaT,KanekoM,OkamuraH.Anewquihzidine fromthepapuaNewGuineanSpongeXestospongiaealguarJ]JProd,2000,63:1310一l311.[1g]CombrinkKD,GulgezeHB,YuKL.Salicy/amidein hibitorsofinfluenzaVirusfusion[J]BMedkm".20O0,10:164952[203TadayaY;TasakaH,ChrbaJ,eta1.Newtypeoffebrifug ineandognes,bearingaquinolizialnemoietyShowpotent antimalarialactivityagainstPlasmodiummalariaparasite [J].JMedCl~em,1999,42:3163—3166.[21]Pi~telhL,BertoliA,GiachiII.Quinoiizidinealkaloids fromGenNtaephedroides[J]Bioehem掣Keel2001,29: 137—14】.[223QureshiA,PatrickLF—IAnⅡtUl1]or andAntifungalCyclePeptidesfromtheLithlstrdspongeMi—ercselerodermasp[J].T~rakedron,2000,55:3679—3685. [233CutignanoA,BffuleG.DragmacidinF:ANewAntiviral BromoindoleAlkaloidfromtheMediterraneanSpongeHal—icortexsp[J]Tetrm~edrozl,2000,5637433478[24]AbeY,Sea.tos,HoriM,eta1.Stellettamide—A,anovelinhibllorofcalmodulth.isolatedfromamarinesponge[JJPMvrmco/,1997,121:1309—13】4.纤维素类肠溶包衣材料的应用卞筱泓,黄文龙(中国药科大学新药研究中心,江苏南京210009)摘要;纤维索类聚合物是非常重要的药甩辅料.本文介绍了近年来纤维素类肠溶包衣材料的研究概况,包括其结构,理化性质,合成策略以及在包衣中的简单和特殊应用,并介绍了一种新的包衣方法——干法包衣.关键词:纤维素类聚合物;肠溶包衣;水性包衣;干法包衣中图分类号:R9442文献标识码:A文章编号:1001—5094(2001)03—0155—05 DevelopmentofCellulosicPolymersforEntericCoatingsBIANXiao-hong,HUANGWen—long(6'enLorofNewDragsP~search,6'lmzaplmrmace~icalUeiv~siQ,Nanjiag210009,)收稿日期;2001—03—21。
抗阿尔兹海默症灯盏乙素苷元衍生物设计、合成及活性研究
背景介绍阿尔兹海默症(AD)是一种渐行性神经退行性疾病,是导致痴呆的主要原因。
灯盏乙素及其活性代谢物灯盏乙素苷元(Scutellarein)具有广泛的药理活性,包括抗氧化、神经保护、金属螯合和抗炎特性,以及改善Aβ诱导的损伤等,表明灯盏乙素可能成为治疗A D的有利药物。
基于A D这种神经退行性疾病表现出复杂的发病机制表明,人们的注意力正转向探索多靶点定向配体策略(MTDLs),即单个药物分子可以同时与疾病病理相关的多个靶点结合并调节。
本文亮点1、根据多靶点定向配体策略,以灯盏乙素苷元为骨架,通过不同的连接体,连接N,N-双取代氨基甲酸酯片段和炔丙胺,N-甲基炔丙胺片段,设计并合成抗AD灯盏乙素苷元衍生物;2、基于AD的胆碱酯酶假说和单胺氧化酶假说,根据Ellama法和Holt法,进行酶活性测试,2-(4-((二甲基氨基甲酰基)氧基)苯基)-5,6-二羟基-4-氧代-4H-色烯-7-基5-(甲基(丙-2-炔-1-基)氨基)-5-氧代戊酸酯对两种酶表现出较好的抑制活性;3、目标化合物可能是一个具有潜力的抗AD化合物,有待在抗氧化活性、金属离子螯合、肝微粒体代谢等抗AD活性实验中进一步研究。
内容介绍1 实验部分1.1主要仪器与试剂1.2实验步骤1.2.1灯盏乙素苷元的制备3mol/L硫酸-95%乙醇溶液的制备:①先配制95%乙醇:取950mL的无水乙醇于1000mL容量瓶中,用超纯水定容,摇匀,装入备用瓶。
②取163mL(18.4mol/L)浓硫酸,少量多次加入到盛有上述95%乙醇的大烧杯中,勤搅拌,待冷却后,转移至1000mL容量瓶,用95%乙醇定容,摇匀备用。
苷元的制备:取2.00g灯盏乙素于250mL的圆底烧瓶中,加入180mL的上述硫酸-乙醇溶液,80℃回流20h,至橘红色澄清液体。
反应结束后,倒入盛有2L冰水的大烧杯中,待沉淀析出完全后,抽滤,超纯水反复洗涤滤饼至中性,用无水乙醇溶解并减压旋干,得到黄色灯盏乙素苷元粗品,产率70%,直接用于下一步反应。
抗阿尔茨海默病天然产物及其药理学研究进展_李琳
银杏叶提取物对一氧化氮( nitric oxide,NO) 和神经元 型一氧化氮合酶( neuronal nitric oxide synthase,nNOS) 的表 达也有一定的影响。nNOS 神经元数目的减少伴有学习记忆 能力的下降,提示一氧化氮合酶( nitric oxide synthase,NOS)
EGb 具有增加脑血流、清除自由基和抗脂质过氧化作 用。EGb 可明显改善痴呆大鼠学习记忆功能,增加大鼠脑组 织中 SOD、GSH-Px 的活力,降低 MDA 含量,减轻海马 CAl 区 病理组织学改变,提示银杏叶提取物有较强抗自由基作用, 有一定的脑保护作用[14]。另有研究表明[15],EGb 的抗氧化 作用有可能( 或者部分) 是通过促进谷氨酸半胱氨酸合成酶 催化亚单位( glutamate cysteine ligase catalytic subunit,GCLC) 的生成实现的。
◇讲座与综述◇
抗阿尔茨海默病天然产物及其药理学研究进展
催化基础知识普及、探讨帖之五:催化期刊及投稿
催化基础知识普及、探讨帖之五:催化期刊及投稿催化基础知识普及、探讨帖之五:催化期刊及投稿催化知识普及、探讨系列帖第 5 帖——催化期刊及投稿此帖主题相信大家平时了解的比较多,恐怕也是大家最为关心的问题之一。
小木虫论文投稿专版关于此方面的介绍比较多也比较详细,且我们催化专版也有几个帖子专门进行了探讨和讨论,而我对这方面了解比较少(主要是没发过什么文章,哈哈),此帖内容主要是对网络上的一些投稿知识进行汇总(加入了少的可怜的自己对催化期刊的认识及投稿经验)。
目的还是办此系列帖的主旨:介绍催化相关基础知识、抛砖引玉、相互学习、分享经验及教训。
催化是一门跨学科、跨专业的科学,按理论上讲化学类,甚至物理等类的期刊都可以收录催化相关的文章,因此本贴并不打算介绍诸如《科学》《自然》《德国应用化学》、、、JACS 等等这些高等次的通用型期刊,此帖只局限于催化专业期刊。
简而言之:只介绍含有“催化”两字的相关期刊。
具体介绍各个催化期刊之前,有必要对现今几大出版社或数据库简要介绍一下(一般催化期刊都是这四个出版社或数据库名下的):(1)Elsevier Science 出版社Elsevier 出版的期刊是世界公认的高品位学术期刊,且大多数为核心期刊,被世界上许多著名的二次文献数据库所收录。
SDOS 目前收录1700 多种数字化期刊,该数据库涵盖了食品、数学、物理、化学、生命科学、商业及经济管理、计算机科学、工程技术、能源科学、环境科学、材料科学和社会科学等众多学科。
该数据库不仅涵盖了以上各个学科的研究成果,还提供了简便易用的智能检索程序。
通过Science Direct Onsite(SDOS)中国集团的数据库支持,用户可以使用Elsevier Science 为其特别定制的科学、技术方面的学术期刊并共享资源。
目前 (截止到 2005 年 11 月 16 日)该数据库已有期刊种数1,734,期刊期数145,078 ,文章篇数2,576,316,最早年份为1995 年。
淫羊藿苷对原代星形胶质细胞炎症反应的抑制作用
淫羊藿苷对原代星形胶质细胞炎症反应的抑制作用作者:王皓田李娜陈文芳来源:《青岛大学学报(医学版)》2020年第02期[摘要] 目的探討淫羊藿苷(ICA)对脂多糖(LPS)诱导的原代星形胶质细胞炎症反应的抑制作用。
方法将细胞种于6孔板,分为对照组、LPS组和ICA给药组。
对照组先用1 μL二甲基亚矾(DMSO)处理细胞1 h,再加入1 μL生理盐水;LPS组先用1 μL DMSO预处理细胞1 h,再加入LPS (终浓度1 mg/L)处理细胞6 h;ICA给药组先用不同浓度的ICA (0.1、1.0、10.0、20.0 μmol/L)预处理细胞1 h,然后与LPS共同孵育细胞6 h。
采用荧光定量PCR(RT-PCR)法分别检测各组细胞胶质纤维酸性蛋白(GFAP)mRNA的表达。
应用RT-PCR法检测ICA给药组(10.0 μmol/L)肿瘤坏死因子α(TNF-α)和白细胞介素1β(IL-1β) mRNA的表达,并与对照组、LPS组检测结果比较。
结果与对照组相比较,LPS组的GFAP mRNA表达明显升高(F=10.63,q=9.775,P<0.01);1.0、10.0、20.0 μmol/L的ICA均能够明显抑制LPS 诱导的GFAP mRNA的表达(q=4.496~6.111,P<0.05),以10.0 μmol/L ICA的抑制效果最明显(q=6.111,P<0.01)。
与对照组相比较,LPS组的TNF-α和IL-1β mRNA表达明显升高(F=243.50、378.60,q=30.040、36.000,P<0.01),10.0 μmol/L ICA组TNF-α和IL-1β mRNA 表达较LPS组显著降低(q=7.689、5.199,P<0.05)。
结论 ICA能够抑制LPS诱导的原代星形胶质细胞的活化和炎症反应。
[关键词] 淫羊藿甙;脂多糖;星形细胞;肿瘤坏死因子α;白细胞介素1β;神经胶质原纤维酸性蛋白质[中图分类号] Q421 ;[文献标志码] A ;[文章编号] 2096-5532(2020)02-0181-04doi:10.11712/jms.2096-5532.2020.56.094 [开放科学(资源服务)标识码(OSID)][网络出版] http:///kcms/detail/37.1517.R.20200519.1433.006.html;2020-05-19 17:25[ABSTRACT] Objective To investigate the inhibitory effect of icariin (ICA) against lipopolysaccharide (LPS)-induced inflammatory response in primary astrocytes. ;Methods Cells were seeded in a 6-well plate and divided into control group, LPS group, and ICA groups. The control group was treated with 1 μL DMSO for 1 h and then 1 μL normal saline for 6 h. The LPS group was treated with 1 μL DMSO for 1 h and then LPS (final concentration, 1 mg/L) for 6 h. The ICA groups received 1 h pretreatment with ICA at 0.1, 1.0, 10.0,and 20.0 μmol/L,respectively, followed by co-incubation with LPS for 6 h. RT-PCR was used to determine the mRNA expression of glial fibrillary acidic protein (GFAP) in all the groups, and to determine the mRNA expression of TNF-α and IL-1β in the control group, the LPS group,and the 10.0 μmol/L ICA group. ;Results Compared with the control group, the LPS group showed a significantly higher mRNA expression level of GFAP (F=10.63,q=9.775,P<0.01); LPS-induced mRNA expression of GFAP was significantly inhibited by ICA at 1.0,10.0,and 20.0 μmol/L (q=4.496-6.111,P<0.05),with the strongest inhibitory effect at 10 μmol/L (q=6.111,P<0.01). The mRNA expression levels of TNF-α and IL-1β in the LPS group were significantly higher than those in the control group (F=243.50,378.60;q=30.040,36.000;P<0.01), and also significantly higher than those in the 10.0 μmol/L ICA group (q=7.689,5.199;P<0.05). ;Conclusion ICA inhibits LPS-induced activation of primary astrocytes and inflammatory response.[KEY WORDS] icariin; lipopolysaccharides; astrocytes; tumor necrosis factor-alpha; interleukin-1beta; glial fibrillary acidic protein星形胶质细胞是中枢神经系统数量最多、分布最为广泛的一类神经胶质细胞[1],在修复再生、免疫应答、能量代谢调节、神经递质代谢、营养、突触可塑性以及血-脑脊液屏障完整性的维持等多个方面发挥重要作用[2-5]。
