牛顿环+劈尖

合集下载

劈尖干涉 牛顿环

劈尖干涉 牛顿环


当透镜与玻璃板的间距变化时
e -环由外向中心缩进;
e
环由中心向外冒出
利用牛顿环可测透镜曲率。
14
例12-14 当牛顿环装置中的透镜与玻璃间充满某种液体时,原
先第10级亮环的半径由1.40cm变化到1.25cm,则该液体的折射
率是多少? 解:
(K 1)R
r
2
n
r1 n2 n
r2
n1
即 n ( r1 )2 (1.40 )2 1.25
Pk’
Pk
ek
ek
5
等厚干涉在精密测量中的应用. 检查平面:
被检体
被检体
被检体
被检体
6
例12-10 用等厚干涉法测细丝的直径d。取两块表面平整
的玻璃板,左边棱叠合在一起,将待测细丝塞到右棱边间隙处,
形成一空气劈尖。用波长为0的单色光垂直照射,得等厚干涉 条纹,测得相邻明纹间距为,玻璃板长L0,求细丝的直径。
e
2n
n
相邻两明纹的间距与相应厚度差e 间存在如下关系
l sin e
2n
在角很小时,有
2n l
9
例12-13 用波长λ=500nm (1nm =10-9 m)的单色光垂直照射 在由两块玻璃板(一端刚好接触成为劈棱)构成的空气劈尖上, 劈尖角 =2×10-2rad ,如果劈尖内充满折射率为 n= 1.40的 液体,求从劈棱数起第五个明条纹在充入液体前后移动的距离。
解:相邻明纹的高度差 e 0
2
0
2 sin
l
d sin
L0
d
L0
0 d
2l L0
d 0L0
2l
7

等厚干涉实验—牛顿环和劈尖干涉

等厚干涉实验—牛顿环和劈尖干涉

等厚干涉实验—牛顿环和劈尖干涉
等厚干涉实验,是由洪堡用他的牛顿环提出来的,它是细节最精确的光学实验中的一种,从1832年到今天依然使用着这种工具,用于测量光的波长。

与常见的牛顿环相比,劈尖干涉实验对更精确的波长测量更加具有优势,因此得到了广泛的应用。

等厚干涉实验由牛顿环和劈尖干涉组成。

牛顿环是带有镶边的圆形玻璃,其边缘处有两个凹痕,它们被锯齿状分割或尖锐的割边填充,形成镶边,这种特殊的凹痕可以将光线形成一个尖锐而密集的条状图案。

光线由镶边穿过时,产生干涉。

劈尖干涉则不依靠物理凹痕来实现,而是依靠使用两个平行的光纤,其中一根分成两端,由一个非激光的光源为源入射在第一根光纤上,然后从两端发出,分别穿过另外一端光纤,最后从E型探头出发,形成劈尖边缘,从而产生干涉。

等厚干涉实验的基本原理是,入射光有一定的空间图案,其条纹会与凹痕或劈尖边缘相互叠加,形成干涉。

在实际操作中,将该干涉实验用于波长测量时,只要将数据拟合到模型公式,便可以准确测量出光的波长。

等厚干涉实验的优势在于,操作简便,测量准确,同时具有较高的精度。

而缺点是,由于采用凹痕或劈尖边缘,光线会产生不可预测的多普勒效应,而且各种环境因素会对结果造成影响,所以并不能完全准确测量光的波长。

2009-2010第21次课 等厚干涉 劈尖、牛顿环

2009-2010第21次课 等厚干涉 劈尖、牛顿环

2n
6
b
θ
3.相邻条纹间距 相邻条纹间距
dk
θ
dk+1
∆d
∆d λ b= = Q θ 很小, sin θ ≈ θ sin θ 2n sin θ
7
b=
λ
2n sin θ
λ ≈ 2nθ
λ
θ=
λ
2nb
θ
n
8
4.空气劈尖 空气劈尖
n
b
n1 n1
d
∆ = 2d +
λ
2
kλ , k = 1,2,L ∆= λ
2 k
dk
r dk = 2R
2 k
22
λ = 2n r + λ ∆ = 2ndk +
2 k
2
2R
2
r dk = 2R
( k = 1,2L) 加强
2 k
r λ = + = R 2
2 k

(2k + 1)
λ
2
( k = 0,1,2L) 减弱
r λ + = kλ R 2
2 k
牛顿环半径: 牛顿环半径: 明环由
•测量未知单色平行光的波长、测透镜曲率半径 测量未知单色平行光的波长、 测量未知单色平行光的波长
用读数显微镜测量第 k 级和第 m 级暗环 半径 rk、rm
rk = kRλ rm = mRλ
2 k
r − r = mRλ − kRλ
2 m
(r − r ) λ= (m − k ) R
2 m 2 k
(D − D ) λ= 4(m − k ) R
例2