《金樱子三萜类多靶点抗阿尔茨海默症作用机制研究》
《金樱子三萜类多靶点抗阿尔茨海默症作用机制研究》一、引言阿尔茨海默症(AD)是一种慢性神经退行性疾病,主要表现为认知功能下降、记忆力减退等症状。
随着全球老龄化趋势的加剧,AD的发病率逐年上升,已成为严重威胁人类健康的重要疾病之一。
目前,针对AD的治疗方法主要以药物治疗为主,但疗效并不理想。
因此,寻找新的治疗方法和药物成为了迫切的需求。
金樱子作为一种传统中药材,其三萜类化合物在抗AD方面具有显著的潜力。
本文旨在研究金樱子三萜类化合物对阿尔茨海默症的多靶点作用机制,为开发新型治疗药物提供理论依据。
二、金樱子三萜类化合物的概述金樱子是一种常见的中药材,其含有丰富的三萜类化合物。
这些化合物具有多种生物活性,包括抗炎、抗氧化、抗肿瘤、抗衰老等作用。
近年来,越来越多的研究表明,金樱子三萜类化合物对神经退行性疾病如阿尔茨海默症具有显著的保护作用。
三、金樱子三萜类多靶点抗阿尔茨海默症作用机制1. 抗氧化作用:AD患者脑组织中氧化应激水平升高,导致神经元损伤。
金樱子三萜类化合物具有较强的抗氧化能力,可以清除自由基,减轻氧化应激对神经元的损伤。
2. 抗炎作用:AD的发生与炎症反应密切相关。
金樱子三萜类化合物可以抑制炎症介质的释放,减轻炎症反应,从而保护神经元。
3. 改善认知功能:金樱子三萜类化合物可以改善AD患者的认知功能,提高记忆力。
这可能与它们能够促进神经元突触的形成和功能有关。
4. 调节神经递质:金樱子三萜类化合物可以调节脑内神经递质的平衡,改善神经元的兴奋性,从而减轻神经元损伤。
5. 调节相关基因表达:金樱子三萜类化合物可以调节相关基因的表达,从而影响AD的发病过程。
例如,它们可以通过调节APP(淀粉样前体蛋白)和BACE1(β-分泌酶1)等关键基因的表达,来减少β-淀粉样蛋白的生成和积累,从而抑制阿尔茨海默症的病理进程。
6. 神经保护作用:金樱子三萜类化合物对神经元具有保护作用,可以抵抗神经元的凋亡和坏死。
《金樱子三萜类多靶点抗阿尔茨海默症作用机制研究》
《金樱子三萜类多靶点抗阿尔茨海默症作用机制研究》一、引言阿尔茨海默症(AD)是一种慢性神经退行性疾病,主要表现为认知功能下降、记忆力减退、情绪异常等症状。
随着全球老龄化趋势的加剧,AD的发病率逐年上升,已成为重要的公共卫生问题。
目前,AD的发病机制尚不完全明确,缺乏有效的治疗方法。
因此,研究AD的发病机制和寻找有效的治疗药物显得尤为重要。
金樱子作为一种传统中药材,其三萜类成分具有广泛的药理作用,包括抗肿瘤、抗炎、抗氧化等。
近年来,越来越多的研究表明金樱子三萜类成分对AD具有潜在的治疗作用。
本文旨在研究金樱子三萜类多靶点抗阿尔茨海默症的作用机制,为AD的治疗提供新的思路和方法。
二、金樱子三萜类成分及其药理作用金樱子是一种常见的中药材,其主要成分包括三萜类化合物。
这些三萜类成分具有广泛的药理作用,包括抗炎、抗氧化、抗肿瘤、保护神经等。
在AD的治疗中,金樱子三萜类成分主要通过多靶点作用机制发挥治疗作用。
三、金樱子三萜类抗阿尔茨海默症的作用机制1. 抑制β-淀粉样蛋白的沉积β-淀粉样蛋白的沉积是AD发病的重要原因之一。
金樱子三萜类成分可以通过抑制β-淀粉样蛋白的生成和聚集,减少其在脑内的沉积,从而减轻AD的症状。
2. 抗氧化作用氧化应激是AD发病的另一个重要原因。
金樱子三萜类成分具有强大的抗氧化作用,可以清除自由基,减轻氧化应激对神经细胞的损伤。
3. 调节神经递质水平金樱子三萜类成分可以调节脑内神经递质的水平,包括乙酰胆碱、多巴胺等,从而改善记忆和认知功能。
4. 抑制炎症反应炎症反应在AD的发病过程中也起着重要作用。
金樱子三萜类成分可以抑制炎症反应,减轻脑内炎症反应对神经细胞的损伤。
四、多靶点作用机制金樱子三萜类抗阿尔茨海默症的作用机制是多靶点的,不仅包括上述的抑制β-淀粉样蛋白的沉积、抗氧化、调节神经递质水平和抑制炎症反应等方面,还可能涉及其他未知的靶点和途径。
这种多靶点作用机制使得金樱子三萜类成分在AD的治疗中具有更大的优势和潜力。
噁唑霉素及其类似物的合成研究进展
噁唑霉素及其类似物的合成研究进展梁大伟;赖巴特;苏静【摘要】噁唑霉素及其类似物是由一些链霉菌产生的抗生素,它们都由3个基本骨架单元连接,其独特的生物活性和新颖的化学结构吸引了越来越多的化学与药物化学研究者的关注,从最初发现至今已经有很多研究小组报道了相关的合成研究成果。
本文作者基于3个基本组成结构单元,综述了其合成的研究进展,分析了每种合成方法所采用的关键策略,并对该类药物的全合成前景进行了展望。
%Oxazolomycin and its relevant analogs are isolated from a strain of Streptomyces ,all containing three fragments .Due to its structural originality and potent biological activities , these natural products have attracted considerable attention from the medicinal chemistry com‐munity .Since the first discovery ,several research groups have reported the synthesis of ox‐azolomycin or its analogs .Here in ,we detail the approaches taken by several research groups that are actively engaged in the synthesis of one or more of oxazolomycins based on the three fragments .The key synthetic strategies and methods of some reported routes are briefed .Mo‐reover ,suggestions are given on the development of the total synthesis of oxazolomycins .【期刊名称】《化学研究》【年(卷),期】2015(000)006【总页数】10页(P643-652)【关键词】噁唑霉素;抗生素;合成;研究进展【作者】梁大伟;赖巴特;苏静【作者单位】雅安职业技术学院药学检验系,四川雅安 625000;安斯泰来制药中国有限公司,辽宁沈阳 110041;东北制药集团沈阳第一制药有限公司,辽宁沈阳110141【正文语种】中文【中图分类】O626.24噁唑霉素A (1) 与Neooxazolomycin (2) 是1985年由日本名古屋大学、静冈大学与万有制药公司的科研人员联合从一些链霉菌中分离得到的抗生素[1-2],随后其他类似物如噁唑霉素B (3) 与噁唑霉素C (4)[3]、16-Methyloxazolomycin (5)[4-5]、Curromycin A (6) 与Curromycin B (7)[6]、KSM-2690 B (8) 与KSM-2690 C (9)[7]陆续在链霉菌中被发现,这些化合物的结构如图1,相应药理学研究显示这类化合物具有潜在而广谱的抗菌作用及体外抗肿瘤活性,能够有效地抑制人体细胞中牛痘、I型疱疹病毒与甲型流感病毒的增殖,此外,小鼠实验显示该类药物毒性较低 (LD50 = 10.6 mg/kg). 在结构特征上,这类化合物通过三烯链与(E, E)-二烯链将噁唑端位侧链与特异螺旋β-内酯/γ-内酰胺连接起来,结构差异主要在于噁唑环上取代基的不同、三烯链上双键的顺反异构与内酯环的差异. 从发现至今的三十年里,关于这类化合物的全合成或结构片段(片段A、B与C) 的合成方法学研究报道较多,已经成为有机化学家和药物化学家特别关心的研究课题之一,新的全合成路线也不断出现. 为此,本文作者对噁唑霉素及其类似物的一些主要合成研究进行了综述.从发现至今,噁唑霉素及其类似物的全合成鲜见报道. 1990年,英国罗切斯特大学的KENDE等[8]首次完成了Neooxazolomycin (2) 的立体选择性全合成;随后日本长崎大学的HATAKEYAMA等[9]在2007年也完成了对Neooxazolomycin (2) 的全合成,此外,该小组于2011年还报道了对噁唑霉素A (1) 的全合成[10]. 有很多研究小组对噁唑霉素及其类似物的全合成进行了研究,其中对于这类化合物的结构片段A、B与C的合成研究较多.1989年,KENDE等[11]首次高效对映立体选择性地合成了片段A中C-1′—C-5′部分α,α-二甲基-β-羟基羧酸酯 (14) (见图2).以Z式烯炔醛10与手性试剂11在路易酸SnCl2作用下经过Aldol加成、重排、非对映选择性得到R,S-12 (de > 99%),双键的顺式构型保持不变;然后在强碱作用下水解,羧基甲酯化得到酯13 (ee > 99%);最终,酯13在硅醚化试剂TBSOTf及碱,臭氧裂解作用下得到光学纯的α,α-二甲基-β-羟基羧酸酯 (14),其立体结构以手性Seebach二酯通过简单衍生化获得的同样产物14进行对照验证[12]. 该方法只构造了手性α,α-二甲基-β-羟基羧酸酯片段,过程较复杂,但仍为噁唑霉素的全合成奠定了重要基础.MOLONEY课题组[13]在2002年报道采用区域选择性Stille偶联反应为关键步骤合成了噁唑霉素B中片段A的三烯结构片断(图3). 醇15经过Swern氧化得到醛16;酯17依次经过溴代、膦酸酯化得化合物18;醛16与膦酸酯18在碱NaH 作用下发生Wadsworth-Emmons烯化反应得到单一化合物19,进一步碘代烯烃化合物经过Stille偶联反应得到目标(E,E,E)-三烯结构片段20b. 在此基础上,作者用同样的策略分别合成了噁唑霉素A与C中片段A的三烯侧链25b与26b(图4). 该课题组于2003年[14]采用同样的策略合成了噁唑霉素A、B与C中的片段A,详细叙述了该反应过程,并考察了三烯结构片段中Z与E式的异构化. 该方法对噁唑霉素中片段A的三烯侧链进行研究,合成路线操作简单,对于噁唑霉素的合成具有潜在应用价值,可有效地应用于噁唑霉素活性衍生物的合成中.MOLONEY课题组在完成噁唑霉素的片段A的合成研究后,又相继报道了片段B 的立体选择性合成研究[15](图5). 以丙烯醛27为原料,与1-溴-2-丁烯在三价铬与四氢铝锂的催化作用下发生Hiyama反应得到烯丙醇衍生物28,其立体化学通过二维核磁与分子模拟确定;进一步对烯丙位的羟基进行硅醚保护得化合物29,然后采用Andrus合成法[16],在催化剂AD-mix-α作用下对化合物29端位烯键进行双羟化得到比例为1∶1的非对映异构体30,高碘酸钠可将邻位二醇氧化裂解成醛,进一步使用硼氢化钠还原得到醇31,最后采用Stille偶联反应成功合成噁唑霉素的片段B (32). 该方法采用成熟的Hiyama反应与Stille偶联反应为关键步骤,且其他反应步骤也较简单,具有较好的实际应用价值.1996年,MOLONEY等[17]以简单的L-丝氨酸甲酯 (33) 为原料,采用Seebach 合成法[18],与特戊醛在碱三乙胺作用下生成噁唑烷34,然后在缩合剂EDAC、DMAP作用下与相应的羧酸反应生成主要的,可分离的顺式非对映异构体酰胺35与36,进一步在碱性条件下发生分子内Aldol反应得到特异螺旋β-内酯/γ-内酰胺37-40,其中化合物37与39的立体构型与噁唑霉素的结构片段C的立体构型相同 (图 6). 此方法以廉价易得的原料,经过简单的化学反应成功合成噁唑霉素的结构片段C,但存在噁唑烷与特异螺旋β-内酯/γ-内酰胺的非对映异构体的分离问题. 在此基础上,该课题组于2014年报道了以L-苏氨酸为原料,采用非对映选择性分子内Aldol反应策略,成功构建了系列螺旋β-内酯/γ-内酰胺衍生物,虽然产率较低,但成功获得了光学纯度较高的β-内酯/γ-内酰胺类非对映异构体,对于噁唑霉素的结构片段C的改造具有重要意义[19].TAYLOR课题组于2000年采用手性的L-脯氨酸 (41) 为起始原料[20],首先与新戊醛在酸性条件下反应生成单一非对映异构体的五元环状中间体42,同时保护羧基与氮原子;然后在有机碱LDA作用下,羰基α位引入醚侧链得化合物43,进一步在酸性条件下脱去第一步保护基新戊醛得到化合物44,同时采用Boc将氮原子保护得45,催化加氢脱去侧链的苄基得化合物46,在改进的Mitsunobu反应条件下,发生分子内成酯反应得酯47,最后采用Sharpless合成法[21],将氮原子的α位亚甲基氧化成羰基得到对映选择性的β-内酯/γ-内酰胺48 (图 7). 串联Aldol反应与内酯化反应为此条路线的关键反应步骤,原料简单易得,反应步骤易于操作,为噁唑霉素的片段C的合成提供了一种重要方法,其中只有最后一步氧化的产率较低,有待进一步改进.