Q
θ=
λ
2nb

牛顿环劈尖原理的应用

牛顿环劈尖原理的应用

牛顿环劈尖原理的应用一、什么是牛顿环劈尖原理牛顿环劈尖原理是指当一个光滑的尖角形物体被牛顿环状劈开时,会产生两个相互作用的力,使物体保持平衡状态。

这个原理可以应用于多个领域,包括物理学、工程学、材料科学等。

本文将重点介绍牛顿环劈尖原理在以下几个方面的应用。

二、应用一:测量材料硬度•利用牛顿环劈尖原理可以测量材料的硬度。

通过将尖角形物体嵌入被测材料表面,可以利用牛顿环劈尖原理检测材料的硬度。

硬度值可以通过测量施加在尖角上的压力和尖角的变形程度来计算得出。

•这种测量方法被广泛应用于材料工程领域,用于评估各种材料的硬度和耐磨性。

在硬度测试仪等设备中,牛顿环劈尖原理是实现材料硬度测试的核心原理。

三、应用二:机械加工牛顿环劈尖原理在机械加工中也有重要应用。

•在切削加工中,利用牛顿环劈尖原理可以优化加工刀具的设计,提高切削效率和加工精度。

通过合理的尖角形刀具设计和正确的切削参数选取,可以减小切削力和刀具磨损,提高切削质量。

•同样地,牛顿环劈尖原理也可以应用于钻孔、车削、铣削等各种机械加工过程中,帮助我们理解切削原理、优化加工方法。

四、应用三:模具设计在模具设计领域,牛顿环劈尖原理有助于改善模具的性能。

•利用牛顿环劈尖原理,可以优化模具结构,提高模具的刚度和精度。

通过合理设计模具的形状和尖角长度,可以减小模具在使用过程中的变形和振动,保证产品的质量和精度。

•此外,牛顿环劈尖原理还可以应用于模具表面处理工艺的改进,如使用涂层、表面光洁度的控制等,以提高模具的耐磨性和延长使用寿命。

五、应用四:纳米技术牛顿环劈尖原理在纳米技术领域也得到了广泛的应用。

•通过控制牛顿环劈尖原理中产生的力,可以实现纳米尺度物体的操纵和定位。

这在纳米器件制造、纳米加工等领域是非常重要的技术方法。

•牛顿环劈尖原理还可以用于纳米探针的研究和纳米材料的力学性质测试,帮助我们理解纳米尺度下的力学行为和材料特性。

六、应用五:光学技术在光学技术领域,牛顿环劈尖原理也有着重要的应用。

牛顿环和劈尖干涉实验报告

牛顿环和劈尖干涉实验报告

牛顿环和劈尖干涉实验报告牛顿环和劈尖干涉实验报告引言:光学是一门研究光的传播和性质的学科,而干涉实验则是光学中重要的实验手段之一。

本次实验旨在通过观察牛顿环和劈尖干涉实验现象,探究光的干涉现象及其原理。

一、牛顿环实验牛顿环实验是一种观察薄膜干涉现象的经典实验。

实验中,我们使用了牛顿环装置,即一块平凸透镜与一块平凹透镜相接触,形成一层薄膜。

通过照射白光,我们可以观察到一系列彩色的环状条纹。

牛顿环的形成是由于光的干涉现象。

当光线从空气进入到透明介质中时,会发生折射。

在透镜与薄膜接触的表面,由于介质折射率的变化,光线会发生反射和折射,形成反射和折射光波的干涉。

这种干涉现象导致了光的干涉条纹的形成。

牛顿环实验中,我们可以观察到一系列同心圆环,每个环的亮暗程度不同。

这是由于光的干涉现象导致的。

光线在透镜与薄膜接触表面发生反射和折射后,由于相位差的存在,不同波长的光会发生干涉,形成亮暗相间的条纹。

而圆环的大小则与光的波长和相位差有关。

二、劈尖干涉实验劈尖干涉实验是一种观察光的干涉现象的实验,通过劈尖形状的玻璃片,我们可以观察到一系列干涉条纹。

在劈尖干涉实验中,我们使用了一块劈尖形状的玻璃片。

当平行光通过劈尖玻璃片时,由于玻璃的折射率不均匀,光线会发生反射和折射,形成干涉现象。

我们可以观察到一系列亮暗相间的条纹。

劈尖干涉实验中,条纹的形成与光的干涉现象有关。

光线在劈尖玻璃片表面发生反射和折射后,由于相位差的存在,不同波长的光会发生干涉,形成亮暗相间的条纹。

而条纹的间距则与光的波长和相位差有关。

结论:通过牛顿环和劈尖干涉实验,我们可以观察到光的干涉现象,并了解到干涉现象的原理。

光的干涉现象是光学中重要的现象之一,对于研究光的性质和应用具有重要意义。

通过实验,我们更深入地理解了光的干涉现象,并对光学的研究有了更深入的认识。

在实验过程中,我们还发现了光的波动性质和光的相位差对干涉现象的影响。

这些发现对于进一步研究光的干涉现象和应用具有指导意义。

18.04.劈尖-牛顿环迈克尔逊干涉仪

18.04.劈尖-牛顿环迈克尔逊干涉仪
如果观察到某处干涉明 纹(或暗纹)移过了N 条, 即表明样品高度增长了Δl 。
l N
2
根据线膨胀系数的定义:
l N
l0(t t0) 2l0(t t0)
2)测细丝的直径

n1
nD
D
n1
L

b
L
sin D
L
由: l sin
2n
有: l D
L 2n
金属丝直径为: D L
2n l
3)检验工件表面的平整度
用这种方法能查出不超过四分之一波长( 约 0.1 微米)的凹凸缺陷。
表面平整 的工件的 等厚干涉 条纹
存在极小 凸凹不平 的工件的 等厚干涉 条纹
例1:在工件上放一标准平面玻璃,使其间形成 一空气劈尖,并观察到弯曲的干涉条纹。试:根据 条纹弯曲方向,判断工件表面上纹路是凹还是凸? 并求:纹路深度H。
n2 1.20 问:干涉条纹
如何分布?当油膜中心最
L
高点与玻璃片的上表面相
S
距 h 8.0102 nm 时,可
见明纹的条数及各明纹处
膜厚 ? 若油膜展开条纹如
h
G nn12
何变化?
hr
oR
解 1)条纹为同心圆
Δ 2n2dk k 明纹
d
dk

k

2n2
k 0,1, 2,
油膜边缘 k 0, d0 0 明纹
----- 等厚干涉
四 干涉条纹间距:
任意相邻明纹(或暗纹)对应的膜厚差: d
Δ 2nd
2
k, k 1,2, 明纹
(2k 1) , k 0,1, 暗纹

劈尖和牛顿环

劈尖和牛顿环

劈尖和牛顿环新教材第三册二十一章提到了两个薄膜干涉的装置——劈尖和牛顿环。

教材中并没有给出明确的说明,下面介绍以下它们的光学原理。

一.劈尖:干涉法检查平面的平整程度的装置光学上叫劈尖干涉,如图1所示。

单色光源S发出的光经凸透镜成为平行光,再经过以450角放置的玻璃片M反射以后,垂直地投射到有两块平面玻璃片夹一薄纸片所构成的空气劈尖上,用读数显微镜M s观察反射条纹,如图2所示。

图1 图2由于劈尖角很小,因此可近似地认为入射角为零,入射光与反射光的方向相反。

由光的电磁理论可以证明,薄膜以及上下介质的折射率的关系是:当n1< n2>n3或n1 >n2<n3时两条反射光之间有半波损失,而当n1< n2<n3或n1 >n2 >n3时,则没有半波损失。

所以这时的干涉条件是相长干涉 2 n2h + λ/2 = kλ, k = 0,1,2,…;⑴相消干涉 2 n2h + λ/2 =(k+1/2)λ,k = 0,1,2,…;⑵式中n2为劈尖介质折射率,h为介质的厚度,λ为光在真空中的波长。

故明纹处空气层厚度为h = (k-1/2)λ/2n2, k = 0,1,2,…;⑶暗纹处空气层的厚度为h = kλ/2n2 ,k = 0,1,2,…;⑷⑶、⑷两式中k值自零开始,k = 0对应于劈棱处的暗纹(第一条暗纹)。

劈尖干涉条纹的特点。

1.两条明纹(或暗纹)间劈尖介质薄膜厚度差为△h = h k+1-h k =λ/2n2两条纹之间距离为L ≈λ/2n2θ2.对于一定波长的入射光,条纹间距与θ成反比,与n2成反比。

3.当上玻璃片向上移动时,条纹向劈尖移动,上玻璃片每移动λ/2n2 ,条纹移过一条。

教材中介绍的干涉法检查平面的平整度就是利用的这一原理。

教材第三册28页图21-6的甲图如图3表示的平面是平整的,乙图如图4表示的平面上有一个凹点。

因为根据该点附近的条纹向左凸,也就是说条纹向劈尖移动,说明此处的空气厚度比周围要厚,所以此处是一个凹点。

劈尖-牛顿环知识

劈尖-牛顿环知识

nn21 G
dk k 2n2
k 0,1,2,
第 十一章 光学
21
物理学
第五版
hr
oR
11-4 劈尖 牛顿环
油膜边缘 k 0, d0 0
k 1, d1 250 nm
k 2, d2 500 nm
d k 3, d3 750 nm
k 4, d4 1000 nm
由于 h 8.0102 nm 故 可观察到四条明纹 .
b
第 十一章 光学
4
物理学
第五版
11-4 劈尖 牛顿环
b
L
n1 n
n
n / 2 D
n1
(3)条纹间距
b 2n
D n L L
2b 2nb
b
劈尖干涉
第 十一章 光学
5
物理学
第五版
11-4 劈尖 牛顿环
(4 )干涉条纹的移动
第 十一章 光学
6
物理学
第五版
11-4 劈尖 牛顿环
例 1 波长为680 nm的平行光照射到 L=12 cm长的两块玻璃片上,两玻璃片的一 边相互接触 ,另一边被厚度D=0.048 mm的 纸片隔开. 试问在这12 cm长度内会呈现多 少条暗条纹 ?
解 2d (2k 1)
2
2
k 0,1,2,
第 十一章 光学
7
物理学
第五版
2d (2k 1)
2
2
2D
2
(2km
1)
2
km
2D
141.2
共有142条暗纹
11-4 劈尖 牛顿环
k 0,1,2,
第 十一章 光学
8
物理学
第五版