噁唑霉素及其类似物的合成研究主要集中于其结构片段C的构造,2006年,MOHAPATRA等[22]报道了一种新颖的β-内酯/γ-内酰胺的合成方法(图8),以手性的噁唑烷酮49与(R)-(-)-3-Boc-2,2-二甲基噁唑啉-4-甲醛50为原料,在Crimmins改进法条件下[23],经过Evans-Aldol反应[24]得到高非对映选择性产物51,进一步用硼氢化钠还原脱去噁唑烷形成二醇52,随后的保护与脱保护策略选择性的使用苄基保护二级醇羟基得54,再将侧链一级醇羟基甲磺酸酯化得化合物55,然后在对甲苯磺酸-甲醇体系中,噁唑啉开环,氨基Boc保护部位与磺酸酯成环形成新的五元吡咯烷中间体56. 在成功构造五元吡咯烷后,下一步重点为氮原子两侧引入羰基与四元内酯. 首先化合物56经过IBX-DMSO-THF氧化,然后与甲醛反应得二羟甲基衍生物57;为了保护二羟甲基结构片段,对其进行保护得异亚丙基衍生物58,随后经过四氧化钌选择性氧化得吡咯烷酮中间体59,酸性脱保护得二醇60,二醇选择性硅醚保护得化合物61,然后在高碘酸钠与三氯化钌作用下,将未保护的羟甲基氧化为羧基得62,进一步弱酸性条件脱硅醚保护而裸露醇羟基,最后在Mitsunobu条件下[25],分子内成酯,成功构建了四元环内酯的螺环中间体64,即噁唑霉素及其类似物的结构片段C. 此合成方法为噁唑霉素及其类似物的结构片段C的合成提供了一种全新的策略,但反应步骤较长,且多步反应条件较苛刻,实际应用具有一定局限性.以链状小分子为起始原料合成噁唑霉素的片段C还见于PATTENDEN等[26]的报道中(图9),作者以烯炔醇65为原料,首先对其双键进行Sharpless环氧化,然后在(-)-酒石酸二异丙酯、钛酸四异丙酯与过氧化氢异丙苯作用下构造手性中心,并进一步在DBU作用下,与三氯乙腈反应生成相应的亚胺环氧化合物66;化合物66在AlEt2Cl作用下发生环合反应生成噁唑啉67,对其羟基进行硅醚保护得化合物68,进一步稀盐酸水解得α-乙炔基胺69,并立即与2-溴丙酰基氯反应得到化合物70. 为了便于构造内酯四元环,下一步需将一级醇转变为酸基或酯基结构片断,作者采用TPAP与NMO先将醇羟基氧化为醛基,进一步经过NaClO2与NaH2PO4氧化为羧基得71,重氮甲烷对酸71进行甲酯化得酯72;甲酯72在Bu3SnH与AIBN作用下,羰基α-溴代位置与炔基成环生成主要的非对映异构体73,最后OsO4-TMEDA对环外双键进行双羟化得吡咯烷酮74,可作为合成噁唑霉素A (1) 与Neooxazolomycin (2)的片段C的前体. 关于γ-内酰胺的构造方法较多,如Michael加成-还原内酰胺法[27],串联反应法[28]等. 该方法以非手性小分子链状物为起始原料,对于立体选择性合成噁唑霉素的结构片段C具有重要方法学意义.2008年,OHFUNE等[29]以手性的3,4-二取代焦谷氨酸衍生物75为原料,经过两步简单反应得到N-甲基取代的叔丁酯76,然后催化加氢脱去苄基保护基,并进一步与氯甲酸甲酯反应得中间体77,强有机碱作用下,在化合物77的叔丁酯羰基α-位引入羧基得到化合物78a,同时伴随形成五元内酯产物78b;化合物78b 经过还原开环,醇羟基部位硒苯醚化,羧基重氮甲酯化得化合物79,硒苯醚基团在双氧水氧化条件下转变为双键产物80,最后,采用Zn(BH4)2选择性还原叔丁酯基团得化合物81,可作为合成噁唑霉素A (1) 与Neooxazolomycin (2)的片段C的前体(图10). 该方法提出了一种全新的合成噁唑霉素的结构片段C的策略,但原料来源有限,对于噁唑霉素的全合成具有一定的局限性.MONDAL等[30]在之前MOHAPATRA合成法的基础上,以交叉Cannizzaro反应与双立体差异Crimmins-Aldol反应为关键步骤合成螺环β-内酯/γ-内酰胺结构(图11).首先,手性辅助试剂82与具有相似手性五元环结构的3-Boc-2,2-二甲基噁唑啉-4-甲醛83在四氯化钛催化下发生Crimmins-Aldol反应生成84,然后经过六步常规反应构建五元吡咯烷中间体85;化合物85中的一级醇羟基在IBX-DMSO-THF反应条件下氧化为醛86,然后在碱性条件下,与甲醛在C-2位发生交叉Cannizzaro反应生成高非对映选择性的氨基甲酸内酯88,同时伴随少量二羟甲基衍生物87,化合物87在碱性条件下易于转变为氨基甲酸内酯88,后者经过Swern氧化将未成酯的一级醇羟基氧化为醛89,进一步经过常规反应转变为相应的羧酸甲酯90,然后在碱性条件下,双酯水解后,成功构建螺环β-内酯所需的结构片断中间体91,最后脱去Boc保护基及内酯化得化合物93,成功合成了噁唑霉素的片段C. 该方法与Mohapatra合成法的主要不同在于β-内酯的构建策略,以交叉Cannizzaro反应巧妙引入并保护合成β-内酯结构片段所需的羟甲基,具有重要方法学意义,但同样存在反应步骤较长,且多步反应条件较苛刻,实际应用具有一定局限性.2012年,DONOHOE等[31]以前手性的吡咯衍生物94为原料,不对称合成了螺环β-内酯/γ-内酰胺结构片段,同时包含连接结构片段C的侧链(图12). 首先,吡咯衍生物94经过部分Birch还原,与特戊酰碘甲酯连接,进一步还原二酯基团得二醇95,其具有γ-内酰胺的基本碳骨架;为了选择性的还原五元吡咯烷上的烯基双键,首先对二醇进行保护得吡咯啉衍生物96,进一步经硼烷还原,氧化得较高的区域选择性与非对映选择性的羟基吡咯啉衍生物97,邻位甲基的空间位阻可以很好地控制羟基的空间构型;戴氏-马丁试剂将羟基氧化为羰基,然后与烯丙基格氏试剂反应引入烯丙基侧链衍生物98,由于邻位甲基位阻效应,化合物98的立体选择性同样较高,进一步对烯位双键进行Grubbs II催化剂氧化与臭氧氧化裂解得α-羟基醛99;然后利用醛基易于衍生化的特点引入手性侧链得到理想的单一非对映异构体二醇衍生物100,再在Meerwein试剂作用下对侧链上的羟基甲醚化,臭氧氧化裂解侧链双键,还原乙酰化成酯101,氮原子邻位亚甲基经RuO2氧化羰基化,进一步氮脱Boc保护并甲基化得化合物102;化合物102在高浓度三氟醋酸作用下脱去MOM保护基,羟甲基经连续两步氧化过程转变为羧基衍生物103,对化合物103中羧基进行硅烷酯保护,侧链乙酸酯水解,Swern氧化得醛104;最后采用Nozaki-Hiyama-Kishi偶联反应策略,化合物104与碘代烯烃衍生物偶联,进一步被戴氏-马丁试剂氧化,(S)-2-甲基-CBS-氧杂硼啶作用下BH3·SMe2非对映选择性还原得到较高非对映选择性产物105,侧链硅酯保护基易于脱保护及分子内成酯构建β-内酯结构片段,可作为噁唑霉素A的合成原料. 该方法有效的不对称合成了噁唑霉素A中含有复杂侧链的吡咯烷酮结构片段,但仍然存在反应步骤较长,使用试剂较特殊等缺点,对实际噁唑霉素的全合成具有一定的限制性.噁唑霉素及其类似物的结构复杂性虽然给全合成工作带来了巨大挑战,但这类化合物具有广泛且独特的生物活性以及潜在临床实验的需求,已经引起了越来越多的有机化学家与药物化学家的关注. 根据这一领域的发展趋势以及对噁唑霉素及其类似物研究现状的了解,本文作者认为在今后相当长的时间内噁唑霉素及其类似物的全合成仍将是全合成化学研究的热点之一,主要研究将集中在引入新的方法学策略,设计全新的、高效的全合成路线,以及对已报道的合成路线的优化等方面.【相关文献】[1] MORI T, TAKAHASHI K, KASHIWAHARA M, et al. Structure of oxazolomycin, a novel β-lactone antibiotic [J]. Tetrahedron Lett, 1985, 26(8): 1073-1076.[2] TAKAHASHI K, KAWABATA M, UEMURA D, et al. Structure of neooxazolomycin, an antitumor antibiotic [J]. Tetrahedron Lett, 1985, 26(8): 1077-1078.[3] KANZAKI H, WADA K, NITODA T, et al. Novel bioactive oxazolomycin isomers produced by Streptomyces albus JA3453 [J]. Biosci Biotechnol Biochem, 1998, 62(3): 438-442.[4] RYU G, HWANG S, KIM S K. 16-Methyloxazolomycin, a new antimicrobial and cytotoxic substance produced by a Strepto myces sp. [J]. J Antibiot, 1997, 50(12): 1064-1066.[5] RYU G, KIM S K. Absolute stereochemistry determination of 16-methyloxazolomycin produced by a Streptomyces sp. [J]. J Antibiot, 1999, 52(2): 193-197.[6] OGURA M, NAKAYAMA H, FURIHATA K, et al. Structure of a new antibiotic curromycina produced by a geneticality modified atrain of Streptomyces hygroscopicus, a polyether antibiotic producing organism [J]. J Antibiot, 1985, 38(5): 669-673.[7] OTANI T, YOSHIDA K I, KUBOTA H, et al. Novel triene-β-lactone antibiotics, oxazolomycin derivative and its isomer, produced by Streptomyces sp. KSM-2690 [J]. J Antibiot, 2000, 53(12): 1397-1400.[8] KENDE A S, KAWAMURA K, DEVITA R J. Enantioselective total synthesis of neooxazolo mycin [J]. J Am Chem Soc, 1990, 112(10): 4070-4072.[9] ONYANGO E O, TSURUMOTO J, IMAI N, et al. Total synthesis of neooxazolomycin [J]. A ngew Chem Int Ed, 2007, 46(35): 6703-6705.[10] ETO K, YOSHINO M, TAKAHASHI K, et al. Total synthesis of oxazolomycin A [J]. Org Le tt, 2011, 13(19): 5398-5401.[11] KENDE A S, KAWAMURA K, ORWAT M J. Enantioselective synthesis of the α,α-dimethyl-β-hydroxyacid subunit of the oxazolomycin antibiotics[J]. Tetrahedron Lett, 1989, 30(43): 5821-5824.[12] WASMUTH D, ARIGONI D, SEEBACH D. Zum stereochemischen verlauf der biosynthese von 2-oxo-pantolacton: synthese von stereospezifisch indiziertem pantolacton aus äpfelsäure [J]. Hel v Chim Acta, 1982, 65(1): 344-352.[13] BULGER P G, MOLONEY M G, TRIPPIER P C. A multicomponent coupling strategy for t he synthesis of the triene component of the oxazolomycin antibiotics [J]. Synlett, 2002, 18 71-1873.[14] BULGER P G, MOLONEY M G, TRIPPIER P C. A multicomponent coupling strategy suit able for the synthesis of the triene component of the oxazolomycin antibiotics [J]. Org Bio mol Chem, 2003, 1(21): 3726-3737.[15] WANG Z, MOLONEY M G. Synthesis of the middle fragment of oxazolomycin [J]. Tetr ahedron Lett, 2002, 43(52): 9629-9632.[16] ANDRUS M B, LEPORE S D, TURNER T M. Total synthesis of stipiamide and designed polyenes as new agents for the reversal of multidrug resistance [J]. J Am Chem Soc, 1997,119(50): 12159-12169.[17] ANDREWS M D, BREWSTER A G, MOLONEY M G. Highly functionalised pyroglutamat es by intramolecular aldol reactions: Towards the pyroglutamate skeleton of oxazolomyci n [J]. Synlett, 1997, 612-614.[18] SEEBACH D, AEBI J D. α-Alkylation of serine with self-reproduction of the center of chirality [J]. Tetrahedron Lett, 1984, 25(24): 2545-2548. [19] HEAVISIDE E A, MOLONEY M G, THOMPSON A L. Diastereoselective intramolecular al dol ring closures of threonine derivatives leading to densely functionalised pyroglutamate s related to oxazolomycin [J]. RSC Adv, 2014, 4: 16233-16249.[20] PAPILLON J P N, TAYLOR R J K. The first syntheses of the 1-oxo-2-oxa-5-azaspiro[3.4]octane ring system found in oxazolomycin [J]. Org Lett, 2000, 2(14): 1987-1990.[21] CARLSEN P H G, KATSUKI T, MARTIN V S, et al. A greatly improved procedure for ruth enium tetroxide catalyzed oxidations of organic compounds [J]. J Org Chem, 1981, 46(19): 3936-3938.[22] MOHAPATRA D K, MONDAL D, GONNADE R G, et al. Synthesis of the spiro fused β-lactone-δ-lactam segment of oxazolomycin [J]. Tetrahedron Lett, 2006, 47(34): 6031-6035.[23] CRIMMINS M T, KING B W, TABET E A, et al. Asymmetric aldol additions: use of titani um tetrachloride and (-)-sparteine for the soft enolization of N-acyl oxazolidinones, oxazolidinethiones, and thiazolidinethiones [J]. J Org Chem, 2001, 66( 3): 894-902.[24] EVANS D A, BARTROLI J, SHIH T L. Enantioselective aldol condensations. 2. erythro-selective chiral aldol condensations via boron enolates [J]. J Am Chem Soc, 1981, 103(8): 2 127-2129.[25] MITSUNOBU O. The use of diethyl azodicarboxylate and triphenylphosphine in synth esis and transformation of natural products [J]. Synthesis, 1981: 1-28.[26] BENNETT N J, PRODGER J C, PATTENDEN G. A synthesis of a common intermediate t o the lactone-pyrrolidinone ring systems in oxazolomycin A and neooxazolomycin [J]. Tetrahedron, 200 7, 63(27): 6216-6231.[27] XU J, LI X, WU J, et al. Synthesis of 5-alkyl-5-aryl-γ-lactams from 1-aryl-substituted nitroalkanes and methyl acrylate via Michael addition and reductive lactamizat ion [J]. Tetrahedron, 2014, 70(25): 3839-3846.[28] ZHANG X, SUN X, RAO W. TfOH-catalyzed tandem reactions of cyclopropyl alcohols with sulfonamides for the synthesis of pyrrolidines [J]. Chin J Org Chem, 2015, doi: 10.6023/cjoc201501036.[29] YAMADA T, SAKAGUCHI K, SHINADA T, et al. Efcient asymmetric synthesis of the functionalized pyroglutamate core unit common to oxazolomycin and neooxazolomycin using Michael reaction of nucleophilic glycine Schiff base with α,β-disubstituted acrylate [J]. Tetrahedron: Asymmetry, 2008, 19(24): 2789-2795.[30] MONDAL D, BERA S. A synthetic view of an analogue of the spiro-β-lactone-γ-lactam ring in oxazolomycins and lajollamycin [J]. Synthesis, 2010: 3301-3308.[31] DONOHOE T J, O′RIORDAN T J C, PEIFER M, et al. Asymmetric synthesis of the fully el aborated pyrrolidinone core of oxazolomycin A [J]. Org Lett, 2012, 14(21): 5460-5463.。
选择性封闭卡那霉素A耐药酶羟基衍生物的合成(英文)
选择性封闭卡那霉素A耐药酶羟基衍生物的合成(英文)陈颖;孟祥豹;陈桂辉;潘攀;李中军
【期刊名称】《中国药学:英文版》
【年(卷),期】2008(17)2
【摘要】为寻找能抵抗耐药酶作用的氨基糖苷类抗生素,本文对卡那霉素A的3′-OH,4′-OH和2″-OH位点进行了修饰。
合成路线中的关键中间体为引入双苄叉保护基的卡那霉素A衍生物。
目标羟基通过苄基化,甲基化和烯丙基化的方法进行修饰。
最后通过多步反应脱保护,得到目标产物。
活性结果显示,目标产物对敏感菌和耐药菌未显示出良好的抗菌活性。
【总页数】6页(P138-143)
【关键词】氨基糖苷;卡那霉素A衍生物;耐药酶;区域选择性
【作者】陈颖;孟祥豹;陈桂辉;潘攀;李中军
【作者单位】北京大学药学院天然药物及仿生药物国家重点实验室化学生物学系【正文语种】中文
【中图分类】R916.4
【相关文献】
1.多羟基吡咯烷衍生物的立体选择性合成 [J], 李小六;田军;徐晓明;侯银菊
2.酶促选择性合成阿糖胞苷氨基酸衍生物 [J], 张明;陈志春;吕德水;林贤福
3.阿糖胞苷衍生物的可控选择性酶促合成与表征 [J], 王雅娟;权静;於洋;朱利民
4.3-甲基-1-磺酸咪唑硫酸氢盐催化剂用于四组分一锅法合成不对称聚羟基喹啉衍生物(英文) [J], Nader Ghaffari Khaligh
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Molecular Catalysis B:Enzymatic23(2003)9–16Enzymatic synthesis of novel antioxidantflavonoids byEscherichia coli cells expressing modified metabolic genesinvolved in biphenyl catabolismKazutoshi Shindo a,∗,Yukiko Kagiyama a,Ryoko Nakamura a,Akihiro Hara b, Hiroshi Ikenaga b,Kensuke Furukawa c,Norihiko Misawa ba Department of Food and Nutrition,Japan Women’s University,2-8-1,Mejirodai,Bunkyo-ku,Tokyo112-8681,Japanb Marine Biotechnology Institute,Heita,Kamaishi026-0001,Japanc Graduate School of Bioresource and Bioenvironmental Sciences,Kyushu University,Hakozaki,Fukuoka812-8581,JapanReceived7February2003;received in revised form4March2003;accepted4March2003AbstractThe bpha1(2072)A2A3A4gene cluster codes for a modified biphenyl dioxygenase holoenzyme with broad substrate speci-ficity.In the previous report,we have shown the biotransformation offlavone,flavanone,6-hydroxyflavone and6-hydroxyfla-vanone by Streptomyces lividans cells carrying bphA1(2072)A2A3A4.In the present study,we successfully biotransformed chalcone and7-hydroxyisoflavone,which are categorized with other groups offlavonoids,by using recombinant Escherichia coli cells expressing the same genes.We also biotransformed variousflavonoids by E.coli cells expressing the bphB (dihydrodiol dehydrogenase)gene in addition to the bphA1(2072)A2A3A4genes.Flavone,flavanone,6-hydroxyflavone, 6-hydroxyflavanone,chalcone,and7-hydroxyisoflavone,which were used as substrates,were converted with high efficiency to their corresponding diols,whose structures were determined by HREI-MS,1H NMR and13C NMR data.The antioxidative activity of these generated diol compounds was markedly higher than that of the substrates used.