牛顿环—劈尖实验讲义

牛顿环—劈尖实验讲义

牛顿环-劈尖若将同一点光源发出的光分成两束,让它们各经不同路径后再相会在一起,当光程差小于光源的相干长度,一般就会产生干涉现象。

如测量光波的波长,精确地测量长度、厚度和角度,检验试件表面的光洁度,研究机械零件内应力的分布以及在半导体技术中测量硅片上氧化层的厚度等。

牛顿环、劈尖是其中十分典型的例子,它们属于用分振幅的方法产生的干涉现象,也是典型的等厚干涉条纹。

【实验目的】1.观察和研究等厚干涉现象和特点。

2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。

3.熟练使用读数显微镜;学习用逐差法处理实验数据的方法。

【实验仪器】测量显微镜,钠光光源,牛顿环仪,牛顿环和劈尖装置。

图1 实验仪器实物图【实验原理】1.牛顿环“牛顿环”是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现。

为了研究薄膜的颜色,牛顿曾经仔细研究过凸透镜和平面玻璃组成的实验装置。

他的最有价值的成果是发现通过测量同心圆的半径就可算出凸透镜和平面玻璃板之间对应位置空气层的厚度;对应于亮环的空气层厚度与1、3、5…成比例,对应于暗环的空气层厚度与0、2、4…成比例。

牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,将其凸面放在一块光学玻璃平板(平晶)上构成的,如图2所示。

平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。

若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。

其干涉图样是以玻璃接触点为中心的一系列明暗相间的同心圆环(如图3所示),称为牛顿环。

由于同一干涉环上各处的空气层厚度是相同的,因此称为等厚干涉。

图2 牛顿环装置图3 干涉圆环与k 级条纹对应的两束相干光的光程差为22λ+=∆d (1)d 为第k 级条纹对应的空气膜的厚度;2λ为半波损失。

由干涉条件可知,当∆=(2k+1) 2λ(k=0,1,2,3,...) 时,干涉条纹为暗条纹,即2)12(22λλ+=+k d得λ2kd =(2) 设透镜的曲率半径为R,与接触点O相距为r处空气层的厚度为d,由图2所示几何关系可得222)(r d R R +-=2222r d Rd R ++-=由于R>>d,则 d 2可以略去Rr d 22= (3)由(2)和(3)式可得第k级暗环的半径为:•• λλkR kR Rd r k =⋅==2222(4) 由(4)式可知,如果单色光源的波长λ已知,只需测出第k 级暗环的半径rm ,即可算出平凸透镜的曲率半径R;反之,如果R已知,测出rm 后,就可计算出入射单色光波的波长λ。

牛顿环和劈尖干涉

牛顿环和劈尖干涉

牛顿环和劈尖干涉牛顿环和劈尖干涉是分振幅法产生的等厚干涉现象,其特点是同一条干涉条纹所对应的两反射面间的厚度相等。

利用牛顿环和劈尖干涉现象,可用来测量光波波长、薄膜厚度、微小角度、曲面的曲率半径以及检验光学器件的表面质量(如球面度、平整度和光洁度等),还可以测微小长度的变化,因此等厚干涉现象在科学研究和工程技术中有着广泛的应用。

学习导航1实验原理1. 用牛顿环法测定透镜的曲率半径R将一块曲率半径很大的平凸透镜放在一块磨光的平板玻璃上,即构成一个上表面为球面,下表面为平面的空气薄膜(见图1),若用波长为λ的单色平行光垂直射入透镜平面时,由空气薄膜上下两表面反射的两束光在透镜凸表面附近相遇发生等厚干涉,其干涉图样是以接触点O 为中心的一系列明暗交替的同心圆环(中心处是一个暗斑),且同一圆环的薄膜厚度相等。

这些圆形干涉条纹是牛顿当年在制作天文望远镜时,偶然将一个望远镜物镜放在平板玻璃上发现的,故称为牛顿环。

设透镜的曲率半径为R ,形成k 级干涉暗纹的牛顿环半径为r k ,则有①λkR r k = (k=0,1,2,…) (1)①参阅马文蔚主编《物理学》第四版,第三册,高等教育出版社,1999年,P125-127。

图1 牛顿环干涉入射上式表明,当波长λ已知时,测出即可算出R ,但是,由于玻璃的弹性形变以及接触处难免有尘埃等微粒,使得玻璃中心接触处并非一个几何点,而是一个较大的暗斑(或明斑,为什么?)。

所以牛顿环的圆心难以定位,且绝对干涉级次无法确定。

实验中将采用以下方法来测定曲率半径R 。

k r 分别测量两个暗环的直径和,由式(1)可得 m D n D (2) λR j m D m )(42+=(3)λR j n D n )(42+=式中j 表示由于中心暗斑的影响而引入的干涉级数的修正值,m 和n 为实际观察到的圆环序数。