©2003Elsevier Science B.V.All rights reserved.Keywords:Biphenyl dioxygemase;Dihydrodiol dehydrogenase;Flavonoid;Antioxidant;Biotransformation;Escherichia coli1.IntroductionThe degradation of polychlorinated biphenyls (PCBs),which are serious environmental pollu-tants,is enzymatically initiated by the action of biphenyl dioxygenase,as has been elucidated for the biphenyl-degrading bacteria,Pseudomonas pseudoal-caligenes KF707and Burkholderia cepacia LB400 [1,2].Biphenyl dioxygenase is a multi-component en-∗Corresponding author.Tel.:+81-3-5981-3433;fax:+81-3-5981-3426.E-mail address:kshindo@fc.jwu.ac.jp(K.Shindo).zyme consisting of BphA1,BphA2(large and small subunits of iron–sulfur protein,respectively),BphA3 (ferredoxin),and BphA4(ferredoxin reductase).This enzyme(BphA)is responsible for the conversion of a biphenyl to its dihydrodiol,which is further converted to2,3-dihydroxybiphenyl by the subsequent dehydro-genation(desaturation)catalyzed by BphB(Fig.1). Modified bphA1genes have recently been gener-ated by DNA shuffling,using the bphA1genes derived from P.pseudoalcaligenes KF707and B.cepacia LB400[3].One of the shuffled genes,bphA1(2072), has been shown to mediate with broad substrate specificity,when expressed in combination with1381-1177/03/$–see front matter©2003Elsevier Science B.V.All rights reserved. doi:10.1016/S1381-1177(03)00038-910K.Shindo et al./Journal of Molecular Catalysis B:Enzymatic 23(2003)9–16Fig. 1.Biphenyl catabolic pathway for P .pseudoalcaligenes KF707and B.cepacia LB400.Key to compounds:I,biphenyl;II,3-phenylcyclohexa-3,5-diene-1,2-diol (dihydrodiol compound);III,2,3-dihydroxybiphenyl (3-phenylbenzene-1,2-diol);IV ,2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (meta -cleavage compound);V ,benzoic acid.Key to enzymes:BphA (BphA1A2A3A4),biphenyl dioxygenase;BphB,dihydrodiol dehydrogenase (desaturase);BphC,2,3-dihydroxybiphenyl dioxygenase;BphD,meta -cleavage compound hydrolase.bphA2A3A4from P .pseudoalcaligene [4].Various molecular species,in which heterocyclic aromatics are linked with phenyl or benzyl groups,could be converted with high efficiency to the corresponding dihydrodiols and/or monohydroxy derivatives by re-combinant Escherichia coli or Streptomyces lividans strains carrying the modified biphenyl dioxygenase genes [bphA1(2072)A2A3A4][4,5].However,it is not clear whether the dihydrodiols generated would be capable of being used as substrates for BphB to synthesize the corresponding diols.Flavonoid pigments are universally distributed in higher plants and are the source of the yellow and orange to blue colors in petals,fruits,leaves and roots [6].Flavonoids have recently attracted con-siderable attention due to their beneficial effect on health,e.g.their antioxidative activity is considered to be of medical and nutritional importance.Al-though 6467flavonoids in nature are listed in The Handbook of Natural Flavonoids [7],the biologi-cal transformation of these flavonoids has not been well studied.It may be a feasible approach to pro-duce “unnatural”natural flavonoids by enzymatic conversion.This conversion is likely to be mediated by modified biphenyl dioxygenase,since flavonoids also have the molecular structure of a heteroaromatic ring (such as a chromone ring)linked with a phenyl group.In the previous study [8],we successfully transformed flavone,flavanone,6-hydroxyflavone and 6-hydroxyflavanone by S.lividans cells expressing bphA1(2072)A2A3A4genes.In this case,the products generated were not the corresponding dihydrodiols but diols,and/or the monohydroxy derivatives,as shown in Fig.2.We report in this present paper the biotransforma-tion of chalcone and 7-hydroxyisoflavone by E.coli cells expressing the same genes.We further show the efficient bioconversion of flavone,flavanone,6-hydroxyflavone,6-hydroxyflavanone,chalcone and 7-hydroxyisoflavone to their corresponding diols by E.coli cells expressing the bphB gene in ad-dition to bphA1(2072)A2A3A4.The antioxidative activity of the generated diol compounds is also examined.2.Experimental2.1.Plasmids,bacterial strains,and growth conditionsPlasmid pKF2072carrying the bphA1(2072)A2A3-A4genes for their expression in E.coli has previ-ously been described [4].E.coli JM109[9]was used as a host for plasmid pKF2072and the other plas-mid (pBS2072B),and was cultured in an LB medium or M9medium [9]at 30or 37◦C.Ampicillin (Ap,150g/ml)was added when needed.2.2.Construction of the plasmidThe 1.9kb Xba I-Bgl II fragment,which con-tains bphA1(2072),was isolated from plasmid pKF2072.The 3.78kb Bgl II-Cla I fragment carry-ing the bphA2A3A4and bphB genes of P .pseu-doalcaligenes KF707was isolated from plasmid pJHF18[10].Both of these fragments were inserted together into the Xba I-Cla I site of pBluescript IIK.Shindo et al./Journal of Molecular Catalysis B:Enzymatic 23(2003)9–1611Fig.2.Bioconversion of various flavonoids by using the cells of E.coli carrying modified biphenyl dioxygenase genes [bphA1(2072)A2A3A4]and by using the dihydrodiol dehyrogenase gene (bphB )in addition to these dioxygenase genes.The percentage values in parentheses represent the yield of each purified product.SK,creating plasmid pBS2072B.In this plasmid,the bphA1(2072)::bphA2A3A4bphB genes were in-serted in an orientation to give the transcriptional read-through from the lac promoter of the vector.The respective DNA sequences of the bphA1(2072)gene and the bphA2A3A4bphB genes are available from DDBJ/Genbank under accession numbers AB085748and M83673.2.3.Conversion experimentsE.coli JM109harboring pKF2072or pBS2072B was grown in an LB medium containing Ap at 30◦C while reciprocally shaking at 175rpm (rotation per minute)for 8h.Five milliliters of this culture was inoculated into 100ml of an M9medium containing 150g/ml of Ap,10g/ml of thiamine,and 0.4%12K.Shindo et al./Journal of Molecular Catalysis B:Enzymatic23(2003)9–16(w/v)glucose in a Sakaguchiflask at30◦C while re-ciprocally shaking at175rpm for16–17h until theabsorbance at OD600nm had reached approximately1.One millimolar(final concentration)of isopropyl -d-thiogalactopyranoside(IPTG)was added to the culture,and cultivation was continued for a further4h.The cells were collected by centrifugation,washedonce with the M9medium,and then resuspended in100ml of a fresh M9medium containing150g/ml ofAp,10g/ml of thiamine,0.4%(w/v)glucose,1mM(final concentration)of IPTG,and10mg of each sub-strate,before being cultivated in a Sakaguchiflaskat30◦C while reciprocally shaking at175rpm for2days.The substrates used in this study were purchasedfrom Aldrich Chemical Co.,Sigma Chemical Co.orMaybridge Chemical Co.The respective substrateswere dissolved in small volume of DMSO and addedto the culture.2.4.Extraction and HPLC analysis of theconverted productsTo extract the converted products as well as thesubstrates,a volume of methanol(MeOH)equal tothat of the culture medium was added to the co-cultureof the transformed cells of E.coli,and mixed for30min.After centrifuging to remove the cells,theliquid phase was analyzed by high-pressure liquidchromatography(HPLC)or used for further purifi-cation of the converted products.The liquid phase(80l)was applied to HPLC in an XTerra C18col-umn(4.6mm×150mm,Waters)with a photodiodearray detector(model L-7455,Hitachi).Developmentwas at aflow rate of1ml/min with solvent A(5%acetonitrile(CH3CN)and20mM phosphoric acid)for3min,then by a linear gradient from solvent A tosolvent B(95%CH3CN and20mM phosphoric acid)for15min,andfinally with solvent B for10min,themaximum absorbance being monitored in the rangeof200–500nm.2.5.Purification and identification of theconverted productsThe liquid phase(1400ml),which had been ob-tained by the procedure just described,was con-centrated in vacuo and extracted with ethyl acetate (EtOAc;500ml×2).The resulting organic layer wasconcentrated in vacuo and analyzed by thin-layer chro-matography(TLC)on silica gel(E.Merck60F-2540.25mm silica gel plates).The formed productswere purified by column chromatography on SilicaGel60(20mm×250mm,Merck).Their structureswere analyzed by mass spectral data(MS(EI)andHRMS(EI);Jeol DX505W)and nuclear magneticresonance(NMR)spectral data(400MHz,BrukerAMX400).2.5.1.3-(2,3-Dihydroxycyclohexa-1(6),4-dienyl)-7-hydroxychromen-4-oneThe compound1is a product converted from7-hydroxyisoflavone by modified bphA.The crudeEtOAc extract(55.9mg)was subjected to columnchromatography(dichloromethane(CH2Cl2)–EtOAc =10:1)to yield47.0mg of1.MS(EI)m/z272(M+). HRMS(EI)calcd.for C15H12O5(M+),272.0683;found272.0685.1H NMR(DMSO-d6)δ:4.19(1H,m),4.31(1H,m),5.81(dd,1H,J=2.0,9.6Hz),5.93(ddd,1H,J=2.4,5.7,9.6Hz),6.42(d,1H, J=5.3Hz),6.84(d,1H,J=2.6Hz),6.91(dd, 1H,J=2.6,8.8Hz),7.92(d,1H,J=8.8Hz).13C NMR(DMSO-d6)δ:67.0(C-2 ),69.4(C-1 ),102.0 (C-8),115.3(C-6),116.3(C-4),122.7(C-5 ),122.9 (C-3),123.9(C-4 ),127.2(C-5),132.5(C-3 ),133.0 (C-6 ),153.0(C-2),157.2(C-8a),162.6(C-7),175.4 (C-4).2.5.2.3-(2-Hydroxyphenyl)-1-phenylpropan-1-one(2:product converted from(trans)-chalcone bymodified bphA)The crude EtOAc extract(187.0mg)was subjectedto column chromatography(hexane–EtOAc=4:1)to yield24.9mg of2.MS(EI)m/z226(M+).HRMS(EI)calcd.for C15H14O2(M+),226.0994;found226.0992.1H NMR(CDCl3)δ:2.98(t,2H, J=6.2Hz),3.38(t,2H,J=6.2Hz),6.78(ddd, 1H,J=1.1,7.1,7.4Hz),6.86(dd,1H,J=1.1, 7.0Hz),7.05(dd,1H,J=7.0,7.4Hz),7.06(d,1H, J=7.1Hz),7.38(dd,1H,J=7.4,7.4Hz),7.50 (dd,1H,J=7.4,7.4Hz),7.91(d,1H,J=7.4Hz). 13C NMR(CDCl3)δ:23.5(C-1),29.7(C-2),117.4 (C-6 ),120.7(C-4 ),127.7(C-2 ),127.9(C-5 ),128.3 (C-5),128.3(C-9),128.6(C-6),128.6(C-8),130.5 (C-3 ),133.7(C-7),136.0(C-4),154.5(C-1 ),202.0 (C-3).K.Shindo et al./Journal of Molecular Catalysis B:Enzymatic23(2003)9–16132.5.3.2-(2,3-Dihydroxyphenyl)chromen-4-one(3:product converted fromflavone by modifiedbphA+bphB)The crude EtOAc extract(189.9mg)was subjectedto column chromatography(CH2Cl2–MeOH=30:1)to yield30.0mg of3.MS(EI)m/z254(M+).HRMS(EI)calcd.for C15H10O4(M+),226.09940;found226.09942.1H NMR(DMSO-d6)δ:6.82(dd,1H,J=7.9,7.9Hz),6.98(dd,1H,J=1.8,7.9Hz),7.11(s,1H),7.35(dd,1H,J=1.8,7.9Hz),7.47(dd,1H, J=7.9,7.9Hz),7.71(d,1H,J=8.0Hz),7.80(ddd, 1H,J=1.8,7.9,7.9Hz),8.03(dd,J=1.8,7.9,7.9Hz).13C NMR(DMSO-d6)δ:111.0(C-3),117.6(C-6 ),118.3(C-3 ),118.4(C-8),118.5(C-4 ),119.2(C-5 ),123.1(C-4a),124.7(C-5),125.2(C-6),134.1(C-7),145.3(C-2 ),145.9(C-1 ),155.8(C-8a),161.1(C-2),177.2(C-4).2.5.4.2-(2,3-Dihydroxyphenyl)chroman-4-one(4:product converted fromflavanone by modifiedbphA+bphB)The crude EtOAc extract(103.2mg)was subjectedto column chromatography(CH2Cl2–MeOH=20:1)to yield68.0mg of4.MS(EI)m/z256(M+).HRMS(EI)calcd.for C15H12O4(M+),226.0994;found226.0994.1H NMR(DMSO-d6)δ:2.76(dd,1H,J=13.4,16.5Hz),3.16(dd,1H,J=3.0,16.5Hz),5.78(dd,1H,J=3.0,13.4Hz),6.70(dd,1H,J=7.9,7.9Hz),6.80(dd,1H,J=1.2,7.9Hz),6.93(dd,1H, J=1.2,7.9Hz),7.07(d,1H,J=7.9Hz),7.08(dd, 1H,J=7.9,7.9Hz),7.57(ddd,1H,J=1.8,7.9, 7.9Hz),7.79(dd,1H,J=1.8,7.9Hz).13C NMR (DMSO-d6)δ:42.5(C-3),74.4(C-2),115.1(C-4 ), 117.0(C-6 ),118.0(C-8),119.1(C-5 ),121.3(C-6), 125.8(C-4a),126.1(C-3 ),126.4(C-5),136.2(C-7), 140.7(C-2 ),145.2(C-1 ),161.5(C-8a),192.0(C-4).2.5.5.2-(2,3-Dihydroxyphenyl)-6-hydroxychromen-4-one(5:product converted from6-hydroxyflavoneby modified bphA+bphB)The crude EtOAc extract(309.5mg)was subjectedto column chromatography(CH2Cl2–MeOH=5:1)to yield31.5mg of5.MS(EI)m/z270(M+).HRMS(EI)calcd.for C15H10O5(M+),270.0528;found270.0522.1H NMR(DMSO-d6)δ: 6.78(dd,1H, J=7.4,7.4Hz),6.95(dd,1H,J=1.8,7.4Hz),7.05 (s,1H),7.22(dd,1H,J=3.5,8.6Hz),7.29(d,1H, J=3.5Hz),7.30(dd,1H,J=1.8,7.4Hz),7.57(d,1H,J=8.6Hz).13C NMR(DMSO-d6)δ:107.4(C-5),110.0(C-3),117.3(C-6 ),118.4(C-3 ),118.4(C-4 ),118.4(C-5 ),119.7(C-8),122.9(C-7),124.0(C-4a),145.5(C-2 ),146.0(C-1 ),149.5(C-8a),154.7(C-6),160.9(C-2),177.1(C-4).2.5.6.2-(2,3-Dihydroxyphenyl)-6-hydroxychroman-4-one(6:product converted from6-hydroxyflavanoneby modified bphA+bphB)The crude EtOAc extract(170.7mg)was subjectedto column chromatography(CH2Cl2–MeOH=20:1)to yield23.9mg of6.MS(EI)m/z272(M+).HRMS(EI)calcd.for C15H12O5(M+),272.0685;found272.0685.1H NMR(DMSO-d6)δ: 2.68(dd,1H, J=2.4,16.4Hz),3.06(dd,1H,J=13.4,16.4Hz), 5.65(dd,1H,J=2.4,13.4Hz),6.68(dd,1H,J=7.3,7.3Hz),6.77(d,1H,J=7.3Hz),6.91(d,1H, J=7.3Hz),6.92(d,1H,J=8.8Hz),7.02(dd,1H, J=3.2,8.8Hz),7.10(d,1H,J=3.2Hz).13C NMR (DMSO-d6)δ:42.7(C-3),74.4(C-1),110.0(C-5), 115.0(C-8),115.0(C-6 ),117.0(C-4 ),119.0(C-5’), 120.7(C-4a),124.5(C-7),126.1(C-3 ),142.4(C-2 ), 145.2(C-1 ),151.5(C-6),154.9(C-8a),192.3(C-4).2.5.7.3-(2,3-Dihydroxyphenyl)-7-hydroxychromen-4-one(7:product converted from7-hydroxyisoflavone by modified bphA+bphB)The crude EtOAc extract(118.0mg)was subjected to column chromatography(hexane–EtOAc=2:1)to yield56.4mg of7.MS(EI)m/z270(M+).HRMS (EI)calcd.for C15H10O5(M+),270.0528;found 270.0522.1H NMR(DMSO-d6)δ:6.63(dd,1H,J= 2.4,7.7Hz),6.66(dd,1H,J=7.1,7.7Hz),6.79(dd, 1H,J=2.4,7.1Hz),6.87(d,1H,J=2.1Hz),6.93 (dd,1H,J=2.1,8.8Hz),7.94(d,1H,J=8.8Hz). 