式(2)减式(3)得2λ−−=)(422n m D D R nm ) (4)可见上式中R 只与牛顿环的级次差(n m −有关,这样就回避了对绝对干涉级次k 的确定和牛顿环半径直接测量的问题。

实验报告:牛顿环与劈尖干涉

实验报告:牛顿环与劈尖干涉

实验报告:牛顿环与劈尖干涉牛顿环与劈尖干涉实验是光学里的一个主要实验,用来研究光的波的属性以及干涉效果。

牛顿环实验可以用来证明可行光波的辐射特性,是研究边缘效应的重要实验之一。

劈尖干涉实验是一种用来研究光的振幅分布的重要实验,可以用来研究光的相位分布以及证明光波的现实形式。

实验原理牛顿环实验:牛顿环实验依赖光波的干涉,使用一束平行光通过多孔膜或A类凹坑经过至少两次反射后出现一种环状状态,形成圆形叠光斑环状干涉图案。

劈尖干涉实验:劈尖干涉实验也叫Young-Fraunhofer实验,采用激光把一个小的劈尖形光斑投射到对称定位的双孔或双镜,用双孔或双面反射可以让光线以平行的形式穿过,在孔的或镜的出口处可以观察到叠光斑,比较激光源的劈尖形光斑与叠光斑的相位和振幅关系,进而验证可行光波模型有关展示神秘空间外抛物线角度的准确性。

实验安排实验仪器准备a. 发射激光:含石英棱镜的激光系统,具有可调的波长,调制,控制的特点。

b. 放大器;可用于放大双孔或双面反射的叠光斑,方便仪器的观察和记录。

c. 摄片机:可用于实时观察及连续拍摄叠光斑的更新状态,以便研究和分析叠光斑的更新状态。

a. 装置:将激光光源与双孔或双面反射头联结,特别需要注意,双孔或双面反射头要安装好,并保持下次实验时无变形。

b. 校准和检测:在实验Web站点操作参数自动校准激光和双孔或双面反射头,以便叠光斑图案可以通过放大望远镜展示出来。

实验步骤a. 使用激光投射一个单一的光斑劈尖形的劈尖形到含有双孔或双面反射头的装置上;b. 设定特定的波长;c. 使用一只放大器和一只摄片机观察并记录叠光斑的位置;d. 将记录的叠光斑的位置和激光源的劈尖形光斑的相位和振幅比较,进而验证可行光波模型有关展示神秘空间外抛物线角度的准确性。

实验结果和分析实验结果表明,当双孔或双面反射头准确定位并经正确校准时,叠光斑的形状和激光源的劈尖形的光斑具有很好的一致性,据此可以得出结论:牛顿环实验和劈尖干涉实验均可以用来验证可行光波存在及其相关特性。

等厚干涉牛顿环劈尖实验报告

等厚干涉牛顿环劈尖实验报告

等厚干涉牛顿环劈尖实验报告
一、实验目的
本次实验旨在运用激光厚干涉仪和牛顿环劈尖,了解光波在牛顿环劈尖中的折射作用,从而证明劈尖的存在。

二、实验原理
1、牛顿环劈尖的概念
牛顿环劈尖(Newton's ring)是由牛顿发现的一种光电现象,也叫牛顿环。

它是由光
的入射口、出射口以及中间的物体所形成的闭环光路,由此形成的环形状的干涉图形叫牛
顿环。

一般当光通过闭环光路,通过重叠的方式产生干涉现象,形成牛顿环。

2、厚干涉
厚干涉又称原来层干涉,是使用衍射光斑阵列照射在去表面上形成的干涉图形,它反
映出物体厚度的信息。

据此,可以分析出该物体表面的厚度,它也可以用来研究表面形状
的变化。

三、实验仪器
激光厚干涉仪、牛顿环劈尖、活塞式调准器、激光源。

四、实验步骤
1、安装实验仪器:
将激光厚干涉仪、激光源和活塞式调准器置于室内,保持激光垂直实验台,并将牛顿
环劈尖调整成柱形玻璃以后,放置在实验台上。

2、调整激光和牛顿环劈尖:
使用活塞式调准器,调节激光的垂直方向,使其正好照射到牛顿环劈尖上,并用手调
节牛顿环劈尖,将劈尖调节至聚焦位置。

3、实验观察:
调节激光后,观察实验台上的屏幕,可以观察到环的清晰程度,清晰的环表明劈尖的
存在,从而证明牛顿环劈尖的存在。

五、实验结果
实验结束后,可以观察到清晰的牛顿环,证明了劈尖的存在。

15大学物理波动光学2(劈尖、牛顿环、干涉仪)

15大学物理波动光学2(劈尖、牛顿环、干涉仪)