13C NMR(DMSO-d6)δ:102.1(C-8),115.2(C-6), 115.2(C-6 ),116.5(C-4a),118.7(C-5 ),120.1(C-3 ), 121.7(C-4 ),122.1(C-3),127.2(C-5),143.8(C-2 ), 145.6(C-1 ),154.6(C-2),157.5(C-8a),162.1(C-7), 174.9(C-4).2.5.8.3-(2,3-Dihydroxyphenyl)-1-phenylpropan-1-one(8:product converted from(trans)-chalcone by modified bphA+bphB)The crude EtOAc extract(187.0mg)was subjected to column chromatography(hexane–EtOAc=4:1)to yield58.5mg of8.MS(EI)m/z242(M+).HRMS(EI) calcd.for C15H14O3(M+),242.0943;found242.0944.14K.Shindo et al./Journal of Molecular Catalysis B:Enzymatic23(2003)9–161H NMR(DMSO-d6)δ:2.85(t,2H,J=7.3Hz), 3.25(t,2H,J=7.3Hz),6.52(dd,1H,J=7.5,7.5Hz),6.57(d,1H,J=7.5Hz),6.63(d,1H,J=7.5Hz),7.50(dd,2H,J=7.6,8.6Hz),7.61(dd,1H, J=7.6,7.6Hz),7.96(d,2H,J=8.6Hz).13C NMR (DMSO-d6)δ:24.8(C-1),38.2(C-2),113.3(C-6 ),118.7(C-5 ),120.2(C-4 ),127.8(C-5),127.8(C-9),128.0(C-2 ),128.7(C-6),128.7(C-8),133.0(C-7),136.6(C-4),143.1(C-2 ),144.9(C-1 ),199.6(C-3).2.6.In vitro inhibitory activity against lipidperoxidationA rat brain homogenate was prepared according tothe method of Kubo et al.[11]with some modifica-tions.In brief,a male Wistar rat weighting about300gwas intraperitoneally anaesthetized with sodium pen-tobarbital(50mg/kg),and the brain was transcardiallyperfused with10mM phosphate-buffered saline(pH7.4)to completely remove blood from the brain.Afterkilling by decapitation,the whole brain,except forthe cerebellum,was immediately homogenized witha Teflon homogenizer for30s in15ml of an ice-cold100mM phosphate buffer(pH7.4).The reaction mix-ture for the assay consisted of0.5%(w/v)of the ho-mogenate,100M sodium ascorbate as an initiator forthe generation of oxygen radicals,and a sample dis-solved in MeOH.The mixture was incubated at37◦Cfor1h while reciprocally agitating.Malondialdehyde(MDA)was stoichiometrically formed in the reactionmixture according to the concentration of lipid per-oxides.MDA thus formed was allowed to react withthiobarbituric acid for spectrophotomeric quantifica-tion at532nm.The percentage inhibition was calcu-lated as follows:(1−(T−B)/(C−B))×100(%),inwhich T,C and B are respectively the A532readings ofthe treatment drug,the control(peroxidation withouta drug)and the zero time control(no peroxidation).3.Results3.1.Biotransformation of theflavonoids withmodified bphARespectiveflavonoids were biotransformed throughthe co-cultivation with the cells of E.coli carryingplasmid pKF2072,which expresses the modified biphenyl dioxygenase genes[bphA1(2072)A2A3A4].The products converted were analysed by chromato-graphic and spectroscopic methods.3.1.1.Flavone,flavanone,6-hydroxyflavone and6-hydroxyflavanoneThe products,which were converted fromflavone,flavanone,6-hydroxyflavone and6-hydroxyflavanone,were compared by TLC and HPLC with the authenticsamples[8]to confirm their identities as shown inFig.2.3.1.2.7-HydroxyisoflavoneThe molecular formula of the product1was deter-mined to be C15H12O5by HRMS(EI)and1H NMRand13C NMR spectral data.An analysis of the DQFCOSY and HMQC spectra of1indicated1to be thedihydrodiol derivative of the phenyl side chain.The1 ,2 -diol regiochemical assignment was confirmed bythe long-range1H-13C coupling from H-4 (δ,6.42)to C-3(δ,122.9)and C-2 (δ,67.0).Thesefindingsindicated1to be3-(2,3-dihydroxycyclohexa-1(6),4-dienyl)-7-hydroxychromen-4-one(Fig.2).Product1was a novel compound,the yield of the purified prod-uct being shown in Fig.1.3.1.3.trans-ChalconeThe molecular formula of the product2was de-termined to be C15H14O2by HRMS(EI)and1HNMR and13C NMR spectral data.In the1H NMRand13C NMR spectra of2,the signals due to∆1,2of the substrate had disappeared,while two coupledmethylene signals(δH3.00(δC30.1)andδH3.23(δC40.4))were observed.This confirmed the reductionof∆1,2in2.Furthermore,vicinal spin networks dueto one-substituted and ortho-substituted benzene wereobserved in the DQF COSY spectrum of2.Consis-tent with the molecular formula of1,the replacementof one phenolic OH function in either benzene ringwas proved.The position of the phenolic OH func-tion was determined to be C-1 by the observation of 1H-13C long-range coupling from H-1(δ2.85)to C-1 (δ154.5)and to C-3 (δ130.5).Thus,2was iden-tified as3-(2-hydroxyphenyl)-1-phenylpropane-1-one(Fig.2),a novel compound.The reduction of∆1,2wasobserved in the co-culture of(trans)-chalcone withhost E.coli JM109.Therefore,this reduction was in-dependent of bphA.K.Shindo et al./Journal of Molecular Catalysis B:Enzymatic23(2003)9–16153.2.Biotransformation of theflavonoids withmodified bphA and bphBRespectiveflavonoids were biotransformed through the co-cultivation with the cells of E.coli carrying plasmid pBS2072B,which expresses the dihydrodiol dehydrogenase(desaturase)gene(bphB)in addition to the modified biphenyl dioxygenase genes.The prod-ucts converted were analyzed by chromatographic and spectroscopic methods.3.2.1.FlavoneConverted product3was compared by TLC and HPLC with an authentic sample of2-(2,3-dihydroxy-phenyl)chromen-4-one to confirm its identity as shown in Fig.2.3.2.2.FlavanoneConverted product4was compared by TLC and HPLC with an authentic sample of2-(2,3-dihydroxy-phenyl)chroman-4-one to confirm its identity as shown in Fig.2.3.2.3.6-HydroxyflavoneThe molecular formula of product5was deter-mined to be C15H10O5by HRMS(EI)and1H NMR and13C NMR spectral data.An analysis of the DQF COSY and HMQC spectra of5suggested the attach-ment of