干涉条件为:
2nd 2nd


2
k (k 1,2,) (2k 1)
相长

2
2
(k 0,1,2,) 相消
2.等厚干涉 厚度相同的地方光程差相同,形成同一 条纹。 劈尖的干涉条纹是一系列平行于劈尖棱 边的明暗相间的直条纹。
(1)棱边处 ,为 2 k=0级暗条纹(与实 际一致)
2nD
k 7
2
(2k 1)
2
k 0 k 7
k D 2065 nm 2.07 m 2n
细丝膨胀,条纹向左移动
练习1.如图所示,利用空气劈尖测细丝直径, L 已知 589 .3nm , 2.888102 m,测得30条 4.295103 m,求细丝直径d。 条纹的总宽度为
I min 0
I
Imax Imin
I min 0
I
4I1
对比度差 (V < 1)
对比度好 (V = 1)
二、时间相干性 1.光的非单色性 理想的单色光

实际光束:波列、准单色光 I I
0
I0 2
波列长L= c
0
0

2.光源的非单色性对干涉条纹的影响 通常单色光源包含一定的波长范围 , 在这一范围内每一波长的光各自形成一组 干涉条纹。各组干涉条纹只有零级条纹完 全重合,其他各级不再重合,其非相干叠 加会降低条纹的可见度。
n 1.22
例2.如图所示为测量油膜折射率的实验装臵, 在平面玻璃片G上放一油滴,并展开成球冠状
油膜。在波长 600 nm的单色光垂直照射 下,从反射光中可观察到油膜所形成的干 涉条纹。已知玻璃的折射率为 n1 1.5 ,油 膜的折射率为 n2 1.2 ,问:当油膜中心最 高点与玻璃片的上表面 相距h 800 nm 时,干 L 涉条纹是如何分布的? S 可看到几条明纹?明 纹所在处的油膜厚度 n2 h 为多少? n1 G

实验报告牛顿环与劈尖干涉

实验报告牛顿环与劈尖干涉

实验报告牛顿环与劈尖干涉实验名称:牛顿环与劈尖干涉实验实验目的:1.理解和掌握牛顿环和劈尖干涉的原理和方法;2.观察和测量牛顿环的形状和颜色变化,并分析其原理;3.观察和测量劈尖干涉的干涉条纹并分析其原理。

实验器材:1.汞灯;2.凸透镜;3.牛顿环产生装置;4.分光镜;5.目镜;6.孔径片;7.毛玻璃;8.劈尖装置。

实验原理:1.牛顿环:当透明物体与平行光波相遇时,发生了光的干涉现象。

当顶点与透镜接触时,透过透镜的平行光波发生了干涉,形成了牛顿环。

2.劈尖干涉:光从狭缝中通过之后,会形成一系列同心圆环的干涉图案,这一现象被称为劈尖干涉。

两束光经过狭缝后相遇,由于光程不同而产生干涉。

实验步骤:牛顿环实验:1.将凸透镜固定在光源下方的牛顿环产生装置中;2.调整透镜的高度,使其与玻璃板的顶点接触;3.通过分光镜照明,从透镜的一侧观察牛顿环;4.用目镜逐渐靠近牛顿环,在视野最亮的地方读取孔径片的厚度,重复三次测量取平均值。

劈尖干涉实验:1.将劈尖装置放置在光源的一侧,使光通过劈尖装置形成干涉图案;2.通过调整劈尖装置和观察屏的距离,观察干涉图案的变化;3.使用目镜和微调节焦距,逐渐靠近干涉图案直到清晰可见,测量不同环的半径;4.测量两个相邻环之间的距离。

实验结果与分析:牛顿环实验:通过测量读数和计算,可以得到牛顿环的半径和孔径片的厚度之间的关系。

根据厚度和半径的关系,可以计算出透镜的曲率半径。

在实验中,我们可以观察到牛顿环半径随孔径片厚度的变化,并验证了光的相干性和干涉现象。

劈尖干涉实验:根据干涉条纹的半径和距离测量结果,可以计算出干涉过程中两光束的相位差和波长。

通过变化劈尖装置和观察屏的距离,可以调整干涉图案的亮暗程度和间距。

根据劈尖干涉的原理,我们可以观察到干涉条纹的明暗变化,并推测出两束光的相位差和波长。

实验总结:通过本次牛顿环和劈尖干涉实验,我们深入了解了光的干涉现象和干涉图案的变化规律。

通过测量和计算,我们成功验证了牛顿环和劈尖干涉的原理,并得到了相关的数据结果。

牛顿环和劈尖的等厚干涉

牛顿环和劈尖的等厚干涉

牛顿环和劈尖的等厚干涉〔引课:〕“牛顿环”是牛顿在1675年制作天文望远镜时,偶然将一个望远镜的物镜放在平板玻璃上发现的。

在物理课上,我们只是从理论上研究了薄膜干涉的原理,那么在实验课上我们通过什么方法获得等倾或等厚干涉的图像呢?用牛顿环实验和劈尖实验验证等厚干涉。

用迈克尔逊干涉仪验证等倾干涉。

〔正课:〕1. 理解牛顿环和劈尖干涉条纹的产生原理;2. 学习用等厚干涉法测量凸透镜的曲率半径;3. 学会用逐差法处理实验数据。

1. 牛顿环的产生把一块曲率半径相当大的平凸透镜A 的凸面放在一块光学平板玻璃B 上,那么在它们之间形成以O 为中心向四周逐渐增厚的空气薄膜,离O 点等距离处厚度相同。