two phenolic OH functions at C-1 and C-2 . The positions of the phenolic OHs were confirmed by the observation of1H-13C long-range coupling from H-4’(δ7.30)to C-2(δ160.9)and to C-2 (δ145.5),and a vicinal spin network from H-4 to H-6 (δ6.95).Thesefindings enabled5to be determined as2-(2,3-dihydroxyphenyl)-6-hydroxychromen-4-one (Fig.2),this being a novel compound.3.2.4.6-HydroxyflavanoneThe molecular formula of product6was deter-mined to be C15H12O5by HRMS(EI)and1H NMR and13C NMR spectra data.An analysis of DQF COSY and MHQC spectra of6suggested the attach-ment of two phenolic OH functions at C-1 and C-2 . The positions of the phenolic OHs were confirmed by the observations of1H–13C long-range coupling from H-4 (δ6.91)to C-2(δ74.4)and to C-2 (δ145.5),and from H-5 (δ6.68)to C-1 (δ145.2)and to C-3 (δ126.1),and a vicinal spin network from H-4 to H-6 (δ6.77).Thesefindings enabled6to be determined as2-(2,3-dihydroxyphenyl)-6-hydroxychroman-4-one (Fig.2),this being a novel compound.3.2.5.7-HydroxyisoflavoneThe molecular formula of product7was de-termined to be C15H10O5by HRMS(EI)and1H NMR and13C NMR spectral data.An analysis of the DQF COSY and HMQC spectra of7sug-gested the attachment of two phenolic OH functions at C-1 and C-2 .The positions of the phenolic OHs were confirmed by the observation of1H-13C long-range coupling from H-6 (δ6.79)to C-1 (δ145.6)and to C-2 (δ143.8),and a vicinal spin net-work from H-4 (δ 6.66)to H-6 .Thesefindings enabled7to be determined as3-(2,3-dihydroxy-phenyl)-7-hydroxychromen-4-one(Fig.2),this beinga novel compound.3.2.6.trans-ChalconeThe molecular formula of product8was deter-mined to be C15H14O3by HRMS(EI)and1H NMR and13C NMR spectral data.The∆1,2of the substrate in8was also reduced,as with2.An analysis of the DQF COSY and HMQC spectra of8suggested the attachment of two phenolic OH functions at C-1 and C-2 .The positions of these phenolic OHs were confirmed by the observation of1H-13C long-range coupling from H-1(δ2.85)to C-2 (δ143.1),C-3 (δ128.0)and C-4 (δ120.2),and a vicinal spin network from H-4 (δ6.57)to H-6 (δ6.63).Thesefindings en-abled8to be determined as3-(2,3-dihydroxyphenyl)-1-phenylpropan-1-one(Fig.2),this being a novel compound.3.3.Antioxidative activity of the converted productsThe antioxidative activity offlavonoids is impor-tant for their medicinal and nutritional values.The converted products reported in this paper contained some phenolic OH functions in their structures,so the in vitro inhibitory activity toward lipid peroxidation was examined.The results are summarized in Table1. All the products showed stronger antioxidative activ-ity than to the substrate.In particular,compounds3–8 possessing the catechol structure showed sufficient an-tioxidative activity.16K.Shindo et al./Journal of Molecular Catalysis B:Enzymatic23(2003)9–16Table1Inhibitory effects offlavonoids on lipid peroxidation in a rat brain homogenateCompound IC50(M) Flavone>200325 Flavanone1404736-Hydroxyflavone>2005 2.76-Hydroxyflavanone336157-Hydroxyisoflavone>200 1190725 (trans)-Chalcone>200262 87.0 Catechin(positive control)204.DiscussionThe biphenyl dioxygenase bphA1(2072)A2A3A4, which was modified by directed protein evolution (DNA shuffling)[4],was able to transform various flavonoids.7-Hydroxyisoflavone was converted to its dihydrodiol form(Fig.2),this being the typical reaction mediated by this enzyme,while the mono-hydroxy products were generated fromflavone,fla-vanone,6-hydroxyflavone,6-hydroxyflavanone and (trans-)chalcone through the E.coli cells expressing the modified dioxygenase(Fig.2).These substrates seem to have been converted to their corresponding dihydrodiols,and then to the more stable monohy-droxylated forms in a non-enzymatic manner.It is surprising that in the case offlavone andflavanone, not the dihydrodiol but the diol forms were observed from the products converted by the recombinant E. coli cells carrying only bphA1(2072)A2A3A4(Fig.2).E.coli is likely to have endogenous dehydrogenation activity,although it is not strong.The same result has also been obtained when using S.lividans as the host [8].Dihydrodiol dehydrogenase(desaturase)BphB that is derived from P.pseudoalcaligenes KF707was ca-pable of efficiently converting theflavonoid dihydro-diol forms,which would have been generated through the above-mentioned dioxygenase,to the correspond-ingflavonoid-diol forms.This result demonstrates that the native BphB had broad substrate specificity.We have shown for thefirst time in this study efficient en-zymatic syntheses offlavonoid-diols with a structure of the catechol type.The diol products generated were “unnatural”naturalflavonoids,which have not previ-ously been detected in nature,with strong antioxidant activity.AcknowledgementsThe authors thank Drs.Sueharu Horinouchi and Ya-suo Ohnishi of The University of Tokyo for their valu-able discussions.References[1]K.Furukawa,Curr.Opin.Biotechnol.11(2000)244–249.[2]N.Kimura,A.Nishi,M.Goto,K.Furukawa,J.Bacteriol.179(1997)3936–3943.[3]T.Kumamaru,H.Suenaga,M.Mitsuoka,T.Watanabe,K.Furukawa,Nat.Biotechnol.16(1998)663–666.[4]N.Misawa,K.Shindo,H.Takahashi,H.Suenaga,K.Iguchi,H.Okazaki,S.Harayama,K.Furukawa,Tetrahedron58(2002)9605–9612.[5]K.Shindo,R.Nakamura,I.Chinda,Y.Ohnishi,S.Horinouchi,H.Takahashi,K.Iguchi,S.Harayama,K.Furukawa,N.Misawa,Tetrahedron59(2003)1895–1900.[6]J.B.Harbone,in:T.W.Goodwin(Ed.),Plant Pigments,Academic Press,New York,1988,pp.299–343.[7]J.B.Harborne,H.Baxter,Handbook of Natural Flavonoids,vols.1–2,Wiley,Chichester,1999.[8]H.-K.Chun,Y.Ohnishi,K.Shindo,N.Misawa,K.Furukawa,S.Horinouchi,J.Mol.Catal.B:Enzym.21(2003)113–121.[9]J.Sambrook,D.W.Russell,Molecular Cloning,Cold SpringHarbor Laboratory Press,Cold Spring Harbor,New York, 2001.[10]J.Hirose,A.Suyama,S.Hayashida,K.Furukawa,Gene138(1994)27–33.[11]K.Kubo,I.Yoshitake,Y.Kumada,H.Shuto,N.Nakamizo,Arch.Int.Pharmacodyn.Ther.272(1984)283–295.。