当一束单色光垂直射入时,入射光在空气层上下两表面反射,且在上表面相遇产生干涉。

由于空气膜厚度相等处光程差相等(亦相位相同),通过读数显微镜观察到同相位点连接轨迹是以接触点为圆心的同心圆。

各明环(或暗环)处空气膜厚度相等故称为等厚干涉2. 曲率半径的计算设入射光是波长为λ的单色光,第k 级干涉条纹的半径为r ,该处空气膜的厚度为e ,上下表面反射光的光程差为由于空气的折射率近似为1,则产生明、暗环的干涉条件为 明条纹公式( k=1,2,3,……) 暗条纹公式(k=0,1,2,3,……)根据几何关系可知222)(e R r R -+=222e eR r -=R 为透镜的曲率半径。

由于R ≫e上式近似表示为代入明、暗环公式中,则明环半径( k=1,2,3,……)暗环半径R k r λ=2 ( k=1,2,3,……)解决方法:若我们用两个暗环或明环的半径1.将牛顿环装置放在读数显微镜的平台上,点亮钠光灯,并将物镜对准牛顿环装置中心。

2.调整反射镜,使水平入射的光线经反射后垂直入射,调至显微镜视场中亮度最大。

3.调节显微镜调焦手轮,使其自下而上缓慢移动,直到目镜中能够看到清晰的干涉条纹为止。

微微移动牛顿环装置,使叉丝交点与牛顿环中心大致重合,并使一根叉丝与标尺平行。

实验八牛顿环与劈尖干涉课件

实验八牛顿环与劈尖干涉课件
19
❖ 3.注意事项 ❖ (1)牛顿环的干涉环两侧的环序数不要数错. ❖ (2)防止实验装置受震引起干涉环纹的变化. ❖ (3)防止移测显微镜的“回程误差”移测时必须向同
一方向旋转显微镜驱动丝杆的转盘,不许倒转. ❖ (4)由于牛顿环的干涉条纹有一定的粗细度,为了
准确测量干涉环的直径,可采用目镜瞄准用直线与 圆心两侧的干涉环圆弧分别内切、外切的方法以消 除干涉环粗细度的影响.

(8—7)
13
❖ 实验内容 ❖ 1.利用牛顿环测定平凸透镜的曲率半径 ❖ (1)借助室内灯光,用眼睛直接观察牛顿环
仪,调节框上的螺旋H使牛顿耳呈圆形,并 位于透镜的中心,但要注意螺旋不可旋得过 紧.
14
❖ (2)将仪器按图所示安装好,直接使用单色扩 展光源钠灯照明.由光源S发出的光经玻璃片 G反射后,垂直进入牛顿环仪,再经牛顿环 仪反射进入移测显微镜M.调节玻璃片G的高 低及倾斜角度,使显微镜视场中能观察到黄 色明亮的视场.
纹.
11
❖当

(k:0,1,2,…)
❖ 时,为干涉暗条纹.与k级暗条纹对应的薄膜 厚度为

(8—6)

12
❖ 由于k值一般较大,为了避免数错,在实验中
可先测出某长度 内的干涉暗条纹的间隔数 x,则单位长度内的干涉条纹数为 .若 棱边与细丝的距离为L,则细丝处出现的暗条 纹的级数为k=nL,可得细丝的直径为

20
10
❖ 2.劈尖干涉
❖ 将两块平板玻璃叠放在一起,一端用细丝( 或薄片)将其隔开,则形成一劈尖形空气薄层
.若用单色平行光垂直入射,在空气劈尖的
上下表面反射的两束光将发生干涉,其光程

(为空气膜厚度).因为空气劈

等厚干涉实验—牛顿环和劈尖干涉

等厚干涉实验—牛顿环和劈尖干涉

等厚干涉实验—牛顿环和劈尖干涉要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。

由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。

获得相干光方法有两种。

一种叫分波阵面法,另一种叫分振幅法。

1.实验目的(1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。

(2)掌握读数显微镜的基本调节和测量操作。

(3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法(4)学习用图解法和逐差法处理数据。

2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理我们所讨论的等厚干涉就属于分振幅干涉现象。

分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。

分振幅干涉分两类称等厚干涉,一类称等倾干涉。

用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射光,满足相干条件。

当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。

这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。

等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。

下面分别讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。

相互接触的透镜凸面与Rer (a ) (b)图9-1 牛顿环装置和干涉图样平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。

如图9-1(a )所示。

当单色光垂直地照射于牛顿环装置时(如图9-1),如果从反射光的方向观察,就可以看到透镜与平板玻璃接触处有一个暗点,周围环绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b )所示.在平凸透镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部分在透镜和空气层的交界面上反射,一部分通过空气层在平板玻璃上表面上反射,这两部分反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干涉现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UR Ur ? R
不确定度评定
☆ 先分别计算u(D30) 和u(D15),其中B类 不确定度均可取 0.01 。
3
☆ 由传递关系计算R的不确定度。
☆ 用同样的方法计算d的不确定度。 ☆ 不确定度有效数字取1位或2位。
想一想:牛顿环还有什么应用?
检验透镜球表面质量

将玻璃验规盖于待测 镜头上,两者间形成 空气薄层,因而在验 规的凹表面上出现牛 顿环,当某处光圈偏 离圆形时,则该处有 不规则起伏。
2 k 2 m
rk
h
rm
(2lk ) (2lm ) 4(k m)
2
2
lk
lm
结论:可以!
3. 实验内容
1.观察牛顿环 2.测量平凸透镜曲率半径
k级
D D R 4(k m)
2 k 2 m
m级
仪器布置
实验内容
☆ 接通钠光源,预热5分钟后,使读数显微镜物镜对准牛顿环的 中央部分 ☆ 光源对准物镜筒下方的45°平板玻璃,调节平板玻璃方向, 使光垂直照在平凸透镜装置上。此时通过目镜可以看到明亮的黄 色光,满足入射光垂直于透镜的要求。 ☆ 调节目镜焦距:清晰地看到十字叉丝,然后自下而上移动显微 镜镜筒(为防止压坏被测物体和物镜,不得由上向下移动!), 看清牛顿干涉环。 ☆ 测平凸透镜的曲率半径 取m-n=20。选择暗条纹测量,转动鼓轮旋钮,从中心数到40环,在 转回36圈,使叉丝由第36圈向第35圈移动直至叉丝交点与第35圈相 切,读取第35圈位置,继续朝同一方向移动叉丝边移动边读数至 左边第11圈,仍按原方向移动叉丝(为防止产生空程差),越过 中央暗环,按同样方法读取右第11圈至右第35圈;列表并求出暗 环的直径。(同方向一气呵成读数) ☆ 用逐差法处理数据。
牛顿环测平凸透镜曲率半径
太原理工大学 物理与光电工程学院 2013.3
1.牛顿环
2.实验原理
O’
分析光程差
1
R
R
2d 2
2
O
rk
D
(明条纹) K K 2 (暗条纹)
d
目标:求曲率半径R
r R k
2 k
r 为什么不用: R k
O’
注意事项

观察反射光牛顿环时需要遮住显微镜载物台下的反
光镜。

读数显微镜调焦时,先使物镜接近被测物,然后
使镜筒慢慢自下而上移动,这就避免了两者相撞的危 险。
☆ ☆
保证水平方向的叉丝与显微镜的标尺平行。 透镜与平板玻璃间的压力不能太大使牛顿环变形, 也不能太小,需要保证暗环中心稳定处于牛顿环仪 的中心。
注意:
1、测量时要防止引入空程差。
螺尺
螺杆
消除方法:测量时只往同一方向转动螺尺。 2、k和m不能相差太小。
数据处理
☆ 记录原始数据 ☆ 用逐差法处理数据,求出曲率半径R.
2 2 Dm Dn R 4(m n)
☆ 不确定度的评定 ☆ 结果表达式
R R UR
(P=68.3%)
☆误差分析
hN
H
L
λ NL H 2 Δl N
劈尖干涉
操作要点
☆ 仪器布置
☆ 观测干涉条纹 ☆ 测量直径 ☆ 测量薄纸片厚度
测量薄纸片厚度
☆ 由于相邻条纹之间的距离很小,为了减小 测量误差,通常测量N条干涉暗条纹之间的 距离。取N =10,横向改变显微镜筒位置, 使叉丝与某级暗纹重合读取X0 ,继续朝同 一方向移动叉丝,每隔10条暗纹依次读取X1, X2, … ,X5。 ☆ 测量交棱到纸边的距离L,重复测5次。
标准验规 待测透镜
暗纹
课后思考
☆ 此实验中采取了那些措施,避免或减少误差? ☆ 从牛顿环装置透射的光形成的干涉圆环与反射
光形成的干涉圆环有何不同? ☆ 如果被测透镜是平凹透镜,能否应用本实验方 法测定其凹面曲率半径? ☆ 牛顿环中央图样是怎样的?若在透镜四周均匀 轻微加压,将看到什么现象? 有兴趣的同学可以参考相关资料思考一下以上问题!
2 k
?
1.灰尘会引起附加的光程 差,导致暗环的中心级次 不能确定。 解决办法:
R
R
rk
O D
d a
r r R (k m)
2 k 2 m
2.压力使玻璃透镜和平板 的接触点变为圆斑,导致 暗环的中心不能确定; 解决办法: 用弦长取代牛顿环直径
能用弦长取代牛顿环直径吗?
D D R 4(k m)
选作:劈尖干涉
平板玻璃 薄纸片 或头发丝
L d ’
将两块光学平板玻璃重 叠在一起,在一端插入 一薄纸片(或细丝), 则在两玻璃板间形成一 空气劈尖。
当一束平行单色光垂直 入射时,由空气层上下 表面反射的光将在空气 层上表面处发生干涉, 形成一组平行于交棱的 明暗相间、等间距
相关文档
最新文档